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Attention: Mr. Jeff Pohle, Project Officer
Technical Assistance in Hydrogeology - Project B (RS-NMS-85-009)

Re: Task 5 - A Review of the Scale Problem and Applications of Stochastic
Methods to Determine Groundwater Travel Time and Path, by T.-C. Jim Yeh
and Daniel B. Stephens

Dear Mr. Pohle:

Attached please find the final version of the Task 5 report, "A Review of the
Scale Problem and Applications of Stochastic Methods to Determine Groundwater
Travel Time and Path", by Drs. T.-C. Jim Yeh and Daniel B. Stephens (Daniel B.
Stephens and Associates). The report, prepared under the QA program of DBS,
has been reviewed by M. Logsdon of Nuclear Waste Consultants and received an
external technical review from Dr. Alan Gutjahr of New Mexico Institute of
Mining and Technology. For your information, I am enclosing a copy of Dr.
Gutjahr's review comments.

The report addresses the following items:

o review of uncertainties in groundwater travel time and path that may
be attributed to hydrogeologic parameters;

o critical reviews of relevant scientific publications concerning
uncertainties in travel time and path;

o discussion of the significance of the finding for the NRC's waste
management program;

o explanations and illustrations of stochastic concepts and methods of
stochastic analyses;

o presentation of a glossary of terms relevant to stochastic analyses.
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The final report has been reorganized and supplemented in the manner described
in NWC Communication No. 270, in which we transmitted the first draft of the
report. NWC considers that the revisions have made the entire work a much
better focused and more easily used report. In particular, the front material
sets the framework for the analysis that follows, new illustrations make the
concepts much more accessible, and the detailed mathematical derivations of
the earlier version's Section 2 have been moved to an appendix. The
bibliography contains almost 400 citations to the literature on geostatistical
and stochastic methods in groundwater hydrology.

Most readers at the NRC, after looking at the abstract and the front material,
will probably turn to Section 3, Groundwater Travel Times and Paths. Note
that there is material pertaining to groundwater travel time and paths
throughout the text, not only in this section. After reviewing the text, NWC
considers that you will find that Drs. Yeh and Stephens have reached
essentially the same conclusions that have been reached by the CNWRA Program
Architecture working group on GWTT: there are ambiguities in the wording of
the current version of the performance objective (10 CFR 60.113 (a) (2)) that
need further consideration. Yeh and Stephens propose a technical alternative
to the current form of the rule, based on the travel time of a certain
concentration of a hypothetical tracer released under pre-emplacement
conditions. This technical alternative is not one that has been considered so
far by the CNWRA group, but it is conceptually similar to aspects of the
analysis originally prepared by Dr. Richard Codell of the NRC (Draft Generic
Position on Groundwater Travel Time, June 30, 1986). Yeh and Stephens present
the arguments for why the transport analysis is a technically sound surrogate
for the performance of the natural system. It should be noted that the
analysis could still be relatively simple (at least compared to analyses for
the overall system performance), since the analysis would be performed under
isothermal (or nearly so) conditions and could be limited to an ideally
conservative tracer to eliminate geochemical complications. This analysis
would allow consideration of such physical characteristics of the flow system
as the applicant could document are a functional part of the natural barrier,
which is after all, what is to be shown. For example, if the applicant could
demonstrate that dead-end pore spaces in a dual-porosity system were effective
at isolating radionuclides under pre-emplacement conditions, then this would
seem a legitimate part of the credit that they might wish to claim. Their
burden would be to demonstrate that the model they invoke and the data they
use are reasonable for the site. This is no different as a matter of proof
than would be the burden to demonstrate a representative value for effective
porosity in a one-dimensional seepage-velocity analysis. Reasonable technical
people could disagree with the Yeh/Stephens analysis, and there may well be
policy reasons for which this approach would be found unsatisfactory. But NWC
considers that Yeh and Stephens have presented their position clearly and that
it is one which should receive consideration.

Nuclear Waste Consultants, Inc.
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Transmittal of this report completes the deliverable for Task 5 under the
August 14, 1987 direction of the NRC Project Officer. If you have any
questions about this letter or about the report by Drs. Yeh and Stephens,
please contact me immediately.

Respectfully submitted,
NUCLEAR WASTE CONSULTANTS, INC.

Mark J. Logsdon, Project Manager

Att: A Review of the Scale Problem and Applications of Stochastic Methods
to Determine Groundwater Travel Time and Path, by T.-C. Jim Yeh and Daniel B.
Stephens

cc: US NRC - Director, NMSS (ATTN PSB)
HLWM (ATTN Division Director)
Edna Knox, Contract Administrator (Documentation only)
HLTR (ATTN Branch Chief)
R. Codell, HLOB
D. Chery, HLTR

CNWRA - Dr. John-Russell

L. Davis, WWL

bc: J. Minier, DBS

Nuclear Waste Consultants, Inc.
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ABSTRACT

The groundwater travel time along the fastest path of likely radionuclide

transport is a regulatory criterion used to assess the hydrogeologic quality of a high-

level radioactive waste repository. Hydrologists and engineers are limited in their

ability to define with confidence the fastest path, owing to the heterogeneous nature

of geologic materials. Field measurements of hydraulic properties such as in test or

observation wells, are inherently averages of properties at scales smaller than the

scale of the field measurement. As a result of averaging, subscale information is lost

and there is uncertainty in defining the fastest trajectory of groundwater. This scale

problem is explained through a review of the continuum and REV concepts in

groundwater hydrology. The application of hydrodynamic dispersion concepts is

recommended as a means of incorporating the effect of subscale heterogeneity on the

fastest groundwater travel time.

Sources of uncertainties in predicting groundwater travel time are discussed

in the report. The uncertainties are mainly attributed to the heterogeneous nature of

geologic formations. The heterogeneity of geologic materials can, however, be

characterized quantitatively using geostatistical methods. Important statistical

parameters include mean and variance, as well as the spatial correlation structures of

the hydrologic properties within the hydrogeologic system. These parameters may be

obtained from limited data base. Stochastic methods, reviewed and explained in this

report, can take advantage of the geostatistical characterization to predict large-scale

groundwater flow and solute transport. Several examples from recent scientific

literature are provided to illustrate the application of stochastic methods to the

groundwater travel time analysis.

