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ABSTRACT

Samples of the Bullfrog Member of the Crater Flat Tuff from the

depth interval 758.9 to 759.2 m in uole USW-G1 on the Nevada Test Site

were tested in triaxial compression. Test conditions were: 1) effective

confining pressure to 20 MPa; 2) temperature of 2000C; 3) both dry and

with pore water pressures from 3.4 to 5 MPa; and 4) a strain-rate of

10 /s. The results suggest that the presence of water causes the

strength to decrease. In addition, the brittle-ductile transition pressure

for this rock was found to be about 15 MPa, regardless of saturation.

Below this pressure deformation is characterized by unstable stress

drops and the development of a single fracture, and above this pressure

deformation is stable and distributed more uniformly throughout the

sample.

This work was supported by the U. S. Department of Energy (DOE) under
Contract DE-ACo4-76-DPoo789.

**
A U. S. DOE Facility.
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Effects of Elevated Temperature and Pore Pressure on

the Mechanical Behavior of Bullfrog Tuff

William A. Olsson
Geomechanics Division 5532

Sandia National Laboratories
Albuquerque, New Mexico 87185

INTRODUCTION

The Nevada Nuclear Waste Storage Investigations (IOWSI) project which

is administered by the Nevada Operations Office of the U. S. Department

of Energy is assessing the feasibility of emplacing nuclear waste in

silicic tuffs at Yucca Mountain, on and near the Nevada Test Site.

Part of this program consists of design calculations for an under-

ground nuclear-waste repository which require.extensive mechanical-

property data. A preliminary testing program (Olsson and Jones, 1980)

concentrated on nominally dry.samples at room temperature. The rock

near a proposed repository at depths below the water table is wet,

-and will be subjected to both thermal and mechanical loading, so it

is necessary to determine the effects of these variables on matrix

mechanical properties. Accordingly, samples of the Bullfrog Member of

the Crater Flat Tufffrom the depth interval 758.9 to 759.2 in hole

USW-G1 on the NTS were tested in triaxial compression at test conditions

of: 1) effective confining pressure to 20 MPa; 2) temperature of 2000C;

3) sample state both dry and with pore water pressures from 3.4 to 5 MPa;

and 4) a strain-rate of 10 /s.Be
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Because sample availability was limited, it was necessary to recore

test. specimens 2.54 cm in diameter and 5.08 cm long from a 6.3 cm-diameter

sample core, Seven specimens were recovered. The small size Of the

specimens precluded specimen volume measurement during the triaxial

tests because the sensitivity of the dilatometric volume-measuring system

is not sufficient. Thus, only axial load-deformation data were measured.

Specimens were Jacketed with sleeves of silicone rubber sealant.

Constant pore pressure was applied to both ends of the samples. The

calculated porosity of tuff at a depth of 759.9 m is 0.27; this is

probably representative of the rock tested.

RESULTS

Four of the seven samples were tested dry and vented at 2000C. Ef-

fective confining pressures were 5, 10, and 20 MPa. Stress-strain curves

for these tests are shown in Figure 1. Curves obtained at the two lower

confining pressures exhibit maximums in the stress difference, followed

by intervals of decreasing stress; eventually the stress becomes essentially

constant. The peak stress is taken to indicate the fracture stress, and

the lower value of stress at high strain is a measure of the frictional

resistance to sliding on shear fractures formed during the falling part of

the stress-strain curves. The 10-MPa test illustrates this shape best; the

5-HPa test had not yet reached a constant value Of stress. The two tests

run at 20 MPa show little or no stress-drop after peak stress, although

the curve for sample number 5 shows a sudden decrease in stress at 2.8%

strain, which was caused by a leak in the Jacket.

Posttest examination of the specimens show that, at 5 MPa effective

confining pressure, this tuff develops a well-defined but irregular shear

fracture at about 250 to the axis of maximum compression. At 20 MPa,

6



deformation is distributed over numerous intersecting 'shear fractures,

causing the specimen to take on a bulging appearance. At 10 MPa, the

macroscopic mode of deformation is intermediate between those at higher

and lower confining pressures. The strength of the dry specimens in-

creases from 87 MPa at 5 MPS confining pressure to an average of 134 MPa

at 20.7 MPa confining pressure (Table 1).

