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Abstract

SANCHO is a finite element computer program designed to compute the
quasistatic, large deformation, inelastic response of planar or axisymmetric
solids. Finite strain constitutive theories for plasticity, volumetric
plasticity, and metallic creep behavior are included. A constant bulk
strain, bilinear displacement isoparametric finite element is employed for
the spatial discretization. The solution strategy used to generate the
sequence of equilibrium solutions is a self-adaptive dynamic relaxation
scheme which is based on explicit central difference pseudo-time integration
and artificial damping. A master-slave algorithm for sliding interfaces is
also implemented. A theoretical development of the appropriate governing
equations and a description of the numerical algorithms are presented along
with a user's guide which includes several sample problems and their
solution.
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1 INTRODUCTION

Since the early 1970's, there has been a growing interest in the

solution of nonlinear quasistatic engineering problems. The desire to obtain

nonlinear solutions was motivated by the national energy crisis and the need

to design and develop new and efficient sources of energy. Typical design

practice, where the body was to remain elastic throughout service, was no

longer acceptable in many of these applications, so the detailed response of

the body in the nonlinear regime was required. Leading the way in this area

were the designers of nuclear power plants. In particular, the design of the

breeder reactor did a great deal to promote the regular use of nonlinear

analysis in design. The elevated temperature operating regime coupled with

the extended operating life made the use of nonlinear analysis techniques a

necessity for component design.

The development and use of numerical techniques to analyze quasistatic

nonlinear behavior was largely confined to researchers at universities.

However, a few general purpose finite element computer programs, such as

MARCYl] and ADINA[2], were available to industry during this period. The

general purpose computer program provided the user with an extensive element

library and the ability to solve a wide range of problems. Most of the

computer programs were based on an implicit formulation which required the

formation and subsequent factorization of a stiffness matrix. The generally

adopted nonlinear solution scheme was some form of the Newton-Raphson

method. The use of a modified or unmodified Newton-Raphson method places a

burden on the analyst to decide when to update the stiffness matrix to

prevent the solution from diverging. This requires the analyst to have some

knowledge in advance about the solution response. One of the drawbacks to

the use of a general purpose program was the inefficiency inherent in

maintaining generality. Special purpose programs to solve particular classes

of problems do not have this limitation. The special purpose program

generally was limited to a very small element library while still employing

the implicit solution algorithm.
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SANCHO is a special purpose, finite element program that has been

developed in response to some of the perceived drawbacks with existing

finite element software for nonlinear analysis. SANCHO was developed to

solve the quasistatic, large deformation, inelastic response of two

dimensional solids. The element library is based on a bilinear isoparametric

quadrilateral with a constant bulk straiL. The equilibrium solution strategy

uses an iterative scheme designed around a self-adaptive dynamic relaxation

algorithm. The iterative scheme is based on explicit central difference

pseudo-time integration with artificial damping. The code is explicit in

nature so that no stiffness matrix is formed or factorized which reduces the

amount of computer storage necessary for execution. The explicit nature of

the program also makes it attractive for future vectorization on vector

processing machines. The code has a standard material model interface which

is used with the three material models incorporated within the code. A

finite strain elastic-plastic strain hardening model, a volumetric

plasticity model, and a metallic creep material model are presently

included. A sliding interface capability, based on a master-slave algorithm.

is also incorporated within SANCHO. The user-oriented data input scheme is

based on keyword descriptors and utilizes a free field reader for ease of

data entry. SANCHO is designed to work with a separate mesh generation

program such as QMESH [3] and to write a data file which can be used by

various plot codes for graphical post processing of the data. The capability

to write a restart file is also provided.

In the following sections of this report, a description of the theory

and computational methods used in SANCHO is given. A description of the

constitutive models is also provided. An input guide for use of the program

is included along with several sample problems.
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2 MECHANICS

Although SANCHO is designed to handle only axisymmetric and planar

problems, the theoretical treatment in this section is general for the sake

of brevity and completeness. The treatment of continuum mechanics found in

Truesdell and Toupin [4] is used.

2.1 Equations of Equilibrium

A body 'Y/occupies a finite region of Euclidean space and is subjected

to prescribed body forces and surface tractions. The body undergoes the

motion x = x (Xa.t). Particles of the body are identified by the

coordinates X . They are referred to as material coordinates, and the

relation of the particles to the coordinates X does not change in time.

The places in space which the particles occupy during the motion are

identified by the coordinates x . The function X describes the motion of

the particles X through space as a function of time t. It is the motion

i
x which is sought.

The place occupied by the body at t = 0 is taken as the reference

configuration. In this configuration, the body is assumed to be strain

free, though not necessarily stress free. Only material coordinates X

which coincide with the spatial coordinates x in the reference

configuration are considered. Thus, in the reference configuration,

i~~~
X (X .0) SX

The problem is stated in terms of the principle of virtual work. The

differential form

6T = dx dv - pf kx dv - ps6x da (1)

13



is to vanish at all points along the path of motion for all variations 6xk

satisfying the displacement boundary conditions on .99 The integration is

performed over the current configuration of the body Y', where p is the mass

density in that configuration, t m Is the Cauchy stress-the stress in the

current configuration, and s is the surface traction which is acting on

5P . The comma in xk m denotes covariant differentiation.

The divergence theorem is employed to display the equilibrium

equations. In anticipation of using the finite element method to generate

approximate solutions, the case where 6x k Is only piecewise continuous is

considered. Interior surfaces where the discontinuities of 6xk occur are

0 0
denoted by 99 . Only surfaces 9' which are stationary with respect to the

material are considered. The situation is pictured in Figure 1 where n is

the normal to 09 and the symbols + and - denote the respective sides of the

surface. The result is

- (tat ,m + pf )6xkdv + (t+ - tk )n 6 xk da

+ (tkn _ sk) 6Xd = 0 (2)

The differential form will vanish if and only if the respective

integrands vanish. The resulting expressions are equilibrium

km k
t m+ pf =0 in (3)

14



the jump condition at a contact discontinuity

(tm -tkm )n = 0 on 0P0 (4)

and the traction boundary conditions

t n = s (t) on g1 (5)

The displacement boundary conditions are

x (XGt) = KI(t) on 092 (6)

Figure 1. The body)V7 with surface tractions sk on the boundary 99 and a
2prescribed motion on the boundary YO. An interboundary s9 with a unit

normal vector nk is pictured.

It is important to realize that these equations are completely general

and applicable for arbitrarily large deformations.

15



2.2 Strain and Strain Rate

In finite deformations there are many strain measures which are useful.

The majority of them can be computed from the deformation gradient Fk
a

defined by

F = k (X ,t)
a WXf (7)

The left Cauchy-Green tensor is computed from the deformation gradient as

Bkm = FkFmGaP
a'fli (8)

The quantity G f is the metric tensor in the coordinates of the reference

configuration. The velocity v is defined as

v (X .t) at (X )t) (9)

16



The stretching is given by

dim I (Vkn Vm6k) I (10)dm=2 hVkm vm, k

with the spin by

km ( k,m -Ok) (11)

In the constitutave models which follow, only the left Cauchy-Green

tensor B anid the stretching d are used as strain and strain rate
kmn

measures, respectively. There are additional strain and strain rate

variables which could be introduced but they are not needed here. Further

reference to them can be found in Truesdell and Toupin [4].

2.3 Incremental Form of the Problem

The notion of an incremental solution is fundamental to many of the

methods for finding a motion X (X ,t) which generates a stress history in

equilibrium with the applied loads. It is assumed that at time t , the

stress tn satisfies the equilibrium Equations (3), (4). and (5), and the
r s

stress t is the result of integrating the constitutive models with the

strain histories derived from the known motion up to t . The prescribed

loads are incremented to time t I and a predictor/corrector method is

I i ~a
introduced to find the new configuration xn+ 1 = x (X ,t ) which has all

the equilibrium properties which were deemed necessary at t and accuracies

17



acceptable to the constitutive model evaluation. To indicate the

incremental quantities a A is used. For example, At = t - t . At =
n+l n rs

t t etc.
rs rs

A basic assumption which underlies most incremental treatments.

including the one here, but which is rarely stated is that the motion

between x and x is linear. As a consequence, the incremental velocity
n n+l

given by v = Ax /At is constant over the time increment. Equilibrium
n-f1/2

is tested in the configuration at tn+I which is a trial configuration until

equilibrium is established. To do this. the stresses at tn+l must be

evaluated. Following Hughes and Winget [5], a one parameter family of

configurations is introduced

x +a a~xI+Gaxn (12)
n+ =n +~n+1(

The gradient h. of u. = Ax with respect to xi is given by

h.. = U. (13)

From this gradient, the strain increment e., is given by

e (a) = [h.. + h.. + (1 - 2a)hihk] (14)

18



Thus, e (0) is the Green-St Venant strain increment, e (I) is the

Signorini strain increment, and

e 1 At dn+l/2 = SY (15)
iJ 2~ i~j \XJ~/

Without the need for further linearization, the configuration halfway

between n and n+l is selected for evaluating the stretching, spin, and for

computing At The midpoint configuration is optimal in the sense that no

quadratic terms are needed to accurately evaluate (dx dx n+1 - (dx dx n

The terms in the co-rotational derivative involving the spin w

used in the constitutive equations are for the purposes of taking into

account rigid body rotations of a material point relative to the spatial

I
coordinates x In incremental form they are an orthogonal rotation through

an incremental angle. Hughes and Winget have provided a modern account of

this process and have provided a direct way to evaluate the orthogonal

rotation matrix R from the spin w Thus,

iii

RIJ =(6k - at - w ) (g + At .w (16)
ii k 2 k kj kj

Half angle trigonometric formulas are used to get the square root of

[RI, R = R1/2R /2 With these constructions, the constitutive models can
ij ik kj

be integrated over the increment from n to n+l. First, the stress tn and
rs

the applicable state variables an are rotated to n + 1/2 by
rs;

19



.jn+1/2 (R/2)i(Rl/'2)j tn (
rs ( r )s IJ

and

-n+l/2 =R1/2)(Rl/R2), n (15)

Using dnl2 and At. the constitutive equations are integrated and new
rs

=n+11/2 =n+1/2
stresses t and state variables a / are obtained. These are then

rs rs

rotated from n + 1/2 to n + 1 by the same process as in Equations (17) and

(18). This process of mid-interval constitutive evaluation is also used by

Hallquist [6] and Biffle [7].

