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Abstract

This report describes a joint shear model used in conjunction with a computational model
for jointed media with orthogonal joint sets. The joint shear model allows nonlinear behavior
for both joint sets. Because nonlinear behavior is allowed for both joint sets, a great many
cases must be considered to fully describe the joint shear behavior of the jointed medium. An
extensive set of equations is required to describe the joint shear stress and slip displacements
that can occur for all the various cases. This report examines possible methods for simplifying
this set of equations so that the model can be implemented efficiently from a computational
standpoint. The shear model must be examined carefully to obtain a computationally efficient
implementation that does not lead to numerical problems.



This work was completed under WBS 1.2.4.2.3.1, but was worked on under the earlier
WBS 1.2.4.6.1. This work is considered to be preliminary and scoping in nature and
will not be directly used in the development or modification of scientific and engineering
software used in the Yucca Mountain Site Characterization Project. However, the results
presented here may assist in formulating a basis for design of new software or modification
of exisiting software after the SNL Software Quality Assurance Plan and its implementing
procedures are formally approved.
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1. A BILINEAR SHEAR STRESS VERSUS SLIP
DISPLACEMENT MODEL

1.1 Introduction

The effects of fractures in rocks can be modeled with a continuum approach. This
continuum model captures the gross response of jointed rock by distributing the indi-
vidual responses of the joints throughout the rock structure. A continuum model for
rock with a single joint set was first proposed by Morland (1974) and then examined by
Thomas (1982). The model was extended to orthogonal joint sets by Chen (1986).

A computational model for a two-dimensional continuum model for jointed media
with orthogonal joint sets was first implemented by Chen (1987). This implementation
assumes that joints occur in sets that are more or less parallel and regularly spaced. The
deformation response normal to the joint is nonlinear elastic and based on a rational
polynomial. Joint shear stress is treated as linear elastic in the shear stress versus slip
displacement before attaining a critical stress level governed by the Coulomb friction
criterion. Beyond the critical stress value, a linear relation analogous to strain-hardening
plasticity governs the rest of the shear stress versus slip displacement relation.

The original shear model described by Chen (1987) has undergone several modifi-
cations. These modifications are documented in two Sandia National Laboratory (SNL)
memorandums: Chen to Costin and Bauer, April 18, 1988, and Chen to Costin and
Bauer, December 8, 1988. The algorithm implemented in these two modifications is
based on the simultaneous satisfaction of the strain rate decomposition and the shear
stress versus slip displacement relation. The code used to implement this algorithm is
listed in the second of the above two memos. There is no formal documentation of the
conventions and equations implementing this algorithm.

The shear model allows nonlinear behavior for both of the joint sets. The nonlinear
behavior can be either elastic-plastic or elastic-perfectly plastic. Allowing nonlinear shear
behavior to occur for both of the joint sets in an orthogonal joint set model leads to a
great number of cases that must be considered. If the model is to be fully implemented,
all cases that can arise must be recognized, and the equations governing each case must be
determined. This report lists the equations required to describe all cases and documents
the conventions used to derive these equations.

If the shear model is to be efficiently implemented in a computational model, the
governing equations must be carefully examined. This report includes a detailed analysis
of the equations describing the shear model that reveals two important characterisitics
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Figure 1.1. Section of Jointed Rock Medium

of the system of equations. First, the system of equations governing the shear model can
be greatly simplified while allowing essentially full generality. Second, it is possible to
predict the type of nonlinear shear behavior pattern for a given strain increment based
solely on parameters at the beginning of the increment. The prediction is based on two
inequalities that are derived in this report. Because it is possible to predict the pattern
of nonlinear behavior for a strain increment, the equations can be programmed in a fully
structured manner.

1.2 Notation Conventions

Figure 1.1 shows a section of jointed medium with orthogonal joint sets. The coor-
dinate system xy is a global coordinate system. The joint planes with a normal in the m
direction are referred to as joint set m; the joint planes with a normal in the n direction
are referred to as joint set n. These two joint sets establish a coordinate system mn.
The angle is referred to as the joint set angle, and it measures the angle between the
x - axis and the reference joint set.

The normal stress in the direction of the m - axis is Tmm, the normal stress in the
direction of the n - axis is T,,, and the shear stress is Tmn. The sign convention used for
the shear stress follows the convention used by Fung (1965). Suppose that the outward
normal for the face of some differential element is in the positive m direction. If the shear
stress component Tmn on this face is in the positive n direction, then the shear stress
for the differential element is positive. If the shear stress component Tmn on this face is
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in the negative n direction, the shear stress for the differential element is negative. The
same rule applies if the outward normal for the face of some differential element is in the
positive n direction. If the shear stress component Tmm on this face is in the positive m
direction, then the shear stress for the differential element is positive.

To transform the stresses from the xy to the mn coordinate system as shown in
Figure 1.1, the following equations are used:

Tmm, = oram cos2 + -YY sin2 0 + 2ry cos sin 9, (1.1)

Tn = Ocr, sin2 0 + 0-YYcos2 9-2r7y Cos sin 9, (1.2)

Tmn = (-aod + cry) sin os + ry(cos2 0- sin2 9). (1.3)

The stress components in the xy coordinate system are or, ,YY, and ry. To transform
the stresses from the mn to the xy coordinate system, substitute - for in the above
equations. The resulting set of equations for the inverse transformation follows:

(gCC2 = Tmm COS2 + Tnn sin2 - 2 Tmn COs 0 sin 9, (1.4)

0 ryy = Tmm sin2 + T cOs2 09 + 2Tmn cos 0 sinO, (1.5)

TaY = (Tmm - Tnn) sin 0 cos + Tmn(cos2 0- sin2 0). (1.6)

The spacing between the joint planes for joint set m is 8 m and for joint set n is 8.-
The properties for joint set m are all denoted with a subscript m. The maximum joint

closure in the m direction is denoted as (uma)m, and the half-closure stress for joint set

m is Am. These two parameters define behavior normal to joint set m, i.e., in the m

direction. The parameters defining the shear behavior for joint set m are the joint shear

stiffness Gsm, the joint shear hardening G'm, the joint cohesion COm, and the coefficient

of friction 'm. Similar notation is used for joint set n.

