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Abstract

SANCHO 1s a finite element computer program designed to compute the
quasistatic, large deformation, inelastic response of planar or axisymmetric
solids. Finite strain constitutive theories for plasticity, volumetric
plasticity, and metallic creep behavior ere included. A constent bulk
strain, bilinear displacement isoparametric finite element is employed for
the spetial discretization. The solution strategy used to generate the -
sequence of equilibrium solutions is a self-adaptive dynamic relaxation
scheme which is beased on explicit central difference pseudo-time integration
and ertificiel damping. A master—slave algorithm for sliding interfaces 1s
also implemented. A theoretical development of the eppropriate governing
equations and & description of the numericel algorithms are presented along
with a user's guide which includes several sample problems and their
solution.



ACKNOWLEDGEMENT

The authors acknowledge the earlv technicel contributions and continued
interest 1n this work by S. W. Key. Significant contributions to the
development of SANCHO were mede by several of the early users.

H. S. Morgan, 1521, performed numerous checks of the constitutive models,
L. J. Branstetter, 1524, and D. S. Preece, 1521, used early versions of the
program and provided constructive comments regarding its performance. The
efforts of these individuals are gratefully acknowledged.



rt

CONTENTS

Acknowledgements. . . . . . . . . . . .,

List of Figures

List of Tables.

1

2

Introduction .

Mechenics .

Equations of Equ111br1um

Strain and Strain Rate. .
Incremental Form of the Problem .
Spatial Discretization.

Dynamic Relaxation.

Sliding Interface Model

NN
DD W

Constitutive Relations

Stress Flux Relations

Plasticity. .o

Volumetraic Plastxcnty

Metallic Creep.

Material State Parameter

Finite Strein Mechanical Propertles

[

WWwwow
OO R WM

SANCHO User Instructions
4.1 Problem Definition. . .
4.2 Materiel Property Specxf1catlon .
4.3 Boundary Condition Specification.

External File Definition .

Exemple Problems

6.1 Free Thermeal Expansxon .
Pressurized Infinite Cylinder
Stress Relaxation
WIPP Benchmark I1

[ 2« e ]
-FCJN

References

Page

11

13
13
16
17
21
24
30

33
33
34
40
47
52
52

57
58
65
69

7T

83
83
86
88
91

96



ot

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

FIGURES

The body ¥  with surface tractions sk on the
boundary é?l and & prescribed motion on the
boundary 5p2_ An interboundary 670 with a unit

k . .
normal vector n is pictured.

The cross-section of en axisymmeiric body with.

a four node isoparametric quadrilateral element.
The 1soparametric coordinates range between minus
one and plus one.

The basis function ¢l obtained from considering
the contributions of the respective i1nterpoletion
functions from each element surrounding nodal! point 1.

A model equilibrium iteration sequence in a
multidimensional configuration space of nodal
point positions developed with dynamic releaxation
showing convergence at load step n + 1. The
straight line path from n to the last step
calculated from dynamic relaxation is the interval

over which the stress t::lis evalueted using the real time

step At.

Schematic of Master-Slave Slideline Algorithm . ..
Dashed Line Represents Deformed Location of Slave Node I.

The typiceal behavior of a ductile metal bar
loaded first in uniaxial tension followed by
uniexiel compression. The straight line
approximation is characterized es an eleastic
modulus E, a yield stress tO' & strain hardening

modulus Et' and a hardening parameter § where kinematic

hardening is obteined with § = 0, isotropic hardening is
obtained with 8 = 1, and & linear combination of the two i
obtained for S between zero and one.

Page

15

22

23

31

35



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

=1

10.

11.

12:

13:

14a;

14b:

15:

16a:

16b:

17:

The pressure versus volume strain behavior for.
a porous material. Unloading 1s assumed to occur
elastically with a modulus of KO

The standeard uniaxial tension test.

The results of the standard uniaexial tension.
test expressed 1n terms of the Cauchy stress versus
the logarithmic strain.

The standard hydrostatic compression test

The results of the standard hydrostatic
compression test expressed 1n terms of the
Cauchy pressure versus the logarithmic bulk strain.

Example of the use of a single PHISTORY
card to define multiple time histories through
the use of the deley time, td.

Mixed stress and displecement boundary.
condition where the node remeins free to move

in a direction parallel to a line with inclination ¥.

Geometry and Boundary Conditions for Free Thermal

Comparison of SANCHO Results and Theory
for Free Thermal Expansion Exeample

Comparison of SANCHO Results with Theory.
for an Internally Pressurized Infinite Cyllnder

Model and Boundary Conditions for the
Stress Relaxation Example Problem.

Stress History for the Relaxation Problem .

Problem Definition for the WIPP Benchmark 11.
Isothermal Problem [28].

Page

43

53

54

54

55

69

84

84

86

88

89

92



Figure 18.

Figure 19

Mesh Used by SANCHO for the WIPP Benchmark 11}
Isothermal Problem.

Closure Results for the WIPP Benchmark 11 [28].

Page

93

94



TABLE 1.

TABLES

Summary of Keywords and Input.

Page



1 INTRODUCTION

Since the early 1970's, there has been a growing interest in the
solution of nonlinear quasistatic engineering problems. The desire to obtain
nonlinear solutions was motivated by the national energy crisis and the need
to design and develop new and efficient sources of energy. Typical design
practice, where the body was to remein elastic throughout service, was no
longer acceptable 1n many of these applications, so the detailed response of
the bedy in the nonlinear regime was required. Leading the way in this area
were the designers of nuclear power plants. In particular, the design of the
breeder reactor did a great deal to promote the regular use of nonlinear
analysis in design. The elevated temperature operating regime coupled with
the extended operating life made the use of nonlinear anelysis techniques a

necessity for component design.

The development and use of numerical techniques to analyze quasistatic
nonl inear behavior was largely confined to researchers at universities.
However, a few general purpose finite element computer programs, such eas
MARC{1] and ADINA[2], were available to industry during this period. The
general purpose computer program provided the user with an extensive element
library and the ability to solve a wide range of problems. Most of the
computer programs were based on en implicit formulation which required the
formation and subsequent factorization of a stiffness matrix. The generally
adopted nonlinear solution scheme was some form of the Newton—Raphson
method. The use of & modified or unmodified Newton—Raphs;n method places a
burden on the analyst to decide when to update the stiffness matrix to
prevent the solution from diverging. This requires the analyst to have some
knowledge in advance ebout the solution response. One of the drawbacks to
the use of a general purpose program was the inefficiency inherent in
maintaining generality. Special purpose progreams to solve particular classes
of problems do not have this limitation. The special purpose program
generally was limited to a very small element library while still employing

the implicit solution algorithm.
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SANCHO 1s a special purpose, fimite element program that has been
developed 1n response to some of the perceived drawbacks with existing
finite element software for nonlinear analysis. SANCHO was developed to
solve the quasistatic, large deformation. 1nelastic response of two
dimensional solids. The element library 1s based on a bilinear isoparametric
quadrilateral with a constant bulk strain. The equilibrium solution strategy
uses an 1terative scheme designed around a self-adaptive dynemic relaxation
algorithm. The iterative scheme 1s based on explicit central difference
pseudo—time integration with artificial damping. The code is explicit 1n
nature so that no stiffness matrix is formed or factorized which reduces the
amount of computer storage necessary for execution. The explicit nature of
the program also makes 1t attractive for future vectorization on vector
processing machines. The code has a standard material model interface which
1s used with the three material models incorporated within the code. A
finite strain elastic—plastic strain hardening model. a volumetric
plasticity ﬁ;del. end a metallic creep material model are presently A
included. A sliding i1nterface capability, based on a master-slave algorithm,
is also incorporated within SANCHO. The user-oriented data input scheme is
based on keyword descriptors and utilizes a free field reader for ease of
data entry. SANCHO is designed to work with a separate mesh generation
program such as QMESH [3] and to write a data file which can be used by
various plot codes for graphical post processing of the data. The capability

to write a restart file is also provided.

In the following sections of this report, a descripfion of the theory
and computational methods used in SANCHO is given. A description of the
constitutive models is also provided. An input guide for use of the program

is included along with several sample problems.
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2 MECHANICS

Although SANCHO 1s designed to handle only axisymmetric and planar
problems, the theoretlical treatment in this section 1s general for the sake
of brevity and completeness. The treatmept of continuum mechanics found in

Truesdell and Toupin [4] is used.

2.1 Equations of Equilibrium

A body ¥ occupies a finite region of Euclidean space and is subjected

to prescribed body forces and surface tractions. The body undergoes the
motion x1 = xl(Xa.t). Particles of the body are identified by the
coordinates Xa. They are referred to as material coordinates, and the

relation of the particles to the coordinates X% does not change in time.

The places in space which the particles occupy during the motion are
identified by the coordinates x' . The function xldescribes the motion of
the particles x% through space 8s a function of time t. It is the motion

xl which 1s sought.

The place occupied by the body at t = 0 is taken as the reference

configuration. 1In this configuration, the body is assumed to be strain
free, though not necessarily stress free. Only maeterial coordinates x*

which coincide with the spatial coordinates x' in the reference

configuration are considered. Thus, in the reference configuration,

xl(Xa.O) = x%.

The problem is stated in terms of the principle of virtual work. The

differential form

on = t 6x, dv - pfkdx dv - skdx da (1)
m k 1 k
v 1 4

13



1s to vanish at all points along the path of motion for all variations dxk

satisfying the displacement boundary conditions on 572. The integration 1s

performed over the current configuration of the body 2, where p is the mass
density in that configuration, tkm 1s the €auchy stress—the stress in the

. k . . .
current configuration, and s 1s the surface traction which i1s acting on

5?14 The comma 1in X m denotes covariant differentiation.

The divergence theorem i1s employed to display the equilibrium
equations. In anticipation of using the finite element method to generate

approximate solutions, the case where 6xk m 'S only piecewise continuous is

considered. Interior surfaces where the discontinuities of éxk n occur are

denoted by 5?0. Only surfaces é?o which are stationary with respect to the

material are considered. The situation is pictured in Figure 1 where n, is

the normal to &?o and the symbols + and — denote the respective sides of the

surface. The result is

km k km kam
- (t7 .m + pf )6xkdv R (t+ -t )nméxk da

Xm X _
+ ¢ (t no-s )dxkda =0 . (2)

The differential form will vanish 1f end only if the respective

integrands vanish. The resulting expressions are equilibrium

tkm,m + pfk =0 in ¥ , (3)
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the jump condition at a contact discontinuity

U?n—t?”n =0 on #° (4)

and the traction boundary conditions .

tkmnm = s*t) on &' . (5)

The displacement boundary conditions are

X (X% t) = x'(t) on #T . (6)

-

x-

Figure 1. The body ¥ with surface tractions sk on the boundary 671 and a
prescribed motion on the boundary 5?2. An 1nterboundary 570 with a unit

k . .
normal vector n° is pictured.

