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NOMENCLATURE

Symbol Meaning

material axes

material stiffness tensor

cohesion

D

d

material compliance tensor

incremental operator

elastic modulus

strain tensor

shear modulus

gravitational constant

distance below surface of earth

indices, subscripts

dispersion coefficient

load increments

cumulative probability

random number (0,1)

matrix transpose, superscript

transformation matrices

global axes

vector of thermal expansion

coefficients

mean orientation of joint set

local orientation of fracture

engineering shear strain

temperature increment
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Symbol Meaning

defined in Eq. 5

reduction factor in Eqs. 21. and 25

friction coefficient

Poisson's ratio

material density

stress tensor

horizontal and vertical in-situ

stress components

shear stress

deviation of local fracture

angle from mean direction
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INTRODUCTION

The underground burial of nuclear waste has so far beenproposed for both soft rock, exclusively salt, and hard rock,specifically basalt, granite, shale and tuff. This gives riseto two different geotechnical problems. The division is madebecause the mechanical behavior of salt is characterized bytime-dependent creep deformation, while the mechanical behaviorof hard rccks is generally assumed to be elastic-plastic.
Additionally, salt is thought of as a continuous rock masswhile hard rocks. which usually contain numerous faults andintersecting joint sets, are considered to be discontinuous. 

Adiscontinuous rock mass is described by the properties of thefractures and y the properties of the intact rock. For veryhard rocks thu mass behavior is controlled primarily by thediscontinuities, 
and the behavior of the intact rock is almostirrelevant. However, for moderately hard rocks the intact rockcharacteristics 

nay be dominant. In this report a materialconstitutive model is presented which takes explicit ccount ofthe properties of both the intact rock and the fractures. Eventhough immediate application is the analys. of an undergroundnuclear waste repository in hard rock, the cnstitutive modelis intended to be valid for a variety of problems, both staticand dynamic, in a regularly jointed medium.
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Large rock masses in the earth's crust are commonly broken

into block structures by fractures that occur in sets of

regularly spaced, more or less parallel, planes with a variety

of orientations. These joint sets are formed primarily by flow

banding and cooling in igneous rocks, and by foliation in

metamorphic rocks. In addition, jointing can result from

up-lift of initially deep-seated rock masses. Major joint

sets can extend for miles, and joint spacing can vary from

centimeters to several meters. Moreover, these features can

occur in lithologic units at depths of several kilometers. In

this report, the words fracture and joint are used

interchangeably to refer to discontinuities that have not

undergone detectable shear displacement. Discontinuities that

do rot occur in regular sets and/or have undergone observable

shear displacement are called faults or dikes. A complete

description of the structural geology of joint sets is not

presented here but can e found in Refs. 1-3.

The nature of the fractures observed in a hard rock mass

deserves special consideration since it dictates the type of

material constitutive model which must be employed for

mechanical modelling. Naturally occurring fractures are found

in configurations varying from the closely spaced,

multiply-intersecting and omnidirectional network shown

schematically in Fig. 1A, to the isolated but well-defined

discrete fault illustrated in Fig. C. The fracture network in
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Fig. A is typical of the Eleana shale formation at the Nevada

Test Site, for which a granular materials model was found to

accurately predict the rock mass response in a near surface

heater experiment 41. At the other extreme, the discrete

fault in Fig. C is satisfactorily modelled by a slide line,

with the host rock behavior being approximated by classical

elastic-plastic theory. The fractures found to occur most

commonly in hard rocks, however, are those depicted in Fig. 1B:

they consist of one, two, or three intersecting sets, each set

being defined by a typical fracture length, an average spacing

between fractures, and a preferred orientation. In contrast to

the granular material in Fig. A, the joint sets in Fig. lB

possess preferred planes of weakness. And, in contrast to the

discrete fault in Fig. C, they are dispersed throughout the

region of interest and therefore require a continuum

description. It is this type of fracture system that has

recently attracted special attention in the underground waste

disposal community, and to which this study is addressed.