Of particular importance is the integration of the constitutive

equations from time n to n + 1. The plasticity model is integrated from n to

n + 1 assuming the stretching is constant which is consistent with Equation

(17). For a constant stretching path, the integration is quite accurate.

extremely reliable. and independent of the specific value for the time

interval At [8-10]. The creep model is also integrated from n to n + I

assuming the stretching is constant. The creep equations, however, are not

nearly as easy to integrate numerically. They are mathematically "stiff"

equations. Only with considerable effort and great expense can they be

numerically integrated with conventional methods from time n to n + 1. To

overcome this stiffness, a semianalytic integration is used. Domains in

stress and strain rate space are identified where various nearby

differential equations with exact solutions are applicable. The solution

path over a time step may remain within a single domain or may pass through

two or more domains requiring the solutions to two or more of the

differential equations to be applied, one after the other over the time

step. In this way, arbitrarily large strain or time intervals can be

accurately and reliably taken. An absolute maximum of seven subincrements

are required so that computational time is not excessive. This approach,

20



while conceptually straightforward. is highly tailored to the constitutive

model at hand. The present approach to constitutive equations uncouples

stability and accuracy in their evaluation from selection of the time step

size used in load incrementing schemes with their attendant equilibrium

iteration. cf-, Bushnell [iii This approach contrasts with that where At

in the constitutive integration scheme corresponds to the At used in

incrementing the load. If this coupling is pursued, many numerical schemes

can be developed Argyris, Vaz and Willam [12] have documented a number of

these and have provided the guidance necessary for their successful use

2.4 Spatial Discretization

The treatment up to this point has been in terms of an arbitrary body

undergoing an arbitrary motion. Of interest now are the axisymmetric and

plane strain problems. Because the planar case may be obtained from the

axisymmetric case by moving the symmetry axis arbitrarily far off, only the

axisymmetric problem is discussed. No attempt is made to do the

axisymmetric problem in general, but rather a specific element with specific

interpolation functions is introduced from the outset.

If cylindrical coordinates, r, 6, z are introduced, an axisymmetric

body can be characterized by a cross-section in the r-z plane which, when

revolved about the z-axis, generates the body. Such a cross-section with a

quadrilateral element is pictured in Figure 2 (such an element is frequently

called a "ring element"). As indicated in Figure 2, the element is a

four node isoparametric element 113]. Thus, if y represents the value of

the function y at the node with index a, and represents the interpolation

function at the node, the function y is described within the element by

4
y = z yaoa(ab) (19)

a=1
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Figure 2. The cross-section of an axisymmetric body with a four node
isoparametric quadrilateral element. The isoparametric coordinates range
between minus one and plus one.

where the bilinear isoparametric interpolation functions are given by

0 = (1 - a)(1 - b)/4

3 = (I1 - a)(I + b)/4

2
2 = (1 + a)(l - b)/4

4 = (I + a)(1 + b)/4

(20)

When all the elements around node 1 are considered. the basis function

obtained from the interpolation functions in each element can be pictured.

Figure 3 shows the result for this case. As can be seen in Figure 3, the

basis functions obtained in this manner have only piecewise continuous

gradients along the element boundaries. As a result, implicit in the finite

element equations which result from this choice of basis functions is an

approximation to the jump conditions (4) along each element interface.

22



When the basis functions are introduced into the principle of virtual

work and the variations taken, a discrete form of the differential Equations

(3), (4), and (5) is obtained as

IT( = OFF (21 )

Ce I

r

Figure 3. The basis function obtained from considering the contributions
of the respective interpolation functions from each element surrounding

nodal point 1.

where, with no sums on the index k.

T(= ft~an'Cdv , a vector

F = Pf fk~dv +4 sk~da , a vector.
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This is a discrete statement which requires the divergence of the

stress field STY to be in equilibrium with the prescribed body forces and

surface tractions IFN

The integrals for IT( over each element are performed numerically using

Gaussian quadrature rules. A 2 x 2 integration is used to evaluate the area

integral In the process, a constant bulk strain is used This may be

viewed as a I point integration of the volumetric strain energy and a 2 x 2

integration of the deviatoric strain energy, [14-16].

2.5 Dynamic Relaxation

As a solution strategy for statics problems, dynamic relaxation

involves first converting the equilibrium equations into equations of motion

by adding an acceleration term, second, introducing an artificial damping.

and finally. integrating forward in time from initial conditions until the

transient dynamic response has damped out to the static result with

equilibrium satisfied An early introduction of the idea is given by Otter.

et al. [17], but a more recent work which summarizes all of the significant

contributions on the topic since then is Underwood [18]. In reference [18].

considerable detail is presented about dynamic relaxation and its use in

nonlinear problems. Additional information on dynamic relaxation can be

found in the paper by Papadrakakis [19].

Dynamic relaxation is attractive for three reasons: it is

vectorizable, it is versatile, and it is reliable. Because it can be made

explicit, it is highly vectorizable for modern digital calculations. In an

explicit form, it is ideal for dealing with large deformations, finite

strains, and inelastic material behavior. It is reliable in that if the

algorithm converges and equilibrium is achieved, then the solution will be

good.
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To produce a dynamic problem. an acceleration term is added to the

equilibrium Equation (3). Thus,

2c-k
km k U.
t ,m + pf ( 22

OT

(22)

where r is a spatially varying density selected to minimize the number of

steps needed to reach equilibrium and T is a pseudo-time scale connected

with the dynamic relaxation but distinct from real time t. The acceleration

term is discretized the same way that it would be in a true dynamics

calculation, [20]. This leads to the discrete system

[M]1H41 = F( - JTJ (23)

where

I I= Uka (

[Ml = adv

{ a vector

, a diagonal matrix

At time t , equilibrium is satisfied so that STY = JFI n A new

solution is initiated by incrementing the load to its value at time tn+1l

In general, equilibrium will not be satisfied, so that the imbalance is

represented by the acceleration term:

[MIJ13q = JFn+l Tn+l (24)
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damping is then chosen to provide critical damping for the lowest frequency.

This expression is

6 = I - 4w. C., /(W + W 2
0. 1 0

(26)

The range on 6 is (0.1) A stability analysis on this set of explicit

equations produces a critical pseudo-time step given by

AT = 2/ 6 2(W +c )c 0 (27)

If the problem were linear so w0 and w1 are fixed, then the number of

time steps required to reduce the amplitude by a factor of ten would be

N ;Z~I.1 5 u1/C.. (28)

From Equation (28), it is seen that any action to reduce the ratio

C. Io speeds convergence.

From the linear problem and a uniform mesh of dimension h. the maximum

frequency eo is given by

co1 = 2 c/h (29)
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Here c is the unjaxial strain "sound speed" given by [(X + 2A)/r] /

where r is the pseudo-density used in Equation (22). While the problem is

nonlinear in the large, as equilibrium is approached at the end of each load

step. the behavior is linear. With Equation (29), the condition on AT is

essentially the well known Courant-Friedrich-Levy condition which says that

AT can be no larger than the time it takes for information to travel

between the "closest" two nodes in the mesh.

On the basis of these observations. the concept of mesh homogenization

is introduced. The densities r are selected element-by-element to give the

same transit time across each element. regardless of the size of the

element Thus, information about equilibrium imbalance is transmitted

uniformly over the mesh This process gives the lowest possible value to

the maximum frequency c1, the goal being to minimize the ratio w I/Wc in

Equation (28).

The fundamental frequency w is continuously estimated using an

approximate Rayleigh quotient. [18] At each step i in the dynamic

relaxation, a new estimate (ci ) is computed from Equation (30).

T T 1,/2 (0(a ) (tq( - [K]1o jq( I/jqj I [Mjjqj i) ,(30)

Where [KI is a diagonal stiffness matrix whose jth component is
loc

computed from

[K]locij (ITIil - ITIj _Ij )/(ATIPIp i 1/2 1 ) (31)
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With each estimate of the fundamental frequency, a new value of the

damping 6 is computed. This has the virtue that the lowest active mode will

be found in the event that the fundamental mode is not participating, [ia].

2.6 Sliding Interface Model

There are several numerical approaches for modeling sliding interface

behavior which allow arbitrary values of the friction coefficient. One

method requires the use of a thin finite element which has a special

constitutive model to approximate gap and friction behavior [21]. A second

approach uses Lagrange multipliers to impose gap closure constraints and

frictional stick-slip conditions [1]. SANCHO utilizes a third method, the

master-slave approach for slideline kinematics [22].

In the master-slave concept, the nodes on the designated slave surface

are required by the algorithm to lie on the master surface. Any sliding or

slip must occur along the master surface. In turn, nodal forces from the

slave surface are removed and applied to the master surface nodes. This

transfer of forces maintains equilibrium at the interface. The tangential

shear or friction force as well as the determination of slip or no slip is

incorporated in this process of the transfer of forces to the master

surface. In SANCHO the nodal forces are computed by the divergence of

stresses over the element. Therefore nodal forces can be used in

conjunction with a Mohr-Coulomb model which usually employs shear and normal

stresses.

The operation of the scheme can be demonstrated in the following

example where slave node I lies between master nodes M and N. as shown in

Figure 5. The algorithm determines whether node I has crossed the straight

line drawn between M and N. If node I has penetrated the master surface,

then the normal force (R N) and tangential force (RT) at node I are

determined. The coefficient of friction, ju, is used in conjunction with RN

to determine the threshold value for slip. N . If RT is less than MN
then no slip occurs and both the values RN and RT are transferred to the
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Slave Surface

Figure 5. Schematic of Master-Slave Slideline Algorithm Dashed Line
Represents Deformed Location of Slave Node 1.

master surface nodes using an area weighting procedure. The slave node I is

assigned the displacement of the corresponding point on the master surface.

However, if RT is greater than ARN. then slip can occur. The tangential

force RT is reset to its maximum allowable value of RN. The forces RN and

RT are again transferred to the master nodes, but only the normal master

surface displacement is applied to the slave node. The tangential

displacement is not specified, but is allowed to seek a new equilibrium

position along the slideline. This procedure is incorporated within the

iterative framework of SANCHO and is found to produce reliable results.
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Inclusion of friction, however, does have a disadvantage. The expense of
computing with finite values of friction is increased in many cases over
computations where the coefficient is zero or the two surfaces are fixed.

Incorporated within the slidel]ne model is the capability for two
surfaces initially in contact to separate at a prescribed stress level and
for two distinct surfaces to contact each other and remain in contact during
deformation. The user is allowed to specify the separation stress level and
to specify the separation tolerance within which both surfaces are assumed
to be in contact. The separation stress is computed at the slave surface
Gauss point closest to the slave node.
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3 CONSTITUTIVE RELATIONS

3.1 Stress Flux Relations

When a material in a given class is §ubjected to finite strains. it

will often exhibit unique behavior which distinguishes it from the other

materials in the class. Finite strain relations will frequently be more

detailed and more specific because of this. The experimental procedures

necessary for large strain characterization are correspondingly more

difficult and can easily be misinterpreted. As a result, it is more

difficult to write relations characteristic of a large class of materials.