It is important to reslize that these equations mre completely genereal

and applicable for arbitrarily large deformations.
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2.2 Strain and Strein Rate

In finite deformations there are many strein measures which are useful.
The majority of them can be computed from the deformation gradient FZ

defined by

k
stﬂv(xﬁ,t) . (7)
& ax

The left Cauchy-Green tensor is computed from the deformation gradient as

km _ _k aff
B ™ - FaF‘I;G : (8)

The quantity Gaﬂ 1s the metric tensor in the coordinates of the reference

configuretion. The velocity vk is defined as

k N
vk(xa.t) = g%— %1y . (9)
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The stretching 1s given by

1
Y 2 Ykm T mx! (10)
with the spin by
w_o=1 (v -v_ ) (11)
km 2 k.m m.k

In the constitutive models which follow, only the left Cauchy-Green

tensor Bkm and the stretching dkm are used as strain and strain rate

measures, respectively. There are additional strain and strain rate
variables which could be introduced but they are not needed here. Further

reference to them can be found in Truesdell and Toupin [4].

2.3 Incrementel Form of the Problem

The notion of an i1ncremental solution is fundamental to many of the

methods for finding a motion xl(xa.t) which generates & stress history in

equilibrium with the applied loads. It 1s assumed that at time tn‘ the
stress t?s satisfies the equilibrium Equations (3), (4). and (5), and the

stress t:s 1s the result of integrating the constitutive models with the
strain histories derived from the known motion up to tn. The prescribed

loads are incremented to time tn and a predictor/corrector method is

+1

= x'(X*.t_ ) which has all

introduced to find the new configuration x! n+l

n+l

the equilibrium properties which were deemed necessary at tn and accuracles

17



ecceptable to the constitutive model evaluation. To indicate the

incremental quantities a A is used. For example, At =t -t . At =
n+l n rs

+
tn]_tn

, etc.
rs rs

A basic assumption which underlies most i1ncremental treatments.

including the one here, but which 1s rarely stated i1s that the motion

i i . . .
between X and xn+l is linear. As a consequence, the incremental velocity

;+l/2 = Axl/At is constant over the time increment. Equilibrium

given by v

is tested in the configuration &t tn which is a trial configuration until

+ 1

equilibrium 1s established. To do this. the stresses at tn+1 must be

evaluated. Following Hughes and Winget [5]}. & one parameter family of

configurations 1s i1ntroduced

1 1 1
X s (1 - u)xn +ooax . (12)
P .
The gradient hi] of u, = Ax with respect to X 4o 1S 8iven by
hij = ui,j {13)

From this gradient, the strein increment eij is given by

[n”. +h o+ (1 - 2a)hk1hkj] (14)

_
St
[

18



Thus, elj(O) s the Green-St. Venant strain i1ncrement, e]j(l) 1s the

Signorini strain i1ncrement. and

) = at d =sym|—— . (15)
n+1/2

Without the need for further linearization, the configuration hal fway
between n and n+l1 1s selected for evaluating the stretching, spin, and for

computing At . The midpoint configuration is optimal i1n the sense that no

quadratic terms are needed to accurately evaluate (dxldxl)n+l - (dxldxl)n

The terms 1n the co-rotational derivative involving the spin wrk
used 1n the constitutive equations are for the purposes of taking inte

account rigid bedv rotations of a material point relative to the spatial

coordinates x'. In incremental form they are an orthogonal rotetion through
an incremental angle. Hughes and Winget have provided a modern account of
this process and have provided a direct way to evaluate the orthogonal

rotation matrix R]] from the spin wlj. Thus,

1 1 1 ,-1 1
Rl] = (dk-Atéwk) (gk] +At§WkJ) . (16)

Half angle trigonometric formulas are used to get the square root of

[R]: Rij = R:;ERi{E, ¥With these constructions, the constitutive models can

be integrated over the increment from n to n+l. First, the stress 125 and

the applicable state variables a:s are rotated to n + 1/2 by

19



{n+1/2 =(R1/2);(R1/2)J 0 (17)

rs s 1]

and

- / /2 2

an+1/2 =(R1’ )1(R1/ )] o (18)

rs r s 1)
n+1,/2 . .
Using drs and At, the constitutive equations are integrated and new
= -/ =

stresses t?:l’e and state variables an:1/2 are obtained. These are then

rotated fromn + 1/2 to n + 1 by the same process as 1n Equations (17) &and
{18). This process of mid-interval constitutive evaluation 1s also used by

Hallquist [6] and Biffle [7].

Of particular importance is the integration of the constitutive
equations from time n ton + 1. The plasticity model is i1ntegrated from n to
n + 1 assuming the stretching is constant which is consistent with Equation
(17). For a constant stretching path. the integration is quite accurate,
extremely reliable. and independent of the specific value for the time
interval At [8-10]. The creep model is also integrated fromn ton + 1
assuming the stretching is constant. The creep equatioﬂs. however, are not
nearly as easy to i1ntegrate numerically. They are mathematically "staiff"
equations. Only with considerable effort and great expense can they be
numerically integrated with conventional methods from time n ton + 1. To
overcome this stiffness, a semianalytic integretion is used. Domeins in
stress and strein rate space are identified where various nearby
differential equetions with exact solutions are applicable. The solution
path over a time step may remain within a single domain or may pass through
two or more domains requiring the solutions to two or more of the
differential equations to be applied, one after the other over the time
step. In this way, arbitrarily large strein or time i1ntervals can be
accurately and reliably taken. An absolute maximum of seven subincrements

are required so that computational time is not excessive. This approach,
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while conceptually straightforward., 1s highly tailored to the constitutive
model at hand. The present approach to constitutive equations uncouples
stability and accuracy in their evaluation from selection of the time step
si1ze used 1n load 1ncrementing schemes with their attendant equilibrium
1teration. cf . Bushnell [11] This approach contrasts with that where At
1n the constitutive 1ntegration scheme cor;esponds to the At used 1n
incrementing the load. If this coupling 1s pursued, many numerical schemes
can be developed Argyris. Vaz and Willam [12] have documented a number of

these and have provided the guidance necessary for their successful use

2.4 Spetial Discretization

The treatment up to this point has been 1n terms of an arbitrary body
undergoing an arbitrary motion. Of interest now are the axisymmetric and
plane strain problems. Because the planar case may be obtained from the
ax1symmetric case by moving the symmetry axis arbitrarily far off, only the
axisymmetric problem 1s discussed. No attempt is made to do the
axisymmetric problem 1n general, but rather a specific element with specific

interpolation functions is introduced from the outset.

If cylindrical coordinates, r, 8, z are 1ntroduced, an axisymmelric
body can be characterized by a cross—section i1n the r-z plane which, when
revolved about the z-axis, generates the body. Such & cross-section with a

quadrilateral element is pictured in Figure 2 (such an element is frequently

called a “ring element”). As indicated in Figure 2, the element 1s a
four node isoparametric element [13). Thus, if ya represents the value of

the function y at the node with index a, and ¢a represents the interpolation

function at the node, the function y 1s described within the element by

4
y= I y%%%a.p) (19)
a=1
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Figure 2. The cross-section of an axisymmetric body with a four node
1soparametric quadrilateral element. The isoparametric coordinates range
between minus one and plus one.

where the bilinear isoparametric interpolation functions are given by

¢ = (1 -a) - b)/4 ¢ (1 +a)(1 -b)/4

(20)

(1 + a)(1 + b)/4

(1 - a){1 + b)/4 ¢

<
1]

When all the elements around node 1 are considered, the basis function
obtained from the interpolation functions in each element can be pictured.
Figure 3 shows the result for this case. As can be seen in Figure 3, the
basis functions obtained in this manner have only piecewise continuous
gradients along the element boundaries. As a result, implicit in the finmite
element equations which result from this choice of basis functions is an

approximation to the jump conditions (4) along each element interface.

22



¥Yhen the basis functions are introduced into the principle of vartual
work and the variations taken, a discrete form of the differential Equations

(3). (4), and (5) 1s obtamined as

T4 = {P} (21)

‘{9”

Figure 3. The basis function ¢l obteined from considering the contributions
of the respective 1nterpolation functions from each elemenl surrounding
nodal point 1. '

where. with no sums on the index k.

km o dv

LI A .

a vector

]
Y

{F}

‘/prk¢adv +J,P sk¢ada , & vector.
- k J’l k

{
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This 1s a discrete statement which requires the divergence of the
stress field {T{ to be 1n equilibrium with the prescribed body forces and

surface tractions {F}.

The 1ntegrals for §T{ over each element are performed numerically using
Gaussian quadrature rules. A 2 x 2 i1ntegrdation 1s used to evaluate the area
integral. In the process, a constant bulk strain 1s used This may be
viewed as a 1 point integration of the volumetric strain energy and a 2 x 2

integration of the deviatoric strain energy, [14-16].

2.5 Dynamic Relaxation

As a solution strategy for statics problems, dynamic relaxation
involves first converting the equilibrium equations into equations of motion
by adding an acceleration term, second, introducing an artificial damping.
and finally. 1ntegrating forward in time from 1nitial conditions until the
transient dynamic response has damped out to the static result with
equilibrium satisfied An early i1ntroduction of the idea is given by Otter,
et al. [17]. but a more recent work which summarizes all of the significant
contributions on the topic since then is Underwood [18]. In reference [18].
considerable detasi]l 1s presented about dynamic relexation and its use in
nonlinear problems. Additional i1nformation on dynamic relaxation can be

found 1n the paper by Papadrakekis [19].

Dynamic relaxation is attractive for three reasons: it 1s
vectorizable, 1t 1s versatile, and i1t is reliable. Because it can be made
explicit, it is highly vectorizable for modern digital calculations. In an
explicit form, 1t is ideal for dealing with large deformations, finite
strains, and inelastic material behavior. 1t is reliable in that if the
algorithm converges and equilibrium 1s achieved, then the solution will be

good.
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To produce a dynamic problem. an acceleration term 1s added to the
equilibrium Equation (3). Thus,

e - . (22)

where r 1s a spatially varying density selected to minimize the number of
steps needed to reach equilibrium and 7 is a pseudo—-time scale connected
with the dynamic relaxation but distinct from real time t. The acceleration
term 1s discretized the same way that

calculation, [20].

1t would be in a true dynamics

This leads to the discrete system

(Mliq} = iFt - §T{

(23)
vwvhere
{qi = ﬁka(v) , 8 vector ,
M] = J£%¢E dv , a diagonal matrix
At time tn' equilibrium is satisfied so that {Ttn = thn. A new

solution is inmitiated by incrementing the load to its value at time tn+l'
In general., equilibrium will not be satisfied, so that the ‘imbalance is
represented by the acceleration term:

M4 = tFY_, - 4TH (24)
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demping 1s then chosen to provide critical damping for the lowest frequency.

This expression is

, 2
6 =1 - 4w091/(w0 + wl) . (26)

The range on 6 1s (0,1) A stebility analysis on this set of explicit

equations produces a critical pseudo-time step given by

/

ar_ =2/ st z(wo + o) . (27)

1f the problem were linear so @, and w, are fixed, then the number of

time steps required to reduce the amplitude by a factor of ten would be

N=1.15 ul/uo (28)

From Equation (28), it is seen that any action to reduce the ratio

wl/wo speeds convergence.