The jointed rock model uses strain rate equations to calculate stress increments.
Transforming the strain increments from the xy to the mn coordinate system is similar

to the transformation of stresses shown in Equations 1.1 through 1.3.

emm = em cos2 + EYY sin2 + 2Ecy cos sin 9, (1.7)

enn = 6X, sin2 + EYY cos2 9- 2ey cos sin 9, (1.8)

emn = (- Esi + eyy) sin n cos 0 + Ey(cos)2 _Sin2 0) (1.9)

The strain components in the xy coordinate system are En, XW, and EY.

The joint displacement in the m direction is ud, and the joint displacement in the
n direction is u. rilhe joint slip displacement along joint set m is denoted as ulm. Note
that this slip is parallel to the joint planes for joint set m and is in the ±n direction.

The joint slip displacement along joint set n is denoted by un. This slip is parallel to

the joint planes for joint set n and is in the +m direction.

7



Tmll [lI
R-T

and4 1 1 Txy

Tn, = Cam - stu

Figure 1.2. Nonlinear Shear Behavior for Joints

1.3 The Bilinear Shear Model

The bilinear shear stress versus slip displacement response for the slip behavior of
the joints is shown i Figure 1.2. The onset of the nonlinear response is assumed to be
governed by a linear Mohr-Coulomb criterion. A scalar slip function is given as

F =I Tmn I +tnzTmm -COmn. (1.10)

In Equation 1.10, T,, is the normal stress across a joint in joint set m; Tmn is the shear
stress across the joint. The coefficient of friction across the joint is jim, and Com is the
joint cohesion. The joint behavior is elastic if F < 0 and inelastic if F > 0. The joint
shear stiffness is Gsm in the elastic range and G', in the inelastic range for joint set m.
This behavior is shown in Figure 1.2.

If the value for G is nonzero, the curve describing the shear stress versus slip
displacement behavior will be referred to as being elastic-plastic. If Gm is zero, the
behavior will be referred to as elastic-perfectly plastic. The point where the curve changes
slope corresponds to a shear stress value designated as (Tmnym This is the yield stress
for the curve. The nomenclature is similar for joint set n.
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2. LOADING AND UNLOADING CASES FOR
THE BILINEAR SHEAR MODEL

2.1 Shear Stress-Shear Strain Relations

Because of the bilinear curve for the shear stress versus slip displacement, a variety

of cases must be considered in order to fully characterize the shear behavior. This
section discusses those various cases and the manner in which the equations are derived
to characterize these various cases.

The computational joint model implemented by Chen uses an incremental solution
process. The strain-stress relations are written in a rate form, and it is assumed the
strain rate is constant over time increment At. If the stresses and strain rates are known
at time t, it becomes possible to calculate the stresses at time t + At.

The total shear strain increment from time t to time t + At can be expressed as

Aemn = (emn)matrixa + (Ae)m + (e)n, (2.1)

where (emn)matrix is the shear strain in the rock matrix and (e)m and (e)n are the
contributions to the total shear strain Aemn from joint sets m and n, respectively. If
small angle changes are assumed, the strain contribution arising from joint set m relates

to the slip displacement increment Au,,m by

(Ae)m = Au.m/(26m), (2.2)

and the strain contribution arising from joint set n relates to the slip displacement in-
crement Ausn by

(Ae)n = Au,8 /(26n). (2.3)

If the shear stress behavior is strictly in the elastic range, the shear slip for joint set
m relates to the shear stress by

Usm = Tmn/Gsma (2.4)

and the shear slip for joint set n relates to the shear stress by

Usn = Tran/Gan (2.5)

The sign of the shear slip displacements is determined by the sign of the shear stress.
If the shear stress is positive, then the slip displacements are also positive. The physical
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Figure 2.1. Sign convention for joint shear stresses and slip displacement

meaning of a positive slip displacement is shown in Figure 2.1. This figure shows three
blocks of material (A, B, and C) i a jointed material. The shear forces acting on block
A are positive by the convention presented in Section 1. First consider the undeformed
configuration for the three blocks. Moving from any point P in block A by a distance Em

in the positive m direction generates some corresponding point P' in block B. If block
A is held fixed and block B is allowed to slip in the n direction according to the elastic
constitutive relation for slip, point P' will move in the positive n direction. The shear
forces acting on blocks A and B determine the relative motion of the two blocks. The
positive shear stress indicates that, if block A is held fixed, the relative motion of block
B to block A will be in the positive n direction for a positive shear stress. A similar
situation holds for block C in relation to block A. If block A is held fixed, the relative
motion of block C to block A will be in the positive m direction for a positive shear
stress.

If the shear stress behavior is strictly in the elastic range, the equations relating the
slip displacements to the shear strain contributions from the joint sets and the equations
relating the slip displacements to the shear stress can be combined so that Equation 2.1
can be written as

n+ 2 AT 201 ]Tn, (2.6)

where G is the shear modulus for the rock matrix. Equation 2.6 can be rewritten as

\T~ - 2GAe .. n -G(2m7)

Tmn =1 + G/(8imGam) + G/(6,G(n)
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For each time step in the computational model, the above value for ATmn is calcu-
lated and used to determine a value for Tmn at time t + At. Because the above increment
is based only on elastic constants, it will be denoted as (ATmn)eiastic; a trial value for
Tmn at time t + At calculated from this increment will be denoted by (Tmn)te+attic

(Tmn) t+,aatic = Tmn + (ATmn)elastic (2.8)

The value for (Tmn)'+At,: is the primary parameter used to determine which sets of equa-
tions are used to calculate the shear stress increment and slip displacements for a given
time step. It is not, however, the only parameter used to determine which equations will
be used for calculating shear stress increments and slip displacements. The elastic shear
stress increment is useful for delineating some major categories of shear behavior for the
joint sets. Within some of the major categories, several other parameters and relations
among these parameters must be used before selecting the proper set of equations.