Since the majority of relations included here are generalizations of

infinitesimal relations, the reader must be cautioned as to their general

applicability to every material. The stress relations used here are fairly

simple. They are meant to capture the fundamental behavior of materials

with as few parameters as possible. Any of them could be easily generalized

or expanded.

Many stress relations are developed in the reference configuration and

as a result the second Piola-Kirchhoff stress Ta is used. Since the

kmequations of motion used here are based on the Cauchy stress t the second

Piola-Kirchhoff stresses generated in these relations must be converted with

the relation;

tkm = Idet FIF IFk TaFm (32)v a 1

where Fk is the deformation gradient.
a

Several stress and strain measures are found in finite strain

Plastlclty models currently in use. While use of different variables make

the models appear at first to be different, on closer examination they are
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all very nearly the same and differ only in detail-Key, Biffle, and Krieg

[23]. It is clear, however, that the rates used for stress and strain, in

particular, must be compatible.

The main subject of the research, however, concerns the choice of a

stress flux measure. We have decided to retain the use of the corotational

flux. The corotational flux of the Cauchy stress is related linearly

through a tangent modulus to the stretching, also known as the rate of

deformation tensor. Thus,

~rsjrs -grk Ms sk mr (3
t - g w t - g w t (33)

where wk is the spin defined in Equation (11).

This relation for the stress flux is used for all the material models. The

constitutive relations are all written in terms of the stress flux.

3.2 Plasticity

Plasticity is characteristic of ductile metals. Figure 6 shows

behavior which is typical of a metal bar loaded first in uniaxial tension

followed by uniaxial compression. The straight line representation in

Figure 6 is an idealization of this behavior. This is the approximation

which results from the plasticity relations employed here and taken from

Goel and Malvern [24]. The approach taken here, with the exception of the

kinematic hardening which is included here, is widely used in finite

difference method "hydrocodes." The stress flux is given by y = r mnd

'When the behavior is elastic Crn is the isotopic tensor, Ag gm +

rml sn2Ag g , where A and g are the Lame parameters.
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Figure 6. The typical behavior of a ductile metal bar loaded first in
uniaxial tension followed by uniaxial compression The straight line
approximation is characterized as an elastic modulus E. a yield stress tO. a

strain hardening modulus Et. and a hardening parameter P where kinematic

hardening is obtained with fi = 0. isotropic hardening is obtained with
P = 1. and a linear combination of the two is obtained for 6 between zero
and one.

A von Mises yield surface is used with a hardening behavior which is a

linear combination of isotropic and kinematic (241. Isotropic hardening is

the behavior where the radius of the yield surface grows equally in all

directions due to plastic straining. Kinematic hardening is the behavior

where the radius of the yield surface remains constant but the center

translates in the direction of the plastic strain rate. When the stress

state contacts the yield surface, plastic straining occurs. Thus, the yield

condition is given by

0 = 1/2t ] j k2 (dp) = 0 (34)
Iii
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where the prime indicates deviatoric components and tI

defined as

is the back stress

I = t
I i I i

-a, iij
(35)

The center of the yield surface is given by a.. which is determined by

V rm ns sm nr 2 p
a =a -g w a - g w na (1-9)3 drs (36)

The plastic hardening modulus H is computed from the elastic modulus E and

the tangent modulus Et as

EEt

H = E - E (37)

The amount of hardening which is kinematic is given by (1-P). The radius k

of the yield surface which grows due to isotropic hardening is given by

,r2 . = 6'H I dp (38)

or upon integration

-, --k = V~, - T3) t 0 + ~ 3 fId rsIdt (39)

The amount of hardening which is isotopic is given by #. An associated flow

rule is used so that the plastic strain rate is normal to the yield surface.

dP = A 0C =
rs ,rs rsa t

(40)
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The magnitude of the plastic strain rate is given by

jdP I = XC t ) '= X v'k . (41)
rs rs

At yield, ) = 0,

r s- o r¢~~ ~~~ - Vr2srVrs kf (v2 k) = (42)

The stress rate is related to the elastic strain rate, through the relation

Trs = Crsmnl(d -XA n . (43)
mn mnn

Equations (40) and (41) are substituted into Equations (36) and (35),

respectively, and these, together with Equation (43) are substituted into

Equation (42). The resulting expression is simplified using Equation (34)

and the proportionality rate is obtained as

p crsinn

X trs mnn (44)
, rsmn + 4kH

rs m~n 3

Thus, the stress rate during yielding is given by

yrs c rsnn -rsnn ((C -c )d (5JIM
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where by comparison of Equations (43) an (45) and using Equation (44) there

results.

C rsil tP Cpqmn

drsmn - Jtj~pqcPif ~ .(Cro ____JP _2 (46J

t' C jjpqt? + 4k H

The system of Equations (38) through (46) is integrated in time to

describe plastic behavior. The details of this numerical integration are

covered next.

The main numerical approximation underlying the incremental relations,

as in all the constitutive subroutines, is that the strain rate is constant

during the time step from n to n + 1. The method used for integrating the

elastic-plastic calculations is reported by Krieg and Key [8. 9]. The

method may be considered that of stepping out elastically in deviatoric

stress space and, if the resulting "trial state" is beyond the yield

surface, then the stress is scaled back radially to the updated von Mises

yield surface. The size of the updated yield surface is found from Equation

(39) and the position from an Euler integration of Equation (36). In this

manner, the updating of stress and the yield surface position and size are

found simultaneously. The method applies equally well regardless of the

initial position of the stress state. While a conceptually "simplistic"

process, it is an excellent numerical approximation fot integrating the

conventional isotropic-kinematic hardening von Mises plasticity with an

associated flow rule. The accuracy has been compared by Krieg and Krieg

[10] to other methods for the case of no hardening.

This explanation is made more concrete by using the mathematical

equations which follow. The stress t, position of the center of the yield

n . n
surface a , and effective plastic strain e . all at time n, and the strain

p

rate d n+/ 2 at time n + 1/2 are taken to be known. The steps taken are

then:
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i

i

i
I

(1) The radius of the yield surface is calculated.

2Hen
V2 k = %2-3ty + A-- 3P

(2) The elastic "trial" stress state for the end of the increment is

calculated.

aT = n + Cnnd n+.5 At
iJ IM IJ 2n 2

(3) The vector magnitude of the deviatoric effective trial stress is

cal cul ated,

T T n
ij ij ij Deviator,

and compared to the radius of the yield surface.

T 2k
ij

(4) The incremental process is elastic if 0 < 0 and the final stress

is the trial stress.

tn+1
i i

T
r.
i i

The incremental process is at least partially plastic if 0 > 0 and

the remaining step (5) must be followed.
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(5) Updated values of the yield surface position and size (indirectly

as the effective plastic strain) are calculated and the trial

stress is scaled back to this surface to give the final stress.

1- T
= Ij

C5 1 + (H/3L)

en+l = e + C51ti I/%Z

an+ = an. + (1 - 6)3 Qij

n+1 n _ T

ij Ij 5 ij

As stated in a previous section, this stress state is then rotated a

half step. It should be mentioned that the back stress a must also be
I J

rotated in the same way as the stress.

3.3 Volumetric Plasticity

Rocks, foams, and other void containing materials exhibit a behavior

that is pressure dependent. These materials crush or compact under

pressure. Their failure in shear can also be sensitive to pressure. We

model these characteristics using a pressure dependent isotropic plasticity

theory. The yield surface in principal stress space is a surface of

revolution with its axis centered about the hydrostat and the open end

pointing into the compression direction. The open end is capped with a

plane which is at right angles to the hydrostat. The deviatoric part is

elastic-perfectly plastic so the surface of revolution is stationary in

stress space. Neither isotropic nor kinematic hardening is allowed in the

deviatoric directions. The volumetric part however has variable strain
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hardening so the end plane moves outward during volumetric yielding. The

volumetric hardening is defined by a set of pressure-volumetric strain

relations. A flow rule is used such that deviatoric strains produce no

volume change

The theory is most easily discussed by separating the problem into

volumetric and deviatoric parts. The strain rate is decomposed into the

respective parts by

Y = dk

(47)

d' =d d I
rs rs -39s

and the stress is separated into the respective parts by

P = - -t

and (48)

tI = t + pg
rs rs rs

The yield function is defined as the product of two functions, 0

describing the surface of revolution, and 0 describing the plane which is

normal to the pressure axis. These are given by:

s = it t2 rs - (a +a P+a p2)

(49)

Ne = p - f(y)-

The volumetric hardening is given by f(y)-
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Let us consider the volumetric part first. The pressure is calculated

as:

( (7)

P = (t

pit ) - K0 -dt

u

for 0 > 0. Y < 0

(50)

for 0 < 0. j > 0

where t is the most recent time the conditions of Equation (50)i were met.
u1

Initially, t is zero and p(O) is zero The first condition describes

plastic loading and the second describes the elastic condition, either in

loading or unloading.

The function f which describes the pressure versus the volume strain

behavior during loading is depicted in Figure 7. Unloading from any point

results in stress states which lie along the curve with a slope of KO.

Tensile fracture has not occurred so long as the pressure does not

become so tensile or negative as to have a zero or imaginary deviatoric

yield stress. Fracture is not assumed for

p > h, (51)

where h is the minimum root of the polynomial a + alp + a p = 0. If

Equation (51) fails to hold, the pressure is set equal to h.

We now consider the deviatoric component where almost conventional

plasticity theory is used. If 4 < 0 or O = 0 and O < 0, the material is

assumed to behave elastically in the deviatoric mode, hence,

Y P = Id
rs = rs (52)
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Figure 7. The pressure versus volume strain behavior for a porous material.
Unloading is assumed to occur elastically with a modulus of KO.

where A. is the shear modulus. If, however, the yield surface is reached and

the end state is outside the yield surface, i.e., if

4
0 > 0 (53)

then part of the time step must have been plastic. In that case, the strain

rate is taken as the sum of an elastic part and a plastic part.

d = d + d
rs rs rs

(54)
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The plastic strain rate is assumed to lie in a direction normal to the

yield surface ¢ in the deviatoric subspace of the stress which is written

as

dP = asAt
rs trs rs (55)

This is a flow rule which results in zero plastic volume strain from

deviatoric yielding. The function X is determined from the loading

condition.