From the lineer problem and & uniform mesh of dimension h, the maximum

frequency @y is given by

w, =2 c/h . {29)
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Here ¢ 1s the uniaxial sirain "sound speed” given by [(X + a?;;)/r]l/2

where r 1s the pseudo-density used 1n Equation (22). While the problem 1s
nonlinear in the large, as equilibrium 1s approached at the end of each load
step. the behavior i1s linear. With Equation {29), the condition on A7 1s
essentially the well known Courant-Friedrich-Levy condition which says that
AT can be no larger than the time 1t takes for information to travel

between the “closest” two nodes i1n the mesh.

On the basi1s of these observations, the concept of mesh homogenization
is 1ntroduced. The densities r are selected element-by-element to give the
same transit time across each element. regardless of the size of the
element Thus. 1nformation about equilibrium imbelance 1s transmitted
uniformly over the mesh. This process gives the lowest possible value to

the maximum frequency W, - the goal being to minimize the ratio wl/wa in

Equation (28).

The fundamental frequency w18 continuously estimated using an

approximate Rayleigh quotient. [18]. At each step 1 in the dynamic

relaxation, a new estimate (wo)1 1s computed from Equation (30).

(wg) = (iat,TIK],_tat,/tat TMlial )12 (30)

Where [K]loc is a diagonal stiffness matrix whose jth component is

computed from

[K]loclj = (iTlin - iTil._llj)/(ATipii_l/zlj) . (31)
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With each estimate of the fundamental frequency, a new value of the
damping 6 is computed. This has the virtue that the lowest active mode will

be found in the event that the fundamental mode 1s not participating, [18}.

2.6 Sliding Interface Model

There are several numerical approaches for modeling sliding interface
behavior which allow arbitrary values of the friction coefficient. One
method requires the use of & thin finite element which has a special
constitutive model to approximate gap end friction behavior [21]. A second
approach uses Lagrange multipliers to impose gap closure constreints and
frictional stick-slip conditions [1]. SANCHO utilizes a third method, the

master—-slave approach for slideline kinematics [22].

In the master-slave concept, the nodes on the designated slave surface
are required by the algorithm to lie on the master surface. Any sliding or
slip must occur along the master surface. In turn, nodal forces from the
slave surface are removed and applied to the master surface nodes. This
transfer of forces maintains equilibrium at the interface. The tangential
shear or friction force as well as the determination of slip or no slip is
incorporated in this process of the transfer of forces to the master
surface. In SANCHO the nodal forces are computed by the divergence of
stresses over the element. Therefore nodal forces can be used in

conjunction with a Mohr—Coulomb model which usually employs shear and normal

stresses.

The operation of the scheme cean be demonstrated in the following
example where slave node | lies between master nodes M and N, as shown in
Figure 5. The algorithm determines whether node 1 has crossed the straight
line drawn between M and N. [f node I has penetrated the master surface,

then the normal force (RN) and tangential force (RT) at node I are
determined. The coefficient of friction, u. 1s used in conjunction with RN
to determine the threshold velue for slip,. pRN. 1f RT is less than pRN,

then no slip occurs and both the values RN and RT are transferred to the
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Slave Surface

Master
Surface

Figure 5. Schematic of Master—-Slave Slideline Algorithm Dashed Line
Represents Deformed Location of Slave Node 1.

master surface nodes using an area weighting procedure. The slave node 1 1s
assigned the displacement of the corresponding point on the master surface.

However, 1f RT 1s greater than “RN‘ then slip can occur. The tangential
force RT is reset to its maximum allowable value of yRN. The forces RN and
RT are again transferred to the master nodes. but only the normal master

surface displacement is applied to the slave node. The tangential
displacement is not specified, but is allowed to seek a new equilibrium
position along the slideline. This procedure is incorporated within the

tterative framework of SANCHO and is found to produce reliable results.
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Inclusion of friction, however, does have a disadvantage. The expense of
computing with finite values of friction 1s 1ncreased 1n many cases over

computations where the coefficient 1s zero or the two surfaces are fixed.

Incorporated within the slideline model 1s the capability for two
surfaces initially 1n contact to separate at a prescribed stress level and
for two distinct surfaces to contact each other and remain i1n contact during
deformation. The user 15 allowed to specify the separation stress level and
to specify the separation tolerance within which both surfaces are assumed
to be 1n contact. The separation stress 1s computed at the slave surface

Gauss point closest to the slave node.
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3 CONSTITUTIVE RELATIONS

3.1 Stress Flux Relations

When a material 1n a given class 1s subjected to finite strains. 1t
will often exhibit unique behavior which distingurshes it from the other
materials in the class. Finite strain relations will frequently be more
detai1led and more specific because of this. The experimental procedures
necessary for large strain characterization are correspondingly more
difficult and cean easily be misinterpreted. As & result, it is more
difficult to write relations characteristic of a large class of materials.
Since the majority of relations 1ncluded here are generalizations of
infinitesimal relations, the reader must be cautioned as to their general
applicability to every material. The stress relations used here are fairly
simple. They are meant to capture the fundamental behavior of materials

with as few parameters as possible. Any of them could be easily generalized

or expanded.

Many stress relations are developed in the reference configuration and
as a result the second Piola-Kirchhoff stress Taﬁls used. Since the

equations of motion used here are based on the Cauchy stiress tkm, the second

Piola-Kirchhoff stresses generated in these relations must be converted with

the relation:

kam 1, -
£ ™ = |get F'|TIFE 9P (32)
24 a B

k
where F o 'S the deformation gradient.

Several stress and streain measures are found in finite strain
Piasticity models currently in use. While use of different variables make

the models appear at first to be different, on closer examination they are
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all very nearly the same and differ only in detail—Key, Bi1ffle, and Krieg
[23]. 1t is clear, however, that the rates used for stress and strain, 1n

particular, must be compatible.

The main subject of the research, however, concerns the choice of &
stress flux measure. We have decided to ;etaln the use of the corotational
flux. The corotational flux of the Ceuchy stress 1s related linearly
through a tangent modulus to the stretching, aelso known as the rate of

deformation tensor. Thus,

=t -g w_t -g w _t (33)

where Yim 1S the spin defined in Equation (11)}.

This relation for the stress flux is used for all the material models. The

constitutive relations are all written 1n terms of the stress flux.

3.2 Plesticity

Plasticity 1s characteristic of ductile metals. Figure 6 shows
behavior which 1s typical of & metal bar loaded first 1n uniaxial tension
followed by uniaxial compression. The straight line représentation in
Figure 6 is an idealization of this behavior. This is the approximation
which results from the plasticity relations employed here and teken from
Goel and Malvern [24]. The approach taken here, with the exception of the

kinematic hardening which is included here, is widely used in finite

rsmn

difference method “"hydrocodes.” The stress flux is given by Yrs =C dmn'

When the behavior is elastic C o' 1s the isotopic tensor, Agrsgmn +

Zygrmgsn, where A and p are the Lame parameters.
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Figure 6. The typical behavior of a ductile metal bar loaded first in
uniaxial tension followed by uniaxial compression. The straight line
eapproximation is characterized as an elastic modulus E, a yi1eld stress to. a
strein hardening modulus Et' and a hardening parameter 8 where kinematic

herdening is obtained with g = 0, 1sotropic hardening is obtained with
# = 1. and a linear combination of the twc 1s obtained for 8§ between zero
and one.

A von Mises yield surface 1s used with a hardening behavior which 1s a
linear combination of isotropic and kinematic [24]. Isotropic hardening 1is
the behavior where the radius of the yield surface grows equally 1n all
directions due to plastic straining. Kinematic hardening 1s the behavior
where the radius of the yield surface remains constant but the center
translates in the direction of the plastic strain rate. When the stress
state contacts the yield surface, plastic straining occurs. Thus, the yield

condition is given by

¢ = /260 00 - x%(aP) = o (34)

35



where the prime 1ndicates deviatoric components and t:j 1s the back stress

defined as

¢ =t -a. . : (35)

The center of the yield surface 1s given by aij which 1s determined by

_ . _ . rm ns_ _sm nr _ _p\2pr 4P .
rs = O%pg T8 W @ g w a = (1 ﬁ)SH drS (36)

v
a

The plastic hardening modulus H 1s computed from the elestic modulus E and

the tangent modulus Et as

The amount of hardening which is kinematic i1s given by (1-8). The radius k

of the yield surface which grows due to isotropic hardening is given by
. _ g p
Ve k = ﬁBHIdrsl (38)

or upon integration

t
VZ k = V(2/3)t, + ﬁ%ﬁ/r {aP |dt (39)
0 rs

The amount of hardening which is isotopic is given by §. An associated flow

rule is used so that the plastic strain rate 1s normal to the yield surface.

. A . (40)
rs atl rs rs

36



The magnitude of the plastic strain rate 1s given by

sl
}d‘r’s| =7\(g'rsz’rs)l’“=m/5k . (41)

At yield. ¢ = O,

¢ = £'rs(¥'rs- WSy _\ZkeZ k) = 0 (42)

The stress rate 1s related to the elastic strain rate, through the relation

rs _ .rsmn !
¥'s - ¢ (@ -ag' ). (43)

Equations (40) and (41) are substituted 1nto Equations (36) and (38),
respectively, and these, together with Equation (43) are substituted into
Equation (42). The resulting expression 1s simplified using Equation {(34)

and the proportionality rate 1s obtained as

_ mn
A= > . . {44)

Thus, the stress rate during yielding is given by

rs _ ,.rsmn =rsmn
Yrs - (cFsmn_g ya__ (45)
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where by comparison of Equations (43) an (45) and using Equation (44) there

results:

=rsmn Crs}]t'l Vt’ Cpqmn
c = 1P (46)
4k"H

g cIPAa
1] tpq 3

The system of Equations (38) through (46) 1s integrated in time to
describe plastic behavior. The details of this numerical i1ntegration are

covered next.

The main numerical approximation underlying the incremental relatlons._
as in all the constitutive subroutines, 1s that the strain rate 1s constant
during the time step fromn ton + 1. The method used for integrating the
elastic-plastic calculations 1s reported by Krieg and Key [8. 9]. The
method may be considered that of stepping out elastically in deviatoric
stress space and, if the resulting "trial state” is beyond the yield
surface, then the stress 1s scaled back radially to the updated von Mises
yield surface. The size of the updated yield surface is found from Equation
(39) and the position from an Euler integration of Equation (36). In this
manner, the updating of siress and the yield surface position and size are
found simultaneously. The method applies equally well regardless of the
initi1al position of the stress state. While a conceptually “simplistic”
process, it is an excellent numerical approximation for integrating the
conventional isotropic-kinematic hardening von Mises plasticity with an
associated flow rule. The accuracy has been compared by Krieg and Krieg

[10] to other methods for the case of no hardening.

