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Abstract
Two-dimensional (2D) stochastic fractal models of heterogeneous porous media were created to provide

complex representations of porous media which yield velocity distributions that approach the advective variability
observed in field systems. These models were used to investigate the application of sparse one-dimensional (ID)
sampling to characterize the two-dimensional hydraulic conductivity (K) distributions. Steady-state flow was
simulated in the binary K fields of the models, and yielded 2D velocity fields for analysis.

Texture of the generated porous media (distribution of K) was varied by creating two models with different
lacunarities, but the same fractal dimension. Lacunarity and fractal dimension of the generated porous media models
were calculated. Two methods of analyzing lacunarity of the porous media models were used (one method follows
Mandelbrot (1983), the other was developed in this research).

The properties of ID profiles of hydraulic conductivity and velocity (as could be obtained from boreholes)
were calculated and examined to determine if they could differentiate the 2D properties of the porous medium
models. Fractal dimension of the ID hydraulic conductivity profiles was determined by the box-flex counting
method. Four methods of fractal analysis of velocity profiles were used (box-flex counting, resealed range, spectral
density, and threshold value), and one method of non-fractal analysis (coefficient of variation) was employed.

The two textures were best differentiated by the lacunarity measurement developed in this research.
Lacunarity of ID samples through the K field calculated by the method developed in this research differentiated the
2D models. Measurement of fractal dimension of the velocity profiles yielded inconsistent results in differentiating
texture (two methods were successful in differentiating texture, one needs further development, and the final method
was not sensitive to differences in texture).

Integration of the hydraulic conductivity and velocity profiles will provide the most information about the
nature of the 2D hydraulic conductivity fields. The K profiles indicate location and size of the heterogeneities in
the porous medium models, while the velocity profiles reveal the connectedness of high K zones. This information
is valuable for generation of representative stochastic porous medium models from sparse data samples.

Inttroduction
The discontinuity or connectedness of high hydraulic conductivity zones is perhaps the single most

influential feature that affects contaminant transport; however, it is extremely difficult to map from data gathered
from sparse boreholes. While thorough geologic mapping may identify connected zones of high K at the large scale,
much of the heterogeneity critical to contaminant transport at the site scale is unmappable with currently available
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techniques. Most of the small-scale heterogeneity is due to micro-structures and almost imperceptible variations in
packing, grain-size distribution, clay content, or degree of cementation (Freeze and Cherry, 1979).

The purpose of this project was to develop a method for characterizing porous medium heterogeneity from
sparse data. Such a method will reduce the cost of data required to model an porous medium by improving our
knowledge of the nature of media between boreholes based on data gathered in boreholes. The study presumes that
vertical profiles of horizontal velocities are available for analysis. Currently such profiles cannot be measured at the
desired level of detail in the field. This study explores the potential usefulness of such profiles before effort is
invested in developing technology to measure velocity profiles.

A Monte Carlo procedure was used to create two-dimensional (2D) stochastic fractal porous mediums with
binary K fields. These models were intended to provide complex representations of K fields whose properties
(degree of porous medium heterogeneity, connectedness of high K zones), would be similar to the variability of
sediments in a field setting, thus facilitating the extension of this research to field situations. The use of stochastic
fractal porous medium models also creates the opportunity for future research into modeling of solute transport via
differential advection rather than with the classical advection-dispersion equation.

This entire work is discussed in greater detail by Zlatev (1991). For the benefit of those who have not
worked with fractals, the following brief descriptions are provided.

Fractl Geometry
Fractal geometry is a branch of mathematics that is well suited to quantifying the patterns found in nature

(Mandelbrot, 1967, 1983 and many others; Feder, 1988). Fractal shapes are self-similar, that is, when magnified,
a small portion of the shape is identical to the larger piece. For natural objects (e.g. porous media), this
self-similarity is a statistical self-similarity. Fractal objects have dimensions that are greater than or equal to their
topological dimension (DT), less than or equal to their embedding Euclidean dimension (E), and are not necessarily
an integer (e.g. a jagged line has a fractal dimension, DF, between 1 and 2; a rougher line will 'fill' more 2D space
and will have a Dp closer to 2). Intersections through stochastic fractal objects produce integer reductions in the
value of D.; for example, a volumetric object with DF = 2.6 embedded in three-dimensional space, will have DF =
1.6 when sectioned by a plane, and D, = 0.6 when intersected by a line.

