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ROCK JOINT COMPLIANCE STUDIES*

William A. Olsson
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Sandia National Laboratories
Albuquerque, New Mezxico 87185

ABSTRACT

This report has three objectives: (1) to summarize the developmental investiga-
tions of the rotary shear test for use in rock joint compliance studies, including a
description of the rotary shear machine and sample preparation techniques, (2) to
set out and discuss the required constitutive data, showing how to interpret and
analyze the shear compliance data from this type of test, and (3) to give some
examples and preliminary data for Topopah Spring tuff. The report contains some
expository material for the benefit of nonspecialists not familiar with the broad
scope of friction problems. Additionally, new unpublished results are included on
the effects of nonuniform slip, normal stress history, and velocity of sliding for
Topopah Spring tuff.

*This work performed at Sandia National Laboratories supported by the U.S. Department of Energy
under contract number DE-AC04-76DP00789.
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Chapter 1

INTRODUCTION

1.1 Background

Capabilities for the prediction of the response of rock masses to thermo-mechani-
cal loadings are being developed under the Nevada Nuclear Waste Storage Investiga-
tions (NNWSI) Project with application to the design of an underground nuclear waste
repository at Yucca Mountain on the Nevada Test Site. An important ingredient in the
computer codes being used is the constitutive description of the mechanical disconti-
nuities (mostly joints but also bedding planes and faults). This report summarizes the
application of the rotary shear test to the determination of the necessary constitutive
parameters for rock joints. First, some background and motivation for using the ro-
tary shear apparatus is given. Then, in the following section, the type of constitutive
functions that are required are exhibited. In the section on test procedures, the exper-
imental methods for obtaining the specified functions are discussed. Finally, examples
of each type of test are described. Reports detailing the complete data base will be
issued presently.

The rotary shear apparatus being used in this work is but one type of machine
that is useful in friction studies. In more common use are the triaxial compression
and the direct shear machines. Each of the three has certain special capabilities and
deficiencies. The triaxial test (Fig. 1a) has the capability of applying high normal
stress across a test fracture because of the increased rock strength due to the confining
pressure. However, the NNWSI project is not in need of high pressure data, so this
capability is unnecessary. On the negative side, there are severe constraints on the
amount of slip that can be attained in triaxial compression, and, in fact, any slip at
all causes unknown changes in the normal stress distribution and magnitude across
the fracture surface. The limitation on the amount of slip to be expected in triaxial
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testing can be partially overcome by a type of incremental loading [Olsson, 1974], but
loading history effects must then be neglected. Additionally, the shear and normal
stresses are coupled in the standard constant confining pressure test so that the normal
stress varies linearly with differential stress. Thus, precise reduction of data is difficult,
and any effects of normal stress history [Olsson, 1984c] are obscured. Perhaps more
important is the effect of stress path on frictional slip predicted by Olsson [1984b). In
that work, the shapes of the stress-slip curves from constant normal stress testing are
compared to those from constant confining pressure testing, and significant, systematic
differences are found.

Direct shear machines (Fig. 1b,c) have the advantage of being able to accommodate
relatively large samples. Disadvantages, however, are that because of induced turning
moments, it is difficult to maintain a uniform normal stress, and the surface area of
contact is characterized by continuous injection of new surface or a changing contact
area.

The rotary shear test (Fig. 1d) is effected by forcing the ends of two short, right-
circular cylinders (shaped like washers or tubes) together and then twisting them to
establish rotationally symmetric, frictional sliding about their common axis. Appli-
cations of the data obtained from such a test encompass such diverse subjects as the
slippage on microcracks in intact rock and on faults bounding the earth’s crustal plates.
The geometry of initial deformation is anti-plane strain, but symmetry arguments can
be used to apply many of the results to plane strain problems, as well. Moreover, for
thin-walled samples, large slip deformations are essentially plane strain. A wide range
of deformation geometries is thus accessible. Advantages of the rotary shear machine
are that (1) the normal and shear stresses are completely decoupled for all amounts
of slip, (2) sample size can be relatively large, (3) the area of sliding interface remains
constant so that arbitrarily large displacements can be achieved, (4) shear and normal
stress and displacement can be independently controlled, and (5) the normal stress is
uniform. Thus, as a test configuration for the determination of constitutive functions
uncomplicated by uncontrolled input variables, the rotary shear test is unsurpassed.

The rotary shear configuration is not free from some shortcomings either, however.
In the absence of a confining pressure vessel, the test is limited to low normal stress
compared to the triaxial machine, but as noted above, for our purposes, this is not im-
portant. Also, there is a gradient in the shear stress acting on the sliding surface, which
can be considered an advantage provided that the mechanics of slip in this configura-
tion are properly understood [Olsson, 1986]. The shear stress gradient is an advantage
to the extent that fundamental questions concerning such topics as the propagation of
a slip zone in a well-known, uniform stress gradient, and superposition of slip zones of
differing senses and dimensions can, under certain conditions, be addressed in rotary
shear. Because nonuniform stress is the rule rather than the exception near any un-
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derground opening, this idea may become more important as analyses become more
complete. Exemplifying engineering occurrences of stress gradients, one may consider
slip zones nucleated in nonuniform stress fields caused by the mining of underground
openings in jointed rock masses and the drilling of boreholes. Moreover, interaction of
slip zones and repeated or reversed loading may take place during various construction
phases of underground structures. The rotary shear configuration allows study of both
the simplest type of nonuniform stress and the interaction of slip zones; therefore, this
test can provide important insights into these problems.

The analytical work described in the appendix is critical to the development of this
test technique and has proven useful both in interpreting the experimental data and
in suggesting new loading sequences. Some earlier work in rotary shear has been done
on thick-walled cylinders sheared to large displacements [Kutter, 1974; Christensen et
al., 1974] in connection with surface property measurement. But the details of the
mechanics of rotary shear were only partly understood.

The rotary shear problem resembles classical elastic-plastic torsion [Prager end
Hodge, 1951)] in the sense that inelastic deformation progresses from the outside of
the cylinder inward during increasing twist. During elastic-plastic torsion of a circular
bar, plane sections perpendicular to the axis of twist remain plane and initial radii
remain straight. This geometry results in a tangential shear strain in the plane per-
pendicular to the axis of twist that is directly proportional to the twist and to the
radius. Moreover, in this problem the twist-angle per unit length is a constant for
small deformations. These facts allow the direct computation of the shear stress and
the depth of the plastic zone [e.g., Smith and Sidebottom, 1969; Prager and Hodge,
1951] Perpendicular cross gections in rotary shear, while they remain planar, distort
in the plane so that radii do not remain straight. This is because the twist-angle per
unit length experiences a jump when crossing the slipping interface. Thus, the rotary
shear problem is more complex because the shear strain is not known a priors; it must
be calculated as part of the solution.

1.2 The Required Constitutive Data

The type of data needed is now outlined by referring to & two-dimensional joint con-
stitutive model similar to one described by Goodman and Dubois [1972]. Thomas [1982]
used such a law in previous NNWSI-related work. Chen [1986] reports on an extension
of Thomas’study. A recent discussion |Plesha, 1985] relates frictional constitutive laws
to nonassociated plasticity.



1.2.1 Displacement Decomposition

Any joint constitutive model must relate applied stress to joint displacement. Be-
cause there seems to be some confusion, or at least lack of precision, in the description
of displacements in the literature, we begin by defining the total deformation of a block
of rock containing a single joint (Fig. 2). The upper and lower boundaries of the block
are arbitrary reference surfaces drawn parallel to the joint. The fiducial line will allow
definition of the various shear displacements; the normal displacements are obtained by
replacing the subscript ¢ with n. Define orthogonal coordinates t and n to be tangent
and normal to the joint, respectively. Then, the stresses are denoted o;, and the dis-
placements are denoted u;, where ¢ = ¢ or n. It is assumed that the total displacement
uf can be additively decomposed and written in incremental form as

du! = da! + d% + da! + dil, (1.1)

where total deformation comprises that due to the joint, uf , and that due to the intact
rock, uf. Each of these components is further decomposed into a recoverable elastic
part, distinguished by the overbar; and a nonrecoverable plastic part, distinguished by
the tilde.

The physical origin of these various displacements is clear except, possibly, for ﬁf .
As suggested by Figure 2, there may exist a zone near the joint that has a lower
effective modulus. It may be that this zone is the wake of the process zone that existed
transiently during propagation of the joint. Another possibility is apparent if the joint
is thought of as a sheet of penny-shaped cracks, or a sheet of essentially point contacts
separated by open spaces. In this latter model, the joint represents a tabular zone of
vanishing thickness with a reduced shear modulus. The main problem with this model
is that the shear stress at the edges of regions of contact is, theoretically, infinitely high.
Analyses [e.g., Mindlin and Deresiewicz, 1953] show that these high shear stresses are
always relieved by slip. Thus, this is a plastic displacement rather than an elastic one
and should manifest itself as a nonrecoverable contribution to the joint displacement.

Counting the total displacements, there are potentially 10 different displacement
components to be dealt with in this very general measure of the displacement field
that account for all physically reasonable processes to at least first order. The first
simplification, which is borne out by testing and will be addressed in a later section,
is the assumption of no plastic deformation of the rock blocks, #] = 0, because of the
low prevailing shear stresses. Moreover, it is shown later that experiments on smooth
surfaces of granite and on both smooth and rough surfaces of tuff suggest that & is
small in comparison to &;.
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1.2.2 Preslip Response

The prototype for a perfectly plastic material is a rigid block sliding on a plane
frictional surface, and therefore it is natural to adopt the viewpoint of plasticity theory
when developing constitutive theory for rock joints. This requires an elastic preslip
description, a slip function, and a flow rule. The elastic preslip behavior is usually
assumed to be separable from the elastic rock behavior. The slip function defines the
limit of elastic behavior in terms of the state of stress, and the flow rule relates slip
rates to stress in the sliding regime. The usual approach is to assume that there is a
preslip response that is described by

o = Kut! (korl=tormn) (1.2)

where o; is the shear stress, o, the normal stress, € the elastic component of the
shear displacement, &/ the elastic component of the normal displacement, and the
K, are the joint stifinesses. Though little is known at present, the stiffnesses are
probably influenced by variables such as stress history, temperature, water content,
and others. Therefore, this law must be considered only a crude approximation to
reality. This report deals mainly with the determination of K;; and, secondarily, with
K, since these are the functions that are most accessible and seem most critical. The
coupled shear-normal stiffness, K., is related to the dilatancy rate, which is measured
as described below. Little importance has been attached to K;, because on physical
grounds it is probably small.

