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MATHEMATICAL DESCRIFTION OF ADSORPTION AND
TRANSPORT OF REACTIVE SOLUTES IN <CIL:
A REVIEW OF SELECTED LITERATURE

£, C. Travis

ABSTRACT

This report reviews selected literature related to
the mathematical description of the transport of reactive
solutes through soil, The primary areas nf the !iterature
reviewed are 1) ratnematical mndels ‘n rurrent use for
descriptinn of the adsorption-desorptinn interaction
hetween the spil snlutinn and the snil matrix and ’/2)
analvtic solutions of the differential equatinns :‘escrih.
ing the conveci.ive-dispersive transport of reactive
solutes through soil.
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1. INTRODUCTION

This study is a survey of cselected aspects of the mathematical
theory of the transport of reactive solutes thrcugh soil. It was
undertaken 2s a first step toward improving and refining existing meth-
odologies for assessing the impact of alternative eneray-related tech-
nolegies on man. The movement of reactive solutes through porous media
is 2 fundamenta) process in the assessment of both nuclear and non-
nuclear technologies. Even though there presently exist several rea-
sonably good methodologies for predirting radionuclide movement in
sail, there is a continuina need to upgrade these methodologies as the
demand for accuracy and realism increases. It is expected that the
state-of-the-art review provided by this document will assist in this
pracess.

The study of the movement of reactive solutes through an ahsorbing
medium has a long and varied history. Scientists from diverse areas of
science and engineering have contributed to its development. In the
area of chemical engineering, for example, the theory of solute trans-
port has been used successfully to develn) chromatography into a power-
ful tool for chemical separatica and analysis., In agriculture, the
movement of chemicals throuch the soil is of major importance in the
study of soil fertility, as we!! as in pest control, irrigation, <alin-
ity control, and drainage. Considerable attention has also been given
to solute transpcrt in such disciplines as groundwater hydrology, soil
physics, sanitary engineering, petroleum engineering, nuc’ear waste
management, and environmental monitoring,

The movoment of reactive solutes in soil s controlled by three
processes: convection by moving water, hydrodynamic dispersion, and
adsorption or exchange of the solutes by the soil ratrix. The mathe-

‘ matical simulation of the transport of & reactive solute through soil
tharefore require; the simultaneous solution of the differential equa.
t1an describing convective-dispersive transport and the equation des-
cribing the interaction between the solute and the sofl matrix. This
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2. SOIL PROPERTIES

The soil is an exceedingly complex system composed of three phases:
the solid phase consisting of soil particles, the liquid phase consist-
ing of soil water together with dissolved substances, and the qaseous
phase consisting of soil air, Each of these threa phases has organic
and inorganic constituents and possesses both inert and active com-
pounds. The biological and heterogencous character of soil strongly
influences its physical and chemical properties. With regard to solute
transport, the inte-action of the diverse components in the soil has a
dire:t effect on such phenomena as rispersion, convection, adhesion,
adsorption, and fon exchange.

Refiecting this complexity, the problems of understanding and
modeling the sofl-water complex are numerous. In general, however, no
unique physical or mathematical concepts beyond those common to the
analysis of most other physical and biochemical systems are needed to
simulate the transport of reactive solutes through the soil. These
concepts include velocity and acceleration, potential and kinetic
enerqgy, force fields, and the conservation of energy, momentum, and
mass. In this section, definitions of soil and soil-water characteris-
tics are presented that are of use in the mathematical simulatinn of
the transport and adsorption of reactive solutes in soil.

2.1 Bulk Density
The dry bulk density is the ratio of the mass of 2 dried soil to
the total volume of the soil. The wet bulk density is the ratio of the
mass of a moist soil to the total volume of the soil.
2.2 Porosity
The porosity is an index of the relative bore volume in the soil

and is expressed quantitatively as the ratio of the volume of the soil
interstices or voids to the total volume of the soil. [Its value




generally is in the rarge 0.3 - 0.6 {30 - 60%). The effective porosity
refers to the amount of interconnected pore space tnat is actually
available for fluid transmission. [t is expressed as the percentaae of
the total soil vnlume occupied by the interconnecting interstices.

2.3 Pore Velncity

The actual flow velocity of w~ater in the soil is not uniform, The
variability of velocity results from the facts that flow velocity near
the center of a pore's cross section exceeds that near the edae and
that the velocity in wide pores exceeds that in narrow pores. The
dverage velocity of water through the pores is termed the pore velegity.

2.4 Darcy Flow Velocity

The Darcy flow velocity or Darcy flux is the volume of water
passing th}ough a unit cross-sectional area of soil per unit time.
Darcy flow velocity and pore velocity are related by the fact that
Darcy flow velocity equals the pore velocity multiplied by the effec-
tive porosity.

2.5 Volumetric Water fontent

The volumetric water content or soil water content is the ratin of
the volume of the soil solution to the total volume of the soil, In
sandy soils its value at saturation is about 40-50%, in medium-textured
soils it is approximately 50%, and in clay it can be on the order of
60%. When the soil is saturated with the soil solution, the volumetric
water content s numerically ecual to the effective porosity.

2.6 Soil-Water Potential

The soil-water potential is defined as the amount of work that
must be done per unit quantity of pure water in order to transport an

Y ST




infinitesimal quantity of watar reversibly and isothermallv from a poo!
of pure water at a specified elevation and atmosgheric pressure to the
soil water at the point under consideration. Statec simplv, s5i1 water
potential is the enerqgy that soil water possesses because nf its re’a-
tive position in the soi) matrix, Differences in the potential eneray
of soil water within the soil matrix cause soil water to flow in the
direction of decreasing potential eneruy. It is convenient to divide
the total soil-water potential into four component potentials: ‘1) the
gravitational potential, which is the enerqy of soil water rezulting
from its position in the gravitational field with respect to an arhi-
trary reference elevation; /2) the matric potantial, which s the
enerqgy of soil water resulting from capillary and adsorption forces
that tend to hold the soil water in the soil matrix; (3) the osmotic
potential, which is 2 measure of the forces of attraction between dis-
solved ions and water molecules; and (4) the pneumatic potential, which
is the enerqy of soil water resulting from unequal pressures in the
gaseous phase.

2.7 Hydraulic Head

Soil water potential is expressille in several equivalent ways.
Two of these are erergy per unit mass and enerqgy per unit vnlume.

Since water is practically incomoressible, the expression of potential
as energy per unit mass ic directly proportional to its expression as
enerqgy per unit volume, The dimensions of potential expressec as
enerqgy per unit volume are those of prossure.

The third, and often most convenient, method for expressing poten-
tial {5 in terms of hydraulic head, which is the height of a liquid
column corresponding to a given pressure. Thus hydraulic head is the
number of centimeters of 2 liquid, usually water, necessary to aenerate
a pressure equal to that obtained when the potential is expressed 'n
units of energy per unit volume.