Labunarity
Lacunarity is an indication of the texture of a fractal object. Lacunarity of an object is related to the size

of zones within the object; an object of high lacunarity has larger zones, while in an object of low lacunarity, zones( are more disseminated. Two objects with very different texture (lacunarity) can have identical fractal dimensions.
Similarly, two different porous media (e.g. sandstone and siltstone) may have the same fractal dimension but different
lacunarities. Although measurement of Dp does not seem to differentiate materials of differing hydraulic conductivity
(Barton et al., in press), we expect that lacunarity will be a better measure for such differentiation

Generation of Hydraulic Conductivity and Velocity Fields
Stochastic fractal porous medium models were created by calculating the size-frequency distribution of the

low K squares for each generation, and randomizing their location in the initiator square (Figure 1). Two fractal
models (one of high and one of low lacunarity, Figure 1) were chosen to investigate the ability to make predictive
statements about the fractal character of the 2D model from interpretations of the ID profile data. Five realizations
of each model were examined in this study, their characters are similar but the location of heterogeneities vary as
determined by the seed which is used to begin the Monte Carlo process. In keeping with the recursive algorithms
of fractal geometry, the larger squares (first generation) were removed at a random location first, then squares of
successive generations were randomly removed to create the third-generation fractal models that were used as binary
K fields. In order to maintain a constant value of fractal dimension, squares were not allowed to overlap.

These hydraulic conductivity distributions were used as input to a 2D steady-state ground water flow model
with fixed heads at each side to generate the hydraulic head distribution. The hydraulic conductivity and head data
were used to calculate the velocity field using Darcy's Law. Some examples of hydraulic conductivity and velocity
profiles, taken from models of different lacunarity, are illustrated in Figure 2.

The velocity profiles sampled from the high and low lacunarity models exhibit different character (Figure
2). The velocity profiles from the high lacunarity models typically had large plateaus of high and low velocity, with
abrupt, but fewer changes from high to low velocity. The size of the lenses were larger, but there were fewer lenses,
so the velocity profiles reflected a model that had larger zones of constant hydraulic conductivity. Large changes
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Figure 1 Generation of stochastic fractal porous media models
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Figure 2 Profiles of hydraulic conductivity and velocity
from high and low lacunarity models
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in the velocity profiles were commonly due to a feature that was directly intersected by the profile itself; however,
if the profile was taken proximal to a low K lens, the velocity reflected that condition. This phenomenon is the key
to using velocity profiles as clues to the connectivity of units between holes. The effects of larger lenses were more
easily recognized at greater distances than the effects of the many smaller lenses.

Velocity profiles from the low lacunarity models were more irregular, the zones of high and low velocity
were thinner, and the changes between them were more gradual, reflecting the presence of small lenses that were
not intersected by the profile. The size of the lenses were smaller, relative to the lenses of the high lacunarity model,
but there were more lenses.

Fractal Dimension of the 2D Hydraulic Conductivity Fields
The similarity dimension is defined as:

Ds= log(N(r) / log)(lr) (1)

where:
N(r) = number of boxes of size r
r = size of boxes

D. is an approximation to the fractal dimension that considers the self-similarity that define fractals. While typically
used for estimating the fractal dimension of mathematically exact fractals (Feder, 1988, Falconer, 1990), similarity
dimension was used to estimate the fractal dimension of the stochastic fractal models. For all two-dimensional fractal
models in this research, D. - 1.896.

Lacunarity of the 2D Hydraulic Conductivity Fields
Cantor dust is a fractal, broken line, with segments of the line being of variable length. A line formed by

segments of the length of high hydraulic conductivity segments along vertical profiles in the porous media models
forms a Cantor dust model. Mandelbrot (1983) proposed that a ratio of the measured mass to the expected (average)
mass be used as a method to define the lacunarity of a Cantor dust:

L=Ef W) -1? (2)

where:
L = value of the lacunarity
W = mass (e.g. length of a segment)
E(W) = expected (average) mass of a segment.

