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CONVERSION DATUM
For those readers interested in using the metric system, the following
table may be used to convert the inch-pound units of measurement used in this
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Multiply By To obtain
foot 0.3048 meter
foot per day ‘ 0.3048 ‘ m;tet per day
foot squared per day 0.09290 ‘ meter squared per_day
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A DUAL-POROSITY MODEL FOR SIMULATING
- SOLUTE TRANSPORT IN OIL SHALE

‘By'kgnt C. Glover

ABSTRACT

A model is descrzbed for simulating three-dimensional ground-water
flow and solute transport in oil shale and associated hydrogeologic |
units. The model.trgats oil shale as a dual-porosity medium by simulating
floﬁ and transport within fractures using the finitg-eléﬁéht method.
 Diffusion of solute between fractures and the essentially static water of
the shale matrix is simulited by including an analytical soiution that.
acts as a source-sink term to the differential eQuatién of solute tranSport.
While knowledge of fracture orientation and spacin;.is heedeq to effectively
use the model, it is not necessary to map the locations of individual
fraqturqs.

The computer program listed in'tﬁe report incorporates many of>ther
features of previous dual?porosity models while retaining a ﬁractical
‘apprqach to solving field problems. As a tesqlt'the report does not
extgndAthe theory of solute transport in any appteciablg way. The eﬁﬁhasis
in ;he report is on bringing together various aspects of solute-tranéport

theory in a manner that is particularly suited to the unusual ground-water

flow and solutc;transport characteristics of oil-shale systems.



INTRODUCTION

Digital models of ground-water flow and solut2 transport have been
used to predict possible impacts of oil-shale development on the ground-water
resource (Robson and Saulnier, 1981). Unfortunately, modeling techniques
used in the past either were not developed for use in rock, such as oil
shale, where porosity depends on fracturing, or required data that
usually are not available. From 1980 to 1983 the U.S. Geological Survey
studied migration of solute from an in situ oil-shale retort near Rock

Springs, Wyo. (fig. 1). The emphasis of the study was to identify geo-

Figure 1.--(caption on next page) belongs near here.

logic, hydraulic, and chemical factors that control the process of solute
transport in oil shale. During the study, it became apparent that no
existing model was well suited for the unusual flow and transport
characteristics of oil-shale systems. Therefora, as part of the study,

a model was developed.

This report describes two digital-computer programs that are used to
simulate ground-water flow and solute transport in oil shale with inter-
. bedded tuff or sandstone. The U.S. Department of Energy expetimedtal,
in situ, oil-shale retort near Rock Springs, Wyo., was used as the prototype
flow system of the model. The application of modeling techniques to this
flow system is described in a report by K. C. Glover, U.S. Geological
Survey, written commun. (1985). The model is designed'for use in site-
specific studies and consequentially includes many features, such as
diffusion of solute batween fractures and the shale matrix, that may not

be important to basin-wide or regional investigations.
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Figure 1.--Location of in situ oil-shale retort near

Rock Springs, Wyoming,




A wide array of ground-water flow and solute-ﬁransport models have
become available in recent years. Konikow and Bredehoeft (1978), and
INTERCOMP Resource Development and Engineering, Inc. (1978) describe two
of the more commonly used programs. Other models that are potentially
useful in studies of oil-shale hydrology are described by Bibby-(l981),
Noorishad and Mehran (1982), and Rasmuson and others (1982). The model
described in this report incorporates many of the features of the above
models while retaining a practical approach to the solution of field
problems. Boundary conditions can be applied easilj and mapping of
individual fractures is not necessary. As a result of this approach,
the preasent model doés not extend the theory of solute traasport in
fractured media in any appreciable way. Instead, various aspects of-
this ;heory are brought together in a manner that is particularly suited
to the unusual ground-water flow and solute-transport characteristics of
oil-shale systems.

Throughout the remainder of this report it is assumed that the reader
is familiar with the basics of solute-transport modeling in porous media,
such as sand-and-gravel aquifers, as well as the finite-élement method
of numerical analysis. It is believed that most hydrologists faced
with a problem of solute migration in oil shale will have faced similar
problems in unfractured media. For those readers uanfamilar with
applications of solute transport moéeling using the finite-element
method, it is suggested that teaching references such as Freeze and
Cherry (1979), Konikow and Bredehoeft (1978), and Zienkiewicz (1971)

be consulted.



OIL SHALE AS-A DUAL-POROSITY MEDIUM
Porosity in oil-shale formations may be classified on the basis of

its relationship to hydraulic conductivity. Porosity may be considered
_effective for increasing hydraulic conductivity if the pores are interconnected
or not effective, as in shale, if the pores are relatively isolated.
Porosity due to faults, joints, collapse breccia,.and solution cavities
is the major source of berheability in oil shale with otherwise low
petqeabilicy_(kqbson and;Saulhicr, 1981); Persistent layers of permeable
~ tuff or sandstone, ranging in thickness from less than an inch to several
@nches, also are common in oil shale (Bradley, 1964) and contribute to the
hydraulic cohdqctiviﬁy. The porosity of the shale and marlstone matrix,
although relatively high, does not contribute significantly-to hydraulic
;onductivity.‘ - '

- Any attempt to ;imulate‘gtbund-water flow and solute transport in
oil shale must includg consideration of the dual-porosity nature of-éhese
sedimen;s. The solute-transport procesées of hydrodynamic’'dispersion and
advection are related directly to seepage velocity and therefore are
related to the effective porosity of the formation. However, several
investigators including Grisak and Pickens (1980) and Bibby (1981) have
noted that dispersion and advection alone cannot ;:chunt‘for the distribution
of nonfteacting>solu§e:in:frqétured formations. The extremely low seepage
velocity of g}}g;uwith;n the shale matrix minimizes dispersion and advection,
increasing hhe relative importance of diffusion. -The porosity of the shale
matrix, although not contributing to hydraulic conductivity, is important

to dispersion.
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METHODS OF SIMULATION

Ground-Water Flow

. Only the part of formation porosity that contributes to hydraulic
conductivity needs to be considered in analysing ground-water flow systems. -
For most practical purposes this porosity in oil siale, whether resulting
from faulting, solution channels, or thin beds of permeable tuff and
sandstone, can be analysed using the techniques of Snow (1963). He
showed that many problems of flow through dual-porosity media can be
solved using an anisotropic hydraulic-conductivity teansor in conjunction
with standard porous-media techniques. His approach to the problem of
ground-water -flow isvvalid if the formation has a fracture density that
is high compared to the scale of the problem. In such a case, the hydraulic
characteristies of the fractured formation are similar to those of granular
media. If fracture spacing is irregular in a given direction, the formation
will exhibit heterogeneity. Because mapping of individual fractures is
impractical for most field problems, the approach of Snow (1963) is used
in this model. From a practical viewpoint the model described in this
report may be useful when the hydrologist has some knowledge of the
average spacing, aperture size, and directions of fracturing, but accufate
mapping of individual fractures is not possible. Through proper
alignment of the model cartesian coordinate axes with principal directions
of fracturing and use of heterogenesous hydraulic conductivity'values,

many different fracture geometries can be simulated.
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The three-dimensional nature of a fracture system, along with the
essenfially horizontal bedding plane of most formations, generally results
in a three-dimensional flow system in oil-shale strata. Three-dimensional
flqw>systcms in oil shale have been observed on both a regional scale by
Robsoh and Saulnier (1981) and on a local scale by tﬁe author at the
Department of Energy in situ oil-shale retort near Rock Springs, Wyo.
Therefore, the program given in this report is inteﬁded for use in
studies of three-dimensionalAground-water flow.

Rocks in the vicinity of an in situ retort are altered due to
induced fracturing. As a result fracture patterns in the retort
chamber are significéntly;different than regional-f:acture patterns.

The values‘;nd degreerﬁvanisottopy_of hydraulic conductivity within
a retort chamber also differ from regional estimates. Nevertheless
vthe fracture density usually is high, compared to the dimensions of the
retort chamber, and standard porous-media techniques can be used to
simula;g ground-water flow in the immediate vicinity of the retort

chamber.
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Solute Transport

The extension of solute-transport theory to dual-porosity media has
attracted considerable attention in water-resources literature. HMuch of
the literature has been directed toward studies of radionuclide migration
through individual fractures and as such is not directly applicable to
field problems where mapping of individual fractures is impractical.
Grisak and Pickens (1986) modeled fractured media by using separate’
finite elements to represent fractures and adjaceat low permeable
rock. Finite elements used to represent the fractures were modeled with
material properties that differed from adjacent low-permeability
elements. This-appfoach was extended by Noorishad and Mehran (1982), who
also introduced the use of an “upstrgam-weighting" technique to simulate
more accurately the essentially advective transport that occurs within
the fractures.

Bibby (1981) took a different approach to modeling solute movement
through dual-porosity media. Molecular diffusion between fractures and
the primarily static water in the shale matrix was incorporated in the
model as a source-sink term utilizing an appropriate analytical solution.
To apply this two-dimensional model the user needs to know average
spacing, aperture diameter, and direction of fractures but does not need
to map individual fractures. This approach is analogous to the method of
flow analysis discussed by Snow (1969). Although no upstream-weighting
technique was used, Bibby (1981) reported no difficulty in applying the

model to a field problem in a limestone aquifer.
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Rasmuson and others (1982) presented a model for simulating three-
dimensional soiute transport in fractured rocks that is based on an
integrated finite-difference approach. The model produces excellent
:gsults if solute transport is dominated by hydrodynamic dispersion. -
Because advection dom@ﬁqtes most solute-transport problems in oil-shale
strata (Robson and Saulnier, 1981), the approach of Rasmuspn and others

*(19825 is no£ consideréd pfac;ical for use with oil shale.

The approach to modeling solute transport presented in this report
is basically the model described by Bibby (1981) and extended to three
dimensions. This approach has been selected because it strikes a balance
between theoreticai éccuracy and practical applicability. Accurate
m;pping 9f fractures is not neéded to use the model, although some knowledge
of the fracture system is required. The ease with which boundary conditions
can be applied also supports this approach. One disadvantage of the approach
is the difficulty of extending the analytical solution for diffusion between
fractures and the shale matrix to problems of multiple-species transport.

”Armodel_that can be extended to problems of mzltipleéspecies\
ttansport»is.describgd by Huyakorn and others (1983). Uafortunately,
fracture locations must be accurately napéed to use the model successfully.
Therefore }he model of Huyakorn and others (1983), although theoretically
_ superior to.the model of Bibby (1981), cannot be applied in most practical

field problems,

I



APPLICATION OF THE FINITE-ELEMENT METHOD

Ground-Water Flow

The basic governing equation for three-dimensivnal flow, when
Cartesian coordinate axes are aligned with the principal components of

the hydraulic-conductivity tensor, is as follows:

9 (Ki QE_) +W=Ss ch i=1,2,3 (1)
8xi . axi it

where Ki = the hydraulic coaductivity tensor [LT-II;
W = the source-sink function (positive for a source) [T'll;
S, = specific storage [L'll;
h = the hydraulic head [L];
x; = Cartesian coordingte [L], and use of a repeated subscript

indicates summation on that subscript; and

t = time [T}.
The source-sink term may be distributed areally or may represent a well.
Boundary conditions that may be applied on the periphery of the pfoblem
area include known specific discharge normal to the toundary or known
hydraulic head. Parameters Ki’ W, and Ss are approximated by subdividing
the‘tegion of interest into discrete zones. Parameters are assumed to be
constant within each zone which gives rise to internal boundary conditions
at zonal discontinuities. Along these internal boundaries both hydrauiic
head and normal specific discharge must remain unchanged as the boundary

is crossed.
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Eduation 1 may be solved by using the finite-element method based on
the Galerkin criteria. Details of this method are described in Ziénkiewicz.
(1971) and finder and Gray (1977). Within this~reg§;t,'first-ordéz |
basis functions are used to describe each cubic element. While use of these
. basis fuanctions requires more elements than if highér;order'functibns'were
used, the reduced oscillatory behavior and integrhtion_tihe associated with
linear functions make this simpler approach preferable.