The results for the three tests run with constant pore pressure are

exhibited in Figure 2. A trend similar to that for the dry specimens

is seen with regard to the shape of the stress-strain curve as a

function of confining pressure. That is, at 5 MPa effective confining

pressure, there is a well-defined stress maximum which is followed by

a stress drop and a subsequent interval of constant stress. At 12.5 MPa,

the stress drop is more gradual, and occurs at a higher strain. There

is no stress drop at 20 MPa. The macroscopic modes of deformation are

the same as for the dry specimens. The strength of the wet specimens

(Table 1) increases from 70 Wea at an effective confining pressure of

5 MPa to 86 mpa at an effective confining pressure of 20.7 MPa.

DISCUSSION

Orowan (1960) suggested that the gradual disappearance of post-

fracture stress drops with increased confining pressure can be explained

in terms of the relative values of the frictional resistance to sliding

and the shear strength of intact rock. At lower pressures,.the frictional

resistance to sliding is less than the matrix shear-fracture stress, so that

when the shear fracture forms, stressdrops to an equilibrium value dic-

tated by the sliding resistance (e.g., the 5 MPa and 10 MPa curves in

Figure 1). Because frictional resistance to sliding increases more

rapidly with confining pressure than does intact .rock strength (e.g.,

Olason, 1973), there comes a point when the fracture stress and frictional
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stress are equal. Deformation will then be distributed more uniformly

throughout the specimen, and it may occur as either distinct shear fractures

or as a more ductile mode of deformation characterized by crystal plasticity.

The pressure at which the disappearance of post-fracture stress

drops is essentially complete has been referred to as the brittle-ductile

transition pressure (Heard, 1960; Byerlee, 1968). Examples comparing

friction stress as a function of confining pressure to intact rock shear

strength as a function of confining pressure for different rock types may

be found in Byerlee (1968) and Olsson (1973).

It is clear from the macroscopic modes of deformation and shapes of

the stress-strain curves that Bullfrog tuff (0.27 porosity) deformed at

2000C, wet or dry, is characterized by a brittle-ductile transition at the

relatively low effective confining pressure of about 15 MPa. There are at

least two implications of this behavior: the first is related to excavation

stability and the second concerns altered permeability. With regard to the

first point the specimens were tested in a displacement-controlled machine,

so that no increase in strain-rate occurred during fracturing. In loading

systems that have higher effective compliances, such as the in-situ

loading system which is comprised of the surrounding rock plus discontinuities

and voids, such stress drops can take place much more rapidly. In fact,

seismic energy can be released, or structural integrity lost. Thus, the

higher the effective confining pressure, the less likely structural in-

stability is to occur as a result of postfracture stress drops.

As to the second implication of altered permeability, at low confining

pressure where failure occurs along one well-defined fracture, permeability

will be enhanced due to the presence of the fracture. However, at a

pressure at which MWy fractures are formed throughout the specimen,

permeability may be enhanced even more. Alternatively, permeability may

8



change little if the multiple fractures are not interconnected. Extrapolation

to the field, however, also requires consideration of the competing pro-

cess of decreased fracture permeability due to increased pressure.

The effect of the presence of water on the strength of the Bullfrog

samples studied here is shown in Figure 3 as a plot of fJ2 (al - 03)/3
against 1 /3 - Pp. J2 is the second invariant of the stress deviator, I

is the first stress invariant, and Pp is the pore pressure. A straight-

line fit, calculated by the method of least squares, is drawn through the

dry data points as a reference. There are insufficient data from saturated

tests to establish an accurate relationship between shear strength and

mean effective pressure, b't the trend is clear: the presence of water has

a significant weakening effect. This is consistent with earlier findings

at room temperature on welded samples from the Grouse Canyon Member of

the Belted Range Tuff (Olason and Jones, 1980).

CONCLUSIONS

The seven tests reported here are consistent with the following

conclusions:

1. The presence of water causes the strength of welded tuff to decrease,

at least at a temperature of 2000C.

2. The brittle-ductile transition pressure for Bullfrog tuff with a

porosity near 0.27 is about 15 MPa, regardless of saturation state; the

dependence of this pressure upon strain rate remains undefined.

3. Below the brittle-ductile transition pressure, postfracture deformation

is characterized by unstable stress drops; at higher pressures, post-

fracture deformation is stable.
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Table 1. Triaxial Test Data for Bullfrog Tuff at 2000C

Sample
Number

3 ,

4

2

Confining
Pressure

(MPa)

5

10

20.7

20.7

10

17.5

24.1

Pore
Pressure

0

0

0

0

5

5

3j.4

Maximum
Differential

Stress

87

93

119

148

70

83

86

Young' I a
Modulus
(GPa)

16.5

15.7

17.6

20.5

13.1

17.8

13.8

5;

7

6

1
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Figure 1: Stress-strain curves for Bullfrog tuff obtained on dry samples at 2000C.
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