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ABSTRACT

A sequential stochastic model is developed to identify the locations and
strengths of pollution sources in a two-dimensional uniform ground water
flow field. The model also estimates the concentration distribution in
the flow field due to the presence of pollution sources and the error
covariances of the estimation process. The present study focuses on
incorporating the measurement errors and modeling errors. The findings
presented herein are considered only a first step toward introducing the
potential application of system theory to contaminant transport problems
in the ground water environment. This paper presents details on the
mode! development and the physical significance of various steps
associated with its development. In addition, the following items are
discussed in detail: the criteria for selecting initial source
covariances, the role of measurement error covariances, the criteria for
handling measurement errors when there is insufficient information to
define those errors, the functional relationship between covariances and
Kalman gain matrices, the model's sensitivity to initial assumptions of
covariances, and the limitations of the model developed during the
present study. A series of numerical experiments was conducted to
support the discussions of the above listed issues for a case with a
single point source and a constant injection rate.

INTRODUCTION

Ground water pollution sources can be identified by the conventional
method of plotting concentration contours (Roux and Althoff, 1980), the
non-sequential approach (DiStefano and Rath, 1982; Gorelick, 1983;
Gorelick et. al., 1983), or the sequential approach (Hwang and
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Koerner, 1983). These methods are based on deterministic approaches.
The present study follows the sequential approach but, unlike the other
studies, develops a stochastic linear dynamic system model. Although the
present methodology is intended for stochastic simulation purposes (i.e.,
the direct problem), it serves as a prelude to the inverse problem within
the framework of extended Kalman filtering, in which concentration
measurements vary considerably in space and time. The primary utility of
a stochastic model is its capability in formulating the system error, if
desired. The system error may stem from incorrect choices of parameters
(such as dispersivity, velocity, etc), measurement errors (such as in
concentration), modeling errors (such as in physical processes, model
discretization, source definition, etc.), or any combination thereof.
The present study focuses on incorporating measurement and modeling
errors related to pollution source definition. The findings presented
herein are considered only a first step toward the application of system
theory to contaminant transport problems in the ground water environment.

MODEL DEVELOPMENT
Mathematical Model

The equation governing transport of a dissolved solute jin a
two-dimensional uniform ground water flow field can be written as:

R(3C/3t) = VDVC - V(VC) - ARC + S (x,y) €0 (1)
ajC * n + asC = a3 (x,y) € an

where C(x,y) is the concentration of the dissolved solute [M/L3]; D(x,y)
is the coefficient of hydrodynamic dispersion [L2/T]; V(x,y) is the
seepage or pore velocity [L/T); A is the first-order decay constant of
the solute [1/T]); R is the retardation factor; S is the material flux of
the source/sink [M/L3T); ay, az, and a3 are constants whose values
determine the type of boundary conditions; n is the outward normal vector
to the boundary at a given point; 1 is the flow domain; 81 is the domain
boundary; and 3 and V are the differential operators.

Linear Dynamic System Model

The first step in the process of model development is to transform the
governing non-linear partial differential equation, eq. (l), into a form
of linear dynamic model. This is achieved by spatial discretization of
the flow domain, eq. (l), using a numerical method. There are a number
of numerical methods, such as finite analytic, finite difference, or
finite element, which can be used for this purpose. Finite analytic
method is used for the present study. The end result of spatial
discretization of eq. (1) is a linear dynamic system given by:

oC/dt
C*

+ B'S (system model) (2a)

= A'C
=HC (measurement model) (2b)

where A' is the state (concentration) coefficient matrix which contains
information relating concentration vector and aquifer parameters, such as
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D, V, R, and A; B' is a diagonal control (source) matrix expressing
relationship between the source and the concentration vectors; and H is
the observation coefficient matrix which describes the relationship
between the measurements C* and the concentration C.