- The matrix equation resulting from the finite-element diééretiz#tion

. of equation 1 is as follows:

G B+ oh =3+ g T - a-obi ™ 2)
where C = a coefficient matrix involving specific storage (Ss) and
calculated for a single finite element as III& S, a ()t dv;
B = a coefficient matrix, with off-diagonal components equal
to zero, involving hydraulic conductivity and calculated
for a single finitevélement as
[f5, & g—;‘i(g-ﬁi)‘)dv, i=1,2,3;
i ™ = the vector of hydraulic head at time m;
q = the known vector involving source-sink terms and specified flux
boundary conditions; |
Atm = the length of the time step;
6 = a number ranging from O for an explicit sothion to 1 for
an implicit solution; |
V = the volume of the finite element;
n = the vector of finite-element shape functions; and
( )t = the transpose of the enclosed vector.

g



Equation 2 is solved by Gaussian elimination for banded symmetric
matrices. Although other direct-solution techniques,‘such'as Cholesky
decompositon, can be used, the procedure used in this report has proven
adequate. Gupta and Tanji (1976) has suggested the use of matrix solvers
that take full advantage of the sparse nature of coefficient matrices in
attempts to reduce core storage requirements. The trade-offs in these
matrix solvers are increased disk access and increased computational
time. Wiﬁh the introduction of virtual-memory operating systems used by
most computers, such detailed attention to minimizing core storage is not

required.
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Solute Transport -

':‘The transport of a conservative solute in ground water is described

by the following equation:

523‘(nij.§§3 - g;;.(sqi)_=¢ g% “We*x  i,j = 1,2,3 (3)
where'Dij = the hydrodynamic-dispersion coefficient'[LzT-ll;"
¢ = solute concentration [HL-3]; and -
¢ = porosity [dimensionless];
q£=-Kig%. = the Datcian‘fluid velocity [LT-II;
i _

W = a source-sink function [T-ll;

¢ = solute concentration in a fluid source [HL-3].

When applied-.to dual-porosity media suEh as oil shale, the terms are
defined relative to the joint or fracture system, with the shale matrix

considered impermeable. The hydrodynamic-dispersion coefficient (Dij) is

related to Darcian fluid velocity in the fracture system by

D, = oln , p* i, = 1,2,3
ij = aijmn 7?1,— i,),m,n, = 1,<,
where aijmn = dispé;sivity of the fractured media [L],
q, and q = Darcian fluid velocity [LT-ll,
/q9/ = the magnitude of the Darcian velocity vector [LT-ll, and

#* -
D = the molecular-diffusion coefficient [LzT l].

for isotropic media,

the longitndinai dispersivity for i = 1,2,3;

84441 9, T |
aiijj =0y = the transverse dispersivity for i,j = 1,2,3;‘and
aijij I (aL - aT) for i,j = 1,2,3.

There is no corresponding theory describing hydrodynamic dispersion in

anisotropic media.



The form of the transport equation used in this report also is used
by Pinder and Gray (1977), and Bibby (1981). Konikow and Bredehoeft
(1978) and most studies of solute transport done by the U.S. Geological
Survey use a form of the equation that is obtained by dividing equation 3
by porosity. The hydrodynamic-dispersion coefficient then is defined in
terms of seepage velocity. Either form of the equation can be used
successfully. However, when comparing results of studies using different
forms of the transport equation, it should be recognized that the dispersion

coefficients will differ by the magnitude of porosity.
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Galerkin's method of weighted residuals, when applied to equation 3

with isoparametric finite elements, gives

A_F+eb) ™= o +"(1 F - (1-9)!5) sl - (%)

g - LI
]

whgre a coefficient matrix involving porosity and is calculated

for a single finite element as Iffv oa ()t dv;

o
i

a coefficient matrix involving hydrodynamic dispersion and
advection and is calculated for a single finite element as

I‘U-V(DIJ an_(aXJ) - ql axi (n) Jdv i j, = 1,2 3,

cm ‘the vector of solute concentration in ftactures at time m; and

a known vector involv1ng speczfled flux boundary con-

qc
ditions and source-sxnk terms (W), solute concentration
: in fluzd sources (c*), and dszusxon
between fractures and the rock.
Detailed information on formulating this eouation can be obtained from
Eibby (1981) or Pinder and Gray (19f7,'p. 144-148). Equation & is solved

by the Gauss-Doolittle method for banded,.nonsymme;ric matrices.



Diffusion within the Oil-Sha;e Matrix

The exchange of solute between water in a system of parallel

fractures and the essentially static water in the adjaceat oil-shale matrix

can occur by molecular diffusion and can be simulated by the addition of a

source-sink term to equation 4. Bibby (1981) gives this source-sink term as

a convolution integral that is expressed here in discrete form at time t

%
where Wc

%
b

At

i

* ¢3b . 5
We = - B (FD) (ep(ty) = eplt, )] )

the mass flux of solute entering the fracture [M/L3/T};
the porosity of the oil-shale matrix [dimensionless];
the average distance between parallel fractures [L];

[tm-tm_i], the iength of the time step (T];

the average fracture width {L];

the average solute éoncent:ation in the oil-shale matrix [M/L3];

1 m
= (-3 t)] +Z{e(t)
En exp am i=1 m

-]
i
°M8

c(to) [l-%z

ez, )} {l-ﬁzgzg; nz; gig; { exp [-B_(t -t,)]

-exp [-B (t - t)]}] ;

the solute concentration in the fracture at the beginning

of the simulation [M/L3];

an index of summation (dimensionless];. ..

(20 - 1)%;

D,(20+1) n2/b2;

the solute concentration in the fracture at time ti [M/L3); and

molecular diffusion of solute within the oil-shale matrix [L2/T].
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The only unknown variablg in equation 5 is c(tm). Therefore, the
coefficient associated with'c(tm) is placed on the main diagonal of
- the D matrix in equation 4, while the remainder of the expression is
. placed in the right-hand vector of known values. Equation 5 involves
summation over the entire period of the simulation. ‘Fortunéteiy, liétle
. truncation error is introduced by retaining only a~Fmall number of terms
in the summations. The optimum number of terms to retain'depends on the
valueg ofHDd, b and Atﬁ; however, from information preseﬁted by Eibby
(1981),. it is apparent that betweep five and ten terms are adequateifot
most‘applications..

; Several‘aquiférvproperties must be determined to use equation 5
successfully. These proporties include molecular diffusion within the
oil-shale matrix (Dd),naverage distance between parallel fractures
(b), average fracture width (f), and can be obtained for each of these
_properties, model calibration usually must be used to impfové‘upon the
estimates. Therefore equation 5 generally is useful only in studies
with well distributed and frequent measurements of solute concentration

in wells.
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Sources of Solute Within the Retort Chamber

Hechanisms for creating and leaching chemicals from burned shale
within an in situ retort chamber to the formation water are poorly understood.
Knowledge of conditions during the retort process is needed to determine
the chemicals that are created, while an understanding of dissolution
controls is needed to predict how the created chemicals are transferred
from the burned shaleAtA the formation watexr.

The retort temperature, total time of retorting, permeability of the
retort chamber, and initial mineralogy affect the type and amouat of
chemicals created during a burn. During combustion of a retort chamber,
a "flame front".or zone of combustion moves through the fractured oil-shale
bed. Ho; gases from this combustion move ahead of the flame front and
provide energy for pyrolysis of kerogen. In the protess, a number of
chemical by-products are created. A discussion of how these by-products
are created is outside the scope of this report. However, it is important
to recognize that the resulting chemicals will vary from retort chamber
to retort chamber. Ia large chambers, the distribution of chemical by-products
within the chamber also may be important. Coring of an abandoned retort
chamber before it resaturates and lab analysis of the cores by long-term
leaching studies can provide some understanding of the chemicals that are

created during retorting.
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- After the retoftﬁoperation>oeases, the chémoee resaturates and
chemicals created dofiﬁg the burn are leached into toe water.A»During the
time that it takes to resaturate the:Eetott ohambef a rapid increase in
the concentration.of solote occurs For many studies of eoiote‘transport,
an equatxon to descrxbe ‘the 1n1t1a1 dxssolutxon 1s not needed because
migration of solute from the retort chambet is unlikely untxl the formation
resaturates. " »

After the retort chambet resaturates, Hall (1982) proposed that
diffusion between the pores "of the oll-shale matrix and fractutes acts as
a dominant mechanx;mvfor 1ntroduc1ng solute to a gtound-water system.
This mechanism islsimulated By'equation 5. As discossed oteviously,.
equation S describes diffusion between the oil-shale matrix and a system
of parallel fractures.. Fracturing Qithin a retort chamber is mﬁch more
irregular but can be conceptualized as two systems of parallel fractures,
one‘vertical_and one horizontal, resulting in cubes of oil-shale. Matrix
‘diffusion within the retort chamber can be simulated by applying equation 5
once for each fracture orientation.

In addition to rock and fracture characteristics discussed ptevxously,
the use- of equation 5 to sxmulate a source of solute requ1res an estxmate
for the intial solute concentration in the pores of the oil-shale metrix

(c Water~-quality ieopling as theifetort chamber resaturates will

8
provide a measure of'solute concentration in fractures but not of solute
concentration in the shale-matrix pores. In cases where solute migration
outside the chamber does not occur until some time after the inital
resaturation the initial solute concentration with the shale-matrix pores
may be approximated by the initial solute concentration within fractures.
Study by the author and the Department of Energy in situ oil-shale retort
near Rock Springs, Wyo. indicate that this approxiﬁation may be |

reasonable in many cases.

-



In situ retort chambers are sources of solute for extended periods
of time after retott;ng stops. This characteristic has been observed by
the author at the U.S. Department of Energy, experimenﬁal, in situ,
oil-shale retort near Rock Springs, Wyoming and by Hall (1982) in labor-
tory expetimenis. The source of solute cannot be explained solely by
diffusion from butngd shale into fractures.

