ROCK MASS QUALITY ASSESSMENT OF THE DRIFT SCALE HEATER TEST AREA

WBS 1.2.3.14.2

SP5140M4

Prepared by

Clinton C. Lum Sandia National Laboratories Albuquerque, NM 87185

ROCK MASS QUALITY ASSESSMENT OF THE DRIFT SCALE HEATER TEST AREA

Abstract

In order to assess the structural variability in the Drift Scale Heater Test two rock mass classification indices (Q and RMR) have been measured in 5 m interval along the drift. The Drift Scale Heater Test area (or Heated Drift) is located within the Thermal Testing Facility (Alcove 5) and situated stratigraphically in TSw2 Thermal Mechanical Unit. While some structural variations within the Heated Drift have been observed, the Q and RMR indices have been found to be relatively consistent with those found from the repository horizon TSw2 and do not display any significant systematic variation relative to location. Q and RMR indices for the Heated Drift fall within the range observed for the TSw2 Thermal Mechanical Unit in the Exploratory Studies Facility Main Drift and the Single Element Heater Test area. Therefore, with respect to Q and RMR indices the Drift Scale Test area is representative of the TSw2 Thermal Mechanical Unit.

ü

Table of Contents

Introduction	1
Rock Mass Quality Indices	1
Comparing Rock Mass Indices from the Main Drift	9
Conclusions 1	3
References	4

Q-RMR Drift Scale Heater Test Area

.

.

.

.

05/20/1997

1. Introduction.

Rock Mass Quality indices, *RMR* (Bieniawski, 1979) and *Q* (Barton et al., 1974), have been developed as design aids for excavated tunnels and underground openings. RMR and Q indices are calculated from parameters related to degree of jointing, interaction of joint orientations to form blocks, joint frictional strength, rock strength versus active stress, and hydraulic conditions. Because of the parameters used in their derivation, RMR and Q indices are also useful as indicators of general structural conditions. Rock mass quality indices were collected following Sandia National Laboratories Technical Procedure-234 Revision 01, utilizing the data reduction program TBM.exe Version 4.5 and 4.51, under Work Agreement-0065 Revision 04. The data concerning the heated drift test has been submitted under TDIF 306063 (DTN SNF32020196001.015). Related data surrounding the single heater test has been submitted under TDIF 305579 (DTN SNF32020196001.010).

2. Rock Mass Quality Indices.

RMR and Q indices have been determined on 5 meter intervals, throughout the Main Drift of the Exploratory Studies Facility (ESF) and the Thermal Testing Facility (TTF). The TTF is located at station 28+27 m in the Main Drift and is entirely contained in the Tptpmn (Topopah Spring Middle Nonlithophysal Zone, Buesch et al., 1996) which forms the upper third of the Thermal/Mechanical Unit TSw2 (Figure 1). RMR and Q indices have been measured from station 00+60 to 01+35 m in the Access/Observation Drift, from station 00+03 to 00+45 m in the Connecting Drift, and station 00+03 to 00+60 m in the Heated Drift (Figure 2). Surrounding the Heated Drift test area Q indices ranged from 0.761 to 621.875, while RMR indices range from 51.1 to 97.0 [Figure 3 and 4; Table 1 and 2]. Both Q and RMR indices are relatively constant through the TTF, with relatively little scatter in values.

The range in Q and RMR indices from the TTF is relatively limited compared to that observed from the Main Drift (Figures 3 through 6). During data collection several observations of the existing geologic and structural conditions were made. These observations are summarized below:

• The rock faces exposed throughout the Cross Drift Alcove are massive with little jointing and no brecciation. This is reflected in the slightly elevated Q and RMR values from the Connecting Drift when compared to adjacent drifts (Figure 3 and 4).

Q-RMR Drift Scale Heater Test Area

Figure 1. Comparison of stratigraphic subdivisions of Thermal /Mechanical Unit Tsw2 volcanic rocks at Yucca Mountain. (no scale).

·* • • • •

÷

14. 6 1 20

Ş

 $\{i,i,j\}$

8. sj.:

Zonation of Buesch et al., 1996	Thermal/Mechanical Unit Oritiz et al., 1985.
Tptpmn, Topopah Springs Middle Nonlithophysal	
Tptpll, Topopah Springs Lower Lithophysal	TSw2
Tptpln, Topopah Springs Lower Nonlithophysal	

Figure 2. Plan view figure identifying nomenclature in the Thermal Testing Facility (Alcove 5) (no scale).

