

Figure 5.16. Liquid-phase saturation S_{liq} distribution at (e) 5 and (f) 10 yr in a vertical plane transverse to the midpoint of the heater drift for 6.2-mm/yr percolation flux. The initial drift/wing-heater power is 80/100% of full capacity. For 4–5 yr, the power is linearly ramped down to 0/0%.

Figure 5.17. Temperature *T* distribution at (a) 1 and (b) 2 yr in a horizontal plane through the wing-heater horizon for 6.2-mm/yr percolation flux. The initial drift/wing-heater power is 80/100% of full capacity. For 4–5 yr, the power is linearly ramped down to 0/0%.

5-51

Figure 5.17. Temperature *T* distribution at (c) 3 and (d) 4 yr in a horizontal plane through the wing-heater horizon for 6.2-mm/yr percolation flux. The initial drift/wing-heater power is 80/100% of full capacity. For 4–5 yr, the power is linearly ramped down to 0/0%.

5-52

Figure 5.17. Temperature *T* distribution at (e) 5 and (f) 10 yr in a horizontal plane through the wingheater horizon for 6.2-mm/yr percolation flux. The initial drift/wing-heater power is 80/100% of full capacity. For 4–5 yr, the power is linearly ramped down to 0/0%.

5-53 C-44

Figure 5.18. Liquid-phase saturation S_{liq} distribution at (a) 1 and (b) 2 yr in a horizontal plane through the wing-heater horizon for 6.2-mm/yr percolation flux. The initial drift/wing-heater power is 80/100% of full capacity. For 4–5 yr, the power is linearly ramped down to 0/0%.

Pretest Thermal-Hydrological Analysis of the Thermal Drift-Scale Test at Yucca Mountain

5-54 C-45

Figure 5.18. Liquid-phase saturation S_{liq} distribution at (c) 3 and (d) 4 yr in a horizontal plane through the wing-heater horizon for 6.2-mm/yr percolation flux. The initial drift/wing-heater power is 80/100% of full capacity. For 4–5 yr, the power is linearly ramped down to 0/0%.

Pretest Thermal-Hydrological Analysis of the Thermal Drift-Scale Test at Yucca Mountain

5-55 C-46

Figure 5-18. Liquid-phase saturation S_{liq} distribution at (e) 5 and (f) 10 yr in a horizontal plane through the wing-heater horizon for 6.2-mm/yr percolation flux. The initial drift/wing-heater power is 80/100% of full capacity. For 4–5 yr, the power is linearly ramped down to 0/0%.

Pretest Thermal-Hydrological Analysis of the Thermal Drift-Scale Test at Yucca Mountain

5-56 C-47

Figure 5.19. Temperature *T* distribution at (a) 1 and (b) 2 yr in the vertical axial midplane of the heater drift for 6.2-mm/yr percolation flux. The initial drift/wing-heater power is 80/100% of full capacity. For 4–5 yr, the power is linearly ramped down to 0/0%. TB-6/5/97-T54zy.1-2y

Pretest Thermal-Hydrological Analysis of the Thermal Drift-Scale Test at Yucca Mountain

5-57 C-48