The literature on the experimental determination of K,, and Ky is somewhat in-
consistent. Most treatments define normal stiffness, K,,, concisely to be the difference
in response of a sample with and without 2 joint [cf., Goodman et al., 1968; Rosso,
1976; Bandss et al., 1983; Sun et al., 1985]. This method automatically removes all re-
sponse of the surrounding solid rock, and also any machine deflections included within
the gauge length. However, these same workers take the shear stiffness to be the ratio
of the peak shear stress to the overall shear displacement at that stress. This is not
consistent with the definition of normal stifiness. The curves often shown of shear stress
plotted against shear displacement always use total displacement, i.e., uf. No attempt
seems to have been made to subtract out the elastic deflection of the intact rock and
the machine, almost always a direct shear box apparatus. Rosso [1976] recognized that
data from a shear box device gave K;; that was a function of the gauge length; clearly,
not a desirable result. A possible reason for this dichotomy is that for practical reasons
it would be difficult to obtain the intact sample response from a direct shear machine
of the box type. Based on data discussed below, it might be permissible to assume that
the initial linear portion of the o; versus u{ curve was due only to elastic deformation
of the intact rock and the machine. If this were true, it would be a simple matter to
compute the consistent Ki,.




Differentiation of equation (1.2) gives the strict definition of the stiffnesses. The
two most important of these are the shear stiffness,

Ky = (%?’)
Ug Un

do,
Knu - (ﬁ;) N .

The subscripts emphasize that the indicated variable is supposed to be held constant.
Goodman and Dubois [1972] pointed out that most laboratory and field tests are not
actually carried out in accordance with these definitions. That is, the shear response
is most often determined at constant normal stress, o,, rather than constant normal
displacement, u,. The same is true for the usual determination of the normal stiffness
at a putative constant shear displacement. However, in the latter measurement, since
for most surfaces there is little tendency to slip when the normal stress is changed at
zero shear stress, the shear displacement is constant and equal to zero. In the shear
response test currently run we measure the compliance, that is,

_ (9u
Cu - (30.),_ ’

where Cy is the shear compliance. This point has received recent attention [Sun et al.,
1985). Although the rotary shear apparatus is capable of running either fixed normal
stress or fixed normal displacement, to date only fixed normal stress has been used;
further testing at fixed normal displacement will be reported later.

and the normal stiffness,

1.2.3 Slip Condition

The boundary in stress-space that defines the limit of elastic response described by
(1.2) is the slip condition and for two dimensions it is written

flos, %) =0. (1.3)

This form of the slip condition includes a hardening (or softening) function, ¥, which
may be due to geometric effects of a wavy surface or to material evolution of surface
properties. Plesha [1985] derived a specific form of ¥ that is a function of slip and plastic
work, and describes realistic stress-displacement behavior. Experimental evaluation of
a generalization of ¥ for rock masses where hardening is due to joint block lock-up
is discussed in Olsson [1982b,c]. The simplest specialization of (1.3) is nonhardening,
Coulomb friction so that the slip condition reduces to the familiar form

|oe| — now =0, (1.4)
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where pu is the coefficient of sliding friction. When equality holds, unlimited slip may
occur. As with the so-called stiffnesses, u can also be a function of the several field
and environmental variables. Once slip ensues, the relationship between stress and
displacement can be obtained by integration of the plasticity flow rules [Michalowski
and Mréz, 1978; Plesha, 1985).

During sliding, displacement normal to the joint is sometimes observed, especially
on rougher surfaces, and is called dilatancy. Dilatancy is predicted, but excessively,
by the classical, associated plasticity. In nonassociated theory, dilatancy is a variable
subject to measurement. This is an important property because the permeability of a
fracture increases with the cube of the aperture. If constant normal stress boundary
conditions are maintained during sliding, the rate of change in aperture due to shear
displacement is called the dilatancy rate, 8, defined as

Depending on initial conditions of the joint, u,, can be either an even or odd function
of u;. Furthermore, §(0) can be positive or negative. This parameter is obviously
closely related to original joint roughness and degree of interlocking. It shows clearly
the importance of joint slip to changes in permeability for rough joints. One sample
with significant roughness has been tested in shear, and the dilation data for that are
discussed in 3.6.1.

1.2.4 Time-Dependent Response

Further complicating the matter, and not explicit in (1.3) or (1.4), is the fact that
the friction stress in rock is known to depend on sliding rate [e.g., Dieterich, 1979).
Teufel [1981] showed that the well-established rate dependence found in silicate rocks
such as granite extends to welded tuff, also, of course, a silicate rock. Moreover, our
own tests, discussed below, show that frictional slip in the Topopah Spring tuff is also
influenced by the sliding rate. More precisely, the friction stress depends on the history
of the velocity with stronger dependence on the velocities in the recent past than those
in the distant past [Dieterich, 1972, 1978, 1979, 1981; Ruina, 1983].

Another potentially important variable suggested by Rice and Ruina [1983] and
included explicitly in a constitutive equation by Olsson [1984c] is the analogous hered-
itary effect of changes in normal stress. The principal question is whether there is a
direct relation between shear and normal stress or is the shear stress dependent in some
way on the history of the normal stress. Stated another way, does the current shear
stress depend on how changes were made in normal stress or just on the current value?
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Brief discussions of the experimental verification of the existence of this effect were first
given by Hobbs and Brady [1985] and Olsson (1985]. A more extensive report can be
found in Olsson [1987]. A one-dimensional constitutive model taking into account both
the velocity history and normal stress history effects is [Olsson, 1984c¢]

M) -n = #oOVilt)- [ ; Go(t — E)Valt') dt' +
wr(©)ou(t) - [ ; dv (t — t')ou(t) dt', (1.6)

where, for clarity, shear stress is now denoted 7 and normal stress is 0. The current
time is denoted t and past time is —0o < t' < ¢t. Here 7, is a steady reference shear
stress equilibrated at the reference velocity Vo and normal stress oo. The generalized
coefficients of friction, u, and uy, are to be determined experimentally. The first line
on the right representing the transient response to changes in velocity, V4 = V (t) — V,,
is composed of two parts: the instantaneous term at ¢ = 0, and the time-dependent
change given by the integral. The second line on the right gives the analogous response
to a change in normal stress during steady sliding. The meaning of the terms in (1.6)
at constant normal stress are shown in Figure 3. An analogous picture can be drawn
for the remaining terms when the velocity is held constant and the normal stress is
varied except that the sign of iy appears to be opposite to that of fi,. (Compare the
transients in Figs. 3 and 8 to those in Fig. 15.) The basic tests to determine py and
i are described below.

This model, unlike that given in (1.3), is capable of taking into account certain
history effects that are completely outside the scope of the latter, such as past over-
pressuring or normal stress cycles combined with shear stress changes as would occur
during excavation of an underground opening. Moreover, acoustic emissions associated
with slip on joints in Grouse Canyon welded tuff [Holcomb and Teufel, 1982] can be
instabilities in slip, which can be approached through a hereditary friction law such as
(1.6).

The constitutive law embodied in (1.6) addresses normal stress change effects that
can occur on smooth surfaces. Almost certainly, rougher surfaces will undergo irre-
versible asperity crushing and thus are as yet too complex to be described adequately
by an equation such as (1.6). This is because this type of law was developed for surfaces
that have no fundamental dependence on slip, only short-term, fading dependence.

The hereditary integral in (1.6) is a linearization of a very general functional con-
stitutive relation for slip [Olsson, 1984c|. For certain forms of the kernels, this type of
integral equation is equivalent to an algebraic equation relating the shear stress to a
function called the internal state variable and a first-order differential equation for the
state variable [e.g., Nunziato et al., 1974].
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Ruina [1983] introduced the idea of internal state variables to rock friction work
based on extensive experimentation of Dieterich [see refs.] This approach assumes that
the surface is characterized by its state at each value of slip. The time rate-of-change of
the state is an evolution law for the interface. Rusina’s formulation (simplified versions of
equations constructed by Dieterich) is nonlinear and, evidently [Rice and Ruina, 1983],
hereditary integrals like those in (1.6) can also be considered linearizations of state
variable relations developed by Ruina [1983]. The connection between the hereditary
integral and the linear state variable approaches is shown below. Then the connection
to Rusna’s nonlinear state variable constitutive equations is explained.

Let o remain steady (o4 = 0) for 2ll time; this causes the second line of (1.6) to
vanish. Following Nunziato et al. [1974], take A — B(1—e~*/*) as the simplest function,
Ko, that is finite at t = 0 and decays to some asymptotic value for long times, where ¢,
is a characteristic relaxation time and A and B are constants. This gives

"o(o) = A
po(c0) = A—B (1-7)
and B
fo(t) = —t—e-‘/ “. (1.8)
Then define the state variable, 8, by
_ *® E —t'/t, ' '
““‘Atf Vilt - ¢') dt'. (1.9)

Now the time-dependent shear strength following a step change in velocity can be
written

r(t) = 10 + AVa — 0(2). (1.10)

AVy is the magnitude of the shear stress jump corresponding to the velocity jump,
Vi, and the gradual stress decay is given by the evolving state variable, §. Time
differentiation of € to obtain the evolution law gives [cf. Ruina, 1983]

é=%mq-3my (1.12)

Fort — o0, § = BV, and the shear stress evolves to a steady-state value given by
Tuw=1+(A-B)V, (1.12)
This is seen to be the same form as that given for 8 in Gu et al. [1984) for the nonlinear
theory. It is normally found in experiments [Dieterich, 1979] that the steady shear

stress is related in a simple way to InV/V,. Thus, in the nonlinear theory, the rate
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effects are linear in InV/V,. For V — V;, InV/Vp, — V; and the connection between
the linear version and the nonlinear is established, in the limit of small V;.

The nonlinear theory is better suited to the description of the experiments to be
discussed below because they involve velocity jumps of V/V, = 10; thus, equations
(1.10), (1.11), and (1.12) become [cf. Gu et al., 1984]

r(t) = 10 + Aln(V/Vp) — 8(t) (1.13)
and

6 = (V/L)[9 — BIn(V/Vo)], (1.14)
with 7 evolving to

Tes = 70 + (A — B} In(V /V)). (2.15)

Here 1/t, has been replaced by the dimensionally equivalent V/L. A physical model
based on asperity contact dynamics suggesting this equivalence was proposed by
Dieterich [1978]. Ideally, & should be related to the physics of the sliding process;
however, in the absence of the necessary data, the state variable is taken as just a
phenomenologically determined function. An analogous measure of property evolution
in the rate-independent plasticity theory of Plesha [1985] is the hardening function, X,
of (1.3).

1.3 Summary of the Constitutive Parameters

o Stiffnesses. The most critical stiffnesses are K;; and K,,,. These should be mea-
sured, ideally, at du,, = 0 and du; = 0, respectively. The second condition is met
in the normal test procedure. However, the first condition has been temporarily
replaced by do, = 0. Later testing will be done in accordance with the first condi-
tion. Data for smooth ground, surfaces, and laboratory-induced tensile fractures
are required to bound natural roughnesses. Environmental conditions have been
air dry and room temperature; later testing will include wet specimens.

o Generalized coefficients of friction. The generalized coefficients of friction, uy
and p,, are being determined on smooth, air-dry surfaces by means of Heaviside
input histories. The effects of the presence of water will be investigated later.

o Slip condition. The slip condition is being determined for air-dry, smooth, and
laboratory-induced tensile fracture surfaces. Different stress paths are being used
to probe the slip condition.

o Dilatancy. The dilatancy is being determined for laboratory-induced tensile frac-
tures because the ground surfaces show no measurable dilatancy.
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All of the above constitutive parameters come from the same basic test type. In this
test, a normal stress is first applied to the joint, then the torque is increased until
uniform sliding occurs. The generalized coefficients of friction are measured by suddenly
changing velocity or normal stress during uniform sliding. The stiffnesses and the
dilatancy are determined by deformation-measuring instrumentation at appropriate
stages of the test. The details are given in a later section.
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Chapter 2

APPARATUS AND
PROCEDURES

2.1 Rotary Shear Machine

2.1.1 Configuration and Capacities

The rotary shear machine consists of a load frame containing 2 hydraulic rotary .
actuator in series with a hydraulic linear actuator. The maximum torque capability is
7000 N-m and the maximum axial force is 900 KN. These actuators are independently
servocontrolled by 410 function generators and 442 controllers from MTS Systems, Inec.
Angle of rotation, axial load, and torque are calibrated yearly by MTS Systems, Inc.