O's OtI rs
rs

+ _ p = 0
Op

(56)

Expressing the stress rate in terms of the elastic strain rate provides

or

2.t rs(d I-XtD ) - (a +2a P)j = 0

X = - drs (al+2a2p)p

IH' r rs rs
s rst

(57)

(58)

Thus, the deviatoric stress rate during yielding is given by

Y? = 2( 6rn rs )t
rs \r s tP. .tP IJ mn

t?~ (a +2a p)
+ .r p.i

to. . to i J
Ii

(59)

The second term in Equation (59) accounts for the change in radius of

the yield surface as the pressure changes.
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This model is implemented numerically in the following manner The

volumetric calculations are carried out first, followed by the deviatoric

calculations. At the start of the step the stress at time n and the strain

rate at time n+1/2 are known and the stress at time n+l is sought. The

pressure p , which is determined first. is used to define the radius of

the yield surface. In the deviatoric calculations the entire step from time

n to n+1 is then made using the final radius. The elastic-perfectly plastic

deviatoric calculation from time n to n+l is carried out in closed form

assuming the strain rate is constant during the step. The details of this

exact integration are found in Krieg [25]. The steps taken are as follows:

(1) The pressure p and the deviatoric stress tij at time n are

computed The volumetric strain rate 'y and deviatoric strain rate

d.- at time n+1/2 are computed.

(2) The volumetric strain at time n+l is calculated and compared to

the past minimum y '

n+1 n + n+1/2 at

n+ 1 ~ ~ ~ n+/

If Yn 1 > 7 , the step is elastic and

pn+l = n _ K n+1/2 t

n+ 1 ~ 0n+/

If 7 7 u , plastic loading is occurring and

n+1 n+l
p =f( 7 )

n+1
r 7~~~~~~~,u = 7 Y
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(3) A check for tensile failure is made. If failure has occurred, the

pressure at time n+1 is set equal to h. The stress state is then

at the tip of the surface of Pevolution and the deviatoric stress

must be zero

tn-i- r+l h
t =-p 6. -h45

IJ iJ Ii

If failure has not occurred, the deviatoric stresses are sought.

(4) The stress t at time n is scaled back to the yield surface,

Os = 0° if it lies beyond it. A trial stress s at time n+1 is

computed assuming elastic behavior for the increment and evaluated

for yielding

5n+l = n + 2Mn+1/
2 +

/ =ln+1\ +1 n+1n+l/2

if 0 (s ,p •)< 0, the process is elastic and t = s

(5) If 0 (sn+l,pn+1)> 0, plasticity is occurring. The point of

contact with the yield surface and the remaining increment of

strain are computed

(sn+l + X(sn+l _ tn),pn+l) =

n-il n-i- (n+1
t =s +X(S tn)
c

En+1/2 =-dn+1/2 tl/-
n+1/2 = ~+1/

(6) An exact integration of the plasticity equations is carried out

for the remaining strain increment to find t 1

The rotation of the stress state over a half time is carried out as

described in an earlier section.
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3.4 Metallic Creep

If a ductile polycrystallilne material is at a temperature greater than

roughly one-third the melting temperature, the material will undergo time

dependent shear deformation under an imposed shear stress. The volumetric

behavior is assumed to be linearly elastic so that a decomposition can be

made into volumetric and deviatoric parts. The strain rate (stretching

tensor) is decomposed as follows.

k
Y = dk

d' =d d rs
rs rs 3 rs

(60)

(61)

and the stress is separated in a similar manner as

1 k
P = - -t

t' t +p d
rs rs r

(62)

(63)

The rate of change of the pressure is then found as

I

p = -KY (64)

where K is the elastic bulk modulus.

The deviatoric strain rate is decomposed into elastic and creep parts

as

d -s = (d' ) + (d'rs rs e + rs c (65)

and the elastic term stated in terms of the stress flux.

Y 2p(d' )
rs rs e

(66)
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The creep strain rate is taken in a conventional manner to be in the

direction of the deviatoric stress and to be described by power law creep.

(d's)c = A(O)It' ij I t'rS (6)

The function, A(), is taken to be of the form Aexp(Q/RO) where Q is

the activation energy. R is the universal gas constant, and 0 is the

temperature. Equations (65) - (67) are combined to give the result-

Y; = 2A(d' - A(8)lt'. IDIs (68)rs rs ij rs

The deviatoric stress flux and the pressure rate are integrated separately

in time and combined to give the total stress.

The numerical implementation of the creep equation is more involved

than most constitutive equations because of severe accuracy problems caused

by the stress exponent. The method used in SANCHO follows that of Krieg

[26]. A summary of the method follows.

The decomposition of the strainrate (stretching tensor) and stress

tensor into volumetric and deviatoric parts is made initially. The

calculation of the pressure at time step n is updated in the following

manner.

n n-i 1 n-1/2
p =p --Ky At (69)

The deviatoric stress flux integration is much more involved. The

differential equation for the flux is very simply stated at time step n-1/2

as:

(s )nh/2 = 2d(d' - A(n)It. mi )n /2 (70)
rs ~~~rs AOI ijI trs)
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where the elastic shear modulus, it, creep constant, m, and temperature

function, A(8), as well as the strainrate (d' ) nl/2 are approximated as
rs

constant over the time interval At.

The numerical integration of Equation (70) is not simple since the

equation is very non-linear, containing the norm of a tensor which is

furthermore raised to a power. It also is difficult to integrate

analytically for the same reason. The approach used is to replace the

differential equation with approximate differential equations which can be

integrated analytically. The particular approximate differential equation

chosen depends upon the location of the stress state in non-dimensional

deviatoric stress space. The stresses are non-dimensionalized with respect

to the deviatoric stress state which is asymptotically approached at long

times. If deviatoric stresses are denoted as S. then
ii

.

Id' Im'd
{rs A Idr ' (71)

The first approximate differential equation is given as

S_+I (3-l)C t ij= Zd' (72)

where Cl = (S /S ) m1

!~~~~~~~~~~~~~~~~
C2 S/Id

3 = 2MC1/C2

S = I(S ) Irs r
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This equation is obtained by approximating IS. I in the original
ii

differential equation with the solution for the case of stress relaxation.

Equation (72) then applies when the stress state is far from (S ) . The
rso

exact solution to Equation (72) is given as

SI =fC4 d + LSijo - C4dJ f r-I

where C = 2
4 MC3

f = 1 + (m-l)C3 t

The accuracy of this solution is controlled by limiting the time step

size to.

t < ( 04 + O54)

A second approximate differential equation is found by expressing the

differential equation in terms of the variable.

X.. = S. - (S. )
ij iJ iJO

An approximate differential equation is then.

= -2ts' [Xij + (m-l) Z (S .) /S2]

where Z = Nj(S..)
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and where higher order terms in X are dropped. The exact solution to this

differential equation is

(Srs) 0S rsS = (S + g [(S (S)] - [ - (gm - g)(S )

where g = exp (-21it/C 2)

This solution holds when the deviatoric stress state is near (S .)

It is used whenever the stress is such that

IS - (S ) I • 0.12 + 0.77/m

If this condition holds at the beginning of the time step, then the

final stress state will be found with a stress difference less than five

percent of the correct answer for mi < 10.

The approximate differential equations are good for small time steps but

the solution to the first approximate differential equation diverges from

the true solution for long time steps. For that reason the application of a

particular solution has been limited inside the constitutive subroutine to a

time duration such that the error with respect to the true solution is less

than 5%. If that time is less than the specified time increment, then the

integration procedure is reapplied for the remainder of the time increment.

The second subincrement of time may involve the same approximate

differential equation or the other one. This automatic error control

procedure may require up to seven subincrements in an extreme case.

The final deviatoric stress is then combined with the pressure from

Equation (74) to produce the final stress state.

I
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3.5 Material State Parameter

The material state parameter may be used to determine more about the

behavior of the non-linear material models. To characterize the state of

each element as the calculations proceed in addition to the stress or other

state variables, the material state parameter may be included in the printed

output. The meaning of this parameter varies from stress relation to stress

relation. The finite strain plasticity relation calculates the ratio of the

trial elastic stress to the current yield stress. Thus, if the parameter

has a value of 1.2 at a particular time step, the magnitude of the trial

elastic deviatoric stress was 20% greater than that required to cause

yielding. The volumetric plasticity material provides the same state

parameter as the plasticity relation except that, if a tensile failure has

occurred, the state parameter will be -1.

3.6 Finite Strain Mechanical Properties

The finite strain relations do require some care in specifying the

required constants. Because these relations involve a very specific stress

and strain, the data from which the constants are obtained must be plotted

in terms of these variables. The uniaxial tension-compression test used in

determining the constants for the elastic-plastic parameters is a good

example. Figure 8(a) shows the gage section of a bar in such a test. An

axial force F is applied to the bar in Figure 8(b) which causes it to

elongate. At the same time that it elongates the cross-sectional area

becomes smaller. Figure 8(c) shows a typical measured result from a test of

this type. The horizontal axis corresponds to the infinitesimal strain

measure. It is referred to as engineering strain and it is the output which

strain gages are designed to provide. These measurements need to be

expressed in terms of the Cauchy stress versus logarithmic strain for proper

inclusion in the models used here.
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Figure 8. The standard uniaxial tension test.

Using r for the radius of the test specimen, the deformation gradient is

given by

i- 0 0

1[F]X1= 0 _ 0
lo

0. 0

r0

It is assumed that the deformation is homogeneous. The one nonzero

Component of the Cauchy stress is t 1 and is given by F/A. The integral of

the stretching in the x1 direction uutd11dt is the logarithmic strain In(j/

the Thus, the measurements presented in Figure 5(c) must be replotted in
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the form shown in Figure 9 before the constants of the stress relation are

determined. Should necking occur in the gage section, its effects must be

eliminated from the data.

n"a cF

Figure 9. The results of the standard uniaxial tension test expressed in
terms of the Cauchy stress versus the logarithmic strain.

The bulk properties required by the volumetric plasticity relation

present another situation where the data must be replotted before the

constants can be determined for the finite strain case. Figure 10(a) shows

a cube of material before being loaded. A pressure p is applied as shown in

Figure 10(b) which causes it to compress. Figure 10(c) shows a typical

measured result from a test of this type. Again, these measurements need to

be expressed in terms of the Cauchy pressure versus the logarithmic bulk

strain.

t I1_I
'X

(C) (b) (C}

Figure 10. The standard hydrostatic compression test.
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Assuming that the deformation is homogeneous, the deformation gradient

is given by

[F1 =

I
0A 0

160

The Cauchy stress is given by t = -pg Using Euler's equation of

continuity the integral of the spherical portion of the stretching|tddkdt

is the logarithmic bulk strain. In(p0/p). Thus, the data presented in

Figure 10(c) must be replotted in the form shown in Figure 11 before the

constants for the stress relation are determined.

rIgure 11. The results of the standard hydrostatic compression test
tipressed in terms of the Cauchy pressure versus the logarithmic bulkstrain,
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4 SANCHO USER INSTRUCTIONS

The input to SANCHO is coded to accept keyword input using a free-field

reader. This makes the code more user friendly for data construction.

particularly in an interactive mode. The free-field reader allows either

alphanumeric. integer or floating point numbers to be used interchangeably.

