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CONVERSION DATUM

For those readers interested in using the metric system, the following

table may be used to convert the inch-pound units of measurement used in this

report to metric units:

Multiply By To obtain

foot 0.3048 meter

foot per day 0.3048 meter per day

foot squared per day 0.09290 meter squared per day



A DUAL-POROSITY MODEL FOR SIMULATING

SOLUTE TRANSPORT IN OIL SHALE

By Kent C. Glover

ABSTRACT

A model is described for simulating three-dimensional ground-water

flow and solute transport in oil shale and associated hydrogeologic

units. The model treats oil shale as a dual-porosity medium by simulating

flow and transport within fractures using the finite-element method.

Diffusion of solute-between fractures and the essentially static water of

the shale matrix is simulated by including an analytical solution that

acts as a source-sink term-to the differential equation of solute transport.

While knowledgeof fracture orientation and spacing is needed to effectively

use the model, it is not necessary to map the locations of individual

fractures.

The computer program listed in the report incorporates many of the

features of previous dual-porosity models while retaining a practical

approach to solving field problems. As a result the report does not

extend the theory of solute transport in any appreciable way. The emphasis

in the report is on bringing together various aspects of solute-transport

theory in a manner that is particularly suited to the unusual ground-water

flow and solute-transport characteristics of oil-shale systems.



INTRODUCTION

Digital models of ground-water flow and solute transport have been

used to predict possible impacts of oil-shale development on the ground-water

resource (Robson and Saulnier, 1981). Unfortunately, modeling techniques

used in the past either were not developed for use in rock, such as oil

shale, where porosity depends on fracturing, or required data that

usually are not available. From 1980 to 1983 the U.S. Geological Survey

studied migration of solute from an in situ oil-shale retort near Rock

Springs, Wyo. (fig. 1). The emphasis of the study was to identify geo-

Figure .--(caption on next page) belongs near here.

logic, hydraulic, and chemical factors that control the process of solute

transport in oil shale. During the study, it became apparent that no

existing model was well suited for the unusual flow and transport

characteristics of oil-shale systems. Therefore, as part of the study,

a model was developed.

This report describes two digital-computer programs that are used to

simulate ground-water flow and solute transport in oil shale with inter-

bedded tuff or sandstone. The U.S. Department of Energy experimental,

in situ, oil-shale retort near Rock Springs, Wyo., was used as the prototype

flow system of the model. The application of modeling techniques to this

flow system is described in a report by K. C. Glover, U.S. Geological

Survey, written commun. (1985). The model is designed for use in site-

specific studies and consequentially includes many features, such as

diffusion of solute between fractures and the shale matrix, that may not

be important to basin-wide or regional investigations.
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Figure I.--Location of in situ oil-shale retort near

Rock Springs, Wyoming.
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A wide array of ground-water flow and solute-transport models have

become available in recent years. Konikow and Bredehoeft (1978), and

INTERCOMP Resource Development and Engineering, Inc. (1976) describe two

of the more commonly used programs. Other models that are potentially

useful in studies of oil-shale hydrology are described by Bibby (1981),

Noorishad and ehran (1982), and Rasmuson and others (1982). The model

described in this report incorporates many of the features of the above

models while retaining a practical approach to the solution of field

problems. Boundary conditions can be applied easily and mapping of

individual fractures is not necessary. As a result of this approach,

the present model does not extend the theory of solute transport in

fractured media in any appreciable way. Instead, various aspects of-

this theory are brought together in a manner that is particularly suited

to the unusual ground-water flow and solute-transport characteristics of

oil-shale systems.

Throughout the remainder of this report it is assumed that the reader

is familiar with the basics of solute-transport modeling in porous media,

such as sand-and-gravel aquifers, as well as the finite-element method

of numerical analysis. It is believed that most hydrologists faced

with a problem of solute migration in oil shale will have faced similar

problems in unfractured media. For those readers unfamilar with

applications of solute transport modeling using the finite-element

method, it is suggested that teaching references such as Freeze and

Cherry (1979), Konikow and Bredehoeft (1978), and Zienkiewicz (1971)

be consulted.



OIL SHALE AS A DUAL-POROSITY MEDIUM

Porosity in oil-shale formations may be classified on the basis of

its relationship to hydraulic conductivity. Porosity may be considered

effective for increasing hydraulic conductivity if the pores are interconnected

or not effective, as in shale, if the pores are relatively isolated.

Porosity due to faults, joints, collapse breccia,. and solution cavities

is the major source of permeability in oil shale with otherwise low

permeability (Robson and-Saulnier, 1981). Persistent layers of permeable

tuff or sandstone, ranging in thickness from less than an inch to several

inches, also are common in oil shale (Bradley, 1964) and contribute to the

hydraulic conductivity. The porosity of the shale and marlstone matrix,

although relatively high, does not contribute significantly to hydraulic

conductivity.

Any attempt to simulate ground-water flow and solute transport in

oil shale must include consideration of the dual-porosity nature of-these

sediments. The solute-transport processes of hydrodynamic dispersion and

advection are related directly to seepage velocity and therefore are

related to the effective porosity of the formation. However, several

investigators including Grisak-and Pickens (1980) and Bibby (1981) have

noted that dispersion and advection alone cannot account for the distribution

of non-reacting solute, in fractured formations. The extremely low seepage

velocity of water within the shale matrix minimizes dispersion and advection,

increasing the relative importance of diffusion. The porosity of the shale

matrix, although not contributing to hydraulic conductivity, is important

to dispersion.
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ETHODS OF SIMULATION

Ground-Water Flow

Only the part of formation porosity that contributes to hydraulic

conductivity needs to be considered in analysing ground-water flow systems.

For most practical purposes this porosity in oil sale, whether resulting

from faulting, solution channels, or thin beds of permeable tuff and

sandstone, can be analysed using the techniques of Snow (1969). He

showed that many problems of flow through dual-porosity media can be

solved using an anisotropic hydraulic-conductivity tensor in conjunction

with standard porous-media techniques. His approach to the problem of

ground-water flow is valid if the formation has a fracture density that

is high compared to the scale of the problem. In such a case, the hydraulic

characteristics of the fractured formation are similar to those of granular

media. If fracture spacing is irregular in a given direction, the formation

will exhibit heterogeneity. Because mapping of individual fractures is

impractical for most field problems, the approach of Snow (1969) is used

in this model. From a practical viewpoint the model described in this

report may be useful when the hydrologist has some knowledge of the

average spacing, aperture size, and directions of fracturing, but accurate

mapping of individual fractures is not possible. Through proper

alignment of the model artesian coordinate axes with principal directions

of fracturing and use of heterogeneous hydraulic conductivity values,

many different fracture geometries can be simulated.

/



The three-dimensional nature of a-fracture system, along with the

essentially horizontal bedding plane of most formations, generally results

in a three-dimensional flow system in oil-shale strata. Three-dimensional

flow systems in oil shale have been observed on both a regional scale by

Robson and Saulnier (1981) and on a local scale by the author at the

Department of Energy in situ oil-shale retort near Rock Springs, Wyo.

Therefore, the program given in this report is intended for use in

studies of three-dimensional ground-water flow.

Rocks in the vicinity of an in situ retort are altered due to

induced fracturing., As a result fracture patterns in the retort

chamber are significantly different than regional fracture patterns.

The values and degree.of anisotropy.of hydraulic conductivity within

a retort chamber also differ from regional estimates. Nevertheless

the fracture density usually is high, compared to the dimensions of the

retort chamber, and standard porous-media techniques can be used to

simulate ground-water flow in the immediate-vicinity of the retort

chamber.



Solute Transport

The extension of solute-transport theory to dual-porosity media has

attracted considerable attention in water-resources literature. Much of

the literature has been directed toward studies of radionuclide migration

through individual fractures and as such is not directly applicable to

field problems where mapping of individual fractures is impractical.

Grisak and Pickens (1980) modeled fractured media by using separate

finite elements to represent fractures and adjacent low permeable

rock. Finite elements used to represent the fractures were modeled with

material properties that differed from adjacent low-permeability

elements. This. approach was extended by Noorishad and ehran (1982), who

also introduced the use of an "upstream-weighting" technique to simulate

more accurately the essentially advective transport that occurs within

the fractures.

Bibby (1981) took a different approach to modeling solute movement

through dual-porosity media. Molecular diffusion between fractures and

the primarily static water in the shale matrix was incorporated in the

model as a source-sink term utilizing an appropriate analytical solution.

To apply this two-dimensional model the user needs to know average

spacing, aperture diameter, and direction of fractures but does not need

to map individual fractures. This approach is analogous to the method of

flow analysis discussed by Snow (1969). Although no upstream-weighting

technique was used, Bibby (1981) reported no difficulty in applying the

model to a field problem in a limestone aquifer.
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Rasmuson and others (1982) presented a model for simulating three-

dimensional solute transport in fractured rocks that is based on an

integrated finite-difference approach. The model produces excellent

results if solute transport is dominated by hydrodynamic dispersion.

Because advection dominates most solute-transport problems in oil-shale

strata (Robson and Saulnier, 1981), the approach of Rasmuson and others

(1982) is not considered practical for use with oil shale.

The approach to modeling solute transport presented in this report

is basically the model described by Bibby (1981) and extended to three

dimensions. This approach has been selected because it strikes a balance

between theoretical accuracy and practical applicability. Accurate

mapping of fractures is not needed to use the model, although some knowledge

of the fracture system is required. The ease with which boundary conditions

can be applied also supports this approach. One disadvantage of the approach

is the difficulty of extending the analytical solution for diffusion between

fractures and the shale matrix to problems of multiple-species transport.

A model that can be extended to problems of multiple-species

transport is described by uyakorn and others (1983). Unfortunately,

fracture locations must be accurately napped to use the model successfully.

Therefore the model of Huyakorn and others (1983), although theoretically

superior to the model of Bibby (1981), cannot be applied in most practical

field problems.

/9.



APPLICATION OF THE FINITE-ELEMENT METHOD

Ground-Water Flow

The basic governing equation for three-dimensibnal flow, when

Cartesian coordinate axes are aligned with the principal components of

the hydraulic-conductivity tensor, is as follows:

a ah~~~L
(K. h ) + W = S ah i 1,2,3 (1)

ax. ax. at

where K. = the hydraulic conductivity tensor LT I1;

W = the source-sink function (positive for a source) [T 1;

S = specific storage (L 1;

h = the hydraulic head [L);

xi = Cartesian coordinate [L], and use of a repeated subscript

indicates summation on that subscript; and

t = time [T).