To calculate lacunarity of the 2D hydraulic conductivity fields, first, the 2D model was read as a series of vertical
hydraulic conductivity profiles. Along these profiles, the size-frequency distribution of the mass "segments" (lengths
of connected high K) was recorded. For each profile, the summation of the mass segment values (sum of the mass
segment size multiplied by its frequency of occurrence) was divided by the total number of mass segments in each
profile to yield the expected mass (E(W)) of segments for that profile. The lacunarity of each profile was calculated
using equation 2. Two-dimensional lacunarity was the average of lacunarity for all the ID profiles. Lacunarity
values calculated using this method did not show significant differences between high and low lacunarity 2D models.
The average lacunarity calculated for the high lacunarity models was 0.8 (ranging from 0.76 to 0.83), while average
lacunarity for low lacunarity models was 0.75 (ranging from 0.74 to 0.76). Although the lacunarity calculated by
equation 2 does differentiate the models, a more sensitive measure was desired.

Therefore, another method, which parallels Mandelbrot's equation, was developed to calculate lacunarity.
Mandelbrot (1983) explains that a less lacunar (lower lacunarity) object should appear more homogeneous (i.e. a
smaller area can be taken for a representative sample). It follows that the mass segments of a less lacunar object
would have smaller variance than a higher lacunarity object. Consequently the variance of the mass segments along
a ID profile was calculated, and these ID lacunarities were averaged to estimate lacunarity of the 2D model. The
equations used are:
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Li = E [ W - E(W) ]2 (one-dimensional) (3)
and

L2 = E(LI) (two-dimensional) (4)

where:
LI = lacunarity of one-dimensional profiles
W = mass of segment along profile
E(W) = expected (average) mass of segments along profile
L2 = expected (average) lacunarity of profiles for two-dimensional model.

The results of these calculations distinctly separate the high and low lacunarity models. Average lacunarity
for the high lacunarity models was 133 (ranging from 122 to 152) and average lacunarity calculated for the low
lacunarity models was 16.7 (ranging from 16.5 to 16.9). A comparison of the average lacunarity values calculated
by this method for the 2D models shows approximately an 8:1 ratio. The difference between the two approaches
is that Mandelbrot's equation is normalized by the expected mass of the profile, while the latter approach does not
involve normalization. The absolute differences in the profiles are important, therefore normalization is not
advantageous in this situation. Defining the lacunarity calculation for ID and 2D objects as the variance of the size
of the mass segments yields a simple, sensitive equation for examining texture.

Analysis of One-dimensional Profiles
The purpose of these analyses was to make predictive statements about the 2D distribution of heterogeneities

and the lacunarity of the hydraulic conductivity field from ID data samples. One-dimensional profiles of velocity
and hydraulic conductivity -were taken from the hypothetical fractal models to simulate the information that could
be gathered from boreholes in the field. It was hypothesized that the velocity field generated by steady-state flow
through a random, fractally distributed K field may be fractal, consequently the ID velocity profiles were analyzed
for their fractal characteristics and compared with the properties of the 2D hydraulic conductivity fields. The
coefficient of variation of the ID velocity profiles (a non-fractal method) was also analyzed as a possible tool for
differentiating the models.

A series of seven profiles (separated by intervals of 50 nodes) were taken through the third generation 2D
models. The ID velocity profiles were taken transverse to the gradient within the 2D steady-state flow field; K
profiles were taken at the same node locations as the velocity profiles. The high K zones of each of the seven
profiles of the ten realizations were recorded as Cantor dust sets for analysis, while the velocity profiles were line
traces.

Fractal dimension of hydraulic conductivity profiles by box-flex counting method
The fractal dimension of the Cantor dust (for each profile) was estimated by the box-counting method using

DIMENSIO (Barton, et al, 1988). The average fractal dimension of many ID Cantor dusts created by intersections
taken through a 2D fractal object should be one integer value less than the 2D fractal dimension of the objecL The
average box-flex fractal dimensions for seven profiles of the high K Cantor dusts was 0.846 for the high lacunarity
models and 0.863 for the low lacunarity models. The calculated similarity dimension for the 2D models was 1.896.
The difference in fractal dimensions is probably due to the fact that seven profiles are insufficient to obtain a
representative average. Analysis of the fractal dimension of every profile in the model is currently being pursued
to verify this interpretation. The average Dp of a few sections is likely to be less representative of the 2D DF in the
high lacunarity model because a strong bias can be obtained by having more than a representative portion of the
profiles pass through the first generation lens. It is expected that Cantor dusts sets of K from a few boreholes in
a field setting will be insufficient to obtain an accurate estimate of the fractal dimension of two- or three-dimensional
porous media between boreholes. However the possibility continues to be explored.