Stochastic System Model

The second step in the process of model development is to obtain a
discrete-time stochastic system model. Mathematically, identifying the
pollution source location and strength is the same as identifying the
vector S. This forms the basis for a stochastic measurement model as
well as for a deterministic simulation model. Assuming the true state
vector to be a random process, the continuous-time stochastic system
model can be expressed as (McLaughlin, 1978):

ac/at
CX

A'C + B'S + p (system model) (3a)
HC + W (measurement model) (3b)

with error statistics given by:

ElC(ty)] = Co ;3 E[C(ty) cT(ty)] = Py (3¢)
Elp(t)] =0 ; E[p(t) pI(t+1)]} = Qd(t~1) for all t (3d)
Efw(t)] =0 ; E[w(t) wl(t+t)) = Ré(t-1) for all t (3e)

where p is a vector of process noise (model error) terms applied at the
spatial grid points; E[e] is an expectation operator; & is the Dirac
delta function; superscript T denotes a transpose operation; and P, Q,
and R are the error covariances of state, process noise, and measurement
errors, respectively.

The uncertainty of the model can be attributed to uncertainties in the
aquifer properties, solute characteristics, concentration measurements,
pollution sources, numerical methods, etc. Assuming that the solute
characteristics and aquifer properties do not change in time; that the
spatial discretization of the domain does not introduce significant
errors; that the numerical method accurately simulates the flow field;
and that the pollution sources (control parameter) and the aquifer
properties are deterministic in nature, the process noise can be
eliminated and the discrete-time stochastic system model can be given by
the following discrete-time recurrent equations (Chen, 1983):

Ck+1 = ACy + BiSk (dynamic model) (4a)
C¥*ke1 = HgCy + Wi (measurement model) (4b)
S+l = Sk (constant input) (4c)
E(Wy] = 0 and E[wiW)T) = Rydy (error statistics) (4d)

where subscript k is the time step indicator; A is an n x n state
transition matrix; B is an n x q control transition matrix; S is the
source vector of dimension q x 1; C is the concentration vector of
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dimension n x l; H is the measurement coefficient matrix of dimension
m x n; W is the measurement error vector of dimension m x l; m § n; and
nzigqg.

The transition matrices, Ay and By, are computed by (Chen, 1983):

A = exp (A'.AL) = 1 + (A'.At) + (A'.At)2/21 + (A'.at)3/31 + ... (5a)
B = [exp (A'.at) - 1) (a']-1B* (5b)
Where At = time step interval = ty - tyi_) and ! represents the factorial
operation.

Solution Scheme

The next step involves application of system theory or estimation theory
to develop a recursive algorithm to solve the linear dynamic system model.
It may be noted that the control vector Sy contains the location and
strength of the source(s) at time step k. Therefore, to identify the
pollution source location and strength is to identify the deterministic
control vector Sy. However, Cy is not a deterministic vector and is
simulated simultaneously with Sy, to determine the concentration
distribution over the entire domain. The simultaneous estimation of both
these parameters is achieved by adjoining Cy to Sy and defining the
adjoint state vector (Zy) as:

Zy = [Cx S¢lT € an*q (6)

The estimation of Zy is a state estimation problem, the solution of which
can be obtained from the <classical recursive estimation algorithm
developed by Kalman and Bucy {(1961). The significant component of the
computational effort and accuracy of this solution scheme depends on
solving the matrix Riccatti equation for the covariance matrix of the
adjoint state estimate. Therefore, the required amount of memory and the
round-off error are increased as the dimension of space coordinates

becomes large. This is resolved through redefining the optimal estimate
of the concentration vector as a linear process by (Panigrahi et. al.,
1984):

ek =€ e > + dyp =€ cp > + Vs (7)

where ¢ is the optimal estimation of the concentration C; € ¢ » is the
source-free estimate of the concentration being computed as if no source
were present; d is the contribution of concentration due to the presence
of source(s); s is the optimal estimate of the source S (or, source
strength); and V is a matrix containing the ratio of the covariance of
€ ¢ » and s to the variance of s. Physically speaking, € ¢ > is the
background concentration of a chemical species in the aquifer. The
background concentration in an aquifer may or may not remain constant
with time. The matrix V physically defines and determines the proportion
of the source strength that is contributed towards the concentration
distribution in the flow domain. This transformation process allows the
computation of a source-free estimate of concentration independent of the
source strength estimations, and then addition of a correction due to the
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presence of sources. After a sequence of mathematical manipulations, the
final solution scheme can be given by the following recursive estimation
equations (Friedland, 1969):

Cep > = Aoy € cp-1 > = KeplC¥k = HihAp-p € cp-p >) (8)

sk = Sk-] + KgplC¥k - HyAg-1€cp-1> - Yrsk-1) (9)