The source-sink term may be distributed areally or may represent a well.

Boundary conditions that may be applied on the periphery of the problem

area include known specific discharge normal to the boundary or known

hydraulic head. Parameters KI, W, and S are approximated by subdividing

the region of interest into discrete zones. Parameters are assumed to be

constant within each zone which gives rise to internal boundary conditions

at zonal discontinuities. Along these internal boundaries both hydraulic

head and normal specific discharge must remain unchanged as the boundary

is crossed.



Equation I may be solved by using the finite-element method based on

the Galerkin criteria. Details of this method are described in Zienkiewicz

(1971) and Pinder and Gray'(1977). Within this report,'first-order

basis functions are used to describe each cubic element. While use of these

basis functions requires more elements than if higher-order functions were

used, the reduced oscillatory behavior and integration time associated with

linear functions make this'simpler approach preferable.

'The matrix equation resulting from the finite-element discretization

of equation 1 is as follows: ---

(Lt c + OR) h m q + (I (1-G)R) m -1 (2at Atm

where c = a coefficient matrix involving specific storage (S ) and

calculated for a single finite element as WV 5 (n) dV;

K = a coefficient matrix, with off-diagonal components equal

to zero, involving hydraulic conductivity and calculated

for a single finite element as

- f (K1i ) t)dV , i = 1,2,3;

hi m = the vector of hydraulic head at time m;

q = the known vector involving source-sink terms and specified flux

boundary conditions;

Atm = the length of the time step;

6 = a number ranging from 0 for an explicit solution to 1 for

an implicit solution;

V = the volume of the finite element;

n = the vector of finite-element shape functions; and

t = the transpose of the enclosed vector.



Equation 2 is solved by Gaussian elimination for banded symmetric
matrices. Although other direct-solution techniques, such as Cholesky
decompositon, can be used, the procedure used in this report has proven
adequate. Gupta and Tanji (1976) has suggested the use of matrix solvers
that take full advantage of the sparse nature of coefficient matrices in
attempts to reduce core storage requirements. The trade-offs in these
matrix solvers are increased disk access and increased computational
time. With the introduction of virtual-memory operating systems used by
most computers, such detailed attention to minimizing core storage is not
required.
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Solute Transport

The transport of a conservative solute in ground water is described

by the following equation:

a 8c

(Dij a- -~i- (cqi) = a at -Wc* iJ = 1,2,3 (3)
aL (D J

whereD = the hydrodynamic-dispersion coefficient LIT 1;

c = solute concentration [ML 3; and --

* = porosity Idimensionless];

qi=-Kiah = the Darcian fluid velocity [LT-1 ;

W = a source-sink function T 1 ;

c = solute concentration in a fluid source [ML I.

When applied-to dual-porosity media such as oil shale, the terms are

defined relative to the joint or fracture system, with the shale matrix

considered impermeable. The hydrodynamic-dispersion coefficient (Dij) is

related to Darcian fluid velocity in the fracture system by

Dij aijmn qn + D i,j,m,n, = 1,2,3

where aijmn = dispersivity of the fractured media [LI,

qm and q = Darcian fluid velocity [LT I,

/q/ = the magnitude of the Darcian velocity vector [LT , and

D = the molecular-diffusion coefficient L2T-1 .

for isotropic media,

aiii = aL = the longitudinal dispersivity for i = 1,2,3;

aiijJ = T = the transverse dispersivity for i,j 1,2,3; and

aijij = k (a L - aT) for ij = 1,2,3.

There is no corresponding theory describing hydrodynamic dispersion in

anisotropic media.
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The form of the transport equation used in this report also is used

by Pinder and Gray (1977), and Bibby (1981). Konikow and Bredehoeft

(1978) and most studies of solute transport done by the U.S. Geological

Survey use a form of the equation that is obtained by dividing equation 3

by porosity. The hydrodynaMic-dispersion coefficient then is defined in

terms of seepage velocity. Either form of the equation can be used

successfully. However, when comparing results of studies using different

forms of the transport equation, it should be recognized that the dispersion

coefficients will differ by the magnitude of porosity.
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Galerkin's method of weighted residuals, when applied to equation 3

with isoparametric finite elements, gives

e + @D m c + (^ P - C1@§ c m-m in

where P = a coefficient matrix involving porosity and is calculated

for a single finite element as fff V n (n) dV;

= a coefficient matrix involving hydrodynamic dispersion and

advection and is calculated for a single finite element as

fffV(Di a ( - qi an (nit )dV ij, = 1,2,3;.

cat = the vector of solute concentration in fractures at time m; and

qc = a known vector involving specified flux boundary con-

ditions and source-sink terms (W), solute concentration

in fluid sources (c*), and diffusion

between fractures and the rock.

Detailed information on formulating this equation can be obtained from

Bibby (1981) or Pinder and Gray (1977, p. 144-148). Equation 4 is solved

by the Gauss-Doolittle method for banded, nonsymmetric matrices.



Diffusion within the Oil-Shale atrix

The exchange of solute between water in a system of parallel

fractures and the essentially static water in the adjacent oil-shale matrix

can occur by molecular diffusion and can be simulated by the addition of a

source-sink term to equation 4. Bibby (1981) gives this source-sink term as

a convolution integral that is expressed here in discrete form at time t.

where 

At

CB (ta

WC = - * db kC tm) - C 3(tml)J 

ic the mass flux of solute entering the fracture [/L3/TI;

OB= the porosity of the oil-shale matrix dimensionlessi;

b = the average distance between parallel fractures [LI;

ta = [t,-tM1 ], the length of the time step [T];

f = the average fracture width L);

B = the average solute concentration in the oil-shale matrix [(/L3];

= C(t ) [18 I* ('0-7 i Lexp (-Bat)J+I c(tM)
n=O i

_c~t exp81-B(t.-ti)l

-exp [-Bn(t - ti)1 ;

= the solute concentration in the fracture at the beginning

of the simulation [/L31;

n = an index of summation (dimensionless;.,.

En= (2 - 1)2;

= = Dd(2n+l) n2/b2;

) = the solute concentration in the fracture at time t [M/L 3]; and

id = molecular diffusion of solute within the oil-shale matrix L2/T1.

c(tC

I

c(t]

.2/



The only unknown variable in equation 5 is c(t,). Therefore, the

coefficient associated with c(t ) is placed on the main diagonal ofm

the D matrix in equation 4, while the remainder of the expression is

placed in the right-hand vector of known values. Equation 5 involves

summation over the entire period of the simulation. Fortunately, little

truncation error is introduced by retaining only a small number of terms

in the summations. The optimum number of terms to retain depends on the

values of D, b and Atm; however, from information presented by Bibby

(1981), it is apparent that between five and ten terms are adequate for

most applications.

Several aquifer properties must be determined to use equation 5

successfully. These proporties include molecular diffusion within the

oil-shale matrix (Dd),.average distance between parallel fractures

(b), average fracture width (f), and can be obtained-for each of these

properties, model calibration usually must be used to improve upon the

estimates. Therefore equation 5 generally is useful only in studies

with well distributed and frequent measurements of solute concentration

in wells.



Sources of Solute Within the Retort Chamber

Mechanisms for creating and leaching chemicals from burned shale

within an in situ retort chamber to the formation water are poorly understood.

Knowledge of conditions during the retort process is needed to determine

the chemicals that are created, while an understanding of dissolution

controls is needed to predict how the created chemicals are transferred

from the burned shale to the formation water.

The retort temperature, total time of retorting, permeability of the

retort chamber, and initial mineralogy affect the type and amount of

chemicals created during a burn. During combustion of a retort chamber,

a "flame front" or zone of combustion moves through the fractured oil-shale

bed. Hot gases from this combustion move ahead of the flame front and

provide energy for pyrolysis of kerogen. In the pocess, a number of

chemical by-products are created. A discussion of how these by-products

are created is outside the scope of this report. However, it is important

to recognize that the resulting chemicals will vary from retort chamber

to retort chamber. In large chambers, the distribution of chemical by-products

within the chamber also may be important. Coring of an abandoned retort

chamber before it resaturates and lab analysis of the cores by long-term

leaching studies can provide some understanding of the chemicals that are

created during retorting.
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After the retort operation ceases, the chamber resaturates and

chemicals created during the burn are leached into the water. During the

time that it-takes to resaturate the retort chamber a rapid increase in

the concentration of solute occurs. For many studies of solute transport,

an equation to describe the initial dissolution is not needed because

migration of solute from the retort chamber is unlikely until the formation

resaturates.

After the retort chamber resaturates, Hall (1982) proposed that

diffusion between the pores of the oil-shale matrix and fractures acts as

a dominant mechanism for introducing solute to a ground-water system.

This mechanism is simulated by equation 5. As discussed previously,

equation 5 describes diffusion between the oil-shale matrix and a system

of parallel fractures. Fracturing within a retort chamber is uch more

irregular but can be conceptualized as two systems of parallel fractures,

one'vertical and one horizontal, resulting in cubes of oil-shale. Matrix

diffusion within the retort chamber'can be simulated by applying equation 5

once for each fracture orientation.

In addition to rock and fracture characteristics discussed previously,

the use-of equation 5 to simulate a source of solute requires an estimate

for the intial solute concentration in the pores of the oil-shale matrix

(CB). Water-quality ampling as the retort chamber resaturates will

provide a measure of solute concentration in fractures but not of solute

concentration in the shale-matrix pores. In cases where solute migration

outside the chamber does not occur until some time after the inital

resaturation the initial solute concentration with the shale-matrix pores

may be approximated by the initial solute concentration within fractures.

Study by the author and the Department of Energy in situ oil-shale retort

near Rock Springs, Wyo. indicate that this approximation may be

reasonable in many cases.



In situ retort chambers are sources of solute for extended periods

of time after retorting stops. This characteristic has been observed by

the author at the U.S. Department of Energy, experimental, in situ,

oil-shale retort near Rock Springs, Wyoming and by Hall (1982) in labor-

tory experiments. The source of solute cannot be explained solely by

diffusion from burned shale into fractures.

Hall (1982) has proposed a mechanism to explain the long-term source

of solute that is based on the slow dissolution of the mineral matrix

from pore walls. Although he was unable to provide a good theoretical

basis for this slow dissolution, he proposed the use of an empirical

expression to simulate the mechanism. The expression is

K A(c -c) (6)

where K = the mass transfer coefficient [L 1, -

A = the interfacial area [L21

Ce = the equilibrium concentration of fluid in contact

with shale blocks [ML-31, and

c = the solute concentration [ML-3 .