2.1.2 Variables Recorded

In each test, the far-field twist angle, torque, and axial force are recorded by the data
aquisition computer and stored on & floppy disk using software described in Holcomb and
Jones [1983]. Occasionally, slip is directly measured by a modified clip-on extensometer.
The data are transferred immediately to the Department 1530 VAX 11/780 (Dsgital
Equipment Corporation) computer where they are stored indefinitely for analysis and
plotting.
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2.2 Sample Preparation

Westerly granite and Topopah Spring tuff were used for development of the test
techniques described below. The one granite sample referred to in this report was
cored from a block already available in the rock mechanics laboratory. The densely
welded Topopah Spring tuff was collected from outcrop at Busted Butte, near Yucca
Mountain on the Nevada Test Site. Details of specimen preparation can be found
in Schwartz {1984]. Becuase several experiments may be performed on one sample,
the correspondence between experiment number and the sample number is given in
Appendix 3.

2.2.1 Shear Compliance

The samples of granite were short hollow cylinders ranging in length from 25 to
35 mm, and had inner diameters of 26 to 54 mm. Outer diameters were in all cases
about 88 mm. Tuff samples began as short cylinders 44.45 mm long. Inner diameters
were 50.8+0.13 mm and outer diameters were 88.91+0.25 mm. Some of these were
later remachined to lengths of 16.9 mm with inner diameters increased to 69.8 mm.
The reason for this was to study samples with a smaller wall-thickness-to-radius ratio.
The samples to be used for basic friction studies were first glued to end pieces, either
aluminum or steel, that could be bolted into the machine. Before mounting in the
machine, the sample-endplate assembly was placed in a surface grinder and the surface
of the sample ground flat so that the rock surface was parallel to the surface of the
endplate; i.e., the two ends of the assembly were made parallel; this ensured that the
joint would be perpendicular to the axis of rotation when mounted in the machine.

Samples to be studied for rough joint response were selected from those described in
the next section, after a tensile fracture had been created. These were already mounted
to endplates as discussed below and were mounted in the rotary shear machine as they
were after normal stiffness testing.

2.2.2 Normal Stiffness

The original samples for normal stiffness testing were hollow cylinders 133.35 mm
long with an 88.9140.25-mm outside diameter and a 50.84£0.13-mm inside diameter.
The ends were parallel to within 0.1 mm. Machined into the outside surface was a
circumferential groove lying in a plane perpendicular to the cylinder axis. The groove
was originally 1.6 mm wide and 3.175 mm deep with an approximately flat bottom. The
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groove dimensions and shape evolved through testing to the currently used depth of
6.35 mm with a V-sheped bottom having radius of curvature of 0.127 mm. This change
in depth and shape came about through attempts to get a fracture contained entirely
within the machined groove. Metal endplates identical to those noted above were
glued to the ends of the rock cylinder. Next the endplate-rock-endplate assembly was
mounted in the rotary shear machine and pulled in tension. After creating a fracture
within the groove, the sample was ready for normal stifiness testing, and subsequent
shear testing.

2.8 Test Procedures

2.3.1 Shear Compliance
Normal stress history effects

The effect of constant normal stress on the frictional properties of rock has been
often studied. A standard test procedure is to apply a known, constant, uniform normal
stress, and then to increase the shear stress until sliding is established [see references
in Byerlee, 1978]. The rotary shear machine is being used to study, in addition to this
effect, the influence of changes of normal stress, and, more particularly, the effects of
the way the normal stress is changed. Thus, the whole history of the normal stress
is being taken into account. This is 2 very new field, end the rotary shear machine
is singularly appropriate to this type of testing. Basically, four different normal stress"
histories are applied:

1. In the simplest type of test, an initial normal stress is applied to a stress-free
sample. Then, the twist is increased until steady sliding conditions are achieved
as evidenced by an essentially constant torque. Then, the torque is reduced to
zero, and subsequently the normal stress is reduced to zero. Next, the sample is
repositioned before the normal stress is increased to some new value and sliding
is again established. This procedure is repeated several times.

2. A slightly different kind of test is run in which after achieving steady sliding at
a given normal stress, the sliding is stopped by placing the function generator
in hold, and then the normal stress is increased or decreased to a new value.
Subsequently, sliding is again established. This procedure is repeated for both
increments and decrements in normal stress.

3. An experimentally more difficult type of test is run in which, after the establish-
ment of a steady torque, the normal stress is changed nominally instantaneously
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during continued uniform sliding; in other words, a step-function normal-stress-
time history is applied.

4. A variant of number 2 above is run in which the normal stress is set to zero
between changes to new operating levels.

5. Lastly, a completely new type of test has been devised that is suggested by the
constitutive equation (1.6). For this test, the sample ends are brought together
so that they just touch under essentially zero normal stress. Then, following the
establishment of a constant rate of sliding, the normal stress is increased at a
constant rate. This normal stress rate is chosen to be such that steady sliding
continues throughout. In this way, a complete slip condition can be obtained with
one sample in one test. Thus, the effect of sample variability can be completely
eliminated and may be studied separately.

Sliding velocity effects

The effect of the sliding velocity on the frictional strength has been studied by
running separate tests at a given normal stress and applied sliding rate [e.g., Olsson,
1974]). More recent rate sensitivity investigations [e.g., Dieterich, 1979] are run in a
manner consistent with constitutive equation (1.6). For example, after steady sliding
has been established at a predetermined velocity and normal stress, the velocity is sud-
denly changed by a known amount. The subsequent shear stress response is monitored
continuously. There are two parameters to be obtained by rate testing: (1) the mag-
nitude and sign of the instantaneous change in frictional strength caused by a step in
the sliding velocity at constant normal stress and (2) the magnitude and sign of the
residual friction strength dependence on velocity.

2.3.2 Normal Stiffness

Attempts at measuring the stress-closure relation in the rotary shear machine imme-
diately after the fracture was formed proved unsuccessful. The original idea for testing
in this configuration was that while the sample was held in axial alignment after the
fracture was formed, it could be rotated to mismatch the rough surfaces by a predeter-
mined amount and then brought back into contact for stiffness testing. However, the
probability is that the largest asperities cause the sample halves to be in contact at only
one or two points. This leads to very poor sampling and is probably not particularly
representative of the true stiffness. Therefore, the procedure was changed so that after
introducing the tensile fracture in the rotary shear machine, the sample was removed to
a standard compression frame where a hemispherical loading seat allowed the fracture
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surface to be initially in more uniform contact; at three points, at least. Following the
stress-closure test in the standard load frame, the sample was returned to the rotary
shear machine where the shear response of this rough surface was measured. The shear
response for a sample with a laboratory-induced tensile fracture is described in section
3.6.

The sample had strain gauges mounted on the inside and outside cylindrical surfaces
at the ends of two orthogonal diameters. In addition, a linear variable displacement
transducer (LVDT) measured total displacement from endcap to endcap. The sample
was then loaded in compression several times, both with the opposing fracture sur-
faces mated and unmated. Strains, displacement, and load were recorded continuously
throughout the test.
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Chapter 3

EXPERIMENTS AND DATA
REDUCTION

3.1 Displacement Measurement

There are two methods for measuring the joint deformations uf . Both are based on
the fact that the total measured displacement §f, can be decomposed as
6 = ul + vl +ul, (3.1)
where u] is the displacement contribution due to the rock, u! that due to the presence ‘
of the joint, and u™ that due to the machine. u] can be further decomposed accord-
ing to (1.1). In some setups, v = 0 because the displacement measuring device is
located entirely on the sample. The simplest and probably the most accurate method
is to measure the overall displacement, 6}, of an intact sample, including any machine
part(s) comprising the gauge length, and then repeat the process after the joint has
been introduced. Subtracting the two curves gives the response in terms of the joint
displacement, u}, alone. The second method is required if the sample is from the field

and already contains a natural joint; then, an independent measure of u] is necessary,
often accomplished by means of a strain gauge on the sample.

3.2 Stresses on the Interface in Rotary Shear

3.2.1 Preslip Shear Stress Profile
The relationship between the tangential shear stress and the applied torque in the
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joint plane before the onset of slip is found from elasticity theory [e.g., Timoshenko and
Goodier, 1970]. If the torque is denoted T, the shear stress 7, and the radial coordinate
r, then

) =", (5.2

where J = (5)(R} — R}) is the polar moment of inertia for an annulus of inner and
outer radii R; and R,, respectively. Thus, the maximum elastic shear stress is R,T/J.

3.2.2 Fully Sliding Shear Stress Profile

After the full establishment of slip, that is, when slip is occurring everywhere si-
multaneously over the joint, then the torque-stress relation is statically determinate.
It has the same form as for a fully yielded plastic tube [Smith and Sidebottom, 1969],
that is, the friction stress, 7y, is found from

3Ty,

" B - ) (3:3)

where the subscript fs denotes “fully sliding”. The underlying assumption in deriving
(3.3) is that the material has a flat-topped stress-displacement diagram in direct shear,
analogous to the perfect elastic-plastic assumption in the torsion of elastic-plastic tubes.

For an ideal, uniform frictional resistance, the ratio of the fully sliding torque, Ty,,
to the torque at the onset of sliding, T,, is found to be

T,  31-\¢

(3.4)

where A = R;/R, and 0 < X < 1. Thus, for a solid cylinder, A = 0 and T}, /T, = 4/3; for
an increasingly thinner wall, A — 1 and Ty, — T,. Equation (3.4) is useful in estimating
the variation in friction stress over a given test surface. This is because T}, is a measure
of the average friction stress over the entire test surface and is relatively insensitive to
localized extrema in the properties. On the other hand, T, is a function of the friction
stress over a very thin annulus and, therefore, is more strongly influenced by localized
fluctuations in the friction stress. Thus, departure of T, from its value calculated from
Ty, is a measure of the minimum friction stress occurring in the outermost annulus
of the test surface. In addition, the difference Ty, — T, is a measure of the range in
friction stress on the test surface. This type of measure was noted for plane strain joint
deformation, also [Olsson, 1984b].

T, may be a more critical design parameter than Ty, because it is a measure of the
shear stress at the onset of sliding rather than the steady-state sliding value computed
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from Ty,. It should be noted that the coefficient of friction, u, calculated from Ty,
corresponds to the classical and often-reported value. The significance of the difference
in the value between the stress at the onset of slip and the stress during steady sliding
does not yet seem to be generally appreciated by designers and modelers.