The free-field reader used in SANCHO uses only commas as field delimiters.

Embedded blanks in alphanumeric variables are retained while blanks in other

variables are ignored. Alphanumeric keywords are limited to a maximum of 10

characters. All non-alphanumeric fields are initialized to 0. so that if a

given quantity is 0. or does not need to be entered, then a series of commas

suffice to skip fields. e.g., 1,4_.,3 will be read as 1. 4, 0. 3. Fields

may be left blank if no further entry is needed. The I character may be

used to continue a field onto a second data card. The continuation takes

the form ,... where the I becomes an entry in the last field and tells the

free-field reader to begin reading the next input card. The $ character may

be used to end a data card and the remaining columns on the card used for

user comments.

SANCHO does not contain a mesh generator and therefore relies upon

externally generated nodal and element data. SANCHO currently accepts mesh

input generated by the QMESH [33 mesh generator. QMESH provides nodal

coordinate data, element connectivity.,and boundary flag identifiers for use

in computing element stiffnesses, for applied loads and for assigning

boundary conditions. Any other mesh generator that employs the concept of

boundary flags could-be adapted for use with SANCHO.

SANCHO can be used to perform thermal stress calculations using thermal

data supplied by an independent heat conduction code that writes a

temperature tape in the proper format. SANCHO will linearly interpolate

between times on the thermal tape to obtain temperatures at the current time

step. The format of the temperature tape is provided in a later section.

The Input is divided into three distinct sections to simplify the task

of preparing code input. Within limits, each section is order independent

with regard to input, however, the problem definition section and the
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material property section must be ended with an 'ENDSET' command card and

the first card in the data must be a TITLE card. The last card in the

boundary condition and loads specification section, which is the last card

'in the input, must be an 'END' card. The first section of input is used to

define the class of problem being solved. Information such as type of

problem or size of time step is input here. The second section is devoted

to the description of the materials being used in the problem. The third

and final section provides all the data necessary to define loads, boundary

conditions, slidelines. etc. These input groups will be described in the

following sections.

In order to simplify the discussion of the necessary Input, certain

conventions will be adopted. Most data cards will begin with a keyword

followed by any required data. All alphanumeric input will be capitalized.

The symbols [ ] will enclose all non-keyword data. All program default

values will be enclosed in I I. The input cards will be discussed in

alphabetical order of keywords with a few exceptions. The section one input

is given below.

4.1 Problem Definition - Section One Input

There is no keyword associated with this card. The user is allowed 80

columns to input a title associated with the particular run. The TITLE card

must be present and must be the first card in the input stream.

AXI SY

This card requests that an axisymmetric analysis is to be performed.

fAXISYM[.

I
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CONTROL. rniiat -inim Ip inimdt -k Liz]

This card is necessary to establish the problem size for setting up the

storage arrays.

nummat- The number of materials in the problem III

numlp- The number of pressure-time points input tOt

numdt- The number of displacement-time points input 101

klin- The type of stress measure to be written to tape 131

Note: KLIN = I Cauchy stress and Signorini strain

= 2 2nd Piola-Kirchoff stress and Green-St.Venant strain

= 3 Cauchy stress and Signorini strain where the bulk strain

equals the In (p0 /p).

DEU

This card requests that debug information be written to the output file

and to the plot file. The frequency of this information is specified by the

ntout parameter on the SOLUTION card described below. This option can be

used by an analyst to produce plots of displacements at iterations rather

than at converged solutions. WARNING: Use of this option can result in

large output plot files. The user is encouraged to limit the numbers of

Iterations by setting a low value of meq on the SOLUTION card.

DXSW A1_

This card lets the user control the stability of the central difference

time Integrator by multiplying the internally computed time step by a

ftctor dtx. Some problems may show a local instability which may be

removed by reducing the critical time step. 10.91

-I- MUltipller of the internally computed critical time step to insure
stability. For most calculations the default value should be used.
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ELEYENTms.eII.e12.el3.eI4 . eln]

This card selects the elements to be written to the print file. Up to

sixteen (16) elements may be requested. If all elements are to be printed

only the keyword is required. If no elements are to be printed omit this

card.

ell- The number of the element to be printed at the requested time
step.

This card is required to end all Section One input.

1STRESS. [NWGRD.ulgr.uJrg~sjgtj

This card is used if a nonzero initial stress state is to be specified.

NWORD- Either the word CONSTANT or VARIABLE is entered to signify whether

initial stress state Is to be a constant or variable with respect to

position. If VARIABLE is specified, then a user supplied subroutine

INITST is required to specify the initial stress variation. It

CONSTANT is entered, then the following stress values are required

and used for all elements.

sigr- Magnitude of constant sigr stress to be applied to every

element. 10.01

sigz- Magnitude of constant sigz stress to be applied to every

element. 0.01

sigt- Magnitude of constant sigt stress to be applied to every

element. fO.Oj
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NODES.[nodeI.node2.node3 ..... nodel6]

This card is used to define those nodes whose deformations and

temperatures are to be printed.

nodel- The number of the node whose values are to be written to the print

file. Up to sixteen (16) nodes may be specified on this card. If

all nodes are to be printed, leave the card blank. If no nodes are

to be printed omit this card.

PLANE

This card specifies that a plane strain problem will be solved.

IAXISYhI

PLOT. rETEM MT . [STRESS .STRAIN. STATE1I
PLOT. [ODh&LU DISP.TEM.ESIDUALI
PLOT. rGLORAL] -rRHAG. ITER]

This card(s) selects the quantities written to the post-processing

file.

ELEMENT- User selected element quantities will be output.

<STRESS.STRAIN,STATE>

NODAL- User selected nodal quantities will be output.

CDISP,TEMP.RESIDUAL>

GLOBAL- User selected global quantities will be output.

404AG, I TER>

11 these quantities are omitted no plot data will be written. The individual

quantities must be specifically selected. Data is written to FILEJI.

TILEII is written in the SEACO [29] format. This card must be used

Carefully to avoid large output plot files.
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ERI

Causes the node and element data to be printed. This includes node

coordinates, element connectivity and material assignments. Default is no

data printed.

RESTART.nf req.nstrtj

Allows the user to stop an analysis, check the results, and then

restart the analysis from the intermediate stopping point. All previous

input cards are necessary on the restart and any card may be changed.

nfreq- Specifies the frequency of writing the restart tape. This tape

contains multistep restart information so that a successful restart

may be done at any previously written time step. Restart data is

written to FILE18.101

nstart- Specifies the time step that should be used for the restart. The

job will begin at step nstart and a new restart can be written

every nfreq steps. Restart data is read from FILE19.101

SOLUTION.[toler.ntout.meg.toler2j

Parameters controlling iteration and convergence are input on-this

card.

toler- Specifies the percentage of imbalance allowed by the code before

convergence is achieved. Imbalance is measured by the L2-norm of

the residual forces divided by the L2-norm of the applied loads.

10.51

ntout- Specifies the frequency of intermediate solution information during

the iteration process. Such quantities as time, time step,

relaxation factor, L2-norm of the applied loads, and percent
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imbalance are printed. If this field is left blank, then the

information will be printed each iteration.}11

WARNING: Printing this information for each iteration may lead to

an excessive amount of unwanted output.

meq- This is the maximum number of iterations allowed for a given

load or time step. If this is reached, the problem will terminate

unless toler2 is loosely specified.120001

toler2- A user defined tolerance which the analyst can employ to

modify the convergence specified in toler above. If the problem

iterates meq times then the imbalance is checked against toler2

before the analysis is stopped. Itolerf

jEWL..thforc

This card sets a flag for a thermal stress analysis. This card is

required if a thermal stress analysis is to be performed. Default is no

thermal analysis. Thermal input is supplied on FILE56.

thforc- User defined magnitude for thermal force norm. This quantity can be

used to override the computed thermal force norm. This may be

desirable if the automatically computed norm is too large and the

usual tolerance values may be too loose.0.1

TIIEPLOT.ttl.incl.t2.inc2.t3....

This card is necessary if plot output is desired. The frequency of

writing the plot files is controlled by this card. Ten plot increments are

allowed. 10.1

tl- Time at which plot output is to start

inc- Time increment for writing of plot output file

t2- Time at which plot output ends for nl and begins for n2
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TIMEPRNT[tI.incl .t2.inc2.t3.Inc3....

This card is necessary if printed output is desired. The frequency of

writing the print files is controlled by this card. Ten print increments

are allowed. 10.1

ti- Time at which printed output will start

inc- Time increment for writing of output file

t2- Time at which printed output ends for nI and begins for n2

TIMESTEP rtInI t2.n2.t3.n3,t4.... I

This card is necessary for the control of the solution steps. RESTART

times do not have to correspond to tU. The restart time must however be

found within the time frame defined on this card. Ten timestep

specifications are allowed.

tl- Time at which the problem will begin

nI- Number of timesteps to be taken between tI and t2

t2- Final time for this control segment and beginning time for n2
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4.2 Material Property Specification - Section Two Input

All materials have the following sequence of three input card sets;

1. MATERIAL.mtvpe.ro9revx.gravv.omege1

This card defines the material type and body force parameters.

mtype- The material type number

ro- Mass density of the material. This is used for the acceleration

loading.

gravx- Acceleration in the x-directionf0.1

gravy- Acceleration in the y-direction$0.1

omega- Angular velocity about the y-aisisD.1

Gravx. gravy, and omega need to be input with only one material.

Whenever these three values are also read .on a later material card, the

later values will be the values used in the problem.

2. MATERIAL TITLE CARD

The second card for each material is the title that describes this

material. There are 80 columns available for the material title.

3. The third card set contains material constants required for each

material model. No keyword is used for the third card set. The form of

the input for each material model is given on the following pages.

For problems in which several materials are used, the material property

sets must be input in the order in which the materials are defined during
aesh generation.