This equation acts as a source-sink term to the solute-transport equation

and simulates the dominant mechanism for leaching of burned shale after

the passage of two to three pore volumes of water.



Application of the proposed leaching mechanism to a field problem

requires that K , A, and ce in equation 6 be determined. While Hall

(1982) determined values of the product K A for organic solute from

column experiments,-the applicability of these values to field problems

is unknown. Therefore K A is effectively a parameter that must be

estimated during model calibration. The equilibrium concentration,

ce, can be estimated from long-term leaching-tests of burned shale.

Unfortunately, these-tests have been performed for very few of the chemical

species found in oil-shale retort water.

The use of empirical equation 6 to describe mass transfer essentially

provides an infinite source of solute to the medium where, in reality,

such a source is finite. Therefore the use of equation 6 will over

estimate solute concentrations in the-trailing part of a plume. The use

of equation 6 is justified in studies of solute transport in oil shale

where the distribution of solute in the trailing part of the plume

is not considered, or in studies where an estimate of maximum probable

concentration of solute in the trailing part of a plume is needed.



IODEL CALIBRATION AND SENSITIVITY

The approach to ground-water flow and solute transport used in this

report along with the three-dimensional nature of flow through oil shale,

introduces an unusually large number of calibration parameters. Considering

the amount and distribution of water-level and solute-concentration data

that are available in most field studies, it is possible to reach a point

where additional detail in the simulation procedure does not significantly

improve the model fit. Therefore, it is important to assess the uncertainty

associated with the various calibration parametersiif the model is to

remain a practical one for use in field problems.

Cooley (1977) presents a method for evaluating the reliability of a

model within the framework of steady-state flow of ground water in two

dimensions. This technique has been extended to three dimensions and is

described in a later section. Before presenting the technique, the rela-

tionship between measured data in wells and modelcalculated hydraulic

head is discussed. Observation wells that have been installed in

oil-shale strata rarely are piezometers.
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Relationship of Measured Data and Calculated Results

- ~~Hydraulic Head

The relationship between hydraulic head in the-formation and the

water level measured in a wellopen to part or all of the formation is

governed by aquifer properties, well-bore characteristics and the vertical-

head gradient within the formation. An accurate treatment of the relationship

would involve solving the three-dimensional equation of ground-water flow

in the close vicinity of the well bore using model estimates of aquifer

properties and a boundary condition of uniform head along the well bore.

The computed head in the well could be compared to measured water-level

data. This approach is not practical in most field problems. Instead, a

relationship is used in the model that is based on the steady-state

conservation of water within the well bore and Darcy's law. The result

is a simple weighted average of hydraulic head.

Z2

fz Kiihdz

h
int = -Z 2

I Kiidz
ZE

i 1,2 (7)

whe re i
int = the depth-integrated head in the well [LI,

h' hydraulic head obtained from the solution to equation 2 (LI,

Z2 the altitude of the top of the well bore open to the formation
[LI,

Z = the altitude of the bottom of the well bore open to the format:

(Li, and

Kj. = hydraulic conductivity [LT 1 . , ,

ion



Equation 7 is derived by writing Darcy's law for radial flow and

integrating along the open interval of the well. Applying Darcy's law

for radial flow from an circular boundary with no drawdown due to well-bore

effects and assuming a well radius of 1 foot gives

2 nKhb hint)

q ln(r)

2 -1
where q = the Darcian flux per unit length of well bore L T 1,

K = the hydraulic conductivity [Lf 1I,

hb = the head at the boundary [L],

hint = the head in the well [L], and

r - the distance to the boundary LI.

The distance r may be thought of as the radius of influence by the well

bore. By assuming steady-state flow along the well bore', the amount of

water entering the well along part of the open interval must equal the

amount leaving along the remainder of the open section. The integral

expression for this conservation of mass is

2
f q dz = 0.
21

Substitution of Darcy's law for radial flow into the expression for

conservation of mass gives

2 X h dz h 2 dz.
fln~r) b hit lo-r)

Z1 Z1

Treating distance to the boundary as a constant, ln(r), may be moved

outside the integral and equation 7 obtained.

The model in this report uses information on the open intervals of

wells, estimates of hydraulic conductivity and calculated hydraulic

head to determine the depth-integrated head at each observation well.

The result may be compared to measured water-level data as a guide during

model calibration when piezometers are not available.
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Solute Concentration '

The relationship between solute concentration in'the formation and

that in a well is governed by the three-dimensional equation of solute

transport. Asiwith.hydraulic head, it is not practical to solve this

problem at each-well-bore. By assuming steady-state conservation of

solute and.using.Darcy's-law, one can obtain an expression similar to

equation 7.

-fz4 cq dz

int = - I
fz4 qi dz
3

i = 1,2 (8)

where cint = the depth-integrated solute concentration [K/L 3J,

c = solute concentration obtained from the solution to

equation 4 fM/L 3J,

z3 to z4 = the part of the well bore where water enters [LI, and

q = Ki (h-hint)- -

Equation 7 is used in the model to infer sections of the well bore where

water enters. The derivation of equation 8 essentially is identical to

the derivation of equation 7 and will not be given here.
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Estimating Parameters for Models of Steady-State Ground-Water Flow

Direct measurement of all hydrogeologic parameters needed to con-

struct models of ground-water flow and solute transport is rarely possi-

ble. As a result, values of unmeasured parameters usually are adjusted

until measured and calculated water levels and solute concentrations match

in some acceptable manner. Cooley (1977) proposed a regression method

for estimating an optimal set of hydrogeologic parameters and assessing

parameter reliability within the framework of two-dimensional steady-state

flow. An extension of this method to three dimensions is included in the

model described in this report.

The following method is used to estimate parameters and assess

reliability for a three-dimensional model of steady-state

ground-water flow. Throughout the following development, deviations from

the two-dimensional development of.Cooley (1977) are noted. The method

is an iterative technique that minimizes the squared difference between

measured and calculated water levels i wells. To set up the iterative

technique it is necessary to linearize the finite-element form of the

equation of ground-water flow with respect to unknown model parameters,

differentiate the linearized equation with respect to these parameters,

and, setting each derivative equal to zero, solve the system of equations.



The derivatives of unknown model parameters are obtained in the

following manner. A truncated Taylor series expansion of equation 2 is

written for (At)1 equal to zero and e equal to one. The resulting iterative

equation is identical to the one given by Cooley (1977). Solving this

Taylor series for hydraulic head gives

-r+l -&r + r + r-r+l (9)

where jr+l = the vector of hydraulic head at the r+l iteration;

h - the vector of hydraulic head at the r iteration,

ar = (r rl ir;

Rr = the matrix involving estimates of hydraulic conductivity

used in equation 2 at the r iteration;

the functional representation of equation 2 at the r iteration,

-= (Rr)-1(af a-r

-r- = the vector of model-parameter estimates at the r iteration, and

+1 r+I r 
;r~la ;

This equation is identical to the one used by Cooley (1977) to calculate

hydraulic heads for each new iteration. The definitions of the variables are

given in three dimensions instead of two.



Hydraulic head calculated by equation 9 cannot be compared directly to

water-level measurements in wells unless the wells are constructed as

piezometers. Because wells usually are open to some interval of aquifer,

water levels represent a depth-integrated value of hydraulic head. Therefore,

the least squares criterion that must be satisfied differs slightly from the

criterion used by Cooley (1977), where vertical-head variations were not

considered.

artl tw(h - r+l)2) = O (10)

where w a vector of weights between 0 and I describing the reliability

of m

ha = the measured head, and

h9+1 the vector of depth-integrated head at the r+1 interation.
mnt

Depth-integrated head is calculated by using the finite-element approximation

to equation 7 in conjunction with equation 9. Substitution of the result

in equation 10 gives the following:

;(grr)T rbrSr+l = (ra)T jIg _ Rr(_ r +r), (11)

where Ir = the matrix of finite-element approximations of equation 7

involving estimated hydraulic conductivity at the r

iteration, and,

( )t = the matrix-transpose operation.

With the exception of the gr term, equation 11 is identical to the least

squares equation used by Cooley (1977). Equation 11 can be solved for

Gr+1 which in turn can be used to calculate estimates of model parameters.

Because the Taylor series expansion used to linearize the equations of

ground-water flow is an approximation, the solution of equation 11 may not

give global optimum values of brol unless hr+' - hr and a - ar are small.

Therefore iteration must be used.



The iteration procedure is identical to the one used by Cooley (1977).

An initial estimate of aquifer properties and other unknown model parameters

is used to solve equation 2 for hydraulic head. The coefficients afr/a;r

are calculated and equation 11 is used to solve for br I and new estimates

of model parameters. The iteration number is advanced by one and the

Taylor series expansion of equation 2 is used to compute fr* An iterative

cycle is begun by resolving equation 2 with the latest estimates of aquifer

properties and boundary flux rates until values for !rfl are less than some

acceptable error.



Sensitivity Analysis of Transient Ground-Water Flow

and Solute Transport _

Development of a statistical procedure for estimating model parameters

under transient conditions is more difficult than under steady-state

conditions. Several approaches to solving this problem may be possible,

but all have proven overly expensive in terms of disc storage, core

storage or computational time. Therefore, calibration of transient

ground-water flow and solute-transport models remains a trial-and-error

process in this report.

A review of the differential equation of solute transport (eq. 3)

shows that ground-water velocity acts as a calibration parameter.

Therefore, it usually is necessary to develop a ground-water flow model

concurrently with the development of a solute-transport model. arcy's

law is used to compute velocity from estimates of hydraulic conductivity

and model-calculated head. The linkage between ground-water flow and

solute transport often forces the hydrologist to iterate between the flow

and transport models until a distribution of hydraulic conductivity is

obtained that reproduces both historical water-level and solute-

concentration data. Bibby (1981) observed that the solute-transport

model can have a strong influence in determining optimal estimates of

hydraulic conductivity.



EVALUATION OF MODEL

A number of tests of the model have been made including comparisons

of model results to analytical solutions and to one field application.

Because analytical solutions rarely exist for three-dimensional problems,

tests have been designed to verify the accuracy of the model in one and

two dimensions. Repeated applications of the test problems in each of

the three directions were used to isolate any programming or logic

errors. Comparisons of model results with analytical solutions are dis-

cussed below. Application of the model to a field problem, solute

transport from an in situ oil-shale retort near Rock Springs, Wyo., will

be discussed in a later report (K. C. Glover, U.S. Geological Survey,

written commun., 1985).