In addition to the value for (Tmn)jttc it is necessary to calculate yield points for
the bilinear curves defining the shear stress versus slip displacement relations at each
time step. The yield points at time t are denoted as (Tmm),m and (Tmn),n and at time
t + At as (Tmn)t " and (Tmn)+ t.

2.2 Inelastic Behavior for a Single Joint Set

Several cases need to be considered if inelastic behavior occurs for a load step, and
these are depicted in Figure 2.2. Joint set m is used for the examples shown in Figure
2.2; analogous cases exist for joint set n.

Consider the behavior shown in Figure 2.2A. The shear stress at time t is on the
elastic portion of the shear stress versus slip displacement curve. Suppose a load incre-
ment occurs, and the value for (Tmn)t+Atc is greater than (Tmn) +At. The value for Tmn

cannot lie above the present shear stress versus slip displacement curve. The shear stress
increment must track the current shear stress versus slip displacement curve, which is a
bilinear curve. The equation for this bilinear curve is used to determine the value for
Tmn at time t + At.

Another case to consider is one where the Tmn is on the inelastic portion of a shear
stress versus slip displacement curve at time t and a load increment occurs. This situation
is shown in Figure 2.2B. The shear stress increases along an elastic curve until it reaches
a point on the current shear stress versus slip displacement curve known as the effective
yield, (Tmn)eym. The shear stress is still constrained to lie below the current shear stress
versus slip displacement curve; therefore, any increment in the shear stress above the
effective yield point must occur along the inelastic portion of the current shear stress
versus slip displacement curve.

The effective yield for the case shown in Figure 2.2B is the intersection of two curves.
One of these curves is an elastic curve that passes through point T" n and that has a slope
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Gin. Associated with this curve is an offset slip displacement denoted as Uof set. This
offset value changes from time step to time step. The other curve is the inelastic portion
of the current shear stress versus slip displacement curve. The offset slip displacement is
defined as

Uof fa st
am am - T,./Gm. (2.9)

The effective yield stress in terms of the offset slip displacement is

~~- T t-FA t G' amfet.(21
(Tmn)e-ym +(Tnn) + 1- GuffmGsm (2.10)

The effective yield stress is defined by Equation 2.10, except when a sign change occurs
for Tmn for a load increment. When the sign for Tmn differs from that of (Tmn)elastic, then
the effective yield stress is the regular yield stress (Tm,)'+mAt at time + At.

The last two cases of inelastic behavior that need to be considered are shown in
Figures 2.2C and 2.2D. Both cases involve unloading situations. For the case shown
in Figure 2.2C, the shear stress is originally on the inelastic portion of the shear stress
versus slip displacement curve. Unloading takes place along an elastic curve with slope

Gam, and the value for TmtA' is less than the effective yield stress at the current time.
The final value for Tmn lies below the current shear stress versus slip displacement curve.

The situation shown in Figure 2.2D is similar to that in Figure 2.2C except that the
value for Tmn at time t + At is greater than the effective yield stress. The value for T.n,
therefore, lies above the current shear stress versus slip displacement curve. Since this
is not a valid value for Tmn at the current time, unloading occurs along an elastic curve
with slope Ga. until the effective yield stress is reached. The value for Tm, at time t + At
lies on the inelastic portion of the current shear stress versus slip displacement curve.

2.3 Shear Model for Orthogonal Joint Sets

The preceding section describes some key concepts required to correctly model shear
behavior for a single joint. These concepts are also important for the characterization

of orthogonal joint sets. This section discusses the equations required to describe shear
behavior for a material with orthogonal joint sets. The value for (Tmn)j+"'c is useful for
determining the proper set of equations to describe joint shear behavior. Because of this,
the following sections are grouped on the basis of the relation of (T.n)'+A' to the effective
yield stresses. The value for (T,,)'+", is not the only deciding factor in selecting the
correct equations to describe shear behavior for the joints, but it does provide a useful

parameter to define major divisions characterizing shear behavior for the joints. The
divisions based on (Tmn)t+Ac will be referred to as cases, and there are five cases that
must be considered. The cases can be further divided into what will be called variations.
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2.3.1 Case 1: Elastic Shear Behavior for Both Joint Sets

The simplest case for the shear behavior of the joint sets is one where both joint
sets exhibit elastic shear behavior, If (Tmn)+4-, < (Tmn)ey. and < • (Tmn)eyn)

then the behavior for both joint sets is elastic, and the value for Tt~'6t is (Tmn)'"",c. The
equations for this case can be summarized as follows:

* The stress increment is

ATn 2GAemnn211
1 + G/(6mG m) + G/(6,Gn) (2.11)

The slip displacement increment um for joint set m is

Au8m - (ATmn)efastic (2.12)
Gam

and the slip displacement increment u~n for joint set n is

Ansn = (ATmn)eiaatic (2.13)

Gan

2.3.2 Case 2: Inelastic Shear Behavior for Joint Set m and Elastic Shear
Behavior for Joint Set n

Now consider the case where (Tmn)'+A'c > (Tin) m and (Tmn)+At < (Tmn)eyn

The value for (Tmn)+Atic indicates that the behavior for joint set m is nonlinear, but the
behavior for joint set n is linear. Two different variations must be considered when this
particular situation arises. The first variation involves elastic-perfectly plastic behavior
for joint set m. If joint set m is elastic-perfectly plastic, the value for Tmn at time t + At
cannot exceed (TineX,,,. The value for Tt,!,t is set to (Tmn)ey,, and the stress increment
becomes

ATmn = (Tmn)eym - Tm (2.14)

The slip displacement increment for joint set n is

AU8 n ATinn/Gan. (2.15)

By using Equation 2.1 and the relation

Ausm - 26m(Ae)m (2.16)

and the relation

Au,,n 26(Ae)n, (2.17)
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it is possible to write the slip displacement increment for joint set m as