2.8 31 ¥ lqture Ratentinn Cyrve

sevhday.
Cel - i

The s01] moisture retentrap rirve qige; tha functinnal relatinn. '@
ship hetween <qil water rantent .ed syrtinn, Thig cyrve < stronqgly
dependent on the nature af the particular snil under consideratinn,

Two typical snil mnisture retentian curves are shown in Fiq, 1,

Thece curves <how *hat ¢ anle 3 <liaht erternal surtinn is
applied tn the <nil metrix, no nutflow n€ <nrl water will nccur. A<
suction 15 increased and evceede a crithcal value, the laraest pores
heqgin tn empty., Very <non mn«at «f the 1. e pores will he empty, and
outflow nf snil water will heqin in proaressively smaller pore,, until,
at high suction values, only the 2ry narinw pores will reta‘n water,
In a sandy snil, where mast nf the pres are relatively large, the
water content decreases rapidly ac ,uctinn increases. In a c'ayey
soil, where the pore-size distrihution is more uniform, there is a more
gradual decredve in water content. Thus the amnunt of wate remaining
in the snil matrix at a aiven lovel nf suctinn is stranaly - cpendent on
the ~ize and distribution of the soil pores.

There are two different ways to ohtzin the relatinnship hetween
=uction and soil wetness, Nne is to measure water content vs suction
shile increasina <uction to aradually edry a saturated soil. The other
is to wet an intially dry soil while decreasing suction. The two
methods do not yield the same results. Figure 2 shows typical
results. The interested reader is referred to Miller and Miller (1955,
1956), Mualem (1973, 1974), end Parlange {1876) for a further discussion
of this subject.

2.9 Breakthrough Curve

As a pulse of so'ute moves through a finite soil column, dispersion
causes the solute tn spread. Measurements as a function of time at the
bottom of the soil column reveal that the solute concentration will
gradually increase from zero to some maximum value in the form of an
S-shapea curve, This curve is called a brezkthrough curve.
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Fig. 1. Soil moisture retention curves depicting the functional
relaticnship between s2i1 water content and suction for two

different types of soil
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1. CONVECTIVE-DISPERSIVE SOLUTE TRANSPORT

A

The theory of convective-dispersive snlute transport in pnrous
media has been riscussed frr many years, and its mathematical formyla-
tion is well understood. The mathematical derivation of this theory
will not he discussed in detail, and the interested reader is referred
tn Bear 719721 ana Crank ‘1956) for a cdevelopment nf the theory. This
study will, however,6 present the relevant equations anc briefly discuss
the physical significance of their terms. '

The differential equatinn governing cinvective-dispersive reactive
snlute transport ‘n anisotropic media may he written as

s { + -~- ! .‘- + - .(.:..
t A (UA X) ) (()V "I) -z (DZ '7)

- o nl - j; ta.C) - {a,0) - F-10. {1

where
. = concentration of solute in soil solution ("g/cm3\.
S = amount of solute adsorbed on soi! matrix (.g/g!}, "
= s0il bulk censity (g/cm3).
= volumetric soil water content !cm3/cm3).
x * X component of solute dispersion coefficient (cmi/hr).
= y component of solute dispersion coefficient (cm /hr),
= z component of solute dispersion coefficient (cmzlhr).
= x component of Darcy sofl water flcy velocity (cm/hr),
= y component of Darcy soil water flow velocity (cm/hr),
= 2 component of Darcy soil water flow velocity fcm/hr),
Q = a sink (or source) for irreversible solute interaction
[ g/tem’shr)],
2 = distance from the soi) surface (cm),
t = time (hr),

8 0 a0 O O O

N O X NN
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The pramacy meraantce argarning the *eanapnrt Af cnl tac e e le
i the counynrtion -8 thn nlyba gith 4qter ac gater mayns Shragan *he

c0il matrix, Thig arorecr, o pp ogpnted in £q, ‘1Y hy the terms

— 0o - !¢ ’ - ;- -
= ) 0,0 {a,Lr .

If thic were the anly machanism qaverning the transport nf ¢nlytes
in snils, an amnurt ¢ ~nlute introduced intn the il ¢nlytion would
travel througn *he cnfl ralumn in 3 hndy withaut any 'enathening nr
cpreading,  In riatity, the hady nf cnlyte will qrow in 5ize herauce
the <nil cnl tinn dnne nnt mave throunh the «<nil matriv in a unifnrm
nanner. The flow ~ate is ~Inwer near the walls of a3 <ail pnre than in
the middle, the flow is faster in large pares than in small pores, and
water flows in snme poares at an angle tn the mean diraction nf wator
flow. This tendency for mnlecules of a snlute to hecome maore diffuse
Aith *time is called hydradynamic dispersion., Because this phennmenon
can occur nnly when there is mavement of the water through the <oil, -
convection and hydrodynamic dispersion are two inseparable processes.

Another process causing the dispersion of the snlute is malecular
diffusion, This is caused hy the random thermal mntion nf molecules in
the snil solutinn and nceurs whether there is water moyement through
the «<nil ar nnt, inwever, since hydrodynamic dispersion and molecular
Jdiffusion are governed hy differential equations nf the <same form,
their effects can he added. The c(ombination is referred to as apparent
diffusion, and this process is represented in Eq. /1) hy the terms

)8 ()

In addition tn convection, hydrodynamic dicpersion, and moleculer
diffusion, the transport nf 2 snlute in the soil is affected by adsorp-
tion and exchange with the <oil matrix. This reversihble solute adsorp-
tion by the snil matrix is represented in £q. 1) by the quality S/ ¢,

“BEST AVAILABLE copPY”
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We will assume that there is a functional relationship between S and C,
which we may express as

S = f(C). (2)

Such a relationship is termed an adsorption function or an adsorption
isotherm. If we then replace 3S/3t in (1) by

S ., C
.—f_f(c) ‘t .
we obtain
€ ... L o= €
.o €7 . R
R LXGR) R T ONGITRE A CN 31

- S0 - o), (3)

where

D, (C) = /(1 + = £(C))
a,(C) = g, /(1 + 5 £1(C))

alc) = /(1 + £ £ -

The factor 1 + (o/p) f'(c) has been called the retardation factor by
Hashimoto et al. (1964). The physical significance of the retardation
factor 1s that the ratio of the Darcy velocity to the solute migration
velocity is given by this factor.
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4. EQUILIBRIUM ADSORPTION MODELS

One problem in attempting to model solute transport in the snil is
the development of an adsorption-desorption function that describes the
relationship between the concentration of the solute in the soil solu-
tion and the amount of the solute adsorbed on the soil matrix, The
adsorption-desorption process in the soil! can be a kinetic one in which
the relative amounts of the solute in the soil solution and in tha soil
matrix are changing with time, or it can be an equilibrium situation in
which the equilibrium ratio between amounts of solute in the soil solu-
tion and in the soil matrix is attained rapidly and thereafter remains
constant. This section will review the mathematical models that have
been used in the literature to describe the adsorption-desorption pro-
cess under equilibrium conditions.