Ground-Water Flow

An evaluation of the basic model of ground-water flow (eq. 2)

has not uncovered any unusual characteristics. For problems with rela-

tively regular boundaries, the evaluation showed that the finite-element

method did not improve upon head distribution calculated by finite-

difference methods. In problems with complex and irregular aquifer

geometry, the finite-element method can be used to model the flow system

with fewer nodes.



Model results were compared to Theis's analytical solution for draw-

down in the vicinity of a pumping well (Lohman, 1979). The Theis solu-

tion is for a fully penetrating well in an infinite confined aquifer with

no vertical movement of water. These conditions were simulated in the

flow model by using variable node spacing, a zero-drawdown boundary

20,000 ft from the well, and uniform aquifer properties. The aquifer was

assumed to be 100 ft thick with a hydraulic conductivity of 12.5 ft/d and

specific storage of 106 ft'1. Well discharge, distributed uniformly along

the well bore, was simulated at a rate of 2.0 ft3/sec. Model results and the

analytical solution are plotted in figure 2 for three distances from the

Figure 2.--(on following page) belongs near here

pumping well.
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Figure 2.--Comparison of flow-model results with Theis's analytical

solution.

. .. . .~~~~~~~~~~~~~~~~~~~

38'



The remainder of this section is a discussion of the regression

technique for estimating aquifer properties and boundary-flow rates in

steady-state systems. Most of the major conclusions of Cooley (1977 and

1979) seem to be appropriate for flow in three as well as two dimensions.

Specific points of interest to three-dimensional problems are discussed

below.

The number of aquifer properties and flux rates that are treated as

regression parameters can have a strong influence on the convergence

characteristics of the model. The vertical anisotropy that is common in

most three-dimensional systems increases the number of regression parameters

and can cause convergence problems more easily than in two-dimensional

flow. The number of regression parameters in three dimensions also

increases because horizontal hydraulic conductivity often varies with

depth. With the large number of parameters that can occur in three-

dimensional models it may be difficult to obtain adequate water-level

data for all strata and convergence can be very slow. In cases where the

number of regression parameters approaches the number of measured water

levels, no solution may be possible. These characteristics can limit the

use of the regression technique in three-dimensional problems.

3 



Boundary-flux rates usually are measured with greatest accuracy when

the flow occurs at or near the land surface. 'This fact has a number of

implications in using the regression technique. If significant recharge

and discharge occurs at depth as underflow'and the hydraulic conductivity

is not known exactly, the least-squares matrix usually is ill-conditioned

and no solution is possible. On the other hand, if boundaries are identified

at depth such that no flow occurs across them, a solution may be possible.

However, the standard errors-of estimate for hydraulic conductivity

usually will be very large. Large standard errors can be common especially

if measured water-level data do not accurately describe vertical head

gradients throughout the study area.

Cooley (1977) found that models of ground-water flow are characterized

by having large standard errors for the parameters. These errors are

caused by anomalous measured water levels as well as errors in specified

boundary conditions. If errors that usually occur in boundary-flux

estimates are not considered during model applications, the resulting

standard errors for the parameters usually will be artificially small.

Test problems using the three-dimensional regression procedure

supported these conclusions.



The regression model in this respect can be used to assess reliability
of computed parameters and predicted values of head if the model is approxi-
mately linear with respect to the parameters. Cooley (1979) provides a test
for linearity that also is applicable to three dimensions. Because the model
is nonlinear with respect to hydraulic conductivity, the large number of
hydraulic-conductivity parameters in most three-dimensional systems makes it
more difficult to pass this test of linearity. Therefore, the use of
confidence regions and test of hypothesis may not be appropriate for many
three-dimensional problems. Additional testing of the regression method in
three dimensions is needed to evaluate this conclusion.
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Solute Transport

An analytical solution for one-dimensional solute transport from a

specified concentration boundary into a fractured aquifer of uniform

thickness is given by Bibby (1981, p. 1078). Fractures are assumed to be

horizontal and separated by sufficient impermeable strata to be con-

sidered of infinite extent. The solute is considered to be non-reactive.

The analytical solution was obtained by analogy to a corresponding solu-

tion for conduction and convection of heat into an aquifer.

Model results were compared to this analytical solution using rep-

resentative values for aquifer characteristics. Seepage velocity of

water in the fissures was set equal to 0.5 ft/d. Longitudinal and

transverse dispersivities were set to 100 ft/d, and the diffusion coeffi-

cient of solute in water in the unfractured formation blocks was

5 X 0-5 ft2/d. The block porosity was set to unity to permit comparison

with the analytical solution thickness of the blocks made sufficiently

large so as not to violate assumptions in the analytical solution.

Several simulations with various block dimensions were made to insure the

assumptions were reproduced.

Model and analytical results after 100 days of solute transport are

presented in figure 3. The close comparison verifies the model theory

Figure 3.--(on following page) belongs near here

and program logic. The model slightly overestimates solute concentra-

tions in the leading part of the profile and slightly underestimates con-

centrations in the trailing part. This characteristic probably is due to

the effects of numerical dispersion associated witEr nodal spacing.



Figure 3.--Comp4rison of results from solute-transport model with ana-

lytical solution at 100 days. -



Additional simulations were made with the dual-porosity equation to

evaluate the sensitivity of the model to variations in the dual-porosity

coefficients. The coefficients that had the greatest effect on the

distribution of solute appeared to be shale-matrix porosity and fracture

width. The matrix-diffusion-coefficient and fracture density also were

important in determining the distribution of solute. These observations

are in agreement with those of Grisak and Pickens (1980) and show that in

fractured rock, matrix diffusion can be an important mechanism for solute

transport. Factors reducing the need to consider matrix diffusion are

small matrix porosities and large fracture width and density.

A review of the dual-porosity equation (eq. 5) shows that a large

number of coefficients must be known even for relatively-simple fracture

geometries. Because in most studies these coefficients must be estimated

during model calibration, the amount of water-quality data needed is far

greater than the amount needed to use a continuum model. Within the

framework of a three-dimensional system, sufficient data may be available

only for a preliminary calibration of the model. Nevertheless in rock

where matrix diffusion is dominant, a scarcity of data is not sole

justification for ignoring the more complex model.



I

COMPUTER PROGRAM

A listing of the FORTRAN program that solves the three-dimensional

equations of flow and solute transport in dual-porosity media is given in

table I (at.end of report). Data-input formats are described in

table 2 (at end of report). Although data entry into a finite-element pro-

gram typically is more cumbersome than for finite-difference prgrams, the

increased data-entry time usually is compensated by increased flexibility

in locating nodes. With a finite-element model, nodes can be accurately

located at observation or pumping wells. In general, fewer nodes are

needed to accurately model aquifer geometry when using a finite-element

model.

Data entry into a finite-element program is more cumbersome because

of the need to identify the relationships among all nodes and-elements.

As a result, all nodes and elements must be numberd, the Cartesian

coordinates of all nodes must be coded, and the nodes associated with

each element must be designated.

The system used to number aquifer nodes and elements has a signifi-

cant impact on the efficiency and size of the computer program. The glo-

bal coefficient matrices developed in equations 2 and 4 represent the

largest block of computer storage used by the program. The solution tech-

nique is more efficient, in terms of time and storage requirements, if

the size of the global coefficient matrices is minimized. Storage re-

quirements of the global coefficient matrices are directly related to the

largest difference between two node numbers in an aquifer element.. There-

fore, efficient nodal ordering minimizes this difference and improves the

efficiency of the solution. The program calculates and prints the band

width. If the dimensions of arrays are not sufficient, the simulation will

stop.
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SAMPLE SIMULATION

Use of the model is illustrated by simulating solute transport from

a buried source in a three-layer aquifer system. The bottom layer repre-

sents an aquifer where horizontal joints are common within relatively

thick impermeable rock. The middle layer represents an aquifer where

vertical fractures are common. The top layer represents a homogeneous

isotropic sandstone. Boundary conditons and nodal locations are shown

horizontally in figure 4 and vertically in figure 5. Aquifer properties

Figures 4 and .--(on following pages) belong near here

for each layer are given in table 3. Pumping by two wells, one from the

bottom layer and one from the top, also is simulated. Steady-state flow

conditions are assumed.

The input data used in the model run and results for one time step

are listed in tables 4 and 5 (at end of report). Results present total

time into the simulation, and the hydraulic head and solute concentration

for each node in the finite-element grid. Principal components of

Darcian velocity and dispersion coefficient also are printed for each

element.

#7



Figure 4.--Boundary conditions and node locations along the bottom of the

aquifer system used in the sample simulation.



Figure 5.--Boundary conditions and node locations along a vertical sec-

tion of the aquifer system used in the sample simulation.



Table 3. -- AqujIfer properties used in sampe sJiulatio

Aquifer Bottom . Middle Top
property layer layer layer

Hydraulic conductivity

x-direction (feet/day)-

Hydraulic conductivity.

y-direction (feet/day)

Hydraulic conductivity

z-direction (feet/day)

Longitudinal dispersivity (feet)

Transverse dispersivity (feet)

Kolecular diffusion in low permeabil-

ity blocks (square feet per day)

Fracture width (feet)

Block width (feet)

Effective porosity (dimensionless)

Block porosity (dimensionless)

Flux boundary (feet/day)

Specified-head boundary (feet)

Solute-concentration boundary

(milligrams per liter)

20.0;

20.0

5.0

10.0

3.0

.0001

.2

1.8

.1 

.01

.4

10.0

2.0

.10.0

1.0

.3

40.0

40.0

.0001

.01

.19

.05

.01

.2

40.0

100.0

30.0

.0

.0

.0

.3

.0

.4

500.0, .

100.0
M . . .

__
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SUMMARY

The model described in this report can simulate three-dimensional

ground-water flow and solute transport in oil shale and associated

hydrogeologic units. The model treats oil shale as a dual-porosity medium

by simulating flow and transport within fractures using conventional

finite-element methods. Diffusion of solute between fractures and the

essentially static water of the shale matrix is simulated by including an

analytical solution that acts as a source-sink term to the differential

equation of solute transport. While knowledge of fracture orientation and

spacing is needed to effectively use the model, it is not necessary to map

the locations of individual fractures.

The computer program listed in the report incorporates many of the

features of revious dual-porosity models while retaining a practical

approach to solving field problems. As a result the report does not

extend the theory of solute transport in any appreciable way. The emphasis

in the report is on bringing together various aspects of solute-transport

theory in a manner that is particularly suited to the unusual ground-water

flow and solute-transport characteristics of oil-shale systems.