After obvious initial efforts t model fractured rock

masses as homogeneous and isotropic, researchers in rock

mechanics began to borrow from the established theories of soil

mechanics. Generalized elastic-plastic theories with

pressure-dependent yield surfaces were presented by Reyes and

Deere 51 and Pariseau, Voight and Dahl 6]. Zienkiewicz (7]

used a linear elastic model with a tension cutoff to
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approximate the behavior of materials in which loss of cohesion

occurs under tensile loading. Models for discrete joints or

faults were incorporated into finite-element computer codes by

Goodman, Taylor and Brekke [8) and by Ghaboussi, Wilson and

Isenberg [9], and into boundary element codes by Roberds [10.

These discrete joint elements are state-of-the-art in the sense

that they attempt to model nonlinear normal and shear

deformation, dilatancy, and yielding with a generalized

Mohr-Coulomb theory. Dixon and Mahtab [11] wre among the

first to report a finite element continuum model for jinted

rock masses, but its applicability was limited to stability

analysis post-failure frictional slippage along pre-existing

joint planes was not considered. Cundall [12] presented a

theory for a continuum divided into a large number of rigid

blocks where deformation takes place only between mating

surfaces. Since post-failure rigid body motion could be

modelled uina this theory, it has been applied to earth

subsidence problems. Recent advances toward a continuum theory

have taken either the approach of Singh 13], Morland 141, and

Zienkiewicz and Pande 151, in which fractures are modelled

explicitly in the material stiffness, or the approach reported

in Ref. 116] in which slip planes are model1ed implicitly in

the equation for the yield surface.

14



Geological observations and measurements in underground

exploratory tunnels, of surface outcrops, and in drill holes

can provide reasonably accurate information on the orientation

and position of major faults. Similar field measurement data

on regular joint sets, however, always exhibit scatter to some

significant extent regardless of the rock type. Joint sets do

not exist as perfectly parallel, planar surfaces. Their

observable properties, namely spacing, size and orientation,

can only be interpreted in a statistical manner. Although the

major effort has been directed toward analyzing orientation

data, probability distributions for joint size have been

reported by Cruden 117], and for joint spacing by Snow [181 and

Priest & Hudson 191. In each cse, the data were well

represented by a lognormal distribution. More recently, a

major effort has been undertaken to quantify several joint set

characteristics for use in studies f underground nuclear waste

disposal in basalt 201 and granite 21].

The assumption often made in continuum theories for

regularly jointed rock masses is that fractures are everywhere

planar. Zienkiewicz and Pande 151 discuss the possibility of

specifying "random joints" in their finite element code, but

make no attemption to relate the randomness to geologic field

data. For the jointed rock model presented in this report, the

fracture orientation at a point is taken as a sample from a

population distribution which has been determined from field
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observations. Probability distributions for joint orientation

data are well established, and are presented in this resort as

the basis fc: specifying joints in the constitutive model. The

assumption of parallel fracture planes is not only physically

unrealistic, but may create an ill-conditioning of the global

material stiffness which would contribute to the model a degree

of instability that would otherwise not exist.

Fracture spacing, like racture orientation, significantly

affects rock mass behavior and must he included in the

constitutive model. I5 the stress-strain behavior of both the

intact rock and a single fracture are known individually, then

constructing a constitutive relation for a composite with a

given fracture spacing is straightforward. This relation is

valid for finite elements with characteristic dimensions large

compared to the fracture spacing. However, if the finite

element dimensions are small compared to fracture spacing, then

the fractures appear to be discrete and are generally modelled

by slide lines or discrete joint elements. Both situations are

illustrated in Fig. 2. It becomes an arduous task, both in

manpower and computer time, to model a large number of discrete

faults. In the present model, discrete fractures can be

arbitrarily assigned at finite element integration points, and

thus the continuum approximation is maintained. These elements

have the normal and shear mechanical properties of an isolated

joint, but adjacent elements have properties of the intact

16
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FIG. 2 FINITE ELEMENT MODELS OF JOINT
SETS WITH VARIABLE LENGTH,
SPACING AND ORIENTATION
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rock. This is shown in Fig. 2B. A consistent formulation for

a large range of joint spacings, with respect to finite element

dimensions, has not been defined at the present time. The

extension of the present model to joint sets with variable

spacings based on a probability distribution, however, process

in the same manner as that for variable orientations which is

described in this paper.