Q-RMR Drift Scale Heater Test Area

Figure 3. Q Values from Thermal Testing Facility (TTF) Surrounding the Heated Drift Test. Points with the "star" symbol next to them indicate that the interval is adjacent to the Heated Drift Test area.

Tunnel Stationing in Meters

Rock Mass Quality - Q

t

Rock Mass Quality - Q

Start	End	Record	Revision	Stratigraphic	RQD	Jn	Jr	Ja	Jw	SRF	Q	Τ
Station	Station	#	#	Unit								T
Access	/Observ	vation D	rift (FN: 7	Thermal)								
5	10	1	Ò	Tptpmn	88.6	12	4.0	1.0	1	5.0	5.907	
10	15	11	0	Tptpmn	81.8	12	4.0	1.0	1	5.0	5.453	
15	20	2	0	Tptpmn	89.1	12	4.0	1.0	1	5.0	5.940	
20	25	3	0	Tptpmn	87.7	6	4.0	1.0	1	5.0	11.693	
25	30	4	0	Tptpmn	95.7	12	4.0	1.0	1	1.0	31.900	
30	35	5	0	Tptpmn	71.2	12	4.0	4.0	1	5.0	1.187	
35	40	6	0	Tptpmn	73.9	12	4.0	4.0	1	5.0	1.232	
40	45	7	0	Tptpmn	63.8	12	4.0	1.0	1	5.0	4.253	
45	50	8	0	Tptpmn	92.6	12	4.0	3.0	1	5.0	2.058	*
50	55	9	0	Tptpmn	94.3	12	4.0	3.0	1	5.0	2.096	*
55	60	10	0	Tptpmn	92.7	12	4.0	3.0	1	5.0	2.060	•
60	65	12	0	Tptpmn	85.6	12	4.0	3.0	1	5.0	1.902	
65	70	13	0	Tptpmn	87.6	12	4.0	3.0	1	5.0	1.947	
70	75	14	0	Tptpmn	91.7	15	3.3	3.0	1	5.0	1.345	**
75	80	15	0	Tptpmn	75.7	12	4.0	3.0	1	5.0	1.682	**
80	85	16	0	Tptpmn	97.6	6	2.3	3.0	1	5.0	2.494	**
85	90	17	0	Tptpmn	73.0	12	4.0	3.0	1	5.0	1.622	
90	95	18		Tptpmn	83.7	20	4.0	3.0	1	5.0	1.118	
95	100	19	0	Tptpmn	99.0	20	4.0	3.0	1	5.0	1.320	
100	105	20	0	Tptpmn	92.7	12	4.0	3.0	1	7.5	1.373	
105	110	21	0		49.5	6	4.0	3.0	1	7.5	1.467	
110	115	- 22	<u> </u>	Iptpmn	<u>- 79.5</u>	12	2.4	3.0	1	7.5	0.707	
115	120	23		Iptpmn	87.2	12	4.0	3.0	1	7.5	1.292	
120	125	- 24	<u> </u>		88.7	20	4.0	3.0	1 .	1.5	0.788	
125	130	- 25		Tetern	61.1	- 10	4.0	3.0	1	1.5	2.005	
130	135	20	U	1 poprini	51.4	12	4.0	3.0			0.701	
						. (17))						
1 nerme	omecna	nical Ald	ove/Singi	e Liement Hea	iter 1 es	t (FN: 1	nermai	()				
3	5	$-\frac{1}{2}$	0	Iptpmn	86.2	12	4.0	3.0	1	5.0	1.916	
3	10	2			94.6	12	4.0	4.0		5.0	1.577	
10	15	3	<u> </u>		98.5	12	2.1	3.0		1.0	5.748	
15	20	4			78.9	12	4.0	3.0		<u> </u>	1.169	
20	25			1 ptpmn	14.5	12	4.0	3.0	1	1.5	1.108	
Thermo	omecha	nical Alc	ove Exter	13'on (FN: The	ermal3)		·					
3	5	1	0	Tptpmn	96.6	6	4.0	3.0	1	5.0	4.293	•
5	10	2	0	Tptpmn	97.8	6	4.0	3.0	1	1.0	21.733	
10	12	3	0	Tptpmn	93.4	12	4.0	3.0	· 1	5.0	2.076	•
Connec	ting Dr	ift (FN: '	Thermal4									
3	5	1	0	Tptpmn	99.5	6	4.0	3.0	1	1.0	22.111	**
5	10	2	0	Tptpmn	99.5	6	4.0	3.0	1	1.0	22.111	**
10	15	3	0	Tptpmn	99.2	12	4.0	3.0	1.	1.0	11.022	**
15	20	4	0	Tptpmn	97.6	12	2.4	3.0	1	1.0	6.507	**
20	25	5	0	Tptpmn	96.9	12	4.0	4.0	1	1.0	8.075	**
25	30	6	0	Tptpmn	84.3	6	2.4	3.0	1	5.0	2.248	**
30	35	7	0	Tptpmn	99.2	6	4.0	3.0	1	1.0	22.044	**
35	40	8	0	Tptpmn	99.8	6	4.0	3.0	1	1.0	22.178	**
40	45	9	0	Tptpmn	99.7	12	4.0	3.0	1	1.0	11.078	**
		1				_						

