2920

de to PY . oved)

A DUAL-POROSITY MODEL FOR SIMULATING SOLUTE TRANSPORT IN OIL SHALE

١

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 85-4281

A DUAL-POROSITY MODEL FOR SIMULATING

SOLUTE TRANSPORT IN OIL SHALE

By Kent C. Glover

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 85-4281

Cheyenne, Wyoming

1986

UNITED STATES DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

. .

. . .

. .

. .

<u>.</u> .

· . . .

and the second second second second second

. .

.

and the second second

Dallas L. Peck, Director

. . .

. .

. . .

i an e

. . . -

· • ·

. . . .

.

• •

. . .

For additional information write to:

. .

.

. . . .

.

- -

.

. . .

.

District Chief U.S. Geological Survey 2120 Capitol Avenue Box 1125 Cheyenne, Wyoming 82003 Copies of this report can be purchased from:

1

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225 (Telephone: (303) 236-7476)

Abstract
Introduction
Oil shale as a dual-porosity medium
Methods of simulation
Ground-water flow
Solute transport
Application of the finite-element method
Ground-water flow
Solute transport
Diffusion within the oil-shale matrix
Sources of solute within the retort chamber
Model calibration and sensitivity
Relationship of measured data and calculated results
Hydraulic head
Solute concentration
Estimating parameters for models of steady-state
ground-water flow
Sensitivity analysis of transient ground-water flow and
solute transport
Evaluation of model
Ground-water flow
Solute transport
- Computer program
Sample simulation
Summary
References cited

CONTENTS

~ .

4

Supplemental information.....

ILLUSTRATIONS

-

- , i		Page
Figure 1.	Map showing location of in situ oil-shale retort	
	near Rock Springs, Wyoming	7
2-5.	Graphs showing:	•
	2. Comparison of flow-model results with Theis's	
: · · ·	analytical solution	37
, , <u>.</u> `	3. Comparison of results from solute-transport	
	model with analytical solution at 100 days	42
•	4. Boundary conditions and node locations along	
	the bottom of the aquifer system used in	
	the sample simulation	47
	5. Boundary conditions and node locations along a	
	vertical section of the aquifer system used	
	in the sample simulation	47

TABLES

.

Table	1.	Computer-program listing	50
	2.	Instructions for preparing model data	96
	3.	Aquifer properties used in sample simulation	50
	4.	Input data for sample simulation	109
	5.	Selected output for sample simulation	115

CONVERSION DATUM

For those readers interested in using the metric system, the following table may be used to convert the inch-pound units of measurement used in this report to metric units:

Multiply	By	<u>To obtain</u>
foot	0.3048	meter
foot per day	0.3048	meter per day
foot squared per day	0.09290	meter squared per day

5A

A DUAL-POROSITY MODEL FOR SIMULATING SOLUTE TRANSPORT IN OIL SHALE

By Kent C. Glover

ABSTRACT

A model is described for simulating three-dimensional ground-water flow and solute transport in oil shale and associated hydrogeologic units. The model treats oil shale as a dual-porosity medium by simulating flow and transport within fractures using the finite-element method. Diffusion of solute between fractures and the essentially static water of the shale matrix is simulated by including an analytical solution that acts as a source-sink term to the differential equation of solute transport. While knowledge of fracture orientation and spacing is needed to effectively use the model, it is not necessary to map the locations of individual fractures.

The computer program listed in the report incorporates many of the features of previous dual-porosity models while retaining a practical approach to solving field problems. As a result the report does not extend the theory of solute transport in any appreciable way. The emphasis in the report is on bringing together various aspects of solute-transport theory in a manner that is particularly suited to the unusual ground-water flow and solute-transport characteristics of oil-shale systems.

INTRODUCTION

Digital models of ground-water flow and solute transport have been used to predict possible impacts of oil-shale development on the ground-water resource (Robson and Saulnier, 1981). Unfortunately, modeling techniques used in the past either were not developed for use in rock, such as oil shale, where porosity depends on fracturing, or required data that usually are not available. From 1980 to 1983 the U.S. Geological Survey studied migration of solute from an in situ oil-shale retort near Rock Springs, Wyo. (fig. 1). The emphasis of the study was to identify geo-

Figure 1.--(caption on next page) belongs near here.

logic, hydraulic, and chemical factors that control the process of solute transport in oil shale. During the study, it became apparent that no existing model was well suited for the unusual flow and transport characteristics of oil-shale systems. Therefore, as part of the study, a model was developed.

This report describes two digital-computer programs that are used to simulate ground-water flow and solute transport in oil shale with interbedded tuff or sandstone. The U.S. Department of Energy experimental, in situ, oil-shale retort near Rock Springs, Wyo., was used as the prototype flow system of the model. The application of modeling techniques to this flow system is described in a report by K. C. Glover, U.S. Geological Survey, written commun. (1985). The model is designed for use in sitespecific studies and consequentially includes many features, such as diffusion of solute between fractures and the shale matrix, that may not be important to basin-wide or regional investigations.

Figure 1.--Location of in situ oil-shale retort near Rock Springs, Wyoming.

A wide array of ground-water flow and solute-transport models have become available in recent years. Konikow and Bredehoeft (1978), and INTERCOMP Resource Development and Engineering, Inc. (1976) describe two of the more commonly used programs. Other models that are potentially useful in studies of oil-shale hydrology are described by Bibby (1981), Noorishad and Mehran (1982), and Rasmuson and others (1982). The model described in this report incorporates many of the features of the above models while retaining a practical approach to the solution of field problems. Boundary conditions can be applied easily and mapping of individual fractures is not necessary. As a result of this approach, the present model does not extend the theory of solute transport in fractured media in any appreciable way. Instead, various aspects of this theory are brought together in a manner that is particularly suited to the unusual ground-water flow and solute-transport characteristics of oil-shale systems.

Throughout the remainder of this report it is assumed that the reader is familiar with the basics of solute-transport modeling in porous media, such as sand-and-gravel aquifers, as well as the finite-element method of numerical analysis. It is believed that most hydrologists faced with a problem of solute migration in oil shale will have faced similar problems in unfractured media. For those readers unfamilar with applications of solute transport modeling using the finite-element method, it is suggested that teaching references such as Freeze and Cherry (1979), Konikow and Bredehoeft (1978), and Zienkiewicz (1971) be consulted.

OIL SHALE AS A DUAL-POROSITY MEDIUM

Porosity in oil-shale formations may be classified on the basis of its relationship to hydraulic conductivity. Porosity may be considered effective for increasing hydraulic conductivity if the pores are interconnected or not effective, as in shale, if the pores are relatively isolated. Porosity due to faults, joints, collapse breccia, and solution cavities is the major source of permeability in oil shale with otherwise low permeability (Robson and Saulnier, 1981). Persistent layers of permeable tuff or sandstone, ranging in thickness from less than an inch to several inches, also are common in oil shale (Bradley, 1964) and contribute to the hydraulic conductivity. The porosity of the shale and marlstone matrix, although relatively high, does not contribute significantly to hydraulic conductivity.

Any attempt to simulate ground-water flow and solute transport in oil shale must include consideration of the dual-porosity nature of these sediments. The solute-transport processes of hydrodynamic dispersion and advection are related directly to seepage velocity and therefore are related to the effective porosity of the formation. However, several investigators including Grisak and Pickens (1980) and Bibby (1981) have noted that dispersion and advection alone cannot account for the distribution of non-reacting solute in fractured formations. The extremely low seepage velocity of water within the shale matrix minimizes dispersion and advection, increasing the relative importance of diffusion. The porosity of the shale matrix, although not contributing to hydraulic conductivity, is important to dispersion.

METHODS OF SIMULATION

Ground-Water Flow

Only the part of formation porosity that contributes to hydraulic conductivity needs to be considered in analysing ground-water flow systems. For most practical purposes this porosity in oil shale, whether resulting from faulting, solution channels, or thin beds of permeable tuff and sandstone, can be analysed using the techniques of Snow (1969). He showed that many problems of flow through dual-porosity media can be solved using an anisotropic hydraulic-conductivity tensor in conjunction with standard porous-media techniques. His approach to the problem of ground-water flow is valid if the formation has a fracture density that is high compared to the scale of the problem. In such a case, the hydraulic characteristics of the fractured formation are similar to those of granular media. If fracture spacing is irregular in a given direction, the formation will exhibit heterogeneity. Because mapping of individual fractures is impractical for most field problems, the approach of Snow (1969) is used in this model. From a practical viewpoint the model described in this report may be useful when the hydrologist has some knowledge of the average spacing, aperture size, and directions of fracturing, but accurate mapping of individual fractures is not possible. Through proper alignment of the model cartesian coordinate axes with principal directions of fracturing and use of heterogeneous hydraulic conductivity values, many different fracture geometries can be simulated.

//

The three-dimensional nature of a fracture system, along with the essentially horizontal bedding plane of most formations, generally results in a three-dimensional flow system in oil-shale strata. Three-dimensional flow systems in oil shale have been observed on both a regional scale by Robson and Saulnier (1981) and on a local scale by the author at the Department of Energy in situ oil-shale retort near Rock Springs, Wyo. Therefore, the program given in this report is intended for use in studies of three-dimensional ground-water flow.

Rocks in the vicinity of an in situ retort are altered due to induced fracturing. As a result fracture patterns in the retort chamber are significantly different than regional fracture patterns. The values and degree of anisotropy of hydraulic conductivity within a retort chamber also differ from regional estimates. Nevertheless the fracture density usually is high, compared to the dimensions of the retort chamber, and standard porous-media techniques can be used to simulate ground-water flow in the immediate vicinity of the retort chamber.

. . .

and a second second

na senara da serara Recentra de serara da serara da

12

* 21. 1

and the second second

.

Solute Transport

The extension of solute-transport theory to dual-porosity media has attracted considerable attention in water-resources literature. Much of the literature has been directed toward studies of radionuclide migration through individual fractures and as such is not directly applicable to field problems where mapping of individual fractures is impractical. Grisak and Pickens (1980) modeled fractured media by using separate finite elements to represent fractures and adjacent low permeable rock. Finite elements used to represent the fractures were modeled with material properties that differed from adjacent low-permeability elements. This approach was extended by Noorishad and Mehran (1982), who also introduced the use of an "upstream-weighting" technique to simulate more accurately the essentially advective transport that occurs within the fractures.

Bibby (1981) took a different approach to modeling solute movement through dual-porosity media. Molecular diffusion between fractures and the primarily static water in the shale matrix was incorporated in the model as a source-sink term utilizing an appropriate analytical solution. To apply this two-dimensional model the user needs to know average spacing, aperture diameter, and direction of fractures but does not need to map individual fractures. This approach is analogous to the method of flow analysis discussed by Snow (1969). Although no upstream-weighting technique was used, Bibby (1981) reported no difficulty in applying the model to a field problem in a limestone aquifer.

Rasmuson and others (1982) presented a model for simulating threedimensional solute transport in fractured rocks that is based on an integrated finite-difference approach. The model produces excellent results if solute transport is dominated by hydrodynamic dispersion. Because advection dominates most solute-transport problems in oil-shale strata (Robson and Saulnier, 1981), the approach of Rasmuson and others (1982) is not considered practical for use with oil shale.

The approach to modeling solute transport presented in this report is basically the model described by Bibby (1981) and extended to three dimensions. This approach has been selected because it strikes a balance between theoretical accuracy and practical applicability. Accurate mapping of fractures is not needed to use the model, although some knowledge of the fracture system is required. The ease with which boundary conditions can be applied also supports this approach. One disadvantage of the approach is the difficulty of extending the analytical solution for diffusion between fractures and the shale matrix to problems of multiple-species transport.

A model that can be extended to problems of multiple-species transport is described by Huyakorn and others (1983). Unfortunately, fracture locations must be accurately mapped to use the model successfully. Therefore the model of Huyakorn and others (1983), although theoretically superior to the model of Bibby (1981), cannot be applied in most practical field problems.