Lacunarity of hydraulic conductivity profiles by the variance method
Differences in the calculated lacunarity between profiles within a model are small when the non-normalized

method is utilized. Lacunarity of the seven profiles averaged 142 (ranged from 114 to 172) for the high lacunarity
model and 13.5 (ranging from 8 to 25) for the low lacunarity model. Because these values are so similar to those
computed by evaluating the entire 2D model (133 (122-152) for high lacunarity and 16.7 (16.5-16.9), it can be
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expected that the lacunarity of Cantor dusts sets of K from a few boreholes in a field setting will be sufficient to
obtain a reasonable estimate of the lacunarity of two- or three-dimensional porous media between boreholes.

Fractal dimension of velocity profiles by box-flex counting method
The box-flex counting method in DIMENSIO (Barton et al, 1989) was used to analyze the velocity profiles.

Because the velocity profiles are self-affine curves, they had to be normalized (scaled) to fit in a unit square before
being analyzed. Two methods were chosen to normalize the velocity profiles: (1) normalize the velocity values to
the maximum velocity of each profile, and (2) normalize the velocity values to an arbitrary constant equal to or
greater than the maximum velocity expected for any profile. In both cases, the node positions were normalized to
the maximum node value.

Although differences between the average values of D. are small, velocity profiles taken from the lower
lacunarity 2D models exhibit a higher average calculated fractal dimension for both normalization methods. This
was expected because the lower K zones are more dispersed throughout the low lacunarity models; so, the
obstructions to flow create more zones of alternating high and low flow velocities, resulting in a "rougher" plot (i.e.
higher fractal dimension) of the velocity profile. Normalizing the velocity profiles to a large constant value (e.g.
maximum value at a site) yields greater separation between the high and low lacunanty models (velocity profiles
from high lacunarity models had an average fractal dimension of IA7 (range from 1.44 to 1.49} and the low
lacunarity model velocity profiles had an average fractal dimension of 1.51 (range from 1.50 to 1.52) as compared
with normalizing to the largest value in each profile where the high lacunarity models had an average of 1.54 (range
from 1.53 to 1.55) and the low lacunarity had an average of 1.56 (range from 1.55 to 1.59). Use of the constant
normalizing value allows differentiation of the variability between profiles at a site as opposed to relative variability
within individual profiles. A comparison of the results of the different methods of analysis presented here is
presented in the Discussion section.

Fractal Dimension of velocity profiles by rescaled range analysis
Another method used to examine velocity profiles was rescaled range analysis. This method was developed

by Hurst (1951) to calculate the minimum reservoir capacity required to prevent flooding during wet periods and
drought during dry periods. From a time series of annual outflow from a lake, Hurst calculated a mean outflow
value, and a cumulative sum of departures from the mean. The range was calculated as the difference between the
maximum and minimum values of the sum of departures, for a given length of time (also called lag). Hurst observed
that the range increased with lag; longer periods of time would include observations and trends that would increase
the range of the sum of departures. To compare with other data (e.g. tree rings, varve thicknesses), Hurst divided
the range by the standard deviation, yielding a rescaled range (R/S). When these rescaled range values were plotted
against the lag (s) (which could be time or distance) on logarithmic graphs, the points fell on a straight line (a power
function). Hurst (1951) observed that the rescaled range was proportional to sH, where H is the slope of the graph,
and that H ranged from 0.69 to 0.80. Mandelbrot and Wallis (1969a) introduced a method to simplify and present
the data from the rescaled range analysis called pox diagrams. To create pox diagrams, the R/S value is plotted for
a variety of starting values in the record, for a series of lag values. This creates a reduced data set that is more
manageable, but retains the necessary information.

The average H values for the velocity profiles were calculated from a least-squares fit line through the pox
diagram for each profile. The fractal dimension of the self-affine velocity profiles can be estimated from the value
of the Hurst exponent as (Feder, 1988)

Dp=2-H (5)

For the calculated values of H. this yields values of DF ranging from 1.25 to 1.32 (average 1.28) for the velocity
profiles from the high lactnarity model, and from 1.25 to 1.34 (average 1.30) for the velocity profiles from the low
lacunarity fractal.