Stochastic methods in subsurface hydrology have only recently been

evaluated under field conditions for a few locations, and validation of the theories is

DANIEL B. STEPHENS & ASSOCIATES, INC.
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incomplete, especially in unsaturated fractured rocks. Nevertheless, research efforts

should continue to improve the state-of-the art. Geostatistics and stochastic methods

will be valuable tools in addressing the groundwater travel time objective.

________ DANIEL B. STEPHENS & ASSOCIATES, INC.
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1.0 INTRODUCTION

1.1 Purpose and Scope

Daniel B. Stephens & Associates, Inc. was requested by the U.S. Nuclear

Regulatory Commission (NRC), through Nuclear Waste Consultants, to conduct a

review of the literature pertaining to stochastic approaches for characterizing the

uncertainty in predicting groundwater travel path and travel time in saturated media.

Enclosed is the draft final report of this study. As directed by the NRC, the report

addresses the following:

-review of uncertainties in groundwater travel time and path which are

attributed to hydrogeologic parameters

-critical reviews of relevant scientific articles relevant to the analysis of

uncertainties in prediction of groundwater travel time and path

-a discussion of the significance of the findings to the NRC's waste

management program

-explanations and illustrations of the stochastic concept and methods of

stochastic analysis

-a glossary of terms relevant to stochastic analyses

In addition, the report discusses the concept of the representative elementary

volume (REV). The report also attempts to clarify the relationships between the

REV scale, the measurement scale of hydraulic properties and scale of modeling.

The proposed work is motivated in large part by federal regulations

pertaining to the performance of high level waste repositories, in particular, the

groundwater travel time (GWTT) objective. As stated in 10 CFR 60. 113(a)(2), the

GWTT performance objective is:

"The geologic repository shall be located so that pre-waste-

emplacement groundwater travel time along the fastest path of likely

DANIEL B. STEPHENS & ASSOCIATES, INC.
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radionuclide travel from the disturbed zone to the accessible environment shall

be at least 1,000 years or such other time as may be approved or specified by

the Commission."

The NRC has drafted generic technical positions on groundwater travel time

to help explain this phase, as well as the rest of the regulation (NRC, 1986. 1988).

One of the key points requiring clarification is the definition of "the fastest path of

likely radionuclide transport". Hydrogeologists are well aware that there are many

possible pathways, but which one is the fastest and how fast does groundwater travel

along it? Herein. enters the element of uncertainty. There is uncertainty not only in

identifying the fastest path from limited subsurface data but also in travel time

owing to the uncertainty in path length as well as in data or approaches used to

compute travel time.

As our report will illustrate, stochastic methods are well-suited to deal wvith

uncertainty in groundwater travel time and travel path analysis. However, they have

only been developed for groundwater problems within the last decade. The

mathematical complexities presented in theoretical articles in the scientific literature

are not easily assimilated by most practitioners. Moreover, because field tests to

validate stochastic models have not been completed, most hydrogeologists are still

reluctant to apply these models. One of the underlying purposes of our review is to

explain the principles of stochastic models without resorting to the mathematical

details and give examples of how the stochastic methods may be applied in the

analysis of groundwater travel time and travel path.

1.2 Background

Uncertainties in predicting groundwater travel times and paths arise

primarily from heterogeneity of aquifer materials. Heterogeneity is a continuous

phenomenon: it exists at all scales (from microscale to megascale). However,

heterogeneous materials may be treated as homogeneous at one observation scale, and

DANIEL B. STEPHENS & ASSOCIATES, INC.
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heterogeneous at a different scale. That is. the definition of heterogeneity is a relative

one, depending on the scale of observation. Thus, the heterogeneity observed is

directly related to the scale of the problem.

The problem of scale does not exist only in hydrology (Dooge, 1986). but

poses many difficulties for every branch of science and every one of us living in the

universe. It controls our perception of everything that we see and feel. The scale

problem is best illustrated in the book entitled "Powers of Ten" by Morrison and

Morrison (1982). The book contains visual images ranging from a scale of 1025

meters to 10-14 meters. At a scale of 1025 meters galaxies are seen as tiny clusters

in empty space. At a scale of 1023 meters, the Milky Way appears as one of a

number of bright spots in empty space. The spiral structure of the Milky Way

becomes apparent at a scale of 1021 meters. A scale of 1013 meters encompasses the

orbits and all the planets of the solar system. At the scale between 10-7 and l0-9

meters, we see the various structures of DNA molecules, and so on. Similarly, in

groundwater hydrology, at a scale of 106 meters one may observe variations among

groundwater basins. Various geologic formations become noticeable at a scale of 103

meters. A scale of 10 meters may encompass various layers of clay, sand, and

gravel. We can no longer recognize the irregularity of layers, but we do recognize

pore structures at a scale of 10-6 meters. Water molecules within pores are visible

at a scale of 10-8 meters. and so on as the scale of observation decreases.

Heterogeneity exists in groundwater hydrology at all scales. However. once

we select a scale of observation, we often neglect phenomena at subscales. This is

exactly the way our formulas, equations, and laws are developed in all sciences,

including groundwater hydrology. Subscale phenomena we ignored, however, may

play vital roles in solving or studying the problems of interest. Furthermore,

different laws and equations may be developed or discovered at different scales and

may not be appropriate for studying problems at another scale. For instance, a

DANIEL B. STEPHENS & ASSOCIATES, INC.
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representative elementary volume as used in the study of flower through porous m1edlia

would be different from that for flow through fractures or karsts. When predicting

groundwater travel times and paths, we may face the difficulty of extrapolating

equations and laws developed for a small scale to solve problems at a larger scale,

for example over distances of 10 km or more.

In the following chapters, we will first discuss of the continuum hypothesis

in fluid mechanics and groundwater hydrology, and then we will show the

development of equations for groundwater flow at different scales. We will then

discuss the uncertainties in predicting groundwater travel times and paths and finally

review some recent advances in groundwater hydrology to tackle the scale related

problems.

DANIEL B. STEPHENS & ASSOCIATES, INC.
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2.0 BASIC CONCEPTS IN GROUNDWATER HYDROLOGY

2.1 Continuum Assumption in Fluid Mechanics

The most fundamental assumption in fluid mechanics is the continuum

assumption in which the fluid is assumed to behave as if it were continuous in space

at the macroscopic scale, say 10-2 meters.

