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Abstract

The success of a groundwater contaminant transport model is dependent on: 1) how well the
relevant physical, chemical, and microbiological processes controlling subsurface transport are rep-
resented with mathematical equations and their parameters, and 2) how accurately and efficiently
the equations are solved. For reactive, multicomponent problems in two or more dimensions, the
computational burden of meeting the second goal becomes increasingly difficult as the complexity
of the problem formulation required to meet the first goal increases. To address these two goals, we
have implemented a system of local adaptive grid refinement (LAGR) to achieve efficient and ac-
curate computational results for multidimensional, multicomponent transport problems. LAGR is
based on automatic generation of multiple, high resolution patch grids (finite difference in this case)
placed at locations in the solution domain where necessary to achieve uniform solution accuracy.

We have applied LAGR to nonreactive single component problems and to reactive multicompo-
nent problems including such chemical processes as competitive sorption. As with familiar single
component benchmark problems, numerical errors such as peak clipping, oscillations, and over- and
undershoot plague the coarse grid computations for our multicomponent problems. In fact, these
problems are exaggerated in some multicomponent problems because the fronts are sharper as a
result of the interactive chemistry. Accurate solutions to these problems are provided using LAGR
at a fraction of the computational cost of using a uniform fine grid.

1 Introduction

Accuracy and efficiency are two considerations which challenge any successful groundwater solute
transport model. One condition for accuracy is that the relevant physical, chemical, and microbi-
ological processes controlling subsurface transport be represented with appropriate mathematical
equations. A second condition for accuracy is that the equations be solved with as little error as
possible. Meeting both of these goals, and doing so efficiently, becomes increasingly more chal-
lenging as the number of governing processes, as well as the size and dimension of the problem
formulation, increase.
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One of the primary difficulties in computing accurate solutions to solute transport equations
with numerical methods is overcoming such numerical errors as oscillations, over- and undershoot,
and peak clipping. These errors are generally a result of insufficient numerical resolution in regions
where the concentration gradient is changing rapidly. One way to overcome these errors is to
supply uniformly high resolution over the entire solution domain. However, because the regions
affiliated with the numerical error tend to propagate across the solution domain, such an approach is
inefficient. For multicomponent problems with chemical and biological reactions, the computational
burden per time step at each computational node may be hundreds of times greater than for non-
reactive single species problems. The cost of supplying high nodal resolution uniformly over the
entire solution domain for such problems makes accurate, field-scale computations difficult, if not
unattainable. :

In this paper, we present a method which enhances the efficiency in achieving accurate solutions
for complex problems described by multiple coupled governing equations. Historically, consider-
. ation of transport problems in two or three dimensions involving multiple interacting species has
been difficult, if not impossible, on machines other than supercomputers, because of the computa-
tional time and storage required to perform such simulations. The Local Adaptive Grid Refinement
method (LAGR), however, brings efficiency to such problems by determining where increased com-
putational resolution is required in order to obtain the desired accuracy. This is done automatically
and continuously during the simulation.

2 Methodology

The LAGR method is based on the initial demonstrations of Berger and Oliger {1984] and Skamerock
et al. [1989]. Berger and Oliger [1984] present the method and solve moving shock problems.
Skamarock et al. [1989) solve numerical weather prediction problems describing the movement of
a barotropic cyclone and the evolution of a baroclinically unstable jet. For both applications, a
subset of the Navier-Stokes equations is solved in order to determine velocity vectors and such scalar
quantities as pressure and temperature. In this work, we build upon these initial demonstrations
and develop a general system which operates independently of the governing equations, thereby
allowing flexibility in the number of scalar quantities in the solution module.

The LAGR algorithm is implemented in a set of modular programs that individually perform
the functions of error estimation, subgrid generation, and interface communication. The solution
procedure is as follows. We begin with a coarse grid solution at some time t. The numerical errors
associated with the computation on this grid are estimated and nodes for which the estimated error
exceeds a specified tolerance are flagged. Then, subgrids with finer space and time discretization
are fit around the fiagged nodes. Initial and boundary conditions are interpolated from the coarse
grid or from existing fine grids onto the new subgrids. Then each subgrid and the coarse grid are
integrated independently forward in time to the next coarse grid time step at which regridding is
required. The coarse grid solution is then updated with the more accurate subgrid solutions. The
numerical error may also be estimated on the subgrids and still finer grids introduced.