14-

APPLICATION OF THE FINITE-ELEMENT METHOD

Ground-Water Flow

The basic governing equation for three-dimensional flow, when Cartesian coordinate axes are aligned with the principal components of the hydraulic-conductivity tensor, is as follows:

$$\frac{\partial}{\partial x_i} \begin{pmatrix} K_i & \frac{\partial h}{\partial x_i} \end{pmatrix} + W = S_s \frac{\partial h}{\partial t} \qquad i = 1, 2, 3 \quad (1)$$

where $K_i = the hydraulic conductivity tensor [LT⁻¹];$

W = the source-sink function (positive for a source) $[T^{-1}]$; S_e = specific storage $[L^{-1}]$;

h = the hydraulic head [L];

$$t = time [T].$$

The source-sink term may be distributed areally or may represent a well. Boundary conditions that may be applied on the periphery of the problem area include known specific discharge normal to the boundary or known hydraulic head. Parameters K_i , W, and S_s are approximated by subdividing the region of interest into discrete zones. Parameters are assumed to be constant within each zone which gives rise to internal boundary conditions at zonal discontinuities. Along these internal boundaries both hydraulic head and normal specific discharge must remain unchanged as the boundary is crossed. Equation 1 may be solved by using the finite-element method based on the Galerkin criteria. Details of this method are described in Zienkiewicz (1971) and Pinder and Gray (1977). Within this report, first-order basis functions are used to describe each cubic element. While use of these basis functions requires more elements than if higher-order functions were used, the reduced oscillatory behavior and integration time associated with linear functions make this simpler approach preferable.

The matrix equation resulting from the finite-element discretization of equation 1 is as follows:

$$(\frac{1}{\Delta t_{m}}\overline{\overline{c}} + \theta\overline{\overline{R}}) \overline{h}^{m} = \overline{q} + (\frac{1}{\Delta t_{m}}\overline{\overline{c}} - (1-\theta)\overline{\overline{R}})\overline{h}^{m-1}$$
(2)

where $\overline{\overline{C}}$ = a coefficient matrix involving specific storage (S_s) and calculated for a single finite element as $\iiint_V S_s \overline{n} (\overline{n})^t dV$; \overline{K} = a coefficient matrix, with off-diagonal components equal to zero, involving hydraulic conductivity and calculated for a single finite element as

$$\iiint_{V} (K_{i} \frac{\partial \bar{n}}{\partial x_{i}} (\frac{\partial \bar{n}}{\partial x_{i}})^{t}) dV, \qquad i = 1, 2, 3;$$

 \bar{h}^{m} = the vector of hydraulic head at time m;

q = the known vector involving source-sink terms and specified flux boundary conditions;

 $\Delta t_m =$ the length of the time step;

 θ = a number ranging from 0 for an explicit solution to 1 for an implicit solution;

16

V = the volume of the finite element;

n = the vector of finite-element shape functions; and

 $()^{L}$ = the transpose of the enclosed vector.

Equation 2 is solved by Gaussian elimination for banded symmetric matrices. Although other direct-solution techniques, such as Cholesky decompositon, can be used, the procedure used in this report has proven adequate. Gupta and Tanji (1976) has suggested the use of matrix solvers that take full advantage of the sparse nature of coefficient matrices in attempts to reduce core storage requirements. The trade-offs in these matrix solvers are increased disk access and increased computational time. With the introduction of virtual-memory operating systems used by most computers, such detailed attention to minimizing core storage is not required.

Solute Transport

The transport of a conservative solute in ground water is described by the following equation:

$$\frac{\partial}{\partial x_{i}} (D_{ij} \frac{\partial c}{\partial x_{j}}) - \frac{\partial}{\partial x_{i}} (cq_{i}) = \phi \frac{\partial c}{\partial t} - Wc^{*} \quad i, j = 1, 2, 3 \quad (3)$$
where D_{ij} = the hydrodynamic-dispersion coefficient $[L^{2}T^{-1}]$;
 $c = \text{solute concentration } [ML^{-3}]$; and $-$
 $\phi = \text{porosity [dimensionless]}$;
 $q_{i} = -K_{i} \frac{\partial h}{\partial x_{i}} = \text{the Darcian fluid velocity } [LT^{-1}]$;

W = a source-sink function $[T^{-1}];$

 c^{*} = solute concentration in a fluid source [ML⁻³]. When applied to dual-porosity media such as oil shale, the terms are defined relative to the joint or fracture system, with the shale matrix considered impermeable. The hydrodynamic-dispersion coefficient (D_{ij}) is related to Darcian fluid velocity in the fracture system by

where a = dispersivity of the fractured media [L],

 q_m and $q_n = Darcian fluid velocity [LT⁻¹],$

/q/ = the magnitude of the Darcian velocity vector [LT⁻¹], and

 D^{\star} = the molecular-diffusion coefficient $[L^2T^{-1}]$.

for isotropic media,

 $a_{iiii} = \alpha_L$ = the longitudinal dispersivity for i = 1,2,3; $a_{iijj} = \alpha_T$ = the transverse dispersivity for i,j = 1,2,3; and

$$a_{ijij} = \frac{1}{2} (\alpha_L - \alpha_T)$$
 for $i, j = 1, 2, 3$.

There is no corresponding theory describing hydrodynamic dispersion in anisotropic media.

The form of the transport equation used in this report also is used by Pinder and Gray (1977), and Bibby (1981). Konikow and Bredehoeft (1978) and most studies of solute transport done by the U.S. Geological Survey use a form of the equation that is obtained by dividing equation 3 by porosity. The hydrodynamic-dispersion coefficient then is defined in terms of seepage velocity. Either form of the equation can be used successfully. However, when comparing results of studies using different forms of the transport equation, it should be recognized that the dispersion coefficients will differ by the magnitude of porosity.

Galerkin's method of weighted residuals, when applied to equation 3 with isoparametric finite elements, gives

$$(\frac{1}{\Delta t_m}\overline{\overline{P}} + \theta\overline{\overline{D}}) \ \overline{c}^m = qc^* + (\frac{1}{\Delta t_m}\overline{\overline{P}} - (1-\overline{\theta})\overline{\overline{D}}) \ \overline{c}^{m-1}$$
(4)

where \overline{P} = a coefficient matrix involving porosity and is calculated for a single finite element as $\iiint_V \phi \ \overline{n} \ (\overline{n})^t \ dV$;

 \overline{D} = a coefficient matrix involving hydrodynamic dispersion and advection and is calculated for a single finite element as $\iiint_V(D_{ij} \frac{\partial \overline{n}}{\partial x_i} (\frac{\partial \overline{n}}{\partial x_j})^t - q_i \frac{\partial n}{\partial x_i} (\overline{n})^t) dV$ i,j, = 1,2,3;

c^{im} = the vector of solute concentration in fractures at time m; and qc^{*} = a known vector involving specified flux boundary conditions and source-sink terms (W), solute concentration in fluid sources (c*), and diffusion

between fractures and the rock.

A strange of the second strategy of the second strategy

Detailed information on formulating this equation can be obtained from Bibby (1981) or Pinder and Gray (1977, p. 144-148). Equation 4 is solved by the Gauss-Doolittle method for banded, nonsymmetric matrices.

and the second second

20

Diffusion within the Oil-Shale Matrix

The exchange of solute between water in a system of parallel fractures and the essentially static water in the adjacent oil-shale matrix can occur by molecular diffusion and can be simulated by the addition of a source-sink term to equation 4. Bibby (1981) gives this source-sink term as a convolution integral that is expressed here in discrete form at time t_m .

$$Wc^{*} = -\frac{\phi_{B}b}{\Delta t_{m}(f+b)} [c_{B}(t_{m}) - c_{B}(t_{m-1})]$$
 (5)

where $Wc^* =$ the mass flux of solute entering the fracture $[M/L^3/T]$; $\phi_B =$ the porosity of the oil-shale matrix [dimensionless]; b = the average distance between parallel fractures [L]; $\Delta t_m = [t_m - t_{m-1}]$, the length of the time step [T]; f = the average fracture width [L]; $c_B =$ the average solute concentration in the oil-shale matrix $[M/L^3]$; $c_B(t_m) = c(t_0) \left[1 - \frac{3}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{E_n} \exp(-B_n t_m)\right] + \sum_{i=1}^{m} \{c(t_m) - c(t_{i-1})\} \left\{1 - \frac{3}{\pi^2} \Delta t_i n \sum_{i=0}^{\infty} \frac{1}{E_n B_n} \{\exp[-B_n(t_m - t_i)] - \exp[-B_n(t_m - t_i)]\} \}$; $c(t_0) =$ the solute concentration in the fracture at the beginning of the simulation $[M/L^3]$; n = an index of summation [dimensionless]; $E_n = (2n - 1)^2$; $B_n = D_d(2n+1) \pi^2/b^2$;

 $c(t_i)$ = the solute concentration in the fracture at time t_i [M/L³]; and D_d = molecular diffusion of solute within the oil-shale matrix [L²/T].

The only unknown variable in equation 5 is $c(t_m)$. Therefore, the coefficient associated with $c(t_m)$ is placed on the main diagonal of the \overline{D} matrix in equation 4, while the remainder of the expression is placed in the right-hand vector of known values. Equation 5 involves summation over the entire period of the simulation. Fortunately, little truncation error is introduced by retaining only a small number of terms in the summations. The optimum number of terms to retain depends on the values of D_{d_1} b and Δt_m ; however, from information presented by Bibby (1981), it is apparent that between five and ten terms are adequate for most applications.

Several aquifer properties must be determined to use equation 5 successfully. These proporties include molecular diffusion within the oil-shale matrix (D_d) , average distance between parallel fractures (b), average fracture width (f), and can be obtained for each of these properties, model calibration usually must be used to improve upon the estimates. Therefore equation 5 generally is useful only in studies with well distributed and frequent measurements of solute concentration in wells.

ಷನ

Sources of Solute Within the Retort Chamber

Mechanisms for creating and leaching chemicals from burned shale within an in situ retort chamber to the formation water are poorly understood. Knowledge of conditions during the retort process is needed to determine the chemicals that are created, while an understanding of dissolution controls is needed to predict how the created chemicals are transferred from the burned shale to the formation water.

The retort temperature, total time of retorting, permeability of the retort chamber, and initial mineralogy affect the type and amount of chemicals created during a burn. During combustion of a retort chamber, a "flame front" or zone of combustion moves through the fractured oil-shale bed. Hot gases from this combustion move ahead of the flame front and provide energy for pyrolysis of kerogen. In the process, a number of chemical by-products are created. A discussion of how these by-products are created is outside the scope of this report. However, it is important to recognize that the resulting chemicals will vary from retort chamber to retort chamber. In large chambers, the distribution of chemical by-products within the chamber also may be important. Coring of an abandoned retort chamber before it resaturates and lab analysis of the cores by long-term leaching studies can provide some understanding of the chemicals that are created during retorting.

ನೆ

After the retort operation ceases, the chamber resaturates and chemicals created during the burn are leached into the water. During the time that it takes to resaturate the retort chamber a rapid increase in the concentration of solute occurs. For many studies of solute transport, an equation to describe the initial dissolution is not needed because migration of solute from the retort chamber is unlikely until the formation resaturates.

After the retort chamber resaturates, Hall (1982) proposed that diffusion between the pores of the oil-shale matrix and fractures acts as a dominant mechanism for introducing solute to a ground-water system. This mechanism is simulated by equation 5. As discussed previously, equation 5 describes diffusion between the oil-shale matrix and a system of parallel fractures. Fracturing within a retort chamber is much more irregular but can be conceptualized as two systems of parallel fractures, one vertical and one horizontal, resulting in cubes of oil-shale. Matrix diffusion within the retort chamber can be simulated by applying equation 5 once for each fracture orientation.

In addition to rock and fracture characteristics discussed previously, the use of equation 5 to simulate a source of solute requires an estimate for the intial solute concentration in the pores of the oil-shale matrix (C_B) . Water-quality sampling as the retort chamber resaturates will provide a measure of solute concentration in fractures but not of solute concentration in the shale-matrix pores. In cases where solute migration outside the chamber does not occur until some time after the inital resaturation the initial solute concentration with the shale-matrix pores may be approximated by the initial solute concentration within fractures. Study by the author and the Department of Energy in situ oil-shale retort near Rock Springs, Wyo. indicate that this approximation may be reasonable in many cases.