Hall (1982) has proposed a mechanism to explain the iﬁng-term source
of solute that is based on the slow dissolutionvof the mineral matrix
from pore walis. Although he was unable to provide a good theoretical

basis for this slow,dissoluiion, he proposed the use of an empirical

expression to simulate the mechanism. The expression is

* .
K A(ce-c) (6)
* - P ~2T'1
where K = the mass transfer coefficieat [L 1,
A = the interfacial area [Lzl,
Ce = the equilibrium concentration of fluid in contact
with shale blocks [ML™3], and
¢ = the soluie concentration [HL-3];

This equation acts as a source-sink term to the solute-transport equation
and simulates the dominant mechanism for leaching of burned shale after

the passage of two to three pore volumes of water.
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Application of the proposed leaching mechanism to a field problem
"requires‘tﬁat K#, A, and cé in equation 6 be determined. While Hall

(1982) determined values of the product K*A for organic solute from

_column experiments, the applicability of these values to field probiems

is unknown. Therefore K*A is effectively a parameter that must be
estimated during model calibration. The equilibrium concentration,

Cgs €an be estimated from long-term leaching tests of burned shale.
Unfortunately, these tests have been performed fdr'véry'few of the chemical
species found in oil-shale retort water.

The use of empirical equation 6 to describe mass transfer éséentially
provides an.infiniie'source of solute to the medium where, in feality,
such a source is finite.  Therefore the use of equation 6 will over
estimate solute concentrations in the trailing part of adpluﬁe. Theruse
of equation 6 is justified in studies of solute transport in oil shale
where the distribution of solute in the trailing part of the plume
is not considered, or in studies where an estimate of maximum probable

concentration of solute in the trailing part of a plume is needed.
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- MODEL CALIBRATION AND SENSITIVITY

The approach to ground-water flow and solute transport used in this
report alogg with the three-dimensional nature of flow through oil shale,
introduces an unusually large number of calibration parameters. Considering
the amount and distribution of water-level and solute-concentration data
that are available in most field studies, it is possible to reach a point
where addit;onal detail in the simulation procedure does not significantly
improve the model fit. Therafore, it is important to assess the uncertainty
associated with the various calibration parameters if the model is to
remain a practical one for use in field problems.

Cooley (1977)‘ptesents a method for evaluating the reliability of a
model within the framework of steady-state flow of ground water in two
dimensions. This technique has been extended to three dimeasions aand is
described in a later section. Before presenting the technique, the rela-
tionship between measured data in wells and model-calculated hydraulic
head is discussed. Observation wells that have been installed in

oil-shale strata rarely are piezometers.
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Relationship of Measured Data and Calculated Results
- Hydraulic Head
The relationship between hydraulic head in the-formation and the

water level measured,in~a4we11,open to part or all of the formation is
governed by aquifer properties, welleborebcharacteristics and the vertical-
head gradient within the formation. - An accurate treatment of the relationship
would involve solving the three-dxmenszonal equation of ground-watet flow
in the close v1c1n1ty of the well bore us1ng model est;mates of aquifer
properties and a boundary condxtxon of uniform head along the well bore.
The computed head in the welllcouid be“compated to measuted water-level
data. This approach is not ptactxcal 1n most fxeld problems. Instead, a
relationship is used in the model that is based on the steady-state
»conservation of water within the well bore and Darcy's law. The result

is a simple weighted average of hydraulic head.

z2
~ Izl_Kiihdz o
h —_— | i=1,2 (1)
int = fZg o
K,.dz
- zy 1.1 .

where h.

int the depth-integrated head in the we11 (L1,

-

k= hydraulic head obtained ftom the solution to equation 2 (L],

22 = the altitude of the top of the well bore cpen to the formation
'z = the altitude of the bottom of the well bore open to the formation .

[L}, and * 7 .

K;; = hydraulic eogdoEtivity [Lfi}f.A
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Equation 7 is derived by writing Darcy's law for radial flow and
integrating along the open interval of the well. Applying Darcy's law
for radial flow from an circular boundary with no drawdown due to well-bore

effects and assuming a well radius of 1 foot gives

_ ZHK(hb = h, t)

in
1= Tn(r)
where q = the Dafcian flux per unit length of well bore [LZT-I],
K = the hydraulic Eonductivity [LT-II,
h, = the head at the boundary (L],
hint = the head in the well [L), and -
t = the distance to the boundary (L].

The distance r may be thought of as the radius of influence by the well
bore. By assuming steady-state flow along the well bore, the amount of
water entering the well along part of the open interval must equal the
amount leaving along the remainder of the open section. The integral
expression for this conservation of mass is

4
[ %4z =o0.
%

Substitution of Darcy's law for radial flow into the expression for

conservation of mass gives

Z K 2

2 - 2 K
Iz In(r) by, dz = hint fz 1a(x) dz.
S § ~ 1

Treating distance to the boundary as a constant, lan(r), may be moved
outside the integral and equation 7 obtained.

The model in this report uses information on the open intervals of
wells, estimates of hydraulic conductivity and calculated hydraulic
head to determine the depth-integrated head at each observation well.
Thg result may be compared to measured water-level data as a guide during
model calibration when piezometers are not available.
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Solute Concentration
The relationship between solute concentration in the formation and
that in a well is governed by the three-dimensional equaiion‘of‘solute
transport. As with hydraulic head, it is not practical to solve this
problem at each well bore. By assuming:steady4state'conéervation of
- solute and using Darcy's -law, one can obtain an expression similar to

equation 7.

.I;A cq dz
C, = —3— - i=1,2 - o (8)

where c,

int =. the depth-integrated solute concentration [M/L3],

¢ = solute concentration obtained from the solution to
‘equation 4 [M/L3], -
Z, to z, = the part of the well bore where water enters [L], and

).

q K ;(h-h

int
Eqﬁatibn 7 is used in the hodel'to infer sectipns of ;hg well bore where
‘water enteré; Théﬁdefivacion of equation 8 essentisally is'identicg}‘to

the deriGaiion'of éQuation 7 and will not be given here.
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Estimating Paramelers for Models of Steady-State Ground-Water Flow

Direct measurement of all hydrogeologic parameters needed to con-
‘struct models of ground-water flow and solute transport is rarely possi-
ble. As a result, values of unmeasured parametars usually are adjusted
until measured and calculated water levels and solute concentrations match
in some acceptable manner. Cooley (1977) proposed a regression method
for estimating an optimal set of hydrogeologic parameters and assessing
parameter reliability within the framework of two-dimensional steady-state
flow. An extension of this method to three dimensions is included in the
model described in this report.

The following method is used to estimate parameters and assess
reliability for a three-dimensional model of steady-state
ground-water flow. Throughout the following development, deviations from
the two-dimensional development of Cooley (1977) are noted. The method
is an iterative technique that minimizes the squared difference between
measured and calculated water levels in wells. To set up the iterative
technique it is necessary to linearize the finite-element form of the
equation of ground-water flow with respect to unknown model farameters,
differentiate the linearized equation with respect to these parameters,

and, setting each derivative equal to zero, solve the system of equations.
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~ The derivatives of unknown model parameters are obtained in the
following ﬁanner. Avtrunéated Téyidr sgrfgélkipan;ion of eqﬁation 2 is
written for (At)fl eqﬁﬁj to'zero andle équal to one. The resulting iterative
equation is identical to thé one given by Cooley (1977). Solving this

Taylor series for hydraulic head giées

AT = BT+ A% + §5TH! (9)
where Et+1 = the vector of hydtaulic head at the r+1 iteration;
h = the vector 6f hydrsulic head at the r iteration,

A = (&%) E

K* = the matrix involving es;imates of hydraulic conductivity’
.used in:equationvz &t the r iteration;
_E% = the functional representation of equation 2 at the r iteraﬁion;
§F = 5@')"(% 2°);
‘ da
a® = the vector of model-parameter estimates at the r iteration, and
Er+1 5; ar+1 - 5‘.' | | |
at

This equation is identical to the one used by Cooley (1977) to calculate
hydraulic heads for each new iteration. Tﬁe;définitioﬁs of the variables are

given in three dimensions instead of two.
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Hydraulic head calculated by equation 9 cannot be compared directly to
water-level measurements in wells unless the wells are constructed as
piezometers. Because wells usually are open to some interval of aquifer,
water levels represent a depth-integratedvvalue of hydraulic head. Therefore,
the least squares criterion that must be satisfied differs slightly from the
criterion used by Cooley (1977), where vertical-head variations were not
considered.

3 -z ~r+l -
55}—1 {W(hm - hint) } =0 (10)

where w = a véctor of weights between 0 and 1 describing the reliability

of Em’
Em = the measured head, and
E;;: = the vector of depth-integrated head at the r+1 interation.

Depth-integrated head is calculated by using the finite-element approximation

to equation 7 in conjunction with equation 9. Substitution of the result

Lo JRY

in equation 10 gives the following:

S@35T F35% = @HTaE, - FGEE 29 (1)
where R* = the matrix of finite-element appﬁyximations of equation 7
involving estimated hydraulic conductivity at the r
iteration, and,
( )t = the matrix-transpose operation.

With the exception of the Nt term, equation 11 is identical to the least
squares equation used by Cooley (1977). Equation 11 can be solved for
5r+l

Because the Taylor series expansion used to linearize the equations of

which in turn can be used to calculate estimates of model parameters.

ground-water flow is an approximation, the solution of equation 11 may not
give global optimum values of 5t+1 unless ﬁt*l - % and ;:+1 - a° are small.

Therefore itaration must be used.
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The iteration procedure is identical to the one used by Cooley (1977).
An initial estimate of aquifer properties and other unknown model parameters
is used to solve equation 2 for hydraulic head. The coefficients 3f"/3a"

are calculated and equation 11 is used to solve for prt!

and new estimates
,9£ model parameters. The:iteration number is advanced by one and the
Tgylor series expansion of equation 2 is used to compute £°. An iterative
cycle is begun by resolving equation 2 with the latest eséimates of aquifer

ertl

properties and boundary flux rates until values for f are less than some

acceptable error.
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Sensitivity Analysis of Transient Ground-Water Flow

and Solute Transport .

Development of a statistical procedure for estimating model parameters
under transient conditions is more difficult than uander steady-state
conditions. Several approaches to solving this problem may be possible,
but all have proven overly expensive in terms of disc storage, core
storage or computational time. Therefore, calibration of'transient
ground-water flow and solute-transport models remains a ttial-and-értor
process in this report.

A review of the differential equation of solute transport (eq. 3)
shows that ground-water velocity acts as a calibration parameter.
Therefore, it usually is necessary to develop a ground-water flow model
concurrently with the development of a solute-transport model. Tarcy's
law is used to compute velocity from estimates of hydraulic conductivity
and model-calculated head. The linkage between ground-water flow and
solute transport often forces the hydrologist to iterate between the flow
and transport models until a distribution of hydraulic conductivity is
obtained that reproduces both historical water-level and solute-
concentration data. Bibby (1981) observed that the solute-transport
model can have a strong influence in determining optimal estimates of

hydraulic conductivity.
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'EVALUATION OF MODEL:
A number of tests of the model have been made including comparisons
- of model results to analytical solutions and to one field application.
»Becausc analytical solutions rarely exist fof three-dimensional problems,
tests‘have’begn designed to verify the accuracy of the model iﬁ one and
'two dimensions, Repeated applications of the test problems in each of
. the three directions were used to isolate any programming or logic
., errors. Comparisons of model results with analytical solutions are dis-
_cussed bﬁlow.r Application of the model to a field problem, solute
- transport from an in situ oil-shale retort near Rock Springs, Wyo., will
‘be discussed in a iater report iK. C. Glover, U.S. Geological Survey,
;ritten commu#., 1985).