Methods for quantifying the uncertainty in parameter estimates that

occur during model development are given in this report. The quasilinear

regression method described by Cooley (1977) for estimating parameters

and assessing reliability for two-dimensional models of steady-state

ground-water flow has been extended to three dimensions. Because the number

of model parameters in three-dimensional simulations generally is larger

than in two-dimensional simulations, adequate water-level data may not be

available for evaluating parameter reliability. When it is possible to

evaluate parameter reliability, standard errors for hydraulic-conductivity

estimates of buried strata generally are large.
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A large number of aquifer properties must be evaluated when simulating

solute transport through dual-porosity media. Because properties such as the

matrix-diffusion coefficient, matrix porosity, and fracture width and density

often are estimated during model calibration, a large amount of water-quality

data is needed. Within the framework of a three-dimensional system, sufficient

data may be available only for a preliminary calibration of the model. Never-

theless, matrix diffusion can be an important mechanism for solute transport

in fractured rock.

. 4,;;k
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Table 1.--Computer-progra, listing

C** A FINITE ELEMENT PROGRAM FOR THE SOLUTION OF
C**.THREE-DIHENSIONAL TRANSIENT GROUND-WATER FLOW AND SOLUTE
C** TRANSPORT IN FRACTURED MATERIAL
C** OBSERVATIONS MAY BE VALUES-OF HEAD AND CONCENTRATION IN WELLS
C** OPEN TO SOME OR ALL OF THE AQUIFER SYSTEM
C** ELEMENTS ARE ISOPARAMETRIC CUBES WITH LINEAR SIDES.
C** UPSTREAM FINITE ELEMENTS USED FOR SOLUTE TRANSPORT.
C** GUIDELINES FOR ARRAY DIMENSIONS -- IF NOT SOLVING TRANSPORT PROBLEM
C** THE DIMENSIONS OF TRANSPORT ARRAYS MAY BE REDUCED TO 1
C** LET NVARH-NPARH+NQPAR+NBPAR
C** SET IDIM.GE.NUHNP, JDIMH.GE.IBH, JDIMC.GE.IBC, KDIM.GE.NUMEL,
C** NVEH.GE.NVARH
C** CURRENTLY DIMENSIONS ARE FOR A MAXIMUM OF
C** NUHNPu 490 NUMEL-300 NTIME-52 IBH- 90 IBC=180 TPERS52 NTO-1
C** NTRE 0 NTW 0 NTS-1 NOBMAX3O NBPAR 0 NTBoO
C** NPARH- 8 NQPARu 0 NUMATu7 NTFRAC=9 ITFRAC- 10 NLAYER 3

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

C**
I C**

C**
I . C**

c**
c**

MAIN ARRAYS --

XTXH(NVARHNVARH),BH(4*NVARH)
PH(NVARH),RKH(NVARH),HINT(NTO*NOBMAX)
ZSPACE(NLAYER-1),CINT(NTO*NOBMAX),TITLE(20),HP1(NUMNP*2),
CP1(NUMNP*2),CO(NTO*NOBMAX),
NXTO(NTO+1),NXTw( WTW+1),NXTS(NTS+1),NXTE(NTB+1)

DIMENSION XTXH(8,8).BH(32),
$ PH(8),RKH(8),HINT(30),CINT(30),
$ ZSPACE(3),TITL(20),
$ CO(30),NXTO(1),
$ NXTW(1),NXTS(2),NXTB(1)

170
180
190
.200
210
220
230
240
250
260
270
280C** COFBLK ARRAYS --

C** H(NUMNP*2),C(NUMNP*2),QHTHP(NUMNP),WELL(NUHNP*(NTW41)),
C** CFRAC(NTFRAC+1,NUHNP),CINIT(NUMNP),
C** WELLC(NUHNP*(NTW+1)),SFOBSH(NUMNP+NOBHAX),SFOBSC(NUMNP+NOBHAX),
C** TNOD(NUMNP),DM(NUMAT),FP(NUMAT),FQ(NUHAT),
C** RPBR(NUMAT),CBINIT(NUMAT),RX(NUMAT),RY(NUMAT),RZ(NUMAT),
C** HO(NTO*NOBMAX),RC(NUMAT),RPR(NUMAT),DL(NUMAT),DT(NUMAX),
C** IPRMH( 3,NUMAT) ,HAT( NUMEL),NBP(NUMNP),RMT(NUHAT)

COMMON/COFBLK/CFRAC(10, 490),QHTHP( 490),CINIT( 490),
$ H( 980),C( 980),WUELL( 490),WELLC( 490),
S RX(7),RY(7),RZ('7),RC(7),
$ RPR(7),DM(7),FP(7),FQ(7),RMT(7),HO(30),r
$ RPBR( 7) ,CBINIT(7),SFOBSH( 520),SFOBSC( 520),WTNOD( 490),
$ DL(7),DT(7),TIETA,DTIME,TIMFAC,TIHBGN,CEQUI,DFW,
$ TIMSUH,IPRMH(3,7),MAT(300) ,NBP( 490),IELMR

C** SINBLK ARRAYS --

290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

XORD(NUMNP) ,YORD(NUHNP),ZORD(NUHNP),QS(NUMNP*(0TS+1)),CS(NUANP*
(NTS+1)),QF(NQPAR),CF(NQPAR),QEH(8),QEC(8),NP(NUMEL,8),IBPRH(NUEL)
COMMON/SINBLK/QEH(8),QEC(8),XORD( 490),YORD( 490),ZORD( 490).

$ QS( 980),CS( 980),QF(1),CF(l),NP(300,8),IBPRM(300)-
DOUBLE PRECISION QEHQEC

SENBLK ARRAY --

WH(NTO*NOBMAX),WC(NTO*NOBHAX),NPBC(NUMNP,NTB+1),NODOBS(NUHNP)
COMMON/SENBLK/WH(30),

$ WC(30),THETAC,NPBC(490,1),NODOBS(490)
C** LDUBLK --

w up



Table I.--Coxputer-program lstting-Continued

C** CPKH(IDIN,IBH),SH(NVARH,NUMNP),QH(NUMNP)
C** CPKC(IDIM,IBC),QC(IBC)

COMON/LDUBLK/CPKC(490,180),CPKH(490, 90),SH(8, 490),
S QC( 490),QH( 490),IBC,IBH
REAL*8 CPKC,CPKHSH,QC,QH

C** SHAZLKSURBLK AND LINBLK -- ALL DIMENSIONS CONSTANT
COMMON/SHABLK/SF(4,8,8),WF(4,8) ,WT(8),NUHQPT
COMMON/SURBLK/AF(3,4),AWT,NQPTA
COHON/LINBLK/RLF(2,2),RLWT,LINOD(4,2)
DOUBLE PRECISION SF,WT,WF,AF,AWT

C** SET RECORDS IN FILE 8 TO (NTIME/NTPER+1), WORDS TO NNP
C** SET RECORDS IN FILE 9 TO (NTIME+1), WORDS TO NUMNP

OPEN (UNIT-8,FILE-'HEADS',ACCESSuDIRECT',FORHM'UNFORMATTED',
$ RECLa816)
OPEN (UNITU9,FILEn'CONCN',ACCESS'DIRECT',FORM.'UNFORHATTED',

$ RECL816)
OPEN (UNIT=5,FILE'SAMPLE.INPUT',STATUS'OLD')
OPEN (UNIT=6,FILEm'SOLUTION.PRT')
IDIM=490
JDIMH 90
KDIMm300
NmEN8
LDIMHuNVEH*4
JDIMC=1 80
DO 10 I,3
READ(5,1)(TITL(J),J1,20)
WRITE (6,2) (TITL(J),J-1,20)

105 CONTINUE
WRITE(6,3)
READ (5,4) NUMEL,NUMNP,NUHAT,NTINE,NTPER,NTD,NTO,NOBMAX,NTW,

$ NTS,NPARH,NQPAR,NBPAR
WRITE(6,5) NUMEL,NUMNP,NUMAT,NTIME,NTPER,NTB,NTO,NOBMAX,NTW,
$ NTS,NPARH,NQPAR,NBPAR
READ (5,4) NPLAYR,NEPLAY
WRITE (6,68) PLAYR,NEPLAY
READ (5,4) ITHAX,IVELPR,IFRAC,NTFRAC,ITRAC,NLAYR,IBEALE
WRITE (6,6)ITHMAX,IVELPR,IFRAC,NTFRACITFRAC,NLAYER,IBEALE
WRITE(6,7)
READ (5,8) NTPRT,IPO,IPRX,AP,AMP,RP,RP?,EVH
WRITE (6,8) NTPRT,IPO,IPRX,AP,AMP,RP,RPF,EVII
READ (5,9) DTIME,TIFAC,THETAHTHETAC,DFW,CEQUI
WRITE (6,10) DTIME,TINFAC,THETAH,THETAC,DFWCEQUI
READ (5,9) ALFLG,ALFAXALFAY,ALFAZ
WRITE(6,11) ALYLG,ALPAX,ALFAY,ALYAZ

C** INITIALIZE
TIMBGNwDTIME
DO 10 I1,NUMNP
H(I)-0.0
NBP(I)-O
NPBC(I,1)-0
NODOBS(I)-0

110 CONTINUE
IF (THETAC.LT.O.0) GO TO 130

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
.730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060

67
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DO 120 I-1,NUHNP
C(I)mO.O
DO 120 J1,NTFRAC
CFRAC(J,I) O.O

120 CONTINUE
130 N.NOBMAX*NTO

NXTO(1)999999
IF (N.LE.U) GO TO 150
DO 140 I,N
HO(M).O.0
WH(I)=O.O
IF (THETAC.LT.O0) GO TO 140
COtI)O.O
WC(I)u0.O

140 CONTINUE
150 NONUHNP*(NTWtI)

NXTWM1)999999
DO 156 m1lN
WELL(I)O.O
IF (THETAC.GE.O.O) WELLC(I)O.O-

156 CONTINUE
N=NUMNP*(NTS+1)
NXTS(1)o%99999
DO 158 I-1,N
QS(I)u.O0
IF (THETAC.GE.O.O) CS(I)uO.O 

158 CONTINUE
DO 160 I1,NUHAT
IPRffH(1,I)'.0
IPRNH(2,I) O
IPRH(3,I)uO

160 CONTINUE
NUMHHNUNP-NLAYER+l
NLAYH2uNLAYER-2
NLAYH1 NLAYER-1
READ (5,9) (ZSPACE(I),I-1,LAYH1)
WRITE(6,9) (ZSPACE(I),Iz1,NLAYH1)
WRITE (6,69)
DO 162 I1m1,NPLAYR
READ (5,12)I,N,XORD(I),YORD(I),