Auam = m (2Aemn ATmn T (2.18)

The second case to consider is elastic-plastic behavior for joint set m. To calculate
the stress increment for this case, write Equation 2.1 as

Aemn = A2n + 2AUm + AZsn (2.19)
Aemn 2G 28m 67

Equation 2.19 can be rewritten as

A 6mn = AT + 1 ((Tmn)eYmTtn + Tn -(Tmn)eym +
mn 2G 26m \Gam~ Gn+ 

2AnTdn- (2.20)

Eliminating TmAt from Equation 2.20 yields

Aemn =ATmn + I (Tmn,)em-Tn _ (Tmn)e~-Tmn' +
Amn - 2G 26m Gam GIm

AT_, ATmn
246.G',,. + 2InG~n' (2.21)

Solving for ATmn from Equation 2.21 yields

2Aemn + ((Tmn)eym -T mn)(G 4m- mm) (2.22)
A~~~mn 1 1~~~ 1

G F nmGGm +

Equations 2.15 and 2.18, which describe the joint slip displacements for the case
when joint set m is elastic-perfectly plastic, also describe the joint slip displacements
when joint set m is elastic-plastic.

The two variations just described can be summarized as follows:

* When

Gm 2 ° (2.23)

then

ATmn = (Tmn)eym - Tmn (2.24)

* When

G'mn i 0, (2.25)

then
A Tmn,, 2Aemn + ((Tmn)eym - Tmn)( 6bmG bmGsm) (2.26)

1 1 
G +m'm+6
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The slip displacement for joint set n is

AUsn = Tmn/Gan, (2.27)

and the slip displacement for joint set m is

AUam =am (2Aemn - ATmn A )T . (2.28)

The latter two equations for the slip displacements are valid for both G'm 0 and
Gqm 7 40°

It is possible to write Equation 2.22 as

ATn 2GRmL~emn ± ((Tmn).ym - T,,n)(1 - RmJ___(229
mn- B + G RG (2.29)

m 6 inGSM bn~

where

Rm = G.,m/Gam. (2.30)

Equation 2.29 is applicable for the variations G'm = 0 and G'm 4 0. The ratio R is
equal to 0 when Gm = 0, which describes elastic-perfectly plastic behavior for joint set
m. For Rm = 0, Equation 2.29 yields

ATmn = (Tmn)eym - Tn (2.31)

which is the desired result for elastic-perfectly plastic behavior.

2.3.3 Case 3: Elastic Shear Behavior for Joint Set m and Inelastic Shear
Behavior for Joint Set n

Now suppose that (Tmn) •elasti< (Tmn)eym and (Tmn)eztic > (Tmn)eyn For this
particular case, the shear behavior for joint set n is nonlinear, but the behavior for joint
set m is linear. This is similar to the case just described, except that the joint sets are
interchanged in terms of behavior. The equations for the preceding section are applicable
if the subscripts associated with joint sets are simply interchanged. The equations for
the present case will only be summarized.

* When

G'n = 1 (2.32)

then

ATmn (Tmn)eyn - Tmn (2.33)
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* When

G' 0, (2.34)

then
2Aemn + ((Tmn)eyn - n)( -(.nG3n

Amn -1 + 1 + I .2.35)

The slip displacement for joint set m is

A~sm = Tmn/Gam, (2.36)

and the slip displacement for joint set n is

A 6 (2A ATmn ATmn (2.37)
t~snn\~emn G 6mGam')

As in the preceding case, it is possible to write one equation for Tmn that holds for
both Gsn = 0 and Gn 0. This equation for ATmn is

ATmnn 2GRnAemn + ((Tmn)eyn - Ttn)(1 - Rn) 8 a (2.38)
S\Tmn~~~~ =____,(238Rn + G + mnG

where

Rn = G /G~n- (2.39)

For Rn = 0, Equation 2.38 yields

ATmn = (Tmn)eyn - Tmn (2.40)

which is the desired result for elastic-perfectly plastic behavior for joint set n.

2.3.4 Case 4: Elastic Shear Increment Exceeds the Effective Yield for Both
Joint Sets and the Effective Yields are not Equal

The greatest number of variations arise when the value for (Tn)+"c is greater
than both (Tmn)eym and (Tmn)eyn. The situation of (Tmn)eym = (Tmn)esn is a special case

with fewer variations to consider. From a practical standpoint, it is not very likely to
encounter the situation of (Tmn)eym = (Tmn)yn during a computational process. This

more specialized case will be examined as the last case.

When (Tmn)e'+asetc > (T ad (Tmn))jei > (T)y, determining the correct

equations to model the shear stress behavior becomes much more complicated. It is
necessary not only to distinguish between elastic-plastic and elastic-perfectly plastic sit-
uations, but also to examine the relations of the effective yield stresses. Futhermore,
if one or both of the joint sets are elastic-plastic, other factors must be examined be-
fore applying the equations in this section. These other considerations are noted in the
appropriate sections.
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The first variation considered is for both joints sets exhibiting elastic-perfectly plastic
behavior. If (Tmn)eym < (Tmn)eyn, then the limiting value for Tmn at time t + At becomes
(Tmn)eym; the shear stress cannot exceed the lower effective yield stress. The shear
stress for joint set n is limited to elastic behavior even though (Tmn)+ac is greater than
(Tmn)eyn. The shear stress increment becomes

ATmn = (Tmn)eym -Tmn - (2.41)

The slip displacement increment for joint set n is

AU1n = Tmn/Gan) (2.42)

and the slip displacement increment for joint set m is

Aua (bm(2Aemn ATmn _Tn) (2.43)

If (Tmn)eym > (Tmn)e.y (as opposed to (Tmn)eym < (Tmn)eyn) and both joint sets

have elastic-perfectly plastic shear models, the situation is similar to the one just de-
scribed. The preceding equations can be used to describe the joint behavior simply by
interchanging the subscripts used to denote the two different joint sets. The shear stress
increment is given by

ATmn = (Tmn)eyn - Tmn * (2.44)

The slip displacement increment for joint set m is

Ausm = ATmn/Gam) (2.45)

and the slip displacement increment for joint set n is

AUsn = n (2Aemn - ATmn _ ATmn (2.46)

The equations for the two preceding situations have appeared previously in the case
where (Tmn)f+`c has indicated nonlinear behavior for one joint set and linear behavior
for the other joint set. No new equations have been introduced to describe the shear
stress and slip displacement behavior. A different set of conditions have been determined
to invoke a previously defined set of equations.