8.2.3 Shear Stress Profile During Partial Slip

The relationship between torque and shear stress within the slipping zone that holds
after the onset of slip but before the fully sliding condition is more complex and is given
by equations (A.1) through (A.3) in Appendix A. The shear stress outside the slipping
zone is given by (A.22). Outside the slip zone, the stress (A.22) can be calculated after
the dislocation distribution inside the slip zone is computed by (A.8). The relationships
between 7., 77, and 7; are shown in Figure Al.

3.3 Comparison of an Experiment with the Theory

Comparison of the theoretical model response is made to the response of & Westerly
granite sample. This rock was chosen as the developmental material because of its well
known frictional properties and uniformity. The test surface had been run-in until the
torque-twist loop was constant in size and shape. The normal stress acting across the
ground surface was 10 MPa. The torque versus offset curve (Fig. 4) is qualitatively
similar to the theoretical one (Fig. A2). The salient features of the curve are the -
sticking regions represented by vertical segments, the gradual onset of sliding, and the
difference between the first quarter-cycle and all other quarter-cycles. The qualitative
response of Topopah Spring tuff is similar in all respects to the granite and also to the
model.

To judge the quantitative agreement, appropriate material properties are intro-

~ duced into equations (A.7) and (A.11). The needed values are 25 GPa for the shear

modulus, computed from data in Brace [1964], and the fully sliding torque, 1040 N-m,
teken directly from the curve (Fig. §). Then, T, is computed by (3.2) to be 867 N-m.
The first departure from the idealized response to be noted (Fig. 5) is the computed-
versus-measured value of T,. The onset of slip actually occurs near 750 N-m rather
than the predicted value of 867 N-m. This difference in the fully sliding torque and
the onset torque was discussed in section 3.2.2 in terms of the difference between the
average shear strength and some measure of the minimum value. Next, a torque-ofiset
curve using these parameters was computed and plotted on the axes of Figure 5; it is
indistinguishable from the ordinate. This means that the stifiness (torque/slip) of the
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idealized model is of the same order as the elastic stiffness. Therefore, all deformation
exhibited by the torque—ofiset curve is the result of direct slippage on the interface
and has no significant contribution from radial deepening of the slip zone. Further
experimentation on tuff samples with more strain gauges and several wall thicknesses
is needed to substantiate this; but, if it holds true, then it is a very significant result
from a practical point of view because it means that for all torques greater than T,, the
shear stress is simply found from the torque by (3.3) rather than from the integration
of (A.2) with (A.3) and (A.22). In other words, the torque-offset curve may be read
as a shear stress—slip curve, directly.

3.4 Shear Compliance of Smooth Surfaces

3.4.1 Evolution of Shear Strength During Steady Sliding

Strength evolution with ongoing slip for Topopah Spring tuff (RFT058, Fig. 6)
is often observed. The starting surface had been ground flat and lightly sandblasted
to a dull finish. There are five loading phases in this test at 5 MPa normal stress; all
were restarted at the same position for each run. The first three loadings were run
consecutively. Then, the surface was blown clean with compressed air and wiped with
a disposable paper wipe. This was repeated after the fourth loading. Notice that a
constant value of the fully sliding torque, T},, is reached at the third loading cycle and
remains constant with successive cycles so that loadings 3, 4, and 5 nearly coincide.
Most testing for basic friction properties was done in the “run-in” state, that is, after
having reached a stationary value of Ty, for a clean surface.

3.4.2 Strength Increases during Stationary Contact

The time-dependent strengthening of rock interfaces during stationary contact was
systematically studied by Dieterich [1972]. He found that the initial sliding stress was
a function of the length of time that the interface was stationary at a constant normal
stress. An apparent example of this effect is shown in Figure 7 for Topopah Spring
tuff test RFT026. The displacement (angle) hold was of 150 s duration, during which
the strength increased about 8%. Resumption of loading causes slip-weakening to the
original steady value. No systematic data are available on this effect as yet, but this
would seem to be an important phenomenon. It is possible that this slip weakening is
actually a time-independent effect and, as discussed below, may be a true indication of
the existence of identifiable static and dynamic coefficients of friction. If this is a time-
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dependent effect, it is a manifestation of the stress and velocity history dependence of
the mechanical properties of joints in welded tuff.

3.4.3 Effects of Sliding Velocity History

Increases in the steady-state sliding velocity on joints in Topopah Spring tuff cause
decreases in the shear strength; concisely, dr,,/dV < 0. This is the opposite of the rate
effect found in intact rock but is a common finding in friction studies at low normal
stress. In test RFT028 (Fig. 8 and 9), normal stress 5.8 MPa, the overall rate of
decrease of stress is about 5% per decade increase in sliding velocity over the range 0.1
to 100 pm/s.

More subtle than the difference in steady-state strengths at different steady-state
velocities is the effect of the history of the velocity. For example, if 2 Heaviside (step)
velocity history is imposed on the sliding surface, and if the stress is a direct function
of the velocity, then the stress should exhibit a step change, also. However, as shown
by the curve in Figure 8 and 9, when the velocity is stepped up, the stress first jumps
up, then gradually decays to a new lower value. Recalling the definitions of A and B
from section 1.2.4, these changes, at constant normal stress, are described by

or .
e =Aln(V/Vp) >0, 3.5
(av)ﬁzcd state nV/Ve) 2 (85)

indicating the instantaneous change, and

dr,.(V)
—= =(A-B)/V 3.6

22) = (4~ B)/ (36)
which describes the steady-state velocity effect as r(t) — 7,,. The notation “fixed state”
is consistent with the experimental fact that no slip occurs during the instantaneous
jump in V; thus, we are assuming that the state of the surface changes only with
ongoing time or slip.

Thus, A and B characterize the rate dependence of the material. The following table
gives a few representative values of the parameters for RFTO028 for positive velocity

jumps.
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Vo A B Bo L(=d) dn,[dV

(um) (MPa) (MPa) pm (MPa/um/s)
0.1 0.032 0.086 -0.021 65 -0.054
1.0 0.019 0.052 -0.021 86 -0.003

The characteristic slip distance called L here is referred to as d, by Dieterich [1981].
The values for Topopah Spring tuff are of the same magnitude as for joints in granite
with various thin layers of granite gouge. Bp is a rate sensitivity measure defined by
Dieterich [1981) as Bp = Apu/log,,(V/Vo), where u is computed with the steady-state
values of shear stress. This parameter for Topopah Spring tuff (Fig. 10) is a factor of
2 greater in magnitude than those for the gouge-filled joints in granite just mentioned.
Soldberg and Byerlee [1984] find Bp > 0 for gouge filled joints in granite under triaxial
compression. The effect of gouge on Topopah Spring tuff is as yet unknown. The
sign of Bp, or that of A — B, is important because if positive, only stable sliding is a
possible motion, whereas, if negative, instabilities are possible. These results show that
Topopah Spring tuff is somewhat more rate sensitive than Westerly granite [Dieterich,
1978].

Data from two samples suggest that A = 0 for velocity jumps from 100 to 10 um/s
and from 10 to 100 um/s. Velocity jumps from 0.1 to 1 um/s always give A > 0. The
steps from 1 to 10 um/s, and the reverse, give small values of A. It appears that there
is a critical velocity above which no transient strengthening occurs, and that A may
depend on V,. ’

3.4.4 Effects of Normal Stress History

Two sets of experiments were carried out to investigate the potential effects of
changes in normal stress. The first set to be discussed is less precise in terms of the
constitutive theory in (1.6) because the slip velocity was not maintained constant nor
were the various hold times encountered in the test determined a priors, although they
were recorded. Therefore, the stress changes were made during stationary contact. In
the second set of experiments, the normal stress changes were made during continuous

sliding.
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Normal stress changes during stationary contact

Two different types of test were run during periods of twist hold (nominally no
slip) to investigate the effects of normal stress history, 0,(t). Figures 11 and 12 show
representative results. The first type of test, represented by RFT080, shows the stress
history with the most pronounced effect (Fig. 11). First a constant normal stress of
3 MPa was applied. Then, the twist was begu:1, which caused a torque build-up until
the onset of slip at about 200 N-m. Next, seven unload/load loops were introduced.
The first through fourth, and the seventh were done during constant normal stress.
However, the fifth and sixth unload/load loops were accomplished by holding the angle
constant and reducing the normal stress to zero, reapplying 3 MPa, and retorquing.

In each case where the normal stress was maintained constant during the un-
load/reload cycle, the torque-twist curve is characterized by a small stress peak at
the resumption of slip during reloading. In the unload/reload loops accompanied by
momentary vanishing of the normal stress, the torque-twist curve takes on a shape
very similar to the initial loading. The small difference in the curves obtained after o,
has been reduced momentarily to zero is attributed to the fact that the surfaces are in
contact in different locations.

The second type of normal stress history test is illustrated in Figure 12. Here the
normal stress was raised successively through prechosen steps while the angle was held
momentarily constant. A marked effect of the history of the normal stress is apparent
in this figure. After each successive increase in normal stress, the torque-twist curve
shows a more rapid onset of fully sliding conditions, as manifested by the sharper
“yield” regions. After the increase to ¢ = 5 MPa, the onset of slip is characterized by
& peak in the torque-twist curve. The portion of the torque-twist curve characterized
by a negative slope is referred to as slip-weakening.

All unloading steps in normal stress show slip weakening except for the 3 to 2 MPa
jump.

Summaerizing, there are four related phenomena that seem to result from changes
. in normal stress at stationary contact.

1. After unloading from the slipping regime, while maintaining the normal stress
constant, the onset of renewed slip is very rapid, giving a torque-twist curve that
suddenly resumes the original path. Usually, the sharp yield is punctuated by an
additional small blip. (Fig. 11, reloading loops 1, 2, 3, and 4; Fig. 12, normal
stress increments 4 to 5 and 5 to 6 MPa).

2. After momentarily reducing the normal stress to zero and then retorquing, the
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shape of the torque-twist curve resumes its original, first-time torquing shape
(Fig. 11, torquings at 3.8 and 5.4 deg).

3. When the normal stress is increased while maintaining the angle of rotation con-
stant, and without first reducing the normal stress to zero, the onset of sliding is
progressively more rapid after each normal stress change (Fig. 12). As in item 1,
the later positive normal stress increments are enhanced by a small spike.

4. On decrements of normal stress, the onset of slip is rapid (Fig. 12, decreasing
steps in normal stress) and exhibits slip weakening.

These features can be explained by an extension of the dislocation theory of the
stress history of frictional slip presented by Olsson [1984]. As shown in section 3.3 the
in-plane tangential shear strain is for practical purposes negligible at the low normal
stresses encountered in this testing program. This causes the joint dislocational defor-
mations to be dominantly of edge type (lines parallel to radii, Burgers vectors tangent
to the circumferences) rather than screw type (lines circumferential, Burgers vector
radial). The fundamental hypothesis is that friction on some relevant scale is nonuni-
form as sketched in Figure 13a. In the simplest case, the frictional stress, 7,4, is just
the product of the effective normal stress times the coefficient of friction and thus any
variation in either causes variation in frictional stress along the joint. The indications
of non-uniform friction stress in the present case are abundant (see sections 3.2.2 and
3.4.5). The variability in friction causes all the non-creep-related slip that accumulates
between the onset of slip at T, and the attainment of fully sliding conditions at Ty,; it
is due to localized patches of slip that spread to cover the entire cross section.