$ ZORD(I)
NM1SN-I
DO 162 JHN1 ,
XORD(I+J)XORD(I).,
YORD(I+J)ftYORD(I)
ZORD(I+J)OZORD(.I)+ZSPACE(J)

162 CONTINUE
READ (5,13) N
READ (5,14) (I,NPBC(I.1),NODOBS(I),WNOD(),H(I),WELL(I

$ Ill,N)--
WRtTE(6,1 ))(I,NPBC(I,),NODOBStI),TNODtI)XORDtI),YORD

$ -S ZORD(I),l,,WL(),QS(I),Iz.1iJp)
IF (HETAC.LT.O.0) GO TO 164

1070
1080
1090
1100

,1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
260

1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
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WRITE (6,16) 1600
READ (,17) N 1610
READ (,17)(I,C(I),WELLC(I),CS(I),I1-1,N) 1620
WRITE(6,67)(I,C(I),WELLC(I),CS(I),I1,NUMNP) 1630
DO 163 I,NUMNP 1640
CINIT(I)=C(I) 1650

163 CONTINUE 1660
164 IBH-0 1670

WRITE(6,18) 1680
DO 170 I11m,NEPLAY 1690
READ (5,19) I,N,(NP(IJ),J-1,4) 1700
NM N-1 1710
HAT(I)-1 1720
DO 166 J5,8 1730
MP(I,J)-NP(I,J-4)+1 1740

166 CONTINUE 1750
IF (NLAYER.LE.2) GO TO 170 1760
DO 168 K-1,NH1 1770
DO 168 J,8 - 1780
KAT(I+K)oK+1 1790
NP(I+KJ)uP(IJ)+K 1800

168 CONTINUE 1810
170 CONTINUE 1820

DO 174 I1,NUMEL 1830
WRITE (6,20)I,(NP(I,J),J=1,8) 1840
DO 172 J1,8 1850
DO 172 X.J,8 1860
J1-IABS(NP(I,J)-NP(I,K)) 1870
IF (J1.GT.IBH) IBH-J1 1880

172 CONTINUE 1890
174 CONTINUE .1900

IBH-IBH+1 1910
IBCoIBH*2-1 1920
WRITE (6,72) IBH,IBC 1930
IF (NUHNP.GT.IDIX) STOP 1940
IY (IBWH.GT.JDIMH) STOP 1950
IF (IBC.GT.JDIMC.AND.THETAC.GE.0.0) STOP 1960
WRITE (6,23) 1970
DO 188 I1,NUMEL 1980
IBPRH(I)6O 1990

188 CONTINUE 2000
READ (5,4) N 2010
IF (N.GT.O) READ (,24)(I,MAT(I),IBPRM(1),I1l1,N) 2020
WRITE (6,13)(IMAT(I),IBPRM(I).I-1,NUMEL) 2030
WRITE (6,25) 2040
READ (5,26) (,RX(I),RY(I),RZ(I),RC(I),Il1u,NUHAT) 2050
WRITE (6,26) (,RX(I),RY(I),RZ(I),RC(I),I-1,NUAT) 2060
ISTEDY-1 2070
DO 190 I-1,NUHAT 2080
IF (RC(I).NE.O.O) ISTEDYO. 2090

190 CONTINUE, 2100
IF (THETAC.LT.O.0) GO TO 196 2110
WRITE (6,28) 2120

-l
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READ (5,2;) (DL(I),DT(I),DM(I) ,RPR(I),FP(I),FQ(I),RMT(I), 2130
$ RPBR(I),I11,NUMAT) 2140

WRITE (6,29) (I,DL(I) ,DT(I) ,DM(I),RPR(I),FP(I),FQ(I),RMT(I) 2150
$ , RPBR(I),I1,NUMAT)- 2160
IF (IFRAC.NE.1) GO TO 196 2170
WRITE (6,32) 2180
READ (5,27) (CBINIT(I),I-1,NUMAT) 2190
WRITE (6,33) (CBINIT(I),Iu1,NUMAT) 2200

196 IF (NPARH.LT.1) GO TO 206 2210
DO 198 m1,NFARH 2220
RKH(I)u0.0 2230

198 CONTINUE 2240
WRITE (6,34) 2250
READ (5,35) (I,IPRM1H(1,I),IPRM(2,I),IPRMH(3,z),I)1,VIUHT) 2260
WRITE (6,35) (IIPRMH(,I),IPRH(2,I),IPRMH(3,I),INU1,ST) 2270
IXTRFL-0 2280
DO 200 I1,NUMAT 2290
IF (IPRMH(1,I).GT.0) IXTRFL=1 2300
IF (IPRMH(2,I).GT.0) IXTRFL1- 2310
IF (IPRMH(3I).GT.0) IXTRFL-1 2320

200 CONTINUE 2330
WRITE (6,36) 2340
READ (5,37) (I,RKH(I),I1-1,NPARH- 2350
WRITE (6,37) (I,RKH(I),I-1,NPARH) 2360

206 IF (NQPAR.LE.0) GO TO 208 2370
WRITE (6,40) 2380
READ (5,41) (I,QF(I),RKH(INPARH),I1l1,NQPAR) 2390
WRITE (6,41) (I,QF(I),RKH(I+NP),I-1,NQPAR) 2400
IXTRFLw1 2410
IF (THETAC.LT.O.0) GO TO 208 2420
WRITE (6,42) 2430
READ (5,37) (,CF(I),I.1,NQPAR) 2440
WRITE (6,37) (I,CF(I),I-1,NQPAR) 2450

208 IF (NBPAR.LE.0) GO TO 212 2460
READ (5,43) (NBP(I),I=I,KUMNP) 2470
WRITE(6,44) (BP(),Iu1,NUHNP) 2480
WRITE (6,45) 2490
DO 210 I1w1,NBPAR 2500
READ (5,37) I,RKH(I+NPAH+NQPAR) -2510
WRITE( 6,37) I, REC I+NPARHNQPAR) 2520

210 CONTINUE 2530
212 NTF1sNTFRAC+1 2540

DO 216 Il,NUHNP 2550
H(I+NUHNP)wH(I) 2560
IF (THETAC.LT.0.0) GO TO 216 2570
C(I+NUMNP)wC(I) 2580
IF (IFRAC.EQ.0) GO TO 216 2590
DO 214 JNTF- 2600

214 CFRAC(J,I)aC(I) 2610
216 CONTINUE 2620
C** READ TRANSIENT DATA. 2630

IF (NTB.LE.O.AND.ITMAX.EQ.0) GO TO 228 2640
NXTB(1)n999999 2650
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IBCNT'1 2660
IHR21 2670
ICR-i 2680
WRITE (8'IHR) (H(J),J-1,NUMNP) 2690
WRITE (9'ICR) (C(J),J-1,NUMNP) 2700
IHR-IHR+l 2710
ICRwICR+1 2720
NTH=NTIME/NTPER 2730
IF (NTB.GT.0) READ(5,46) Il,I2 2740
DO 226 I,NTH 2750
IF NTB.LE.0) GO TO 222 2760
IF ((I-1)*NTPER.LT.Il) GO TO 222 2770
IBH1-IBCNT 2780
IBCNTmIBCNT+1 2790
NXTB(IBHI)-1- 2800
DO 218 Jl,NUMNP 2810
NPBC(J,IBCNT)uNPBC(J,IBMI) 2820

218 CONTINUE 2830
WRITE (6,47) I 2840
DO 220 K=1l,I2 2850
READ (5,48) J,NPBC(J,IBCNT),H(J),XI 2860
IF (THETAC.GE.O.O) C(J)-X1 2870

220 CONTINUE 2880
11-999999 2890
IF (IBM1.LT.NTB) READ (5,46) I1,I2 2900

222 WRITE (8'IHR) (H(J),J-1,NUMNP) 2910
IHRmIHR41 2920
IF (THETAC.L0.O) GO TO 226 2930
DO 224 K-1,NTPER 2940
WRITE (9'ICR) (C(J),J*1,NUMNP) 2950
ICRwICR+1 2960

224 CONTINUE 2970
226 CONTINUE 2980

NXTB(NTB+l)s999999 2990
228 IF (NTO.LE.O) GO TO 236 3000

NMTO*NOBHAX 3010
DO 230 Il,N 3020
HINT(I)=O.O 3030
IF (THETAC.GE.O.O CT(I)-O.O 3040

230 CONTINUE 3050
WRITE (6,49) 3060
DO 234 I,NTO 3070
READ (5, 50) I1 3080
WRITE (6, 51) I 3090
NMTO(I)I1 3100
DO 234 J,NOBMAX 3110
READ (5, 52) K,XI,X2,X3,X4 3120
WRITE(6, 52) K,X1,X2,X3,X4 3130
L*NOBHAX*(I-i)+K 3140
HO(L)X1 3150
WH(L)wX2 3160

232 IF (HETAC.LT.O.0) GO TO 234 3170
CO( L)X3 3180



Table .- Computer-progras .Jstlng--Continued

WC(L)sX4
234 CONTINUE
236 NXTO(NTO+l)*999999

IF (NTW.LE.O) GO TO 242
WRITE (6,53)
DO 240 I1,NTW
DO 238 J1,NUHNP
J1eNUHNP*I+J
WELL(Jl)-WELL(JI-NUMNP)
IF (THETAC.GE.O.O) ELLC(Jl)aWELLC(Jl-NUMNP)

238 CONTINUE
READ (5, 50) 11,12
WRITE (6, 54) 11
NXT(I)I1.
ITMPaMOD(I1,NTPER)
11NUHNP*(I)
IF (ITMP.NE.1) 00 TO 248
DO 240 J1,I2
READ (5,52) ,XlX2
WRITE (6,52) K,X1,X2
L6I1+K
IF (ITMP.EQ.I) WELL(L)-X1
IF (THETAC.GE.O.0) ELLC(L)aX2

240 CONTINUE
242 NXTW(NTW+1)*999999

IF (TS.LE.O) GO TO 250
WRITE (6,55)
DO 246 I1,NTS
DO 244 J1,NUHNP
J1uNUHNP*I+J
QS(Jl).QS(Jl-NUMNP)
IF (TIETAC.GE.O.O) CS(Jl)-CS(Jl-NUHNP)