For the next variation, consider an elastic-plastic model for joint set m (G'm # 0)
and an elastic-perfectly plastic model for joint set n. First consider the case where

(Tmn)eym < (Tmn)eyn. For this variation, the shear stress cannot exceed (Tmn)eyn. The

value of (Tmn)'JjA'; is not sufficient to determine if this upper limit for the shear stress will
be reached. It may be possible that the strain increment is not large enough to produce
nonlinear behavior for joint set n. It is possible to determine if the strain increment is
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large enough to produce nonlinear behavior for joint set n by examining the equation
that describes nonlinear behavior for joint set m as an elastic-plastic material and elastic
behavior for joint set n. The equation for the stress increment for this particular situation
was derived earlier as Equation 2.22.

n2Aemn + ((Tmn)egm Tmn)(b.G5 i (2.47)

+ hl + S2G47

Now set the shear stress increment in the above equation equal to (Tmn)eYn -Tt n
This equality allows the calculation of a shear strain increment (based on quantities at
the beginning of the increment) sufficient to produce a value of the shear stress at time
t + At of (Tmn)eyn. The equation for this strain increment is

2 1 _ _

Lemn = 2[((Tmn)eyn - Tmn)( + _ ± + G -

((Tmn).Y- Tn )(6insn- 5 m~m)b (2.48)

If the strain increment does not satisfy the inequality

Aemn > '[((Tmn)eyn -Tn)(G + t m + 1 -

((Tmn)eom -TM t )(6m5Gm - 5_G.) (2.49)

then the equations that describe nonlinear behavior for joint set m and elastic behavior
for joint set n must be used to calculate the shear stress increment and slip displacement
increments. If, however, the shear strain increment satisfies the above inequality, then
both joint sets will behave in a nonlinear manner and the shear stress increment is defined
by

ATmn = (Tmn)eyn -Tmn (2.50)

The slip displacement for joint set m must follow the bilinear curve defining the
shear stress versus slip displacement. The equation for the slip displacement increment
for joint set m is

AUm (Tmn)eym -Tmn + (Tmn)eyn - (Tmn)eym (2.51)
Gam GI

The equation for the slip displacement increment for joint set n is

AU = bn(2Aemn ATmn AUsm) (2.52)

Now consider the variation where joint set m is elastic-plastic and joint set n is
elastic-perfectly plastic, but (Tmn)eym > (Tmn)eyn (as opposed to the variation just de-
scribed where (Tmn)eym < (Tmn)eyn). The shear stress increment is given by

ATmn = (Tmn)eyn Tmn (2.53)
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The slip displacement increment for joint set m is

AUm = ATmn/Gm, (2.54)

and the slip displacement increment for joint set n is

Au8 = m y2emn - aTmn Tmn (2.55)

Two more variations are generated if joint set m is elastic-perfectly plastic and joint
set n is elastic plastic. This is similar to the two variations just examined. The equations
for these two variations are as follows:

* When

(Tmn)eym > (mn)eyn (2.56)

then

ATrnn = (mn)eym - Tmn- (2.57)

The slip displacement for joint set n is

AufLs (Tmn)eyn -Tmn + (Tmn)eym - (Tmn)eyn (2.58)
G sn GIsn

The equation for the slip displacement increment for joint set m is

AU.m = Em (2Aemn G En ) (2.59)

* When

(Tmn)eym < (Tmn)eyn (2.60)

then

ATmn = (mn)eym -nn (2.61)

The slip displacement increment for joint set n is

AU8 qn = Tmn/Gan, (2.62)

and the slip displacement increment for joint set m is

Auam =m ( 2Aemn- A Tm, A (2.63)
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It must be noted that, in the previous set of equations, the equations for the case of
(Tmn)eym > (Tmn)eyn, are not valid unless the strain increment is large enough to force
nonlinear behavior for both joint sets. The strain increment must satisfy the inequality

Aemn > [((Tmn)eym -Tmn)(G + inG + n mGm)

((Tmn)eyn - T4n)( 6 , 1 G )] (2.64)

in order to use the equations specified for the case of (Tmn),ym > (Tmn)eyn.

Finally, it is possible to consider the variation where both joint sets are elastic-plastic.
The shear stress increment is given by

XTmn= 2&en +

1 11 1

6iG 
6

mGsm ,6\neIm,,

((Tn~ym-mn(6mz ms - 6+(~)nTnG34 6nGQn (2.65)

The slip displacement for joint set m is

(Tmn)eym - n Ttnt - (mn)eym (2.66)
Gam Gam

and the slip displacement for joint set n is

AUsn =: (Tmn)yn -Tt + T=A' - (Tn)eyn (2.67)
Muon = Gan Gt-uan

As in previous cases, the strain increment must satisfy certain conditions before these
equations for the shear stress increment and slip displacement increments can be used.
If (Tmn)eym < (Tmn)eyn, then the strain increment must satisfy the inequality in equation

2.49 in order for equations 2.65, 2.67, and 2.66 to be applicable. If (Tmn)esn < (Tmn)eym,

then the strain increment must satisfy equation 2.64 in order for equations 2.65, 2.67,
and 2.66 to be applicable.