24-

In situ retort chambers are sources of solute for extended periods of time after retorting stops. This characteristic has been observed by the author at the U.S. Department of Energy, experimental, in situ, oil-shale retort near Rock Springs, Wyoming and by Hall (1982) in labortory experiments. The source of solute cannot be explained solely by diffusion from burned shale into fractures.

Hall (1982) has proposed a mechanism to explain the long-term source of solute that is based on the slow dissolution of the mineral matrix from pore walls. Although he was unable to provide a good theoretical basis for this slow dissolution, he proposed the use of an empirical expression to simulate the mechanism. The expression is

$$K^{*}A(c_{e}-c)$$
(6)
where K^{*} = the mass transfer coefficient $[L^{-2}T^{-1}]$,
 A = the interfacial area $[L^{2}]$,
 c_{e} = the equilibrium concentration of fluid in contact
with shale blocks $[ML^{-3}]$, and

c = the solute concentration [ML⁻³].

This equation acts as a source-sink term to the solute-transport equation and simulates the dominant mechanism for leaching of burned shale after the passage of two to three pore volumes of water.

ৰহ

Application of the proposed leaching mechanism to a field problem requires that K^* , A, and c_e in equation 6 be determined. While Hall (1982) determined values of the product K^*A for organic solute from column experiments, the applicability of these values to field problems is unknown. Therefore K^*A is effectively a parameter that must be estimated during model calibration. The equilibrium concentration, c_e , can be estimated from long-term leaching tests of burned shale. Unfortunately, these tests have been performed for very few of the chemical species found in oil-shale retort water.

The use of empirical equation 6 to describe mass transfer essentially provides an infinite source of solute to the medium where, in reality, such a source is finite. Therefore the use of equation 6 will over estimate solute concentrations in the trailing part of a plume. The use of equation 6 is justified in studies of solute transport in oil shale where the distribution of solute in the trailing part of the plume is not considered, or in studies where an estimate of maximum probable concentration of solute in the trailing part of a plume is needed.

A6

MODEL CALIBRATION AND SENSITIVITY

The approach to ground-water flow and solute transport used in this report along with the three-dimensional nature of flow through oil shale, introduces an unusually large number of calibration parameters. Considering the amount and distribution of water-level and solute-concentration data that are available in most field studies, it is possible to reach a point where additional detail in the simulation procedure does not significantly improve the model fit. Therefore, it is important to assess the uncertainty associated with the various calibration parameters if the model is to remain a practical one for use in field problems.

Cooley (1977) presents a method for evaluating the reliability of a model within the framework of steady-state flow of ground water in two dimensions. This technique has been extended to three dimensions and is described in a later section. Before presenting the technique, the relationship between measured data in wells and model-calculated hydraulic head is discussed. Observation wells that have been installed in oil-shale strata rarely are piezometers.

Relationship of Measured Data and Calculated Results

Hydraulic Head

The relationship between hydraulic head in the formation and the water level measured in a well open to part or all of the formation is governed by aquifer properties, well-bore characteristics and the verticalhead gradient within the formation. An accurate treatment of the relationship would involve solving the three-dimensional equation of ground-water flow in the close vicinity of the well bore using model estimates of aquifer properties and a boundary condition of uniform head along the well bore. The computed head in the well could be compared to measured water-level data. This approach is not practical in most field problems. Instead, a relationship is used in the model that is based on the steady-state conservation of water within the well bore and Darcy's law. The result is a simple weighted average of hydraulic head.

$$int = \int_{z_1}^{z_2} K_{ii}hdz$$
$$\int_{z_1}^{z_2} K_{ii}dz$$

(7)

i = 1, 2

where $h_{int} =$ the depth-integrated head in the well [L],

h = hydraulic head obtained from the solution to equation 2 [L],

 z_2 = the altitude of the top of the well bore open to the formation [L],

28

 z_1 = the altitude of the bottom of the well bore open to the formation -

[L], and

 K_{ii} = hydraulic conductivity [LT⁻¹].

Equation 7 is derived by writing Darcy's law for radial flow and integrating along the open interval of the well. Applying Darcy's law for radial flow from an circular boundary with no drawdown due to well-bore effects and assuming a well radius of 1 foot gives

$$q = \frac{2\pi K(h_b - h_{int})}{\ln(r)}$$

where q = the Darcian flux per unit length of well bore $[L^2T^{-1}]$,

K = the hydraulic conductivity $[LT^{-1}]$,

 h_{h} = the head at the boundary [L],

 h_{int} = the head in the well [L], and

r = the distance to the boundary [L].

The distance r may be thought of as the radius of influence by the well bore. By assuming steady-state flow along the well bore, the amount of water entering the well along part of the open interval must equal the amount leaving along the remainder of the open section. The integral expression for this conservation of mass is

$$\int_{z_1}^{z_2} q \, dz = 0.$$

Substitution of Darcy's law for radial flow into the expression for conservation of mass gives

$$\int_{z_1}^{z_2} \frac{K}{\ln(r)} h_b dz = h_{int} \int_{z_1}^{z_2} \frac{K}{\ln(r)} dz.$$

Treating distance to the boundary as a constant, ln(r), may be moved outside the integral and equation 7 obtained.

The model in this report uses information on the open intervals of wells, estimates of hydraulic conductivity and calculated hydraulic head to determine the depth-integrated head at each observation well. The result may be compared to measured water-level data as a guide during model calibration when piezometers are not available.

-29

Solute Concentration

The relationship between solute concentration in the formation and that in a well is governed by the three-dimensional equation of solute transport. As with hydraulic head, it is not practical to solve this problem at each well bore. By assuming steady-state conservation of solute and using Darcy's law, one can obtain an expression similar to • A second s equation 7.

$$c_{int} = \frac{\int_{z_3}^{z_4} cq_i dz}{\int_{z_3}^{z_4} q_i dz} \qquad i = 1,2$$
(8)

where $c_{int} = the depth-integrated solute concentration [M/L³],$ c = solute concentration obtained from the solution to equation 4 [M/L³], z_3 to z_4 = the part of the well bore where water enters [L], and $q_i = K_{ii}(h-h_{int}).$

Equation 7 is used in the model to infer sections of the well bore where water enters. The derivation of equation 8 essentially is identical to the derivation of equation 7 and will not be given here.

Estimating Parameters for Models of Steady-State Ground-Water Flow

Direct measurement of all hydrogeologic parameters needed to construct models of ground-water flow and solute transport is rarely possible. As a result, values of unmeasured parameters usually are adjusted until measured and calculated water levels and solute concentrations match in some acceptable manner. Cooley (1977) proposed a regression method for estimating an optimal set of hydrogeologic parameters and assessing parameter reliability within the framework of two-dimensional steady-state flow. An extension of this method to three dimensions is included in the model described in this report.

The following method is used to estimate parameters and assess reliability for a three-dimensional model of steady-state ground-water flow. Throughout the following development, deviations from the two-dimensional development of Cooley (1977) are noted. The method is an iterative technique that minimizes the squared difference between measured and calculated water levels in wells. To set up the iterative technique it is necessary to linearize the finite-element form of the equation of ground-water flow with respect to unknown model parameters, differentiate the linearized equation with respect to these parameters, and, setting each derivative equal to zero, solve the system of equations.

The derivatives of unknown model parameters are obtained in the following manner. A truncated Taylor series expansion of equation 2 is written for $(\Delta t)^{-1}$ equal to zero and θ equal to one. The resulting iterative equation is identical to the one given by Cooley (1977). Solving this Taylor series for hydraulic head gives

$$\bar{\mathbf{h}}^{r+1} = \bar{\mathbf{h}}^r + \bar{\Delta}^r + \bar{\mathbf{S}}^r \bar{\mathbf{b}}^{r+1} \tag{9}$$

where \bar{h}^{r+1} = the vector of hydraulic head at the r+1 iteration; \bar{h} = the vector of hydraulic head at the r iteration,

$$\bar{\Delta}^{\mathbf{r}} = -(\bar{\mathbf{R}}^{\mathbf{r}})^{-1} \bar{\mathbf{f}}^{\mathbf{r}};$$

 \overline{R}^r = the matrix involving estimates of hydraulic conductivity used in equation 2 at the r iteration;

 \bar{f}^r = the functional representation of equation 2 at the r iteration,

$$\bar{\bar{S}}^{r} = -(\bar{\bar{K}}^{r})^{-1}(\frac{\partial \bar{f}^{r}}{\partial \bar{a}^{r}} \bar{a}^{r});$$

and the second second

.

 \bar{a}^r = the vector of model-parameter estimates at the r iteration, and $\bar{b}^{r+1} = \frac{a^{r+1} - \bar{a}^r}{\bar{a}^r}$.

This equation is identical to the one used by Cooley (1977) to calculate hydraulic heads for each new iteration. The definitions of the variables are given in three dimensions instead of two.

> an an treas an tarrena. An gailte an the same treas

> > ι,

કરુ

Hydraulic head calculated by equation 9 cannot be compared directly to water-level measurements in wells unless the wells are constructed as piezometers. Because wells usually are open to some interval of aquifer, water levels represent a depth-integrated value of hydraulic head. Therefore, the least squares criterion that must be satisfied differs slightly from the criterion used by Cooley (1977), where vertical-head variations were not considered.

$$\frac{\partial}{\partial \bar{\mathbf{b}}^{r+1}} \left\{ \bar{\mathbf{w}} (\bar{\mathbf{h}}_{m} - \bar{\mathbf{h}}_{int}^{r+1})^{2} \right\} = 0$$
 (10)

where $\bar{w} = a$ vector of weights between 0 and 1 describing the reliability of \bar{h}_{μ} ,

 $\bar{\mathbf{h}}_{m}$ = the measured head, and

 \tilde{h}_{int}^{r+1} = the vector of depth-integrated head at the r+1 interation.

Depth-integrated head is calculated by using the finite-element approximation to equation 7 in conjunction with equation 9. Substitution of the result in equation 10 gives the following:

 $\tilde{\mathbf{w}}(\bar{\mathbf{N}}^r \bar{\mathbf{S}}^r)^T \bar{\mathbf{N}}^r \bar{\mathbf{S}}^r \bar{\mathbf{b}}^{r+1} = (\bar{\mathbf{N}}^r \bar{\mathbf{S}})^T \bar{\mathbf{w}}[\bar{\mathbf{h}}_m - \bar{\mathbf{N}}^r (\bar{\mathbf{h}}^r + \bar{\Delta}^r)]$ (11)

where \overline{N}^r = the matrix of finite-element approximations of equation 7

involving estimated hydraulic conductivity at the r

iteration, and,

 $()^{t}$ = the matrix-transpose operation.

With the exception of the \bar{N}^r term, equation 11 is identical to the least squares equation used by Cooley (1977). Equation 11 can be solved for \bar{b}^{r+1} which in turn can be used to calculate estimates of model parameters. Because the Taylor series expansion used to linearize the equations of ground-water flow is an approximation, the solution of equation 11 may not give global optimum values of \bar{b}^{r+1} unless $\bar{h}^{r+1} - \bar{h}^r$ and $\bar{a}^{r+1} - \bar{a}^r$ are small. Therefore iteration must be used.

The iteration procedure is identical to the one used by Cooley (1977). An initial estimate of aquifer properties and other unknown model parameters is used to solve equation 2 for hydraulic head. The coefficients $\partial \bar{f}^r / \partial \bar{a}^r$ are calculated and equation 11 is used to solve for \bar{b}^{r+1} and new estimates of model parameters. The iteration number is advanced by one and the Taylor series expansion of equation 2 is used to compute \bar{f}^r . An iterative cycle is begun by resolving equation 2 with the latest estimates of aquifer properties and boundary flux rates until values for \bar{f}^{r+1} are less than some acceptable error.

en an the subscription and a

Sensitivity Analysis of Transient Ground-Water Flow

and Solute Transport 🔍

Development of a statistical procedure for estimating model parameters under transient conditions is more difficult than under steady-state conditions. Several approaches to solving this problem may be possible, but all have proven overly expensive in terms of disc storage, core storage or computational time. Therefore, calibration of transient ground-water flow and solute-transport models remains a trial-and-error process in this report.