Table 1. Rock Mass Rating Q for the Thermal Testing Facility (Alcove 5) and Alcove Extensions.

.

×

	_		•		·· ·		•					
							s					
Start	End	Record	Revision	Stratigraphic	RQD	Jn	Jr	Ja	Jw	SRF	Q	T
Station	Station	#	#	Unit								
				S. A.								
Heated	J Drift (FN: The	rmal5)	y				1.1.2				
3	5	1	0	Tptpmn	75.9	12	4.0	3.0	1	5.0	1.687	-
5	10	2	0	Tetern	89.7	12	4.0	3.0	1	5.0	1.993	-
10	15	3	0	Tptpmn	84.4	6	4.0	3.0	1	5.0	3.751	
15	20	4	0	Tptpmn	98.4	6	4.0	3.0	1	5.0	4.373	++
20	25	5	0	Tptpmn	80.8	6	4.0	3.0	1	5.0	3.591	1
25	30	6	0	Tptpmn	9 9.0	12	4.0	3.0	1	1.0	11.000	1
30	35	7	0	Tptpmn	89.5	6	4.0	3.0	1	1.0	22.111	
35	40	8	0	Tptpmn	99.1	12	4.0	3.0	1	1.0	11.011	•*
40	45	9	0	Tptpmn	96.9	6	4.0	3.0	1	5.0	4.307	**
45	50	10	0	Tptpmn	99.5	1	5.0	0.8	1	1.0	621.875	
50	55	11	0	Tptpmn	96.0	12	4.0	3.0	1	1.0	10.667	**
55	60	12	0	Tptpmn	95.5	6	4.0	3.0	1	5.0	4.244	**
												Ļ
		Interval a	idjacent to	the single eleme	ent neater	r biock.						+
		Interval a	idjacent to	the heated ann.		·					i I	+ -
												+
	RQU	Rock Qu	ality Design	hation								╉──┤
<u> </u>		Joint Set	Number								`	·
 	Jr	Joint Rou	ighness Nu	imber								╀──
	Ja	Joint Arte	ration Nurr	iber							·	<u>↓</u>
	Jw	Joint Wat	ter Reducu	on Factor								_
			aduation Ea		1						4	

Table 1. Rock Mass Rating Q for the Thermal Testing Facility (Alcove 5) and Alcove Extensions.

وهيكتوه

1.4

.