Ground-Water Flow

An evaluation of the basic model of ground-water flow (eq. 2)
has not uncovered any unusual characteristics. For problems with rela-
tively regular boundaries, the evaluation showed that the finite-element
method did not improve upon head distribution calculated by finite-
difference methods. In problems with complex and itfegular.aquifer
geometry, the finite-element method can be used to m&del the flow system

with fewer nodes.
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Model results were compared to Theis's analytical solution for draw-
down in the vicinity of a pumping well (Lohman, 1979). The Theis solu-
tion is for a fully penetrating well in an infinite confined aquifer with
no vertical movement of water. These conditions were simulated in the
flow model by using variable node spacing, a zero-drawdown boundary
20,000 ft from the well, and uniform aquifer properties. The aquifer was
assumed to be 100 ft thick with a hydraulic conductivity of 12.5 ft/d and
specific storage of 1078 ft~ 1. Well discharge, distributed uniformly along
the well bore, was simulated at a rate of 2.0 ft3/sec. Model results and the

analytical solution are plotted in figure 2 for three distances from the

Figure 2.--(on following page) belongs near here

pumping well.
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Figure 2.--Compariéqh of flow-model results with Theis's analytical

solution.
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The remainder of this section is a discussion of the regression
technique for estimating aquifer properties and boundary-flow rates in
steady-state systems. Most of the major conclusions of Cooley (1977 and
1979) seem to be appropriate for flow in three as well as two dimensions.
Specific points of interest to three-dimensional problems are discussed
below.

The number of aquifer properties and flux rates that are treated as
regression parameters can have a strong influence 29 the convergence
characteristics of the model. The vertical anisotropy that is common in
most three-dimensional systems increases the number of regression parameters
and can cause convergence problems more easily than in two-dimensional
flow. The number of regression parameters in three dimensions also
increases because horizontal hydraulic conductivity often varies with
depth. With the large number of parameters that caa occur in three-
dimensional models it may be difficult to obtain adequate water-level
data for all strata and convergence can be very slow. In cases where the
nunber of regression parameters approaches the number of measured water

levels, no solution may be possible. These characteristics can limit the

use of the regression technique in three-dimensional problems.
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Boundary-flux rates usuaily are measured with greatest accuracy when
the flow occurs at or near the land surface. This fact has a number of
implications in using the regression technique. If significaht rechafge
and discharge occurs at depth as underflow and the hYdraulic conductiQity
~ is not known exactly, the least-squares matrix usually is ill-conditioned
and no solution is possible. On the other hand, if boundaries are identified
at depth such that no flow occurs across them, a solution may be possible.
However, the standard errors of ‘estimate for hydraulic cdnducti#ity
usually will be very large. Large standard errors can be commoﬁ espééially
if measured water-level data do not accurately describe vertical head
gradients throqghoﬁt'the study area.

Cooley (1977) found that models of ground-water flow ate'characterized
by having large standard errors for fhe parameteis. These errors are
caused by anomalous measured watef levels as well as errors in specified
. boundary conditions. If errors that usually occur in boundary-fluk
estimates are not considered during model applications, the resulting
standard errors for the parameters usually will be artificially small.

Test probiems using the three-dimensional regression procedure

supported these conclusions.
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The regression model in this respect can be used to assess reliability
of computed parameters and predicted values of head if the model is approxi-
mately linear with respect to the parameters. Cooley (1979) provides a test
for linearity that also is applicable to three dimensions. Because the model
is nonlinear with respect to hydraulic conductivity, the large number of
hydraulic-conductivity parameters in most three-dimensional systems makes it
more difficult to pass this test of linearity. Therefore, the use of
confidence regions and test of hypothesis may not be appropriate for many
three-dimensional problems. Additional testing of the regression method in

three dimensions is needed to evaluate this coaclusioen.
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Solute Transport

An an&lytical solution for one-dimensional solute transport from a
specified concentration boundary into a fractured aquifer of uniform
thickness is given by Bibby (1981, p. 1078). Fractures are assumed to be
horizontal and separated by sufficient impetmeable‘strata to be con-
sidered of infinite extent. The solute is considered to be non-reactive.
The analytical solution was obtained by analogy to a corresponding solu-
tion for conduction and convection of heat into an aquifer.

Model results were compared to this analytical solution using rep-
resentative values for aqyifer_;ha;acte;is;ics. Seepage velocity of
water in the”fissufeé.was set equil to 0.5 ft/d. Longitudinal and
transverse dispersivities were set to 100 ft/d, and the diffusion coeffi-
cient of solute in water in the unfractured formation blocks was
3 x iO's ftzld. Therbiock porosity was set to unity to permit coyparison
with the analytical solution thickness of the blocks made sufficiently
large so as not to violate assumptions in the analytical solution.
Several simulations with various block dimensions were made to insure the
assumptions were reproduced.

Model and analytical results after 100 days of solute tramsport are

presented in figure 3. The close comparison verifies the model theory

Figure 3.--(on following page) belongs near here

and program logic. The model slightly overestimates solute concentra-
tions in the leading part of the profile and slightly underestimates con-
centrations in the trailing part. This characteristic probably is due to

the effects of numerical dispersion associated withk nodal spacing.
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Figure 3.--Compati.soh of results from solute-transport model with ana-

lytical solution at 100 days. -~ .




Additional simulations were made with the dual-porosity equation to
- evaluate the sensitivity of the model to variations in the dual-porosity.
coefficients. The coefficients that had the greatest effect on the
distribution.of solute appeared to be shale-matrix porosity and fracture
width. The matrix-diffusion .coefficient and fracture density alsc were
important in determining the distribution of solute. These observations
are in agreement with those of Grisak and Pickens (1980) and show that in
,:ractured rock, matrix diffusion can be an important mechanism for solute
transport. Facto;s reducing the need to consider matrix diffusion are
small matrix porosities and large fracture width and denmsity.
A review of the dual-porosity equation (eq. 5) shows that a large

. number of coefficients must be knéwn;even for relatively simple fracture
’geometties. Because in most studies these coefficients must be estimated
during model calibration, the amount of water-quality data needed is far
greater than the amount needed to use a continuum model. Within the
framework of a three-dimensional system, sufficient data may be available
~only for a ptéliminary calibration of the model. Nevertheless in rock
‘ wherg matrix diffusion is dominant, a scarcity of data is not sole

justificationbfor ignoring the more complex model.
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COMPUTER PROGRAM

A listing of the FORTRAN program that solves the three-dimensional
equations of flow and solute transport in dual-porosity media is given in
table 1 (at end of report). Data-input formats are described in’
table 2 (at end of report). Although data entry into a finite-element pro-
gram typically is more cumbersome than for finite-difference prgrams, the
increased data-entry time usually is compensated by inctea;ed flexibility
in locating nodes. With a finite-element model, nodes can be accuratély
located at observation or pumping wells. In general, fewer nodes are
needed to accurately model aquifer geometry when using a finit§4eleﬁent
model.

Data entry into a finite-element program is more cumbersome because
of the need to identify the relationships among all nodes and elements.

As a result, all nodes and elements must be numbered, the Cartesian
coordinates of all nodes must be coded, and the nodes associated with
each element must be designatad.

The system used to number aquifer nodes and elements has a signifi-
cant impact on the efficieacy and size of the computer program. The glo-
bal coefficient matrices developed in equations 2 and 4 represent the
largest block of computer storage used by the program. The solution tech-
nique is more efficient, in terms of time and storage requirements, if
the size of the global coefficient matrices is minimized. Storage re-
quirements of the global coefficient matrices are directly related to the
largest difference between two node numbers in an aquifer element. There-~
fore, efficient nodal ordering minimizes this difference and improves the
efficiency of the solution. The program calculates and prints the band
width. If the dimensions of arrays are not sufficient, the simulation will

stop.
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SAMPLE SIMULATION
Use of the model is illustrated by simulating solute transport from
a buried source in a three-layer aquifer system. The bottom layer repre-
sents an aquifer where horizontal joints are common within relatively
thick impermeable rock. The middle layer represeats an aquifer where
vertical fractures are common. The top layer represents a homogeneous
isotropic sandstone. Boundary conditons and nodal locations are shown

horizontally in figure 4 and vertically in figure 5. Aquifer properties

Figures 4 and 5.--(on following pages) belong near here

for each layer are given in table 3. Pumping by two wells, one from the
bottom layer and one from the top, also is simulated. Steady-state flow
conditions are assumed.

The input data used in the model run and results for one time step
are listed in tables 4 and 5 (at end of tepqtt). Results present total
time into the simulation, and the hydraulic head and solute concentration
for each node in the finite-elemeat grid. Principal components of
Darcian velocity and dispersion coefficient also are printed for each

element.
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Figure 4.--Boundary'condi;iogs and node locations along the bottom of the

aquifer system used in the sample simulation.
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Figure 5.--Boundary conditions and node locatioans along a3 vertical sec-

tion of the aquifer system used in the sample simulation.
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Table 3.--Aqoilb:'pwoportjcc

used In sample simulation

Aquifer

Bottom - . Middle Top
property layer layer layer

Hydraulic cooduccivity ‘ N .

x-direction (feet/day)fr 20.0 10.0 40.0
Bydraulic conduct1v1ty !

y-direction (feet/day); 20.0 2.0 40.0
Hydraulic conductivity .

z-direction (£eet/day) 5.0 .10.0 40.0
Longitudinal disper51v1ty (feet) 10.0 1.0 100.0
Transverse disﬁersivity (feet) - 3.0 3 " 30.0
ﬁoleculsrbdiffusioo in low'permeabil- :

iry blocks (square feec'per day) .0001 .0001 .0
Fracture width (feet) .2 .01 .0
‘Block videh (feet) | 1.8 .19 .0
'Effective porosity (dimen51on1ess) L1 .05 .3
Block porosity (dimensionless) 70}.;f .01 .0
Flux boundary (feet/day) A | vré | 2 4
:Specified-head boundary (feet) --._&;_ - 500.0
Solute-concentration boundary

(milligrams per liter) 10010 - --




SUMMARY

The model described in this report can simulate three-dimensional
ground-water flow and solute transport in oil shale and associated
hydrogeologic units. The model treats oil shale as a dual-porosity medium
by simulating flow and transport within fractures using coﬁveﬁtional
finite-element methods. Diffusion of solute between fractures and the ’
essentially static water of the shale matrix is simulated by including an
analytical solution that acts as a source-sink térm to the differential
equation of solute transport. While knowledge of fraéture orientation and
spacing is needed to effectively use the model, it is not necessary to map
the locations of individual fractures. -. A

The computer ptogtém listed in the report incorporates many of the
features of previous dual-porosity models while tetainiﬁg a practical
approach to solving field problems. As a result the report does not
extend the theory of solute transport in any appreciable Qay. The emphasis
in the report is on bringing together various aspects of solute-transport
theory in a manner that is particularly suited to the unusual ground-water
flow and solute-transport characteristics of oil-shalé sysieﬁs.