CONSTITUTIVE EQUATIONS FOR A ELASTIC ORTHOTROPIC BODY

The constitutive equations for an elastic orthotropic body

are well established and documented in the literature. They

are presented here, however, because it is these equations that

are modified, as shown in the next section, to model the

mechanics of jointed rock masses. The equations in this

section are, for the most art, taken from Johnson and

Henderson 221 and Jones 231.

For a linear elastic, anisotropic material the

stress-strain-temperature constitutive rlationship is given by



Consider the two-dimensional axisymmetric or plane strain body

shown in Fig. 3 with three planes of elastic symmetry

(orthotropic), and where the a,b coordinates are principal

material coordinates. For this case Eq.l) reduces to

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]
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TWO-DIMENSIONAL BODY WITH MATERIAL

XES (a,b) INCLINED TO THE GLOBAL

AXES (X,Y) BY THE ANGLE B
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The non-zero components of the material stiffness are

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

If the material principal coordinates a,b do not coincide

with the lobal coordinates x,y bt are inclined by the angle

as shown in Fig. 3, then the material stiffness Cab is

transformed to lobal coordinates by

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]
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The strains in the global coordinates x,y are transformed

to the material coordinates a,b

and the stresses are transformed hy

The transformation matrix t is[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

22



The difference between Eqs. (7) and (10) s due to the usage
here of the engineering shear-strain measure The inverse

transformations are given by

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

The elements of the material stiffness Cab and the thermal

expansion coefficients are considered to be temperature

dependent.

MODIFICATION OF ELASTIC CONSTITUTIVE EQUATIONS TO MODEL
JOINT BEHAVIOR

In he last section stress-strain relations were presented

for an elastic orthotropic body. Consider now a jointed rock
mass with one or more families of parallel planes of weakness.

The stress-strain behavior at a point is approximately

transversely isotropic, ad can therefore be derived from the
orthotropic equations, with major nonlinearities introduced for
displacements normal and parallel to the fracture surface.

During execution of static finite element codes, calls are
made to a material constitutive subroutine to obtain the

stresses. In general, the stresses and strains en at the

23



end of the n load step are known, as are the current, or

n l strain increments, It is required to

calculate the stresses, at the end of the load step under

consideration. If a predictor-corrector iteration procedure is

used within a load step to account for nonlinearities, then

the current value of the tangent stiffness is also

required. For the constitutive model presented here, the

elastic material stiffness given by Eqs. (4) and (5) is

evaluated at each load step and then modified, depending upon

the joint behavior, to obtain the tangent stiffness. By

proceeding in this manner, the material stiffnesses need not be

stored in a working array.

If a joint is present at a finite element integration

point, then the stress-strain behavior at this point is assumed

to be as shown in Fig. 4 . Consider a jointed surface

inclined by the angle with respect to the global x,y

coordinate axes. First, the incremental strains are

transformed to the local joint coordinate system a,b by Eq. (8).

Likewise, the stresses that prevail at the end of the

previous load step are transformed to the a, b coordinate

system using Eq. (9), and the elastic material stiffness

is transformed using Eq. (). An elastic incremental trial

stress is then calculated using the equation,

24
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FIG. 4 JOINTED ROCK MASS BEHAVIOR
IN CONSTITUTIVE MODEL
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and the updated total stress is found by adding this increment

to the previous value of the stress,

n+l n +do n+l (113)
gab -ab -ab

Joint behavior is such that tensile stresses cannot

develop on planes normal to the joint surface, yet joints have

full memory of any transverse displacement occurring during

their excursions into the tensile zone and are able to transmit

compressive stresses in the normal direction upon subsequent

closure of the joint.