To illustrate how this system works, consider the schematic of grid layers in Figure 1. In
one coarse grid (Go) time step, the (G,) level grid is integrated twice and the (G2) level grid is
integrated four times, two for each (G,) integration. The refinements in time and space do not
need to be by a factor of 2 and the number of levels of refinement need not be limited to 2. There is
a trade-off, however, between the refinement ratio of a subgrid and its parent grid and the number
of levels that are created.
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2.1 Error Estimation

The first step in the regridding process involves identifying the regions on the original grid requiring
refinement. Errors on a grid are estimated with an efficient checking algorithm based on Richardson
extrapolation. If the solution is smooth, the local truncation error of a finite difference method can
be expressed as [Oliger, 1984]

w(z,t+ k) = Qu{u(z,t)) = k(ci(z, )k + ca(z, )hT) + kO(KDH! 4 p92+Y)

= T1(z,t) + kO(K0+! 4 patl) (1)

where u is the dependent variable, ¢; and ¢; are the orders of accuracy in time and space, Q4
is an operator representing the finite difference scheme and defined as #(z,t + k) = Qn(u(z,t)),
and O(...) represents the higher order terms. Now, if two steps are taken with this method, the
truncation error can be estimated as

u(z,t + 2k) — Q2 (u(, 1)) = 27 + kO(kN+! + hu2+1) @)

where Q? indicates two steps forward in time. If we take a step using the operator Q4 which is the
same difference operator as @ but with space and time steps sizes of 2h and 2k, and if ¢; = ¢ = g,
then

u(z,t + 2k) - Qan(u(z,t)) = 29t 7 4+ kO(AIF! + k1) , (3)

Thus, an estimate of the local truncation error 7 can be computed by comparing solutions on a
grid of h and k discretization with solutions on a coarser grid of 2h and 2k discretization:

» = Q4(4(z,1) - Qan(t(z,1))

2941 2

+ O(h7+?) (4)

This method is quite general because the same solver used to integrate the equations is used to
compute Q? and Qy for the error estimation in equation (4). The computations are inexpensive
because no computations at the fine grid discretization are performed. Using this method, the
exact form of the truncation error need not be known because the functions ¢; and ¢; in equation
(1) are never calculated. Coarse grid nodes for which the estimated truncation error exceeds a
prescribed tolerance are flagged in order to determine where mesh refinement is needed.

2.2 Subgrid Generation

After flagging the nodes on the base grid at which the numerical error exceeds a desired threshold,
the next step is to cluster a region encompassing those nodes into a subgrid of finer discretization.
The simplest method involves first clustering the nodes in groups based on proximity to one another
and then fitting rectangles about the flagged nodes. If the ratio of flagged nodes to unflagged nodes
within a fitted rectangle is too small, indicating an inefficient fit, the rectangle is further subdivided
until the ratio is acceptable. After the clusters of flagged nodes have been divided into efficient
groups, a buffer zone between the flagged nodes and the subgrid boundary is provided. Doing so
insures that the boundaries of the subgrid are not placed in a region of high error. The size of the
buffer zone also helps determine how frequently the regridding process must occur. The larger the
buffer zone, the less frequently regridding must be performed. Supplying a large buffer, however,
results in less efficient subgrids.

Once a subgrid with finer.space and time discretization has been created, the next step is to
establish the initial and boundary conditions. These are interpolated from either the coarse grid
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Integration Over One Coarse Grid Time Step
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Figure 1: Integration over one coarse grid time step with LAGR. System has two levels of refinement
and refinement ratios of 0.5 in time and space.

or from previously existing fine grids. At this point the subgrid is an independent unit which is
advanced forward in time to the next coarse grid time step, at which point the solution on the high
resolution subgrid is used to update the solution on the coarse grid.