Required to end material property section.
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MATERIAL TYPE I - FINITE STRAIN ELASTIC-PLASTIC STRAIN HARDENING

MATERIAL,1,ro,gravx,gravy,omega

MATERIAL TITLE CARD

CARD 1

CARD 2

E.Ptc.EtP CARD 3

E- Young's Modulus
1- Poisson's ratio
to- Yield stress

Et- Hardening modulus

A- Hardening parameter
P=O Kinematic
#=I Isotropic

Note: If the yield stress t0 is zero, elastic behavior is assumed.

The following data are required for thermal stress problems. Up to
seven pairs of data may be input. If a non-thermal problem is required omit
the following cards.

nt,templ,temp2.temp3,temp4.temp5,temp6,temp7 CARD 4

nt- Number of temperature pairs to be input
templ- Temperature 1
temp2- Temperature 2

temp7- Temperature 7

epsl.eps2.eps3.eps4,eps5.eps6.eps7

epsl- Thermal strain for templ
eps2- Thermal strain for temp2

eps7- Thermal strain for temp7

2 < nt < 7

CARD 5

-
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MATERIAL TYPE 2 - FINITE STRAIN SOIL AND CRUSHABLE FOAM

MATERIAL,2.ro.gravxgravy,omega CARD 1

MATERIAL TITLE CARD CARD 2

,X.OlO% aI'a1 2 CARD 3

p - Shear modulus
KX -Bulk unloading modulus

*O- Yield function constant

*l- Yield function constant

a2- Yield function constant

The following data are input in pairs until up to six pairs have been
read. When more than one card is needed, a continuation card is indicated
with a * after the last data on that card.

Pressure-Volume Strain Data

In.pIn.p,lnp,In.p, CARD 4
Inp.1n,p

In- Volumetric strain (in p/p0)

p- Pressure

The following data are required for thermal stress problems. Up to
seven pairs of data may be input. If a non-thermal problem is required omit
the following cards.

nttempl,temp2,temp3,temp4,temp5,temp6,temp7 CARD 5

nt- Number of temperature pairs to be input 2 < nt < 7
tempi- Temperature I
temp2- Temperature 2

temp7- Temperature 7

ePsljeps2eps3eps4.eps5.eps6ueps7 CARD 6

Cptl- Thermal strain for tempi
eps2- Thermal strain for temp2

ep27- Thermal strain for temnp7
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MATERIAL TYPE 3 - POWER HARDENING STEADY STATE CREEP MODEL- ELASTIC BULK

MATERIAL,3.ro,gravx,gravy,omega CARD 1

MATERIAL TITLE CARD CARD 2

2 KK.A mCl CARD 3

2At- Shear modulus
K- Bulk modulus
A- Material constant
m- Stress power constant
Cl- Exponential-constant( Q/RO if isothermal or Q/R if thermal)

Where Q is the activation energy, R is the universal gas constant,
and e is the absolute temperature for the isothermal calculation. 141 the
calculation is not isothermal then the program furnishes the correct
temperature for use in the material model.

The following data are required for thermal stress problems. Up to
seven pairs of data may be input.

nt .templ1. temp2 ,temp3, temp4. temnp5, temTpG, temp7 CARD 4

nt- Number of temperature pairs to be input
templ- Temperature 1
temp2- Temperature 2

temp?- Temperature 7

epsl.eps2,eps3,eps4.eps5,eps6,eps7

epsl- Thermal strain for templ
eps2- Thermal strain for temp2

eps7- Thermal strain for temp7

2 < nt < 7

CARD 5
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4.3 Boundary Condition Specification

In SANCHO, multiple boundary condition histories are handled with a

single history card and the concept of delay time. Delay time allows a user

to specify multiple pressure or displacement histories and relate each one

to a specific boundary condition. History specification can be done on a

single PHISTORY or a single DHISTORY command. Consider the example shown in

Figure 12 where multiple pressure histories are defined using a single

PHISTORY card. Each individual history can be uniquely identified by the

time associated with the beginning of that history. This time is defined as

the "delay time". For use as input into SANCHO, the delay time should be

input as a NEGATIVE time.

td dd t3 TM

Figure 12. Example of the use of a single PHISTORY card to define multiple
time histories through the use of the delay time, td*

DISPR.[b.c. number,value~delay time]

DlSPlN.[node number,value,delay time]

These cards specify a radial (R) boundary restraint. DISPR is used with
a boundary flag identifier. DISPRN is used to specify a restraint on an

individual node.
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b.c. number- The unique boundary condition i.d. provided by the mesh

generator.

value- Magnitude of the nonzero specified displacements.

delay time- Identifier of a particular time history from a DHISTORY card.

node number- Node number which receives the specified displacement.

DISPZ.[b.c. number.value~delay time]

DISPZN,[node number~valuedelay time)

These cards specify an axial (Z) boundary restraint. DISPZ is used with

a boundary flag identifier. DISPZN is used to specify a restraint on an

individual node.

b.c. number- The unique boundary condition i.d. provided by the mesh

generator.

value- Magnitude of the nonzero specified displacements.

delay time- Identifier of a particular time history from a DHISTORY card.

node number- Node number which receives the specified displacement.

DISPRZ,[b.c. number,valuedelay time]

DISPRZN,[node numbervalue.delay time]

These cards specify both a radial (R) and an axial (Z) boundary

restraint. DISPRZ is used with a boundary flag identifier. DISPRZN is used

to specify a restraint on an individual node.

b.c. number- The unique boundary condition i.d. provided by the mesh

generator.

value- Magnitude of the nonzero specified displacements.

delay time- Identifier of a particular time history from a DHISTORY card.

node number- Node number which receives the specified displacement.
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PRESSURE,[b.c. number,pressure value, delay time]

PRESSUREj[i, J, pi, pj, delay time]

This card allows the specification of an applied pressure on an element

face. The two forms of input result from either use of a mesh generator to

specify pressure boundary conditions or the use of element I-J side

specification.

b.c. number-

pressure value-

delay time-

ij-

pi .pj-

The unique boundary i.d. provided by the mesh generator.

Constant value of the pressure applied to the element face.

Identifier of a particular time history from a PHISTORY

card.

Identifies the node numbers that define the element face to

receive the applied pressure.

Refers to the pressure values for the respective I and J

nodes. A linear pressure variation is allowed along the

element face. The program reorders the I-J line definition

so that the element lies on the left when going from I to J.

Positive pressure acts-normal to the element face and in a

compressive manner.

SlEW,[b.c. number, angle of skew]

SlMMN.[node number~angle of skew]

This card allows specification of a skewed roller type of boundary

condition. The angle of skew is defined, Figure 13, from the positive r-axis

to the desired direction of motion along the sliding boundary.

b.c. number-

angle of skew-

node number-

The unique boundary condition i.d. provided by the mesh

generator.

Angle defined from positive r-axis to the desired direction

of notion.

Node number which receives the specified displacement.
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Figure 13. Mixed stress and displacement boundary condition where the node

remains free to move in a direction parallel to a line with inclination C.

SLIDE,[master.slave.cflcf2.cf3]

This card specifies the master/slave connection for any slidelines in

the analysis. A maximum of 12 slldelines is allowed.

master- Number of the boundary flag i.d. for the Blideline master side

slave- Number of the boundary flag i.d. for the slideline slave side

cfl- Value of the friction coefficient. if fully fixed use -1.

Otherwise insert the proper value here. 10.1

cf2- Value of slideline overlap tolerance to determine when contact of

surfaces does occur.12% of the Master element side lengthy

cf3- Value of stress for release of slave node from master surface.

Value is set to no releasea non-zero value is required to activate

this-option. 1°-0- --
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PHISTORYtItl .pl .t2,p2,t3.p3,t4,p4.]

This card allows for specification of the time-pressure curve for theanalysis. Pressures are always positive acting normal to the element face,Both times and pressures are defaulted to zero.

tl-

pl-

t2

Beginning time for the pressure specification
Pressure value associated with tI
Ending time for the pressure specification

DHISTORY,[tl,dl,t2,d2,t3,d3,t4.d4 
....

This card allows for specification of the time-displacement curve forthe analysis. Same definition for input as PHISTORY. Both displacementsand time values are defaulted to 0.

END

This card is the last line in the SANCHO input stream. The cardSignifies to terminate the reading of additional input and begin execution.
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Table I. Summary of Keywords and Input

0 - Optional Input i
R - Required Input

Problem Definition Section Page

Keyword

TITLE ............................... 
(R) ........... 58

AXISYM ...............................
(0)......... ............ 58

CONTROL.nummatnumlp,numdt,klin ................ 
(R) ........... 59

DEBUG ................ 
(0) .......... .. 59

DXSCALE,dt . ...................... (0) ..... 59

ELEENTS,ell.el2.el3,...,e116................ 
(0) ..... 60

ENDSET . ................... (R) ...... 60

ISTRESS,NWORD,sigr,sigz.sigt .............
60........... 60

NODESndl,nd2.nd3. ndI6 ................ (0) .. 61

PLANE .. ............... (0) .. 61

PLOT.ELELENT,STRESS.STRAINSTATE ............... 
(0) ........... 61

PLOT.GLOBAL.MAUG.ITER .......................... 
(0) ........... 61

PLOT,NODAL.DISP.TEMP,RESIDUAL .................. 
(0) ........... 61

PRINT ....................................... 
(0) ........... 62

RESTART.nfreq.nstart .................. 
(0) ........... 62

SOLUTION.toler.ntout,uieq.toler2 ................ 
(R) ........... 62

THERMAL,thforc .............................. 
( 0) ........... 63

TIMEPLOT.tl.tinc,t2,tinct3,...,tn ............. 
(0) .63

TIEPRNT.ti.tinc.t2,tinc,t3.....tn ............. 
(0) .64

TIMESTEP.tl.nlt2.n2,t3,. ... ,tn .(R) 
.64
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Table 1. Summary of Keywords and Input (Cont.)

Material Propertv Specification Section

Page
Keyword

ENDSET ................................ (R) ........... 65

Material Type 1 - Finite Strain Elastic-Plastic Strain Hardening

MATERIAL,1.ro,gravx.gravy,omega ................ (0) ........... 66
material title card
E.V.to,Et,B
nt.templ,temp2... .tempnt
epsl,eps2,.. ,epsnt

Material Type 2 - Finite Strain Volumetric Plasticity

MATERIAL,2,ro.gravx,gravy.omega ................ (0) .......... 67
material title card
u,kOaO,al,a2
Inp,Inp.lnp.In.p.In,p.In,p
nttempltemp2.. .,tempnt
epsleps2,.. .,epsnt

Material Type 3 - Power Hardening Steady State Creep

MATERIAL,3.rogravxgravyomega ................ (0) ........... 68
material title card
2u,K,A.mcl
nt~templ,temp2,...,tempnt
epsl.epst...epnt
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Table 1. Summary of Keywords and Input (Cont.)