This explanation is made more concrete by using the mathematical
equations which follow. The stress tn, position of the center of the vield
surface an. and effective plastic strain e;. all at time n, and the strain

<+
rate d° 1/2

then:

at time n + 1/2 are taken to be known. The steps teken are
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(1)

(2)

(3)

(4)

The radius of the yield surface i1s calculated.
2He"

_ P
A2 k = 2/31y+p 3

The elastic "trial” stress state, for the end of the increment 1s

calculated.

aT I n+.5 At
1) 1) 1} mn 2

The vector magnitude of the deviatoric effective trial stress 1is

calculated,

ST _ aT .
1) 1) 1] Deviator,

and compared to the radius of the vield surface.
T
¢ = lEijl - 2k

The incremental process 1s elastic if ¢ < 0 and the final stress

is the trial stress.

n+l1 T
t.. " =o0. .
1) 1)

The incremental process is at least partially plastic if ¢ > 0 and

the remaining step (5) must be followed.
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(5) Updated values of the yield surface position and size (indirectly
as the effecltive plastic strain) are calculated and the trial

stress 1s scaled back to this surface to give the final stress.

ﬁ!? k
T
1€,
5 1 + (H/3u)

1 -

o
"

n+l n T
e, * Cs'fu | /N6

C_H

n+1 n 5 T
oy oyt 0o Bgm by
n+l1 n T

tij B ti] - C5£lj

As stated in a previous section, this stress state is then rotated a

helf step. 1t should be mentioned that the back stress anj must also be

rotated 1n the same way as the stress.

3.3 Volumetric Plasticity

Rocks, foams, and other void containing materiels exhibit a behavior
that is pressure dependent. These materials crush or compact under
pressure. Their feilure in shear cen also be sensitive to pressure. We
model these characteristics using a pressure dependent isotropic plasticity
theory. The yield surface in principal stress space is a surface of
revolution with its exis centered about the hydrostet and the open end
pointing into the compression direction. The open end is capped with &
plane which is at right angles to the hydrostat. The deviatoric part is
elastic—perfectly plastic so the surface of revolution is stationary in
stress space. Neither isotropic nor kinematic hardening is allowed in the

deviatoric directions. The volumetric part however has variable strain
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hardening so the end plane moves outward during volumetric yielding. The
volumetric hardening is defined by a set of pressure-volumetric strain
relations. A flow rule 1s used such that deviatoric strains produce no

volume change.

The theory 1s most easily discussed by separating the problem into
volumetric and deviatoric parts. The strain rate is decomposed i1nto the

respective parts by

. k
y = d,
(47)
o -1
rs = %rs T 3785
and the stress is separated into the respective parts by
1.k
P=-3%
and (48)
t! =t +
rs  rs ' PBrs

The yield function is defined as the product of two functions, ¢s
describing the surface of revolution, and ¢p describing the plane which is

normal to the pressure exis. These are given by:

2
¢ = %t t 75 - (a0+alp+a2p )
(49)
¢ =p - 1(9).

The volumetric hardening is given by f{(y).
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Let us consider the volumetric part first. The pressure is calculated

as:

1(y) for ¢p > 0, y<0

P = t (50)
p(t) - Kq/[ 74t for ¢ < 0. 7 >0

u

where tu 1s the most recent time the conditions of Equation (50)l were met.
Initially, tu is zero and p(0) is zero. The first condition describes

plastic loading and the second describes the elastic condition, either in

loading or unloading.

The function f which describes the pressure versus the volume strain
behavior during loeding is depicted in Figure 7. Unloading from any point

results in stress states which lie along the curve with & slope of KO.

Tensile fracture has not occurred so long as the pressure does not
become so tensile or negative as to have a zero or i1maginary deviatoric

vield stress. Fracture is not assumed for

p > h, (51)

where h is the minimum root of the polynomial 8, + a,p + azp2 =0. 1If

Equation (51) fails to hold, the pressure is set equal to h.

We now consider the deviatoric component where almost conventional

plasticity theory is used. 1If ¢s < 0 or ¢s = 0 and $s< 0, the material is

assumed to behave elastically in the deviatoric mode, hence,

v - 2ud’ (52)

rs rs
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Figure 7. The pressure versus volume strain behavior for e porous materisl.

Unloading is assumed to occur elastically with a modulus of KO.

where u is the shear modulus. If, however, the yield surface is reached and

the end state is outside the yield surface, i.e., if

¢ >0

then part of the time step must have been plastic. In that case,

rate is taken es the sum of an elastic part and a plastic part,

d =4 + df
rs rs rs

(53)

the strein

(54)
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The plastic strain rate is assumed to lie 1n a direction normal to the

yield surface ¢s in the deviatoric subspace of the stress which is written

as

= At ) (55)

This i1s & flow rule which results in zero plastic volume strain from
deviatoric yielding. The function A i1s determined from the loading

condition.

06 a¢
3 = S ¥ 5 - _
¢ = st rs tegp PO (56)

Expressing the stress rate in terms of the elastic strein rate provides

TS L ? _ S
2ut { rs Atrs) (a1+232p)p o . (57)
or
2ut'rsd;s— (al+232p)b
A= rs . (58)
Zp,t' l:_st'
Thus, the deviatoric stress rate during yielding is given by
(LR t' (e, ,+2a_p)
m,n rs rs 1 2 -
v = gufeled —I2 o . P LB g (59)
v oyt OIS
ij i}

The second term in Equation (59) accounts for the change in redius of

the yield surface as the pressure changes.
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This model is implemented numerically in the following manner. The
volumetric calculations are carried out first, followed by the deviatoric
calculations. At the start of the step the stress at time n and the strain

rate at time n+1/2 are known and the stress at time n+l 1s sought. The

pressure pn+1, which 1s determined first, 1s used to define the radius of
the yield surface. 1In the deviatoric calculations the entire step from time
n to n+l is then made using the final radius. The elastic-perfectly plastic
deviatoric calculation from time n to n+l is carried out in closed form
assuming the strain rate is constant during the step. The details of this

exact integration are found in Krieg [25]. The steps taken are as follows:

{1) The pressure p and the deviatoric stress tij at time n are

computed The volumetric strain rate y and deviatoric strain rate

dij at time n+1/2 are computed.

{2) The volumetric strein at time n+l is calculated and compared to

the past minimum 7y

n+l _ n n+1/2
v =Yty Atn+1/2

+
1f 7n ! > 7y the step is elastic and

n+l _ n n+1/2
P =P - Kyy Ati+1/2

n+1
if < Yy plastic loading is occurring and
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(3)

(4)

(5)

(6)

A check for tensile feilure is made. If failure has occurred, the
pressure at time n+l is set equal to h. The stress state is then
at the tip of the surface of Pevolution and the deviatoric stress

must be zero

tn+1 _ n+1
1) P i) 1"

If feilure has not occurred, the deviatoric stresses are sought.
The stress tn at time n is scaled back to the yield surface,

. . . . n+l . .
¢s =0, if it lies beyond it. A trial stress s at time n+l is

computed assuming elastic behavior for the i1ncrement and evaluated

for yielding

n+l _ n n+1/2

s =s + 2ud tn+1/2
1f ¢S(sn+1,pn+l)g 0, the process is elastic and tn+l = sn+l
1f ¢s(sn+1.pn*4)> 0, plasticity is occurring. The point of

contact with the vield surface and the remaining increment of

strein are computed

8, (sn+l . )\(Sn+l _ tn) .pn“) -0

€n+1/2 - —Adn+1/2 At

n+1/2

An exact integretion of the plasticity equations is cerried out

+
for the remaining strain increment to find t? 1.

The rotation of the stress state over a half time is carried out as

described in an earlier section.
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3.4 Metallic Creep

If a ductile polycrystalline mater:al 1s at a temperature greater than
roughly one-third the melting temperature, the material will undergo time
dependent shear deformation under an i1mposed shear stress. The volumetric
behavior is assumed to be linearly elastic so that a decomposition can be
made into volumetric and deviatoric parts. The strain rate (stretching

tensor) is decomposed as follows.

y=4d (60)

=d - =76 (61)

t;s = trs + pdrs (63)
The rate of change of the pressure is then found as
p = Ky (64)

where K 1s the elastic bulk modulus.

The deviatoric strain rate 1s decomposed into elastic and creep parts

d;s = (d;s)e + (d;s)c (65)

and the elastic term stated in terms of the stress flux.

Uy = auter), (se)
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The creep strain rate is teken in a conventional manner to be 1in the

direction of the deviatoric stress end to be described by power law creep.

My (67)

(1) = A 1T v

s C

The function, A{(€). 1s taken to be of the form Aexp(Q/R8) where Q 1s

the activation energy. R 1s the universal gas constent. and 6 is the

temperature. Equations (65) — (67) are combined to give the result:
Vo= eu(a - Ae)I ™ (68)
rs rs i} rs

The deviatoric stress flux and the pressure rate are 1ntegrated separately

1in time and combined to give the total stress.

The numerical implementation of the creep equation is more involved
than most constitutive equations beceuse of severe accuracy problems caused
by the stress exponent. The method used in SANCHO follows that of Krieg
[26]. A summary of the method follows.

The decomposition of the strainrate (stretching tensor) and stress
tensor into volumetric and deviatoric parts is made initielly. The
calculation of the pressure at time step n is updated in the following

manner .

n n-1 -n—-1/2

p" = o™ - kP (69)

The deviatoric stress flux integration is much more involved. The
differential equation for the flux is very simply stated at time step n-1/2

as:

n-1/2 - z“(d;s _ K(G)It;.lmt' )n—1/2

L (70)

)

rs
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where the elastic shear modulus, u, creep constant, m, and temperature

- -1/2
function, A{f), as well as the strainrate (d’ )n 1/ are approximated as
. PP

constant over the time interval At.

The numerical 1integration of Equation (70) 1s not simple since the
equation 1s very non-linear, containing the norm of & tensor which 1s
furthermore raised to a power. It also 1s difficult to integrate
enalytically for the same reason. The approach used i1s to replace the
differential equation with approximate differential equations which can be
integrated snalytically. The particular approximate differential equation
chosen depends upon the location of the stress state in non-dimensional
deviatoric stress space. The stresses are non-dimensionalized with respect
to the deviatoric stress state which 1s asymptotically approached at long

times. 1f deviatoric stresses are denoted as Si] then

|d’ 'm+l '
_ pm rs
Sesl, A B (71)

The first approximate differential eguation is given as

Cy Sy, '
S, * T"I'TE:TTE;T = 2ud (72)
where C1 = (SO/S )m—l
= 5/14,
C, = 2uC,/C,
% = 1(5,) |

49



This equation is obtained by approximating ISulm-l in the original

differential equation with the solution for the case of stress relaxation.

Equation (72) then applies when the stress state 1s far from (Srs) . The

[ =]

exact solution to Equation (72) 1s given as

w
1l

1
[J _ [J ——
i fc4d1j + [(Sij)O C4d”]f m—-1

2u
m.C3

where C4

oy
"

1+ (m-1)Cgt

The accuracy of this solution is controlled by limiting the time step

size to.