Methods for quantifying the uncertainty in paiameter estimates that
occur during model development are given in this report. The quasilineat
regression method described by Cooley (1977) for estimating parameters
and assessing reliabilit& for two-dimensional models of steady-state
ground-water flow has beeﬁ extanded to three dimensions. Because the number
of model parameters in three-dimensional simulations generally is larger
than in two-dimeasional simulations, adequate water-level data may not be
available for evaluating parameter reliability. When it is possible to
evaluate parameter reliability, standard errors for hydraulic-conductivity

estimates of buried strata generally are large.
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A large number of aquifer properties must be evaluated when simulating
solute Lraﬁgport through dual-porosity media. Because properties such as the
matrix-diffusipn coefﬁicient,:mat:ix porosity, and fractﬁrebwidth and density
often are estimated quing model calibration, a large amount of water-quality
data is needed. Within the framgwork of a three-dimensional system, sufficient
data may be available only for a preliminary: calibration of the model. Never-
tﬁeless, matrix diffusion can be an important mechanism for solute transport

in fractured rock.
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- Table 1.=-=Computer-program listing

C¥* A FINITE ELEMENT PROGRAM FOR THE SOLUTION OF

Ck* THREE-DIMENSIONAL TRANSIENT GROUND-WATER FLOH AND SOLUTE

C** TRANSPORT IN FRACTURED MATERIAL ,

Ckk OBSERVATIONS MAY BE VALUES OF HEAD AND CONCEﬂTRATION IN WELLS
C** OPEN TO SOME OR ALL OF THE AQUIFER SYSTEM

Ck* ELEMENTS ARE ISOPARAMETRIC CUBES WITH LINEAR SIDES.

C*% UPSTREAM FINITE ELEMENTS USED FOR SOLUTE TRANSPORT.

Ck* GUIDELINES FOR ARRAY DIMENSIONS -- IF NOT SOLVING TRANSPORT PROBLEH
Ck% THE DIMENSIONS OF TRANSPORT ARRAYS MAY BE HEDUCED 10 1

ck% LET NVARH=NPARH+NQPAR+NBFAR

Ck% SET IDIM.GE.NUMNP, JDIMH.GE. IBH, JDIMC. GE IBC. KDIH GE.NUMEL,
ck% NVEK.GE.NVARH

Ch* CURRENTILY DIMENSIONS ARE FOR A HAXIHUH oF -

C** NUMNP» 490 NUMEL=300 NTIME=52 IBHe 90 IBC=180 NTPER-SZ NIOil

- Ck* NTRE= O NIW= O NTS=1 NOBMAX=30 NBPAR= O NTB=0

Ck*x NKPARH= 8 NQPAR® 0 NUMAT=7 NTFRAC=9 xtraac- 10 NLAYERe 3

C*%x MAIN ARRAYS --

C%% XTXH(NVARH,NVARK), Bﬂ(a*NVAnH)

Ck% PH(NVARH) ,RKH(NVARH) , HINT( NTOXNOBMAX)

. Ck% ZSPACE(NLAYER-1),CINT(NTO*NOBMAX),TITLE(20),HP1(NUMNP*2),
Ck% CP1(NUMNP*2),CO(NTO*NOBMAX), ’

~ Ck% NXTO(NTO+1),NXTW(NTW+1) ,NXTS(NTS+1), ern(urn+1)

DIMENSION XTXHK(8,8) BH(BZ).

$ PH(S),RKH(B),HINT(30),CINI(30).
$ 2ZSPACE(3),TITL(20),

$ co(30),NxTO(1),

$ NXTIW(1),NXTS(2) ,NXTB(1)

C¥% COFBLK ARRAYS --

- Ck% H(NUMNP*2),C(NUMNP*2) ,QHTMP(NUMNP), szL(NUHNP*(Ntw+1)).

" ck* CFRAC(NTFRAC+1,NUMNP),CINIT(NUMNP), ’

- ck% wznnc(nunur*(uru+1)) SFOBSH( NUMNP+NOBMAX) , SFOBSC(NUHNP+HOBMAX).

Ckk WINOD(NUMNP) ,DM{NUMAT) ,FP(NUMAT) , FQ{ NUMAT),

Ck* RPBR(NUMAT) ,CBINIT(NUMAT) ,RX(NUMAT),RY(NUMAT) ,RZ{NUMAT),

Ck* HO(NTO*NOBMAX) ,RC(NUMAT),RPR(NUMAT) ,DL{NUMAT), um(uuuax). :

Ckk IPRMH(3,NUMAT) ,MAT(NUMEL) ,NBP{NUMNP) ,RMT(NUMAT) :
counoulcorBLxlcrnac(lo. 490) ,QHIMP( 490), crntr( 490).
H( 980),c( 980) ,WELL( 490) ,WELLC( &90), " .
RX(7), RY(7) ,RZ(7) ,RC(7), ‘
RPR(7),DM(7) ,FP(7),FQ(7) ,RMT(7) ,HO(30), ..
RPBR(7),CBINIT(7), sronsu( 520) ,SFOBSC( 520).wruon( 490),
DL(7),DT(7),THETAN,DTIME, TIMFAC, TIMBGN ,CEQUI,,DFW,

' TINSUM, IPRMH(3, 7),nar(300) nnp( 490) IELMR -

k% SINBLK ARRAYS =~

‘Ck* XORD(NUMNP) , YORD(NUMNP), zoan(nuunv).Qs(uunnv*(nrs+1)) cs(uuunp*

- ck* (NTS+1)),QF(NQPAR),CF(NQPAR) ,QEH(8),QEC(8),NP{NUMEL,8),IBPRM{NUMEL)
COMMON/SINBLK/QEH(8) ,QEC(8) ,XORD( 490),YORD( 490),ZORD(. 490);‘
$ Qs( 980),cs( 980),QF(1),CF(1),NP(300,8), Ianu(soO)
DOUBLE PRECISION QEH,QEC

"Ck* SENBLK ARRAY =~

" k% WH(NTO*NOBMAX) WC(NTO*NOBMAX) NPBC(NUMNP,NTIB+1), uonons(nuunr)

COMMON/SENBLK/WH( 30) , ‘
' $ WC(30) ,THETAC,NPBC(490,1), uonoas<aso)
Ckk LDUBLK =--

P U LD P A <

10
20

40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190

.200

210
220
230

- 240

250
260
270

" 280

290
300
310
320
330
340
350
360

370 .

380
390
400
410
420
430

440

450
460
470
480
490
500
510
520
s30



Table l.-=Computer-program Ilisting--Continued

C** CPKH(IDINM,IBH),SH(NVARH,NUMNP),QH(NUMNP)
Cx* cPKC(IDIM,IBC),QC(1BC)
" COMMON/LDUBLK/CPKC(490,130),CPKH(490, 50),SH(8, 490),
$ Qc( 490),QH( 450),1BC,IBH
REAL*3 CPKC,CPKH,SH,QC,QH
C*%* SHABLK,SURBLK AND LINBLK -~ ALL DIMENSIONS CONSTANT
COMMON/SHABLK/SF(4,8,8) ,WF(4,8) ,WT(8),NUMQPT
COMMON/SURBLK/AF(3,4),AWT,NQPTA
COMMON/LINBLK/RLF(2,2) ,RLWT,LINOD(4,2)
DOUBLE PRECISION SF,WT,WF,AF,AWT
Cc** SET § RECORDS IN FILE 8 TO (urruz/uryzn+1) # WORDS TO NUMNP
C*x* SET # RECORDS IN FILE 9 TO (NTIME+l), # WORDS TO NUMNP

OPEN (UNIT=3,FILE='HEADS',ACCESS='DIRECT',FORM='UNFORMATIED',

$ RECL=816)

OPEN (UNIT=9,FILE='CONCN',ACCESS='DIRECT',FORM='UNFORMATTED',

$ RECL=816)

OPEN (UNIT=5,FILEe'SAMPLE.INPUT',STATUS='OLD")

OPEN (UNIT=6,FILE='SOLUTION.PRT')

IDIN=450

JDIMH= 90

KDIM=300

NVEH=3

LDIMH=NVEH*4

JDIMC=180

DO 105 Is1,3

READ(S5,1)(TITL(J),J=1,20)

WRITE (6,2) (TITL(J),J=1,20)
105 CONTINUE

WRITE(S,3)

READ (5,4) NUMEL,NUMNP,NUMAT,NTIME,NTPER,NTB,NTO,NOBMAX,NTW,

$ NTS,NPARH,NQPAR, NBPAR-

WRITE(6,5) NUMEL,NUMNP,NUMAT,NTIME,NTPER,NTB,NTO, NOBMAX, NTW, .
$

NIS,NPARH,NQPAR,NBPAR
READ (5,4) NPLAYR,NEPLAY
WRITE (6,63) NPLAYR,NEPLAY .
READ (5,4) ITMAX,IVELPR,IFRAC,NTFRAC,ITFRAC,NLAYER,IBEALE
WRITE (6,6)ITMAX,IVELPR,IFRAC, NTFRAC ITPRAC,NLAYER.IBEALE
WRITE(S6,7)
READ (5,8) NTPRT,IPO,IPRX,AP,AMP,RP, RPF EvH
WRITE (6,3) NIPRT,IPO,IPRX,AP,AMP,RP,RPF,EVH
READ (5,9) DTIME,TIMFAC,THETAR,THETAC,DFW,CEQUI
WRITE (6,10) DTIME,TIMFAC,THETAH,THETAC,DFW,CEQUI
READ (5,9) ALPLG,ALFAX,ALFAY,ALFA2
WRITE(S6,11) ALFLG,ALFAX, ALFAY.AL!AZ
C** INITIALIZE
TIMBGN=DTIME
DO 110 I=1,NUMNP
H(1)=0.0
NBP(I)=0
NODOBS(1)=0
110 CONTINUE
IF (THETAC.LT.0.0) GO TO 130

57

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
750
750
760
770
780
790
800
810
820
830
840
850
860
3870
880
390
900
910
920
930
940
950
960
970
930
9%0
1000
1010
1020
1030
1040
1050
1060



120
130

140
150

- 156

158

160

162

fable l.--Computer-program 1isting--Continued

DO 120 I=1,NUMNP
C(I)=0.0

DO 120 J=1 ,NTIFRAC
CFRAC(JII)-OOO

CONTINUE

N=NOBMAX*NTO

NXT0(1)=999999

IF (N.LE.0) GO TO 150

DO 140 I=|,N

HO(I)=0.0

WH(I)=0.0

IF (THETAC.LT.0.0) GO TO 140
Co(I)=0.0

WC(1)=0.0

CONTINUE

N=sNUMNP*(NTW¢1)

RXIW(1)=999999

DO 156 I=1,N

WELL(I)=0.0 :

IF (THETAC.GE.Q.0) WELLC(I)=0.0
CONTINUE

N=NUMNPX(NTS+1)

NXTS(1)=999999

DO 158 I'I.N

Qs(I)=0.0

IF (THETAC.GE.0.0) cS(I)=0.0
CONTINUE

DO 160 I=1,NUMAT

IPRMH(1,I)=0

IPRMH(2,1)=0

IPRMH(3,1)=0 .
CONTINUE e~
NUMM=NUMNP-NLAYER+1
NLAYM2=NLAYER=~2

" NLAYM1=NLAYER-]

READ (5,9) (ZSPACE(I),I=1,NLAYM]1)
WRITE(6,9) (ZSPACE(I),I=],NLAYM1)
WRITE (6,69)

DO 162 Ile=l,NPLAYR

sREAD (S.lZ)I.N.XORD(I).YORD(I).