For example, at the macroscopic scale, one can see water in a garden hose.

and the water is continuous throughout the hose. However, if we examine a fluid at

the microscopic scale, say 10-8 meters, the mass of the material in a fluid is

concentrated in the nuclei of the atoms composing a molecule and is not uniformly

distributed over the column occupied by the liquid. Using the garden hose example,

we can view the velocity of water moving through the hose in perhaps two ways,

depending upon the scale of interest. In the first case, at the macroscopic scale, the

velocity is simply the volumetric discharge rate per unit cross-sectional area. For

steady-state conditions, the velocity is constant in space along the hose. In the

second case, at the microscopic scale, the velocity of individual fluid molecules is

highly variable along their path through the hose. This molecular velocity is

virtually impossible to measure. However. we are normally concerned with the

behavior of matter on a macroscopic scale which is much larger than the distance

between molecules. Accordingly, the properties of a fluid defined in fluid mechanics

have to represent the property values over such a macroscopic volume. The

properties contained in this volume are thus regarded as the average values being

spread uniformly over that volume instead of, as at the microscopic scale, being

concentrated in a small fraction of it. This macroscopic representation of the fluid

makes it possible to treat the fluid as a continuum in space. This approach in fluid

mechanics is known as the continuum approach and the associated hypothesis that the

DANIEL B. STEPHENS & ASSOCIATES, INC.
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fluid can be so represented is called the continuum approach.

Indeed. the properties of the fluid at the macroscopic scale are continuous

and smoothly varying, if observed with any of the conventional measuring devices.

When a measuring device is inserted in a fluid, it responds in some way to a

property of the fluid within some small neighboring volume, and provides a measure

which is effectively an average of that property over the volume. The device, such

as a pitometer for measuring velocity, is normally chosen so that the volume is small

enough for the measurement to be a local one; that is, further reduction of the

volume does not change the reading of the device. However, the volume is large

enough to contain an enormous number of molecules so that the fluctuations arising

from the different properties of molecules have no effect on the observed average.

Therefore, we can define a reproducible property of the fluid. Of course, if the

averaging volume is so small as to contain only a few molecules, the number and

kind of molecules in the volume at the instant of observation will fluctuate from one

observation to another, and the measurement will vary in an irregular way, with the

size of the averaging volume corresponding to the measuring device. Figure 2.1

illustrates the way in which a measurement of velocity of the fluid would depend on

the averaging volume of the device. We are able to regard the fluid as a continuum

when, as shown in the figure, the measured fluid property is constant for volumes

which are small on the macroscopic scale but large on the microscopic scale.

The continuum assumption allows us to attach a precise meaning to the

various physical properties at any point in space. The various fluid properties such

as density, velocity, and temperature can thus be treated as continuous functions of

time and position in the fluid which satisfy the requirements of differential calculus.

On this basis, we shall be able to establish differential equations governing the

motion of the fluid. The equations are macroscopic equations that are independent

of the nature of the particle structure which is generally discontinuous in space and

DANIEL B. STEPHENS & ASSOCIATES, INC.
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Figure 2.1. Dependence of velocity measurements upon sample size
within a fluid.
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time.

2.2 Continuum Assumption in Groundwater Hydrology

In saturated porous media (granular materials), flow takes p)lace throwu h a

complex network of interconnected pores or openings. Although the fluid itself may

be considered as a continuum by the continuum hypothesis used in fluid mechanics.

the flow path may be discontinuous because of the complex nature of the pore

geometry. Obviously, it is practically impossible to describe in any exact

mathematical manner the intricate pore structure which controls the flow through

porous media. As a result, one has to abandon the basic equations governing fluid

flow (such as the Navier-Stokes equations) at the pore-scale level. Similar to the

continuum hypothesis in fluid mechanics, groundwater hydrologists have to overlook

the microscopic or pore-scale flow patterns inside individual pores and consider some

average flow over a certain volume of porous media. By doing so. they are

employing the concept of a continuum, which is analogous to the concept used in

fluid mechanics and other branches of sciences. The minimum volume over which

the continuum assumption applies in flow through porous media, however, is much

larger than the one defined in fluid mechanics (Figure 2.2). In groundwater

hydrology, this volume is called the representative elementary volume (REV) (Bear,

1979). Using the REV concept. we essentially bypass both the microscopic level, at

which we consider what happens to each molecule in the fluid, and the pore level at

which we consider the flow pattern within each pore and between pores, and then

move to the macroscopic level at which only averaged phenomena over the REV are

considered. Thus. a REV is simply a volume over which we carry out the

averaging process. as shown in Figure 2.2.

A more practical definition of the REV may be given as follows: an REV is

a volume that is sufficiently large to contain a great number of pores so that a mean

property exists, and it is sufficiently small so that the parameter variations at a scale

._______ DANIEL B. STEPHENS & ASSOCIATES, INC.
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REV for continuum fluid mechanics

Figure 2.2. Different averaging volumes in fluid mechanics and
porous media.
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larger than the size of REV can be represented by continuous functions which salisty

the requirements of the classic differential calculus (De Miarsily. 19S6).

The REV concept is also defined through a rigorous mathematical expression

suggested by Marie (1967). At pore-scale, the spatial distribution of pore openlings

could be highly erratic, analogous to electronic signals superimposed with random

noises. Then, an REV is merely a noise filter similar to the one in electrical

engineering that filters out the random noises and produces a smooth signal (Figure

2.3). Mathematically, this process can be formulated as:

H(x) = f h(x + i)) f(I) dj (22.11

where H(x) is the smoothed, continuous, output signal, h(x) is the original, noisy, and

erratic signal, and f(n1 ) is the filter or a weighting factor. Figure 2.3a shows a filter

function which eliminates high frequency noises but retains the smooth sinusoidal

signal. Some filter functions can smooth noises and signal as shown in Figure 2.3b.