Rock Mass Quality Indices

Q

Start	End	Record	Revision	Stratigraphic	ROD-I	C	JS	JC	WL	JOA	RMR	
Station	Station	#	#	Unit								
Station	Station	<u></u>	#	0111								i
												1
								·				
Access/	Observa	tion Dri	ft (FN: Th	ermal)								
5	10	1	0	Tptpmn	17	12	15	21.1	15	-5		
10	15	11	0	Tptpmn	17	12	15	21.1	15	-5	75.1	
15	20	2	0	Tptpmn	17	12	15	22.4	15	-5	76.4	
20	25	3	0	Tptpmn	17	12	15	23.6	15	-5	.77.6	\square
25	30	4	0	Totomn	20	12	15	23.6	15	-5	80.6	
30	35	5	0	Totomn	13	12	8	24.9	15	-5	67.9	
35	40	8	0	Totomo	13	12	8	23.6	15	-5	68.6	
40	45	7	0	Totomo	13	12	15	21.1	15	-5	71.1	•
45	50	8	0	Totomo	20	12	10	22.4	15	-5	74.4	•
	55	0	0	Totomo	20	12	10	22.4	15	-5	74 4	•
50	- 55	40		Totomo	20	- 12	15	22 4	15	-5	70 4	
- 55	00	10	0	Totomo		42	45	21.1	45	-5	75.4	
00	00	12	0	Teteren	47	12	45	21.1	45		79 A	<u> </u>
65		13	0	Tptpmn		- 12	- 15	22.4	15	-5	75.4	
/0	/5	14	0	Τρφπη	20	12	20	20.1	15	-12	75.1	-
75	80	15	0	Iptpmn	1/	12	15	21.1	15	-5	75.1	
80	85	16	0	Tptpmn	20	12	20	20.1	15	-12	/5.1	
85	90		0	Tptpmn	13	12	10	22.4	15	-12	60.4	
90	95	18	0	Tptpmn	17	12	15	21.1	15	-5	75.1	**
95	100	19	0	Tptpmn	20	12	20	21.1	15	-12	76.1	**
100	105	20	0	Tptpmn	20	12	8	20.1	15	-12	63.1	**
105	110	21	0	Tptpmn	8	12	8	20.1	15	-12	51.1	**
110	115	22	0	Tptpmn	17	12	8	21.3	15	-12	61.3	**
115	120	23	0	Tptpmn	17	12	15	20.1	15	-5	74.1	**
120	125	24	0	Tptpmn	17	12	15	21.1	15	-5	75.1	**
125	130	25	0	Totomn	13	12	5	22.4	15	-12	55.4	**
130	135	26	0	Totoma	13	12	10	21.1	15	-5	68.1	· 1
				PP								
Thomas	machan	ical Alac	No/Single	Floment Heat	ar Tast (N. Ther	mal2)					
Inerino	omechan	ICAI AICO	Versingle	Element Head	47	40	0	47.4	45	10	50.4	
3	5	1	0	Tetema		- 12	- 40	07.4	10	-10	70.4	
5	10	2	0	I ptpmn	20	12	10	27.4	15	-7	79.4	
10	15	3	0	Tptpmn	20	12	15	18.9	15	-10	70.9	L.
15	20	4	0	Tptpmn	17	12	15	23.6	15	-5	//.೮	Ļ
20	25	5	0	Tptpmn	13	12	15	23.6	15	-5	73.6	
Tharmo	+A4me	chnical A	Icove Ext	ension (FN: T)	hermal3)							
2 1102 1110	E R	4		Totomo	20	12	10	21.3	15	-5	73.3	╞╼┨
	10	2		Totomo	20	12	15	21.3	15	_5	78.3	┢╺╸┨
	40	2		Totomo	20	12	10	18.5	15	-10	65.5	┼╻┨
10	14	3	U		20		10	10.0		- IV		┢─┨
												┝─┤
Connec	ting+A2	<u>5 Drift (</u>	FN: Therr	nal4)								
3	5	1	0	Tptpmn	20	12	10	22.4	15	-12	67.4	**
5	10	2	0	Tptpmn	20	12	15	21.3	15	-5	78.3	**
10	15	3	0	Tptpmn	20	12	20	21.3	15	-5	83.3	**
15	20	4	0	Tptpmn	20	12	20	21.3	15	-5	83.3	**
20	25	5	0	Tptpmn	20	12	15	27.4	15	-2	87.4	**
25	25	6	0	Tptpmn	17	12	15	21.3	15	-2	78.3	**
30	35	7	0	Tptomn	20	12	15	22.4	15	-5	79.4	**
35	40	8	Û	Totomn	20	12	15	22.4	15	-5	79.4	**
40	45	9	0	Totomn	20	12	15	21.3	15	-5	78.3	**
		<u> </u>										

Table 2. Rock Mass Rating RMR for the Thermal Testing Facility (Alcove 5) and Alcove Extensions.

.

.

z

×

Table 2. Rock Mass Rating RMR for the Thermal Testing Facility (Alcove 5) and Alcove Extensions.