4.1, Linear Adscrption I[sotherm

The simplest and most widely used of the equilibrium adsorption
isotherms is that given by a linear relationship. That is, it is
assumed that the amount of the solute adsorbed by the soil matrix end
the concentration C of the solute in the soil solution are related by
the lineer relationship

] l
S =Ky a)

where Kd. the distribution coefficient, is a measure of the retention
of the solute by the soii matrix, Experimentally, the distribution
coefficient, Kd' can be determined from the ratio

K. = Mo —-.
d 1 lsolution




where
"[soil] = amount of solute adsorbed by the soil matrix
(.g/9),
"-otution] c°"“"§"tion of solute in sofl salution
(ug/em™).

The assumptions implicit in the use of a linear isotherm are that
the concentration of the solute in the soil solution is very low and
that the equilibrium ratio between the so:l solution and the soil
matrix ig attained rapicly.

The linear isotherm model (4), in conjunction with the convective-
dispersive solute transport model (1), has been used fregquently to
describe the transport of radioactive material through porous media.
Duguid and Reeves (1976) use equation (4) in a model of radicactive
contaminant transport from a seepage pond, situated entirely above the
water table, to a nearby stream. The results of the simulation, how-
ever, are not compared with empirical data.

Logan (1976) uses a linear adsorption isotherm, together with a
two-dimensional convective-dispersive solute transport model, to per-
form an assessment of the quantitative effects on the environment

.resulting from the potential release of radionuclides during 211 phases
of radioactive waste management operations.

Burkholder (1976) develops a transport model to predict radio-
nuclide migration from geologic repositories should groundwater invade
the disposal site. The dissolved nuclides may have complex physico-
chemical interactions with the soil as they migrate. These interac-
tions cause the nuclides to move at lower velocities than the water and
thereby reduce, as a result of radioactive decay during holdup, radio-
activity releases to the biosphere. To simulate this adsorption of the
nuclides by the soil matrix, Burkholder uses a linear equilibrium
adsorption isotherm with a distributfon coefficient Kd. The ratio of
the water velocity to the nuclide migation velocity is then given by
the retardation factor K = 1 ¢ X ,/.

vean De Pol et al. (1977) employ & linear equilibrium adsorption

isotherm in their study of the rate of movement of tritium in a sofl




1A

column under field conditions. When the predicted concentration nf
tritium in the so1l was compared with experimenta) nhservalinns, the
linear adsorption isotherm was found to adequately descrihe the adsarp-
tion of tritium by soil under the conditinns of the axperiment,

The linear isntherm model (4) has also been used tn descrite the
adsorption of nonradioactive solutes by the soil matrix. Selim and
Mansell (1976) use Eg. (&) to develop a madel far colute transport ‘n a
finite soil column, The model has not been verified with experimental
data, however.

Selim, Davidson, and Rao (1977) employ €q. f4) in their study of
solute transport through multilayered soils. Within each layer, the
soil is assumed to be homogeneous and isotropic. The linear adsorption
isotherm is used to describe solute adsorption within the individual
sofl layers. The predicled results were compared with experimental
data on the movement of the herbicide 7,4-D (7, 4-dichlorophenoxyacetic
acid) through a two-layer soil column consisting of Norge loam and
Eustic sand. The predicted and exper imental data were found to be in
close agreement. Elrick, Erh, and Krupp (1966) also used a linear
adsorption isotherm to predict the movement of herhicides through the
soil, Theoretical breakthrough curves based on the linear adsorption
isotherm were found to describe the early breakthrough behavior of the
herbicide Atrazine. The theoretical breakthrough curve predicted
greater concentrations of the herbicide at later times than were mea-
sured experimentally, indicating a greater adsorption of the herbicid2
than predicted by the linear model. Lindstrom et al. {1967) also used
the 1ipear isotherm equation to develop a mathematical model of the
movement of the herbicide 2,40 in the soil.

Begovich and Jackson (1975) used a linear adsorption isotherm to
simulate the six-year buildup of lead, cadmium, zinc, and copper around
3 lead smelter. It was found that the predicted levels of cadmium and
zinc in the top two soil horizons were comparable with the experimen-
tally determined values. Results obtained for lead and copper were not
so satisfactory.
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4,2 Freundlich Isotherm

The Freundlich isotherm is defined by the nonlinear relationship

s = xeh (5)

where K and N are constants. This isotherm is the oldest of the non-
linear adsorption isotherms and has been used widely to describe the
adsorption of solutes by soils. It should be kept in mind, though,
that the flexibility of the two constants allows for easy curve fitting
but does not guarantee accuracy if the data are extrapolatea beyond the
experimental points. One limitation of the Freundlich isother~m is
that, like the linear isotherm model, it does not imply a maximum
quantity of adsorption.

Numerous examples exist in the literature where the Freundlich
isotherm has been used to describe the adsorption of solutes by the
soil matrix. To mentton a few, Bornemisza and Llanos (1967) and Chao
et al. (1962a, 1962b, 1962c, 1963) reported that sulfate aasorption by
soils conformed to the Freundlich isotherm. Garcia-Miragaya et al.
{1976), Levi-Minzi et al. (1976}, and Street et al. {1977) found that
the adsorption of cadmium by soils could be described using the
Freundlich isotherm. Van Genuchten et al. (1974), Swanson and Dutt
(1973), Lindstrom et al. (1967, 1970, 1971), Harris (1966, 1967),
Geissbuhler et al. (1963), Oddson et al. (1970), Haque and Sexton
(1968), Haque et al. (1968), Hornsby and Davidson (1973), Bailey and
white (1970), Davidson and McDougal (1973), Hance (1967), Kay and
Elrick {1967), Davidson and Chang (1972), and others proposed the use
of the Freudlich isotherm to describe the movement of herbicides in the
soil,

4.3 Langmuir Isotherm

The Langmuir adsorption isotherm was developed by Langmuir (1918)
to describe the adsorption of gases by solids. Langmuir assumed that




id

the surfacc of a snlid possesses a finite number nf adsarptinn sites,
If a gas molecule strikes an unoccupied site, it is adsorbed, whereas
if it strikes an nccupied site, it is reflected hack intn the nas

phase. This mode!l leads immediately to the concept af an upp r limit
of adsorption. The maximum amount of adsorption nccurs when the sur-

face of the snlid is covered with a closely packed adsnrbed layer of
gas molecules.

gL

The derivation of the Langmuir absorption isntherm presented by
Langmuir for gases can be modified to apply to the adsorption of reac-
tive solutes by soil. Each adscrptinn site in the snil matrix can be
assumed to have an equal probability of adsorhing the snlute from the
soil solution, This assumption requires that the free energy nf
adsorption for the soil be constant. lnder this acqumption, the rate
of adsorption will be proportional to the concentration nf the solute
in the soil solution and to the number of sites in the soil matrix that
are as yet unoccupied. Thus the rate of adsorpticn of the solute by
tve soil matrix will be given by

KIC(b -S) , (6)

where C is the concentration of the solute in the soil solution, S i¢
the amount of the solute adsorbed by the soil matrix, b is the maximum
amount of the solute that can be adsorhed by the soil matrix (,.g/g),
and Ky is a constant. The rate of dissociation of the solute from

the sofl matrix will be proportional to the number of occupied sites in
the soil matrix. Thus the rate of dissociation wil! Lo given Sy

K,S (7)

At equilibrium,

KZS s KIC(b -S) . (8)
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Replacing KI/K? by K and rearranging, we obtain the two standard
forms of the Langmuir isotherm:

'
= Lo

s
S b

L
b

- B

{9)

and

s W (1)
‘In these two formulas, K is a measure of the strength of the bond hold-
ing the adsorbed solute on the soil surface, and, as was stated before,
b is the maximum amount of the solute that can be adsorbed by tre soi)
matrix (..9/9).