ZORD(1I)
NMleN-1
DO 162 J=i,NM1 S e o,
XORD(I+J)=XORD(I) ~ . . P
YORD(I+J)=YORD(I)
ZORD(I+J)-70RD(I)+ZSPAC£(J)
CONTINUE
READ (5,13) N

READ (5,14) (I,NPBC(I,1) nonons(t).uruootx).n(r) HELL(I).QS(I)./

Il=1,N)

§
SVRITE(G »13)(1,NPBC(I,1),NODOBS(I) UTNOD(I).XORD(I).YORD(I).

ZOR( 1) B(I).UELL(I).QS(I) I=] ,NUMNP)
IF (THETAC.LT.0.0) GO TO 164

S

1070
1080
1090
1100

1110

1120

1130

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270

- 1280

1290
1300
1310
1320
1330
1340

- 1350

1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490

1510
1520
1530
1540
1550
1560
1570
1580
1590



163
164

166

168

170

172
174

188

190

Table l.--Computer-program listing--Continued

WRITE (6,16)

READ (5,17) N

READ (5,17)(1,C(I),WELLC(I),CS(1),Il=]l,N)
WRITE(6,67)(I,C(I),WELLC(I),CS(I),I=]1,NUMNP)
DO 163 I=],NUMNP

CINIT(I)=C(I)

CONTINUE

IBH=0

WRITE(6,18)

DO 170 Il=},NEPLAY

READ (5,19) I,N,(NP(1,J),J=1,4)

NMl=N-1

MAT(I) =l

DO 168 J=5,8

NP(I,J)=NP(I,J=4)+]

CONTINUE

IP (NLAYER.LE.2) GO TO 170

DO 163 Ke1,NM1

DO 168 J=1,8

MAT(I+K)=K+1

NP(I+K,J)sNP(I,J)+K

CONTINUE

CONTINUE

DO 174 I-I,NUHEL

WRITE (56,20)1,(NP(I,J),J=1,8)

DO 172 J=1,8

DO 172 K=J,8

J1=IABS(NP(I,J)-NP(I,K)) cwen o
IF (J1.GT.IBH) IBH=J1 '
CONTINUE

CONTINUE

IBH=IBH+1

IBC»1BH#*2-~1

WRITE (6,72) IBH,IBC

IF (NUMNP.GT.IDIM) STOP

I¥ (IBH.GT.JDIMH) STOP

IF (IBC.GT.JDIMC.AND.THETAC.GE.0.0) STOP
WRITE (6,23)

DO 133 1I=1,NUMEL

IBPRM(I)=0

CONTINUR

READ (5,5) N

IF (N.GT.0) READ (5,24)(I,MAT(I),IBPRM(I),Il=1,N)
WRITE (6,13)(I,MAT(I),IBPRM(I),I=]1,NUMEL)
WRIIE (6,25)

READ (5,26) (I,RX(I),RY(I),R2(I),RC(I),I1=1,NUMAT) -
WRITE (6,26) (I,RX(I),RY(I),R2(1),RC(I),I=1,NUMAT)
ISTEDY=]

DO 190 I=],NUMAT

IF (RC(I).NE.O.0) ISTEDY-O

CONTINUE - .

Ir (THETAC.LI.0.0) GO T0 196

WRITE (6,23)

Sy4

1600
1610
1620

- 1630

1640
1650
1660
1670
1680
1650
1700
1710
1720
1730

- 1740

1750
1760
1770
1780
1790
1800
1810
1820
1830
1840

-185Q

1860
1370
1880
18%0

1900

1910
1920
1930
1940
1950

1360 -

1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120




196

198

200

- 206

208

210

212

214
216

Table 1.--Computer-program llsting--Continued

READ (5,27) (DL(I),DT(I),DM(I),RPR(I),FP(I),FQ(I),RMT(I),
RPBR(I),I=1,NUMAT)

$
WRITE (6,29) (I,DL(I),DT(I),DN(I),RPR(I),FP(I),FQ(I), BHT(I)

$ +RPBR(I),I=1,NUMAT)
IF (IFRAC.NE.1) GO TO 196 .

WRITE (6,32)

READ (5,27) (CBINIT(I),I=1,NUMAT)

WRITE (6,33) (CBINIT(I),I=1,NUMAT)

IF (NPARH.LT.1) GO TO 206 .

DO 198 1=1,NPARH

RKE(I)=0.0

CONTINUE

WRITE (6,34)

READ (5,35) (I,IPRMH(1,I),IPRMH(2,I),IPRMH(3,1), 11-1.uuuAr)
WRITE (6,35) (I,IPRMH(1,I),IPRMH(2,I),IPRMH(3, I) 1-1 ,NUMAT)
IXTRFL=0

DO 200 I=1,NUMAT

IF (IPRMH(1,1).GT.0) IXTRFLul

IF (IPRMH(2,I).GT.0) IXTRFLs=l

IF (IPRMH(3,1).GT.0) xxrRrL-l

CONTINUE

WRITE (6,36)

READ (5,37) (I,RKH(I),Il«l,NPARK)

WRITE (6,37) (I,RKH(I),I=1,NPARH)

IF (NQPAR.LE.0) GO TO 208 S I

WRITE (6,40)

READ (5,41) (I,QF(I),RKH(I+NPARH),Il=l NQPAR)

WRITE (6,41) (I,QF(I), RKH(I+NPARH) Is=1,NQPAR)

IXTRFL=1

IF (THETAC.LT.0.0) GO TO 208

WRITE (6,42)

READ (5,37) (1,CF(I),Il=],NQPAR)

WRITE (6,37) (I,CF(I),1=1,NQPAR)

IF (NBPAR.LE.O) GO TO 212

WRITE(6,44) (KBP(I),I=1,NUMNP)

WRITE (6,45)

DO 210 Il=l,NBPAR

READ (5,37) I,RKH(I+NPARH+NQPAR)

WRITE(6,37) I,RKH(I+NPARH¢NQPAR)

CONTINUE

NTFleNTFRAC+]

DO 216 I=1,NUMNP

H(I+NUMNP)sK(I) :

IF (THETAC.LT.0.0) GO TO 216 _
C(I+NUMNP)=C(1) ‘ S
IF (IFRAC.EQ.0) GO TO 216 T .
DO 214 Je=1,NTF1

CFRAC(J,I)=C(I)

CONTINUE

Ck% READ TRANSIENT DATA -

IF (NTB.LE.O.AND.ITMAX.EQ.0) GO TO 228
NXTB(1)=999999

2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280

. 2290

2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500

2510

2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650



Table l.-=-Computer-program listing--Continued

IBCNT=1 - 2660
IHRel 2670
ICR=l : : 2680
WRITE (3°'IHR) (H(J),J=1,NUMNP) 2690
WRITE (9'ICR) (C(J),J=1,NUMNP) 2700
IHR=IHR+1 2710
ICR=ICR+] : _ . 2720
NTHsNTIME/NTPER ‘ 2730
IF (NTB.GT.0) READ(S5,46) Il,I2 S 2740
DO 226 1=1,NTH ‘ 2750
IF (NTB.LE.0) GO TO 222 2760
IF ((1-1)*NTPER.LT.I1) GO TO 222 2770
IBM1=IBCNT 2780
IBCNT=IBCNT+1 - . ‘ 2790
NXTB(IBM1)=Il : ' ' 2800
DO 218 Jsl,NUMNP 2810
NPBC(J, IBCNT)=NPBC(J,IBM1) 2820
218  CONTINUE 2330
WRITE (6,47) Il 2840
DO 220 K=1,12 - . 2850
READ (5,48) J,NPBC(J,IBCNT),H(J),.X1 : 2360
IF (THETAC.GE.0.0) C(J)=Xl 2870
220 CONTINUE ° 2880
112999999 2890
IF (IBM1.LT.NTB) READ (5,46) I1,I2 2900
222 WRITE (3'IHR) (H(J),J=1,NUMNP) 2910
IHR=IHR+1 2920
IF (THETAC.LT.0.0) GO TO 226 , 2930
DO 224 K=l ,NTPER . 2940
WRITE (9'ICR) (C(J),J=1,NUMNP) 2950
ICR=ICR+1 2960
224  CONTINUE _ . 2970
226 CONTINUE 2980
NXTB(NTB+1)=999999 2990
228 IF (NTO.LE.O) GO TO 235 _ 3000
N=sNTO*NOBMAX 3010
DO 230 I=i,N 3020
HINT(I)=0.0 ' 3030
I (THETAC.GE.0.0) CINT(I)=0.0 - 3040
230 CONTINUE 3050
WRITE (6,49) 3060
DO 234 1=1,NTO 3070
READ (35, 50) 11 3080
WRITE (6, S51) Il , 3050
NXTO(I)=Il : , - 3100
DO 234 J=l,NOBMAX 3110
READ (5, 52) K,X1,X2,X3,X4 3120
WRITE(6, 52) K,X1,X2,X3,X4 3130
LeNOBMAX*( I-1)+K 3140
HO(L)»X1 3150
WH(L)=X2 , 3160
232  IF (THETAC.LT.0.0) GO TO 234 ’ - 3170
Co(L)=X3 : 3180

&/



. Table l.--Computer-program listing-~Continued

WC(L)=X4 ; - - _ 3190

234  CONTINUE ' _ 3200
- 236  NXTO(NTO+1)=999999 , 3210
r IF (NTW.LE.O) GO TO 242 3220
WRITE (6,53) D ; . _ 3230

DO 240 I=] ,NIW S 3240

DO 238 J=1,NUMNP , c - 3250

" J1aNUMNPXI+J ' - . 3260
WELL(J1)=WELL(J1~NUMNP) o N 3270

IF (THETAC.GE.0.0) wELLc(Jl)-HELLc(Jl-NuuNP) | 3280

238 CONTINUE o . , - ' " 3290
' READ (5, 50) 11,12 | o o 3300
WRITE (6, 54) Il S , .. 3310
NXTW(I)=Il . R : . , 3320
ITMP=MOD(I1,NTPER) - ’ , 3330
I1=KUMNP*(I) o e © 3340

IF (ITMP.NE.1) GO TO 248 -~ - . 3350

DO 240 Je1,I2 R o . 3360

READ (5,52) K,X1,X2 CoT : 3370

WRITE (6,52) K,X1,x2 - 3380

LeIl4K o : 3390

IF (ITMP.EQ. 1) WELL(L)=X1 . ‘ 3400

IF (THETAC.GE.0.0) WELLC(L)=X2 - - 3410

240  CONTINUE o - ‘ C- 13420
262  NXTW(KIW+1)=999999 : N 3430
IF (NTS.LE.0) GO TO 250 o "3440

WRITE (6,55) ﬁ . : _ 3450

DO 246 I=1,NTS - S 3460

DO 244 J=1,NUMNP s . © 3470
J1=NUMNP*I+J - ‘ - 3480
Qs(J1)=Qs(J1-NUMNP) R o 3490

IF (THETAC.GE.0.0) CS(J1)=CS(J1~-NUMNP) ’ : 3500

244  CONTINUE S : 3510

~ READ (5, S0) I1,I2 P - 3520
WRITE (6, 56) Il . L R 3530
NXTS(I)=I1 . _ - - " 3540
ITMP=MOD(11,NTPER) ‘ s 3 - 3550
I1=NUNNP*(I) R ) 3560

