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INTRODUCTION

The determination of the fate of contaminants that enter
groundwater systems pose difficult mathematical problems for
the modeler. This is particularly true when compliex multi
component interactions occur among mobile and immobile spe-
‘cies. The types of chemical reactions that can occur include;
acid-base, adsorption-desorption, complex formation, ion
exchange, oxidation-reduction and precipitation-dissolution.
This paper will focus on the analysis of precipitation-
dissolution reactions.

In multi-component tra...oort systems, ccmietition for sorptive =
sites can have unexpected results. Pre.erential jon-exchange
or surface complexation can produce a concentration “spike"
within the domain that exceeds the solute's source strength.
This can occur whenever a rapidly moving component occupies
surface sites and then is displaced by competition with some
less mobile species. The concentration "spike" that develops
in the neighberhood of the competition front will continue to
grow as the solution penetrates further into the domain.
Eventually this can grow until the solution's solubility
constraints are violated. At this point a precipitate should
form, and then dissoive once the concentration spike has
passed. Therefore, to be successful, the mass transport model
must be capable of accommodating both precipitation and disso-
lution reactions even for cases where the source strengths
satisfy all solubility constraints,

In this paper, different formulations of the equations
governing multicomponent mass transport with solution phase
complexation, competitive adsorption and precipitation-
dissolution are developed and their relative merits discussed.
A finite element method of solution of one of the formulations
is presented along with a sample simulation,
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MODEL PROBLEM

To avoid the complexity that often accompanies generality, the
following model problem is considered. Let cy, ¢, be the con-
centrations (mass per unit volume of fluid) o} two metals, c3
the concentration of a nonadsorbing l1igand and cj3 the con-
centration of a soluble complex formed by the reaction of
constituents one and three. A mass balance on each species in
solution yields

Lcy + 3cy/at + 3sq/3t + r =0 (1)
Lep + 3cy/at + 3sp/3t + 3p/at = 0 (2)
Lcg + 3ca/at + 3p/at + ry = 0 (3)
Leyg + 25q3/dt + 113 =0, (4)

where the convection-diffusion operator in one dimension is

1
L(*) = - F5 32(-)/ax? + a(*)/ax, (5)

and P, is the Peclét number. In the above system cy and cp
are presumed to engage in competitive adsorption, thus sy, S2
are the concentrations of the sorbed forms of ¢y, €2 respec-
tively. Also, ry, r3, r13 are the rates of accumulation of
cy» €3» Cy3 due to reaction in solution. It is also pre-
sumed that a heterogeneocus precipitation-dissolution reaction
occurs between species two and three, and p is the con-
centration of the precipitate.

Each reaction occuring in the system (1) - (4) will be
discussed separately.
Solution Phase Complexation. The reaction which forms the
soluble complex 1§

ke
& + &3 ¢
ke

€13 (6)

where {*) denotes moles of the indicated species, thus

the symbol &;, for example, means one mole of species one.

As noted above, the concentration of species one is ¢y = [¢;].
For ease in presentation, all stoichiometric coefficients are
taken as one, and order corresponds to stoichiometry,

The reaction rates for (6) are
rp=r3=-ry3 =kecy3-kecy ey (7)

For the analysis herein, the local equilfbrium assumption is
made. This means that k. » = and k¢ » = at a fixed ratio
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K13 = k¢/k, while the rates ry, r3j, rq3 are assumed to be
bounded and not identically zero. The condition for this is

€13 - K13 ¢y ¢3 = 0. (8)
This is simply the law of mass action for (6).
Sorption. For the system (1) - (4), the sorptive mechanism is
assumed to be surface complexation (adsorption-desorption).

Ion exchange leads to a similar mathematical system. The
reactions are

§1 + K (9)
§2 H Kz (10)

&1 + R 2 )R

8y + R ¢ o=k

where % indicates an immobile surface site. It is further
assumed that the total concentration of immobile surface
sites (free plus occupied) is constant, i.e.,

X +5) +Sp = X7 (11)
Again invoking local equilibrium, writing the law of mass

action for (9) and (10) and using (11) leads to the familiar
competitive Langmuir isotherms,

s1 = x7 Ky cy/(1 + Ky ) + Kz c2) (12)

s2 = X7 Ko cp/(1 + Ky ¢ + K ¢3) ' (13)
Precipitation-dissolution. The following reaction

p=Cr-832cCy+ &y, (14)
occurs to enforce the constraint,

c2 €3 < Ka3 , ' (15)

where Kpq is the solubility product. In essence, (15) is an
1nequal¥ty constraint on the system (1) - (4), with the solid
present only when (15) is satisfied but with p = 0 if