The monolayer adsorption theory of Langmuir breaks down when the
free energy of adsorption is not constant. This is the case when the
heat of adsorptior of the solute by the soil matrix is not independent
of the number of occupied adsorption sites in the soil matrix. How-
ever, severa) useful adsorption isctherms have been derived by assuming
different functional r~elationships between the heat of adsorption of
the solute by the soil matrix and the fraction of the adsorption sites
in the soil matrix that is occupied by the solute. If the heat of
adsorption is a linear function of the surface coverage, the adsorption
isotherm takes the form used by Brunauer et al. (1942):

log € = Ky + K,S . (11)
where K, and K, are constants. If the heat of adsorption s a
logarithmic function of the surface coverage, the adsorption {sotherm

can de shown (Halsey and Taylor 1947) to be: .

logS=K+NlogC , (12}

where K and N are constants., This is an equivalent form of the
Freundlich isotherm, and it is thus seen that the Freundlich isotherm
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may be obtained from Langmuir's theory nf :nnnlayer adsnrptian Yy
assuming that the heat nf adsarption is 3y lnqarithmie fynetinn af tha ,
surface coverage. '

The Langmuir adsorption isntherm hae heen uys..” esvansiyely in the
literature to descrihe the adsorptinn of solutes ny the q#ii. For
example, John (1972) and Levi-Minzi et al. /1976 “aynd the Langmuir
isotherm to adequately describe cudmium ardsorption nver a wide range of
soil types. Colombera et al. f1971) found that *he adsorption nf alym-
inum from hydroxy-aluminum perchlorat2 solutinnc hy clyy minerals in
the soil can bhe described by the Lanamuir adsnrpt:en iintherm. Enfield
and Bledsoe (1975) and Novak et al. /1975) used the |_anamuir ad<arption
isotherm to model the movement of phosphorus 'n cails racylting fram
the renov.tion of wastewater by a land applicating troatment system.
The Lang™.ir isotherm has also been used hy Olsen and Watanahe 71057}
weir and Soper (1962), Pissarides et al. '1963), Nhihara and Russell
(1972), Wier (1972), Humphreys and Pritchett 1971}, Rajan and
Watkinson, [1976) and others to describe phnspharus adsarption hy snil,

It can be seen from Eq. [9) that a plot ~f C/S against € should
give a straight line of slope 1/b. Soil phosphate adsorption data
obtained by Olsen and Watanabe (1957) and Larsen ot al, (1965) indicate
that in the case of phosphorus adsorption hy soil, the plot of C/S
against C is not a straight line. One pnssihle explanatian of these
results is that the energy of «dsorption of phosphorus by soil is not
constant. Bache and Williams (1971) point out that for the data
obtained by Olsen and Watanabe, the relationship hetween the energy of
adsorptinn nf phosphorus by <0i! and the surtace coverage is almost
linear. They therefore propose that an adsorption isntherm af the farm

. (11) might be more appropriate for describing phosphate adsorption by

soil. The experimental data obtained by Olsen and Watanabe are shown
to be fitted satisfactorily by an adsorption isotherm of this form,

In a different attempt to account for the degree of curvature in
the plot of C/S against C, Gunary (1970) did a least-squares fit of
severa) different equations to the data for phosphate adsorption on 24
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different soils obtained by Larsen et al. (1965). He concluded that
the best fit was given by the equation

€ ek, +k,C oK, ,/C r13)
T K KL Ky /0,

where Kl' Kz. and K3 are constants. No theoretical foundation

for €q. (13) was given, but the author suggested that the inclusfon of
the square root term in the equatfon could be taken to imply that the
soil will adsorb a little shosphate firmly, a slightly greater amount
of phosphate less firmly, and so on until 3 limiting value is reached
when all the components of the phosphate adsorption system are satu-
rated. :

1.4 Langmuir Two-Surface [sotherm

Exper imental data on phosphorus adsorption by Shapiro and Fried
(1959), Arambarri and Talibudeen (1959), de Haan (1965), Helyar et al.
(1976), Munns and Fox (1976), and others suggest that two different
types of surface adsorption sites are responsible for the adsorption of
phosg: worus, One of these adsorption sites has a high bonding energy
and reacts rapidly with phosphorus, while the other has a lower bonding
enerqy and reacts more slowly with phosphorus. Langmuir (1918) pro-
posed an equation for describing the simultaneous adsorption of 2 gas
by more than one surface. The adaptation of Langmuir's equation to the
adsorption of a solute by a soil with two adsorbing components is

K¢d,C Kob,C
1 22 ,
SRt TR | (14)

where bl and bz are the maximum quantities of solute that can be
adsorbed by the two components and Kl and Kz are constants related
to the bonding energies of the components.




’?

Holford et al, [1974) have uced the Lanamuir twa-su~face cquatine
to model phosphate adsorption by %nil. In their -nncideratinn nf 41
soils from southern Enqland and caste:n Australia, *hey nhta.red an
excellent fit of the erperimental cfata with the “anamyi- tan-qyrface

equation.
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5. FIRST-ORDER KINETIC ADSORPTION MODELS

The use of the equilibrium adsorption models reviewed in the pre-
vious section is based on the assumption that the equilibrium between
the reactive solute in the soil solution and the soil matrix is
obtained rapidly. For some chemicals in the soil, such as phosphorus,
this is generally rot the case, and in such cases, it is more appropri-
ate to use a kinetic model to describe the adsorption-desorption rela-
tionship. This section will review the more imprrtant first-order
kinetic adsorption-desorption models,

il
&
o
a2

5.1 Reversible Linear Model
The most frequently used first-order kinetic adsorption model is

ds
gt kTS 15}

where S is the amount of the solute adsorbed by the soil matrix, C 1is
the concentration of the solute in the soil solution, '+ is the
volumetric soil water content, . is the soil bulk density, and kl and
kz are constants. Equation (15) assumas that the rate of solute
adsorption by the soil matrix is related to the difference between what
can be adsorbed at some concentration and what has already been
adsorbed. The equilibrium i{sotherm associated with Eq. (15) is & lin- .
ear isotherm such as is given by Eq. (4).