In groundwater hydrology, H(x) is the macroscopic property of porous media and f(e)

is the weighting function used within the volume or window over which the pore-

scale properties are averaged, i.e., the REV. For example,

within the volume V

f () = (2.2.2)

t, otherwise

2.3 Homogeneity. Heterogeneity, and Scale

The definitions of homogeneity and heterogeneity follow from the concept of

the REV. From the previous discussion, it should be clear that as the size of the
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window or the volume over which the averaging takes place increases, the noise level

in the output will decrease (Figures 2.3). Therefore, if one properly chooses the size

of the averaging volume, a material with a spatially-varying property may thus be

treated as a material with a spatially-constant property. This material is then

defined as homogeneous. This situation is analogous to that in Figure 2.3b. Now,

consider a porosity distribution of a hypothetical porous medium. If one chooses a

pin point as the sample size to define porosity, let us assume that Figure 2.4a would

represent the porosity distribution along a transect of the porous medium. At a

point, the void has a porosity value one, and the solid zero. If one averages the

values of porosity over a window that is larger than a point, say, as large as one

solid or void space, the "new" porosity distribution of the aquifer will look like that

shown in Figure 2.4b where the sharp boundary between voids and solid is smeared

out due to the averaging over the window. It should be evident that if a window

slightly larger than one solid space is used, the porosity values of the aquifer will

still vary in space but the variation will be relatively smooth and continuous.

Therefore, the aquifer is heterogeneous and it can be described by our continuum

mathematics. If one chooses a window which is equal to two void spaces to define

the porosity values at every point within the medium, the medium should obviously

have a constant porosity over the entire medium. In fact, the porosity will be 0.5

everywhere if the averaging window is equal to two void or solid spaces. Hence,

the medium as far as porosity is concerned is a homogeneous medium (Figure 2.4c).

This window can be considered as the minimum size of the REV for conceptualizing

the medium as a homogeneous one. Suppose one applies this window to another

porous medium which has a checkerboard porosity distribution but with larger void

and solid sizes. The porosity distribution defined by the average porosity over the

same window becomes nonuniform. In other words, the medium now is considered

heterogeneous. But, if one again chooses a window that is equal to the size of the
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(a)

INPUT SIGNAL OUTPUT SIGNAL
h(x) H(x)

(b)

INPUT SIGNAL OUTPUT SIGNAL
h(x) H(x)

Figure 2.3. Effects of filters on noisy signals.

a) Filter affects noise only, and b) filter
affects noise and most of signal.
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Figure 2.4. Effects of averaging volume on porosity distribution.
(a) A hypothetical solid and void distribution. (b) Size of
averaging volume equals one void volume. (c) Size of averaging
volume equals two void volumes.
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two void or solid spaces of this checkerboard. one can define this mediumn as a

homogeneous porous medium. From this simple example. it can be seen that in mrder

to obtain the homogeneity, the size or the REV has to be much larger than the size

of heterogeneity.

The size of the REV varies with the size of the blocks in the examples or

the size of heterogeneity in reality. The size of heterogeneity depends on the scale

of the problem that we encounter. For instance, the heterogeneity within core

samples is likely due to the variation in grain size. We may call this variability the

laboratory-scale heterogeneity. Heterogeneity due to geologic stratification or lax ering

in a formation may be classified as the field-scale heterogeneity. The regionial-scale

heterogeneity then represents the variation of geologic formations or facies.

Furthermore, variations among sedimentary basins may be classified as the -lobal-

scale heterogeneity, and so on. Similar definitions of the scale of heterogeneity \w.ere

given by Dagan (1986) and Gelhar (1986). Regardless of the definition of the scale

of heterogeneity, one has to recognize that the heterogeneity is a continuous

phenomenon which exists at all scales.

2.4 Darcy's Law

With the concept of the REV in mind, one should recognize that every

property defined in groundwater hydrology (such as volumetric flow rate, hydraulic

head, porosity, hydraulic conductivity, and storativity, etc.) involves measurement over

a certain volume. The same is true for the principles and laws used in groundwater

hydrology. The most important example would be Darcy's law, which states that

groundwater specific discharge is linearly proportional to the hydraulic gradient with

a constant of proportionality:

q Q KI (2.4.1)
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where q is the specific discharge with dimensions of (LT-1). Q is the volumetric flowv

rate (L3T-1 ). I is the gradient (LL-1). A is the cross-sectional area perpendicular to

the direction of flow (L2), and K is a constant of proportionality which is usually

called hydraulic conductivity (LT-1). Darcy's law is an empirical equation. although

one can prove the validity of the equation using rigorous mathematics and physics

L (Hubbert. 1940). Nevertheless, it is simply a linear regression equation showing the

relationship between gradient and specific discharge through a column of soil of a

certain volume. Therefore. Darcy's law is a macroscopic law because the volume

L where the law applies is obviously much larger than many pores.

2.4.1 Hydraulic conductivity. In the laboratory, hydraulic conductivity is

L generally determined from a column test which uses either a constant head

permeameter or a falling head permeameter. Regardless of whether one uses a

L constant or falling head permeameter. the measured hydraulic conductivity is an

average value over the length of the column. To illustrate this point. we will

examine the case where the column consists of a single homogeneous soil. If a

L constant head permeameter is used, then steady-state flow will be established. The

flow rate through the column is, according to Darcy's law:

L

L Q - KAI - KA X Lh2 (2.4.2)

L where hi and h2 are the hydraulic heads measured at points I and 2, and L is the

distance between the two points (Figure 2.5). If we measure Q. A, and 1. we

certainly can determine the K value, the hydraulic conductivity. Obviously. in a core

L sample, the calculated hydraulic conductivity. K. represents some average small-scale

hydraulic conductivity variations within the core. To illustrate the concept of an

L average K, we consider a second case where the porous medium contains layered
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heterogeneity (Figure 2.5). Again, if a constant head permeameter is used. steldv

flow exists. This implies that the flow rates across any cross-section of the columnn

must be equal. That is:

QI = Q2

KI A Ih - K2 A h -h 2 (2.4.3)

where K, and K2 are the hydraulic conductivity values of soils I and 2, respectively;

h, is the water level at reservoir 1, and h, is the water level at reservoir 2; h is the

head value at the interface between the two soils; and L, and L2 are the thicknesses

of layer I and layer 2. respectively. If the head at the interface is not measure, one

can solve Equation (2.4.3) for h at the interface by knowing the hydraulic

conductivities and thickness of the individual layers:

LI L2

h = KIL 2 + K2L1
(Kt/Lt) hi + (K2 /L2 ) h2

L
(2.4.4)

where L is LI + L2. If this expression for h is substituted into the left-hand side of

equation (2.4.3), one obtains:

Q - A KIK 2 L hi - h2Q= A KIL 2 +K 2LI L (2.4.5)
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CASE 1 CASE 2

Q Q

Q

DATUM

Figure 2.5. Hydraulic conductivity measurements using soil columns.
Case 1 is a homogeneous(or equivalent homogeneous) soil
column, and Case 2 is a two layer soil column.
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This is the formula to determine the flow rate through the core sample fronm the

permeameter. Let us attempt to determine the average hydraulic conductivity of this

two-layer soil column. If a constant head permeameter is used. Bee can measure

heads at the two ends of the column and the discharge from the column. Using the

measured heads and discharge rate. from Darcy's law (2.4.2), the hydraulic

conductivity can be easily determined by:

Kave - Q (2. 4.6)
A(hl - h,)

When equation (2.4.6) is used, we evidently assume that there is an equivalent

homogeneous soil which should transmit the same amount of discharge as the layered

soil column under the same head drop. Therefore, the Kave value obtained from this

calculation represents the K value of the equivalent homogeneous soil column and

ignores the K values of each layer.