244 CONTINUE
READ (5, 50) I1,12
WRITE (6, 56) 1
NXTS(I)-I1
ITMP.MOD(II,NTPER)
I1NUNP*(I)
IF (ITMP.NE.1) GO TO 248
DO 246 Jl,12
READ (5, 52) ,XI,X2
WRITE (6, 52) K,XI,X2
LsI1+K
QS(L)XI -
IF (THETAC.GE.O.O) CS(I)-X2

246 CONTINUE
GO TO 250

248 URITE(6,80)
STOP

250 NXTS(NTS+1)999999
I FORMAT (20A4).
2 FORMAT (X,-20A4)
3 FORMAT (' NUMEL NUffP NUMAT NTIME',

3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710

.I
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$ ' NTPER NTB NTO NOBMAX NTW',
$ ' NTS NPARH QPAR NBPAR')

4 FORMAT (1415)
5 FORMAT (14I7)
6 FORMAT ('OITMAXw',I5,' IVELPR-',15,' IFRACO',15,

$ ' NTFRAC=',I1,' ITFRACs',15,' LAYERs'.151'
7 FORMAT (' NTPRT IPO IPRX AP AMP

S ' EVHL')
8 FORMAT (315,5E10.3)
9 FORMAT (7Z10.3)
10 FORMAT ('ODTIME ',E12.5,' TIMFAC ',F5.2,' THETA

& THETAC - ',F5.2/' DW * ',E12.5,
$ ' CEQUI ',E12.5)

11 FORMAT (' ALFLG a ',EI2.5,' ALFAX ',E12.5,' ALYAY
$ ' ALFAZ ',E12.5)

12 FORMAT (2110,3110.3)
13 FORMAT (12I10)
14 FORMAT (3110,4E10.3)
1S FORMAT (315,7E10.3)
16 FORMAT (' NODE C WELLC Cs',

$ ' NODE C WELLC CS',
$ ' NODE C WELLC CS')

17 FORMAT (110,3E10.3)
18 FORMAT (' ELEMENT NP ARRAY')
19 FORMAT (815)
20 FORMAT (I5,5X,815)
23 FORMAT (' ELEMENT MAT IBPRM',

$ ' ELEMENT MAT IBPRH',
$ ELEMENT MAT IBPRX',
$ ELEMENT MAT IBPRM')

24 FORMAT (3110)
25 FORMAT (' ZONE RX RY RZ
26 FORMAT (110,4E10.3)
27 FORMAT (3E10.3)
28 FORMAT (' ZONE DL nT nu

3720
3730
3740
3750
3760
3770IBEALEw'.15)

RP

Ha IPS.;

a 'E12.5

RC')

RP',

RPP', 3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240

29
32
33
34
35
36
37
40
41
42
43

$
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FoRMAT

FP
(110,8310.3)
('OCBINIT VALUES')
(lX,8F10.3)
(' ZONE IPRMH
(515)
(' PARAMETER RKH')
(110,310.3)
(' PARAMETER
(110,2E10.3)
C' PARAMETER
(1515)

FQ mu RPBR')
._ . w~~~~~O"

ARRAY')

QP Rim' )

C')

44 FORMAT (' NBP ARRAY'/1515)
45 FORMAT (' BOUNDRY PARH RXN')
46 FORMAT (215)
47 FORMAT ('uIMNE VARYING DOUNDRY CONDITIONS --

S ' NODE NPBC',9X,'H',9x,'C')
48 FORMAT (215,F10.3,110.3)

K? * .1I5/
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49 FORMAT
50 FORMAT
51 FORMAT

&
52 FORMAT
53 FORMAT
54 FORMAT
55 FORMAT
56 FORMAT
57 FORMAT

$
$

58 FORMAT
59 FORMAT
60 FORMAT
.' FORS A
61 FORMAT
62 FORMAT
63 FORMAT
64 FORMAT
65 FORMAT

$
$

66 FORMAT
67 FORMAT
68 FORMAT
69 FORMAT

$

('OOBSERVED HEAD AND CONCENTRATION DATA')
(2110)
(' TIME STEP '.I51' OBS HO WH',

CO WC')
(110,4E10.3)
('OTIME VARYING POINT SOURCE-SINK DATA')
( TIME STEP ',I51' NODE WELL WELLC')
('OTIME VARYING LINE SOURCE-SINK DATA')
(' TIME STEP',I5/' NODE QS CS,)
(' TIME STEP ',I5,' TOTAL TIME OF SIMULAtON'.Z12.2/

NODE XORD Y1
LORD

(I1O,5E12.5)
(110,3E12.5,12X,E12.5)
('0 OBS HO

0 CO

H C')

HINT',
CINT')

ORD',

ZORD'

(15,4(lXE12.5))
(15,26X,2(1X,E12.5))
('OSTATISTICS OF INITIAL HEAD SOLUTION')
('OSTATISTICS OF INITIAL CONCENTRATION SOLUTION')
('ONUMBER OF OBSERVATIONS ',I5/' ESTIMATED SUM OF
'SQUARED ERRORS FOR INITIAL SOLUTION * ',E12.5I
' ERROR VARIANCE FOR INITIAL SOLUTION - ',E12.5)

('OINITIAL SOLUTION')
(I10,3E10.3,I1O,3E10.3,I10,3E10.3)
(' NPLAYR=',I5,' NEPLAYs',IS)
(' NODE NPBC NODOBS WTNOD XORD YORD

9 H WELL QS')

4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4720
4730
4740
4750
4760
4770

70 FORMAT (' FLOW PROBLEM')
71 FORMAT (' SOLUTE TRANSPORT PROBLEM')
72 FORMAT ('OFLOW PROBLEM BAND WIDTH a ',I/' TRANSPORT PROBLEM ',

S 'BAND WIDTH a ',15)
73 FORMAT (' UPDATED PARAMETERS'/' KATI RX',

$ ' RY RZ'
.74 FORMAT (15,3(1X,E11.5))
75 FORMAT (' PARAMETER QF ')
76 FORMAT (I10.IX,El.5)
77 FORMAT ('FLOW PARAMETER ',15,' EFFECTIVELY ZERO')
78 FORMAT (' SOLUTION FAILED TO CONVERGE IN ',15,' ITERATIONS')
79 FORMAT (' SOLUTION CONVERGED IN ',I5,' ITERATIONS')
80 FORMAT (' TIME STEP IS INVALID FOR A CHANGE OF PARAMETERS't

$ ' TIME STEP MUST BE DIVISIBLE BY NTPER WITH A REMAINDER',
* $ ' OF I') 

CALL SHAFAC(THETAC)
CALL SURFAC
CALL LINFAC
NVARH=NPARH+NQPAR+NBPAR
NVHX2aNVARH+NVARH
NVHX3-NVARH4NVHX2
NODES=8

C** COMPUTE AND COUNT PRIOR INFORMATION
NPRIRH0.
IF (NVARR.LT.1) GO TO 254
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DO 252 luINVARH 4780
PH(I)-i.0 4790
IF (RJCH(ID.LE.O.0) GO TO 252 4800
RKH(I)-EVH/(RKH(I)*RKH( 1)) 4810
NPRI RHNPRIRH+i 4820

252 CONTINUE 4830
C** COMPUTE INITIAL SOLUTION 4840
254 WRITE (6,66) 4850

IFLOW-0 4860
KTH-0 4870
I0BCNTw1 4880
IWCNTmI 4890
ISCNT-1 4900
IBCNT-1 4910
SKBIG-0.0 4920
SKBIG2-0.0 4930
DTIMETIZIBGN/TINFAC 4940
TIHSUMw0.O 4950
OBSH*0.0 4960
YSQHO.O 4970
ERVARHm0.0 4980
OBSC-O.0 4990
YSQC-0.0 5000
ERVARCO.0 5010
IOBCNT-1 5020
DO 294 K!T1,NTIME 5030
DTIM4EsDTIME*TIMFAC 5040
TIMSUM=TIXSUM+DTIME 5050
LU-0 5060
IFLOWsIFLOW+1 5070
IF (IFLOW.GT.NTPER) IFLOWul 5080
IF (IFLOW.EQ.1) KTH-KTH+l 5090
IF (KT.EQ.1) LUwi 5100
IF (KT.GT.NXTO(IOBCNT)) IOBCNTsIOBCNT+1 5110
IF (KT.EQ.NXTB(IBCNT)) LUNi 5120
IF (TIMFAC.GT.1.01) LU-1 5130
LUH-LU 5140
LUCmLU 5150
IF (KT.EQ.NXTW(IWCNT)) IWCNTNIWCNT41 5160
IF (KT.EQ.NTS(ISCNT)) ISCNT-ISCNT+1 5170
IF (KT.EQ.NXTB(IBCNT)) IBCNT-IBCNT+1 5180
IF (IFLO.GT.1) GO TO 260 5190
IF (NT.LZ.0) GO TO 258 5200
IHR-KTH+1 5210
DO 256 I1,NUMNP 5220
JaI+NUMNP 5230
H(I)-H(J) 5240

256 CONTINUE 5250
J1NUMNP+1 5260
J2NUMNP*2 5270
READ 8'IHR) (H(J).J-Jl,J2) 5280

258 CALL FLOW (IWCNT,ISCNT,IBCNTJ,,KTH, 5290
$ NTPER,NUMNP ,NYAR,NPARH,LUH,NUMEL, 5300

4-,
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$ ISTEDYO,IDIM) 5310
CALL UDU (NUKNP,LUH) 5320

260 ICR-KT+1 5330
Do 262 I1,NUMNP 5340
Jw-+NUHNP 5350
IF (IFLOW.EQ.1) H(J)aQH(I) 5360
IF (THETAC.LT..0) GO TO 262 5370
C(I)-c(J) 5380

262 CONTINUE 5390
IF (THETAC.LT.O.O) GO TO 270 5400
IF (NTB.LE.O) GO TO 264 5410
J1-NUMNP+1 5420
J2aNUMNP*2 5430
READ(5'ICR) (C(J),JmJ1,J2) 5440