Equation (15) has been used frequently to describe the adsorption
kinetics of chemicals by the soil, For example, Davidson and McDougal
(1973) and Hornsby and Davidson (1973) used Eq. (15) to describe the
adsorption of herbicides by the sofl. Lindstrom et al. (1967, 1970),
Davidson and Chang (1972), and Oddson et al. (1970) used Eq. (15) to
describe the movement of severa) different organic chemicals in the
soil., Cho (1971) used Eq. (15) to describe the convective transport of
variocus oxides of nitrogen in the soil,
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One .f the mnst frequent appl:-atiang nf “n, "6 nar “apr ‘a the
descriptinn of the adgarn®ion v rat re <8 precrare o0 o en e Lnnne
thnse who have used thin equatinn *n Aecrritp Ynr anyoment 5f ahne .
phorus through the snil are Shah ~t al, 11975 | ‘nyar or al, '1078Y
Novak and Adriann /1975), Enfinld '1974:, Enfirld and Bladine '1975°,
Enfield and Shew 1375), Enfinld ot al, 71976, “hn «t al, '1970), 3nd
Griffin and Jurinak '1974).

§.2 Reversihle Nonlinear Madel

fAnather first-nrdar Yipntir cquation the? e Lopn gsnd tn
descrihe tha adearptinn.decnrption ralatianchip hetwoen a reactiye

solute and the <nil matrix i~ the nonlinear :inrti~ nquatinn

The parameters kl‘ and k? (Giddings 19658) are callad, respectively,

the forward and backward adsorption rate conefficients, When the value
of n is unity, Eq. (16) reduces tn the reversihle linear first-order
kinetic adsorption prncess described hy Eq. 15). The equilibrium i<o-
therm associated with Eq. (16) is the Freundlich adsorptinn isotherm,
giver by (§).

Enfield and Bledsoe (1975) have used €q. /16) with a value of n
less than unity to model the adsorption of herbicides by soil.

Davidson and McDougal (1973) and .nfield, Harlin, and Bledsoe (1976)
found that phosphorus movement in the soil coule be described using Eq.
(16) with a value of n less than unity.

Mansell et al. (1977) used Eq. (16) to predict the transport of
phosphorus through sandy soils and found that it provided an adequate
description of phosphorus transport in both water-saturated and
water-unsaturated sofls. This agreement hetween calculated and
exper imental data is not surprising, because in this experiment the
backward and forward adsorption rate coefficients were extremely small
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in ralation to the average pore water velocities. The 'arge 3verage
pore water velocities and the small adsorption rate coefficients raused
the sorption of phosphorus from the soil ta be small, This is consis-
tent with general nbservatinns by Black 1968) that phosphorus applied
to sandy and organic soils is mare mobile than phasphorus applied tn
nther snils,

Hornshy and Davidson (1973) used Ea. '16) *n descrihe the *rans-
port of the organic pesticide fluometurnn in soils, The distributions
of the adsorbed and solution phases of the pesticide were well
Aescribed at high flow rates. At low f'aw rates, where equilihrium
adsorption exists, the kinetics of the adsorptinn process were not s
important, and the process was described equally well ysing the linear
adsorption isotherm (4),

Van Genuchtan, Davidson, and Wierenga 71974) used Eq. (16} to
study the movement of picloram (4-amino-3,5,6-trichloropicolinic acid)
through a water-saturated Norge loam soil. The equilibrium adsorption
and desorpticn isotherms were found to be descrihed by different equa-
tinns. When the observed and predicted concentrations of picloram in
the soil were compared, it was found that Eq. {16) adequately described
the adsorption kinetics at low pore water velocities (14,2 cm/day) pro-
vided the multivalued character of the adsorption-desorption process
was included in the calculations. However, even at low pore water
velocities, calculations using Eq. {16) did not fit the data as well as
when a Freundlich adsorption-desorption relationship was assumed. At
high pore water velocities (145 cm/day), Eq. (16) was found to be
tnadequate to predict picloram movement.

5.3 Kinetic Product Model

A mode) propased by Enfield (1974) to describe the kinetics of
phosphorus adsorption by soil is the equation

ds , ,cbsd

¢ , (17)
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where a, b, and 4 are constants, This equatinn was empirically
derived, and no theoretical faundation for its farm iq qiven, Mare-
over, like the Freundlich isntherm, it does nnt imply a maximum nuan-
tity of adsorption. These limitatinns acide, however, it has heen uysed
with some success by Enfield and nthers tn descrihe phasphorys movement
in snil.

Enfield found that the maodel provided an adequate descriptinn af
phosphorus adsorptinn kinetics in five <elacted Oklahoma soils, He
then compared the results of ysing Enq. 717) with those nhtained using
the reversible linear kinetic mondel f15). Even though the five snils
had widely varying physical-chemical properties, in every case Eq. 17}
gave 2 better fit to the experimental data than Eq. ‘15).

Enfield and Bledsnoe 71975), using En. 717) tn describe the trans-
port in soil of phosphorus from 2 wastewater treatment system, reported
that the predicted values fitted the experimental data reasonahly well,

Enfield, Harlin, and Bledsoe (1976) compared Eqs. (15), (16}, and
(17), among others, in their ability to describe the kinetics of ortho-
phosphate adsorption by 25 mineral soils under laboratory conditions,
Equation (17) appeared to give the best nverall results. ‘

Enfield and Shew (1975) again compared the results of using £q.
(17) with those obtained using Eq. (15) for several different soils
with soil textures ranging from sands through clays. ODarcy flow rates
ranged from 0.18 cm/hr (16 m/year) to 5.6 cm/hr (490 m/year). The
majority of the studies were performed at the low end of the flow spec-
trum, since the model’s primary objective was to describe the movement
of phosphorus fn wastewater treatment systems applying waste to land.
Similar results were obtained in all sofils studied. Of the two models
tested, the one employing Eq. (17) appeared to give the best results.

5.4 Bilinear Adsorption Model

The kinetic version of the Langmuir adsorption isotherm (9) is
given by the so-called bilinear adsorption model,




das , '
Rl LS ICIR AN PR S ey

where kl anad k? are constants and b ‘s the maximum quantity of

solute that can be adsorbed by the soil matrix. The theoretical foun-
dation for this equation is the same as that qgiver for the Langmuir
adsorptiun isotherm., We assume that the rate nf adsorption of the
solute by the soil matrix is proportional to the concentration of the
solute in the s0il solution and to the number of sites in the soil
matrix that are as yet unoccupied. Thus the rate of adsorption of the
solute hy the <nil matrix is given by

RIC(b -9). (6)

The rate of dissociation of the solute from the sof) matrix is
assumed to be proportional to the number of occupied sites in the soil
matrix, Thus the rate of dissociation will be gfven by

k,S. (7)

Teking the difference between the rate of adsorption and the rate of
dissociation, one obtains Eq. (18). The equilibrium isotherm for this
equation is, of course, the Langmuir adsorption isotherm (9).

Despite its strong theoretica) foundation, Eq. (18) has not
received widespread application in describing the edsorption of chemi-
cals by soil. One reason for this lack of application {s that there
does not exist an analytic solution of the coupled system (9) and (18),

s and hence any use of this system requires a numerical approximation.
However, Eq. {18) has been applied to the study of the adsorption of
phosphorus on clay minerals by Gupta and Greenkorn (1973).

§.5 Elovich Mode!