So, how is the Kave value related to the K values of each individual soil?

From a comparison of equation (2.4.2) and (2.4.5), one can see that:

Kat.e = L1I/K1 + L2 /K2

As indicated in equation (2.4.7), the K value of the equivalent homogeneous soil

column is the harmonic mean of the K's of individual soil layers. A similar analysis

can be done where flow is parallel to the layers in the soil column. In this case, the

average K obtained from the soil column will correspond to the arithmetic mean of

the K's of the individual layers. That is:
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KIL, + K-L,
ave L .

Based on the above discussion. one can see that the K values measured from

a soil column test may vary with the size of the soil column. For instance. if the

soil column is small enough to contain one soil layer, the value of K estimated is

certainly the hydraulic conductivity of the layer. If the column contains more than

one layer of soil, the estimated value of K is an average of the K for the individual

layers. Furthermore, the average hydraulic conductivity depends on the direction of

layering and the direction of flow. The average hydraulic conductivity should be the

harmonic mean if the flow is perpendicular to the bedding, and the arithmetic mean

if the flow is parallel to the bedding (Bear, 1979). Thus, we can draw a few

conclusions about the hydraulic conductivity of a material, namely; it is an average

over many small-scale values, it depends on the size of averaging volume (i.e., the

total length of the soil column), the heterogeneity (i.e., the K values of individual

layers), the size of the heterogeneity (i.e., the thickness of each layer), and the flow

direction.

The average hydraulic conductivity can be easily determined from a soil

column test. However, one should recognize two important facts in the column test.

First, the heads at the ends of the soil column are kept constant over the cross

section of the soil column, so the heads represent averages over the cross sections.

Second, the discharge is measured with respect to the entire cross-sectional area of

the soil column, including voids and solids. In essence, to calculate hydraulic

conductivity, one needs to know the average hydraulic head over the cross-sectional

area of porous media through which flow rate is measured. Without measurements

of head and flow rate at the same scale, one may not be able to define an average

or effective hydraulic conductivity. This is especially problematic for a large-scale
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field site. Inasmuch as in the field problem analogous to the column in fligure 2.5,

the hydraulic head measured by a piezometer is generally regarded as a "point"

measurement, and we usually do not have an instrument to measure the total

discharge from a large aquifer. Hence the limitations of the measuring capacity of

our instruments may restrain us from using the averaging rules discussed above. or at

least from using Darcy's equation directly to compute an effective or average

hydraulic conductivity for an aquifer.

2.4.2 Specific discharge. Darcy's law provides us with a method to calculate

the total discharge or flow rate from a soil column, providing that we know the head

gradient and hydraulic conductivity of the soil column. Specific discharge is defined

as the total discharge rate divided by the cross-sectional area of the column. This

means that the specific discharge is an average discharge value over the cross-

sectional area. It does not represent the discharge from individual pores or areas

smaller than the cross-sectional area. It is an average flux through a porous medium,

at a scale at least as large as that of the REV.

2.4.3 Average fluid particle velocity. The average flow velocity of fluid

particles is generally determined by the ratio of total discharge rate to the cross-

sectional area of pore space through which flow occurs. This leads to the definition

of average fluid particle velocity or average linear velocity in groundwater hydrology,

which is:

v = q Q ~~~~~~~~~(2.4.9)
ne Ane

where q is the specific discharge and ne is the effective porosity through which flow

occurs. This is an average pore velocity over the total pore area in the cross

section. Consequently, it does not represent the water velocity within individual
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pores, because the areas of individual pores vary. As a result, if one uses the

average fluid particle velocity to determine the arrival of a slug of tracer in the

column test, the time of arrival would be the average arrival time of the tracer

particles. Certainly, some of the tracer particles will move through larger pores and

will arrive earlier than the predicted by the average time, and some of them will lag

behind (Figure 2.6).

Generally, the average fluid particle velocity and the velocity deviations will

vary with the size of the soil sample over which averaging takes place. If the

sample is small enough to contain one soil, the velocity variation in a soil column

tracer experiment, manifested in dispersion or spreading of tracer particle arrival

times, will represent the velocity variation in the pore scale. If the sample is large

enough to include several different soils, it will represent the combined effect of the

variation in velocity among pores and among layers, and so on. Once again the

velocity deviation is scale-dependent.

The average fluid particle velocity which is based on Darcy's law and

effective hydraulic conductivity does not take into account the velocity variations at

scales smaller than the scale at which the average fluid particle velocity is obtained.

Then, how do hydrologists take account of the variation in velocity at the pore-scale

or at any other scale? This question will be answered in the section that deals with

dispersion.

2.4.4. Hydraulic Head. Now let us examine the physical meaning of

hydraulic head in an equivalent homogeneous soil column. In the previous constant

head permeameter examples (Section 2.4.1), a layered soil column was visualized as

an equivalent homogeneous one (Figure 2.5). The effective hydraulic conductivity

can be measured, and for flow perpendicular to the layering it is the harmonic mean

of the two soil layers (equation 2.4.7). Certainly, one can use Darcy's equation and

this effective hydraulic conductivity to determine a head distribution along the
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equivalent, homogeneous soil column. Of course. the head distribution is a straight

line, declining from the head at one boundary to the other (line C in Figure 2.7).