5

120

Start	End	Record	Revision	Stratigraphic	FUOS	C	1.15		I IW	AOL I	RMP	1
Station	Station	#	#	Unit	Tig D'i							
			[(Assault)	<u> </u>	<u> </u>		<u> </u>			f	+
					<u>-</u> .		2.15	4 <u>1</u> 123			+	
Anner	Observe	tion Dri	GA (ENI. TL	ormel)				<u> </u>		<u> </u>	<u> </u>	
ALLESS/				Triamo	47	42	45	24.4	45		75.4	
	10	44	0	Tetema	47	12	10	21.1	10	-0	75.1	+
45	15		0	Tetere	47	12	10	21.1	10	-0	75.1	+
15	20	~	0	Teteres	17	12	10	22.4	15	-0	77.6	
20	20	3	0	Tetema	1/	12	10	23.0	15	-0	11.0	
25	30	4		Telenn	20	12	15	23.0	15		60.0	
30	35	0	0		13	12	8	24.9	15	-0	67.9	
- 35	40	0	0	Tetern	13	12	0	23.0	10	-2	00.0	
40	45		0	1 ptpmn	13	12	15	21.1	10		74.4	
45	50	8	0	Tetema		12	10	22.4	10		74.4	
	00	40	0	Teteren	20	12	10	22.4	15		70.4	L-
<u> </u>	00	10	0	Teterin	20	12	15	22.4	10		78.4	+
00		12	0	Teteres		12	15	21.1	15		70.1	
70	70	13	0	Teteren		12	15	22.4	15	-0	76.4	
70	<u> </u>	14	0	Teteren	- 20	12	20	20.1	15	-12	75.1	
(5	00	15	0	Tetern	1/	12	15	21.1	15		75.1	
80	60	10		I ptpmn	20	12	20	20.1	15	-12	75.1	
65	80		0	Teteren	13	12	10	22.4	15	-12	00.4	
90	- 85	16	0	Tetema	- 1/	12	15	21.1	10	2	75.1	
80	100	18	0	I ptpmn Teteme	20	12	20	21.1	15	-12	70.1	
100	105	20		I ptpmn	0	12	8	20.1	15	-12	03.1	
105	110	21		Tetema		12	8	20.1	15	-12	51.1	
110	400	- 22	<u> </u>	Teteren	- 1/	12	- 0	21.3	15	-12	01.3	
115	120	23	<u> </u>	Teteren		12	15	20.1	15	\$	74.1	
120	120	24	<u> </u>	Tetema	-1/	42	10	21.1	15	ç	75.1 55.4	
125	130	20		Totomo	13	12		22.4	10	-12	55.4	
130	135	20			13	12	10	∠ 1.1	19	~ <u>0</u>	00.1	
							12)					
Inermo	mecnan	ICAI AICO	ve/Single	Element Heat	er lest (f	N: Iner	maiz)					Ļ
3	5		0	Iptpmn	17	12	8	17.1	15	-10	59.1	
5	10	2	0	Tptpmn	20	12	10	27.4	15	-5	79.4	
10	15	3	0	Tptpmn	20	12	15	18.9	15	-10	70.9	
- 15	20	4	0	Iptpmn		12	15	23.6	15	-5	77.6	
20	25	<u> </u>	<u>U</u>	I ptpmn	13	12	15	23.6	15	-5	73.6	
Thermo	+A4mec	hnical A	Jcove 😳 - te	ension (FN: Th	ermal3)							
3	5	1	0	Tptpmn	20	12	10	21.3	15	-5	73.3	•
5	_10	2	0	Tptpmn	20	12	15	21.3	15	-5	78.3	•
10	12	3	0	Tptpmn	20	12	10	18.5 .	15	-10	65.5	•
Connect	ing+A2	5 Drift ()	FN: Thern	nal4)								
3	5	1	0	Totomo	20	12	10	22.4	15	-12	67.4	
5	10	2	0	Totomn	20	12	15	21.3	15	-5	78.3	
10	15	3	0	Tptpmn	20	12	20	21.3	15	-5	83.3	+•
15	20	4	0	Totomn	20	12	20	21.3	15	-5	83.3	-
20	25 .	5	ō	Totomo	20	12	15	27.4	15	-2	87.4	
25	25	6	ō	Tptomn	17	12	15	21.3	15	-2	78.3	++
30	35	7	0	Tptomn	20	12	15	22.4	15	-5	79.4	**
35	40	8	0	Tetomo	20	12	15	22.4	15	-5	79.4	
40	45	9	Ö	Totomo	20	12	15	21.3	15	-5	78.3	**
												1

.