,.
A
Fle”

(0.04 . 0‘54)
m

A second approximate differential equation is found by expressing the

differential equation i1n terms of the variable:
=S.. - (s..)

1] 1) 1)oo

An approximate differential equalion is then:

—2uld! |
¥ rs 2
LS —— .+ ~1 S. . S
1) Soo [xll (m=1) Z ( ‘Jo)c / oo]
where Z = X. . (S..)
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end where higher order terms in le are dropped. The exact solution to this

differential equation is

(Srs)O(Srs) m
slj=(S”°)° te (Slj)O-(Suo)o B _?——m_l (e —g)(S”e)c

where g = exp (—Zyt/Cz)

This solution holds when the deviatoric stress state is near (Sij)
- =]
It is used whenever the stress is such that

S.. - (S.. < 0.12 +0.77/m
Is;, = (5,,) < /

1f this condition holds at the beginning of the time step, then the

final stress state will be found with & stress difference less than five

percent of the correct answer for m < 10.

The epproximate differential equations ere good for small time steps but

the solution to the first approximate differential equation diverges from

the true solution for long time steps. For that reason the application of a

particular solution hes been limited inside the constitutive subroutine to a

time duration such that the error with respect to the true solution is less

then 5%. If that time is less than the specified time increment, then the

integration procedure is reapplied for the remainder of the time increment.
The second subincrement of time may involve the same approximate

differential equation or the other one. This eutomatic error control

procedure may require up to seven subincrements in an extreme case.

The final deviatoric stress is then combined with the pressure from

Equation (74) to produce the final stress state.
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3.5 Material State Pareameter

The meterial state parameter may be used to determine more about the
behavior of the non-linear material models. To characterize the state of
each element as the calculeations proceed in addition to the siress or other
state variables, the material state parameter may be i1ncluded in the printed
output. The meaning of this parameter varies from stress relation to stiress
relation. The finite strain plasticity relation calculates the ratio of the
trial elastic stress to the current yield stress. Thus, if the paremeter
has a value of 1.2 at a particular time step, the magnitude of the trial
elastic deviatoric stress was 20% greater than that required to cause
yielding. The volumetric plasticity material provides the same state
parameter as the plasticity relation except that, i1f @ tensile failure has

occurred, the state perameter will be -1.

3.8 Finite Strein Mechenical Properties

The finite strein relations do require some care in specifying the
required constants. Because these relations involve a very specific stress
end strain, the date from which the constants are obtained must be plotted
in terms of these veriables. The uniaxial tension-compression test used in
determining the constants for the elestic-plastic parameters is & good
example. Figure 8(a) shows the gage section of a bar in such a test. An
axial force F is applied to the bar in Figure 8(b) which ceuses it to
elongate. At the same time that it elongates the cross-sectional area
becomes smaller. Figure B{c) shows & typical measured result from a test of
this type. The horizontal axis corresponds to the infinitesimal strain
measure. It is referred to as engineering strain and it is the ocutput which
strein gages are designed to provide. These measurements need to be
expressed in terms of the Cauchy stress versus logarithmic strain for proper

inclusion in the models used here.
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Figure 8. The standard uniaxial tension test.

Using r for the radius of the test specimen, the deformation gredient is

given by

L -

It 1s assumed that the deformation 1s homogeneous. The one nonzero
component of the Cauchy stress is tll and is given by F/A. The integral of
the stretching tn the x> direction.}gtdlldt is the logarithmic strain 1n{{/

%‘ Thus, the measurements presented in Figure B8(c) must be replotted in
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the form shown in Figure © before the constants of the stress relation are
determined. Should necking occur in the gege section, its effects must be

eliminated from the data.

In(lz})

Figure 9. The results of the standard uniexieal tension test expressed in
terms of the Cauchy stress versus the logerithmic strein.

The bulk properties required by the volumetric plesticity relation
present another situation where the data must be replotted before the
constents cean be determined for the finite itrain case. Figure 10(a) shows
& cube of material before being loaded. A pressure p is applied es shown in
Figure 10(b) which ceuses it to compress. Figure 10(c) shows & typical
measured result from a test of this type. Ageain, these measurements need to

be expressed in terms of the Cauchy pressure versus the logarithmiec bulk

strain.
X 3 f
p
p
/A /
"x€ . K
/ ‘ l1/e)-17
(c) . b) | )

Figure 10. The stendard hydrostatic compression test.
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Assuming thet the deformation is homogeneous, the deformation gredient
is given by

L oo o
!

[F§]=0E 0

1

LO DIB_J

The Cauchy stress is given by tkm = —pgkm. Using Euler’'s equation of

continuity the integral of the spherical portion of the stretching ;d:dt

1s the logerithmic bulk strain, ln(po/p). Thus, the dates presented in

Figure 10(c) must be replotted in the form shown in Figure 11 before the
constants for the stress reletion are determined.

~/n (,g/,_ai

F ,
';‘::9 11. The results of the standard bydrostatic compression test
’tzﬁl:sed in terms of the Cauchy pressure versus the logarithmic bulk
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4 SANCHO USER INSTRUCTIONS

The input to SANCHO is coded to accept keyword input using & free-field
reader. This makes the code more user friendly for date construction,
particularly in an interactive mode. The free-field reader allows either
alphanumeric, integer or floating point numbers to be used interchangeeably.
The free-field reader used in SANCHO uses only commas as field delimiters.
Embedded blanks in a)lphanumeric veriables are retained while blanks in other
variables are ignored. Alphenumeric keywords are limited to & maximum of 10
charecters. All non-alphanumeric fields are initialized to 0. so that if a
given quaentity is 0. or does not need to be entered, then a series of commas
suffice to skip fields, e.g.. 1.4.,,3 will be read as 1, 4, 0, 3. Fields
may be left blank if no further entry 1s needed. The * character may be
used to continue & field onto & second deta card. The continuation tekes
the form ,,.,* where the * becomes an entiry in the last field and tells the
free-field reader to begin reading the next input cerd. The § charecter may
be used to end 2 date card and the remaining columns on the card used for

user comments.

SANCHO does not contain a mesh generator and therefore relies upon
externally generated nodel! and element date. SANCHO currently eccepts mesh
input generated by the QMESH [3] mesh generator. QMESH provides nodal
coordinate data, element connectivity, end boundary flag identifiers for use
in computing element stiffnesses, for applied loads and for assigning
boundery conditions. Any other mesh generator that employs the concept of

boundary flags could -be adepted for use with SANCHO.

SANCHO cen be used to perform thermal stress calculetions using thermal
date supplied by en independent heat conduction code that writes a
temperature tape in the proper format. SANCHO will linearly interpoleate
between times on the thermal tape to obtein temperatures at the current time

step. The format of the temperature tepe is provided in & later section.
The input is divided into three distinct sections to’simp!iry the task

of preparing code input. Within limits, each section is order independent

with regard to input, however, the problem definition section end the
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material property section must be ended with an 'ENDSET' commend card and
the first cerd in the date must be e TITLE card. The last card in the
boundary condition and loads specification section, which is the last card
‘in the input, must be an 'END' cerd. The first section of input is used to
define the cless of problem being solved. Information suéh as lype of
problem or size of time step is input here. The second section is devoted
to the description of the materials being used in the problem. The third
and fina)l section provides el] the date necessary to define loads, boundery
conditions, slidelines, etc. These 1nput groups will be described in the

following sections.

In order to simplify the discussion of the necessery input, certeain
conventions will be adopted. Most deta cards will begin with a keyword
followed by eny required data. All alphanumeric input will be cepitalized.
The symbols [ ] will enclose al)l non-keyword data. All progrem default
values will be enclosed in § }. The input cards will be discussed in
elphebetical order of keywords with e few exceptions. The section one input

is given below.

4.1 Problem Definition ~ Section One Input

IITLE

There is no keyword associated with this card. The user is eallowed 80
columns to input a title associated with the particular run. The TITLE card

must be present and must be the first card in the input stream.

AX]SYM

This cerd requests that en exisymmetric enalysis is to be performed.
§AXISYM] .
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This card is necessary to esteblish the problem size for setting up the
storege arrays. -

nummat- The number of materials in the probfém {1
numlp- The number of pressure-time points input {0}
pumdt- The number of displacement-time points input {0}

klin- The type of stress meesure to be written to tape {3}

Note: KLIN = 1 Cauchy stress and Signorini strain

2nd Piole-Kirchoff stress and Green-St.Venant strain

Ceauchy stress and Signorini strain where the bulk strain
equals the In (po/p).

DEBUG

This ceard requests that debug information be written to the output file

end to the plot file. The frequency of this information is specified by the

ntout parameter on the SOLUTION card described below. This option can be

used by an enalyst to produce plots of displacements at iterations rather
then at converged solutions. WARNING:

Use of this option cen result in
large output plot files.

The user is encouraged to limit the numbers of
iterations by setting a low value of meq on the SOLUTION card.

DXSCALF [atx])

This card lets the user control the stability of the centrel difference

ime integrator by multiplying the internally computed time step by &
factor, dty. Some problems may show & local instability which may be

femoved by reducing the critical time step. {0.9}

..x-gtléxplner of the internally computed criticel time step to insure
@dility. For most calculations the defeult value should be used.
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This card selects the elementis to be written to the print file. Up to
sixteen (16) elements may be requested. If eall elements are to be printed
only the keyword is required. 1If no elements are to be printed omit this

card.

ell- The number of the element to be printed at the requested time
step.

ENDSET

This card is required tc end all Section One input.

ISTRESS.[NWORD.sjgr.sigz.sigt)

This cqrd is used if e nonzero initial stress stete is to be specified.

NWORD- Either the word CONSTANT or VARIABLE is entered to signify whether
initial stress state is to be & constant or varieble with respect to
position. If VARIABLE is specified, then & user supplied subroutine
INITST is required to specify the initial stress vearietion. It
CONSTANT is entered, then the following stress values are required
and used for all elements.

sigr- Magnitude of constant sigr stress to be epplied to every
element. §0.0}

sigz— Magnitude of constant sigz stress to be applied to every
element. {0.0} .

sigt— Magnitude of constant sigt stress to be applied to every
element.vio.of
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This card is used to define those nodes whose deformations and
temperatures ere to be printed.

nodel- The number of the node whose values are to be written to the print
file. Up to sixteen (16) ﬁodes may be specified on this cerd. If
2)]1 nodes are to be printed, leave the card blank.
to be printed omit this cerd.

1f no nodes are

PLANE

This card specifies that a plene strain problem will be solved.
§AXISYM}

PLOT, [ELEMENT] . [STRESS , STRAIN, STATE]
PLOT. {NODAL], {DISP, TEMP ,RESIDUAL]
PLOT, [GLOBAL] . [RMAG, 1TER]

This card(s) selects the quantities written to the post-processing
file.

ELEMENT~ User selected element quantities will be output.

<STRESS,STRAIN, STATE>

NODAL- User selected nodal quantities will be output.

<DISP, TEMP,RES]DUAL>

GLOBAL- User selected global ﬁuantitles will be output.
<RMAG, ITER>

11 these quentities are omitted no plot date will be written. The individual

uantities must be specifically selected. Data is written to FILEl].