Vk = Up - KepYx (auxiliary matrix) (10)
Uk+l = AgVk + Bk (auxiliary matrix) (11)
Y = HiUyg (auxiliary matrix) (12)
Kek = PiHyT [HPyHT + Ry ]"1 (conc. gain matrix) (13)
Kek = Gg+l VkT HkT Rk'l (source gain matrix) (14)

Gral = G - Gy YT [HRPiHT + Ry + YjGyyyT1™1
(source covar. matrix) (15)

Pl = ARl - KepHipl PrayT (conc. covar. matrix) (16)

where subscripts ¢ and s refer to the concentration and source terms,
respectively.

DISCUSSION OF INITIAL CONDITIONS

The gain matrix Kg is directly proporticnal to the source covariance
matrix G and indirectly proportional to the measurement error covariance
matrix R. Initial conditions are important in obtaining correct
solutions from a model. 1In general, assigning a correct initial source
covariance (G,) is unrealistic since the source vector (s) is unknown,
and the measurements obtained at selected points in the flow domain are
relatively more reliable than those at the non-measurement locations.
Based on this information, two functional terms are defined as follows
(Panigrahi, 1985):

The reliability factor (RF) is defined as the ratio of source covariances
at non-observed points to those of the observation or measured locations.
The noise ratio (NR) is defined as the ratio of source variance to the
measurement error covariance at a location. Assigning certain fixed
values to the non-observed locations (y,) and measured locations (u;) of
source covariances, the reliability factor is expressed as RF = (p,/uy).
Similarly, aseigning a certain value to all the measurement locations of
measurement error covariance (B), the noise ratio is expressed as NR =
(B6m/8).

The initial values of RF indicate the relative uncertainty of the initial
information at the non-monitoring locations. In other words, this

indicates the relative accuracy of the initial source vector sy. Thus, a
significantly large RF value (several orders of magnitude) is assigned
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initially indicating that the initiel conditions at the non-observed
locations are less reliable.

The convergence of the solution to an accurate estimate of source
location and strength also depends on the initial specification of
NR, since the gain matrix is directly proportional to NR. Therefore,
assigning an initial NR value of greater than unity indicate that the
initial source assumptions are less reliable than the measurements. This
also allows sufficient flexibility for the gain matrix to reflect the
transitional changes and provide stable final solutions.

APPLICATIONS
The solutions [eqs. (5a), (5b), and (7) through (16)] are applied to a
hypothetical aquifer. The aquifer simulation has the following
characteristics:

* a rectangular area of 1,200 ft x 600 ft (365.76 m x 182.88 m);

* average flow velocities of 4 ft/d (1.219 m/d) and 1 ft/d
(0.305 m/d) in the x- and y-directions, respectively;

e average dispersion coefficients of 80 ft2/d (7.432 m2/d) and
10 ft2/d (0.929 m2/d) in the x- and y-directions, respectively;

e a constant point source with a concentration of 1,000 ppb located
at the center of the aquifer;

e initial conditions of zero concentration in the aquifer;

* Neumann boundary conditions along the boundaries (concentration
gradient = 0);

* spatial grid intervals of 200 ft (60.96 m) and 100 ft (30.48 m)
in the x- and y-directions, respectively; and

* a simulation period of 200 days with a time interval of 5 days.

The discretization of the hypothetical aquifer is shown in Figure 1. As
shown in Figure 1, the source is located at node 25 and the monitoring
wells are assumed to be present downgradient at nodes 37 through &41.

Based on the above information, the model simulation was completed using
the finite analytic method (Panigrahi, 1985); however, other numerical
methods could be used instead. The simulated concentration distributions
were perturbed by a set of random errors with a mean and standard
deviation of 0 and 10'“, respectively. The perturbed data at the assumed
monitoring locations were treated as the measurements and the errors in
them as the measurement errors. The simulated data at locations other
than the monitoring points were discarded and thus created a scenario
where the source location and its strength are unknown.
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In order to start the algorithm, it is necessary to assign initial values
to the source vector, the measurement error covariance matrix, and the
source covariance matrix. The initial source vector was assumed to be
zero, indicating that no information is available regarding the location
and strength of the point source and that the likelihood of any grid
point to be identified as a pollution source location is the same
throughout the flow domain. The initial values of the covariance
matrices were assigned by assuming certain values of RF and NR as
described earlier. The following cases were simulated to demonstrate the
application of the filter theory:

¢ Source Identification: RF = 108 and NR = 1
e Effect of Reliability Factor: RF = 10=% to 1017 and NR = 1
» Effect of Noise Ratio: RF = 108 and NR = 10~10 to 1010

DISCUSSION OF RESULTS

The source estimation and the sensitivity analyses are performed by
solving egs. (3a), (3b), and (5) through (l4) using the initial and
boundary conditions specified in the previous section for the
hypothetical aquifer. For a predefined set of NR and RF, the solution
scheme calculates the location and strength of the source, concentration
distribution in the flow field, and the covariance matrix.

Source Estimation

Figures 2 (a) through 2(d) present the time evolution of correct source
location and strength estimations at selected time steps (after 15, 20,
35, and 200 days since the simulation began). The difference between the
estimated source strength (1,048 ppb) and the actual source strength
(1,000 ppb) is approximately five percent. Figure 3 presents a
perspective view of the estimated concentration distribution in the flow
field at the end of the simulation (after 200 days), which closely agrees
with the actual (simulated) concentration distribution in the flow field.
The results indicate that nodal point 25 has the highest strength and the
highest concentration. This infers that node 25 is the most likely
pollution source location which, of course, is the actual case. The
correct convergence of the solution scheme can also be verified from
inspection of the final covariance matrix. A correct convergence would
indicate that the final covariance at the source location is much smaller
than the initial guess and often in the same order of magnitude as the
measurement locations. This is illustrated in Figure 4, which presents
perspective views of the initial and final source covariances.

Effect of Reliability Factor (RF)

A numerical experiment was conducted to study the effect of RF on the
conver%ence of the solution scheme. The value of RF was varied from 107
to 1017 while the value of NR was maintained constant at unity (NR = 1).
The experiment (RF = 1074 to 1017) was repeated for three sets of R or 8
(= 100, 1074, 1078) while maintaining NR = 1. The results are presented
in Figure 5, which illustrates the effect of the initial assumptions of
source covariances on the correct estimation of the source strength and
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location. A review of this figure indicates that a lower limit of RF
must be maintained in order to achieve an accurate and stable solution
from the algorithm. The lower limit is equal to the inverse of the
variance of the actual measurements, which is 108 for the present study.
For actual field applications, a sensitivity analysis for a range of RF
values with NR = ] should be performed to obtain the lower limit of RF,
which in turn will indicate the potential standard deviation of the
measurements. Furthermore, RF is fairly robust with respect to the time
step size (time step was varied from one day to five days), the source
location, and the noise ratio. For brevity, these results are not
repeated in this report.

Effect of Noise Ratio (NR)

A second set of numerical experiment was conducted to study the effect of

NR on the correct estimation of source strength. Maintaining RF as a
constant at 108, the value of NR was varied from 1010 o 10710, The
results are presented in Figure 6. A review of this figure indicates

that convergence of the sclution scheme to the correct estimate of source
strength is unaffected by values of NR 2 1. A value of NR significantly
less than unity still results in a converged solution, but yields to an
incorrect estimate of source strength. The significance of NR is
directly related to build-up of the gain matrix Kg. For cases with a
small initial assumption of NR, the gain matrix Kg does not accumulate
sufficient gains for proper convergence of the solution scheme; and thus,
the solutions deviate from correct source estimates. Physically
speaking, this indicates that the initial source assumptions are less
reliable than the measurements.

SUMMARY AND CONCLUSIONS

The location and strength of a pollution source in a two-dimensional

uniform ground water flow field are identified. The concentration
distribution in the flow field and the associated error covariances of
the estimation process are also quantified. A numerical sequential

system model is developed to solve the governing stochastic partial
differential equation via Friedland's approach and the extended Kalman
filter. The model implementation is demonstrated with a test case for a
hypothetical aquifer. The reliability factor (RF) and the noise ratio
(NR) are used to define relative initial conditions of the error
covariances. RF is fairly robust with respect to the time step size,
the source location, and the noise ratio. Convergence of the solution
scheme to the correct estimate of source strength is unaffected for
NR 2 1.
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