Start	End	Record	Revision	Stratigraphic	RQD-I	C	JS	JC	JW	JOA	RMR	1
Station	Station	#	#	Unit			[+
										†		
Heated	Drift (F	N: Ther	mal5)									
3	5	1	0	Tptpmn	17	12	15	21.3	15	-5	75.3	
5	10	2	0	Tptpmn	17	12	15	22.4	15	-12	69.4	**
10	15	3	0	Tptpmn	17	12	10	22.4	15	-12	64.4	**
15	20	4	0	Tptpmn	20	12	15	22.4	15	-5	79.4	
20	25	5	0	Tptpmn	17	12	15	22.4	15	-5	. 76.4	**
25	30	6	0	Tptpmn	20	12	15	22.4	15	-12	72.4	**
30	35	7	0	Tptpmn.	20	12	15	21.3	15	-10	73.3	** .
35	40	8	0	Tptpmn	20	12	15	21.3	15	-10	73.3	
40	45	9	0	Tptpmn	20	12	15	22.4	15	-10	74.4	++
45	50	10	0	Tptpmn	20	12	20	30	15	0	97	**
50	55	11	0	Tptpmn	20	12	15	23.6	15	-2	83.6	**
55	60	12	0	Tptpmn	20	12	8	23.6	15	-5	73.6	**
		Interval a	djacent to	ne single eleme	nt heater b	lock.						
	**	interval a	djacent to t	he heated drift.								
	RQD	Rock Qu	ality Design	ation Rating								
	С	Intact Ro	ck Strength	Rating								
	JS	Joint Spa	icing Rating									
	JC	Joint Con	dition Ratir	g								
	JW	Ground V	Vater Ratin	9								
	JOA	Joint Orie	entation Adj	ustment								
	RMR	Rock Mas	ss Rating									

Table 2. Rock Mass Rating RMR for the Thermal Testing Facility (Alcove 5) and Alcove Extensions.

•

: . 4 • Within the Heated Drift Alcove there was a change in excavation technique from drill and blast to the alpine miner at approximately 12.5 m. Compared to drill and blast the alpine miner tends to produce a much smoother excavated surface, homogenizes the texture of the exposed face, and minimizes the exposed joint faces. Because alpine mining tends to minimize the joint face exposure, areas excavated by this method will have elevated Q and RMR values when compared to areas excavated by drill and blast. However, in the interval of the Heated Drift excavated by alpine miner (12.5 to 60 m) the invert section was excavated by drill and blast and this exposure was included in the rock mass quality assessment evaluation.

- From approximately station 40 to 60 m in the Heated Drift the matrix has been moderately affected by vapor phase alteration and low angle vapor phase partings are present.
- Schmidt hammer values have been collected throughout the TTF as a <u>non-O activity</u>. Despite the massive texture observed in the Cross Drift and the vapor phase alteration observed at the terminus of the Heated Drift, Schmidt hammer values throughout the Heated Drift test area are relatively constant and range from 58.8 to 61.8 with an average value of 59.9 ± 1.1 , n = 6 (Memo from Moo Lee to Dick Kovack, Subject Schmidt Hammer Test Results, March 14, 1996.)

While these observations do not appear to have dramatically affected the rock mass quality indices, they may influence the results of mechanical, thermal, and hydrologic test conducted in the heated drift.

There are three prominent joint sets observed in the TTF. These joint sets are also observed in the Topopah Springs Middle Non-Lithophysal Zone (Tptpmn) in the Main Drift. Joint Set 1 (JS1) and Joint Set 2 (JS2) are both near vertical, moderately long joints (1 - 3 m), have relatively smooth surfaces (Joint Roughness Coefficient {JRC} 8 - 10, Brown, 1981), and have relatively small variations in amplitudes normal to the joint surfaces (0.1 to 0.2 m). Joint apertures are typically 1 to 2 mm, open, with little or no infilling. JS1 has a dip direction of approximately 30 degrees and a dip angle from 70 to 85 while JS2 has a dip direction of approximately 110 degrees and a dip angle of 70 to 85.

Joint Set 3 (JS3) is a relatively low angle (20 to 40 degrees dip) joint set with a dip direction of 30 degrees. In the Heated Drift Alcove from station 40 to 60 m this joint set appears to have been altered to a vapor phase parting surface with infillings of calcite and quartz. Compared to JS1 and JS2, the joint surfaces of JS3 are generally shorter (1-2 m), have a slightly more irregular surfaces (JRC 10 to 12, Brown, 1981), and have larger variations in amplitudes

Q-RMR Drift Scale Heater Test Area

normal to the joint surfaces (0.2 to 0.3 m). The apertures for JS3 are generally small (1 - 2 mm) and are typically open and unfilled.