Equation 2.65 can be written in the form

A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2Gic# RR Rn
RmRn+ Ge n

6 m Gm n Gn

Note that equation 2.68 gives the result

ATmn = (Tmn)eym -Tn (2.69)

when R, = 0 and Rn 74 0. When Rm 0, joint set m is elastic-perfectly plastic, and
equation 2.68 yields the desired result for ATmn. If Rn = 0 and Rm 54 0, then equation
2.68 yields

ATmn = (Tmn)eyn - Tmn (2.70)
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which is the desired result when joint set n is elastic-perfectly plastic. Equation 2.68
cannot be used when both R, and R, are equal to zero. It is not possible to write
one equation in a simple form that produces the correct result for ATmn for all of the
variations that can arise for the present case.

2.3.5 Case 5: Elastic Shear Increment Exceeds the Effective Yield for Both
Joint Sets and the Effective Yields are Equal

Now consider the case where the elastic shear stress increment exceeds the effective
yield stress for both of the joint sets and the two effective yield stresses are equal. The
first variation to consider for this particular case is one where both of the joint sets are
elastic-perfectly plastic. For this variation,

ATmn = (Tmn)eym - = (Tmn)eyn- Tn-,. (2.71)

The slip displacement for joint set m is

/Ž\USm = m (emn A /TM.) (2.72)

and the slip displacement for joint set n is

Ahan = n Aemn- ATm)n (2.73)

This variation introduces equations for the slip displacement for the joint sets that have
not appeared before.

The next variations to consider arise when one joint set is elastic-perfectly plastic
and the other is elastic-plastic. These equations have appeared before, and the results
for these two variations are only summarized.

* When joint set m is elastic-perfectly plastic (G'm = 0),

ATmn = (Tmn)eym - Tmx.- (2.74)

The slip displacement increment for joint set n is

Ausn = ATmn/Gan) (2.75)

and the slip displacement increment for joint set m is

Au.m = m (2Aemn - ATmn A Tn (2.76)
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* When joint set n is elastic-perfectly plastic (Gn = 0),

ATmn (Tmn)Yn- Tmn' (2.77)

The slip displacement increment for joint set m is

AUsm =- Tmn/Gsm, (2.78)

and the slip displacement increment for joint set n is

Aurn = n 2emn - /ATnn _ Tmn ).(2.79)

rT'he final variation to consider for this case involves elastic-plastic behavior for both
joints sets. Equations 2.65, 2.66, and 2.67 are applicable for this variation.

23



24



3. ANALYSIS OF PREDICTED SHEAR STRESS
VALUES

Suppose that (Tmn) .... A. c predicts that elastic behavior will occur for one joint set
and elastic-plastic or elastic-perfectly plastic behavior will occur for the other joint set.
When this situation arises, certain prescribed sets of equations are used to calculate the
value for T,+'t that are significantly different from those used to predict (Tmn)ct+6c. The
questions arises as to whether or not the equations accounting for nonlinear behavior for
one joint set and linear behavior for the other joint set yield the same pattern as that
predicted by the linear equation, i.e., do the equations accounting for nonlinear behavior
also predict elastic behavior for one joint set and elastic-plastic (elastic-perfectly plastic)
behavior for the other joint set? This is important for the computer implementation of
joint shear stress model. If it can be shown mathematically that the elastic and nonlinear
equations predict the same general behavior, then it is not necessary to add a check after
the nonlinear calculations are made. The nonlinear calculations can be made with the
knowledge that the pattern predicted by the linear results holds. No check is required to
determine if another set of nonlinear equations must be employed, and the elimination
of an unnecessary check will make the computer program more efficient.

This section shows that, when (Tmn)et+aAsttic predicts elastic behavior for one joint set
and nonlinear behavior for the other joint set, this pattern does hold when the nonlinear
equations are applied. This proof can be carried out only for a particular shear behavior.
The results in this section are limited to a particular shear behavior; all results prior to
this section are for general shear behavior.

To examine the above question, assume that (Tmn)'+a," predicts elastic behavior for
joint set n and some type of nonlinear behavior for joint set m. For this type of behavior
for the two joint sets, it is known that

(Tmn) et+Asttic > (Tmn)eym, (3.1)

(Tmn):+a^t t ic < (Tmn)eyn, (3.2)

and

(Tmn)eym < (Tmn)eyn. (3.3)

First, consider the case where joint set m exhibits elastic-perfectly plastic behavior.
The value for Tht is set to (Tmn)eym, which means that the value for the stress increment
is

ATmn = (Tmn)eym- T (3.4)
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Because T'+At is set to (Tmn)ey, the original inequality of TmttAt < (Tmn)eyn holds.
The original prediction of nonlinear behavior for joint set m and linear behavior for joint
set n remains the same. This is true for either elastic-plastic or elastic-perfectiy plastic
behavior for joint set n.

Now consider the case where joint set m exhibits elastic-plastic behavior. It is known
that (Tmn)+atc is less than the value for (Tmn)eyn; therefore it is possible to write the
inequality

Tmn + emn 1 <(Tmn)eyn. (3.5)
k + 2mGam + 2Gsn

Equation 3.5 can be rewritten as

Aemn < ((Tmn)eyn -1 m. + + (3.6)

The equality used to relate the stress at time t + At to the strain increment has the
form

ATmn Tm~tAt - (Tmn)eym (Tmn)eym - ATmn A T
Aemn 2G + 26mG' + 2±mG~m + 2Gn n

+ m ~am 2ma 37

Equations 3.5 and 3.7 can be combined to produce the inequality

ATmn Tm+nAt - (Tmn)eym (Tmn)eym - + ATmn

2G 2mG',m 28mGam 2G nS6

((Tmn)eyn - Tm ( + + 245G=) (3.8)

If Glm < G (the joint shear stiffness model is a hardening model), then it is
possible to write

- (Tmn)eym <TtAt - (Tmn)eym (3.9)

28mGam 2mG am

This means that
Tt+At - (Tmn)eym (3.10)

28mGam

can be substituted for
T'+At - (Tmn)eym (3.11)

28mG'm

in Equation 3.8 and the inequality holds. Equation 3.8 can now be written as

AT,, T't t T T Tt \
AT~ +tn - (Tmn)eym (T mn)eym - m ATmn

2G 28m Gm 28mG am 2Gsn6n

((Tmn)eyn - Tn) ( + ma + ) (3.12)
2G 216mGm 26nGen
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which will simplify to

(TA t+^ -Tt) K ( + 1 A
mn t 2G 2Em (ngem AU5]~

((Tmn)eyn - Thu) (-+ + 1 ) (3.13)2". G 28nGem 28inG,,

Equation 3.13 yields the result

T~ttAt < (Tmn)eyn. (3.14)

This derivation shows that the behavior for joint set n remains in the elastic range
as long as Glm < Grin This is true for an elastic-plastic or an elastic-perfectly plastic
model for behavior of joint set n. Once the calculation for ATmn has been made, it is
not necessary to determine if TttAt is greater than the effective yield for joint set n as
long as joint set m is a hardening model.