PROBLEM FORMULATION

The rates ry, r3, rj3 may be eliminated as unknowns as
follows. Add (?) to (4) and (3) to (4), utilizing (7) to

yield,
L{cy + c13) + 3(cy + cy3)/3t + asy/3t = 0 (16)
L(cy + c13) + 3(cy + cy3)/3t + 3p/at = 0. (17)
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The number of unknowns in the system is now seven; ¢, €y C3,
c}g, S1» S, p and there are seven equations; (2), (16). (l7i,
(18), %12), (13), (15). 1If cp €3 < Kp3 there is one Tess
equation, (15), and one less unknown, p. This approach to
problem formulation has recently been taken by Miller and
Benson (1983). Therein a finite difference approximation, in

space and time, was used for equations (2) and (17). The total

number of nonlinear algebraic equations to be solved every
time step is then seven times the number of grid points, minus
the number of specified degrees of freedom. An alternate for-
mulation is obtained by introducing the total soluble con-
centration of each component as a primary unknown, i.e. let

up = €] + 13, (18)

up = €z , v19)

uz =c3+¢C13 . (20)
Equations (2), (16) and (17) then become,

Luy + duy/at + 3sy/at = 0, (21)

Lup + dup/at + 3sp/at + 3p/fat = 0 , (22)

Lug + dug/at + ap/at = 0 . (23)

This has simply added three additional equations and three
additional unknowns to the system. Note however that (8), the
law of mass actfon for the solution phase reaction, may be

sub?tituted into (18) through (20) and that system inverted to
yield,

cy = Ei(ul. 03) s, 1=1,3. (24)
In (24), the distinction between a function, &;, and its
value, ¢y, s made. The fact that an equation like (24) may
be written even for a more general system is guaranteed by the

implicit function theorem. Equation (24), in the general

case, may be implicit, but since a numerical solution is anti-
cipated this is acceptble.

Equation (24) can now be substituted into (12), (13) and (15)
to yield,

sy = §4(uy, up, u3) i=1,2 (25)

€2 €3 = Ko3 (26)
'Equation (25) s now substituted into (21) and (22) to yield

Luy + 3uy/at + agy/at = 0 . (27)
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Lup + dup/at + 3§,/5t + ap/at = 0 (28)

In essence the number of primary unknowns has been reduced to
four; uj, uE. u3 and p with four equations; (27), (28), (23)
and (26}. or larger systems the reduction in primary
unknowns, from the formulation discussed above, is even more
dramatic.

The fundamental difference between the two types of solids
present in the system should perhaps be noted here. The rate
of accumulation of a particular component due to sorption can
always be expressed as a function of the total soluble con-
centration of all components engaged in competition for sur-
face sites. Thus, in effect, the sorption term can be
considered a nonlinear source/sink term. The precipitation
term, however is clearly not a function of the solution phase
concentrations, in essence because p does not appear in the
“constraint"” equation (26). Therefore in the second for-
mulation the solid accumulated due to precipitation is
retained as a primary unknown.

Note that the total number of unknowns in the system has not
actually been reduced; the secondary unknowns €13, Sy» S2
still must be evaluated during the course of the solution
process. However, the solution of (24), (25) and (8) at
discrete points in space and time is certainly less effort .
than expanding the total system to include these variables as
primary unknowns as is done in the first formulation
discussed.

In equations (28) and (23) the ratio of the rate of accumula-
tion of up to uj due to precipitation is fixed by the
stoichiometry of the reaction (14). It is this fact which
differentiates the system considered here from the classic
problem of a system subjected to an inequality constraint,
where this ratio is determined by the orientation of the
“constraint surface"; Dorny (1975). This fact also allows
another formulation to be developed where the precipitate p
is removed as a primary unknown, Simply subtract (23) from
(28) to yield .

L{ug - u3) + 3(up - u3)/at + asp/at = O (29)

The primary unknowns are now three; ujy, Uz, uy with three
equations: (26), (27) and (29). In the case where the
stoichiometric coefficients are not one, 2 linear combination
of (23) and (28) will still eliminate p. Again p must still
be calculated during the solution process, but this is easily
done using (23) or {28) once the primary unknowns are
available,

If there is no sorbed form of up then (29) indicates that the
difference, up - u3 is transported conservatively and this
quantity can be introduced as a primary unknown. This type of
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problem has been recently discussed by Rubin (1983). This
approach cannot be taken with sorption, however, since § is
not a function of the difference up - uj3.

It would seem that this last formulation is the m -
tive having the fewest number of primary unknownSTStHg::::ﬁ
there are other considerations, such as; ease in programming
efficiency, and ease in generalizing to a larger system. |
Space does not allow a complete comparison of these alter-
natives here. Rather, a numerical procedure and sample
problem will be presented for one formulation; the primary

system governed by (27), (28), (23 d
as an unknown. (27), (28), (23) and (26), which retains p

NUMERICAL SOLUTION

The unknown functions in (27), (28), (23
polated as follows (27), (28), (23) and(26) are inter-

uj(x,t) = ¢(x) * ug » (30)
si(x,t) = ¢(x) = s34 (31)
p(x.t) = ¥(x) - P s (32)

where, for example, uy is a vector whose components are
concentrations, uj at the nodal points, i.e.,

uj = (U410 U§2s oees U4N) (33)

In the example to follow, the vector of shape functi

the the "hat* functions, Strang and Fix (1933). §?n2255 %a;re
exhibit discontinuities it should not be interpolated with C°
shape functions. Here a vector of Dirac delta functions cen-
tered at the nodal points is used. Thus

pj if x = x4 (ith nodal point)
p(x,t) = (38)
0if x # x4 .