FILE1) is written in the SEACO [29]) format. This card must be used
cerefully to avoid large output plot files.
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ERINT

Causes the node and element data to be printed. This includes node
coordinates, element connectivity and material assignments. Default is no

dete printed.

RESTART. [nfreq.nstart]

Allows the user to stop an enelysis, check the results, and then
restart the analysis from the intermediate stopping point. All previous

input cards are necessary on the restart and any card may be changed.

nfreq— Specifies the frequency of writing the restert tepe. This tape
contains multistep restart information so that & succesgsful restart
may be done at any previously written time step. Restart data is
written to FILE18.{0}

nstart— Specifies the time step that should be used for the restart. The
job will begin at step nstart end a new restart cen be written

every nfreq steps. Restart data is reed from flLEle.Iol

SOLUTION.[toler .ntout.meq.toler2]

Parameters controlling iteration end convergence are input onm- this

card.

toler- Specifies the percentage of imbalance allowed by the code before
convergence is achieved. Imbalence is measured by the L2-norm of
the residual forces divided by the L2-norm of the epplied loads.
$0.5}

ntout- Specifies the frequency of intermediate solution information during
the lteraiion process. Such quantities as time, time step,
relexation factor, L2-norm of the applied loads, and percent
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imbelance ere printed. If this field is left blank, then the
information will be printed each iteration.{1}
WARNING: Printing this information for each iteration ma& lead to
an excessive amount of unwanted output.

meqg— This is the maximum number of iterations ellowed for & given
load or time step. If this is reached, the problem will termineate
unless ‘toler2’ is loosely specified. {2000}

toler2- A user defined tolerancé which the anelyst can employ to
modify the convergence specified in ‘toler’ above. 1If the problem
iterates meq times then the imbelence is checked against toler2

before the analysis is stopped. jtoler}

THERMAL . thforc

This card sets & flag for a thermal stress analysis. This card is
required if & thermal stress enalysis is to be performed. Default is no

thermal anealysis. Thermal input is supplied on FILESE.

thforc— User defined magnitude for thermal force norm. This quentity can be

used to override the computed thermal force norm. This may be
desirable if the automaticelly computed norm is too large end the

usual tolerance values may be too loose.}0.}

TIMEPLOT.{t1.inc1.82.inc2.¢8....]

This card is necessery if plot output is desired. The (requency of
writing the plot files is controlled by this card. Ten plot increments are
allowed. {0.}

ti- Time at which plot output is to start
incl- Time increment for writing of plot output file
t2- Time et which plot cutput ends for nl end begins for n2
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This cerd is necessary if printed ocutput is desired. The frequency of
writing the print files is controlled by this card. Ten print increments

are allowed. §0.}

tl-- Time at which printed output will start
incl- Time increment for writing of output file

t2- Time at which printéd output ends for nl1 and begins for n2

TIMESTEP.{t1.n1.t2. n2.t3.n3.84,...]

This card is necessery for the control of the solution steps. RESTART
times do not have to correspond to t1. The restart time must however be
found within the time frame defined on this card. Ten timestep

specifications are allowed.

t1- Time at which the problem will begin
nl- Number of timesteps to be teken between t1 and t2

t2- Final time for this contro]l segment end beginning time for n2
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4.2 Material Property Specification — Section Two Input

All materials have the following sequence of three input card sets:
1. MATERIAL.[mtype.ro.grevx.grevy, omegal

This card defines the materiel type and body force parameters.

mtype— The material type number

ro— Mass density of the material. This is used for the acceleration
loading.

gravx— Acceleration in the x~direction{0.}

gravy— Acceleration in the y-direction{0.}

omege— Angular velocity about the y-axis{0.i}

Gravx, gravy, and omega need to be input with only one material.
VWhenever these three velues ere also reed .on & later material card, the
later values will be the values used in the problem.

2. MATERIAL TITLE CARD

The second card for each materiel is the title that describes this

material. There eare 80 columns evaileble for the material title.
The third card set conteins material constants required for each
material model. No keyword is used for the third cerd set. The form of

the input for eech material model is given on the following peges.

For problems in which several materials are used, the material property

tets must be input in the order in which the materials are defined during
Resh generation. -

DROSET

. r _
Required to end material property section.

65




CrEe L AW TR

MATERIAL,1,ro,grevx,gravy,omege CARD 1
MATERIAL TITLE CARD CARD 2
Enp'totztvﬂ i CAm 3

E- Young's Modulus
VY- Poisson's ratio

to— Yield stress

Et— Hardening modulus

f- Hardening parameter
£=0 Kinematic
8=1 Isotropic

Note: 1f the yield stress t, is zero, elastic behavior is assumed.

0

The following dete are required for thermal stress problems. Up to
seven peirs of dete may be input. If e non—-thermal problem is required omit
the following cards.
nt,templ,temp2,temp3, temp4d, temp5, tempb, tenp? CARD ¢
nt- Number of temperature pairs to be input 2<nt <7

templ- Temperature 1
temp2- Temperature 2

temp7- Temperature 7
epsl,eps2,eps3, eps4,eps5,eps6,eps? ~ CARD 5

epsl- Thermal strain for templ
eps2-~ Thermal strain for temp2

eps7- Thermal strain for temp?
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MATERIAL TYPE 2 = FINITE STRAIN SOJL AND CRUSHABLE FOAM

~ MATERIAL.Z2,.ro,gravx,gravy,omega ' CARD 1
MATERIAL TITLE CARD CARD 2
u.Ko.ao,aI.az CARD 3

# — Sheer modulus
-~ Bulk unloading modulus

o

e.— Yield function constant
2.~ Yield function constant

N - O

- Yield function constant

The following dete are input in peairs until up to six peirs heve been
read. When more then one card is needed, a continuetion card is indicated
with @ * after the lest data on that card.

Pressure-Volume Strain Data

ln,p.1n,p,1n,p,1ln,p,* ' CARD 4
ln,p.ln,p

In- Volumetric strain (In p/po)
p—- Pressure

The following date are required for thermal stress problems. Up to

seven pairs of date may be input. If a non-thermal problem is required omit
the following cards.

nt.templ,temp2, temp3, temp4, temp5, temp6, temp? CARD 5

nt- Number of temperature pairs to be input 2<nt<?7
tempi—~ Temperature 1

temp2- Temperature 2

temp7- Temperature 7

€psl,.eps2,eps3,eps4,eps5,eps6,eps? CARD €

€psl- Thermal streain for templ
¢ps2- Thermal strain for temp2

eps7- Thermal strain for temp?
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MATERIAL,3,ro,gravx,gravy,omege CARD 1

MATERIAL TITLE CARD ' CARD 2

2u,K.A,m,C1 CARD 3

2u~ Shear modulus

K- Bulk modulus

A- Materie) constant

m—- Stress power constant

C1- Exponential -constant{ Q/R6 if isothermal or Q/R if thermal)

Where Q is the activation energy, R is the universal gas constant,
and & is the absolute temperature for the isothermal calculetion. 14 the
calculation is not isothermal then the progrem furnishes the correct
tempereature for use in the material model. i

The following data ere required for thermal stress problems. Up to
seven pairs of data may be input.

nt,templ,temp2, temp3, temp4,tempS, temp6, temp? ‘ CARD 4
nt- Number of tempereture pairs to be input 2<nt<?

templ- Temperature 1
temp2- Temperature -2

temp7- Temperature 7

epsl,.eps2,eps3,eps4,eps5,eps6,eps? CARD §

epsl- Thermal strein for templ
eps2- Thermal streain for temp2

eps7— Thermal strein for temp?
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4.3 Boundary Condition Specification

In SANCHO, multiple boundary condition histories are hendled with e
single history card and the concept of delay time. Delay time allows a user
to specity multiple pressure or displacement histories and relate each one
to aAspecific-boundary condition. History specificetion can be done on a
single PHISTORY or e single DHISTORY command. Consider the example shown in
Figure 12 where multiple pressure histories are defined using & single
PHISTORY card. Each individuel history can be uniquely identified by the
time associated with the beginning of that history. This time is defined as
the “delay time”. For use as input into SANCHO, the delay time should be
input as & NEGATIVE time.

PRESSURE

1 2 4 .
M 15 M t TIME

Figure 12. Exemple of the use of a single PHISTORY card to define multiple
time histories through the use of the delay time, td' .

DISPR,[b.c. number,value,delay time]
DISPRN, [node number,value,delay time)

These cards specify a radial (R) boundery restraint. DISPR is used with

& boundary flag identifier. DISPRN is used to specify & restraint on an
individual node.
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b.c. number- The unique boundary condition i.d. provided by the mesh
generator.

value- Magnitude of the nonzero specified displacements.

deley time— Identifier of a particular time history from e DHISTORY card.

node number- Node number which receives the specified displacement.

DISPZ,[b.c. number,value.,delay time)
DISPZN, [node number,value,delay time]

These cards specify an axial (Z) boundary restreint. DISPZ is used with
e boundary flag identifier. DISPIN is used to specify & restreaint on an
individual node.
b.c. number- The unique boundary condition i.d. provided by the mesh
generator.
value— Magnitude of the nonzero specified displecements.
deley time— Identifier of a particuler time history from e DHISTORY card.

ncde pumber— Node number which receives the specified displacement.

DISPRZ,[b.c. number,value,delay time]
DISPRZN, [node number,value,delay time]

These cards specify both a radial (R) and en exial (Z) boundary
restreint. DISPRZ is used with a boundary flag identifier. DISPRZN is used
to specify & restreint on an individual node.

b.c. number— The unique boundary condition i.d. provided by the mesh
generator. ' ’

value- Magnitude of the nonzero specified displacements.

delay time— Ildentifier of a particular time history from a DHISTORY card.

node number— Node number which receives the specified displacement.

70




PRESSURE, [b.c. number,pressure value, delay time]
PRESSURE,[i, j. pi, pj. delay time]

This card allows the specification of an applied pressure on an element
face. The two forms of input result from either use of e mesh generator to
specify pressure boundary conditions or the use of element 1-J side
specification.

b.c. number- The unjque boundery i.d. provided by the mesh generator.

pressure value- Constant value of the pressure applied to the element face.

deley time- ldentifier of & particular time history from & PHISTORY
card.

i,j- Identifies the node numbers thet define the element face to

receive the applied pressure.

pi.pj- Refers to the pressure values for the respective 1 and J
nodes. A linear pressure varjation is allowed along the
element face. The program reorders the [-J line definition
so that the element lies on the left when going from I to J.
Positive pressure acts -normal to the element fece and in e

compressive manner.

SKEW,[b.c. number, angle of skew]
SKEWN, [node number,angle of skew)

This card allows specification of a skewed rolier’type of boundary
condition. The engle of skew is defined, Figure 13, from the positive r-axis
to the desired direction of motion along the sliding boundary.

b.c. number- The unique boundary condition i.d. provided by the mesh
génerator.

engle of skew- Angle defined from positive r—axis to the desired direction
of motion. '

Rode number- Node number which reﬁeives the specified displacement.
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Figure 13. Mixed stress and displacement boundary condition where the node
remains free to move in a direction parallel to e line with inclination ¥.