2.3 Data Structure and Grid Management

Information storage and transfer for this method are maintained by a data structure which stores
two kinds of information: descriptions of the grids and the grid solution vectors. All solution vectors
are stored in one array. This array is managed as a linked list of used and available blocks of storage.
The management routines maintain the data structure, implement the grid communication routines,
and advance the solutions on the various grids at the various levels in the appropriate sequence.
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2.4 Implementation of LAGR for Solute Transport Problems

In this paper we use the following common partial differential equation to describe the mass balance
in a groundwater solute transport system:
a¢; - . .

03_‘- =V.(DV&-v&)+g i=1,2,..,N; (5)
where 6 is the porosity, t is time, V is the gradient operator, D is the dispersion tensor, v is the
seepage velocity, q is a source term, and & is the concentration of component i. The components
are defined such that their global mass is reaction invariant. Thus, they are equivalent to tenads
as defined by Rubin [1983]. When the grid Peclet number, Pe,, defined as vAx/D, is large,
standard uniform grid methods are inefficient because of the fine discretization required to achieve
accurate results. For non-reactive, single species problems, the species concentration is equivalent
to the component concentration and equation (5) is the common advection-dispersion equation.
This equation is often used to benchmark alternative numerical methods which strive for accurate
numerical solutions when Pe, is large [Ahlstrom et al., 1977; O‘Neill, 1981; Thompson et al., 1984;
Neuman, 1984; Elnawawy et al., 1990; and Yeh, 1990].

When multiple, reactive species are present, equation (§) represents a system of coupled equa-
tions. For demonstration purposes, we choose a competitive sorption problem where the chemical
process involves multiple cations in solution competing for exchange sites on the aquifer material.
In Figure 2, we show a cartoon of the ion-exchange process that takes place at the pore scale. The
two invader ions, species 2 and species 3, move into a system where species 1 is at equilibrium
between its aqueous and sorbed phases. As the two invader cations move in, they preferentially
displace the sorbed phase of cation 1.

M* NI' Soil particle with
2 + ' /1/ negativly charged
M; &—@ o Mx § surface
M* i 1
Y q
Ml M* Ml M; N@

M — M MM
1

3 M; M; Ml ,‘1 2 Ml 1
M
~a M,- ‘%M" g/

1= 1,23 )= 1,23 1 f

Figure 2: Pore scale ion-exchange process
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Cation 3 sorbs more readily than cation 2 which in turn sorbs more readily than the resident cation
1. When sorption/desorption processes are involved, equation (5) takes the following form:

8t ot

where c; is the aqueous concentration of cation § and ¢; is sorbed phase concentration of cation i.
The coupling for this system of equations comes from the algebraic equations which describe the
equilibrium reactions:

=V .(DVe¢i-ve) i=1,2,3 (6)

€3

M;+ MM, = M +MM,,; K3]=E—C:; (7)
M+ G0, = M+ G0, ; Kn=§i—7 (8)
1€2

where M; indicates an aqueous ion, M;M, indicates an ion in the sorbed phase, and K;; is the
equilibrium coefficient which describes the partitioning between the sorbed and aqueous phases for
species i and j. From these equations, the following equilibrium partitioning between M3 and M,
is derived:

Ms+ MM, = M+ M3M,; I’A’32=c_icz=£’l (9)
cac; Kn

One solution technique for this problem is described in detail in section 4 of Rubin [1990). A
particularly attractive aspect of Rubin’s method is that the %5} terms are replaced with ¢;, ¢, a.nd%‘-;
terms thereby reducing the non-linearity of the system. Starting with the basic governing equation
(6), Rubin’s derivation yields the following operational equation set for this problem:

da + [&2 + &) - a[Kn %2 + K %]

= V. -
ot c1 + K162 + Kaic3 (DVer = ver) (10)
8c; [6 +é)- fg[Kn%Et" + K32§b":z"]
hdc = V.(DVec, —
ot + c2 + Kiz¢1 + Kazes (DVe; = ves) (1)
dey | (6 + &) - GlK1a%E + Kasig)
ges = V. -
o T c3+ Kiacy + Kaacz (DVe; = ves) (12)
where
& = ¢r/[1+ Kyc2fe1 + Kizes/en) (13)
& = Kuae/a (14)
&3 = Kuées/a (15)
¢t = The exchange capacity of the aquifer material (16)