A similar analysis holds for the case where (I+we, predicts elastic behavior for
joint set m and nonlinear behavior for joint set n.

Therefore, it is possible to conclude that, when (Ttnt)eaatic predicts elastic behavior
for one joint set and nonlinear behavior for the other joint set for a hardening material,
the pattern of joint shear stress behavior predicted by the linear equation will hold after
the appropriate nonlinear equations are applied. It is not necessary to examine the
general pattern of behavior after the nonlinear equations are applied.
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4. COMPUTATIONAL IMPLEMENTATION OF
SHEAR MODEL

In the previous section, five different cases were listed for the shear model. Some of
these cases have a large number of variations because of the distinction between elastic-
plastic behavior versus elastic-perfectly plastic behavior. Although there are a large
number of variations, the shear model does lend itself nicely to structured programming.
A question naturally arises as to whether or not the set of variations can be simplified
in some way so as to decrease the complexity of a computational implementation of
the shear model. This section discusses possible methods to simplify the computational
implementation of the shear model.

4.1 Generalized Equations

One possible method to simplify the computational implementation of the shear
model is by the use of generalized expressions for the shear stress increment. When the
elastic shear stress increment (ATmn)eiaatic indicates linear behavior for one joint set and
nonlinear behavior for another joint set, it is possible to write one equation for ATmn
that is valid for both elastic-plastic and elastic-perfectly plastic behavior. Consider a
case where the elastic shear stress increment predicts nonlinear behavior for joint set
m and linear behavior for joint set n. Equation 2.29 yields valid results for ATmn for
both G'm 0 and G'm = 0. Furthermore, only one set of equations is needed for the
slip displacement increments. The slip displacement equations do not change for elastic-
plastic versus elastic-perfectly plastic behavior for this particular case. For the case of
linear behavior for joint set m and nonlinear behavior for joint set n, it is possible to
write one equation for ATmn, one equation for Ausm, and one equation for Au,,. A
similar situation arises if the elastic stress increment predicts nonlinear behavior for joint
set n and linear behavior for joint set m.

When the elastic shear stress increment predicts nonlinear behavior for both joint
sets, it is not possible to write one set of equations to handle all the variations. It is
possible to write the expression for the shear stress increment in a more general form, but
such a form does not hold for all variations. The general expression for the shear stress
increment when the elastic shear stress increment predicts nonlinear behavior for both
joint sets is Equation 2.68. This equation for shear stress increment will be rewritten
here as

A~~mn ~ 2GAemuRmRn 
RmRn+GRn/(6ntGsm)+GRm/(egnGn) +

6 :ims((mn)eum T7n)( 1 Rm) +
RmRn+GRnI(6mGam)+GRmI(nGan )
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RmRn+GRn/(6mGsm)t GR(Gan)(

This equation is valid as long as either G'm or G' is not equal to zero. If both of these
parameters are zero, the above equation yields three terms with zero divided by zero.
Therefore, this equation is not useful if both the joint sets are elastic-perfectly plastic.

Furthermore, for the case of nonlinear behavior for both joint sets, there is no one set
of equations for the slip displacement increments that covers all the variations. The equa-
tions for the slip displacement increments change significantly depending on a particular
variation.

In general, then, for the case of nonlinear behavior for both joint sets, it is not
possible to write one generalized set of equations in a straightforward manner to cover all
of the variations. Some type of branching is required to ensure that the correct equations
are used. Otherwise, some very general expressions containing all the variations would
need to be written for the slip displacement. These general expressions would also have to
include parameters that would ensure that only the correct components would contribute
to the slip displacement calculations.

4.2 Adjusting Values of G'm and Gin to Approximate Elastic-
Perfectly Plastic Behavior

It is possible to eliminate the elastic-perfectly plastic variations by specifying that
only nonzero values of G'm and G' can be used for input for the model. To obtain a
good approximation to an elastic-perfectly plastic shear stress versus slip displacement
behavior for joint set m, for example, it is necessary to specify a "small" value for G'm
as compared to the value of Gum. The definition of "small" varies with the value of G,,.

For some given value of Gum, a ratio of G'm to Gum on the order of 10' can produce
a reasonable approximation to an elastic-perfectly plastic curve for the shear behavior
of joint set m. If Gum is larger, it is necessary to adjust the value for G'm if a close
approximation of an elastic-perfectly plastic curve is still desired. Some decision must
be made as to how closely an elastic-perfectly plastic curve is to be modeled, and the
value for G'm must be set on the basis of the value of Gem. One fixed ratio between G'm
and Gum will not ensure a good approximation of an elastic-perfectly plastic curve for all
values of Gum.