The normal stress history dependence revolves around the interaction history of
the several stresses 7., 77, and 7, i.e., the applied stress, the friction stress, and the
internal stress. For analytical tractability, let us assume that the friction stress in the
neighborhood of one of the local minima, such as S in Figure 13a, varies with distance
away as |z| such that

17(z) = 70+ (1 — 10)|z/a| z € [~a,ad]
(3.7)
T4 = 7 z ¢ [—a,d]

where 7; and 7, are defined in Figure 13b. The half-width of the slipping zone is b,
and the half-width of the V-shaped friction inhomogeneity is a. Assume also that the
applied stress is uniform with position.

Figure 13 shows the three existing components of shear stresses, (1) the applied far-
field stress, 7.(z), (2) the frictional resistance r; = o, and (3) the internal stress 7;(z).
The internal stress also goes by the names dislocation stress and elastic backstress. The
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relationship between them within the slipping zone is 7(z) + 7;(z) + r, = 0. For an
interface that has undergone no inhomogeneous slip, there will exist no internal stress,
7:(z) = 0, and the applied stress must just equal the friction stress for slip. Note that
by interchanging the roles of the applied stress (now uniform), with the friction stress
(now a function of position) the problem is analogous to that solved in the appendix;
slippage in each case is driven by the difference |ro, — 77|. Outside the slipping zone, the
internal stress is obtained from the displacement as shown in the appendix in (A.22).
For the specific direct shear variables these equations read:

n(z) = 74(z) — 7o z €[5,
| (3.8)
ri(z) = (2(n1 — 70)/ma) [z arcsin(b/z) — b z & [-b,8); ] < |a].

Suppose that after some inhomogeneous slippage has occurred and the slip zone has
spread some distance b, the torque is reduced to zero, and then also 7, = 0. The friction
stress and the internal stress will still appear as they do in Figure 13b and 13c , but the
straight line indicating the applied stress will move downward to zero. Now, for a sub-
sequent torque cycle, the internal stress on the joint can be considered as an additional
friction stress so that the total resisting stress to further slip is 7,(z) = 74(z) — (z).
See Weertman [1964] for 2 discussion of reloading of previously slipped interfaces. This
resistive stress is plotted in Figure 13d. As the torque is increased from zero, the
straight line 7,(z) begins to move upward, eventually contacting the total resistance
curve, 7.(z), over the entire extent of the previously slipped zone, [—b,b]. Thus, the
onset of slip is more sudden than the first loading because the entire previously slipped
region begins at once to slip again, and, therefore, the slope of the torque-twist curve
is the same as it was at the immediately previous cessation of torquing. To regain the
original torque-twist curve one needs only to reduce the normal stress to zero, which
in turn releases all locked-in internal stress. Then, the resistive stress is just equal
to the friction stress alone, and the problem is just as it was at the beginning. After
reapplying the normal stress and the torque is again increased, the slip will start at the
minimum in friction when 7,,(z) just equal to 7, = 7.

The slip weakening behavior at the onset of slip may result from the time-dependent
strengthening that occurs during the period of untorquing and retorquing when the
interface is stationary. Alternatively, this may be a time-independent material response
that is usually masked by the effects of nonuniform stress on the spread of slip zones
during torquing from stress-free states. The fact that slip-weakening occurs on the
initiation of slip immediately following normal stress decrements actually supports the
idea that this is a time-independent response rather than time-dependent strengthening.
If the spike was the result of time-dependent strengthening, it seems unlikely that it
would occur on normal stress decrements because during those phases, the surface is in
a constant state of slippage, which is inconsistent with strengthening during stationary
contact.
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Observations 1 and 2 above are thus explained in terms of the relative size of the
slipping area compared to the total area. Explanation of the effects of normal stress
increments, Ao, made without prior reductions to zero of the applied stress seems to
be the result of the same phenomenon. Assume that after a normal stress increment of
Ao, the total resistive stress is given by 7, = (ry + uAo) — 5;(z) (Fig. 13e). Therefore,
increments in normal stress cause upward translation of the total resistance curve,
and decrements cause downward translation. These changes are carried out during
nominally stationary contact. Notice that after an increment in normal stress shifts
the total resistance curve upward, renewed torquing causes the 7., line to move upward
to coincide with the total resistance curve over the entire slipped interval again, just
as in the case where there is no intervening increase in normal stress. Thus, the simple
relationships between the stresses sketched in Figure 13 can explain most of the stress
history effects observed in these types of tests.

The type of behavior shown in Figure 12 is referred to as discrete memory [Hueckel
and Nova, 1979; Olsson, 1984]. The fact that torque-twist excursions from the slip
condition are characterized by a return to the same point on reloading is thought of as
the interface remembering that torque-twist point where it left the slip condition. The
time that it takes to make the loop is inconsequential—the joint has a perfect memory
for that particular torque-twist state. Temporary removal of the normal stress erases
the interface’s memory of past torques. There is little evidence of a fading memory in
these tests.

With a view toward eventual connection of the mechanical response to the surface
characterization, notice that a measure of the sharpness of the yield region on the
torque-twist (stress-displacement) diagram is the difference, in some sense, between
the applied stress, 7(z), and the resistive stress, 7,(z). A unique measure for the
relationships shown in Figure 13 is max |r; — 7p|; for 7, = 7, this is called the maximum
norm. This was noticed in an earlier study on direct shear slippage [Olsson, 1984b]. In
that study, it was emphasized how inhomogeneous resistive stress; possibly the result
of variations in normal stress, pore pressure, friction coefficients, etc., affected stress-
displacement curves for slippage. Because the frictional resistance of a natural fracture
is likely to be a much more complicated function of position than that of Figure 13, it
is necessary to give more precisely the state of slippage or, equivalently, the closeness
to the slip condition for each point along the interface. It is necessary to specify the
“distance” between the two curves, 7,(z) and 7,(z). The maximum norm could be
used to specify this distance, but it is sensitive to only the maximum and does not
take into account how the resistive stress actually varies with z. Thus, if the maximum
norm is very high at just one point in the interval of interest, in this case, the whole
test surface, and the rest of the surface was near to the slip condition, then this is not
a useful measure.
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For 2 surface characterized by a spatially variable resistance to slip, there may be
many local extrema in |r,(z) — 7o(z)| = ¢(z) over any interval of interest. Under these
circumstances, & more appropriate measure of the distance between the two functions,
or the size of ¢, is the mean square norm, ||¢||, defined as

I8N = 5 [ 6la)? d=. (3.9)

Now, the size of the mean square norm, when it can be calculated, will be a predictor of
the rate of onset of sliding, or the sharpness of the torque-twist (stress-displacement)
curve. In other words, the magnitude of ¢(z) is 2 measure of the propensity of the
interface for unrestrained sliding.

Normal stress change during constant velocity slip

It is apparent from the structure of (1.6) that the search for normal stress history
effects parallels that described in the previous section on velocity history effects. That
is, the putative effect of past normal stress history should be most simply found by
subjecting the surface to a normal stress step while maintaining constant sliding ve-
locity. Figures 14 and 15 show some results of this procedure. In test RFT064 (Fig.
14), run on a surface that had been ground and run-in, the normal stress was suddenly
increased by 0.7 MPa while the sliding velocity was maintained constant at 107¢ m/s.
This sample had a slip gauge mounted across the joint, verifying that the velocity of
sliding remained constant during the normal stress increases. The result that the shear
stress is a square-wave function of the slip, just as is the normal stress, shows a lack of
significant effect of normal stress change.

A marked effect of normal stress history was found, however, in test RFT077 (Fig.
15). This test surface was ground and run-in, also. No slip gauge was mounted on this
specimen so the slip velocity was calculated from the rotation rate as 10~ m/s. The
finite initial slope of the shear stress-slip curve at the point of normal stress increase
indicates that the slip must have momentarily stopped. The onset of nonlinearity
marks the resumption of slip. The shear stress then evolves to a new higher level over
& slip distance of order 2 mm. It is thought that this brief (not more than a few
seconds) period of stationary contact does not alter the conclusion that a true effect
of normal stress history is shown. In any case, if some time-dependent strengthening
occurred during this period of no slip, it should have the effect of increasing the amount
of observed instantaneous shear stress increase. The test record for RFTO077 gives
(87/80),tat. = 0.31, dr,,/do = 0.8, and a slip distance, Ly, for the transient increase
of about 1.85 mm.

The data from this type of test is not yet systematic enough to determine why some
tests show a fading memory effect and others do not. The differences between the two
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tests just described are the difference in 04; 0.7 MPa for RFT084, which does not show
a transient in shear stress, and 1.4 MPa for RFTO077, which does. Also, the sliding
velocity is different by two orders of magnitude. Further testing may shed light on this
problem.

To date, six tests with stepped normal stress histories show memory effects, and
the data are summarized in the following table, where Ly is the distance over which
the shear stress evolves to a new steady value at a constant slip velocity.

Test Name Vo (m/s) (87/00),tare dr.,/do Ly (mm)

RFTO035 2.5x 1075 0.28 0.32 0.03
RFTO036 2.1 x10°5 0.15 0.35 0.14
RFTO037 2.5x10°8 0.16 0.37 0.21
RFTO74 1.3x 1078 0.29 0.77 0.41
RFTO075 1.3x10°% 0.46 0.67 1.45
RFTO77 13x10°5 0.31 0.80 1.85

An alternative method of determining uv is to differentiate (1.6) at constant V,

arriving at
d[r(t) — 7.,

g = w()[d] (3.10)

where [6] is the jump in the value of the normal stress rate at time ¢t = 0. This test is
described in part 5 under section 2.3.1. Briefly, at ¢ = 0, the sliding is begun at zero
normal stress, then the normal stress is raised at a constant rate [¢]. Unfortunately,
plots of differentiated experimental data often are very noisy, making interpretation
difficult. One example with a fairly good output is shown in Figure 16. The time-
dependent generalized coefficient of friction is given directly only by the part of the
curve between about 50 and 150 s, that is, only during the increasing normal stress
phase. The rest of the curve, in principle, can then be computed using the data from
the first phase. Examination of the complete data set shows that dr(t)/dt usually
decreases somewhat with time during the first loading phase.

Note that after setting V; = 0, (1.6} can be rewritten
t
) =ro+ [ mlt-t)o()ar, (3.11)
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or, because 6 = o/t, as [Smith, 1976)

o) = '((’3 j _ ), (3.12)

where 7o = 0 because 6(0~) = 0, and Z(t) is called the constant stress rate modulus.
Differentiating with respect to ¢ results in uy(t) = Z(t) + ¢tdX(t)/dt or

d log I(t)

uv(t) = Z(t) 1+ d logt

(3.13)

Hence, uy(t) can be obtained by computing the slope of the plot of log £(t) versus
logt and using the result as a correction factor on I(t). Figure 17 shows the result for
four tests at several combinations of slip velocity and normal stress rate. The slopes
lie between 10~¢ and 10~%; clearly, the correction factor is very small in comparison
to 1. Thus, the generalized coefficient of friction, py(t), is defined simply by a plot
of r(t)/o(t) versus t (Fig. 18) The negative, constant slope of py in semilog space
indicates that the process is represented by a decaying exponential as is often found
for p, [Dieterich, 1979; Rusna, 1983).