3. Comparing Rock Mass Indices from the Main Drift.

Rock Mass Indices Q and RMR for the thermal mechanical unit TSw2 (Ortiz et al., 1985) from the Main Drift are plotted in Figures 5 and 6. The thermal mechanical unit TSw2 is composed of Topopah Springs Middle Nonlithophysal, Topopah Springs Lower Lithophysal, and Topopah Springs Lower Nonlithophysal (Figure 1) following Buesch et al., (1996) stratigraphic nomenclature. Examining the Q and RMR values from the Heated Drift test area clearly shows that the observed variation falls within the range observed for TSw2 in the Main Drift (Figure 3 through 6). Comparing average and standard deviation for RMR between the Heated Drift test area and Main Drift it is appar...t that the indices from the Heated Drift test area fall within the observed norm for the Main Drift:

RMR Indices for Topopah Spring Middle Non-Lithophysal Zone (TSw2)

	X _{RMR}	ORMR	N
Thermal Testing Facility	74.1	9.1	33
Main Drift	63.7	7.0	718

 X_{RMR} = Average σ_{RMR} = Standard Deviation N = Number of Samples

The average RMR and standard deviations from the Heated Drift test area is 74.1 ± 9.1 , TSw2 Main Drift is 63.7 ± 7.0 . This indicates that no significant difference exists in RMR values determined from the Heated Drift test area and TSw2 Main Drift. Similarly, Q and RMR (avg = 74.1 + 9.1) indicies calculated for the Single Heater Test area fall within the range observed for TSw2 Main Drift (TDIF 305579/DTN SNF32020196001.010 and TDIF 305970/DTN SNF32070996001.005).

05/20/1997

Figure 5. Q Values for TSw2 (Tptpmn and Tptpll), Main Drift Station 27+15 to 63+05 m.

Figure 6. RMR Values for TSw2 (Tptpmn and Tptpli), Main Drift Station 27+15 to 63+05 m.

4. Conclusions

Rock mass quality indices Q and RMR are relatively consistent in the Heated Drift test area. Despite some structural variations observed in the test area there is no strong systematic variation between Q and RMR values and location. Comparison of rock mass quality indices from the Thermal Testing Facility with indices from the same thermal mechanical zone (TSw2) in the Main Drift indicate that no significant differences exists. Therefore with regards to rock mass quality indices the Heated Drift Test area is representative of the TSw2 of the Main Drift.

References

- Barton, N., Lien, R., and Lunde, J., (1974). "Engineering Classification of Rock Masses for the Design of Tunnel Support," Rock Mechanics, 6, 189-236.
- Bieniawski, Z. T., (1979). Engineering Rock Mass Classification, Wiley Interscience Publication, John Wiley & Sons, New York, New York.
- Brown, E. T., editor (1981). "Rock Characterization Testing and Monitoring", ISRM Suggested Methods, Commission on Testing Methods, International Society for Rock Mechanics, Pergamon Press, New York.
- Buesch, D.C., Spengler, R.W., Moyer, T.C., and Geslin, J.K., 1996. Proposed stratigraphic nomenclature and macroscopic identification of lithostratigraphic units of the Paintbrush Group exposed at Yucca Mountain, Nevada. U. S. Geological Survey Open File Report 94-469, 47 p.
- Memo from Moo Lee to Dick Kovack, Subject Schmidt Hammer Test Results, March 14, 1996, YMP:1.2.3.2.7.3.4:COR:NQ:Schmidt Hammer Test.
- Ortiz, T.S., Williams R.L., Nimick, F.B., Whittet, B.C., and South, D.L., 1985. A threedimensional model of reference thermal/mechanical and hydrological stratigraphy at Yucca Mountain, southern Nevada. Sandia Report SAND84-1076. Sandia National Laboratories, Albuquerque, N.M., 76 p.

5

DRAFT DISCLAIMER

This contractor document was prepared for the U.S. Department of Energy (DOE), but has not undergone programmatic, policy, or publication review, and is provided for information only. The document provides preliminary information that may change based on new information or analysis, and is not intended for publication or wide distribution; it is a lower level contractor document that may or may not directly contribute to a published DOE report. Although this document has undergone technical reviews at the contractor organization, it has not undergone a DOE policy review. Therefore, the views and opinions of authors expressed do not necessarily state or reflect those of the DOE. However, in the interest of the rapid transfer of information, we are providing this document for your information.