A review of the differential equation of solute transport (eq. 3) shows that ground-water velocity acts as a calibration parameter. Therefore, it usually is necessary to develop a ground-water flow model concurrently with the development of a solute-transport model. Earcy's law is used to compute velocity from estimates of hydraulic conductivity and model-calculated head. The linkage between ground-water flow and solute transport often forces the hydrologist to iterate between the flow and transport models until a distribution of hydraulic conductivity is obtained that reproduces both historical water-level and soluteconcentration data. Bibby (1981) observed that the solute-transport model can have a strong influence in determining optimal estimates of hydraulic conductivity.

EVALUATION OF MODEL

A number of tests of the model have been made including comparisons of model results to analytical solutions and to one field application. Because analytical solutions rarely exist for three-dimensional problems, tests have been designed to verify the accuracy of the model in one and two dimensions. Repeated applications of the test problems in each of the three directions were used to isolate any programming or logic errors. Comparisons of model results with analytical solutions are discussed below. Application of the model to a field problem, solute transport from an in situ oil-shale retort near Rock Springs, Wyo., will be discussed in a later report (K. C. Glover, U.S. Geological Survey, written commun., 1985).

Ground-Water Flow

An evaluation of the basic model of ground-water flow (eq. 2) has not uncovered any unusual characteristics. For problems with relatively regular boundaries, the evaluation showed that the finite-element method did not improve upon head distribution calculated by finitedifference methods. In problems with complex and irregular aquifer geometry, the finite-element method can be used to model the flow system with fewer nodes.

36.

Model results were compared to Theis's analytical solution for drawdown in the vicinity of a pumping well (Lohman, 1979). The Theis solution is for a fully penetrating well in an infinite confined aquifer with no vertical movement of water. These conditions were simulated in the flow model by using variable node spacing, a zero-drawdown boundary 20,000 ft from the well, and uniform aquifer properties. The aquifer was assumed to be 100 ft thick with a hydraulic conductivity of 12.5 ft/d and specific storage of 10^{-6} ft⁻¹. Well discharge, distributed uniformly along the well bore, was simulated at a rate of 2.0 ft³/sec. Model results and the analytical solution are plotted in figure 2 for three distances from the

Figure 2.--(on following page) belongs near here

pumping well.

Figure 2.--Comparison of flow-model results with Theis's analytical solution.

The remainder of this section is a discussion of the regression technique for estimating aquifer properties and boundary-flow rates in steady-state systems. Most of the major conclusions of Cooley (1977 and 1979) seem to be appropriate for flow in three as well as two dimensions. Specific points of interest to three-dimensional problems are discussed below.

The number of aquifer properties and flux rates that are treated as regression parameters can have a strong influence on the convergence characteristics of the model. The vertical anisotropy that is common in most three-dimensional systems increases the number of regression parameters and can cause convergence problems more easily than in two-dimensional flow. The number of regression parameters in three dimensions also increases because horizontal hydraulic conductivity often varies with depth. With the large number of parameters that can occur in threedimensional models it may be difficult to obtain adequate water-level data for all strata and convergence can be very slow. In cases where the number of regression parameters the number of measured water levels, no solution may be possible. These characteristics can limit the use of the regression technique in three-dimensional problems.

Boundary-flux rates usually are measured with greatest accuracy when the flow occurs at or near the land surface. This fact has a number of implications in using the regression technique. If significant recharge and discharge occurs at depth as underflow and the hydraulic conductivity is not known exactly, the least-squares matrix usually is ill-conditioned and no solution is possible. On the other hand, if boundaries are identified at depth such that no flow occurs across them, a solution may be possible. However, the standard errors of estimate for hydraulic conductivity usually will be very large. Large standard errors can be common especially if measured water-level data do not accurately describe vertical head gradients throughout the study area.

Cooley (1977) found that models of ground-water flow are characterized by having large standard errors for the parameters. These errors are caused by anomalous measured water levels as well as errors in specified boundary conditions. If errors that usually occur in boundary-flux estimates are not considered during model applications, the resulting standard errors for the parameters usually will be artificially small. Test problems using the three-dimensional regression procedure supported these conclusions.

The regression model in this respect can be used to assess reliability of computed parameters and predicted values of head if the model is approximately linear with respect to the parameters. Cooley (1979) provides a test for linearity that also is applicable to three dimensions. Because the model is nonlinear with respect to hydraulic conductivity, the large number of hydraulic-conductivity parameters in most three-dimensional systems makes it more difficult to pass this test of linearity. Therefore, the use of confidence regions and test of hypothesis may not be appropriate for many three-dimensional problems. Additional testing of the regression method in three dimensions is needed to evaluate this conclusion.

Solute Transport

An analytical solution for one-dimensional solute transport from a specified concentration boundary into a fractured aquifer of uniform thickness is given by Bibby (1981, p. 1078). Fractures are assumed to be horizontal and separated by sufficient impermeable strata to be considered of infinite extent. The solute is considered to be non-reactive. The analytical solution was obtained by analogy to a corresponding solution for conduction and convection of heat into an aquifer.

Model results were compared to this analytical solution using representative values for aquifer characteristics. Seepage velocity of water in the fissures was set equal to 0.5 ft/d. Longitudinal and transverse dispersivities were set to 100 ft/d, and the diffusion coefficient of solute in water in the unfractured formation blocks was 5×10^{-5} ft²/d. The block porosity was set to unity to permit comparison with the analytical solution thickness of the blocks made sufficiently large so as not to violate assumptions in the analytical solution. Several simulations with various block dimensions were made to insure the assumptions were reproduced.

Model and analytical results after 100 days of solute transport are presented in figure 3. The close comparison verifies the model theory

Figure 3.--(on following page) belongs near here

and program logic. The model slightly overestimates solute concentrations in the leading part of the profile and slightly underestimates concentrations in the trailing part. This characteristic probably is due to the effects of numerical dispersion associated with nodal spacing.

Figure 3.--Comparison of results from solute-transport model with ana-

∼.

lytical solution at 100 days.

Additional simulations were made with the dual-porosity equation to evaluate the sensitivity of the model to variations in the dual-porosity coefficients. The coefficients that had the greatest effect on the distribution of solute appeared to be shale-matrix porosity and fracture width. The matrix-diffusion coefficient and fracture density also were important in determining the distribution of solute. These observations are in agreement with those of Grisak and Pickens (1980) and show that in fractured rock, matrix diffusion can be an important mechanism for solute transport. Factors reducing the need to consider matrix diffusion are small matrix porosities and large fracture width and density.

A review of the dual-porosity equation (eq. 5) shows that a large number of coefficients must be known even for relatively simple fracture geometries. Because in most studies these coefficients must be estimated during model calibration, the amount of water-quality data needed is far greater than the amount needed to use a continuum model. Within the framework of a three-dimensional system, sufficient data may be available only for a preliminary calibration of the model. Nevertheless in rock where matrix diffusion is dominant, a scarcity of data is not sole justification for ignoring the more complex model.

44

COMPUTER PROGRAM

A listing of the FORTRAN program that solves the three-dimensional equations of flow and solute transport in dual-porosity media is given in table 1 (at end of report). Data-input formats are described in table 2 (at end of report). Although data entry into a finite-element program typically is more cumbersome than for finite-difference prgrams, the increased data-entry time usually is compensated by increased flexibility in locating nodes. With a finite-element model, nodes can be accurately located at observation or pumping wells. In general, fewer nodes are needed to accurately model aquifer geometry when using a finite-element model.

Data entry into a finite-element program is more cumbersome because of the need to identify the relationships among all nodes and elements. As a result, all nodes and elements must be numbered, the Cartesian coordinates of all nodes must be coded, and the nodes associated with each element must be designated.

The system used to number aquifer nodes and elements has a significant impact on the efficiency and size of the computer program. The global coefficient matrices developed in equations 2 and 4 represent the largest block of computer storage used by the program. The solution technique is more efficient, in terms of time and storage requirements, if the size of the global coefficient matrices is minimized. Storage requirements of the global coefficient matrices are directly related to the largest difference between two node numbers in an aquifer element. Therefore, efficient nodal ordering minimizes this difference and improves the efficiency of the solution. The program calculates and prints the band width. If the dimensions of arrays are not sufficient, the simulation will stop.

SAMPLE SIMULATION

Use of the model is illustrated by simulating solute transport from a buried source in a three-layer aquifer system. The bottom layer represents an aquifer where horizontal joints are common within relatively thick impermeable rock. The middle layer represents an aquifer where vertical fractures are common. The top layer represents a homogeneous isotropic sandstone. Boundary conditons and nodal locations are shown horizontally in figure 4 and vertically in figure 5. Aquifer properties

Figures 4 and 5.--(on following pages) belong near here

for each layer are given in table 3. Pumping by two wells, one from the bottom layer and one from the top, also is simulated. Steady-state flow conditions are assumed.

The input data used in the model run and results for one time step are listed in tables 4 and 5 (at end of report). Results present total time into the simulation, and the hydraulic head and solute concentration for each node in the finite-element grid. Principal components of Darcian velocity and dispersion coefficient also are printed for each element.

1 m

Figure 4.--Boundary conditions and node locations along the bottom of the aquifer system used in the sample simulation.

48

•

Figure 5.--Boundary conditions and node locations along a vertical section of the aquifer system used in the sample simulation.

Aquifer property	Bottom layer	Middle layer	Top layer
Hydraulic conductivity	•	· · · ·	
x-direction (feet/day)	20.0	10.0	40.0
Hydraulic conductivity			
y-direction (feet/day)	20.0	2.0	40.0
Hydraulic conductivity	, the second	. :	
z-direction (feet/day)	5.0	10.0	40.0
Longitudinal dispersivity (feet)	10.0	1.0	100.0
Transverse dispersivity (feet)	3.0	.3	` 30.0
Molecular diffusion in low permeabil-	Ali ang tang tang tang tang tang tang tang		
ity blocks (square feet per day)	.0001	.0001	.0
Fracture width (feet)	.2	.01	.0
Block width (feet)	1.8	.19	.0
Effective porosity (dimensionless)	.1	.05	.3
Block porosity (dimensionless)	.01	.01	.0
Flux boundary (feet/day)	.4	.2	.4
Specified-head boundary (feet)			500.0
Solute-concentration boundary	•		
(milligrams per liter)	100.0		••

Table 3.--Aquifer properties used in sample simulation

SUMMARY

The model described in this report can simulate three-dimensional ground-water flow and solute transport in oil shale and associated hydrogeologic units. The model treats oil shale as a dual-porosity medium by simulating flow and transport within fractures using conventional finite-element methods. Diffusion of solute between fractures and the essentially static water of the shale matrix is simulated by including an analytical solution that acts as a source-sink term to the differential equation of solute transport. While knowledge of fracture orientation and spacing is needed to effectively use the model, it is not necessary to map the locations of individual fractures.

The computer program listed in the report incorporates many of the features of previous dual-porosity models while retaining a practical approach to solving field problems. As a result the report does not extend the theory of solute transport in any appreciable way. The emphasis in the report is on bringing together various aspects of solute-transport theory in a manner that is particularly suited to the unusual ground-water flow and solute-transport characteristics of oil-shale systems.

Methods for quantifying the uncertainty in parameter estimates that occur during model development are given in this report. The quasilinear regression method described by Cooley (1977) for estimating parameters and assessing reliability for two-dimensional models of steady-state ground-water flow has been extended to three dimensions. Because the number of model parameters in three-dimensional simulations generally is larger than in two-dimensional simulations, adequate water-level data may not be available for evaluating parameter reliability. When it is possible to evaluate parameter reliability, standard errors for hydraulic-conductivity estimates of buried strata generally are large.