Equation (3.11) indicates that the current shear stress may be a function of the
applied normal stress rate. This was checked in RFTO078 by stepping the rate by a
decade during steady sliding. Figure 19 shows that the rate of increase of shear stress
with normal stress decreases by nearly half when this is done.

3.4.5 Slip Condition

It was noted in an earlier section that the slip condition was essentially a surface
in stress space that separates the elastic, preslip behavior from the sliding behavior;
for example, |r| — po = 0. The usual method of constructing the slip condition is to
plot some chosen value of shear stress against the appropriate normal stress. There are
infinitely many values of shear stress for slippage explicit in each torque-versus-angle
curve, bounded below and above by T, and T7,, respectively. Some results are shown in
Figure 20 for test RFT059. This figure represents the results of four sequential friction
tests on the same surface at normal stresses of 2, 4, 6, and 4 MPa. The fourth test,
at 4 MPa, reproduces the second test, also at 4 MPa, nearly exactly so that surface
evolution was not a factor. The triangles represent the shear stress required for the
onset of slip, 7o, at the outer edge of the test surface; the circles were computed at the
steady sliding stress, ry,. The lines through these data points are best-fit power laws.
The region bounded above by 7, and below by 7, is characterized by slip hardening
response. The difference in the 7y, and the 7o curves is due only to evolution of the
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frictional resistance. The deviation of the measured value of 7, from 74, is assumed
to result from fluctuations of the friction stress. In other words, the experimentally
observed value of stress for the onset of slip is less than the theoretical value because
the frictional stress is less than the average value in some regions. For details on how
the stress path in relation to these two curves influences stress-slip response, see Olsson
[1984].

This particular example (Fig. 20) is extreme, Ty,/T, = 2.17 compared to the ideal
value of 1.214. Another curve such as that for RFT030 (Fig. 11) shows Ty, /T, = 1.6
and is more typical of the data base as a whole. Evidently, the vertical distance between
74, and 7o is connected by ||¢(z)|| to the spatial variation of the surface properties.
Thus, initially smoother surfaces would approach the theoretical Ty,/T, of 1.214 as

ll¢(=)If — O.

A new way to determine the slip condition is based on the test type described in the
preceding section. This procedure maps out the slip criterion in one test on one surface,
and in this way removes all specimen variability effects. Figure 21 shows the results of
a typical test of this type. Here, after the establishment of uniform, constant sliding
velocity at nominally zero normal stress, the normal stress was ramped at a constant
rate until 5.4 MPa was reached, whereupon the normal stress was ramped downward
to zero, again at a constant rate. This sample had been well run-in and was wiped
clean of gouge before running this test. There is a clear normal stress history effect
present in this test. On loading, the relation between 74 and o is linear with puy = 0.57
On unloading, however, uy is initially 0.33 and increases to 0.83. The increased shear
stress at any given normal stress on unloading compared to the shear stress at the
same normal stress on loading may be due to the crushing of the asperities into more
intimate contact at the highest normal stresses, causing greater contact area during
unloading.

The shear stress for fully sliding conditions for several different stress paths is super-
imposed in Figure 22, two (RFT056, RFTO062) stepped, one individual (RFT059),
and two continuous (RFT063, RFT065). For comparison, the range of stresses dur-
ing run-in of RFTO58 is included. In terms of the slope of any line that might be
drawn through the points, there is not much to be distinguished. The continuous curve
is lower than the discrete points.

The effect of the underlying sliding velocity is shown in Figure 23. Here the velocity
is different by a factor of 10. The slip condition is lower for the higher velocity test
as would be expected from the previous discussion. The interpretation of this data
is difficult at this time because it is not known whether these data represent steady-
state as defined above. Nevertheless, this test type represents one way of defining the
steady-state velocity; for example, tests could be run at successively slower velocities
until there is no increment in 7o) for an increment in V.
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3.6 Shear Compliance of Rough Surfaces

Sample 16D was a grooved cylinder pulled in tension to form a rough fracture.
The surface profile of the laboratory-induced tensile fracture was measured with a
profilometer, and the maximum amplitude was found to be 1.91 mm. The sample was
tested for normal stiffness, as described below, and for shear stifiness, 2s now explained.
Test RFT0138 was the shear stiffness test run on sample 16D at & nomineal normal stress
of 2 MPa, the results of which are summarized in Figure 24. In the development of
this test type, it was first thought that the specimen deformation could be computed
from the strain gauge outputs, but the most accurate method is to measure the total
deformation before and after the fracture is introduced and then subtract, as described
above. Thus, in an after-the-fact manner, the total specimen-machine deformation in
shear was measured after the fracture was formed by carefully mating the two sample
halves back together, applying the normsal stress, and then twisting. Because the
rough surface was mated and the asperities were interlocked, no slippage occurred if
the torque was kept below 70 N-m. The torque-angle relation thus obtained, which
represents the combined stifiness of the specimen plus the machine, is shown in Figure
24 by the squares. The dashed curve represents the total deformation in a subsequent
test carried to torque sufficiently high as to cause fully sliding conditions. This test was
begun in the unmated condition. When the elastic, rock+machine curve is subtracted
from the total deformation, the joint deformation curve is obtained (solid line, Fig. 24).
The data show that co > Ky > 0, that is, the shear stiffness is infinite until the stress
is sufficient to induce sliding, whereupon the stiffness decreases monotonically to near
zero as sliding progresses.

The verticality of the unloading curve indicates that there is virtually no elastic
recovery so that, recalling (1.1), &} = 0. The coincidence of the u} curve with the uj+ul
curve in the linear range shows that the simplest way to determine the contribution of
the joint alone is simply to remove the elastic deformation calculated from the slope of
this linear portion from u{. That is, the elastic contribution to the total deformation
is made up entirely of machine and intact rock contributions.

3.56.1 Dilatancy

During the shear test on sample 16D, described in the previous section, the dila-
tancy, # = du,/du., was also measured. This is the only value currently available for
Topopah Spring tuff. Figure 25 shows the torque and dilatancy plotted against slip
angle. The joint shows monotonic compaction with increasing slip. During untorquing,
the dilatancy remains essentially stationary. It seems probable that if the test had
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begun with the joint halves mated, there would have been joint opening rather than
closing.

3.6 Normal Stiffness

3.6.1 Experimental Observations

Normal stiffness testing was successfully carried out on sample 18D in tests NST005
through NST008. Rock displacement, @}, was computed from strain gauge readings
taken from the external sample surfaces. The linearity and recoverability of the gauge
output justifies the use of the overbar on the rock displacement, i.e., the rock response
is linear elastic. Axial displacement, & + u’, was measured with an LVDT located
coincident with the sample axis. Forming the difference of these two quantities gives
the response of the joint alone (Fig. 26). In the mated condition, the near closure of
the hysteresis loops (Fig. 26) indicates that #J ~ 0. In the mated condition, then, the
cyclic loading response of the joint in normal closure is, to a very good approximation,
nonlinearly elastic.

Next, the sample halves were rotated with respect to one another about the cylinder
axis to achieve a completely unmated condition then loaded in compression again to
obtain the stiffness of a rough joint (Fig. 27). Again, the elastic rock deformation was
subtracted from the total to obtain the joint response. The most obvious difference
between the response of the unmated and the mated surfaces is the large displacement
at a given stress for the unmated surfaces. For example, at 5 MPa the closure of the
mated surface is about 50 um compared to 200 um for the unmated surface.

Additionally, both the size of the hysteresis loops and the amount of permanent,
nonrecoverable deformation are greater for the unmated surface. The increased hys-
teresis indicates greater contribution from frictional processes. Increased plastic defor-
mation of the the asperities causes the larger permanent deformations. Apparently, the
mated joint is completely closed by a normal stress of 3 MPa, whereas the unmated
surface is still closing rapidly at the maximum achieved stress of 6 MPa.

Differentiating the stress—displacement relations gives the normal joint stiffness, K,,
which is plotted for both mated and unmated conditions in Figure 28. The stiffness of
the mated joint ranges from 0 to about 500 GPa/m at 0, = 9 MPa. For the unmated
joint the stiffness increases from 0 to about 100 GPa/m at a stress of 6 MPa.



Chapter 4

CONCLUSIONS

The results presented in this report suggest the following conclusions for room-
temperature, air-dry Topopah Spring tuff.

1. The coefficient of friction can vary from an initial value of about 0.3 to a steady-
state value of about 0.8. This range can be found on an individual clean, smooth
surface. :

2. The elastic (that is, preslip) shear stiffness of smooth and rough joints was found
to be infinite when measured and calculated correctly.

3. All displacement attributable to slippage on the joint is plastic, that is, non-
recoverable.

4. The normal joint stiffness is found to be consistent with results reported in the
literature in that it is a continuously increasing function of normal stress. The
normal closure displacement is composed of elastic (recoverable), plastic (non-
recoverable), and frictional (recoverable but hysteretic) components.

5. Shear strength decreases by about 5% per decade increase in slip velocity.

6. The effect of a sudden change in slip velocity can be interpreted in terms of
hereditary integral or internal state variable descriptions.

7. There may exist a critical velocity. Below the critical velocity, & sudden increase in
velocity causes an instantaneous increase in strength, which then decays gradually
to a new, lower value. Above the critical velocity, there is no instantaneous
increase in strength following a jump in velocity—just a smooth decrease.

8. The strength of the joint may increase with time of stationary contact.
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9. Normal stress history has a measurable effect on the strength; the slipping inter-
face retains a fading memory of past normal stress.

10. The stress-path traversed on the way to the slip condition has a measurable effect
on the observed strength, thus casting doubt on shear strength and stiffness data
from triaxial tests run at constant confining pressure.

11. Trueslip-weakening for initially smooth surfaces may have been found in Topopah
Spring tuff. This response is usually masked by inhomogeneous resistive stresses.

12. For the low normal stresses used in this study, the torque-twist curve appears
to be a direct measure of the shear compliance of a joint; that is, there is no
significant contribution from the radial growth of the slip zone. Thus, the rotary
shear results should be directly comparable to those from other tests such as
direct shear and triaxial, insofar as these data are collected from similar stress
and velocity histories.

4.1 Outlook

Many avenues remain to be explored, but the next few steps in the research program
should attempt to:

¢ Define the magnitude and implications of the hereditary velocity and normal
stress effects. This includes elucidation of the effects of stress path. It is likely
that stress path will be even more important for rough surfaces representative of
some natural joints.

e Construct constitutive equations that describe nonlinear normal stress history
effects not predicted by equation (1.6). This may be best done in terms of state
variable descriptions.

o Identify the critical velocity, Vo, that decides whether 87/dV is positive or zero.
This is important in stability considerations.

o Define the conditions under which slip-weakening may be observed.

o Compare the results from rotary shear with those from triaxial friction tests. This
is important because the triaxial machine will be more convenient when water
content and temperature are studied.