Boundary Condition Specification (all of these cards are optional)

Page
Keyword

DISPRb.c. flag number,valuedelay time ...................... 69

DISPRN,node numbervalue,delay time ............................ 69

DISPZ.b.c. flag numbervalue.delay time ....................... 70

DISPZN,node number.valuedelay time ......................... 70

DISPRZb.c. flag number,value,delay time ....... ............... 70

DISPRZNnode number.value,delay time .......................... 70

PRESSURE,b.c. flag number,valuedelay time .................... 71

PRESSURE.ij,pi.pj.delay time ................................. 71

SKEW,b.c. flag number.angle of skew ........................... 71

SK WNnode number,angle of skew ............................... 71

SLIDEmaster.slave,cfl.cf2.cf3 ................................ 72

PHISTORY.tl.pl,t2.p2.t3.p3 .................................... 73

DHISTORY.tl.dl.t2.d2,t3.d3 .................................... 73

END ............................................................ 73
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5 EXTERNAL FILE DEFINITION

SANCHO uses several external files for both input and output. These

are FILE9 for mesh input, FILElI for plot output. FILEiB for writing restart

output. FILEl9 for reading restart information and FILE56 for temperature

data. The element plot quantities written to FILEll post-processing file

consist of element. nodal, and global quantities. Element quantities

written are divided into stress, strain, and state values. Stress values

are the stress measures selected by the user as KLIN on the CONTROL card.

These consist of the SIGR, SIGZ, SIGT, and TAURZ values for each element,

averaged to the centroid. The strain values are made up of similar

quantities. The state values are the quantities stored in the material

state array,'EPX4. These values include effective plastic strain and

physical strain component values. The actual values and their meaning depend

on the constitutive model being used.

The nodal values written to the plot file include the two components of

displacement, nodal point temperatures, and the nodal components of the

residual force vector. The residual force is a measure of the amount of

imbalance force at a node. The residual force is decomposed into R-Z

components. The global values written to the plot file provide information

about the solution behavior. The residual force vector magnitude and the

number of iterations for each converged load/time step are the global

quantities written. The residual force vector magnitude is defined as the

L2-norm of the residual force vector. The list of quantities written to the

plot file is given below:

Nodal Quantities

DISPL R - R or X Displacements

DISPL Z - Z or Y Displacements

TEMP - Nodal Temperatures

RX - Residual Force Component in R or X Direction

RY - Residual Force Component in Z or Y Direction

77



Element Quantities

SIG R - Component of Stress in R or X Direction

SIG Z - Component of Stress in Z or Y Direction

SIG T - Component of Stress in Hoop or Planar Direction

TAU RZ - Component of Shear Stress in RZ or XY Plane

EPS R Component of Strain in R or X Direction

EPS Z - Component of Strain in Z or Y Direction

EPS T - Component of Strain in Hoop or Planar Direction

EPS RZ - Component of Shear Strain in RZ or XY Plane

EPX 1 -State Variable I

EPX 2 - State Variable 2

EPX 3 -State Variable 3

EPX 4 - State Variable 4

EPX 5 - State Variable 5

Global Quantities
i

ITER - Convergence History .

RKAG - Residual Force Magnitude History

The material models and their use of the EPX4 array for state variable

storage is defined below.

Elastic-Plastic Material Model

EPX I -

EPX 2 -

EPX 3 - Integral of Plastic Strain

EPX 4 -

EPX 5 - Ratio of Trial Stress to Yield Stress
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Soil and Crushable Foam Model

Epx I

Epx 2

Epx 3

Epx 4

Epx 5 - Volumetric Strain

Power Hardeninr Steadv State Creen
^ . " . _ _ _ _ ,.

Epx 1

Epx 2

Epx 3

Epx 4

Epx 5

- Effective Creep Strain

Temperatures are input into SANCHO through the use of an externally

written temperature file, FILE56. The tape is written as an unformatted

tape in the following form at the desired thermal time intervals

WR)TE(56) TIME,(T(I),l=l,NUWMP)

where the temperatures, T, are written for each nodal point. SANCHO inter-

polates linearly between thermal time steps to obtain the thermal solution

at the time requested for determination of the structural response.

The user supplied subroutine INITST allows the analyst to apply an

initial stress state to the problem. This feature is particularly useful for
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geomechanics applications where an overburden stress is a function of depth.

The call to subroutine INITST has the following form

SUBROUTINE INITST(ZAVG.RAVGOX, I.BFORCE)

DIMENSION BFORCE(3) I
RETURN

END

where the calling arguments are defined as:

ZAVG - Z or Y coordinate location of the element centroid
RAVG - R or X coordinate location of the element centroid

UX - material number associated with current element

I - current element number

BFORCE - values of initial stress will be returned via this

argument. three values are required - sigr. sigz .sigt

The call to this subroutine is located within a loop that is executed

once per element. A current limitation is that the initial stress be a

constant over the element (each of the four integration points has the same

initial stress state).

If a user supplied subroutine INITST is required, the execution

procedure for a Cray-l running under COS using the Sandia Engineering

Analysis Department procedure file is: i

ACCESS.DN=$PROC,PDN=PROCSID=ACCLIB.

SANCHO, PRO=SUB.
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Without the user subroutine INITST the execution procedure on the CRAY

is.

ACCESSDN=SPROCPDN=PROCSID=ACCLIB.

SANCHO.
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6 EXAMPLE PROBLEMS

Several sample problems are included in this section to demonstrate the

input for SANCHO and for code verification purposes. The problems are

simple examples that can be compared to a known exact solution or to

problems that have been solved by several computer codes. Most of the

features in SANCHO will be exercised in these examples. The use of comment

cards in the input deck should assist in understanding the input structure.

6.1 Free Thermal Expansion

The free thermal expansion of an infinite cylinder was included to

demonstrate the input for a thermal stress problem and to demonstrate the

ability of SANCHO to solve problems involving thermal loads. The model of

the cylinder is shown in in Figure 14a with the corresponding temperature

and strain data. Poisson's ratio is set to zero to allow only radial motion

of the cylinder due to thermal expansion. A single row of ten finite

elements evenly spaced through the cylinder thickness was used to represent

the cylinder behavior. The convergence tolerance was set to 0.1% which is

tighter than usual with SANCHO. This tolerance was chosen because the

absence of applied external forces causes the program to compute equivalent

thermal loads for use in computing the L2-norm of-the applied load vector.

For thermal problems. it has been found that this norm is large relative to

the typical unbalance force norm and the default convergence tolerance

results in an unacceptable solution. The solution improves as the

convergence tolerance is reduced. The normal procedure is to use only the

user applied external forces, when available, in computing the applied load

norm. The radial displacement of the cylinder is compared to the the exact

solution in Figure l4b at various positions through the thickness for a

strain field corresponding to a temperature of.500 degrees.
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PROBLEM I

FREE THERMAL EXPANSION OF A THICK CYLINDER

CONTROL.1 ... 3 $ SETS UP STORAGE
SOLUTION. ..5000,5000,.6 $ SETS CONTROL TOLERANCES
TIMESTEP,O.,10,1. $ SPECIFIES NUMBER OF TIME STEPS

TIMEPRNTO...I,. $ SPECIFIES FREQUENCY OF PRINT
TIMEPLOT,0.,.1.l. $ SPECIFIES FREQUENCY OF PLOT OUTPUT
THERMAL $ SPECIFIES A THERMAL STRESS ANALYSIS
NODES S ALL NODES WILL BE PRINTED
ELEMENTS $ ALL ELEMENTS WILL BE PRINTED
PLOTNODALDISPTEMP.RESIDUAL t NODAL QUANTITIES WRITTEN TO PLOT FILE

PLOT.GLOBALRMAGITER S GLOBAL QUANTITIES WRITTEN TO PLOT FILE
PLOT.ELEMENT.STRESS.STRAIN.STATE S ELEMENT QUANTITIES WRITTEN TO PLOT FILE

AXISYM $ DENOTES AXISYMMETRIC ANALYSIS
ENDSET S END OF PROBLEM DEFINITION SECTION
MATERIAL.1,1. $ DENOTES MATERIAL - TYPE 1

* * TEST MATERIAL *

2.07E11 0. $ MATERIAL PROPERTIES

7,0.,100.,200.,300.,400.,500..1000.

0..1.E-4,2.E-4,3.E-4.4.E-4,5.E-4,6.E-4

ENDSET $ END OF MATERIAL SECTION

DISPZ,2 5 Z DISPLACEMENT FOR BC CODE 2
END S END OF INPUT DATA
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6.2 Pressurized Infinite Cylinder

The problem of an infinite cylinder loaded into the plastic range by an

internal pressure serves as a good check of the elastic-plastic material

model. The exact solution can be found in Prager and Hodge [273. The

problem is depicted in Figure 15 with the boundary conditions and material

properties given. The analysis was performed by taking 6 steps up to 60% of

the maximum pressure and then 20 steps were taken to reach the maximum

pressure. A single row of ten finite elements evenly spaced through the

thickness were used to model the cylinder. A convergence tolerance of 0.57.

was used. The radial displacement of the inner cylinder edge versus p, the

radius of the elastic-plastic boundary, is shown in Figure 15a. A value of

p/a = 2 corresponds to a fully plastic cylinder. For a p/a = 1.2, the

radial and hoop stress distributions versus radial position are shown in

Figure 15b. The agreement with theory in all cases is excellent.

K b

E = 2.07 x 1011 Pa
V= 0.3
a=1.0 b=2.0

vy = 3.1 x 108 Pa
k = Y4i

- THEORY
l FINITE ELEMENT RESULTS

5.0 I I I

4.0-

3.0 -

2.0

1.0 _

0.0 I * I I

1.0 1.2 1.4 1.6 1.8 2.0
p/a

(a)

0.0 I I I 1.0

-0.1 - 0.9

-0.2 - 0.8
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-0.6 0.4

-0.7 0.3
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(b)

t;l

Figure 15. Comparison of SANCHO Results with Theory for an Internally
Pressurized Infinite Cylinder.
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PROBLEM-2

INFINITE CYLINDER W/ INTERNAL

CONTROL,1,2,0.3

SOLUTION..5,5000,5000,.6

TIMESTEP.0..6..6.20,1.

TIMEPRNT,0...1,I.

TIMEPLOT,0.-.1,1.