An equation developed by Reginsky-Zeldovich {1934), but now gener-
ally known as the Elovich equatfon, has been applied by a few
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researchers to describe the adsorption of solutes by the <oil. The
Elovich equation has the form

-8,9
d 2
Rene © (19)

where A1 and Bz are parameters and q is the fractinn af tae adsorp-
tion sites in the soi) matrix occupied by the solute, This equation
has been applied to describe the kinetics of the absorption of gases on
solids by Allen and Scaife (1966) and Hayward and Trapnell 11964). A
theoretical discussion of the equation can be found in Low (1960),
McLintock (1967), and Atkinson et al. (1971).

An Elovich-type equation was used by Atkinson et al. f1971) and
Kyle et al. (1975) to describe the kinetics of phosphate adsorption on
the surface of gibbsite. The equation employed was

%% . pe-89 pe-8 . (20)

where A, B, and q are defined as in Eq. (19). This model was found
satisfactorily to describe the adsorption of a phosphate solution by
gibbsite.

An Elovich-type equation derived by Lindstrom et al. (1971) was
used by Van Genuchten et al. (1974) to study to movement of a pesticide
through a water-saturated Norge loam scil. The equation is

R | )

where kl and kz are the forward and backward kinetic rate coeffi-
cients, respectively, b is similar to the surface stress coefficient
described by Fava and Eyring (1956), and S, C, », and p 2re as defined
previously for Eq. (9). The equilfbrium adsorption isotherm associated
with Eq. (21) is given by
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S= :rz— exp(-2bS)

5.6 Fava and Eyring Mode!

In their study of the adsorption and desorption of detergents on a
fabric surface, Fava and Eyring (1956) employed the first-order kinetic
equation

9% . .- .
at Zkl' simh b

where kl and b are constants and ; is defined as the distance from
equilibrium divided by the initial distance from equilidbrium, Thus ;
is given by

where S(o) is the initial amount adsorbed and S(=) fs the equilibrium
amount adsorbed. The agreement obtained by Fava and Eyring with
experimental data was quite good.

Hague and Sexton (1968), Lindstrom and Boersma (1970), and
Leenheer and Ahlrichs (1971) have also used Eq. {23) to model the
adsorption of pesticides by soil and organic matter. Lindstrom and
Boersma (1970) compared results obtained using this equatfon with those
obtained ustng the Freundlich adsorption isotherm and the reversible
Tinear model,

§.7 Combined Equilibrium and Kinetic Model

Cameron and Klute (1977} have used a combination of the linear
equilibrium fsotherm (4) in the form
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together with the firct-order linear kinetic madel, Eq. ‘15),
ﬁ: _' - 4
m kl S o kzs . A 261

where kl and k2 are the adsorptinn and desnrptinn rate ronstants,

to develop an adsorption-desorption relationship that describes the
rate of solute transfer between the solute and the snlid phases of the
sail. The reasoning behind this approach is that a chemical in the
s01) may react at different rates with different components of the sail
matrix, For example, 2 chemizal may be adsorbed rapidly hy the various
mineral surfaces in the soil but slowly by the snil organic matter,
Cameron and Klute consequently assumed that the adsorptinn of snlutes
by the soil matrix is controlled by two types of reactions: onne that
is rapid and consequently obtains an almost instantaneous equilibrium
and one that is slower and is best described as a kinetic reaction. I[f
we represent the concentration of the adsorbed solute in the soil
matrix resulting from the kinetic reaction by Sl and the adsorbed
concentration in the soil matrix resulting from the equilibrium reac-
tion byvsz, then the total adsorption S can be obtained as the sum of
Sl and 52' and the total rate of adsorption is given by

S 1S
s 1 2
TET R f21)
Since
aSl "
5t "k 5 C-kgS (28)

S e
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Eq. (27) may be written

)S U C

where kl‘ kz, and ka are the adsorption rate, desorption rate,
and equilibrium constants respectively.

After a sufficiently long period of time the reaction described in
Eq. (30) wil) reach equilibrium, with the resultant adsorption isotherm
being

A
S = '.(Fz- + k3 (o . (31

Since €q. (31) is a linear adsorption isotherm, it is easily seen
that 2 laboratery determination of the adsorption isotherm could tend
to mask the kinetic component.

tameron and Klute 2pplied their combination equilibr!um-kinetic
mod 1 to data obtained by Elrick et al. (1966) on the movement of the
heroicide Atrazine in soil and to data on phosphorus (KH,PO,) move-
ment obtained by Cho et al. (1970). The best agreement was obtained
for the data on Atrazine movement in soil. Figure 3 shows the bresk-
through curve obtained by Elrick et al. for Atrazine in Honeywood silt
loam. The solid line is the theoretical breakthrough curve calculated
under the assumption that the adsorption of Atrazine by the soil matrix
can be described by the linear equilibrfum adsorption isotherm {31)
alone. As can be seen, the early breakthrough pattern 1s well
described by the theoretical curve; however, the experimenta) values of
CICO do not approach 2 value of unity as quickly as predicted by the
linear adsorption theory. Figure 4 shows the fit of the Cameron-Klute
model to the data obtafined by Elrick et al.
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6. ANALYTIC SOLUTIONS OF TRANSPORT MODELS

As was discussed in Sect. 3, the differential equatinn governing
convective-dispersive solute transpor~t in anisntropic redfa is given by

-yl - platy -y {a,0,

- = e ] f
Tl 32,

where C is the concentration of the solute in the soil solution and 3
is the concentration in the soil matrix. Once the rate of solute
adsorption by the soil matrix %% and the sink term Q have been speci-
fied, the simulation of the transport of 2 reactive solute by ground-
water may be accomplished by the solution of this differential equation
subject to varicus inftial and boundary conditions.

A solution to £q. (32) that can be written in closed form is
called an analytic solutien. Such solutions are difficult to obtain,
and, in general, this eguation must be solved hy a numerical technique,
such as the finite-element method or the finite-difference method. The
difference equations that result from the application of these methods
are generally solved with one of the following iterative methods: the
line successive over-relaxation (LSOR) method described by Young
(1954), the iterative alternating direction implicit procedure (ADI) as
presented by Peaceman and Rackford (1955), or the strongly implicit
procedure (SIP) introduced by Stone (1968). For a discussion and com-
parison of the vartous numerical methods used in solving €q. (32), the
interested reader is referred to Baetsle (1967), Shamir and Harleman
(1967), Oster et al. (1970), Rubin and James (1973), Smith et al.
(1973), watts (1971, 1973), Aziz and Settari (1972), Pickens and Lennox
(1976), Trescott and Larson (1977), and Mansell et al. (1977},
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Most of the analytic solutions of Eq. (32) that have appe2red in
the literature are for the one-dimensional version of this equation,
The one-dimensional version, under the assumption of constant coeffi-
cients and without the sink term, can be written as

‘ct': J 'i' l' 'r; - ° (; . (33)

where V is the x component of the Darcy soil water flow velocity. This
section reviews the various analytic solutions of this equation that
have appeaved in the literature.

6.1 Linear Isotherm

1f a linear adsorption isotherm of the form S = ch is assumed
to exist between the soil matrix and the soil solution, then the
one-dimensional equation (33) reduces to

‘.ft:: T 0 ‘E -4 ‘( . (34)

where Dy = O/(1 + . K /i) and Vg = V/(1 + Kgfs). Solutions to

Eq. (34), subject to various initial and boundary conditions, have
sppeared for both finite soil columns and semi-infinite soil columns.
We will look at the semi-infinite case first.