Fractal dimension of velocity profiles by spectral analysis
Another method used to examine the velocity profiles was spectral analysis. The self-affine velocity profiles

were characterized as single-valued random functions in space (velocity as a function of node position). These
curves were analyzed as functions of stochastic processes using the theories of fractional Brownian motion and
fractional Gaussian noise models developed by Mandelbrot and Van Ness (1968).
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Ordinary Brownian motion (B(t)) is random. Mandelbrot and Van Ness (1968) introduced the concept of
fractional Brownian motion (BH(t)) as exhibiting persistent or antipersistent behavior. The parameter H can be
divided into three subsections, 0 < H < 0.5, H = 0.5. and 0.5 < H < 1, which have different effects on the function
BH(t). For H = 0.5, fractional Brownian motion becomes ordinary Brownian motion, and BH(t) = B(t). For the
interval 0 < H < 0.5, the behavior of BH(t) is termed "antipersistent". An antipersistent B 1(t) function switches
directions often; if the curve is increasing for one increment, it is likely to decrease in the next. For the interval 0.5
< H < 1, the behavior of BH(t) is termed "persistent". A persistent BH(t) function does not switch directions as
frequently; if the curve is increasing for one increment, it is likely to continue increasing in the next increment.

Although neither ordinary Brownian motion or fractional Brownian motion have derivatives, a semblance
of a derivative can be created by taking first differences. In the case of ordinary Brownian motion, taking first
differences creates white Gaussian noise; similarly, for fractional Brownian motion, taking first differences creates
fractional Gaussian noise. While the trace of fractional Brownian motion is non-stationary (i.e. exhibits trends),
taking first differences removes the trends. The relationship between fractional Brownian motion and fractional
Gaussian noise is useful in calculating the value of the parameter H from the power spectral density graph.
Mandelbrot and Wallis (1969b) present that BH(t) has a spectral density proportional to f.....) (always a negative
slope between I and 3). Differentiating this yields BH(t) proportional to fIl'm (slope between -4 and 1) (Lundahl,
1986). If the slope (B) of the power spectral density of fractional Brownian motion is plotted versus frequency, then
H can be calculated from

H= (6)
2

Similarly for first differences of fractional Brownian motion (fractional Gaussian noise), the slope of the logarithmic
plot of power spectral density versus frequency yields the relationship

I-B
H=- (7)

2

The fractal dimension of the fractional Brownian motion and fractional Gaussian noise can be calculated
from equation 6. Therefore, for fractional Brownian motion

5 - B
(8)

2
and for fractional Gaussian noise

3 + B
DF = *~- (9)

2

Taking first differences removes the trends inherent in traces of fractional Brownian motion, therefore, the
calculated values for H from the data sets of fractional Gaussian noise should be closer to the actual H than the
calculated H from the data sets of the traces of fractional Brownian motion.

The velocity profiles were analyzed as traces of fractional Brownian motion, and first differences of the
velocity profiles were analyzed as fractional Gaussian noise. Equations 6 and 7 were used to calculate the value of
the Hurst exponent from the slope of the logarithmic plot of power versus frequency. The velocity profiles were
not normalized, because normalizing would have no effect on the slope of the plots. The occurrence of calculated
values of H outside of the valid range of the Hurst exponent (O < H < 1), and the low values for the coefficient of
determination (R2) for the least-squares fit indicates that there are problems in modeling velocity profiles as fractional
Gaussian noise or traces of fractional Brownian motion. Further consideration of this analysis is included in the
Discussion section.
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Fractal dimension of velocity profiles by threshold analysis
Another method of analysis was to section the normalized velocity profiles at a set threshold value. This

yielded a Cantor dust of regions (line segments) of velocity values greater than the threshold value. The velocity
profiles were normalized by a large constant value, and sections were taken at the 0.1, 0.2 and 0.3 thresholds. Only
the threshold line segments at 0.1 were used, because the higher threshold values yielded too few data for analysis.
Velocity profile sections from the higher lacunarity fractal model yielded lower estimated fractal dimensions (average
0.71, range 0.66 to 0.73), because the curves were more "persistent' (i.e. tending to remain above or below a
threshold for a larger number of data points). The velocity profile sections from the lower lacunarity models yielded
a higher fractal dimensions (average 0.76, range 0.75 to 0.77) because of the greater number of crossings of the
threshold value (i.e. less persistent).