264 IYPTMPO - 5450
IF (MOD(KIT,NTPRT).EQ.O) IVPTNP1 5:460
CALL SALT (IFLOW,IWCNT,ISCNTIBCNT,KT,KTH, 5470

$ ~~~~~~~~~~~~~ ~~~~5480
$ ~NTPER,NUMNP,LUCNUMEL,ISTEDY,IVPTMP,IFRAC,I,O, 5480

$ IDIH,ALFAX,ALFAY;ALFAZ,ALFL,NTFRAC,ITFRAC, 5490
$ NOBMAX,IOBCNT) 5500
CALL LDU (NUMNPLUC) .5510
DO 268 I,NUKNP 5520
I1sNUMNP+I 5530
C(I1)-QC(I) 5540
IF (IFRAC.EQ.0) GO TO 268 5550
DO 266 J2,NTF1 5560
Jm1-J-1 5570
CFRAC(JMI,I)-CFRAC(J,I) 5580

266 CONTINUE .5590
CFRAC(NTFI,I)*QC(x) 5600

268 CONTINUE 5610

-. 270 IHR-KTH+1 . . 5620
ICRwKT41 5630
J1NUHNP+1 5640
J2.NUMNP*2 , 5650
IF (IFLOW.GT.1.OR.NVARH.EQ.O) GO TO 272 5660
WITE (8'IHR) (H(J),J.J1,JZ) 5670

272 IF (THETAC.LT.0.O) GO TO 274 - 5680
WRITE (9'ICR) (C(J),JaJ1,J2) 5690

:274 IF (OD(KTKTPRT).NE.O) GO TO 20 5700
WRITE (6,57) T,TIHSUH 5710
DO 278 I,NUMNP 5720
I1aNUHNPI 5730
I2NUHP+I 5740
IF (HETAC.GE.O.O) GO TO 276 5750
IF.(IFLOV.EQ.1) WRITE (6,58) IXORD(I),YORD(),Z6RD(I),H(I2) 5760

- GO TO 278 5770
276 IF (IFLOW.EQ.1) WRITE (6,58) IXORD(l),YORD(I).ZORD(I),H(12).C(I1) 5780

IF (IFLOW.NE.1) WRITE (6,59) i,XORD(I),YORDI),ZORD(I),C(I1) 5790
278 CONTINUE 5800
280 IF (NOEMAX.LE.O) GO TO 294 5810

IF (KT.NE.NXTO(IOBCNT)) o TO 294 5820
C** COMPUTE INITIAL ERROR VARIANCE 5630



Table .-- Coputer-prograa lsting-Continued

DO 286 I1,NUNNP
282 IF (NODOBS(I).LE.O) GO TO 286

I3-NUMNP+I
I2nNODOBS(I),NOBMAX*(IOBCNT-1)
IF (IFLOW.GT.1) GO TO 284
HINT(12)aHINT(12)+SFOBSH(I)*H(13)

284 IF (THETAC.LT.O.O) GO TO 286
CINT(12)uCINT(I2)+SFOBSC(I)*C(13)

286 CONTINUE
WRITE (6,60)

DO 290 I.NOBMAX
I2-I+NOBMAX*(IOBCNT-1)
IF (IFLOW.EQ.1.AND.THETAC.GE.O.O) WRITE (6,61) IHO(12),HINT(12)
$ ,CO(12),CINT(12)
IF (IFLOW.EQ.l.AND.THETAC.LT.O.0) WRITE (6,61) I,HO(12),HINT(I2)
IF (IFLOW.GT.1.AND.THETAC.GE.O.O) WRITE (6,62) I,CO(12),CINT(12)
IF (IFLOW.GT.1) GO TO 288
IF (WH(I2).LE.0.O) GO TO 288
OBSHOBSH41.0
YSQH'YSQH+WH(I2)*(HO(I2)-HINT(12))**2

288 IF (THETAC.LT.O.O) GO TO 290
IF (WC(12).LE.0.0) GO TO 290
OBSCuOBSC+1.0
YSQCaYSQC4WC(12)*(CO(12)-CINT(I2))**2

290 CONTINUE
IOBCNT=IOBCNT+1

292 CONTINUE
294 CONTINUE

IF (NOBMAX.LE.O) GO TO 640
ERVARH-YSQH/(OBSH-NVARH+NPRIRH)
NTIPOBSH
WRITE (6,63)
WRITE (6,65) NTHP,YSQH,ERVARH

296 IF (THETAC.LT.O.O) GO TO 298
ERVARC-YSQC/(OBSC-NVARC+NPRIRC)
NTHP.OBSC
WRITE (6,64)
WRITE (6,65) NTMP,YSQC,ERVARC

C** BEGIN ITERATIONS
298 INDT-O

ER-0.01
ERP01000.0
IY (ITMAX.LE.0) GO TO 640
IF (ISTEDY.EQ.0) GO TO 640
DO 372 ITER-1,ITMAX
I0BCNTsl
IWCNTw1
ISCNTwI
IBCNTml
IFOWMI
KTwll
DTINEUTIMBGN/TIMFAC
TIMSUnO.O

5840
5850
5860
5870
5880
5890
5900
5910
5920
5930
5940
5950
5960
5970
5980
5990
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360

*_,



Table .-- Computer-progra jisting--Continued

IF (AMP.LT.-.5) GO TO 304 6370
YSQHuO.O 6380
DO 302 I1,NVARH 6390
BH(I)mO.O 6400
DO 302 J,NVARH 6410
XTXH(I,J)eO.O 6420

302 CONTINUE 6430
304 IHR-1 6440

J1*NUMNP+l 6450
J2=NUMNP*2 6460
READ (8'IHR) (H(J),J-J1,J2) 64670
DTIME=DTIME*TIHFAC 6480
TIMSUM&TIMSUM+DTImE 6490

LU-0 6500
DO 316 I1,NUMNP 6510
JwI+NUMNP 6520
H(I)uH(J) 6530

316 CONTINUE 6540
Jl-NUMNP+1 6550

J2NUHNP*2 6560
IHRaKrH+1 6570
READ (8'IHR)(H(J),J-J1.J2) 6580
CALL FLOW (IwCxT,ISCNT,IBCNT,KT,KTH, 6590

$ NTPER,NUHNP,NVARH, PARH,LU,NUHEL, 6600
$ ISTEDY,ITER,IDIM) 6610
CALL SENS (NVARH,NUMNP,IPOKT,KTH,IOBCNT, 6620

$ IXTRFL,NOBMAX,IBCNT) 6630
DO 322 I1,NUMNP 6640
QHTHP(I)-QH(I) 6650

322 CONTINUE 6660
DO 324 I1,NUMNP 6670
IF (NPBC(I,IBCNT).GE.O.OR.NPBC(I,IBCNT).EQ.-2.OR.NPBC(I,IBCNT) 6680

$ .EQ.-4) GO TO 324 6690
IF (NBP(I).LE.0) GO TO 324 6700
NuNBP(I)+NPARH+KQPAR 6710
JuNUMNP+I 6720
SH(N,I)mH(J)*THETAH+(l.O-THETAH)*H(I) -6730

324 CONTINUE 6740
330 CONTINUE 6750
C** FORM LEAST SQUARES MATRIX 6760

IF (AP.LT.-.5) GO TO 344 6770
DO 342 I,NOBXAX 6780
I1+(IOBCNTfI-)*N0BHAX . - - . X 6790

HTMP-0.0 6800
DO 332 J,NUMNP 6810
IF (NODOBS(J).NE.I) GO TO 332 6820
HTMPHTMP+SFOBSH(J)*QHHP(J)- 6830

332 CONTINUE 6840
IF (H(I1).LE.0.0) GO TO 342 6850
TEHP-HO(I1)-HTMP 6860
DO 340 Kl,KVARH 6870
STMP0.O- 6880
DO 334 J-1,NUMNP 6890



Table .-- Computor-progra JJtfnJ--Continued

IF (NODOBS(J).EQ.I) STMP.STMPSFOBSH(J)*SH(KJ) 6900
334 CONTINUE 6910

TMP-WH(I1)*SThP 6920
D0 338 L1,NVARH 6930
STMPmO.0 6940
DO 336 J1,NUMNP 6950
IF (NODOBS(J).EQ.1) STMP-STMP+SFOBSH(J)*SH(L,J) 6960

336 CONTINUE 6970
338 XTXH(L,)oXTXIH(L,K),TMP*STMP 6980
340 BH(K+NVHX2)=BH(K+NVHX2)+TMP*TEMP 6990

YSQH.YSQH+TEMP*TEMP*WH(II) 7000
342 CONTINUE 7010
344 CONTINUE 7020

J1-NUMNP+l 7030
J2-NUMNP*2 7040
IHR-KTH+1 7050
IF (IFLOW.EQ.1) WRITE (8'IHR) (H(J),JsJ1,J2) 7060
WRITE (6,70) 7070
CALL LSTSQ (XTXH,BH,RKH,PH,YSQH,AP,AHP,RP,RPF,VARHNVHX2,NVHX3, 7080
$ IPO,INDT,ITER,NVEH,LDIMH) 7.090
IF (INDT.EQ.1) O TO 521 7100

C** UPDATE HEAD 7110
348 DO 352 I1,NUMNP 7120

I1-NUMNP+I 7130
SUHHO-.O 7140
IF (NVARH.LE.0) GO TO 32 7150
DO 350 J1,NVARH 7160
SUHH=SUMH+BH(J)*SH(J,I) 7170

350 CONTINUE 7180
IF (IFLOW.EQ.1) H(I1)-QHTMP(I)+SUMH 7190

352 CONTINUE 7200
IHR'2 7210
J1-NUMNP+l 7220
J2w2*NUMNP 7230
WRITE (8'IHR) (H(J),J-JIJ2) 7240

C** UPDATE PARAMETERS 7250
354 IF (IPO.EQ.1) WRITE (6,73) 7260

DO 356 Im1,NUMA? 7270
IF (NVARH.LE.O) GO TO 356 7280
L-IPRMH(1I)- 7290
IF (L.GT.0) RX(I)RX(I)*(BH(L)+1.0) 7300
L=IPRH(2,I) 7310
IF (L.GT.O) RY(I)oRT(I)*(BH(L)+,.O) 7320
LsIPRMH(3,I) 7330
IF (L.GT.0) RZ(I)-RZ(I)*(BH(L)+1.O) 7340
IF (IPO.EQ.1) WRITE (6,74) I,RX(I),RY(I),RZ(I) 7350

356 CONTINUE 7360
C** UPDATE SURFACE AND POINT SOURCE-SINK PARAMETERS 7370

IF (NQPAR.LE.O) GO TO 360 7380
WRITE (6,75) 7390
DO 358 INQPAR 7400
QF(I)nQF(I)*(BH(I.NPARH)+1.0) 7410
IF (IPO.EQ.1) WRITE (6,76) I,QF(I) 7420