Employing a standard weighted residual approach th

that the solubility constraint be satisfggd only agnt;:q:lggi
points and precipitate is only accumulated at the nodal points
The weighted residual formulation reduces (27), (28), (23) and.
(26) to a set of coupled ordinary differential and algebraic
equatfons. The ordinary differential equations are converted
to algebraic equations by a finite difference approximation.
Herein the backward difference scheme is used. The resulting
set of nonlinear algebraic equations are solved tteratively
using Newton's method and the solution is marched through
time. The constraint, {26), is presumed not to be in effect
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initially, and it is checked at each node every iteration and
is either "turned-on" or “turned-off" appropriately.

RESULTS

A simulation was performed for the model problem introduced
above and the results are summarized in Figures 1 through 6.
In order to isolate the effects of precipitation as much as
possible, aqueous complexation was not considered. Thus uy,
up, u3 become simply ¢y, ¢, c3. The source strength of all
solutes were fixed at the upstream boundary and taken equal to
Coe THe gradients of all solutes were set to zero at the
downstream boundary, which was located a sufficient distance
beyond the column length that the model simulates a semi
infinite domain. Zero initial conditions were specified for
c1» €2 and p while c3 was given a constant initial con-
centration equal to ?ts source strength. The physical and
chemical constants used were: P, = 40, Ky = 10,0, Ko = 1.0, .
x7 = 5.0. To show the effect of precipitation the simulation
was performed with Kp3 = 1.2 and Kp3 = = (i.e., no precipita-
tion) and the results compared.

Figures 1 and 4 show the concentration profiles for the

adsorbed solids sy and sp, without and with precipitation
respectively. Nh*le precipitation has very little effect on

the results of sorption the driving force for the precipitation
js evident. A chromotographic effect is seen as the arrival of
the ¢y front displaces ¢, from the surface and thus back into
solution. It is the greater affinity of the cy for adsorption
which causess the concentration of cy to rise above its source "=«
strength. Figures 2 and 5 show the soluble concentration pro-
files at 5.0 pore volumes, without and with precipitation.
Without precipitation c3 is conservative and since the initial
condition equals the source strength, cj remains constant. The
strong chromatographic effect is clearly displayed in Figure 2.

Concentration profiles for the simulation with precipitation
are given in Figure 5. The concentration of c3 is no longer
constant. There is a zone where the concentration is elevated
above its source strength due to the addition of c3 to the
aqueous phase as the solid dissolves., Beyond this zone c3 is
below its source strength due to precipitation. The co pro-
file is also altered considerably from Figure 2. It also
exhibits two zones; the first shows a small increase over the
source strength due to dissolution and the second higher pla-
teay due to competition. The concentration in this
"competition zone" is not as high as in Figure 2 because cp is
removed from solution by precipitation. This two stage beha-
vior is effected by the relative source strengths of the solu-
tes, the fnitial conditions, adsorption, as well as the.
solubility product, Kp3.

The concentration of the precipitate, p, is also given in
Figure 5. As discussed in the previous section the solubility
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constraint was imposed pointwise at the nodes, and thus preci-
pitate was only accumulated at the nodes. For graphical pur-
poses, an average concentration was computed at each node and

these values then interpolated. This was done in order to show

the relative amount and position of the precipitate to the
aqueous components. Breakthrough curves for the simulations
without and with precipitation are presented in Figures 3 and
6 respectively. Figure 6 shows clearly the lowering of the
¢2 peak, A second zone where ¢y is greater than the source
strength due to dissolution is exhibited from approximately
six to ten pore volumes. The precipitation and dissolution
zones are also clearly displayed in the c3 curve. For com-
parative purposes the precipitate breakthrough is also given.

CONCLUSION

Scveral formulations of the equations governing multicomponent
nass transport with chemical interactions including
precipitation-dissolution reactions were presented. A finite
element solution algorithm was presented with a sample simula-
tion. The simulation was for a system where the concentration
of one component rises significantly above its source strength
due to competitive adsorption with a less mobile solute. With
the imposition of a solubility constraint this increase of
soluble concentration above the source strength was signifi-
cantly reduced. This simulation serves as an example of the
importance of modeling precipitation-dissolution even in cases
where there is no solid initially present and the source
strengths satisfy are all solubility constraints.
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