51

A large number of aquifer properties must be evaluated when simulating solute transport through dual-porosity media. Because properties such as the matrix-diffusion coefficient, matrix porosity, and fracture width and density often are estimated during model calibration, a large amount of water-quality data is needed. Within the framework of a three-dimensional system, sufficient data may be available only for a preliminary calibration of the model. Nevertheless, matrix diffusion can be an important mechanism for solute transport in fractured rock.

and and a start of the second s The second start of the second second second start of the second start of the second start of the second start o

REFERENCES CITED

- Bibby, Robert, 1981, Mass transport of solutes in dual-porosity media: Water Resources Research, v. 17, no. 4, p. 1075-1081.
- Bradley, W. H., 1964, Geology of Green River Formation and associated Eocene rocks in southwestern Wyoming and adjacent parts of Colorado and Utah: U.S. Geological Survey Professional Paper 496-A, p. 31-34.
- Cooley, R. L., 1977, A method of estimating parameters and assessing reliability for models of steady state groundwater flow, 1, Theory and numerical properties: Water Resources Research, v. 13, no. 2, p. 318-324.
- —— 1979, A method of estimating parameters and assessing reliability for models of steady state groundwater flow, 2, Application of statistical analysis: Water Resources Research, v. 15, no. 3, p. 603-617.
- Freeze, R. A., and Cherry, J. A., 1979, Groundwater: Englewood Cliff, New Jersey, Prentice-Hall, Inc., 604 p.
- Grisak, G. E., and Pickens, J. F., 1980, Solute transport through fractured media, 1, the effect of matrix diffusion: Water Resources Research, v. 16, no. 4, p. 719-730.
- Gupta, S. K., and Tanji, K. K., 1976, A three-dimensional Galerkin finite element solution of flow though multiaquifers in Sutter Basin, California: Water Resources Research, v. 12, no. 2, p. 155-162.

Hall, W. G., 1982, The kinetics of leaching of organic carbon from in situ spent shale: Lawrence Berkley Laboratory Report LBL-14231, 159 p.
Huyakorn, P. S., Lester, B. H., and Mercer, J. W., 1983, An efficient

finite-element technique for modeling transport in fractured porous media, 1, Single species transport: Water Resources Research, v. 19, no. 3, p. 841-854.

REFERENCES CITED--Continued

- Huyakorn, P. S., and Nilkuha, K., 1979, Solution of transient transport equation using an upstream finite element scheme: Applied Mathematical Nodelling, v. 3, no. 1, p. 7-17.
- INTERCOMP Resource Development and Engineering, Inc., 1976, A model for calculating effects of liquid waste disposal in deep saline aquifers, Part I - development, Part II documentation: U.S. Geological Survey Water-Resources Investigations Report 76-61, 253 p.
- Konikow, L. F., and Bredehoeft, J. D., 1978, Computer model of twodimensional solute transport and dispersion in ground water: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 7, chapter C2, 90 p.
- Lohman, S. W., 1979, Ground-water hydraulics: U.S. Geological Survey Professional Paper 708, 70 p.
- Noorishad, Jahan, and Mehran, Nohsen, 1982, An upstream finite element method for solution of transient transport equation in fractured porous media: Water Resources Research, v. 18, no. 3, p. 588-596.
- Pinder, G. F., and Gray, W. G., 1977, Finite element simulation in surface and subsurface hydrology: New York, Academic Press, 295 p.
- Rasmuson, A., Narasimham, T. N., and Neretnieks, I., 1982, Chemical transport in a fissured rock: Verification of a numerical model: Water Resources Research, v. 18, no. 5, p. 1479-1492.
- Robson, S. G., and Saulnier, G. J., 1981, Hydrogeochemistry and simulated solute transport, Piceance Basin, northwestern Colorado: U.S. Geological Survey Professional Paper 1196, 65 p.
- Snow, D. T., 1969, Anisotropic permeability of fractured media: Water Resources Research, v. 5, no. 6, p. 1273-1289.
- Zienkiewicz, O. C., 1971, The finite element method in engineering science: New York, McGraw-Hill, 521 p.

SUPPLEMENTAL INFORMATION

Table 1.--Computer-program listing

			• •
		A FINITE ELEMENT PROGRAM FOR THE SOLUTION OF	10
	÷ .	THREE-DIMENSIONAL TRANSIENT GROUND-WATER FLOW AND SOLUTE	20
		TRANSPORT IN FRACTURED MATERIAL	30
		OBSERVATIONS MAY BE VALUES OF HEAD AND CONCENTRATION IN WELLS	40
		OPEN TO SOME OR ALL OF THE AQUIFER SYSTEM	50
	C**	ELEMENTS ARE ISOPARAMETRIC CUBES WITH LINEAR SIDES.	60
	C**	UPSTREAM FINITE ELEMENTS USED FOR SOLUTE TRANSPORT.	70
	C**	GUIDELINES FOR ARRAY DIMENSIONS IF NOT SOLVING TRANSPORT PROBLEM	80
		THE DIMENSIONS OF TRANSPORT ARRAYS MAY BE REDUCED TO 1	90
	C**		100
	-	SET IDIM.GE.NUMNP, JDIMH.GE.IBH, JDIMC.GE.IBC, KDIH.GE.NUMEL,	110
	C**		120
	•		
	-	CURRENTLY DIMENSIONS ARE FOR A MAXIMUM OF	130
		NUMNP= 490 NUMEL=300 NTIME=52 IBH= 90 IBC=180 NTPER=52 NTO=1	140
		NTRE= O NTW= O NTS=1 NOBMAX=30 NBPAR= O NTB=0	150
		NPARH= 8 NQPAR= 0 NUHAT=7 NTFRAC=9 ITFRAC= 10 NLAYER= 3	160
		MAIN ARRAYS	170
	C**	XTXH(NVARH, NVARH), BH(4*NVARH)	180
	C**	PH(NVARH), RKH(NVARH), HINT(NTO*NOBMAX)	190
		ZSPACE(NLAYER-1), CINT(NTO*NOBMAX), TITLE(20), HP1(NUMNP*2),	200
•••		CP1(NUMNP*2),CO(NTO*NOBMAX),	210
		NXTO(NTO+1), NXTW(NTW+1), NXTS(NTS+1), NXTB(NTB+1)	220
•	0	DIMENSION XIXH(8,8),BH(32),	230
		\$ PH(8),RKH(8),HINT(30),CINT(30),	240
			250
		\$ ZSPACE(3),TITL(20),	
		\$ CO(30),NXTO(1),	260
		\$ NXTW(1),NXTS(2),NXTB(1)	270
		COFBLK ARRAYS	280
		H(NUMNP*2), C(NUMNP*2), QHTMP(NUMNP), WELL(NUMNP*(NTW+1)),	290
		CFRAC(NTFRAC+1,NUMNP),CINIT(NUMNP),	300
	C**	WELLC(NUMNP*(NTW+1)),SFOBSH(NUMNP+NOBMAX),SFOBSC(NUMNP+NOBMAX),	310
	C**	WTNOD(NUMNP), DM(NUMAT), FP(NUMAT), FQ(NUMAT),	320
	C**	RPER(NUMAT), CBINIT(NUMAT), RX(NUMAT), RY(NUMAT), RZ(NUMAT),	330
		HO(NTO*NOBMAX), RC(NUMAT), RPR(NUMAT), DL(NUMAT), DT(NUMAT),	340
		IPRMH(3, NUMAT), MAT(NUMEL), NBP(NUMNP), RMT(NUMAT)	350
	. •	COMMON/COFBLK/CFRAC(10, 490), QHTMP(490), CINIT(490),	360
		\$ H(980), C(980), WELL(490), WELLC(490),	370
			380
		\$ RX(7),RY(7),RZ(7),RC(7), \$ RPR(7),DM(7),FP(7),FQ(7),RMT(7),HO(30),	390
			400
		\$ RPBR(7), CBINIT(7), SFOBSH(520), SFOBSC(520), WINOD(490),	
		\$ DL(7), DT(7), THETAH, DTIME, TIMFAC, TIMBGN, CEQUI, DFW,	410
· *		\$ TIMSUM, IPRMH(3,7), MAT(300), NBP(490), IELMR	420
		SINBLK ARRAYS	430
		XORD(NUMNP), YORD(NUMNP), ZORD(NUMNP), QS(NUMNP*(NTS+1)), CS(NUMNP*	440
1	C **	(NTS+1)),QF(NQPAR),CF(NQPAR),QEH(8),QEC(8),NP(NUMEL,8),IBPRM(NUMEL)	450
		COMMON/SINBLK/QEH(8),QEC(8),XORD(490),YORD(490),ZORD(490),	460
		\$ QS(980),CS(980),QF(1),CF(1),NP(300,8),IBPRM(300)	470
	. •	DOUBLE PRECISION QEH.QEC	480
	. C¥¥	SENBLK ARRAY	490
		WH(NTO*NOBMAX),WC(NTO*NOBMAX),NPBC(NUMNP,NTB+1),NODOBS(NUMNP)	500
	-	COMMON/SENBLK/WH(30).	510
	e	\$ WC(30),THETAC,NPBC(490,1),NODOBS(490)	520
	للمليس	LDUBLK	530
	ູບາກ		230

1.1

```
C** CPKH(IDIN, IBH), SH(NVARH, NUMNP), QH(NUMNP)
                                                                                 540
C** CPKC(IDIM.IBC).OC(IBC)
                                                                                 550
      COMMON/LDUBLK/CPKC(490,180),CPKH(490, 90),SH(8, 490).
                                                                                 560
     Ŝ
                     QC( 490),QH( 490),IBC,IBH
                                                                                 570
      REAL*8 CPKC, CPKH, SH, QC, QH
                                                                                 580
C** SHABLK, SURBLK AND LINBLK -- ALL DIMENSIONS CONSTANT
                                                                                 590
      COMMON/SHABLK/SF(4,8,8), WF(4,8), WI(8), NUMQPT
                                                                                 600
      COMMON/SURBLK/AF(3,4),AWT,NQPTA
                                                                                 610
      COMMON/LINBLK/RLF(2,2), RLWT, LINOD(4,2)
                                                                                 620
      DOUBLE PRECISION SF, WT, WF, AF, AWT
                                                                                 630
C** SET # RECORDS IN FILE 8 TO (NTIME/NTPER+1). # WORDS TO NUMNP
                                                                                 640
C** SET # RECORDS IN FILE 9 TO (NTIME+1), # WORDS TO NUMNP
                                                                                 650
      OPEN (UNIT=8, FILE='HEADS', ACCESS='DIRECT', FORM='UNFORMATTED',
                                                                                 660
     Ŝ
             RECL=816)
                                                                                 670
      OPEN (UNIT=9, FILE='CONCN', ACCESS='DIRECT', FORM='UNFORMATTED',
                                                                                 680
     Ŝ
             RECL=816)
                                                                                 690
      OPEN (UNIT=5, FILE='SAMPLE. INPUT', STATUS='OLD')
                                                                                 700
      OPEN (UNIT=6, FILE='SOLUTION. PRT')
                                                                                 710
      IDIM=490
                                                                                 720
      JDIMH= 90
                                                                                .730
      KDIM=300
                                                                                 740
      NVEH=8
                                                                                 750
      LDIMH=NVEH*4
                                                                                 760
      JDIMC=180
                                                                                 770
      DO 105 I=1.3
                                                                                 780
      READ(5,1)(TITL(J), J=1, 20)
                                                                                 790
      WRITE (6,2) (TITL(J),J=1.20)
                                                                                 800
105
      CONTINUE
                                                                                 810
      WRITE(6.3)
                                                                                 820
      READ (5,4) NUMEL, NUMNP, NUMAT, NTIME, NTPER, NTB, NTO, NOBMAX, NTW,
                                                                                 830
     Ŝ
                  NTS, NPARH, NQPAR, NBPAR
                                                                                 840
      WRITE(6.5) NUMEL.NUMNP.NUMAT.NTIME.NTPER.NTB.NTO.NOBMAX.NTW.
                                                                                 850
     Ŝ
                  NTS, NPARH, NQPAR, NBPAR
                                                                                 860
      READ (5.4) NPLAYR, NEPLAY
                                                                                 870
      WRITE (6.68) NPLAYR.NEPLAY
                                                                                 880
      READ (5.4) ITMAX.IVELPR.IFRAC.NTFRAC.ITFRAG.NLAYER.IBEALE
                                                                                 890
      WRITE (6,6)ITMAX, IVELPR, IFRAC, NTFRAC, ITFRAC, NLAYER, IBEALE
                                                                                 900
                                                                                 910
      WRITE(6.7)
      READ (5,8) NTPRT, IPO, IPRX, AP, AMP, RP, RPF, EVH
WRITE (6,8) NTPRT, IPO, IPRX, AP, AMP, RP, RPF, EVH
                                                                                 920
                                                                                 930
      READ (5,9) DTIME, TIMFAC, THETAH, THETAC, DFW, CEQUI
                                                                                 940
      WRITE (6.10) DTIME.TIMPAC.THETAH.THETAC.DFW.CEQUI
                                                                                 950
                                                                                 960
      READ (5,9) ALFLG, ALFAX, ALFAY, ALFAZ
      WRITE(6,11) ALFLG, ALFAX, ALFAY, ALFAZ
                                                                                 970
C** INITIALIZE
                                                                                 980
      TIMBGN=DTIME
                                                                                 990
      DO 110 I=1,NUMNP
                                                                                1000
      H(I) = 0.0
                                                                                1010
                                                                                1020
      NBP(I)=0
                                                                                1030
      NPBC(1,1)=0
      NODOBS(1)=0
                                                                                1040
                                                                                1050
110
      CONTINUE
      IF (THETAC.LT.O.O) GO TO 130
                                                                                1060
```