Coefficient of variation of velocity profiles
Coefficient of variation measures variation in terms of the size of the expected value; it is the standard

deviation of each profile divided by its mean.

a
(10)

where:
t coefficient of variation
a = standard deviation
p = mean

Values of the coefficient of variation do not consistently differentiate velocity profiles from the different
lacunarity models: an average of 1.25 for high lacunarity models and 1.24 for low lacunarity models. However, the
range of values of the coefficient of variation for the velocity profiles from the lower lacunarity model is smaller
and the variability of the coefficient of variation among boreholes at a site may prove to be a useful characterizing
parameter (range of coefficient of variation for high lacunarity profiles is 1.18 to 1.37 and the range for low
lacunarity models is from 1.22 to 1.27).

Summary of Analysis Results
Characteristics of ID hydraulic conductivity and velocity profiles were analyzed to evaluate their potential

use for characterizing the 2D hydraulic conductivity distribution between boreholes. Table 1 summarizes the values
determined in the analyses. Details of the analyses are presented by Zlatev (1991).

Table 1. Summary of Analyses
High Lacunarity Models Low Lacunarity Models

Dimen- Prop- Charac- Method Average Range Average Range
sion erty teristic

2D K DF Ds 1.896 - 1.896

ID K Dp box-flex 0.846 - 0.863

2D K Lac Norm 0.8 0.76-0.83 0.75 0.74-0.76
2D K Lac Non-norm 133. 122-152 16.5 16.7-16.9

ID K Lac Non-norm 142. 114-172 13.5 8-25

ID V DF box-flex 1A7 1.44-1.49 1.51 150-1.52
ID V DF rescaled 1.28 1.25-1.32 1.30 1.25-1.34
ID V Dp spectral - - -

ID V Dp thresh 0.72 0.71-0.73 0.76 0.75-0.77
ID V Coef of Var - 1.18 1.25-1.37 1.24 1.22-1.27
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Hydraulic Conductivity Profies
Given the results of analyses conducted to date, it appears Cantor dusts sets of K from a few boreholes in

a field setting will be insufficient to obtain an accurate estimate of the fractal dimension of two- or three-dimensional
porous media between the holes. However, we expect that the lacunarity of Cantor dusts sets of K from a few
boreholes in a field setting will be sufficient to obtain a reasonable estimate of the lacunarity of two- or
three-dimensional porous media between the holes. Because field settings will not have binary hydraulic conductivity
fields, this analysis will have to be conducted with regard to hydraulic units above and below selected threshold
values. Use of the method of calculating lacunarity developed herein (without normalizing) was found to better
differentiate porous media texture. There was more variability of lacunarity between sampled ID profiles from the
model with a high lacunarity of the 2D hydraulic conductivity distribution. This is because the higher lacunarity
model has larger homogeneous units and as a result a larger portion of such a model must be examined before the
characteristics of the entire model can be identified. Assessment of such variability may be useful in characterizing
porous media

Velocity Profiles
The box-flex counting method for determining fractal dimension of the velocity profiles provided the most

consistent relationship between fractal dimension for the velocity profile and lacunarity of the 2D K field. Two
normalization schemes were used to fit the self-affine curves to the format for the box-flex method; the 2D models
of different lacunarity were better differentiated by DF from velocity profiles normalized to a constant maximum
value of velocity at the site, as contrasted against normalization to the maximum velocity in each profile.

The resealed range method of determining fractal dimension of the velocity profiles yielded an inconsistent
relationship between fractal dimension and 2D lacunarity of the K field. As was anticipated, the average values of
fractal dimension of the velocity profiles sampled from the high lacunarity models were smaller than those from the
low lacunarity models. However, the results were inconsistent because the maximum and minimum average values
of fractal dimension from individual profiles for the high and low lacunarity models overlapped. If the rescaled
range method was used to determine fractal dimensions of velocity profiles from a field site, it would not be possible
to differentiate the texture of the porous media. The problem is believed to be due to the lack of sensitivity in
resealed range measurements to fractal dimension.