However, owing to the layering, the head calculated by assuming that the two-layer

column is homogenous is certainly different from actual head distribution along the

soil column. Then, what does this calculated head distribution using the effective

hydraulic conductivity represent? To answer this question, assume that the

hydraulic conductivities of the two soils K, and K2 are known. If K, > K2. line A

in the figure will represent the hydraulic head distribution along the layered soil

column. If K, < K2, line B is the head distribution. As illustrated in the figure.

line C simply is the average of line A and Line B. This implies the head

distribution determined from the effective hydraulic conductivity represents the

average head distribution of all the possible head distributions; in this example there

are only two possible head distributions. One can draw the same conclusion if the

soil column consists of n layers of soils. In this case, the head distribution derived

from the effective hydraulic conductivity will be the average of n possible hydraulic

head distributions, resulting from all n! (n factorial) possible spatial arrangements of n

K values along the soil column. This is equivalent to saying, in the jargon of

stochastic hydrology, that the average is an "ensemble average" (see Section 4.0 or

Appendix A).

From the simple example described above. one should see that a deterministic

groundwater analysis is directly related to the stochastic concept that is used to deal

with heterogeneity in field-scale problem, as will to be discussed in later sections.

The discussion in this section is abstract and highly theoretical. However, it is

crucial to understand the fundamentals of a theory before applying that theory to

practical problems, such as the application of Theis' solution to aquifer tests (see

Section 3.0).
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Figure 2.7. Concept of average hydraulic head distribution. Line A
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2.5 Governing Groundwater Flow Equations

Estimating groundwater travel times in porous media requires the knowledge

of the average fluid particle velocity which is determined by the gradient and the

hydraulic conductivity values. Hydraulic gradients in groundwater problems are

derived from hydraulic heads which may vary with time and space. Governing

groundwater flow equations are used to predict the temporal and spatial variations of

hydraulic heads. However, the equations are developed for the specific scales for

Darcy's law and physical properties of groundwater discussed previously.

Consequently, predictions from the equations, i.e., hydraulic heads, represent averages

over some scale as well. Since groundwater travel times and paths are directly

related to the hydraulic head distribution, understanding the meaning of the heads in

equations of different scales is necessary. In the following sections. we will discuss

the development of governing groundwater flow equations for various scales. Then,

we will examine the physical meaning of head values. Meanwhile, some

inconsistencies in the development of the equations which may contribute to

uncertainties in predicting groundwater travel times will be elaborated on Appendix

B.

2.5.1 Three-Dimensional Groundwater Flow Equation. To derive the

governing groundwater flow equation, we start with the mass balance equation.

Consider the mass balance of a stationary control volume at least as large as an REV

(Figure 2.8) whose shape is fixed in space and time. The principle of mass

conservation within this control volume requires that

{ rate of mass accumulation } = { rate of mass in } - { rate

of mass out } (2.5.1)

To apply the principle to the control volume, we begin by considering the pair of

faces perpendicular to the x axis. The rate of mass in through the face at x is
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(pqy)l' /\yAz, and the rate of mass in through the face at x+Ax is (poq,)f,+a lAdz.

Similar expressions may be written for the other two pairs of faces. The rate of

mass accumulation within the volume element is (AXxAvAz) [ant. 3. where n is the

porosity of the control volume. The mass balance then becomes

AxAyAz ap]_Ay<z[(PqX)') x-(pqx)l x+Ax]+ AxAz[(p%, )j -(pqy)l y+Ay]+

Ax/y[(pq,)l z-(pqz)l Z+Lxz] (2.5.2)

By dividing this entire equation by (AxAyAz) and taking the limit

as these dimensions approach zero, we get

anp [apq, apq,, apq, 253
at Lax + ay +az J'53

This is the equation of continuity for flow through porous media, which describes

the rate of change of fluid density at a fixed point resulting from the changes in

the mass flux pq (the bold type indicates a vector quantity, ie, a quantity having

both magnitude and directions). Note that replacing the difference equation (2.5.2) by

the partial differential equation (2.5.3) implies all the variables in (2.5.3) are

continuous and differentiable in both space and time coordinates. regardless of

whether the point of interest falls within a pore or solid. That is, the continuum

assumption discussed previously has been used. Using the vector notation, equation

(2.5.3) can be expressed as:

ap -(V pq) (2.5.4)at & ASCTIN
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Here (V-pq) is called the "divergence" of pq, sometimes xwritten as div pq. Note that

the vector pq is the mass flux, and its divergence has a simple significance: it is the

net rate of mass efflux per unit volume. The equation (2.5.4) simply states that the

rate of increase of the density within a small volume element fixed in the porous

media is equal to the net rate of mass influx to the element. Note that the

continuity equation applies to any arbitrary volume at this point.

Now if one assumes that the control volume is much larger than many pores,

then the specific discharge, q, can be represented by Darcy's law. The substitution

of a form of equation 2.4.1 (i.e., q = - Vh) for q in to equation 2.5.4 leads to the

classical governing groundwater flow equation which is given as:

V (K Vh) = pg(n3 + ce) ah = Ss ah (2.5.5)
at at

where K is the hydraulic conductivity tensor, h is the hydraulic head, and S. is the

specific storage coefficient. However, this equation is theoretically inconsistent since

it mixes the expressions for both the fixed and moving coordinate systems as

discussed in Appendix B.

Because of the use of Darcy's law, equation (2.5.5) is valid only for media

whose volume is much larger than many pores. As a result, variables in the

equation are continuous within the volume and represent average values. Certainly,

these averages cannot account for the detailed variations of the variables at scales

less than the volume, as we illustrated in section 2.4.4. Although the size of the

averaging volume is restricted to be much larger than many pores, it could be

enlarged to study any larger scale. Using equation (2.5.5), one can visualize an

entire aquifer as a collection of many K values measured over a volume which is

much larger than many pores but much smaller than the entire aquifer. On the
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other hand, one can enlarge the REV so that the entire aquifer is considered

homogeneous but the flow field remains three-dimensional. By reducing the size of

the control volume, we obtain variables which are more representative of smaller

scale variations within the volume.

2.5.2 Two-Dimensional Depth-Averaged Groundwater Flow Equation.

Generally speaking, the three-dimensional groundwater flow equation is more

representative of real flow fields than one- or two- dimensional equations. However,

it may be impractical because a large number of data and a large amount of

computer time are required for simulating three-dimensional flows in a field- or

regional-scale aquifer system. Sometimes, it may be adequate to conceptualize such a

three-dimensional flow field by a two-dimensional horizontal plane flow phenomenon.