NODES

ELEMENTS

PLOT,NODAL,DISPTEMP.RESIDUAL

PLOT.GLOBAL,RMAG,ITER

PLOT.ELEMENTSTRESS.STRAIN,STATE

AXISYM

ENDSET

MATERIAL,1.1.

* * TEST MATERIAL * M

2.07E11.,.3,3.1E8

ENDSET I

PHISTORY,0..1..1..2.

DISPZ.2

PRESSURE,1,.5

END

PRESSURE

S.SETS UP STORAGE

$ SETS CONVERGENCE AND CONTROL TOLERANCES

$ SPECIFIES NUMBER OF TIME STEPS
$ SPECIFIES FREQUENCY OF PRINT
$ SPECIFIES FREQUENCY OF PLOT OUTPUT
$ ALL NODES WILL BE PRINTED
S ALL ELEMENTS WILL BE PRINTED
$ NODAL QUANTITIES WRITTEN TO PLOT FILE
$ GLOBAL QUANTITIES WRITTEN TO PLOT FILE
S ELEMENT QUANTITIES WRITTEN TO PLOT FILE
$ DENOTES AXISYMMETRIC ANALYSIS
$ END OF PROBLEM DEFINITION SECTION
$ DENOTES MATERIAL - TYPE 1

s
$
s
$
$
s

MATERIAL PROPERTIES

END OF MATERIAL SECTION

PRESSURE HISTORY PROFILE

Z DISPLACEMENT FOR BC CODE 2

PRESSURE SPECIFIED FOR BC CODE 1

END OF INPUT DATA
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6.3 Stress Relaxation

The stress relaxation of a single element is used to demonstrate 
the

accuracy of the elastic creep model. A single finite element is strained

using a specified axial displacement. The change in the effective stress as

a function of time is compared to the exact solution. The problem is shown

in Figure 16a. The top of the element is displaced O.OOlm and held constant

with time. The effective stress decreases in time as shown by the solid

line in Figure 16b. The SANCHO solution took 90 timesteps with a

convergence tolerance of 0.1%. The numerical results appear to track the

exact solution very well.

-I
-1.0 _ i;;;.0

2 G 24.75 x 109
K S.2S u 109
isAo" A1.05x104

n 4.9

Figure 16a. Model and Boundary Conditions for the Stress Relaxation

Example Problem
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Figure 16b. Stress History for the Relaxation Problem
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f

PROBLEM a

RELAXATION PROBLEM USING THE CREEP MODEL

CONTROL,1-2,3 S SETS STORAGE REQUIREMENTS

SOLUTION,.I.5000.5000-.1 S SETS CONVERGENCE AND CONTROL TOLERANCES

TIMESTEPO.,90,2.592E6 S SPECIFIES NUMBER OF TIME STEPS

TIMEPRNTO. .8.64E4,2.592E6 $ SPECIFIES FREQUENCY OF PRINTED OUTPUT

TIMEPLOT.O.,8.64E4,2.592E6 S SPECIFIES FREQUENCY OF PLOT OUTPUT

NODES $ ALL NODES WILL BE PRINTED

ELEMENTS $ ALL ELEMENTS WILL BE PRINTED

PLOTNODAL,DISP,TEMPRESIDUAL $ NODAL QUANTITIES WRITTEN TO PLOT FILE

PLOT,GLOBAL,EMAGITER S GLOBAL QUANTITIES WRITTEN TO PLOT FILE

PLOT,ELEMENT,STRESS,STRAINSTATE $ ELEMENT QUANTITIES WRITTEN TO PLOT FILE

AXISYW $ DENOTES AXISYXMETRIC ANALYSIS

ENDSET $ ENDS PROBLEM DEFINITION SECTION

MATERIAL,3,2167. $ MATERIAL TYPE 3

I I TEST MATERIAL M *

24.75E9,8.25E9,5.79E-36,4.9,20.13$ MATERIAL PROPERTIES

ENDSET S ENDS MATERIAL SECTION

DISPZ.1,.001 - SPECIFIED NONZERO Z DISPLACEMENT BC 1

DISPZ,2 $ Z DISPLACEMENT FOR BC CODE 2

"DHISTORY.O.,I.,3.16E7.1. $ DISPLACEMENT HISTORY FOR BC CODE 1

END . END OF INPUT DATA
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6.4 WIPP Benchmark II

The last example problem is much more complex than the preceding

examples and therefore relies on comparison with other finite element

programs for solution verification. The problem is a complex geotechnical

analysis of an underground drift in a multilayered geologic medium.

principally rock salt, characterized by creep and with clay seams which are

characterized with sliding interfaces with a friction coefficient of zero.

Elastic anhydrite and polyhalite layers are also interspersed. The problem

was specified as part of the Waste Isolation Pilot Plant (WIPP) Project code

comparison activity called Benchmark 11 (28]. The problem involves

determining the response of an infinitely long array of parallel drifts.

The problem geometry and boundary conditions are shown in Figure 17. The

finite element mesh utilizes 586 elements as shown in Figure 18. The

problem requires an initial stress state that varies with depth from the

surface. Therefore, the initial stress subroutine INITST is required and is

included in the input. The problem allows ten years of creep induced

closure which is done in 330 time steps. Many different quantities were

compared between the various codes in the referenced study. The vertical

closure at the drift centerline as a function of time is shown in Figure 19.

The SANCHO solution appears in the center of the solutions reported for this

problem. Additional comparisons of stress and slideline response can be

found in (28].

91



x X PUzI2.71 Mpo I- -

598.02t ' 4 444414_1 44 t1
II
I

ANHYDRITE I
I
A

F FIXED LINE

602.59
I - .4 M. I.

HALITE
649.93
650.20

Ls 5o03n HALITE

3.96Ia
655.04

FREE
SURFACE S

659.00

660.11
661.02

A

I

I

I
669. M. ~ ~~~14 LDLN
703.66 i .

I POLYMALiTE I

706.77 It ttV-'-1 5.0 pc
6

9 a9.807Mf2

ALL DIMENSIONS
METER
eG8300K
ONLY 4 SLIDELINES
ARE TO BE MODELED

- - PL M 15.00 Mpa
20.27 -

e SYMMETRY LINES -

a I

Figure 17. Problem Definition for the WIPP Benchmark 11 Isothermal
Problem (28J

92



I I-1 1 1-

Illlll
_ _ _ _ I | t

_ _ 11 1
_ _ ,,
= = l l l

_ Ei_
h ! ! _ _

_ _ _ _ _ _ _ _ _
1 _ _ _

l _ _ .
w Z E * t _ r _

. . .

. . _ t r |
| ' |

§ I I
_ _ _ 3 3

. : : : = = = =

4 . r _ _ T _
-To

I 2Tr -
1 UI l l I
| | | m-

X
L111E

Xffl
1 1HH

Figure 18. Mesh Used by SANCHO for the WIPP Benchmark 11 Isothermal Problem

93



1.0

0.8 I MARCOB)

SPECTROM-N

E -.W JAC
w

0.6

S0

0.41
.1

LU

>0.2

0. 1.E8 2.1E8
TIME (seconds)

Figure 19. Closure Results for the WIPP Benchmark II [28]

3.ES

94



PROBLEM 4

USER DEFINED INITIAL STRESS SUBROUTINE

SUBROUTINE INITST(ZAVG,RAVGMXI.BFORCE)
DIMENSION BFORCE(3)
BFORCE(1)=ZAVG*9.8066-2167.
BFORCE(2)=BFORCE(1)
BFORCE(3)=BFORCE(1)
RETURN
END

BENCHMARK II - SANCHO SOLUTION
CONTROL.4.2-.3
PLANE
ISTRESS,VARIABLE
SOLUTION..5.5000,1000..6
RESTART,33
PLOT,ELEMENT.STRESS,STRAIN,STATE
PLOT,NODALDISP.TEMP.RESIDUAL
PLOTGLOBAL.RMAG,ITER
TIMESTEP0. ,330,3.157E8
TIMEPRNT,0.,1.5785E7,3.157E8
TIMEPLOT,O.,1.5785E73.3157E8
NODES
ELEMENTS
ENDSET
MATERIAL,3,2167..,-9.8066

0* HALITE '0

s
s
$
s
$
s
s
s
s
s
s
s

CRAY I VERSION
SETS STORAGE REQUIREMENTS
PLANAR PROBLEM REQUESTED
SPECIFIES INITIAL STRESS STATE
SETS CONVERGENCE AND CONTROL TOLERANCES
SPECIFIES RESTART EVERY 33 STEPS
ELEMENT QUANTITIES WRITTEN TO TAPE
NODAL QUANTITIES WRITTEN TO TAPE
GLOBAL QUANTITIES WRITTEN TO TAPE
SPECIFIES NUMBER OF TIME STEPS
SPECIFIES FREQUENCY OF PRINTED OUTPUT
SPECIFIES FREQUENCY OF PLOTTED OUTPUT
ALL NODES WILL BE PRINTED
ALL ELEMENTS WILL BE PRINTED
END OF SECTION ONE INPUT
MATERIAL TYPE 3

1.984E10.1.653E10,5.79E-36.4.9,20.13
MATERIAL,3,2167...-9.8066 $ MATERIAL TYPE 3

** ARGILLACEOUS HALITE **
1.984E10.1.653E10,1.74E-35,4.9,20.13
MATERIAL,3.2167..,-9.8066 t MATERIAL TYPE 3

* 10 % POLYHALITE - 90 7 ANHYDRITE
2.12E10,1.766E10,5.21E-36.4.9,20.13
MATERIAL.1,2167.,.-9.8066 t MATERIAL TYPE I

*r POLYHALITE AND/OR ANHYDRITE
7.24E10,.33
ENDSET S END OF SECTION TWO INPUT
PRESSURE,1.1.271E7
PRESSURE.22,1.5E7
DISPRZ,2
DISPR,3
SLIDE.4.5,0.
SLIDE,6,7,0.
SLIDE,8.9,0.
SLIDE,11,10,0.
SLIDE,16,17,-i.
PHISTORY,0.,1.,4.E8,1.
END

$
s
s
s
s

SPECIFIES
SPECIFIES
SPECIFIES
SPECIFIES
SLIDELINE
SLIDELINE
SLIDELINE
SLIDELINE
SLIDELINE

PRESSURE BOUNDARY
PRESSURE BOUNDARY
ZERO DISPLACEMENT
ZERO DISPLACEMENT
SPECIFICATION
SPECIFICATION
SPECIFICATION
SPECIFICATION
SPECIFICATION

CONDITION
CONDITION
IN R AND Z
IN R

$ PRESSURE HISTORY FOR CODES 1 AND 22
S END OF INPUT DATA -
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