IF (ITMP.KE.1) GO TO 248 e T 3570

DO 246 J=1,I12 N ‘ S 3580

READ (S, 52) K,X1,X2 ‘ 359

WRITE (6, 52) K,X1,X2 ‘ : - , 3600
LeIl+K R 3610
Qs(L)=X1 . . , o e 3620

IF (THETAC.GE.0.0) cs(I)-xz S IR 3630

246  CONTINUE ' o S . 3640
- GO TO 250 . T 3650
248  WRITE(6,80) R 3660
- STOP o S o 3670
250  NXTS(NTS+1)=999999 B 3680
‘1 FORMAT (20A4) . . e . ' 3690
2 FORMAT (1X,20A4) o o B ‘ 3700
3 FORMAT (' NUMEL NUMNP NUMAT eruz' _ L B 7o

&2
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Table l.-~Computer-progranm disting--Continued

$ ' NTPER NIB NIO NOBMAX NTW',

$ ! NTS NPARH NQPAR NBPAR')

FORMAT (14I5)

FORMAT (1417)

FORMAT ('OITMAX=',IS5,' IVELPRs',IS,’ IFRAC=',15,

$ ' NTFRAC=',I15,' ITFRACa',IS,’ NLAYER=',135,' IBFALEe',15)
FORMAT (' NTPRT IPO IPRX AP AMP RP RPP',
$ ! EVH')

FORMAT (315,5E10.3)
FORMAT (7£10.3)

FORMAT ('ODTIME = ',E12.5,' TIMFAC = *»F5.2,' THETAH = ',F5.2,

& ' THETAC = ',F5.2/' DFW = ‘,E12.5,
$ ' CEQUI = ',E12.5)

FORMAT (' ALFLG = ',E12.5,' ALFAX = ',E12.3, ALFAY = ',E12.5,
$

' ALFAZ = ',E12.5)
FORMAT (2I10,3E10.3)
FORMAT (12110)
FORMAT (3110,4E10.3)
FORMAT (315,7210.3)

FORMAT (' - NODE c WELLC cs',
] d NODE c WELLC cs’,
$ ' NODE c WELLC cs')

FORMAT (110,3E10.3)
FORMAT (' ELEMENT NP ARRAY')

FORMAT (815)
FORMAT (15,5X,815)
FORMAT ('  ELEMENT MAT IBPRM',
$ *  ELEMENT MAT IBPRM',
$ ' ELEMENT MAT IBPRM',
$ '  ELEMENT MAT IBPRM')
FORMAT (3I10)
FORMAT (' ZONE RX RY RZ
FORMAT (I10,4210.3)
. FORMAT (8E10.3)
FORMAT (' ZONE DL DT DM
$ ' FP FQ RMT RPBR')
FORMAT (110,3E10.3)
FORMAT ('OCBINIT VALUES')
FORMAT (1X,8F10.3)
FORMAT (' ZONE IPRMH ARRAY')
FORMAT (515)
FORMAT (' PARAMETER RKH')
FORMAT (I10,E10.3)
FORMAT (' PARAMETER qQr RKH')
FORMAT (I10,2E10.3) '
FORMAT (' PARAMETER cr')
FORMAT (1515)
FORMAT (' NBP ARRAY'/1515)
FORMAT (' BOUNDRY PARM RKH')
FORMAT (215)
FORMAT (‘'OTIME VARYING BOUNDRY CONDITIONS == KT = *,15/
3 ' NODE NPBC',9X,'H',9X,'C')

FORMAT (215,F10.3,F10.3)

o3

RC')

RP',

3720
3730
3740
3750
3760
3170
3780
3790
3800
3810
3820
3830
3840
3850
3360
3870
3330
3390
3900
3910
3920
3930

. 3940

3950
3960
3370
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
5220
4230
4240
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52
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57

66
67
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- 69

70
71
72

73
74

76
77
78
.19
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Table 1.--Computer-program listing--Continued

FORMAT ( 'OOBSERVED HEAD AND CONCENTRATION DATA')

FORMAT (2I10)

FORMAT (' TIME STEP *,15/° OBSs - . HO - - WH',
& ' co WC*) - - '

FORMAT (I10,4E10.3)

FORMAT (‘'OTIME VARYING POINT SOURCE-SINK DATA') R
FORMAT (' TIME STEP ',IS5/' NODE " WELL ~ WELLC®)
FORMAT ('OTIME VARYING LINE SOURCE-SINK DATA')

FORMAT (' TIME STEP',IS5/' NODE Qs cs')
FORMAT (' TIME STEP '.15.' TOTAL TIME OF SIMULATION',F12.2/
$ NODE XORD "~ YORD',
$ ' ZORD . H c')

FORMAT (I10,5E12.5)

FORMAT (I110,3E12.5,12X,E12.5)

FORMAT ('O OBS HO HINT',

$ ' co CINT')

FORMAT (15,4(1X,E12.5))

FORMAT (15,26X,2(1X,E12.5))

FORMAT ('OSTATISTICS OF INITIAL HEAD SOLUTION')

FORMAT ('OSTATISTICS OF INITIAL CONCENTRATION SOLUIIOR')
FORMAT ('ONUMBER OF OBSERVATIONS = ',IS5/' ESTIMATED SUM OF ',
$ 'SQUARED ERRORS FOR INITIAL SOLUTION = ', E12.S/
$ ' ERROR VARIANCE FOR IKITIAL SOLUTION = ‘,E12.5)
FORMAT ('OINITIAL SOLUTION') '
FORMAT (IIO,3310.3,110.3210.3.110,3210.3)

FORMAT (' NPLAYR=',15,' NEPLAY=',I1S)

FORMAT (' NODE NPBC NODOBS WTNOD XORD YORD  ZORD',

$ H WELL Qs')

FORMAT (' FLOW PROBLEM')

FORMAT (' SOLUTE TRANSPORT PROBLEM')

FORMAT ('OFLOW PROBLEM BAND WIDTH = ',I5/' TRANSPORT PRDBLEH ',
$ 'BAND WIDTH = ',I5) o

FORMAT ( UPDATED PARAMETERS'/' MATI nx'; ‘
$ RY RZ . I FE

FORMAT (15.3(1x.n11 5)) S

FORMAT (' PARAMETER QF ')

FORMAT (I10,1X,E11.5)

FORMAT ('FLOW PARAMETER ',15,' EFFECTIVELY ZERO')

FORMAT (' SOLUTION FAILED TO CONVERGE IN *,IS5,' zrzaArzons )

FORMAT (* SOLUTION CONVERGED IN ',IS,' ITERATIONS®)

FORMAT (' TIME STEP IS INVALID FOR A CHANGE OF PARAMETERS'/
$ ' TIME STEP MUST BE DIVISIBLE BY NIPER WITH A aznaxunxn'
$ 'OF 1')

CALL SHAFAC(THETAC)

CALL SURFAC

CALL LINFAC

NVARH=NPARH+NQPAR+NBPAR

NVHX2«NVARH+NVARH

NVHX3=sNVARH+KNVHX2

NODES=8§

- C%* COMPUTE AND COUNT PRIOR INFORHAIION

NPRIRH=0
IF (NVARH.LT.1) GO TO 254 -

4

4250
4260
4270
4280
4290
4300

. 4310

4320
4330
4340
4350
4360
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4380
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4400
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4430
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4460
4470
4480
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4500
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4520
4530
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4700
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4770



Table l.~<Computer-program listing=-Caontinued

DO 252 I=1,NVARH 4780
PH(I)=1.0 _ 4750
IF (RKH(I).LE.0.0) GO TO 252 4800
RKH( I)=EVH/(RKH( I)*RKH(I)) ' 4810
NPRIRH=NPRIRH+1 - 4820
252 CONTINUE . ’ - 4830
C¥x* COMPUTE INITIAL SOLUTION ’ 4840
254 WRITE (56,66) 4850
IFLOW=0 . 4860
KTH=0 , . 4870
IOBCNT=1 4880
INCNT=1 : 4890
ISCNT=1 4300
IBCNT=1 4910
SKBIG=0.0 4920
SKBIG2=0.0 4930
DTIME=TIMBGN/TIMFAC 4940
TIMSUM=0.0 . 4950
OBSH=0.0 : 4960
YSQH=0.0 - : 4970
ERVARH=0.0 . 4980
0BSC=0.0 4950
YSQC=0.0 ~ 5000
ERVARC=0.0 5010
IOBCNT=1 5020
DO 294 KT=1,NTIME 5030
DTIME=DTIMEX*TIMFAC 5040
TIMSUMTIMSUM+DTIME _ 5050
LU=0 , 5060
IFLOW=IFLOW+1 - ' 5070
IF (IFLOW.GT.NTPER) IFLOWw1 5080
IF (IFLOW.EQ.1) KTHeKTH+l 5050
IF (KT.EQ.1) LU=l A 5100
IF (KXT.GT.NXTO(IOBCNT)) IOBCNT=IOBCNT+1 5110
IF (KT.EQ.NXTB(IBCNT)) LUsl 5120
IF (TIMFAC.GT.1.01) LUsl ' 5130
LUHsLY 5140
LUCsLU : ' 5150
IF (KT.EQ.NXTW(INCNT)) INCNTIWCNT+1 ~ 5150
IF (KT.EQ.NXTS(ISCNT)) ISCNT=ISCNT+1 5170
IF (KT.EQ.NXTB(IBCNT)) IBCNT=IBCNT+1 ' 5180
IF (IFLOW.GT.1) GO TO 260 ~ 5190
IF (NTDB.LE.O0) GO TO 258 . 5200
IHR=KTH+1 5210
DO 255 I=],NUMNP 5220
JeI+NUMNP 5230
H(I)=H(J) _ 5240
256 CONTINUE 5250
J1aRUMNP+1 ‘ : 5250
J2=NUMNP*2 , ‘ 5270
READ (8'IHR) (H(J),J=J1,J2) _ - 5280
258 CALL FLOW (IWCNT,ISCNT,IBCNT,KT,KTH, 5290
3 NTPER,NUMNP, NVARH , NPARH , LUH, NUMEL, 5300

s



260

262

264

266

268
270

272

274

276
278
280

Table 1.--Cbnpute:ﬁprn;rqn,thting~-00ntinued

$ ' ISTEDY,0,IDIM)

CALL UDU (NUMNP,LUH) - o~
ICR=KT+1 o
DO 262 I=1,NUMNP

JeT+NUMNP

IF (IFLOW.EQ.1) H(J)=QH(I)

IF (THETAC.LT.0.0) GO TO 262

C(1)=C(J)

CONTINUE

IF (THETAC.LT.0.0) GO TO 270

IF (NTB.LE.O) GO TO 264

J1«NUMNP+1

J2=NUMNPX2

READ(9'ICR) (C(J),J=J1,J2)

IVPTMP=0 C o _

IF (MOD(KT,NTFRT).EQ.0) IVPTMP=l

- CALL SALT (IFLOH,IHCNT.ISCNT.IBCNT.KT.KTH. o .
NTPER,NUHNP.LUC.NUMEL.ISTEDY.IVPTHP.IFRAC,I,0.