6.1.1 Semi-infinite soil columns
The best-known solution of Eq. (34) was presented by Lapfdus and
Amundson (1952). Assuming initfal conditions of the form

C(x, 0) = 2.(x), x 09,
{35)
c(o, t) = ¢ (t), t 0,
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the solution of {34) presented hy Lapidus and Amundson is

Clx, t) - exp(%- z’-ﬁ)n‘y,' IR AVRESIE ()
where

Filx, t) = (a0 o)/

7ol G e e
n .
(17)

and

Faley t) = (an2)"")"
t

4 '

{ Vos X . -/
% CO(S) exp [m - m] (t -s) ds . (38)

1f Co(t) and Zo(t) are constants, Co and ZO’ respectively, then
the solutfon (36) reduces to

L thyo -} 1 v erriig - &

+ exp (%2-) erfc (/a,q ¢ -’a',TG)]. | (39)

where q is the volume of the soil solution that has entered the sofl
column since time t = 0 and 1s given by
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q =vgt- ,
4y and 3, are given by
9 Vo"‘“”o’
a, = Vo/(40g),
anc erf and erfc are the error and complementary error functions

~espectively.
when Co(t) is the step function given by

r:g OLt:T.

c.o Tet,

the solution (36) reduces to
(o H(v»;":t) s 0 :t’_T ’

Clx, t) =
Cr M(V-~t) + (C = Co) HVeo(t =T)] , Tt <+, (81)

where

Hlv) = % [1 ¢ erf(+y Qv = x/a27v) + exp(Va/D-) erfcriv + xa:7V)1
| (42)




For the special case C = 0, this snlutinn has heen used hy Warrick a+
al. 1971) and Balasubramanian et al. /1976). Assuming initial condi-
tions of the form '

C(x, 0)
c(n, ¢t) =

"
L=
™
b3
=
-

8%,

(]
Y
-
f=J
-

This form of the solution has been obtained by Rafai et al. 1956),
Ogata and Banks (1961), and Elrick et al. (1966).

Davidson et al. (1968) found an analytic solution to Eq. 34)
under the boundary conditions

C(x.0)=0. oz_x'

Vo €(0, t) = 0, 2 (0, t) = VoL Ot T, (45

V{‘]C(o.t)zn. t:'To

These boundary corditions simulate the agriculturally interesting prob-
Jem of a uniform application of a solute solution (for example, a
herbicide) to the surface of the soil for a time period T, after which
solute-free water is applied and the solute slug is displaced through
the soil, This type of application of a solute solutfon is called a
pulse application,

A solution to Eq. (34) under the above boundary condftions was
also reported by Lindstrom et al. {1967). Lai and Jurinsk (1972a) used
these solutions to study the dynamics of Na* and Mgz’ transport
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through Yolo loam soil at different pore velocities. They found that
at high pore velocities, there was good agreement between theoretical
and experimental retention curves. At lower pore velocities, however,
the transport of cations was faster than predicted by the model,

Numerous nther analytic solutions to £q. /34) for a semi-infinite
column and various initial conditions have appeared in the literature.
See, for example, Banks and Al (1964), Cho (1971), Cho et a). (1370),
Ogata (1964, 1970), Ogata and Banks (1961), Brenner /1962), G2~shon and
Nir (1969), Villermaux and Van Swaaij {1969}, Eldor and Dagan (1972),
Lindstrom et al. (1967), Crank 71956), Marino (1978), Banks and Al
(1964), Kirda et al. (1973), and Warrick ot al, (1971).

6.1.2 Finite column

Bastfan and Lapidus (1956) obtained an analytic solution of £q.
133) subject to the linear adsorption isotherm S = KqC which is
applicable to solute transport in 3 column of finite length. In order
to be able to find a solution of (38) for a finite column of length L,
the behavior of the fluid phase at cach end of the column must
be described. The boundary conditions used by Bastian and Lapidus are
given by

70 C{0, t) = D <= (0, t) = VaCay .0,

L@, =0 tzo0, (46)

C(x, 0) =0, 0-x: 1L,

where Co fs the fnftfal concentration of the solute fintroduced to the
column at time t = 0. The use of boundary conditicns of this type has
been discussed in detai? by Wehner and Wilhelm (1956). These boundary
conditions describe slug flow of the solute when D = 0 and perfect

mixing of the solute in the soil matrix when D = 4=,
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Cleary and Adrian (1973) give an analytic solution applicable to
solute transport in a finite column., The initial and houndary condi-
tions they use are given by

o, t}=¢., t-n,

C N ) :
TX. (Lo t) 0. t -0 » . (47) f

c{(0, «) =0, N-x-L,

where C0 is the concentration of the solute in the <soil solution,
Solutions similar to that given by Cleary and Adrian have been used by
Gupta and Greenkorn (1973), Kirda et al, 71973), Lai and Jurinak
(1972b), Warrick et al. (1971), Brenner (1962), Rose and Passioura
(1971), and Bresler (1972).

Selim and Mansell (1976) give an analytic solution tn Eq. (34) in
a finite column subject to the boundary conditions

C(x, 0) = Ci. 0-x-L,

—.E(Lot)=0: t?_Ot . i
X (48)

V. C(0, t) = Da 2= (0, t) = Valay 0t -T, !

Vo (0, t) - Oy 2= (0, t) =0, t2T,

' where C, is the initfal solute concentration throughout the sofl

column and Co fs the concentration of the applied solute solution.
These boundary condftions describe a cont.inuous application of a solute
solution of constant concentration for a time perfod T, after which
solute-free water is applied to the soi® in other words, a pulse
application. The case of a continuous solute application can be
obtained as a special case of a pulse application by choosing T very
1arge,
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6.2 First-Order Kinetic Reversible Linear Model

We will now present an analytic solution of Eq. 33) subject to
the first-order kinetic reversible linear adsorption eauation

(49)

If we assume initial conditions of the form

"

Z(t) L3 X - 0 L]
H-(t) , x -0, (50)
rt{t), t_o,

C(x, 0)
S(x, 1)
c{o, t)

the solution given by Lapidus and Amundson (1952) is given by

Cl«, t) = exp lvx/zollvx(x!.t) + Yz(x’ t)l ’ (51)

vhere Y, is defined by the relations

t
(s2)

Ya(xo t) = | [r (s) + Lﬁr(s)] Calt = ) ds .

J
0

F(t) = exp (=k-t)
.t

L

|

0

(53)

X oxs
[y 12K K08t = s)7el et "’"(Zﬁ - sd) ds »
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d= Ve /8D % kyogh = Ky (54)

and Vl is defined by the relations

Yi(k, t) = ,' ARty x = s) < Wty 2+ )] £(s)
]

PRt €= 5) = H(ty, « ¢ s)l ¥ls) ds , (55)

t
H(t, q) =y-§- exp(-k,t) ; I ]2 '—LZI—E"Q’S (t - s)l exp [:fsi - sd] d—:—_ .
0 'S

(56)
X(s) = Z5(s) exp(Vs/20,/0 , (s7)
¥(s) = (k2/20) [No(s) + 2 Zo(s)] exp(vs/2D) , (58)

where 14 1s the modified Bessel function of zero order.