This conceptualization involves taking vertical averages of the three-dimensional

groundwater flow equation. i.e.

zo+b rzo+b

V (K-Vh) dz= J Ss ahdz (2.5.6)
Zo Zo

where z0 is the elevation of the bottom of the aquifer, and b is the thickness of the

aquifer Bear, (1979). Integration of (2.5.6) results in a two-dimensional depth-

averaged equation,

V'-(T V'H) _S aHat

where V' is the two-dimensional divergence
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zo+b

T - J K(x.y.z) dz,

zo+b
S . J S5(x.yz) dz.

zo+b
IFand H - J h(x~y~z) dz (2.5.7)

T. S. and H are transmissivity, storage coefficient, and the average hydraulic head,

respectively. Note that T, S. and H are depth-averaged quantities which implies the

vertical variations in these parameters are ignored. As an example, in a stratified

aquifer the variation in hydraulic conductivities among layers is neglected. This

implies that the vertical dimension of the REV of the aquifer properties. T and S. is

at least equal to or much larger than the thickness of the layer in the aquifer.

Certainly, one can conceptualize that T and S values are constant in both horizontal

directions by enlarging the size of the REV. The aquifer is again considered

homogeneous as in the three-dimensional case. However, even in homogeneous

aquifers, the depth-average approach further restricts the flow to two horizontal

dimensions only.

In fact, most field- and regional-scale aquifers have been characterized by

aquifer tests which produce the depth-averaged T and S values. Since these data are

abundant for most groundwater basins, Dagan (1986) argued that two-dimensional

depth-averaged models are appropriate for field- or regional-scale problems.

2.5.3 One-Dimensional Flow Equation. A one-dimensional groundwater flow

equation can be written as
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cx [K (I = s at (5. S)

This equation is equivalent to conceptualizing an aquifer as a soil column (e.g.

Figures 2.5 or 2.6) with flow in the aquifer being strictly unidirectional. If K is

allowed to vary in the x direction, dimensions of the averaging volume (REV) in the

other two directions, i.e. y, and z, are obviously as large as or larger than the width

and thickness of heterogeneities (such as clay lenses) in the aquifer. If K is assumed

constant in the x direction, the averaging volume must be much larger than the size

of heterogeneities in the aquifer. Our scale of interest (such as the size of screen

in a well) is much smaller than the entire aquifer. Such a large-scale averaging

procedure may thus lose too much information pertinent to our interests. Therefore,

this one-dimensional conceptualization may be considered of limited value.

2.5.4 Hydraulic Heads. Based on the discussion above, one can conclude

that a three-dimensional equation (2.5.5) is most realistic. It allows us to describe

aquifers as three-dimensional hydraulic conductivity fields using the small size

average volume. The two-dimensional, depth-averaged equation (2.5.6), however,

ignores the variations in hydraulic conductivity in the vertical direction. A one-

dimensional equation (2.5.8) further averages the hydraulic conductivity variation in

two directions (i.e., horizontal and vertical directions).

Groundwater flow equations for three-, two-, and one-dimensional problems

(2.5.5, 2.5.6, and 2.5.8) allow us to conceptualize heterogeneous aquifers as

homogeneous ones, using an appropriate REV. However, the flow fields (hydraulic

heads) determined by each equation represent different averages. Because of the

homogeneity assumption, the three-dimensional governing flow equation produces an

ensemble-averaged three-dimensional head distribution. In other words, the head

distribution is the average of all possible three-dimensional head distributions, as
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discussed in Section 2.4.4. Note even though the aquifer is considered homogeneous.

the head distribution may retain its three-dimensional characteristics, depending on

type of flow field (i.e., uniform, converging, or diverging flow). Generally. the head

determined by the three-dimensional flow equation for a homogeneous aquifer is

analogous to the water level observed in a piezometer (Figure 2.9), if the aquifer is

truly homogeneous (i.e. heterogeneity exists only at pore-level). However, if the

heterogeneity is much larger than the opening of the piezometer. the head calculated

by the three-dimensional equation with homogeneity assumption will differ from the

one observed in the piezometer. The two-dimensional equation averages three-

dimensional head distributions in the vertical to produce two-dimensional, depth-

averaged heads. The depth-averaged head is equivalent to the water level observed

in a well screened over the entire thickness of the aquifer (Figure 2.9). This depth-

average procedure simply forces the head values along the vertical to be a constant

value which is not identical to the ensemble average, unless the mean flow is parallel

to stratifications. One-dimensional equations further reduce the two-dimensional head

distribution to a one-dimensional one. The head resulting from the one-dimensional

model is analogous to the water level in an excavation ditch which cuts completely

through the aquifer, if there is no flow in the ditch.

As discussed above, each governing equation uses different averaged

hydraulic properties of the aquifer. Each also gives hydraulic head values with

different meanings. As a result, the fluid particle velocity determined from the

averaged heads represents different averages. Moreover, these averages neglect

variations in velocity at scales less than the scale where the averages apply.

Therefore, one may ask: how can one include the effects of these variations smaller

than the averaging scale to obtain a more realistic prediction of groundwater travel

times and paths? We will try to address this equation in the next section that

discusses the dispersion phenomena.
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PIEZOMETERS

OBSERVATION WELL

Figure 2.9. Water level in piezometers and a fully-screened observation
well in a water table aquifer discharging to a ditch. Water
level elevation in the observation well represents a depth-
averaged head which is lower than the water table.
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2.6 Hydrodynamic Dispersion

To include the variations in fluid particle motion at scales smaller than the

scale at which the results of the flow equations apply, the concept of hydrodynamic

dispersion must be introduced. However. before hydrodynamic dispersion is

discussed, we will review the basic concept of molecular diffusion, which is

analogous to hydrodynamic dispersion but at a much smaller scale.

2.6.1 -Diffusion. Consider two fluids of the same chemical and physical

properties but of different colors, separated in a tank by an impermeable membrane.

The fluids in the tank are static, that is, there is no fluid flow. The membrane is

then removed without disturbing the static condition. At early times, we would see

an abrupt difference in color at the interface between the two fluids. As time

passes, the abrupt interface diminishes and a smeared mixing zone develops (Figure

2.10a). The mixed color vanishes gradually away from the center, and fades into the

initial color of the respective fluids. The width of this smeared zone grows

continuously with time until the fluids are completely mixed. This process causing

the smearing effect is called "molecular diffusion".