This operational set of equations comprise a system of coupled, quasi-linear PDE’s. For this
problem, they are solved using a predictor-corrector method. When more chemical processes are
included in the problem description, such as aqueous complexation and /or oxidation/reduction pro-
cesses, the resulting system of operational equations may be highly nonlinear, thereby necessitating
iterative methods such as Picard iteration or Newton-Raphson iteration.
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3 Results/Applications

In this section we present results which demonstrate how LAGR obtains accuracy equivalent to
uniform fine grid computations at a fraction of the computational cost. We first present solutions to
benchmark problems which have been cited in the literature as test cases for numerical approxima-
tions of single component, non-reactive, advection-dispersion problems. Then, we present results
for a reactive multicomponent problem in order to demonstrate LAGR's ability to handle complex
problem formulations as well. For these examples, we compare results computed on a uniform
coarse grid, a uniform fine grid, with LAGR, and when available, with analytical approxima-
tions. All of our computations are performed using a QUICK finite difference spatial discretization
[Leonard, 1979) and either a Crank-Nicholson time step for the single component problems or a
hybrid Runge-Kutta predictor-corrector time step for the multicomponent problems. The cost and
accuracy of the simulations are summarized in the tables for each example. The cost is reported
in CPU units on the IRIS 4D/380GTX Power Series computer. Preliminary results indicate that
similar relative performance measures are obtained on other workstations as well. The accuracy is
reported as the root mean square error (RMSE) defined as:

a(s) - n(s
N

where a(3) is the analytical solution at node i, n(i) is the numerical approximation at node i and
N is the number of nodes in the computational domain. For problems with no analytical solution,
a relative RMSE is computed using the solution on the finest uniform grid as an approximation of

a(i).

RMSE =

(17)

3.1 Single Species Problem 1

Problem 1 concerns the advancement of a plume from a constant source in a two-dimensional
domain. Figure 3 shows the domain and initial conditions for this problem. This setup has been
used by Elnawawy et al. [1990] and Daus and Frind [1985) and the analytical solution is given
by Cleary [1979]. Equation (5) is the governing equation. We document two runs with isotropic
dispersivities to show the effect of increasing the grid Peclet number. In the first run, both D, and
D, are equal to 0.1 and in the second run, they are both equal to 0.01. The groundwater velocity
in the x direction is 0.125 m/day and the porosity is 0.25. As the coarse grid node spacing is 2
meters in both the x and y direction and the time step is 1 day, the grid Peclet numbers for the two
runs are 2.5 and 25, respectively. The results for these conditions are plotted in Figure 4. For a
grid Peclet number of 2.5, the coarse grid performs well. However, for a grid Peclet number of 25,
oscillations plague the solution. The numerical errors are overcome when LAGR is used because
the grid Peclet number is reduced locally to 6.25 as the grid spacing is reduced locally to 0.5 meters.
The Courant number remains unchanged because the ratio of space to time discretizations remains
constant. Figure 5 shows where the subgrids are placed as the front moves through the domain.
Table 1 sumarizes the performance and cost of these simulations.

3.2 Single Species Problem 2

In this second problem involving the single species advection-dispersion equation, we consider an
initial pulse which travels in a direction rotated 45° from the x axis. This problem tests a numerical
method’s ability to overcome “grid orientation error” caused by the deviation of fiow lines from the
grid lines [Elngwawy et al., 1990]. Here, we introduce a pulse based on a normal distribution of
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Plan View of Model Aquifer
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Figure 3: Domain, initial conditions, and boundary conditions for Problem 1
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Figure 4: Compa.risbn of coarse grid, fine grid, and LAGR solutions along centerline at time = 100.
When D = 0.1, Peg(coarse) = 2.5 and Pey(fine) = 0.625. When D, = 0.01, Pey(coarse) = 25
and Pe,(fine) = 6.25.