This should be followed by the introduction of the environmental variables:
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e Temperature

o Water content

The influence of surface roughness, particularly with respect to joint closure, needs
further work. The possible effects of gouge or infilling material has not been investi-
gated, but if these materials are present, the problem of joint slip and closure will take
on a completely different character.
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Appendix A

Theoretical Model

A.1 Torque-Stress Relations

Consider a right-circular cylinder of rock containing a planar cut perpendicular to
the axis. For definiteness, take the cut to be near the midpoint of the axis. The
cylindrical sample is subjected to a constant compressive load along the axis and 2
time-varying torque about the axis. These boundary loads cause a normal stress to act
across the central cut and a shear stress to act perpendicularly to the radii in the plane
of the cut. Erect a right-handed coordinate system with the origin at the outer edge of
the circular cut. Let the z-axis coincide with a generatrix of the circularly cylindrical,
outer sample surface, and let the z-axis point toward the center of the cut. Thus, the
y-axis is tangent to the surface of the cylinder.

The shear stress, 7o, due to the remotely applied torque varies linearly from zero at
the center to a maximum value at the outer edge of the cut [e.g., Smith and Sidebottom,
1969; Timoshenko and Goodier, 1970]. For the case of a hollow cylinder of inner and
outer radii R; and R, respectively, the stress on the test surface due to the applied
torque is

rol2) = TR~ J2l), (41)

where J = x(R* — R})/2 is the polar moment of inertia and T is the torque. The
absolute value is taken because in a Jater section, an image dislocation solution is used;
for this the symmetry in stress is needed.

At any radius the condition for the onset of slip is that the applied stress, 7o, plus
the internal stress, 7;, due to prior slip just equals the uniform friction stress, 77, such
that

Too + T = 4. (A.2)
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Substituting (A.1) into (A.2) yields

T T
= (Tf - jR) + }"il (A3)

Because the shear stress is greatest at the outer edge, slip will begin there and
will spread into the interior, up the stress gradient given by r; — 7, as the torque is
monotonically increased. In this problem, the stress is known within the slipping zone;
it is equal to the friction stress. Outside the slipping zone, the slip is everywhere zero.
Thus, this is a mixed boundary value problem to which the solution can be found if
it is assumed that the depth of slip is small with respect to the radius of the circular
cut. In effect, a two-dimensional, anti-plane strain approximation is used. Figure 1
shows the relationships amongst the shear stress components over the test surface; 7.,
is computed below.

A.2 Torque-Slip Relations

The relationships between the torque and the magnitude and distribution of offset in
the slipping zone is derived using a continuum dislocation model. As noted previously
[ Weertman, 1964; Olsson, 1984), the idea of a distribution of dislocations in a problem
with continuous displacements is merely a physical device to aid visualization. To treat
the problem two-dimensionally, assume that the zy-plane of the coordinate system
coincides with the interface separating two linear elastic half-spaces pressed together
by a uniform normal stress, o,. If infinitely long, straight, screw dislocations parallel
to y having infinitesimal Burgers vectors are distributed antisymmetrically about the
origin; positive ones along the +z-axis, and negative ones along the —z-axis-in the
image space; the yz-plane will be stress free and therefore may be taken as a free
surface. Now, when the local stress at the origin becomes equal to the friction stress,
screw dislocations nucleate there and move into the positive half-space to the depth d
and into the image half-space to the depth —d. Because the yz-plane is stress free, the
half-space z > 0 can be considered a good representation of the cylindrical problem for
d < R. This is the same reasoning that makes it possible to model a strike-slip fault
on the earth’s curved surface as a shallow, long fault in a half-space.

Define the dislocation density function, B(z), such that B(z) dz is the total offset
between z and z + dz. The slip, D(z), is given by dD(z)/dz = —B(z). Because it is a
displacement gradient, B(z) is evidently a strain measure. The shear stress, 7;(z), at
zo due to a unit dislocation lying at z is (G/2x)/(z — zo). Superposing the stress due
to the distribution of dislocations gives

T.'(l:o = G / Ms (A4)

27 J-o0 r—Ig
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where G is the shear modulus. In a general sense, 7;(zo) can be thought of as the stress
change on a fault due to the slip [Mauvko, 1881]. Because B(z) is not known on (—d,d) C
(—o0,00) but %; is, equation (A.4) is an integral equation for the determination of B(z)
and can be inverted by the method of Muskhelishvili [1953]. At the ends of the slipping
zone the stress is bounded by the friction stress go that the solution for bounded B(z)
is appropriate. Therefore

1(z) dz
¢ (d? - 2313 (z — zp)°

Blao) = 25~} | (45)

The existence of equation (A.5) requires that

4 1(z)dz
[ ¢'(F(_-_Zcm 0. (4.6)

Integration of (A.6), with r;(z) from (A.3), gives

1

T'=1"2gj=x

=1 + + o(d) (d—0) (A.7)
for the relationship between slip zone depth, d/R, and the nondimensional torque,
T= TR/1;J. The analysis in this paper is necessarily limited to small values of d,

and thus terms in (A.7) of order less than two are dominant. For the limiting case of
d— 0, the excess torque, that is, the torque greater than that needed to just initiate
slip, T'— 1, is linear in the slip zone depth just as in the plane strain case [Olsson, 1984).

Also, with the appropriate identification of the variables, equation (A.7) agrees with
the depth of faulting found by Walsh [1964).

B(z) and 7;(z) are Hilbert transforms of each other [ Weertman, 1964; Mavko, 1982),
which makes computation easy for the stress distribution given by (A.3) because the
appropriate transform is tabulated in Erdelys et al. [1954]. Using (A.3) and teking the
transform as in (A.5) gives

_ 4ry 1 d+ (d* — z2)1/2
B(z) = nGR (1 - 2d/1rR) zlogl z :

(4.8)

Note that in two-dimensional, plane strain, slippage problems described by edge disloca-
tions, a similar form for B(xz) arises [ Weertman, 1964; Olsson, 1984], but the collection
of factors in front of the log term does not contain the slip zone depth as it does here.
This is because in that problem, the applied stress was uniform and the friction varied
linearly. Here the reverse is true; the friction is uniform, and the applied stress varies.
Thus, as the torque increases, the stress gradient steepens, causing a greater increase
in the amplitude of B(z) for a given deepening of the slip zone. An equation with
structure similar to (A.8) was derived by Leonov and Shvaiko [1961] for torsion of an
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elastic-plastic cylinder. In that problem the plastic strain is distributed throughout an
annular shell, whereas in the present problem, the plastic strain (slip) is confined to a
planar annular disk.

Recalling that B(z) = —dD(z)/dz, the slip in terms of the dislocation density
distribution function can be written
d
D(z) = [ B(&) de. (4.9)
Substitution of (A.8) into (A.9) and integrating results in
D(z) = 21y 1 [d(dz Y zzsech"l(x/d)] (A.10)
7GR \1-2d/7R .

for the slip profile along z.

At the outer surface, where the slip can be measured experimentally, we obtain the

relation \
G d 1
2, R0 (fi) (1 - 2d/1rR) : (4.11)

where D(0) has been replaced by Dj and is called the offset. This equation has the same
form as that derived by Walsh [1968] for vertical strike slip faults. Equations (A.7) and
(A.11) combine to give the parametric form of the torque-versus-offset relationship for
first loading in rotary shear. Relationships for unloading and subsequent reloading are
derived below. In the plane strain (direct shear) configuration, Dy was found to be
proportional to d? [Olsson, 1984], and therefore in the small d limit, the solutions are
the same.

Unloading is accomplished by adding an additional torque, —T“ (T > 0), to the
maximum value of 7" achieved during loading, 7", so that T = 7'~ T%. When T* = i,
unloading is complete. In terms of shear stress on the surface during reverse slipping,

ri(z) = 21, 4+ 72 (A.12)

When the applied torque is reversed, the maximum shear stress again occurs at the
outside of the circular cut, but the sign is reversed, causing negative screw dislocations
to nucleate there and move into the interior, consuming positive dislocations as they
go. By use of (A.6), the relationship between depth of reverse slip d“/R and T is

found to be 4
a 2 24"

Yo — A.l13

T = {T2a/sk 2(” R) (4.13)
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Application of (A.5), (A.6), and (A.10) gives the rest of the unloading equations:
d® + (dv? — )12

wioy 47y 2
B'(z) = 7GR (1 - 2d“/1rR) zlog z ’ (4.14)
and R
=G ., [& 2 |
2, R0 = (R) (1 - 24«/1:}2) ' (4.15)

Reloading may be realized by adding a torque, 7, to the minimum torque attained
during unloading, T¥'. By methods similar to those above, the reloading equations are:

. 2 2d
T—I-Zd'/szz(l.'—wR)’ (A.16)
rey 4Ty 2 d + (d — z?)/2
B(z) = 7GR (1 - 2d'/1rR) zlogl z ! (4.17)
and .
G ., (& 2
2r,RD °~ (R) (1 - 2d'/1rR) " (4.18)

Further loading and unloading cycles are described by equations (A.16) and (A.18),
and (A.13) and (A.15), respectively. Thus, after the first torquing phase, oscillations in
torque between fixed limits produce identical torque-offset loops. A similar result has
been found for a direct shear configuration [Olsson, 1984] and for contacting spheres
suffering oscillating, oblique loads [Mindlin and Deresiewicz, 1953).

A.3 Model Response

A calculated T versus Dy curve for a period of torquing followed by untorquing,
reverse torquing, and then retorquing is shown in Figure A2. As T is increased (at
constant normal stress) from zero, no slip occurs until the applied stress at the outer
edge of the sample surface equals the friction stress. At A, this condition is met and slip
ensues, as indicated by D, taking on nonzero values. As the torque is further increased,
there is a gradual increase in Dy until torquing is reversed (B, Figure A2). The sliding
surface sticks together until the torque is reversed to a value given by (13) (C, Figure
A2), at which time reverse slip begins at the outer radius. At D, retorquing is first
accompanied by sticking (DE, Fig. A2), then slip development along EB. With no
surface property evolution accounted for in this simplified model, the torque assumes
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the same level at B as during the first torquing. Again, this response is similar to plane-
strain slippage [Olsson,1984] and to slippage at the contact of two spheres [Mindlin and
Deresiewicz, 1953).

During the loading phase, the slip profile develops progressively, as shown in Figure
A3. The increasing torque causes the continuing injection of new dislocations from the
surface leading to progressive deepening of the slip zone as given by d, which is measured
indirectly in experiments by Dy. These slip profiles are similar to one heterogeneous
fault model discussed by Mavko [1981]. Reversing sufficiently the sense of the torquing
causes reverse slip to begin at the outer edge and to propagate into the sample. The
development of the net slip profile during reverse torquing is illustrated in Figure A4.
At the end of the torquing phase, the slip distribution is given by curve ABC D (Fig.
A4). During reverse torquing, D(z) moves through successive distributions EBCD,
FCD, and, finally, GD. During this process slip does not everywhere vanish at any
torque. In fact, even after such a simple stress history as that applied in this example,
the slip is quite complex.

