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ABSTRACT

Samplés of the Bullfrog Member of the Crater Flat Tuff from the -
depth interval 758.9 to 759.2 m in hole USW-GL on the Nevada Test Site
were tested in triexial compression. Test conditions were: 1) effective
confining pressure to 20 MPe; 2) temperature of 2oo°c; 3) both dry and
with pore water pressures from 3.4 to 5 MPa; end L4) a strain-rate of
10'u/s. The results suggest that the presence of water causes the
strength to decrease. In addition, the brittle-ductile transition pressure
for this rock wgs found to be ebout 15 MPe, regardless of saturation.
Below this pressure deformation is characterized by unsteble strees
drops &nd the development of a siqgle fracture, and sbove this pressure
deformation is stable and distributed more uniformly throughout the

sample.
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:Effe"éﬁs of Elevated Tempersture and Pore Pressure on
the Mechsnicel Behavior of Bullfrog Tuff
} William A, Olsson
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- Sandis Nationsl Laboratories
Albuquerque, New Mexico ‘87185

INTRODUCTION

The Nevade Nuclear Weste Storege Investigetions (NNWSI) project which
iz edminigtered by the Nevadae Operations Office of the U, S, Department

of Energy ;s agsessing thg feasibiﬁty of emplacing nucleer waste in
___;ilicic tu:;’fslap Yucce Moung:ln, on and. near the Nevede TgstA Site,
Part of this program consists of design celculations for en under-
‘ground nuclea.r-wastg repgsitory which require :extepive meéhanical- ‘
property data. A preliminary testing program (O1sson a.nd Jones, 1980)
concentrated on nomina;l.ly dry.samples at roonm temperatm'e. ';!hg :ock

. near & proposed repository at @epths.below the water teble is wet,

. a.nd. will be subjected to both themal a.t_:ld mechanicel loading, so it

is nececzary to de_temine the effects o; theg_e_variablga on matrix
mechenical pmpertigs. . Accordingly, _sanq)les of the Bpllfrog M__ember_‘ of
the Crater Flat Tuff from the depth intervel 758.9 to 759.2 in hole
USW-Gl on the NIS were tested in triexisl compression &t test conditions
of: 1) effective confining pressure %o 20 MPe; 2) tempersture of 200°C;
3) sg.mplg sta'_ce ’pgtlg dry end with pore water pressures from 3.4 to 5 MPa;
and k) e strein-rate of lo'h/s.




Because sample availability was limited, it was necessary to recore
test. specimens 2,54 cm in diameter and 5.08 cm long from a 6.3 cm-diameter
sample core, Seven specimens were recoverad. The small sizs of the
specimens precluded specimen volume measurement during the triaxial
tests because the sensitivity of the dilatometric vélums-msasuring systen
is not sufficient. Thus, only axial load-deformation data were measured,

Specimens were Jacketed with sleeves of silicone rubber sealant.
Constant pore pressure was applieq to both ends of the samples. The
calculated porosity of tuff at a depth of 759.9 m is 0.27; this is

probably representative of the rock tested.

RESULTS

Four of the seven samples were tested dry and vented at 200°C. Ef-
fective confining pressures were 5, 10, and 20 MPa., Stress-strain curves
for these tests are showa in Pigure 1., Curves obtained at the two lower
confining pressures exhibit maximums in the stress difference, followed
by intervals of decreasing stress; eventually the atress becomes essentially
constant. The pesk atress 13 taken to indicate the fracture stress, and
the lower value of 3tress at high atrain is a measure of the frictional
ragsistance to sliding on shear fractures formed during the falling part of
the stress-strain curves. The 10-MPa test i1llustrates this shape best; the
5-MPa tast had not yet reached a constant value of stress. The two tests
run at 20 MPa show little or no stress-drop after peak aﬁress, although
the curve for sampla number 3 shows a sudden decrease in stress at 2.5%
strain, which was caused by a leak in the jacket.

Posttest examination of the specimens show that, at 5 MPa effective
confining pressure, this tuff develops a well-defined but irregular shear

fracture at about 25° to the axis of maximum compression. At 20 MPa,



deformation is disfribﬁtea'over'dumerous'interseéting'shear fractures,
;;“caeeing the‘speeimen te take on & bulging.aﬁpearence. At 10 M?a,utﬁe
| macroscopiz mode of deformation is intermediste between those et higher
and lower conrining pressures. The strength of the dry speeiﬁens in-
cresses from 87 MPa at 5 MPs confining éreésﬁre'to~an averaze of 134 MPa
et 20.7 MPa confining pressure (Teble 1). ‘
The results for the three teste run wiﬁh constant porelpressure are

exhibited in Figure 2. A trend similer to that for thé dry specimens

is seen with regard to the ghape of the stress-strain;curve es &
function of ébnfiﬁing press&re; Thet is, 8t 5 MPa effeetiveieonfining
' pressure, there ie & well-defined stress maximum which is followed by

e stress drep and e aubgeéﬁeﬁt interval of consﬁahﬁ stress. At 12.5 Mpe,
the stress &rbﬁ is'more gradﬁal, and occurs et & higher strain. There
'is no stress drop at 20 MPa. The macroscopic modes of deformation ere
the same as for the dry specimens. The strength of the wet specimens
(Teble 1) 1ncreases from 70 MPa &t an effective confining pressure of