$

$ IDIH,ALFAX,ALFAY ,ALFAZ ,ALFLG,NTFRAC, ITFRAC,
$ NOBMAX,IOBCNT) ., o
CALL LDU (NUMNP,LUC) | o

DO 268 Isl,NUMNP

11aNUMNP+I

C(11)=Qc(I)

IF (IFRAC.EQ.0) GO TO 268

DO 266 Jw=2,NTF1

IMlag-1

CFRAC(JM1,I)=CFRAC(J,I)

CONTINUE

CFRAC(NTF1,1)=QC(I)

CONTINUE

IHR=KTH+1

ICReKT+1

 J1=NUMNP+1

J2aNUMNP*2 ' o

WRITE (8'IHR) (H(J),J=J1,J2) L

IF (THETAC.LT.0.0) GO TO 274

WRITE (9°'ICR) (C(J),J=J1,J2)

IF (MOD(KT,NTPRT).NE.O) GO TO 280

WRITE (6,57) KT,TIHSUM

DO 278 I=1,NUMNP

I1aNUMNP+I

I2«NUMNP+I _ DL
IF (THETAC.GE.0.0) GO TO 276 :

IF. (IFLOW.EQ.1) WRITE (6,58) I,XORD(I),YORD(I)AZORD(I) E(I2)

GO TO 278

IF (IFLOW.EQ.1) WRITE (6,58) I,XORD(I),YORD(I),ZORD(I),H(12)
IF (IFLOW.KE.1) WRITE (6,59) I,XORD(I).YORD(I).ZORD(I).C(I!)

CONTINUE
IF (NOBMAX.LE.0) GO TO 294
IF (KT.NE.NXTO(IOBCNT)) GO TO 294

Ckk COMPUTE INITIAL ERROR VARIANCE

éé

5310
$320
5330
5340
5350
5360
5370
5380
5350
5400
5410
5420
5430
5440
5450
5460
5470
5480
54390
3500

~.5510

5520
5530
5540
5550
3560
5570

5580

5590
5600
5610
5620
5630

‘5640

5650
5660

5670 -

5680

- 5690
- 5700

5710
5720
5730
5740
5750
5760
5770
5780
5790
5800
5810
5820
5830



282

284

286

233

290

292
294

296

Table 1.-=Clomputer-program Ilatinr-g_or_x‘iinusd

DO 286 I=1,NUMNP
IF (NODOBS(I).LE.0) GO TO 286
I13=NUMNP#I
12=NODOBS( 1) +NOBMAX*( IOBCNT=-1)
IF (IFLOW.GT.1) GO TO 284
HINT(I2)=HINT(I2)+SFOBSH(I)*H(I3)
IF (THETAC.LT.0.0) GO TO 236
CINT(I2)=CINT(I2)+SFOBSC(I)*C(I3)
CONTINUE
WRITE (6,60)
DO 290 I=l,NOBMAX
I12=I+NOBMAX*( IOBCNT-1)
IF (IFLOW.EQ.1.AND.THETAC.GE.0.0) WRITE (6,61) I,HO(I2), HINT(12)
$ ,C0(12),CINT(I2)
IF (IFLOW.EQ.1.AND.THETAC.LT.0.0) WRITE (6,561) I,HO(I2),HINT(I2)
IF (IFLOW.GT.1.AND.THETAC.GE.0.0) WRITE (6, 62) 1,C0(12),CINT(12)
1?7 (IFLOW.GT.1) GO TO 2883
IF (WH(I2).LE.0.0) GO TO 2833
OBSH=OBSH+1.0
YSQH=YSQH+WH( I2)*(HO(I2)-HINT(12))%**2
IF (THETAC.LT.0.0) GO TO 290
IF (WC(I2).LE.0.0) GO TO 290
0BSC=0BSC+1.0
YSQCsYSQC+WC(I2)*(CO(12)-CINT(I2))¥*¥2
CONTINUE
IOBCNT=IOBCNT+1
CONTINUE
CONTINUE
IF (NOBMAX.LE.Q) GO TO 640
ERVARH=YSQH/(OBSH-NVARH+NPRIRH)
NIMP=OBSH
WRITE (6,63)
WRITE (6§,65) NTMP,YSQH,ERVARH
IF (THETAC.LT.0.0) GO TO 298
ERVARCIYSQGI(OBSC-NVARC+NPRIRC)
NTHP=0BSC
WRITE (6,64)
WRITE (6,65) NIMP,YSQC,ERVARC

C¥x* BEGIN ITERATIONS

298

INDT=0

ER=0.01

ERP=1000.0

17 (ITMAX.LE.D0) GO TO 640
IF (ISTEDY.EQ.0) GO TO 640
DO 372 ITERsl,ITMAX
IOBCNT=1

IWCNT=1

ISCNTs)

IBCNT=l

IFLQWs]

KTRHel

DTIME=TIMBGN/TIMFAC
TIMSUM=0.0

.0y o

5840
5850
5860
5870
5880
5890
5900

© 5910

5920
5930
5940
5950
5960

.5970

5980
5990
6000
6010
6020
6030
6040
6050
6060
6070

- 6080

6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360



@

302

- 304

316,

322

324
330

- 332

$
CALL SENS (NVARH,NUMNP,IPO,KT,KTH,IOBCNT,
$

$
. IF (NBP(I).LE.O) GO TO 324

Table 1.--Computer-program 2isting--Continued

IF (AMP LT.-.5) G0 TO 306
YSQH=0.0

DO 302 Is=},NVARH
BH(1)=0.0

DO 302 J=],NVARH
XTXH(1,J)«0.0

CONTINUE

IHR=]

J1sNUMNP+1

J2aNUMNP*2

READ (8'IHR) (H(J),J=J1,J2)
DTIME=DTIMEXTIMFAC
TIMSUM=TIMSUM+DTIME

LU=Q

DO 316 I=},NUMNP
JuI+NUMNP

H(I)=H(J)

CONTINUE

J1=NUMNP+1

J2aNUMNP*2

IHR=KTH+1

READ (8'IHR)(H(J),J=J1,J2)

CALL FLOW (IHCNT,ISCNT.IBCNT.KT.KTH.
NTPER,NUMNP,NVARH, NPARH, LU, NUMEL,

ISTEDY, ITER, IDIM)

IXTRFL,NOBMAX, IBCKT)
DO 322 I=1,NUMNP
QHTMP(1)=QH(I)
CONTINUE
DO 324 I=]1,NUMNP

IF (NPBC(I,IBCNT).GE.O.OR.NPBC(I,IBCKT). EQ.~-2.0R.NPBC(I, IBCNT)

«EQ.-4) GO TO 324

N=NBP(I)+NPARH+NQPAR
JaNUMNP+I

SH(N, I)=H(J)*THETAH+(1.0-THETAK)*H(I) .

CONTINUE
CONTINUE

‘C** FORM LEAST SQUARES MATRIX

IF (AMP.LT.~-.5) GO TO 344
DO 342 I=],NOBMAX
Il-l+(IOBCHT°1)*uOBHAx
HIMP=0.0

DO 332 J=1,NUMNP

IF (NODOBS(J) KE.I) GO TO 332
HTHP'HTHP#SFOBSH(J)*QHTHP(J)
CONTINUE

IF (WH(I1).LE.0.0) Go TO 342
TEMPeHO( I1)-HTMP

DO 340 Kel,NVARH

STMP=0.0

DO 334 J=] NUMNP

¢e

\]
.
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6380
6390
6400
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Tahle 1.--Clomputer-progran listing--Continued

IF (NODOBS(J).EQ.I) STHP-STHP+SFOBSH(J)*SH(K,J) | 6900

334 CONTINUE 6910
TMP»WH(I1)*STMP 6920

DO 338 L=1,NVARH 6930
STMP=0.0 6940

DO 336 J=1,NUMNP _ 6950

IF (NODOBS(J).EQ.I) STMP=STMP+SFOBSH(J)*SH(L,J) 6360

336 CONTINUE 63970
3383  XTXH(L,K)=XTXH(L,K)+TMP*STMP ' 6980
340 BH(K+NVHX2)=BH(K+NVHX2)+TMP¥TEMP 6990
YSQH=YSQH+TEMPXTEMP*WH(I1) . 7000

342 CONTINUE : 7010
344 CONTINUE 7020
J1=NUMNP+1 , 7030
J2=NUMNP*2 7040
IHR=KTH+1 A 7050

IF (IFLOW.EQ.1) WRITE (8'IHR) (H(J),J=J1,32) 7060
WRITE (6,70) . ; 7070

CALL LSTSQ (XTXH,BH,RKH,PH,YSQH,AP,AMP,RP,RPF,NVARH,NVHX2,NVHX3, 7080

$ IPO, INDT, ITER, NVEH, LDIMH) 7090

IF (INDT.EQ.1) GO TO 521 . 7100

Cx* UPDATE HEAD 7110
343 DO 352 I=],NUMNP 7120
I1=NUMNP+I . 7130
SUMH=0.0 , : 7140

IP (NVARH.LE.0) CO TO 352 7150

DO 350 J=1,NVARH 7160
SUMH=SUMH+BH(J)*SH(J,I) 7170

350 CONTINUE 7180
I7 (IFLOW.EQ.1) H(I1)=QHTMP(I)+SUMH : 71%0

352 CONTINUE 7200
IHRe=2 ' 7210
J1=NUMNP+1 ’ ' 7220
J2=2*NUMNP o 7230
WRITE (8'IHR) (H(J),J=J31,J2) 7240

Ckx* UPDATE PARAMETERS 7250
354 IF (1PO.EQ.1) WRIIE (6,73) : 71260
DO 356 I=1,NUMAT 7270

IF (NVARH.LE.0) GO TO 356 _ , 7280
L=IPRMH(1,I) : 72%0

IF (L.GT.0) RX(I)=RX(I)*(BH(L)+1.0) : 7300
L=IPRMH(2,I) 7310

IF (L.GT.0) RY(I)=RY(I)*(BH(L)+1.0) 7320
LsIPRMH(3,1) 7330

IF (L.GT.0) RZ(1)=RZ(I)*(BH(L)+1.0) : 7340

IF (IPO.EQ.1) WRITE (6,74) I,RX(I),RY(1),RZ(I) : 7350

356 CONTINUE 7360
C*x* UPDATE SURFACE AND POINT SOURCE-SINK PARAMETERS 7370
IF (NQPAR.LE.O) GO TO 350 o _ 7330
WRITE (6,75) 7390

DO 353 I=1,NQPAR - 7400
QF(I)=QF(I)*(BH(I+NPARH)+1.0) _ _ 7410

I? (IPO.EQ.1) WRITE (6,76) I,QF(I) 7420

&7