SLIDE, [master,sleve.cf1,cf2,cf3)

.
I3

This card-spécifies'the master/slave connection for any slidelines in
the analysis. A maximum of 12 slidelines is allowed. .

master- Number of the béundafy flag i.d. for the slideline master side

slave- Number of the boundary flag i.d. for the slideline glave side _

cfl- Value o} the friction coefficient. if fully fixed use ;1.
Otherwise insert the proper velue here. {0.} .

cf2- - Value of slideline overlap tolerance to detefmiie when céﬁtact of

' " surfaces does occur.}2% of the Master element side length} '

cf3~ = Vealue of stress for release of slave node from master surface. '
Velue is set to no release,a non-zero value is required to activate
this option. {@.fii~f" ' ' o o -

’ - ’ -~ . !
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PHISTORY.[11.p1.12,p2,13.p3.t4.p4....])

This card allows for specificalion of the time-pressure curve for the
analysis. Pressures are always positive ecting normel] to the element face.

Both times and pressures ere defeulted to 2ero.

11~ Beginning time for the pressure specification
pl- Pressure vealue associated with ti

te- Ending time for the pressure specification

DHISTORY,[t1,d1,t2,d42,3,d3,t4,d4,...])

This card allows for specification of the time-displacement curve for
the analysis. Seame definition for input eas PHISTORY. Both displacements
end time values are defeulted to 0.

This card is the lest line in the SANCHO input stream. The cerd

signifies to terminate the reading of additional input and begin execution.
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R - Required Input 2
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Teble 1. Summary of Keywords and Input (Cont.)

Page

........... €5

MATERIAL,1,ro.grav.gravy,omega ................ £ 2 66
materjial title card

E.V.to Et.B

nt.templ,temp2, .. .tempnt

epsl,eps2, ..., ,epsnt

Material Type 2 -~ Finite Strain Volumetric Plasticity

MATERIAL,2,r0,.grRvVX ,gravy . omegea ................ o)y .......... 67
material title card

u,k0,e0,81,a82

In,p,In,p.In.p.ln,p.In,p.1n,p

nt, templ,temp2, ..., tempnt

epsl,eps2,...,epsnt

Materiel Type 3 — Power Hardening Steady State Creep

MATERIAL,3,ro,grevx,gravy,Cmege ................ 0)........... 68
material title card

2u.X,A,m,cl

nt, templ,temp2,...,tempnt

epsl . eps2, ... ,epsnt
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6 EXTERNAL FILE DEFINITION

SANCHO uses severa)l external files for both input and output. These
are FILE? for mesh input, FILE11l for plot output, FILE18 for writing restart
output, FILE19 for reading restart informetion and FILES6 for temperature
data. The element plot quantities written to FILEll post-processing file
consist of element, nodel, and global quantities. Element quantities
written ere divided into stress, strain, end stete vealues. Stress values
are the stress measures selected by the user as KLIN on the CONTROL card.
These consist of the SIGR, SIGZ, SIGT, end TAURZ values for each element,
averaged to the centroid. The strain values are made up of similer
quantitiés. The state values are the quantities stored in the material
state array.'EPX4. These vealues include effective plastic strain end
physical strain component velues. The actual velues and their meaning depend
on the constitutive model being used.

The nodal values written to the plot file include the two components of
displacement, nodal point temperatures, and the nodal components of the
residual force vector. The residual force is a measure of the amount of
imbalance force at a node. The residual force is decomposed into R-Z
components. The global valués written to the plot file provide information
about the solution behevior. The residual force vector magnitude and the
number of iterations for each converged load/time step are the global’
quentities written. The residual force vector magnitude is defined as the
L2-norm of the residual force vector. The list of quantities written to the

plot file is given below:

Noda) Quentities

DISPL R -~ R or X Displacements

DISPL Z - Z or Y Displacements

TEMP - Rodal Temperatures

RX - Residual Force Component in R or X Direction
RY - Residual Force Component in Z or Y Direction
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El { Quentiti

Stress in R or X Direction

Stress in Z or Y Direction

Stress in Hoop or Planar Direction
Shear Stress in RZ or XY Pleane
Strain in R or X Direction

Strein in 2 or Y Direction

Strein in Hoop or Planar Direction
Shear Strein in RZ or XY Plane

(S I/ I

SIGR - Component of

SIG Z - Component of
SIGT - Component of
TAU RZ - Component of

g EPS R .- Component of
EPS Z - Component of
EPST ~ Component of
EPS RZ -~ Component of
EPX 1 - Stete Variable 1
EPX 2 - State Variasble
EPX 3 - Stete Veriable
EPX 4 -~ State Variable
EPX 5§ - State Variable
Globa)] Quantitijes
ITER -~ Convergence History

RMAG

- Residual Force Magnitude History

The materieal models and their use of the EPX4 erray for state varieble

storage is defined below.

EPX 1
EPX 2
EPX 3
EPX 4
EPX 5
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Epx 1 -
Epx 2 -~
Epx 3 =
Epx 4 -
Epx 5§ -~ Volumetric Strain

Epx 1 -~
Epx 2 -~
Epx 3 - Effective Creep Strain
Epx 4 -
Epx & -

Temperatures are jinput into SANCHO through the use of an externally
written temperature file, FILES6. The tape is written as &n unformatted

tepe in the following form at the desired thermal time intervals

WRITE(56) TIME,(T(I),I=1,6NUMNP)
where the temperetures, T, are written for each nodal point. SANCHO inter-
polates linearly between thermal time steps to cbtain the thermal soluticn

at the time requested for determination of the structural response.

The user supplied subroutine INITST allows the analyst to epply an
initial stress state to the problem. This feature is particulerly useful for
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geocmechanics epplications where an overburden stress is a function of depth.

The cel]l to subroutine INITST has the following form

SUBROUTINE INITST(ZAVG.RAVG,MX,I,BFORCE)
DIMENSION BFORCE(3)

RETURN

where the calling arguments are defined as:

’

ZAVG - Z or Y coordinate location of the element centroid
‘RAVG -~ R or X coordinate locetion of the element centroid
MX - material number associated with current element

| S - current element number

BFORCE - values of initial stress will be returned via this

argument. three vﬁlues are required — sigr, sigz ,sigt

The call to this subroutine is located within & loop that is executed
once ﬁer element. A current limitation is that the initial stress be &

constant over the element (each of the four integraticn points has the same
initial stress state).

If & user supplied subroutine INITST is‘required. the execution
procedure for a Cray-1 running under COS using the Sendia Engineering
Analysis Department procedure file is:

ACCESS ,DN=$PROC, PDN=PROCS, 1D=ACCLIB.
SANCHO, PRO=SUB.
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Without the user subroutine INITST the execution procedure on the CRAY

ACCESS ,DN=$PROC , PDN=PROCS, ID=ACCLIB.
SANCHO.
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6 EXAMPLE PROBLEMS

Severel semple problems are included in this section to demonstrate the
input for SANCHO and for code verification purposes. The problems are
simple exemples that cen be compared to a known exact solution or to
problems that heve been solved by severel computer codes. Moét of the
features in SANCHO will be exercised in these examples. The use of comment

cards in the input deck should assist in understanding the input structure.

6.1 Free Thermal Expansion

The free thermel expansion of aﬁiinfinite cylinder was included to
demonstrate the input for a thermal stress problem end to demonstrate the
ebility of SANCHO to solve problems involving thermal loads. The model of
the cylinder is shown 1n in Figure 14a with the corresponding temperature
and strain data. Poisson’'s ratio is set to zero to allow only radial motion
of the cylinder due to thermal expansion. A single row of ten finite
.elements evenly spaced through the cylinder thickness was used to represent
the cylinder behavior. The convergence tolerance was set to 0.1% which is
tighter than usual with SANCHO. This tolerance was chosen because the
absence of epplied external forces ceauses the program to compute equivalent
thermal ‘loads for use in computing the L2-norm of .the epplied load vector.
For thermal prpblems: it has been found that this norm is large relative to
the typical unbalance force norm and the default convergénce tolerance
resulis in en unaccepteble solution. The solution improves as the
convergence tolerance is reduced. The normal procedure is to use only the
user applied external forces, when availeble, in computing the epplied load
norm. The radiel displacement of the cylinder is comparéd to the the exact
solution in Figure 14b at verious positions through the thickness for a

strain field corresponding to & temperature of 500 degrees.
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Figure 143.

Figure 14b.
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PROBLEM 1

FREE THERMAL EXPANSION OF A THICK CYLINDER

CONTROL.1,..3 $ SETS UP STORAGE
'SOLUTION, .1,5000,5000, .6 $ SETS CONTROL TOLERANCES
TIMESTEP.0.,10,1. $ SPECIFIES NUMBER OF TIME STEPS
TIMEPRNT,0.,.1;1. $ SPECIFIES FREQUENCY OF PRINT
TIMEPLOT,O.,.1.1. $ SPECIFIES FREQUENCY OF PLOT OUTPUT
THERMAL $ SPECIFIES A THERMAL STRESS ANALYSIS
NODES $ ALL NODES WILL BE PRINTED
ELEMENTS $ ALL ELEMENTS WILL BE PRINTED
PLOT,NODAL,DISP, TEMP . RESIDUAL $ NODAL QUANTITIES WRITTEN TO PLOT FILE
PLOT,GLOBAL ,RMAG, ITER $ GLOBAL QUANTITIES WRITTEN TO PLOT FILE
PLOT .ELEMENT, STRESS .STRAIN,STATE ~ $ ELEMENT QUANTITIES WRITTEN TO PLOT FILE
AXISYM $ DENOTES AXISYMMETRIC ANALYSIS
ENDSET ¢ END OF PROBLEM DEFINITION SECTION
MATERIAL,1.1. . $ DENOTES MATERIAL — TYPE 1

* + TEST MATERIAL * *
2.07E11,0. $ MATERIAL PROPERTIES

7,0.,100.,200.,300.,400.,500.,1000.
0..1.E-4,2.E-4,3.E-4.4.E-4,5.E-4,6.E~4

ENDSET $ END OF MATERIAL SECTION
DISPZ,2 $ Z DISPLACEMENT FOR BC CODE 2
END §$ END OF INPUT DATA

85



6.2 Pressurized Infinite Cylinder

Thé problem of en infinite cylinder loaded into the plastic range by &n
internal pressure serves as & good check of the elastic-plastic material
model. The exact solution can be found in Prager and Hodge [27]. The
problem is depicted in Figure 15 with the boundary conditions and materieal
properties given. The analysis was performed by taking 6 steps up to €60% of
the maximum pressure and then 20 steps were taken to reach the maximum
pressure. A single row of ten finite elements evenly speaced through the
thickness were used to model the cylinder. A convergence tolerance of 0.5%
was used. The radiel displacement of the inner cylinder edge versus p, the
radius of the elastic-plastic boundery, i1s shown in Figure 15a. A value of
p/e = 2 corresponds to a fully plastic cylinder. For & p/a = 1.2, the
redial and hoop strefs distributions versus radiel position are shown in

Figure 15b. The eagreement with theory in all cases is excellent.