5 MPe to 86 MPa et an effective confining pressure of 20.7 MPa

v ’ DISCUSSION
Orowen (1960) suggested thet the gradusl disappeerance of post-

frecture stress drops withv1n¢rea§ed_eon;ining_pressure ean be explained

in terms of the relative values of the frictional resistance to sliding

end the shear s;rength¢of,1ntact roek.‘ﬂAt lower preesures,,the frictional
resistance to sl;dingyis less then»the metrix sheer-fracture stress, so that
~when the ehear fracture forms, stress drops to an equilibrium value dic-
tatedvby;the slidin; resistance’(e.g., the 5 MPa.and 10 MPa curves in
Figure;l). Becau§e frictiopal_resistance to_sliding incresases more .
rapldly with confining pressure than does intact.rock strength (e.g.,

Olsson, 1973), there comes & point when the fracture stress and frictional
7



stress are equal, Deformation will then be distributed more unifqrmly
throughout the specimen, and it may occur as sither distinct shear fractures
or as a more ductiles mode of deformation characterized by cryataL.plasticity.

The pressure at which the disappearance of post-fracture stress
drops i3 essentially complgte‘has been referred to as the brittle-ductile
transition pressure (Heard, 1060; Byerlee, 1968). Examples comparing
friction stress as a function of confining pressure to intact rock shear
strength as a function of confining pressure for different rock types may
be found in Byerlee (1968) and Olsson (1973).

It is clear from the macroscopic modas of deformation apd sh?pes of
the atress-afrain curves that Bullfrog tuff (0;27 porosity) deformed at
2oo°c, wet or dry, is characterized by a brittle-ductile'transition at the
relatively low effective confining pressure of about 15 MPa. There are at
least two implications of this behavior: the first i3 related to excavation
stability and the second concerns altered permeability. With regard to the
first point the specimens were tested in a displacement-controlled machins,
3o that no increase in strain-rate occurred during fracturing. Ia locading
systems that have higher effective compliances, such as the in-situ
loading aystem which i3 comprised of the surrcunding rock plus discontinuities
and voids, such stress drops can take placs much more rapidly. In fact,
seismic energy caa bas released,'or structural integrity lost. Thus, the
higher the effective confining pressure, ths less likely structural in-
stability 1s to occur as a result of postfracture stress drops.

As to the second implication of altersd permeability, at low conriniﬁg
pressure whers failn;e occurs along orme well-defined fracture, permeability
will be enhanced due to the presence of the fracture. However, at a
pressure at which many fractures are formed throughout the specimen,

permeability may be enhanced even mors. Alternatively, permeability may



change little if the multiple fractures are not interconnected. Extrapolation
}tq the field, howeve:, 2l1s0 requires consideration of thg compeﬁing pro- |
cegs of decreased fracture permeability due to'increageﬁ pressure.

» The effegt of the»presgnce of vater on,thglst;ength ofjthg Bul;r:og
samples studied here is shown in Figure 3 &s & plot of /J, = .'(°1 - 3)//3
ageinst 11/3 - B, I,

is the first stress inverient, end PP is the pore préésure. A straight-

line fit, calculated by the method of leest squares, is drswn through the

1s the second inveriant of the stress deviator, Il

dry date poihts‘gs>a,rg£Erence. There ere. insufficient dete from saturated
tests to esteblish en accurate relationship between ghear strength aﬁd
mean effective pressure, bht the trend 1is cleaf:r the presence of wé;er has
e significant weskening effect. This is consistent witﬁ earlier findinge
et room température on.weldedfsamplgs from the Grouse Cenyon Member of

the Belted Range Tuff (Olsson and Jones, 1980).

-~ CONCLUSIONS
The seven tests reﬁorted‘here are consistenf:with’fhe roliowihg
conclusions:

1. The presence of water csuses the strength of welded tuff to decrease,
et least et & tempersture of 2oo°c.

2. The brittle-ductile transition pressure for Bullfrog tuff with s
porosity nesr 0.27 is about 15 MPa, regardless of seturation state; the
dependence of this pressure upon strain rate remains undefined.

3. Below the brittle-ductile transition pressure, postfracture deformetion
is characterized by unstesble stress drops; at higher pressures, post-

fracture deformation is stable,
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Teble 1. Triexisl Test Date for Bullfrog Tuff et 200°C

Maximum .
Confining Pore Differentisl Young's -
Sample Pressure Pregsure Stress Modulus
Kumber (MPe2.) (MP2 ) (MPa) (GPa)
3 i ' 5 0 87 ‘ 16.5
10 0 93 15.7
2 - 20.7 ) 119 I 17.6
5 | 20.7 0 L8 20.5
7 10 5 70 ' 13.1
6 17.5 5 83 17.8
1 24,1 3.h 8 13.8.
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Figure 1: Streas-strain curves for Bullfrog tuff obtained on dry samples at 200°¢.
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Figure 2; Stress-strain curves for Bullfrog tuff obtained on vwet samples with constant
pore pressure at 200°¢,
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