DO 120 I=1, NUMNP	· · ·
C(I)=0.0	,
DO 120 J=1.NTFRAC	
CFRAC(J,I)=0.0	
20 CONTINUE	
130 N=NOBMAX*NTO	
NXTO(1)=999999	
IF (N.LE.U) GO TO 150	
DO 140 I=1.N	· · ·
HO(I)=0.0	
WH(I)=0.0	
IF (THETAC.LT.O.O) GO TO 140	
CO(1)=0.0	· · · · ·
WC(I)=0.0	· · · · · · · · · · · · · · · · · · ·
40 CONTINUE	
50 N=NUMNP*(NTW+1)	
NXTW(1)=999999	
DO 156 I=1,N	
WELL(I)=0.0	· · ·
IF (THETAC.GE.0.0) WELLC(I)=0.0	· · · · · ·
6 CONTINUE	
N=NUHNP*(NTS+1)	• .
NXTS(1)=999999	
DO 158 I=1,N	
QS(I)=0.0	
IF (THETAC.GE.0.0) CS(I)=0.0	
B CONTINUE	* *
DO 160 I=1,NUMAT	
IPRMH(1,I)=0	
IPRMH(2,1)=0	
IPRMH(3,I)=0	
CONTINUE	··· 👟 🥇
NUMM=NUMNP-NLAYER+1	
NLAYH2=NLAYER-2	
NLAYH1=NLAYER-1	
READ (5,9) (2SPACE(1), I=1, NLAYM1)	
WRITE(6,9) (ZSPACE(I),I=1,NLAYHI)	
WRITE (6,69)	
DO 162 II=1,NPLAYR	_ · · · ·
READ (5 12)T N VODD/T) WODD/T)	
READ (5,12)I,N,XORD(I),YORD(I), \$ 70PD(I)	
\$ ZORD(I) NM1=N-1	
DO 162 J=1,NM1	
XORD(I+J)=XORD(I)	
YORD(I+J)=YORD(I)	
ZORD(I+J)=ZORD(I)+ZSPACE(J)	
CONTINUE	
READ (5,13) N	
READ (5,14) (I,NPBC(I,1),NODOBS(I)	WINOD(I) H(I) WELL(I) OC(I)
\$ I1=1,N)	······································
WRITE(6,15)(1,NPBC(1,1),NODOBS(1)	WTNOB(T) YOPD(T) YOPD(T)
\$ ZORD(1),H(1),WELL(1),Q	(T) $T=1$ $NINOD)$
IF (THETAC.LT.O.O) GO TO 164	