¢
| E=2.07x 10" pPa )
' V=03 THEORY
' a=10 b=20 A FINITE ELEMENT RESULTS
|-—-a'-4 oy,=3.1x10°Pa
I b u k= 0'/ \/3—
6.0
-0.1
-0.2
-0.3
3 & -0.4 &
A & 3
-0.5
-0.6
0.7} 103
0.0 TR E— -0.8 L e | 0.2
1.0 12 14 16 18 20 10 12 14 16 18 20
pla r/a
(2) (b)

Figure 15. Comparison of SANCHO Results with Theory for an Internally
Pressurized Infinite Cylinder.
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PROBLEM 2

INFINITE CYLINDER W/ INTERNAL PRESSURE

CONTROL,1,2,0,3 $ SETS UP STORAGE
SOLUTION, .5,5000,5000, .6 $ SETS CONVERGENCE AND CONTROL ‘TOLERANCES
TIMESTEP,0..6,.6,20,1. $ SPECIFIES NUMBER OF TIME STEPS
TIMEPRNT,0.,.1,1. $ SPECIFIES FREQUENCY OF PRINT
TIMEPLOT.0.,.1,1. $ SPECIFIES FREQUENCY OF PLOT OUTPUT
NODES $ ALL NODES WILL BE PRINTED
ELEMENTS $ ALL ELEMENTS WILL BE PRINTED
PLOT ,NODAL,DISP, TEMP ,RESIDUAL $ NODAL QUANTITIES WRITTEN TO PLOT FILE
PLOT.GLOBAL,RMAG, ITER $ GLOBAL QUANTITIES WRITTEN TO PLOT FILE
PLOT ,ELEMENT, STRESS,STRAIN,STATE $ ELEMENT QUANTITIES WRITTEN TO PLOT FILE
AXISYM $ DENOTES AXISYMMETRIC ANALYSIS
ENDSET $ END OF PROBLEM DEFINITION SECTION
MATERIAL,1,1. - § DENOTES MATERIAL - TYPE 1

* * TEST MATERIAL * *
2.07E11.,.3,3.1EB $ MATERIAL PROPERTIES
ENDSET , $ END OF MATERIAL SECTION
PHISTORY.0..1.,1.,2. $ PRESSURE HISTORY PROFILE
DISPZ,2 $ Z DISPLACEMENT FOR BC CODE 2
PRESSURE, 1, .5 $ PRESSURE SPECIFIED FOR BC CODE 1

END $ END OF INPUT DATA



6.3 Stress Relaxation

The stress relaxation of & single element is used to demonstrate the
accuracy of the elastic créep model. A single finite element is strained
using & specified axial displacement. The chenge in the effective stress as
e function of time is compared to the exact solution. The problem is shown
in Figure 16a. The top of the element is displaced 0.001lm and held constant
with time. The effective siress decreases in time as shown by the solid
line in Figure 16b. The SANCHO solution took 90 timesteps with a
convergence tolerance of 0.1%. The numerical results appear to track the

exact solution very well.

—105

o
=

1.0
A

pere 4.0 e

i

2G~=24.75x 109
K=8.25x 109
€=Ao" A=105x10-44
' nz4.9

Figure 16a. Model and Boundary Conditions for the Stress Relaxetion
Example Problem
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Figure 16b. Stress History for the Relaxation Problem
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PROBLEM 3

RELAXATION PROBLEM USING THE CREEP MODEL

CONTROL, 1, .2,3
SOLUTION, .1,5000.5000, .1
TIMESTEP,0.,80,2.592E6
TIMEPRNT,.O0. ,B.64E4,2.592E6
TIMEPLOT.0. ,8.64E4,2.592E6
NODES
ELEMENTS
PLOT .NODAL,DISP, TEMP,RESIDUAL
PLOT,GLOBAL,RMAG, ITER
PLOT ,ELEMENT, STRESS, STRAIN, STATE
AXISYM
ENDSET
MATERIAL,3,2167.

* * TEST MATERIAL * *

$ SETS STORAGE REQUIREMENTS

$ SETS CONVERGENCE AND CONTROL TOLERANCES
$ SPECIFIES NUMBER OF TIME STEPS

§ SPECIFIES FREQUENCY OF PRINTED OUTPUT

$ SPECIFIES FREQUENCY OF PLOT OUTPUT

$ ALL NODES WILL BE PRINTED

$ ALL ELEMENTS WILL BE PRINTED

$ NODAL QUANTITIES WRITTEN TO PLOT FILE

$§ GLOBAL QUANTITIES WRITTEN TO PLOT FILE
$ ELEMENT QUANTITIES WRITTEN TO PLOT FILE
$ DENOTES AXISYMMETRIC ANALYSIS

$ ENDS PROBLEM DEFINITION SECTION

$ MATERIAL TYPE 3

24 .75E9,8.25E9,5.79E-36,4.9,20.13% MATERIAL PROPERTIES

ENDSET
DISPZ,1,.001

DISPZ.2 o
"DHISTORY,0.,1.,3.16E7,1.
END
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$ ENDS MATERIAL SECTION .
$ SPECIFIED NONZERO Z DISPLACEMENT BC
$ Z DISPLACEMENT FOR BC CODE 2

$ DISPLACEMENT HISTORY FOR BC CODE 1.

‘$ END OF INPUT DATA



6.4 VWIPP Benchmark 11

The last example problem is much more complex than the preceding
exemples and therefore relies on comparison with other finite element
programs for solution verification. The problem is a complex geotechnical
enalysis of an underground drift in & multilayered geologic medium,
principally rock salt, characterized by creep end with clay seams which are
characterized with sliding interfaces with a friction coefficient of zero.
Elastic anhydrite and polyhalite layers ere also interspersed. The problem
was specified es part of the Waste Isolation Pilot Plant (WIPP) Project code
comparison activity called Benchmark 11 [28]. The problem involves
determining the response of en infinitely long array of parallel drifts.

The problem geometry and boundary conditions are shown in Figure 17. The
finite element mesh utilizes 586 elements as shown in Figure 18. The
problem requi{Es an initial stress siate that varies with depth from the
surface. Therefore, the initial stress subroutine INITST is required eand is
included in the input. The problem allows ten years of creep induced
closure which is done in 330 time steps. Many different quantities were
compared between the various codes in the referenced study. The verticel
closure at the drift centerline as a function of time is shown in Figure 19.
The SANCHO solution appears in the center of the solutions reported for this
problem. Additional comparisons of stress and slideline response cen be
found in {28].
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‘Figure 17. Problem Definition for the WIPP Benchmark 1] Ilsothermal
Problem [28]
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Figure 18.

Mesh Used by SANCHO for the WIPP Benchmark Il Isothermal Problem

93



VERTICAL ROOM CLOSURE (meters)

o
o

o
o

0.4

002

0.0

] Rl 1 l 1 ] 1 [ { 1 ! l
— | MARC(B) 7
+ J \
" } SPECTROM .
JAC
5 REM - -
MARC(S)
SANCHO
B DAPROK .
] STEALTH |
2 1 ] L I - 1 i | ] 1 [ 1 l
0. 1.E8 2.E8 3.E8

TIME (seconds)

Figure 19. Closure Results for the WIPP Benchmark 11 [28]
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USER DEFINED INITIAL STRESS SUBROUTINE

~

SUBROUTINE INITST(ZAVG,RAVG ,MX, 1 ,BFORCE)

DIMENSION BFORCE(3)
BFORCE(1)=ZAVG*2.8066*2167.
BFORCE (2)=BFORCE(1)

BFORCE (3)=BFORCE(1)

RETURN

END

BENCHMARK 11 - SANCHO SOLUTION -

CONTROL . 4.2, .3 $
PLANE $
ISTRESS,VARIABLE 3
SOLUTION. .5.5000,1000, .6 $
RESTART, 33 $
PLOT,ELEMENT . STRESS, STRAIN,STATE §
PLOT,NODAL,DISP, TEMP,RESIDUAL $
PLOT,GLOBAL . RMAG, I TER $
TIMESTEP,0.,330,3.157E8 $
TIMEPRNT,0.,1.5785E7,3.157E8 $
TIMEPLOT,.0.,1.5785E7,3. 157E8 $
NODES $
ELEMENTS $
ENDSET $
MATERIAL,3,2167.,,~9.8066 $
** HALITE **

CRAY 1 VERSION

SETS STORAGE REQUIREMENTS

PLANAR PROBLEM REQUESTED

SPECIFIES INITIAL STRESS STATE

SETS CONVERGENCE AND CONTROL TOLERANCES
SPECIFIES RESTART EVERY 33 STEPS
ELEMENT QUANTITIES WRITTEN TO TAPE
NODAL QUANTITIES WRITTEN TO TAPE
GLOBAL QUANTITIES WRITTEN TO TAPE
SPECIFIES NUMBER OF TIME STEPS
SPECIFIES FREQUENCY OF PRINTED OUTPUT
SPECIFIES FREQUENCY OF PLOTTED OUTPUT
ALL NODES WILL BE PRINTED

ALL ELEMENTS WILL BE PRINTED

END OF SECTION ONE INPUT

MATERIAL TYPE 3

1.984E10,1.653E10,5.79E-36,4.9,20.13

MATERIAL,3,2167..,-~9.8066 $
** ARGILLACEOUS HALITE **

MATERIAL TYPE 3

1.9584E10,1.653E10,1.74E-35,4.92,20.13

MATERIAL,3,2167.,,~8.8066 $

MATERIAL TYPE 3

** 10 % POLYHALITE - 90 % ANHYDRITE **
2.12E10,1.766E10,5.21E-36,4.9,20.13

MATERIAL,1,2167.,.~9.8066 $

** POLYHALITE AND/OR ANHYDRITE
7.24E10, .33

SLIDE,11,10,0.
SLIDE,16,17,~1.
PHISTORY,0.,1.,4.E8,1.
END

ENDSET $
PRESSURE, 1,1.271E7 $
PRESSURE,22,1.5E7 $
DISPRZ,2 $
DISPR, 3 $
SLIDE,4,5.0. $
SLIDE,6,7,0. $
SLIDE,8,9,0. $
$
$
$
$

MATERIAL TYPE 1

L

END OF SECTION TWO INPUT

SPECIFIES PRESSURE BOUNDARY CONDITION
SPECIFIES PRESSURE BOUNDARY CONDITION
SPECIFIES ZERO DISPLACEMENT IN R AND Z
SPECIFIES ZERO DISPLACEMENT IN R
SLIDELINE SPECIFICATION

SLIDELINE SPECIFICATION

SLIDELINE SPECIFICATION

SLIDELINE SPECIFICATION

SLIDELINE SPECIFICATION

PRESSURE HISTORY FOR CODES 1 AND 22
END OF INPUT DATA :
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