The strain normal to the joint plane measures joint

opening and closing. This quantity is updated at each load

step using the formula,

en+ = ebb +dn+l (14)
b bb debb

and the result is stored in a working array for subsequent

retrieval.

If ebl - 0 the joint is considered to be open, and
bb

both the normal stress and the shear stress on the free surface

are set to zero in the updated stress array of Eq. (13),

nb = °n+10bb ab O. (15)

26



Modifications to the elastic material stiffness to obtain

the tangent stiffness must reflect a zero normal stress and

thus produce a state of plane stress in the layer of material

bounding the joint. f the incremental stress-strain

relationship of Eq. (12) is written in the form

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]
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To complete the description for an open joint, the additional

constraint equation

(20)

is required for a zero stiffness in shear. In practice no

diagonal element of the material stiffness matrix can be zero,

since this leads to singular equations. The technique employed

here is to multiply appropriate elements of the matrix by a

positive factor where In this manner we obtain

28
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for the final form of the tangent tiffness at a joint. The

last step is to transform the stiffness and the updated stress

array back to global coordinates x,y.

If then the joint s considered to be closed. Thebb

stress strain equations in this case are elastic unless

frictional slippage occurs along the prescribed joint planes.

In this study, the onset of frictional slippage is dictated by

the two-dimensional Mohr-Coulomb failure surface shown in

Fig. 5. The linear form is defined by the cohesion C, and

the friction coefficient -, both of which are obtained from

laboratory test data.

When the oint is closed, the numerical procedure consists

of termining whether or not frictional slippage is taking

place, and if so, to reduce the material stiffness for shear

deformation. The initial step is to make the transformations

29
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FIG. 5 LINEAR MOHR-COULOMB FAILURE SURFACE
GIVEN BY
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to local joint axes a,b and to obtain an elastic trial stress

in the same manner as previously described for the open joint.

If

fab C0 D bb * (22)

then slippage is not impending, and the elastic shear stiffness

is correct. However, if

tnahll C + -bl (23)

then slippage has occurred. In the updated stress array of

Eq. (13) we set

tnabl -C + -^nb (24)ab 0 ~bb

The tangent stiffness is taken to be

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]
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where, as before, is a positive factor such that 1.

Finally, all arrays are transformed back to the global x,y

coordinate system.

It can be seen that if two joint planes are prescribed at a

finite element integration point, then the above procedure is

simply repeated using the second joint angle. The factor r, in

Eqs. 21) and (25) can significantly influence the calculated

results, and in some cases lead to undesirable results if not

properly assigned. A limited amount of information is

available on finite element codes with similar constitutive

models [22, 24, 25, 261, and it shows that sufficiently

accurate results can be obtained if is of the order to

. Values smaller than this do not improve the accuracy

and may ead to numerical instability, while values larger than

this r not reproduce the desired stresses at a joint.

STATISTICS OF JOINT ORIENTATION DATA

Geological field data on joint orientations can be

presented as points mapped onto a sterographic projection.

Although it is beyond the scope of this report to present a

thorough description of the properties and techniques of

sterographic projections, a brief summary of basic construction

principles is presented here. More information cn be found in

goodman (1).



Stereographic projection is a method of mapping the surface

of a sphere onto a plane. As illustrated in Fig. 6, the normal

direction to a joint plane is indicated by a point on the upper

hemisphere of a reference sphere. Any point on the surface of

the sphere is projected onto a diametral plane of the sphere

(the projection plane) by means of construction lines radiating

from a focus point, which is generally fixed at the lower pole

position on a line perpendicular to the projection plane.

Nearly vertical fracture planes therefore map a points close

to the perimeter of the projection plane, while horizontal

fracture planes map as points near the center of the projection

plane.

The present established method of describing joint

orientations based on field data is to (1) identify clusters or

groupings on the stereographic projection which compose a joint

set, (2) calculate the mean or average orientation of the

fractures within each cluster, and (3) calculate the

distribution of deviations from the mean within each cluster.