	WRITE (6,16)		1600
	READ (5,17) N	· ·	1610
	READ (5,17)(I,C(I),WELLC(I),CS(I),I1=1,N)		1620
	WRITE(6,67)(I,C(I),WELLC(I),CS(I),I=1,NUMNP)		1630
	DO 163 I=1,NUMNP		1640
	CINIT(I)=C(I)		1650
163	CONTINUE		1660
164	IBH=0		1670
	WRITE(6,18)		1680
	DO 170 II=1,NEPLAY	•	1690
	READ (5,19) I,N,(NP(I,J),J=1,4)		1700
	NH1=N-1	•	1710
	MAT(I)=1		1720
	DO 166 J=5,8		1730
	NP(1,J)=NP(1,J-4)+1		1740
166	CONTINUE		1750
	IF (NLAYER.LE.2) GO TO 170		1760
•	DO 168 K=1,NM1		1770
	DO 168 J=1,8		1780
	MAT(I+K)=K+1		1790
	NP(I+K,J)=NP(I,J)+K		1800
168	CONTINUE	•	1810
170	CONTINUE		1820
	do 174 I=1, NUMEL		1830
	WRITE (6,20)I,(NP(I,J),J=1,8)		1840
	DO 172 J=1,8		1850
	DO 172 K=J,8		1860
	J1=IABS(NP(I,J)-NP(I,K))	•	1870
	IF (J1.GT.IBH) IBH=J1		1880
172	CONTINUE		1890
174	CONTINUE		1900
	IBH=IBH+1	*	1910
	1BC=1BH*2-1	• *	1920
	WRITE (6,72) IBH, IBC		1930
	IF (NUMNP.GT.IDIM) STOP		1940
	IF (IBH.GT.JDIMH) STOP		1950
	IF (IBC.GT.JDIMC.AND.THETAC.GE.O.O) STOP		1960
	WRITE (6,23)		1970
	DO 188 I=1, NUMEL		1980
	IBPRM(I)=0		1990
188	CONTINUE		2000
••••	READ (5,4) N		2010
	IF (N.GT.O) READ (5,24)(I,MAT(I),IBPRM(I),I1=1,N)		2020
	WRITE (6,13)(I,MAT(I),IBPRM(I),I=1,NUMEL)		2030
	WRITE (6,25)		2040
	READ (5,26) (I,RX(I),RY(I),RZ(I),RC(I),I1=1,NUMAT)		2050
	WRITE (6.26) (1.RX(1).RY(1).RZ(1).RC(1).I=1.NUMAT)		2060
	ISTEDY=1	,	2070
	DO 190 I=1,NUMAT		2080
	IF (RC(I).NE.O.O) ISTEDY=0		2090
190	CONTINUE		2100
	IF (THETAC.LT.O.O) GO TO 196		2110
	WRITE (6,28)		2120
	~~~~~ /~!~//		

59

.

-

:

.

	RPBR(I),I=1,NUMAT) ITE (6,29) (I,DL(I),DT(I),DM()		FQ(1),RMT(1)
\$	,RPBR(I),I=1,NUMAT	) · · · · · · · · · · · · · · · · · · ·	
	(IFRAC.NE.1) GO TO 196	· · · · · ·	
	ITE (6,32) AD (5,27) (CBINIT(I),I=1,NUMA:	*/	· · ·
	TE (6,33) (CBINIT(I),I=1,NUMA		
	(NPARH.LT.1) GO TO 206	<b>A17</b>	· · · · ·
	198 I=1,NPARH		
	176 1-1, NFARM	ζ.	
	ITINUE		
	TE (6,34)		-
	D (5,35) (I,IPRMH(1,I),IPRMH	(2 T) TERMH(3 T)	TI-1 NIDATA
WRT	TE (6,35) (I,IPRMH(1,I),IPRMI	2,1/,1/,1/2,1/ 2() T) TDDWU(3 T	) Tel MUMAT)
	RFL=0		/,1-1,RUINI/
	200 I=1,NUMAT		. •
	(IPRMH(1,1).GT.0) IXTRFL=1		· · ·
	(IPRMH(2,1).GT.0) IXTRFL=1		
	(IPRMH(3,I).GT.O) IXTRFL=1		
	ITINUE		
	TE (6,36)		· * · · · ·
	D (5,37) (I,RKH(I),I1=1,NPAR	ł)	• •
	TE (6,37) (I,RKH(I),I=1,NPAR		
	(NQPAR.LE.O) GO TO 208	. <b></b>	• •
	TE (6,40)	с. 1	
REA	D (5,41) (I,QF(I),RKH(I+NPARE	i),I1=1,NQPAR)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	TE (6,41) (I,QF(I),RKH(I+NPA)		
IXT	RFL=1	• • •	
	(THETAC.LT.0.0) GO TO 208		
WRI	TE (6,42)		
	D (5,37) (I,CF(I),I1=1,NQPAR)		
	TE (6,37) (I,CF(I),I=1,NQPAR)	)	
	(NBPAR.LE.O) GO TO 212		
	D (5,43) (NBP(I),I=1,NUMNP)	•	
	TE(6,44) (NBP(I),I=1,NUMNP)		
	TE (6,45)		
	210 I1=1,NBPAR		
	D (5,37) I,RKH(I+NPARH+NQPAR)		
	TE(6,37) I,RKH(I+NPARH+NQPAR)	)	1
	TINUE		
	1=NTFRAC+1		
	216 I=1, NUMNP		
	+NUMNP)=H(I)		i a construction de la construcción de la construcción de la construcción de la construcción de la construcción Per servición de la construcción de
	(THETAC.LT.0.0) GO TO 216		
	+NUMNP)=C(I)		· · · · · · · · · · · · · · · · · · ·
	(IFRAC.EQ.O) GO TO 216	۰.	· · · · · · · · · · · · · · · · · · ·
	214 J=1,NTF1		
	AC(J,I)=C(I)		
	TINUE		a .
READ '	TRANSIENT DATA (NTB.LE.O.AND.ITMAX.EQ.O) GO		

60

		· · · · · ·		
	IBCNT=1			2660
	IHR=1			2670
	ICR=1			2680
	WRITE (8'IHR) (H(J), J=1, NUMNP)			2690
	WRITE (9'ICR) (C(J), J=1, NUMNP)			2700
	IHR=IHR+1			2710
	ICR=ICR+1			2720
	NTH=NTIME/NTPER			2730
	IF (NTB.GT.O) READ(5,46) 11,12		• ·	2740
	DO 226 I=1,NTH			2750
	IF (NTB.LE.O) GO TO 222			2760
	IF ((1-1)*NTPER.LT.I1) GO TO 222			2770
	IBMI=IBCNT			2780
	IBCNT=IBCNT+1			2790
	NXTB(IBM1)=I1		· · · · ·	2800
	DO 218 J=1, NUMNP			2810
	NPBC(J, IBCNT)=NPBC(J, IBM1)			2820
218	CONTINUE			2830
210	WRITE (6,47) 11			
	DO 220 K=1,12			2840
		· • • •		2850
	READ $(5,48)$ J,NPBC(J,IBCNT),H(J),X1			2860
220	IF (THETAC.GE.O.O) C(J)=X1			2870
220	CONTINUE ·			2880
	I1=999999			2890
	IF (IBM1.LT.NTB) READ (5,46) 11,12			2900
222	WRITE (8'IHR) (H(J), J=1, NUMNP)			2910
	IHR=IHR+1			2920
	IF (THETAC.LT.O.O) GO TO 226			2930
	DO 224 K=1,NTPER			2940
	WRITE (9'ICR) (C(J), J=1, NUMNP)			2950
	ICR=ICR+1			2960
224	CONTINUE			2970
226	CONTINUE			2980
	NXTB(NTB+1)=999999			2990
228	IF (NTO.LE.O) GO TO 236			3000
	N=NTO*NOBMAX			3010
	DO 230 I=1,N			3020
	HINT(I)=0.0			3030
	IF (THETAC.GE.0.0) CINT(I)=0.0	· · · ·		3040
230	CONTINUE			3050
•••	WRITE (6,49)			3060
	DO 234 I=1,NTO			3070
	READ (5, 50) I1			3080
	WRITE (6, 51) 11			
	NXTO(1)=11			3090
				3100
	DO 234 J=1,NOBMAX			3110
	READ (5, 52) K,X1,X2,X3,X4			3120
	WRITE(6, 52) K,X1,X2,X3,X4			3130
	L=NOBMAX*(I-1)+K			3140
	HO(L)=X1			3150
	WH(L)=X2			3160
232	IF (THETAC.LT.O.O) GO TO 234		· · ·	3170
	CO(L)=X3			3180

	WC(L)=X4	
34	CONTINUE	
36	NXTO(NTO+1)=999999	
	IF (NTW.LE.O) GO TO 242	
	WRITE (6,53)	
	DO 240 I=1,NTW	
	DO 238 J=1, NUMNP	
٠.	J1=NUHNP*I+J	
	WELL(J1)=WELL(J1-NUMNP)	
		· · · · · · · · · · · · · · · · · · ·
	IF (THETAC.GE.O.O) WELLC(J1)=WEL	LC(JI-NUMAP)
8	CONTINUE	
	READ (5, 50) 11,12	3
	WRITE (6, 54) I1	
	NXTW(I)=I1	
	ITMP=MOD(I1,NTPER)	
	Il=NUMNP*(I)	
	IF (ITMP.NE.1) GO TO 248	· • •
	DO 240 J=1,I2	
	READ (5,52) K,X1,X2	
	WRITE (6,52) K,X1,X2	
	L=I1+K	
	IF (ITMP.EQ.1) WELL(L)=X1	
	IF (THETAC.GE.O.O) WELLC(L)=X2	
)	CONTINUE	
	NXTW(NTW+1)=999999	
	IF (NTS.LE.O) GO TO 250	
	WRITE (6,55)	
	DO 246 I=1,NTS	• • •
	DO 244 J=1,NUMNP	
	J1=NUMNP*I+J	a = 1 and $b = 1$ and $b = 1$
	QS(J1)=QS(J1-NUMNP)	
	IF (THETAC.GE.O.O) CS(J1)=CS(J1-	NUMNP)
	CONTINUE	
	READ (5, 50) 11,12	$E = 2\pi \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{$
	WRITE (6, 56) II	
	NXTS(I)=I1	
	ITMP=MOD(I1,NTPER)	
	II=NUMNP*(I)	
	IF (ITMP.NE.1) GO TO 248	
	DO 246 J=1,I2	
	READ (5, 52) K,X1,X2	
	WRITE (6, 52) K,X1,X2	
	L=I1+K	
	QS(L)=X1	
	IF (THETAC.GE.O.O) CS(I)=X2	Sec. A star is the second
	CONTINUE	
	GO TO 250	
	WRITE(6,80)	
	STOP	
	NXTS(NTS+1)=999999	
	FORMAT (20A4) FORMAT (1X,20A4)	
	EDUXAT IN THAT	

	\$	' NTPER	NTD NTO	NORMAN			
	ŝ			NOBMAX N NBPAR')	NTW',		3720
4	•	(1415)	IPANG NYPAK	ABPAR ⁽⁾			3730
5		(1417)					3740
6		'('OITMAX=',1	S. ' IVELPR=	- TS - TEPAC	-1 72		3750
	\$	NTFRAC=	15,' ITFRAC	I TS ' NTAY	/= jlJj /pp_j tg ( t	D#419	3760
7	FORMAT	(' NTPRT IPO	) IPRX	AP A	$\frac{1}{MP} = \frac{1}{R}$		
	\$	' EVH		-114 E	utr A	P RPF	•
8	FORMAT	(315,5E10.3)					3790
9	FORMAT	(7E10.3)				•	3800
10	FORMAT	('ODTINE - '	,E12.5,' TIN	IFAC = '.F5.	2. THETAH	- 1 25 3	3810
	OK .	THETAC =	'.F5.2/' DFW	= '.E12.5.	- ,	- ;	3820 3830
	\$	' CEQUI = '	.E12.5)			•	3840
11	FORMAT	(' ALFLG = '	,E12.5,' ALF	'AX = ',E12.	5. ' ALPAY =	'.E12.5.	3850
	÷.	· ALFAZ = '	,E12.5)	• - • - •		,,	3860
12		(2110, 3E10.3	)				3870
13		(12110)					3880
14		(3I10,4E10.3	)			,	3890
15		(315,7210.3)					3900
16	FORMAT		-	WELLC	cs',		3910
	\$ \$	NODE	-	WELLC	CS',		3920
17	•	' NODE (110,3E10.3)	C	WELLC	CS')		3930
18		(' ELEMENT	ND 1004911				3940
19	FORMAT		NP ARRAY')				3950
20		(15,5X,815)					3960
23	FORMAT		MAT	TODAVI			3970
	\$	' ELEMENT	MAT	IBPRM', IBPRM',			3980
	Ś	' ELEMENT	MAT	IBPRM',			3990
	\$	' ELEMENT	MAT	IBPRM')			4000
24	FORMAT		. 414	i Drive J			4010
25	FORMAT		RX	RY	RZ	RC')	4020
26	FORMAT	(110, 4E10.3)		•••		RC )	4030 4040
27	. FORMAT	(8E10.3)					4040
28	FORMAT	(' ZONE	DL	DT	DM	RP',	4050
	\$	' FP	7Q	RMT	RPBR')	~ ,	4070
29		(I10,8E10.3)	-				4080
32	FORMAT	('OCBINIT VAL	.UES')			·	4090
33		(1X,8F10.3)					4100
34		(' ZONE	IPRMH ARRAY	')			4110
35	FORMAT						4120
36 37	FORMAT	(' PARAMETER	RKH')				4130
40		(I10,E10.3)					4140
41	FORMAT	(' PARAMETER (110,2E10.3)	QF	RKH')			4150
42	FODMAT	(' PARAMETER					4160
.43	FORMAT	(1515)	CF')				4170
44	FORMAT	(' NBP ARRAY'	/1675)				4180
45	FORMAT	(' BOUNDRY PA	/1515) RM RKH*)			·	4190
46	FORMAT	(215)					4200
47		'OTIME VARYI	NG ROUNDAA C	ANDITIONS	1770 - I - I	• •	4210
	3	'NODE NPBC'	- 3X , 13, 0A ,	CI) ONNIIIOU2 →	- KI * ',I	2/	4220
48		(215,F10.3,F1	(0,3)	<b>u</b> y		• .	4230
							4240

4

÷

.

	49	FORMAT ('OOBSERVED HEAD AND CONCENTRATION DATA')	4250
	50	FORMAT (2110)	4260
	51	FORMAT (' TIME STEP ', 15/' OBS HO WH',	4270
		& ' CO WC')	4280
	52	FORMAT (110,4E10.3)	4290
	53	FORMAT ('OTIME VARYING POINT SOURCE-SINK DATA')	4300
	54	FORMAT (' TIME STEP ',15/' NODE WELL WELLC')	4310
	55	FORMAT ('OTIME VARYING LINE SOURCE-SINK DATA')	4320
	56	FORMAT (' TIME STEP', 15/' NODE QS CS')	4330
	57	FORMAT (' TIME STEP ', 15, ' TOTAL TIME OF SIMULATION', F12.2/	434(
		\$ 'NODE XORD YORD',	435(
		\$ ' ZORD H C')	4360
	58	FORMAT (110,5E12.5)	4370
	59	FORMAT (110, 3E12.5, 12X, E12.5)	4380
	60	FORMAT ('O OBS HO HINT',	4390
		\$ ' CO CINT')	4400
	61	FORMAT (15,4(1X,E12.5))	441(
	62		442(
	63	FORMAT ('OSTATISTICS OF INITIAL HEAD SOLUTION')	443(
	64	FORMAT ('OSTATISTICS OF INITIAL CONCENTRATION SOLUTION')	444(
	65	FORMAT ('ONUMBER OF OBSERVATIONS = ', 15/' ESTIMATED SUM OF ',	445(
		\$ 'SQUARED ERRORS FOR INITIAL SOLUTION = ',E12.5/	446(
		\$ ' ERROR VARIANCE FOR INITIAL SOLUTION = ',E12.5)	447(
	66	FORMAT ('OINITIAL SOLUTION')	448(
	67	FORMAT (110, 3E10.3, 110, 3E10.3, 110, 3E10.3)	449(