Table 1: Results for Example Problem 1

Method RMS Error CPU %Fine CPU

Fine 6.5x 10~* 416 100
Coarse 7.8 x 10! 5 1
LAGR 46x10"* 85 21
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Figure 5: Subgrid placement at time = 25, 50, 75, and 100 days for Problem 1

concentration and allow it to be transported through the solution domain. The solutions after 150
days of simulated time are then compared to the well known analytical solution for this problem.
The examples shown are computed using a velocity field diagonal to the x axis with a magnitude
of 0.42 m/d and dispersivities in both directions of 0.04 m. Figure 6 shows the propagation of the
subgrid for this problem. The solutions for computations using a uniform coarse grid, a uniform fine
grid (4 times finer in space and time discretization) and LAGR are compared with the analytical
solution in Figure 7 and the results are compared in Table 2.
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Figure 6: Example Subgrid placement at time = 0, 50, 100, and 150 days for Problem 2

3.3 Multicomponent Problem

In this example problem we demonstrate the portability of LAGR from the simple single species
problems in the first two examples to a complex problem involving multiple, reacting species.
The equation set which governs this transport process involves a system of coupled, nonlinear
equations which describe the transport and chemical interactions of the various species. For this -
example involving competitive ion-exchange between 3 species, equations 10 through 15 describe
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Figure 7: Example Problem 2 Results at time t = 150 days. Fine grid is 4X finer than coarse grid
in both space and time. All results shown at coarse grid discretization.

Table 2: Results for Example Problem 2

Method RMS Error CPU %Fine CPU

Fine 25x10"° 511 100
Coarse 2.4 x 10~ 7 1
LAGR 3.1x10"% 93 18
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Plan View of Model Aquifer
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Figure 8: Domain, initial conditions, and boundary conditions for Problem 3

the processes involved. The conversion from the single species problems to this more complicated
problem involves merely supplying a routine that can solve this system of equations to obtain
€1, ¢2, and c3. The method of solution is inconsequential to the LAGR routines. All of the grid
management routines remain intact. The problem domain and initial and boundary conditions are
given in Figure 8. Figure 9 shows the resulting two-dimensional plumes of the aqueous phases that
result in this problem. As a result of the preferential sorption by the invader species (M, and M3),
the trailing edge of the species 1 plume and the leading edge of the species 2 plume experience “self
sharpening” (Valocchi et al., 1981]. These sharp fronts require even greater numerical resolution
than a non-reactive species front requires for similar transport conditions. Although we have no
analytical solution with which to compare our results, a comparison of the solutions obtained using
a uniform coarse grid, a uniform fine grid, and LAGR (see Figure 10) indicates the accuracy that
is lost if sufficient resolution is not supplied. Table 3 shows the accuracy and computational cost
for the three solutions for this problem.

Table 3: Resuits for Example Problem 3

Method RMS Error* CPU %Fine CPU

Fine 4188 100
Coarse 2.3 x 10! 130 1
LAGR 12x10"% 813 19

*Relative 10 fine grid solution
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4 Conclusion

The local adaptive grid refinement (LAGR) method effectively brings efficiency to accurate solutions
of complex solute transport problems. By refining only the regions where increased discretization
is needed, unnecessary computations are avoided elsewhere in the domain. These refinements are
provided continuously and automatically throughout the simulation.

In order to demonstrate the efficiency and accuracy afiorded by LAGR, we first demonstrated
two problems involving the solution of the advection-dispersion equation in two spatial dimensions.
In both examples, we started with a uniform coarse grid. The solutions on these grids, although
inexpensive to obtain, were unacceptable due to numerical error. In the first example the numerical
error is mainly attributed to the high Peclet number and in the second example to grid orientation
error. Using LAGR, we were able to produce accurate solutions for these problems at a fraction of
the cost of using a uniform fine grid over the entire solution domain.

We next incorporated a transport model involving three reactive species. Executing this model
with LAGR involved little more than setting the number of solution variables in the LAGR data
structure. It is for problems even more complex than this third example that we feel LAGR will
be most useful. Consider the computational burden presented by this relatively simple multicom-
ponent problem. The solution domain and initial conditions are similar to those of the first single
component problem. However, computing solutions for the multicomponent problem requires ap-
proximately ten times more CPU time than is required for the single component problem. As the
complexity of the multicomponent problem increases, this ratio will also increase. Thus LAGR
should be instrumental in solving problems which would otherwise be too large and take too long.
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