The field data are almost always plotted in an equal-area

stereonet which is amenable to statistical treatment. The

statistics employed to model the orientation field data are

based on the pioneering work of Arnold (271, Fisher 281,

Watson 291, and others on the application of spherical

probability distributions to geologic observations. Early
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Fig 6 STEREOGRAPHIC PROJECTION OF JOINT

ORIENTATION DATA ONTO A PLANE.
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techniques for calculating preferred direction and dispersion

consisted solely of visual selection fro.. the stereographic

projection. Presently, with the aid of scientific computers, a

rigorous statistical treatment of orientation data is possible

which yields, in addition to the above, correlation among

multiple clusters, anisotropic distributions, and

goodness-of-fit estimates [30, 311.

Consider the orientation data for a single fracture set

which have been plotted on the equal-area stereonet in Fig. 7.

Contours of selected orientation densitites are usually drawn

to clarify and enhance the pattern. From Arnold 271 and

Fisher [281 the probability that an observed orientation lies

within the solid angle ,, measured from the mean orientation of

the pattern, is given by

1 k'cos"-l)

P( -el-e (26)

This is the hemispherical normal distribution function, and is

applied to circular clusters with a central value of high

concentration and which monotonically and isotropically

decrease to zero or a uniform background. It is rotationally

symmetric about the central value. Since data on the

projection plane are plotted for only the upper hemisphere of

the reference sphere, the solid angle takes on values

The value k describes the scatter of
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FIG 7 PROBABILITY ON THE SPHERE FOR JOINT ORIENTATION

FIELD DATA, TAKEN FROM GOODMAN



observations and is called the dispersion coefficient, or

dispersivity. If the data points are uniformly dispersed over

the projection plane, then k = 0 and the fracture plane

orientations are randomly distributed. If all data points plot

as a single point, then k = oo and the fracture planes are

parallel. Thus, large values of the dispersion coefficient

indicate small scatter. Mahtab, et. al, 261, and others show

that if the number of observations is large, and k> 6, then Eq.

(26) can be written approximately

Pi ( z 1 -ek(coso-l) (27)

and which is shown plotted in Fig. 8 for various dispersion

coefficients. A dispersion coefficient of 10 means that 50 of

the joint planes are expected to be rientated within 22 of

the mean direction of the joint set. The standard deviation of

the probability function is k 1/2

The technique for initializing fracture angles within the

context of a finite element computer code is straightforward.

Both the mean orientations of the joint set to be modelled and

the dispersivity k are assumed to be known. For each finite

element integration point at which a fracture plane exists, a

random number is generated from a uniform distribution defined

over the interval (0, 1). This value is assigned to the

37
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FIG 8 THE HEMISPHERICAL NORMAL DISTRIBUTION, GIVEN BY

USED TO MODEL JOINT ORIENTATION FIELD DATA.
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cummulative probability P The deviation from the mean,

is then obtained from Eq.(27) with the appropriate dispersion

coefficient. Because is actually a solid angle as shown in

Fig. 7, an additional step is necessary for two-dimensional

models. In this case, the solid angle is projected onto a

plane by a direction cosine having the angle pr , where p is

again a random number generated from a uniform distribution

defined on the interval (0, 1). Finally, the local fracture

angle is given by

,3 = a + Qcos (pwJ (28)

It can be seen that the population of joint angles selected

in this manner will be dispersed according to the original

hemispherical normal distribution. If two intersecting

fracture sets are to be modelled, the second angle is selected

in a similar manner but independent from the first angle, in

the sense that the fixed angle between the mean directions of

the two joint sets is not maintained locally.