Figure A5 depicts the evolution of the slip distribution for the three-part torque
hxstory shown in Figure A2 comprised of torquing to T=1 .2, then reverse torquing
to ' = —1.2, and then retorquing to 7 = 1.2. The slip profile resulting from torquing
to 1.2 (B, Fig. A2) is shown by ABC in Figure A5. Untorquing to —1.2 results in
profile FGC (Fig. A5). Final retorquing to 1.2 (D to B in Figure A2) results in profile
ABC again. Intermediate profiles are shown as EBC and DGC for reverse torquing
and retorquing, respectively. When the retorquing profile coincides with the original
torquing one, the current T, D, state coincides with the one passed through on the
first loading. This is a reflection of the phenomenon of discrete memory [e.g., Huecke!
and Nova, 1979], as was found earlier for plane-strain conditions [Olsson, 1984). It is
simply the result of the slip distribution returning to an earlier state. If torquing were
to continue, the torque-slip curve would extend along the path of the original one.

A particularly important feature of slipping interfaces that are characterized by a
nonuniform driving stress emerges in these figures (Figs. A3, A4, A5). If nonuniform
slip occurs upon torquing, unloading to zero torque will not return the shear stress on
the interface to zero anywhere. Further, reverse torquing to induce negative slip will,
in general, not lead to uniformly zero slip and hence zero shear stress. It is concluded
that once subjected to sufficient torque to cause slip, the interface will only under
very special circumstances ever again be everywhere shear stress-free. These special
circumstances include the vanishing of the normal stress, at least momentarily, and
creep processes that are not included in this model. In the next section, one more
process will be shown to return the interface to zero slip, uniformly.
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A.4 Returning the Interface to Uniformly Zero Shear Stress

Study of Figure A5 suggests that a sufficiently large number of alternating slips
of monotonically decreasing magnitudes would return the interface to as near to zero
slip everywhere as desired. For convenience, D(-) = ("GR/27;)D(-). Clearly, after k
alternating torquings into the slipping regime, the net displacement, ﬁ',’;" (z), is given
by

Dt (z) = Dy(z) + i Dn(z), (A.19)

n=2

where
Dy(z) = (-1_—23’1—/;—5) [d;(d} — 2?12 — ::’sech"l(::/dl)]

Dulz) = (1) (i527sz) [dnld2 — 22)'/2 — 2%sech™(z/d,,)]

and n numbers the alternating torquings sequentially from n = 1, the first torquing, to
a2 maximum of k. Thus n = 2 is the first reverse torquing, n = 3 is the first retorquing,
n = 4 is the second reverse torquing, and so on. Because (A.19) is an alternating series

k
lim )" Di(z) =L (A.20)

k=00 n=1

if only we make d, > dn;; 2nd lim D,(z) = 0 as n — oo. That the sum L is actually
zero is established by inspection of Figure A5. Thus, an infinite number of elternating
torquings of decreasing amplitude will in the limit return the interface to uniformly
zero slip, which results in uniformly zero shear stress.

A practical implication of this result is that many-cycle, low-amplitude stressing,
such as the diurnal tides, could play a role in destressing the inhomogeneously deformed
joints, faults, and bedding planes existing in any rock mass.

A.5 The Shear Stress in the Slip Plane During Skp Estab-
lishment

At the very onset of slip, the stress on the joint is given by (3.2). After complete
spread of slip over the entire joint, the shear stress, 7y,, is given by equation (3.3).
During the time that slip is spreading across the sliding interface, the stress is more
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complex. Here, the stress profile for shallow slip is computed; deep slip is probably
qualitatively similar, but that problem remains to be solved.

After tangential slip begins to spread across the joint so that the cross section is
divided into a slipping and a sticking region, the stress due to the inhomogeneous slip
is given by (A.4) using B(z), as found in (A.8). Thus, the problem is reduced to the
evaluation of

dz
(.‘B - zo) )

d+ (& — )
A

il 7i(z0) -—i—leo
ZiTIT ne 27 g

(4.21)

This integral is most simply computed using Cauchy’s integral formula for th= region
outside the slipping zone. One arrives at

ri(zo) = 2;;’: [z arcsing - d] (A.22)

for the internal stress outside [—d,d]. The internal stress within the slipped zone is
given by (A.3). Figure Al shows the relationships amongst the three shear stress
components 7, 7y, and 7;.
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FIGURES
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Figure 1. Various test configurations for determining frictional response of sliding
surfaces and the usual measurements.
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Figure 2. Definition of the various displacements that can be measured on 2 fractured
sample.
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Figure 3. Definition sketch for velocity step tests.
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Figure 4. Torque-slip loop for Westerly granite at 10 MPa normal stress.
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Figure 5. Enlargement of the first loading portion of test shown in Figure 4 (solid
line). Ty, is taken as the maximum, steady value, and this is used to compute 7.
A calculated torque-slip curve is also plotted here using the data (dashed line); it is
indistinguishable, at this scale, from the torque axis.
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Figure 6. Approach to steady-state friction with continuing slip. The first three suc-
cessive tests are progressively higher, and the fourth and fifth are the same as the third
(Experiment RFTO058).
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Figure 7. The effect of stopping the sliding for a period of 150 seconds (Experiment
RFTO026).



" o = 5.8 MPa .
TRANSIENT STRENGTHENING
gun " 1
5 </
0. I .
=
S’ 3 L . ﬂ -
= ! 100 10 1 1| 10 [100 pm/s 1
s 0.1 -
2 1 1 I 1 | 1 1 1 1 i I | 1 | 1 1 1 Il
2 4 6 8 10

ANGLE  (deg)

Figure 8. The effect of stepping the velocity on the friction stress for Topopah Spring
tuff (Experiment RFT028).
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Figure 9. Enlargement of Figure 8 with the shear stress divided by the normal stress
(Experiment RFT028).
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for test RFTO028 shown in 8 and 9.
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Figure 11. The effect of cycling the torque while maintaining the normal stress constant
at 3 MPa (cycles 1 through 4) and with intervening removals of normal stress (cycles

5 and 6)(Experiment RFT030).
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Figure 12. The effect of changes in normal stress during momentary stationary con-
tact. Note the increasing sharpness of the yield regions with increasing normal stress
and, also, the slip-weakening behavior on the two highest increments and all of the
decrements, except 3 to 2 MPa (Experiment RFT062).
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Figure 13. Friction stress, 74(z), and the applied stress, T, as a function of position.
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Figure 13 cont. (b) The friction stress, 7/(z), applied stress, Teo, and the slip zone.
(c) The internal stress resulting from slip in the interval [-b, ).
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Figure 13 cont. (d) The resistive stress, 1,(z) = 74(z) — 7;(z) shown as a solid line; the
friction stress 77(z) shown by dashed line. (e) The effect on the resistive stress, 7,(z),
of a change in the normal stress, Ao.
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Figure 14. Shear stress response to a step-history normal stress during constant velocity
sliding at 10~¢ m/s for test RFT064. There is no significant memory of past normal
stress indicated.
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Figure 15. Shear stress response to a step-history normal stress during constant velocity
sliding at 1075 m/s for test RFTO077. From a slip of about 3 to 5 mm there is a gradual
strengthening of the interface following the step increase in normal stress. This is an
example of a fading memory of past normal stress.

72



4 ] ) ] | 1] l | ] | ] B l L] L B I ]
—
o j
o i -
v 20 _
o’
= !
7)) L
} !
T L it S -
J
G - ' V=1 pum/s i
S 2 | pm/ :
}g do/dt = 3.3 X 1072 MPa/s -
_4 | ] ] 1 1 ] 1 I} 1 1 | [ i 2 2
0 100 200 300

TME (sec)

Figure 16. The variation of dr(t)/dt with time (Experiment RFTO079).
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Figure 17. X(t) plotted against time. The slope, which is interpreted as a correction
factor, is small in comparison to 1.
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Figure 18. The generalized coefficient of friction is a decaying exponential in time
(Experiment RFT079).
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Figure 19. Effect of a decade increase in normal stress rate on the slip condition
obtained at constant underlying sliding velocity (Experiment RFT078).
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Figure 20. The duality of the slip condition; the upper curve is the stress at continuing,
uniform slip, the lower curve is the onset of sliding (Experiment RFT059).
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Figure 21. The slip condition mapped out in one test on one sample. The stress path
is counterclockwise from the origin (Experiment RFT063).
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Figure 22. Comparison of the slip condition obtained from several stress histories.
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Figure 24. Torque versus offset for a rough surface (laboratory-induced tensile fracture)
(Experiment RFT013).
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Figure 25. Same as Figure 24 but showing the dilatancy curve; compaction is positive.
The surfaces were initially unmated; sample 16D.
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Figure 26. Normal stiffness for sample 16D in the initially mated condition. Notice
that the stiffness becomes infinite at a stress near 3 MPa. The hysteresis loops are
relatively small, and there is no measurable permanent deformation.
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Figure 27. Normal stiffness for sample 16D in the initially unmated condition. Observe
the large hysteresis loops and noticeable permanent deformations compared to the
initially mated condition shown in Figure 27.
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Figure 28. The normal stiffness as a function of (nominal) normal stress for the mated
and unmated initial conditions for a rough surface of Topopah Spring tuff. (16D).
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Figure Al. Shear stresses that exist on a slipping interface when the slip zone (0,d)
covers only part of the whole surface.
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Figure A2. A response curve for the theoretical model in dimensionless units. The
torque history starts at point 0. Slip begins at point A and continues to B, where the
torque is reversed. The slipping surface then sticks together until the reverse torque
causes reverse slip to begin at C and continue to D. Sticking again occurs from D to
E, where renewed forward slip begins. The second phase of forward torquing ends at
exactly the same point where the first phase ended, and is a result of discrete memory.
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Figure A3. Growth of the slip zone during forward torquing. The successive curves
EF, CD, and AB are associated with increasing torques.
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Figure A4. Development of the net slip distribution during reverse slip. The curve
ABCD was produced at the furthest extent of forward torquing. During reverse
torquing, the successive curves EB, FC, and, finally, GD are produced. Never dur-
ing reverse torquing is the slip uniformly zero.
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Figure A5. Development of the net slip distribution during the three-phase torquing
history of Figure Al. At the cessation of first torquing, the profile is ABC. Partway
through the reverse torquing phase, the profile is given by EBC, and at the end of
reverse torquing, it is given by FGC. Following some second-phase torquing, the profile
becomes DGC, and then, finally, the profile reassumes curve ABC. This causes the
torque-versus-slip curve to return to exactly the same point where the first untorquing
began.
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Appendix C

Sample Key
Experiment Number Sample Number
RFTO013 16D
RFTO026 16B-BB/16C-CC
RFTO028 »
RFTO030 ”
RFTO047 ”
RFTO056 16B-AA/16C-CC
RFTO58 ”
RFTO059 ”
RFT062 »
RFT063 ”
RFTO065 ”
RFTO78 16C-AA*/16C-CC
RFTO079 ?
NST007 16D
NSTO008 ”

*16C-AA was sawed in half lengthwise
and the inner diameter was ground out
to 69.8 + 0.15 mm.
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Appendix D

Data Status

This report contains no data from, or for inclusion in, the RIB and/or SEPDB.
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