While it is possible to specify small values for the ratios R and R, to closely
approximate elastic-perfectly plastic behavior, it may not be desirable in terms of the
conditioning of various equations from a computational standpoint. The effects of ap-

proximating elastic-perfectly plastic behavior by the use of "small" values for G'm and
G'n are investigated in the following sections. These studies are based on Sample Problem
2 in the reference by Chen (1987). For this particular problem, a block with orthogonal
joint sets undergoes pure shear. The block is 10 in. by 10 in. The rock matrix has a bulk
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modulus of K = 667.0 ksi and a shear stiffness of G = 400.0 ksi. The half closure stress
Ak is 1.0 ksi, the maximum closure (ud a)k is -0.003 in., the coefficient of friction /p is
0.7, the cohesion C0 k is 0.25 ksi, and the joint spacing k is 0.5 in., where k = m n. The
joint shear stiffness for both joint sets is 100.0 ksi/in. Set the joint shear hardening for
joint set m to 1.0 psi/in. and for joint set n to 1.0 ksi/in. The ratio of the joint shear
hardening to the joint shear stiffness for joint set m is 1.0 x 10'.

Suppose that the value for the shear stress Tmn at the current time is 385.0 psi, the
shear yield stress for joint set m is 390.0 psi, and the shear yield stress for joint set is
400.0 psi. If there is a strain increment of 0.0005 in./in., then the predicted value for the
shear stress increment Tmn is 23.5294 psi.

Before using the equations for elastic-plastic behavior, calculate the shear stress
increment and slip displacement increments by treating joint set m as elastic-perfectly
plastic, i.e., use a value of zero for G'm. For elastic-perfectly plastic behavior, the shear
yield stress for joint set m sets the limit for the value for the shear stress at time t + At.
The value for TtAL is 390.0 psi and the shear stress increment ATmn is 5.0 psi. The slip

displacement for joint set m is 4.4375 x 10' in., and the slip displacement for joint set
n is 5.0 x 0-5 in. The shear strain for the rock matrix is 6.25 X 10-6. The shear strain
for the rock matrix plus the shear strains for both joint sets sum to 0.0005 in./in., which

is to be expected.

Calculate the above values using the equations for elastic perfectly plastic behavior.
The elastic shear stress increment predicts that both joints should behave in a nonlinear
manner. The shear strain increment is not large enough, however, to cause nonlinear
behavior for both joint sets. Therefore, it is necessary to use Equation 2.22 to calculate
the shear stress increment. This equation is valid for nonlinear behavior for joint set
m and linear behavior for joint set n. The stress increment predicted by this equation
is 5.0003937 psi, which is very close to the value of 5.0 psi predicted for the elastic-

perfectly plastic case. The slip displacement for joint set m for the elastic-plastic case is
5.0003937 x 10' in.; the slip displacement for joint set n is 4.4374557 x 10-4 in. These slip
displacements are very close to those predicted by the equations for the elastic-perfectly

plastic case. This particular example indicates that an elastic-perfectly plastic material
can be modeled as an elastic-plastic material with a high degree of accuracy.

4.3 Conclusions

The discussion in Section 2 shows that a great number of variations must be consid-
ered when implementing a jointed rock model that allows for nonlinear shear behavior

for both joint sets. The shear model can be implemented in a structured manner because
it is possible to determine the correct equations to use for the shear calculations based

on some simple tests. The first test involves the calculation of (Tmn):A'c, which is an
estimate for the shear stress at time t + At based solely on elastic properties of the joint
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sets. If the value for (Tmn)ttic is larger than the effective yield stress for joint set n
and the effective yield stress for joint set n, then the behavior of both joint sets will be

elastic. If the value for (Tmntlatc is larger than the effective yield stress for one joint
set and smaller than the effective yield stress for the other joint set, then this pattern

will hold when the appropriate set of nonlinear equations is used to calculate TItlAL. A
proof of this is given in Section 3. Finally, if (Tmn)tt"`c is larger than the effective yield
stresses for both joint sets, then it may be necessary to make another test to determine
the correct set of equations to use. If (Tmn)eym $ (Tmn)eyn, and one or both of the joint

sets is elastic-plastic, then it is necessary to determine if the strain increment Aemn is
large enough to make both joint sets behave in a nonlinear manner. This check is made
by using equation 2.49 or equation 2.64. If the appropriate inequality is satifled, then
both joint sets will exhibit nonlinear behavior.

This latter section has examined possible ways to simplify the system of equations
describing the nonlinear shear behavior for the joint sets. One possible approach to
simplification is the use of generalized equations. It is possible to write generalized
equations for two of the cases (nonlinear behavior for one joint set and linear behavior
for the other joint set), but not for the cases where both joint sets behave in a nonlinear
manner.

Another approach is to eliminate the equations for elastic-perfectly plastic behavior

by approximating elastic-perfectly plastic behavior through the use of a "small" value
for the joint shear hardening coefficient. Based on the sample calculations presented
in this report, this appears to be a reasonable approach to simplifying the system of
equations. It appears an elastic-perfectly plastic model can be approximated to a high
degree of accuracy by an elastic-plastic model with the appropriate choice of the shear

hardening modulus. If the joint sets are modeled only as elastic-plastic, the number of
variations is significantly reduced and full generality is retained for all practical purposes
since elastic-perfectly plastic situations can be closely approximated.

The simplification of the model with the use of only elastic-plastic joint sets and
the tests for predicting the nature of the nonlinear behavior of the joint sets opens the
possibility of a vectorized computational implementation of the shear model. Because the
material model is called repeatedly throughout a computer analysis, the time spent within

a material model can be quite significant. Considerations of efficient implementation and
vectorization are important for production use of a material model. The information

presented in this report is useful for an efficient computational implementation of the
jointed rock model and for future consideration of a vectorized version of the jointed rock
model. Vectorization of the jointed rock model in general is an important area for future
investigation.
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Appendix A
Information from, and Candidate Information for,

the SEPDB and the RIB

Information from the Reference Information Base

Used in this Report

This report contains no information from the Reference Information Base. The
material properties are assumed values taken in the spirit for which verification problems
are performed. However, the values used in this report are representative of average
rock mass properties that can be found in the Reference Information Base for the Yucca
Mountain site.

Candidate Information for the

Reference Information Base

This report contains no candidate information for the Reference Information Base.

Candidate Information for the

Site and Engineering Properties Data Base

The report contains no candidate information for the Site and Engineering Properties
Data Base.
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