NUMERICAL EXAMPLE: STRESS CONCENTRATION AT AN
UNDERGROUND OPENING

The two-dimensional model for a jointed rock mass was

programmed for the computer as a discrete, modular package

which wld be compatible with several structural mechanics

39



computer codes currently available. The package included both

the initialization procedure to quantify the in-situ state of

the jointed rock mass to be analyzed, and the stress-strain

constitutive relationship. It was first implemented in the

ADINA code [26], out only after the program structure was

altered by Biffle 32] so that it would accept a constitutive

model in modular form. Two new plot programs were developed in

order to visually display the kinematics at the joint

surfaces. These are simple modifications of the-DMESH code

133]. The first, called ANGLE-PLOT, plots the fracture

orientation at each finite element integration point. The

second, called SLIP-PLOT, plots the present state of the

fracture, i.e., whether open, closed, or closed and sliding.

The mechanical behavior of underground nuclear waste

repositories is modelled to assess the structural integrity

of the underground rooms and the separating pillars during both

excavation ard subsequent thermal loading. In this example, we

consider the excavation problem alone, i.e., the disturbance of

the in-situ stress state due to the introduction of an

underground opening. A typical configuration for near field

"room-and-pillar" calculations is shown in Fig. 9, and a plane

strain finite element mesh of the region of interest is shown

in Fig. 10. For this example, the extraction ratio is 0.2, the

room width is 5m and the room height is 5m. Due to symmetry it

40
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FIG. 9 TWO-DIMENSIONAL GEOMETRY FOR

ROOM-AND-PILLAR CALCULATIONS.
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MECHANICAL SCOPING STUDIES. THE MESH IS COMPOSED

OF 350 4-MODE ISOPARAMETRIC ELEMENTS AND 396

MODE POINTS.
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is sufficient that the model extend horizontally from the room

centerline to the pillar centerline. The top and bottom

boundaries of the mesh are 100m above and below the drift floor,

respectively. The drift floor is taken to be 800m below the

surface of the earth, and we assume a lithostatic in-situ

stress. Given a material density of

= o2100 a, (29)

the initial hrizontal and vertical stress components are

-H -V =: cth , (30)

where is the gravitational constant and is the distance

below the surface of the earth. At the level of the drift

floor, a depth of 800m, the lithostatic stress is therefore

equal to 16.46 MPa.

For the first calculation the geologic medium was assumed

to be isotropic and elastic, having the following material

properties:

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

43



A contour plot of the calculated vertical stress component is

shown in Fig. 11. t is evident from this plot that a large

stress concentration exists at the vertical wall of the drift.

For the second calculation, the medium was considered to be

highly fractured by two intersecting joint sets with average

orientation of 45 and 135° with respect to the horizontal.

This is shown in Fig. 12. Each joint set was ssumed to have

perfectly parallel fracture planes (dispersion coefficient ko).

Frictional slippage was governed by a linear Mohr-Coulomb

failure envelope defined by two parameters,

C0 = 0 (32)

= 0.6

A contour plot of the vertical stress component after

excavation is shown in Fig. 13. In contrast to the previous

elastic clculation, the stress concentration has moved away

from the vertical wall of the drift by a distance approximately

equal to one-half the width of the drift. The reason for this

"halo" of concentrated compressive stresses surrounding the

drift is best illustrated by Fig. 14 in which the stress state

at a oint on the vertical wall of the drift is plotted on a

Mohr diagram. The horizontal stress component is zero and,

if the shear stress on the joint planes is to lie within the

prescribed failure envelope, then the vertical stress component

44
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FIG. 11 CONTOURS OF THE VERTICAL STRESS FOR AN

UNDERGROUND OPENING IN A MEDIUM WITH

ELASTIC MATERIAL PROPERTIES.
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FIG. 12 ORIENTATIONS FOR TWO INTERSECTING JOINT SETS
AT 45 and 135 WITH K=00 IN A FINITE ELEMENT

MODEL.
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FIG 13 CONTOURS OF THE VERTICAL STRESS FOR AN
UNDERGROUND OPENING IN A MEDIUM WITH
TWO INTERSECTING JOINT SETS AT 45 AND

135 WITH K=oo.
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can only be zero. Since the vertical component of stress is

zero at the wall of the drift, it must therefore be

concentrated somewhere removed from the drift for equilibrium

to be maintained. It is also clear from Fig. 14 that this

situation would not exist if either the cohesion C were

finite, or if the joint sets were orientated such that

< < an-lu (33)

and

(ir-tan <^

Locations where frictional slippage along joint planes has

occurred are shown in Fig. 15. All fractures were assumed to

be initially closed and none have opened due to excavation.