	68	FORMAT (' NPLAYR=',15,' NEPLAY=',15)	4500
	69	FORMAT (' NODE NPBC NODOBS WINOD XORD YORD ZORD',	4510
		\$ ' H WELL QS')	452(
	70	FORMAT (' FLOW PROBLEM')	4530
	71	FORMAT (' SOLUTE TRANSPORT PROBLEM')	454(
	72	FORMAT ('OFLOW PROBLEM BAND WIDTH = ', 15/' TRANSPORT PROBLEM ',	4550
		\$ 'BAND WIDTH = ',15)	4560
	73	FORMAT (' UPDATED PARAMETERS'/' MATI RX',	4570
		\$ ' RY RZ ')	4580
•	.74	FORMAT (15,3(1X,E11.5))	459(
	75	FORMAT (' PARAMETER QF ')	4600
	76	FORMAT (110,1X,E11.5)	4610
	77	FORMAT ('FLOW PARAMETER ', 15, ' EFFECTIVELY ZERO')	462(
4 .	78	FORMAT (' SOLUTION FAILED TO CONVERGE IN '.15.' ITERATIONS')	4630
	79	FORMAT (' SOLUTION CONVERGED IN ', 15, ' ITERATIONS')	464(
	80	FORMAT (' TIME STEP IS INVALID FOR A CHANGE OF PARAMETERS'/	465(
.*.	,	\$ 'TIME STEP MUST BE DIVISIBLE BY NTPER WITH A REMAINDER',	4660
-	* -	\$ 'OF 1')	4670
	· • ·	CALL SHAFAC(THETAC)	4680
		CALL SURFAC	4690
		CALL LINFAC	470
			4710
			472
		NVHX3=NVARH+NVHX2	473
		NODES=8	474
-	C##	COMPUTE AND COUNT PRIOR INFORMATION	- 4/5
-	C**	COMPUTE AND COUNT PRIOR INFORMATION NPRIRH=0	475

64

			•
	DO 252 I=1,NVARH		4780
	PH(I)=1.0		4790
	IF (RKH(I).LE.O.O) GO TO 252		4800
	RKH(I)=EVH/(RKH(I)*RKH(I))		4810
	NPRIRH=NPRIRH+1		4820
252	CONTINUE		4830
	CONPUTE INITIAL SOLUTION		4840
254	WRITE (6,66)		4850
	IFLOW=0		4860
	KTH=0		4870
	IOBCNT=1		4880
	IWCNT=1		4890
	ISCNT=1		4900
	IBCNT=1		4910
	SKBIG=0.0		4920
	SKBIG2=0.0		4930
	DTIME=TIMBGN/TIMFAC		4940
	TIMSUM=0.0		4950
	OBSH=0.0		4960
	YSQH=0.0		4970
	ERVARH=0.0		4980
	OBSC=0.0		4990
	YSQC=0.0	· •	5000
	ERVARC=0.0		5010
	IOBCNT=1		5020
	DO 294 KT=1,NTIME		5030
	dtine=dtime*timpac		5040
	TINSUM=TINSUM+DTIME		5050
	LU=0		5060
	IFLOW=IFLOW+1	· ·	5070
	IF (IFLOW.GT.NTPER) IFLOW=1		5080
	IF (IFLOW.EQ.1) KTH=KTH+1		5090
	IF (KT.EQ.1) LU=1		5100
,	IF (KT.GT.NXTO(IOBCNT)) IOBCNT=IOBCNT+1		5110
	IF (KT.EQ.NXTB(IBCNT)) LU=1		5120
	IF (TINFAC.GT.1.01) LU=1		51 30
	LUH=LU		5140
•	LUC=LU		5150
	IF (KT.EQ.NXTW(IWCNT)) IWCNT=IWCNT+1		5160
	IF (KT.EQ.NXTS(ISCNT)) ISCNT=ISCNT+1		5170
	IF (KT.EQ.NXTB(IBCNT)) IBCNT=IBCNT+1		5180
	IF (IFLOW.GT.1) GO TO 260		5190
	IF (NTB.LE.O) GO TO 258		5200
	IHR=KTH+1		5210
	DO 256 I=1, NUMNP		5220
	J=I+NUMNP		5230
	H(I)=H(J)		5240
256	CONTINUE	•	5250
	J1=NUMNP+1		5260
	J2=RUMNP*2		5270
	READ (8'IHR) (H(J),J=J1,J2)		5280
258	CALL FLOW (IWCNT, ISCNT, IBCNT, KT, KTH,		5290
	\$ NTPER, NUMNP, NVARH, NPARH, LUH, NU	471.	5300

Table	1	- Compu	ter-j	Program	listing-	-Continued
-	3		• •	,	. •	
	-					

.

•

÷

* CI	DEPUTE INITIAL ERROR VARIANCE		
	IF (KT.NE.NXTO(IOBCNT)) GO TO 294	· .	
80	IF (NOBMAX.LE.O) GO TO 294	· · · · · ·	1
78	IF (IFLOW.NE.1) WRITE (6,59) I,XORD CONTINUE	(1),YORD(1),ZORD(1),C(11)	. •
76	IF (IFLOW.EQ.1) WRITE (6,58) I,XORD	(I), YORD(I), ZORD(I), H(12),	C(I1)
•	GU IU 278	· · · ·	
	IF. (IFLOW.EQ.1) WRITE (6,58) I, XORD	(1), YORD(1), ZORD(1).H(12)	
	IF (THETAC.GE.O.O) GO TO 276		
	I2=NUMNP+I		
	II-NUMNP+I	، ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰	
	DO 278 I=1,NUMNP	514 	
	WRITE (6,57) KT,TIHSUM	· · · · · · · · · · · · · · · · · · ·	2
74	WRITE (9'ICR) (C(J),J=J1,J2) IF (MOD(KT,NTPRT).NE.O) GO TO 280		· .
72	IF (THETAC.LT.O.O) GO TO 274		. *
	WRITE (8'IHR) (H(J), J=J1, J2)		
	IF (IFLOW.GT.1.OR.NVARH.EQ.O) GO TO	272	
	J2=NUMNP*2		
	Jl=NUMNP+1		
	ICR=KT+1		
70	IHR=KTH+1		
8	CONTINUE		
_	CFRAC(NTF1,I)=QC(I)		•
66	CONTINUE		
	CFRAC(JM1,I)=CFRAC(J,I)		
	JM1=J-1		, *
	DO 266 J=2,NTF1		
	IF (IFRAC.EQ.0) GO TO 268		
•	C(I1)=QC(I)	:	
	II=NUMNP+I	and the second	
	DO 268 I=1,NUMNP		
	\$ NOBMAX, IOBCNT) CALL LDU (NUMNP, LUC)	and the second second second second	
	\$ IDIH, ALFAX, ALFAY, ALFAZ,	ALFLG, NTFRAC, ITFRAC,	
•	\$ NTPER, NUMNP, LUC, NUMEL, I S IDTH ALFAY ALFAY	STEDY, IVPTHP, IFRAC, 1, 0,	
	CALL SALT (IFLOW, IWCNT, ISCNT, IBCNT	KI,KTH,	
	CALL SALT (TELOU TUOUT TOOUT TOOUT		
	IF (MOD(KT,NTPRT).EQ.0) IVPTMP=1		
64	IVPTMP=0		
	READ(9'ICR) (C(J), J=J1, J2)	· · · ·	
	J2=NUMNP*2	1. S.	
	$\frac{11}{11} = \frac{11}{11} = 11$		
	IF (THETAC.LT.O.O) GO TO 270 IF (NTB.LE.O) GO TO 264		
02	CONTINUE		
262	C(I)=C(J)		
	IF (THETAC.LT.0.0) GO TO 262	r	
	IF (IFLOW.EQ.1) H(J)=QH(I)		•
	J=I+NUMNP		
	DO 262 I=1, NUMNP		
200	ICR=KT+1	•••••	
260			

	DO 286 I=1,NUMNP	58
282	IF (NODOBS(I).LE.O) GO TO 286	58
	I3=NUMNP+I	58
	I2=NODOBS(I)+NOBMAX*(IOBCNT-1)	58
	IF (IFLOW.GT.1) GO TO 284	- 58
	HINT(12)=HINT(12)+SFOBSH(1)*H(13)	58
284	IF (THETAC.LT.O.O) GO TO 286	- 59
	CINT(I2)=CINT(I2)+SFOBSC(I)*C(I3)	59
286	CONTINUE	59
	WRITE (6,60)	59
	DO 290 I=1, NOBMAX	59
	I2=I+NOBMAX*(IOBCNT-1)	59
	IF (IFLOW.EQ.1.AND.THETAC.GE.O.O) WRITE (6,61) I,HO(I2),HINT(I2)	59
	\$ ,CO(12),CINT(12)	. 59
	IF (IFLOW.EQ.1.AND.THETAC.LT.0.0) WRITE (6,61) I,HO(12),HINT(12)	59
	IF (IFLOW.GT.1.AND.THETAC.GE.O.O) WRITE (6,62) I,CO(12),CINT(12)	59
	IF (IFLOW.GT.1) GO TO 288	6(
	IF (WH(I2).LE.Q.O) GO TO 288	60
	OBSH=OBSH+1.0	60
	YSQH=YSQH+WH(12)*(HO(12)-HINT(12))**2	61
288	IF (THETAC.LT.O.O) GO TO 290	6
	IF (WC(12).LE.O.O) GO TO 290	6(
	OBSC=OBSC+1.0	. 60
	YSQC=YSQC+WC(12)*(CO(12)-CINT(12))**2	60
290	CONTINUE	- 60
270	IOBCNT=IOBCNT+1	60
202		6
292	CONTINUE	
294	CONTINUE	6
	IF (NOBMAX.LE.O) GO TO 640	6
	ERVARH=YSQH/(OBSH-NVARH+NPRIRH)	6
	NTMP=OBSH	61
	WRITE (6,63)	61
	WRITE (6,65) NTMP, YSQH, ERVARH	6]
296	IF (THETAC.LT.O.O) GO TO 298	61
	ERVARC=YSQC/(OBSC-NVARC+NPRIRC)	61
	NTMP=OBSC	61
	WRITE (6,64)	62
	WRITE (6,65) NTMP,YSQC,ERVARC	62
	BEGIN ITERATIONS	6:
298	INDT=0	62
	ER=0.01	62
	ERP=1000.0	62
	IF (ITMAX.LE.O) GO TO 640	62
	IF (ISTEDY.EQ.0) GO TO 640	63
	DO 372 ITER=1, ITMAX	62
	IOBCNT=1	62
	IWCNT=1	63
	ISCNT=1	6
	IBCNT=1	6
	IFLOW=1	6
	KTH=1	6.
	DTINE=TINBGN/TIMFAC	63

• .

4

	IF (AMP.LT5) GO TO 304	•			637
	YSQH=0.0				638
	DO 302 I=1,NVARH	4		· · ·	639
	BH(I)=0.0				640
	DO 302 J=1,NVARH			·	641
	XTXH(1,J)=0.0				642
302					
304	IHR=1				643
•	J1=NUMNP+1				644
	J2=NUMNP*2		n.		645
	READ $(8'IHR)$ $(H(J), J=J1, J2)$				646
	DTIME=DTIME*TIMFAC				647
	TIMSUM=TIMSUM+DTIME				648
	LU=Q				649
	DO 316 I=1,NUMNP				650
. 1	J=I+NUMNP				651
•	H(1)=H(J)				652
316			، م <del>م</del> ر ب		653
910	J1=NUMNP+1				654
	J2=NUMNP*2				655
	IHR=KTH+1	:		· · ·	656
			· .	•	657
	READ $(8'IHR)(H(J), J=J1, J2)$				658
•	CALL FLOW (IWCNT, ISCNT, IBCNT	,KT,KTH,		· · · · ·	659
-	\$ NTPER, NUMNP, NVARH	,NPARH,LU,	NUMEL,		660
	\$ ISTEDY, ITER, IDIM)			· ,	661
	CALL SENS (NVARH, NUMNP, IPO, K	T,KTH, IOBC	NT,		662
	\$ IXTRFL, NOBMAX, IBC	NT)			663
	DO 322 I=1,NUMNP			•	664
	QHTMP(I)=QH(I)		-		665
322	CONTINUE		2.4		666(
•	DO 324 I=1,NUMNP				6670
	IF (NPBC(I,IBCNT).GE.O.OR.NP	BC(I.IBCNT	).EO2.OR	NPBC(T.TRCNT)	668
	\$ .EQ4) GO TO 324				6690
	IF (NBP(1).LE.0) GO TO 324			• • •	6700
$f_{\rm eff} = 1$	N=NBP(I)+NPARH+NQPAR			,	6710
•	J=NUMNP+I				6720
	SH(N,I)=H(J)*THETAH+(1.0-THE	TAH)*H(T)			-
324	CONTINUE		× '	•	6730 6740
330	CONTINUE				
. C <b>*</b> *	FORM LEAST SQUARES MATRIX				6750
	IF (AMP.LT5) GO TO 344				6760
· · ·	DO 342 I=1,NOBMAX	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			6770
	I1=I+(IOBCNT-1)*NOBMAX			the state of the s	6780
· .	HTMP=0.0				6790
	DO 332 JEL NIDIND				6800
	IF (NODOBS(J).NE.I) GO TO 332	A Section 20	•		6810
•	HTWD-UTWD-CEADOUL AND TO 332			an an an ann an an an an an an an an an	6820
332	HTMP=HTMP+SFOBSH(J)*QHTMP(J)			•	6830
336	CONTINUE				6840
	IF (WH(I1).LE.O.O) GO TO 342			1	6850
· ·	TEMP=HO(I1)-HTMP				6860
5	DO 340 K=1,NVARH			n an ar <del>a</del> tha an ar an a Tha ar an a	6870
	STHP=0.0				6880
· · ·	DO 334 J=1,NUMNP				6890

·~ .

	·	· ·
	IF (NODOBS(J).EQ.I) STMP=STMP+SFOBSH(J)*SH(K,J)	<b>6900</b>
334		6910
	TMP=WH(I1)*STMP	6920
	DO 338 L=1,NVARH	6930
	STMP=0.0	6940
	DO 336 J=1,NUMNP	6950
	IF (NODOBS(J).EQ.I) STMP=STMP+SFOBSH(J)*SH(L,J)	6960
336		6970
338		6980
340		6990
	YSQH=YSQH+TEMP*TEMP*WH(I1)	7000
342		7010
344		7020
	J1=NUMNP+1	7030
	J2=NUMNP*2	7040
	IHR=KTH+1	7050
	IF (IFLOW.EQ.1) WRITE (8'IHR) (H(J),J=J1,J2)	7060
	WRITE (6,70)	7070
	CALL LSTSQ (XTXH, BH, RKH, PH, YSQH, AP, AMP, RP, RPF, NVARH, NVHX2, NVHX3,	7080
	\$ IPO, INDT, ITER, NVEH, LDIMH)	7090
	IF (INDT.EQ.1) GO TO 521	7100
	UPDATE HEAD	7110
348		7120
		7130
	SUMPO.0	7140
	IF (NVARH.LE.O) GO TO 352	7150
	DO 350 $J=1,NVARH$	7160
350	SUMH=SUMH+BH(J)*SH(J,I) CONTINUE	7170 7180
350	IF (IFLOW.EQ.1) H(I1)=QHTMP(I)+SUMH	7190
352	CONTINUE	7200
334	IHR+2	7210
	JI=NUMP+1	7220
	J2=2*NUMNP	7230
	WRITE $(8'1HR)$ $(H(J), J=J1, J2)$	7230
cht	UPDATE PARAMETERS	7250
	IF (IPO.EQ.1) WRITE (6,73)	7260
724	DO 356 I=1,NUMAT	7270
	IF (NVARH.LE.O) GO TO 356	7280
	L=IPRMH(1,I)	7290
	$I = I \times I \times$	7300
	L=IPRHH(2.1)	7310
	IF (L.GT.0) RY(I) + RY(I) + (BH(L) + 1.0)	7320
	L=IPRMH(3,1)	7330
	IF(L.GT.0) R2(1)=R2(1)*(BH(L)+1.0)	7340
	IF (1PO.EQ.1) WRITE (6,74) I,RX(1),RY(1),RZ(1)	7350
356	•	7360
	UPDATE SURFACE AND POINT SOURCE-SINK PARAMETERS	7370
•	IF (NQPAR.LE.O) GO TO 360	7380
	WRITE (6,75)	7390
	DO 358 I=1,NQPAR	7400
	QF(1)=QF(1)*(BH(1+NPARH)+1.0)	7410
	IF (1PO.EQ.1) WRITE (6,76) 1,QF(1)	7420
	en ferandist weren fallet starfet	174V

49

. .