Fractal dimension of the velocity profiles was also analyzed by the spectral density method as traces of
fractional Brownian motion and fractional Gaussian noise. The occurrence of calculated values of H outside of the
valid range of the Hurst exponent (O < H < 1), and the low values for the coefficient of determination (R2) for the
least-squares fit indicates that there are problems in modeling velocity profiles as fractional Gaussian noise or traces
of fractional Brownian motion. The problems with this analysis are probably due to the profiles consisting of areas
that are "smooth' (the velocity profile is either high or low velocity for a given section) and "rough" (the velocity
profile alternates a great deal within a given section). Malinverno (1989) indicates that for profiles such as this, a
mixture of the characteristics of the profile will ensue, unless the profile is divided into "homogeneous" smooth and
rough sections. This additional processing was not performed, therefore at this time, the results of this spectral
density analysis remain inconclusive.

The threshold analysis yielded a consistent relationship between fractal dimension of velocity profiles and
2D lacunarity; again, the largest average fractal dimension calculated for the velocity profiles from the high lacunarity
models was smaller than the smallest average fractal dimension calculated for the velocity profiles from the low
lacunarity models.

The coefficient of variation for the velocity profiles was measured. It was hypothesized that the more
variable nature of the velocity profiles from the low lacunarity models would have a larger coefficient of variation.
However, the results of the analysis were inconsistent; and so it is concluded that the porous medium textures were
not distinguishable on the basis of this analysis.

Discussion
Lacunarity of the ID hydraulic conductivity profiles (without normalization) is a good indicator of the 2D

lacunarity of the K distribution. Cantor dust sets of hydraulic conductivity from a few boreholes in a field setting
will be insufficient to obtain an accurate estimate of the fractal dimension of two- or three-dimensional porous media
between the holes. For every stochastic model, the average fractal dimension of the velocity profiles taken from the
low lacunarity model were higher than the average fractal dimension of the velocity profiles taken from the high
lacunarity model. The variability of the fractal dimensions calculated by the different methods suggests that further
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research in the method for determining fractal dimension is required. However, for this application, the relative value
(rather than the absolute value) of fractal dimension is of interest, so this is not a substantial problem. Of the four
methods used to measure the fractal dimension of the velocity profiles, the box-flex method and the threshold
analyses for fractal dimension yielded consistent relationships between the velocity profiles and the 2D lacunarity
of the K distribution from which they were taken. These analyses suggest that sparse data sampling provides clues
to the nature of the subsurface. Integration of such results will aid subsurface interpretation.

Velocity profiles hold information about the connectedness of the high and low hydraulic conductivity zones.
The velocity profile reflects the continuity of heterogeneities between profiles. Knowledge of the continuity of high
K units is important because of the control that the connected regions of high hydraulic conductivity have on
contaminant transport. In general, hydraulic conductivity profiles may indicate both high and low hydraulic
conductivity at a site, but if the velocity profiles show consistently low velocities, it could be concluded that the high
hydraulic conductivity zones are not connected, whereas if the velocity varies considerably, one would assume there
are regions of connected high hydraulic conductivity.

Currently velocity profiles cannot be measured at the desired level of detail in the field. This study
demonstrates their potential usefulness before effort is invested in developing technology to measure velocity profiles
in the field.

Porous medium models are used to gain a better understanding of flow and contaminant transport in a
physical groundwater system, to perform sensitivity analysis, to examine changes to the recharge/discharge balance
(due to pumping), and to predict the performance of ground-water remediation schemes. When limited data are
available, a stochastic approach can be used to generate alternative porous medium models that honor the available
data. Stochastic simulations require information about the hydraulic conductivity distribution to assign hydraulic
conductivity values to unsampled areas. These simulations typically rely on semivariogram analysis of data from
boreholes.

The results of this research can be integrated to facilitate creation of more realistic two-dimensional
stochastic models of heterogeneous porous mediums by quantifying the degree of heterogeneity from analysis of
one-dimensional hydraulic conductivity and velocity profiles. Such an approach will help ground-water hydrologists
maximize the interpretations from limited borings of heterogeneous porous media. Combining the information
gathered from the hydraulic conductivity profiles with the information from the velocity profiles allows the
interpretation of connected high hydraulic conductivity zones between wells. In essence, samples taken from a
borehole can provide clues to the distributions of heterogeneities in unsampled interwell regions, thus indicating the
degree of connectedness of high hydraulic conductivity zones.
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