In the third and final calculation the oint orientations

were taken to be highly dispersed (k = 10), yet the fracture

spacing remained infinitesimal. The initial joint angles are

shown in Fig. 16, and tie calculated vertical stresses are

shown in Fig. 17. Again, the stress concentration is removed

from the drift wall. The stress gradients around the drift,

however, are much less severe because, due to the variable

joint orientations, the vertical stresses are not necessarily

zero at the wall of the drift. The results of this calculation

clearly differ from both those based on the elastic assumption
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FIG. 16 POSSIBLE ORIENTATIONS FOR TWO INTERSECTING
JOINT SETS AT 45 AND 135 WITH K=10 IN A

FINITE ELEMENT MODEL.
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FIG. 7 CONTOURS OF THE VERTICAL STRESS FOR AN
UNDERGROUND OPENING IN A MEDIUM WITH
TWO INTERSECTING JOINT SETS AT 45 AND
135 WITH K=10.

52



and those based on the parallel plane assumption. Frictional

slippage along the first joint set is shown in Fig. 18, and

that along the second joint set in Fig. 19. Several initially

closed fractures in the second joint set have opened due to

excavation. It must be remembered that, because of the

statistical nature of the local joint orientations, these

results are not mathematically unique. Additional computer

calculations using the same population distribution for

joint angles would surely yield different results locally

although the global response may be the same. This is caused

by the uncertainty in field measurement data.

FUTURE WORK

The constitutive equations presented in this paper are only

the first step toward modelling the behavior of a jointed rock

mass. As such, only the basic mechanics of joint slippage, and

the corresponding finite element implementation, were

emphasized. The future work is divided into two parts:

extension of the mechanical model, and coupling with thermal

and fluid flow models.

With regard to extension of the mechanical model, it is

imperative that a consistent methodology be defined for

modelling variable joint spacing which is independent of finite

element mesh size. An additional consideration in this effort
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FIG. 13 LOCATIONS OF CALCULATED FRICTIONAL SLIPPAGE
ON JOINT SET AT 45 WITH K=10 FOR AN

UNDERGROUND OPENING.
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FIG. 19 LOCATIONS OF CALCULATED FRICTIONAL SLIPPAGE
ON JOINT SET AT 135 WITH K=10 FOR AN
UNDERGROUND OPENING
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is potential cross-correlation between joint orientation and

joint spacing. Also planned are investigations of

post-slippage dilatancy, shear lock-up due to corner

interactions, and crack initiation in the intact rock. In the

near future, increasingly detailed analyses will be required,

particularly in the area of waste repository calculations, and

this will dictate a three-dimensional version of the jointed

rock model. It appears that joint planes in three-dimensions

can be readily prescribed and modelled by explicit modification

of the constitutive equations, but the computer run times for

these highly nonlinear problems is presently unknown. Present

run times on a CDC7600 computer for similar three-dimensional

problems with geological materials varies from 700 to 3000 seconds

per load step depending upon the degree of nonlinearity 341.

The run time for a three-dimensional version of the jointed

rock model is not expected to be any less. Since many load

steps are required to trace the thermal history of a nuclear

waste repository, it is possible that future calculations may

be limited by present computers.

The model presented in this paper could serve in future

work as the basis for studying the interactions among

mechanical deformations, heat transfer, and fluid flow in a

regularly jointed medium. The coupling mechanism is the

orientation and gap opening of the joint. In particular, the

permeability tensor for fluid flow becomes anisotropic in the
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vicinity of a fracture, and highly dependent on gap opening for

flow parallel to the fracture. A similar statement can be made

with regard to the conductivity tensor for heat transfer. If

three-dimensional mechanical calculations are potentially

limited by present computer capability, then three-dimensional

coupled calculations are surely limited.
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