The complexity of the solutfon to Eq. (32) subject to the 1inear
first-order kinetic adsorptfon equation (49) is characteristic of
solute transport problems when any adsorption mechanism but the linear
adsorption fsotherm S = K C {s assumed. For the special case Co(t)
= Co. 2o Ny = 0, Eq. (51) reduces to

C(x, t) = Co xp (Vx/20) [ F(t) + RZI; F(s) ds ) .




a3

Numerous other analytic solutions of Eq. (33) subject to the
Mnear first-order kinetic adsorption equation (49) and various initial
conditions exist in the literature. See, for example, Horenstein
(1945), Lindstrom and Boersma (19712, 1971b), Lindstrom and Narasimhan
(1973), Lindstrom and Stone (1974a, 1974b), Lindstrom and Oberhettinger
(1975), Nielsen and Bigger (1962), Ogata and Banks (1961), Ogata
(1964), Eldor and Dagan (1972), Oddson et al. (1970), Lindstrom (1976},
Gupta and Greenkorn (1973), and Marino (1974).

6.3 Analytic Soiution of the Cameron-Klute Model
In the Cameron-Klute combined equilibrium and kinetic model for

adsorption, it was assumed that the total adsorption had two compo-
nents, one governed by the linear adsorption fsotherm,

s=k,§c. . (25)

and the other governed by the first order linear kinetic model,

aS . L]
Bk 2c-ks. | | (26)

Combining Eq. (25) with Eq. (26), one obtains

‘11 o by 3C o n 22C i _p 3 '
(Veky) 05T~ V- 53t° (59)

where the kinetic component %% fs given by
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aS . 9 :
3t ky o C- kxS . (60)

We will make the following dimensionless transformations:

T=vwt/L, B=vL/8D , L =x/L,
C=0C/Chy MN=us/sCy, Ny =o0s/8C,, {61)
Kl = Lkllv . K:_D = Lkz/V . K-j 3 k3 .

The dimensionless time T is equivalent to the number of pore volumes
that have passed through a column of length L. The Brenner number B is
2 measure of the reiative importance of convective transport a2s compared
with dispersion (Rose and Passioura 1971). The scaling parameter c0
is chosen as the concentration of the incoming solute.

Substituting €Eq. (61) into (539) and (60), we obtain

9
(1+xy) X %5-155 x. if . (€2)
%Nf' = ch - KZNI . (63)

The initial) conditions used are as follows:

co, V=1, T>0,

e, 0)=0, ¢>0,

N(g, 0)=C, €£>0,
mc(g, T) =0 .

§on

(64)
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The solution of (62) and (63) subject to (64) given by Cameron and 3
Klute is K

c(z, T) = -4%7 lexp(28:)1 j expl=h = B2r7/h7| J(x, t) dh , (65)
w

where

8¢ (1 + K3)/N”

w =
x = Ky B:2/n?
y = Ky 1T - B2 (1 + Ky)/n?)

and J(X, Y) is the J function defined by

‘ot
X, ) = 1= e fo et 1002/ TE) dt .

The function J(X, Y) appears in a wide variety of problems, and there-
fore no attempt will be made to 1ist its properties. The reader is
referred to Luke (1962) or to the original work of Goldstein (1953).
The total adsorbed concentratfon N of solute fn the sofl matrix is

' given by
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N(7y T) = ¥ .C(:, T) + K. ; C{zy u) expl=r (T « uj}du, 166,

where C(°,T) and Cf*,u) are calculated from /6.5).

If Ky = 0, Eq. (65) reduces to the dimensionless form of the
solution obtained by Ogata (1964) for the first-order reversible
kinetic model. If K, = 0, Eq. (65) reduces to

Gy T) = 3 fexpl2B7 (1 - M)| erfcl:(8/T) /" - migT+; /" |

+ exp(285(1 + M)| erfels(B/T) /" + me1) "y, (67)

where
M= (] + Kzla)llz [}
T =T(1 + K3) .

Equation (67) represents the solution to a combination equilibrium and
first-order linear irreversible kinetic model. If Ky and K2 equal
zero, this combination model reduces to the linear {sotherm mode!
solved in Sect. 6.1. The soluticn (36) can be obtained from E3. (67)
by setting M = 1,

6,& Convolution Solutions

This section presents a solution, based upon the use of convolu-
tion integrals, of the one-dimensional equation describing the flow of
a solute through an adsorbent soil. For simplicity, we assume that a
linear adsorption isotherm describes the adsorption equilibrium between
the soil and the soil solution. Thus, as in Sect. 6.1, Eq. (33)
reduces to
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€, . w3 ‘
T e +68)
where
K
Dg * 0/ (1 . —-9)
K
i q)

The analytic solution of Eq. (68) corresponding to an instantaneous
release of a finite quantity of material M (g/cmz) is given by

Clx, t) = —o— exp [- L= v"")'] . (69)

-'m
For a more general time-dependent release, the solution of (68)
may be cbtained by the use of a convolution integral. Assume that,
fnstead of an instantaneous release of a finite quantity of material,
the material is continuously introduced at the rate ad—"'- = f(t)
[gl(cmzo sec)]. The concentration distribution resulting from this
continuous discharge is given by
1 ! (s) ( )l
i f(s -ix = Vs{t = s)]?
C(x, t) = ! exp - }ds . (70)
' JED, 6 tes 4Dyit - sJ

From Eq. (70) the concentration distribution corresponding to a
square pulse release of amplitude co end durstien TD is given by

1

0
c I - - v t - 2
Clxy t) = :o L — exp{-l-‘b—(l(-—ru" Tt s 3 }ds (n)
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for 0 <t « TD and by

T

4 D -
. Lo 1 =lx - ¥-(t - s)7}|
Clx, t) T, 5 — exp{ a0-(t - 5) }ds (72)

for TD -t

This equation may be integrated to give

Cix, t) = iy exp ( n) g(x, t) , 0-t-T.,

(73)
Clx, t) = ;v:q' exp (2'5-) lg(x, t) - g(x! t - To“ ’ TD -t,

where

stco 0 = [err{itet) 1] e (3f2) - err (=228 1] e (- 352)

In general, for releases other than square pulses, the integral (70)
must be evaluated by numerical quadrature.

7. CONCLUSION

This study provides a state-of-the-art review of selected aspects
of the mathematical theory related to the transport of reactive solutes
fn soil. It focuses on two primary areas of interest: the mathemati-
cal models in current use for description of the adsorption-desorption
process in sofl and the known analytic solutions to the differential
equatfons decribing the convective-dispersive transport of reactive
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solutes n one dimension. It fs expected that the review provided by
this study will be of assistance in the development of improved method-
ologies for assessing health effects associated with the terrestrial
transport of both radioactive and chemical pollutants from enerqy-
related technologies.
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