This diffusive process is generally attributed to the random motion of

molecules of the two fluids. The term random motion is used because of the chaotic

motion of molecules which seems to be unpredictable. In fact, if we apply kinetic

theory to each molecule, the motion of a molecule in the fluid can then be described

in a deterministic way. However, at the scale of our interest and instruments, it is

of little practical use to describe the motion of each individual molecule.

Nevertheless, such molecular-scale motions may have great impacts on phenomena at

the scale larger than the size of molecules. Then, how can the diffusive process be

quantified? This question was answered by Adolph Fick. a German physiologist.

who in 1855 stated that the flux of solute mass, that is, the mass of a solute crossing

a unit area per unit time in a given direction, is proportional to the gradient of
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Figure 2.10. (a) Smearing effect in a tank, and (b)
the linear relationship between w2 and
time.
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solute concentration in that direction. This relationship is generally known as Fl-ek's

Law.

For a one-dimensional diffusion process. Fick's law can be stated

mathematically as

qm - -DM ac (2.6. I)

where qm is the solute mass flux; c, is the mass concentration of diffusing solute;

DM. is a coefficient of proportionality called the diffusion coefficient, and the minus

sign indicates transport is from high to low concentrations. Fick's law is similar to

Darcy's law in which the mass flux of water is related to the conductivity and

hydraulic gradient. Similar to the hydraulic conductivity, the diffusion coefficient is

a quantity averaged over a volume much larger than many molecules and the motion

of individual molecules is ignored.

To illustrate the concept of averaging in a diffusion process, we will

reexamine the case where two fluids are separated by a membrane. As mentioned

earlier, the width of the mixing zone grows with time. Here, the width is defined as

an average width of the mixing zone over the depth of the tank because the width

may vary from depth to depth as shown in Figure 2.10a. This average is equivalent

to the depth-average procedure discussed in section (2.5.2). If one repeatedly carries

out the same experiment, the depth-average width may be different from one

experiment to another because of the random motion of the molecules. However, if

one averages the depth-averaged width of all the experiments, one obtains an average

width which is an ensemble average, i.e., average over many possible outcomes. As

a matter of fact, if the square of the ensemble-average width, w2, is plotted as a

function of time, a linear Telatiornship is found (Figure 2.10b). The slope of the line
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is generally related to the diffusion coefficient by

dw2 =D (2.6.2)

In other words, the diffusion coefficient, DM. describes the rate of growth of the

average width of the mixing zone over the depth of the tank, and over many

experiments. It certainly does not intend to depict the rates at each depth and each

experiment. Therefore, the coefficient of diffusion is merely a mean parameter. In

view of the fact that our measuring devices, and human vision are limited, and the

fact that repeated experiments are impractical, a diffusion coefficient obtained in one

experiment is often considered adequate. This assumption implies the equivalence

between the depth-average and the ensemble average (i.e. an ergodicity assumption;

see Appendix A and Section 4.1). Since Dm is an average value, one should not

expect that the concentration of the colored fluids can be predicted by using the

diffusion coefficient at scales much smaller than the scale at which DM is derived.

Furthermore, one should not expect that the concentration predicted by the diffusion

concept will be identical to the one observed in a single experiment.

The linear relationship shown in Figure 2.10b implies that the diffusion

coefficient is a constant. This constant diffusion coefficient concept or the linear

relation may be true, at least at the scale of our instruments but not at the

microscopic scale. We now will illustrate this point by reviewing a statistical theory

developed by G.I. Taylor (1922) for analyzing the random motion of molecules.

Inasmuch as the motion of each molecule is complex and "random", it is

most appropriate to describe it by statistical means. That is. we will describe the

position of molecules at any time in terms of probability, instead of the exact location

of the particle. Again, we would like to reemphasize the fact that the motion of
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molecules is deterministic but too complex for us to use any deterministic approach.

Furthermore, we are not interested in how individual molecules move. Based on

these reasons, we conceptualize the deterministic movement of molecules as a random

process. To carry out this statistical analysis of random motion, we will assume that

the velocity of a diffusing molecule is a stationary stochastic process in time

(Csanady, 1973). This means that we do not know the velocity of the molecule at

any time, but we could determine all the possible velocity values from the known

statistical properties of the process, such as mean, variance, or probability distribution

of the velocity (for definitions of statistical terms refer to Appendix A). Without loss

of generality, we may say that the mean and variance of the velocity of a molecule

are constant in time: i.e.,

E[v(t)] = constant = 0

and E[v2 (t)] = constant = E[v 2],

respectively, where E[ ] stands for the expected value which represents the

probablistic average of a random variable. Another important statistical parameter

characterizing a stationary stochastic process is its autocorrelation function. Rvv(7),

where T is the time lag between two times, t and t+T. The autocorrelation function

of the velocity history of a molecule may be regarded as measuring the persistence of

the velocity of a molecule throughout a period of time (Appendix A). In other

words, it is a measure of the correlation of the velocities of a molecule between any

time interval, T. Thus, the velocity autocorrelation function is defined as:

RV(T) = E[ v(t) v(t + T) 1 (2.6.3)
E[ v(0)2]
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where E[v(0)21 is the variance of velocity. In a stationary stochastic process. the

autocorrelation function is independent of time t but dependent on the time lam.

In the case of the velocity history of a diffusing molecule. such an autocorrelation

function implies that once the molecule possesses a certain velocity, a short time T

later it is still likely to have a velocity of a similar magnitude and sign. For a given

time lag T. the velocity covariance, E[v(t)v(t+r)] may be formed, which evidently tends

to E[v2] as T -O. However, after a long enough time T, the molecule tends to 'forget'

the velocity at time t, in the sense that the value of v at t+r will be quite

independent of v(t). That is, at t=O, R,(T)=1, while as T approaches x, RVV(T)

becomes 0, as shown in Figure 2.11.

The displacement of an individual diffusing fluid or tracer molecule at

any time, t, can be related to its velocity by

x(t) = {v(s)ds (2.6.4)

where x is the position. Now we imagine that there is more than one molecule

moving "randomly" in fluid space. We further assume that the statistical

characteristics (i.e., mean, variance, and covariance) of molecule's velocities are the

same. After a period of time, the location of each molecule would, of course, be

different. However, these molecules will spread around x=0,

E[x(t)] = I E[v(s)] ds = 0 (2.6.5)

because in a static system the mean velocity. E[v], is zero. As shown in Figure 2.10
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Figure 2.11. A hypothetical velocity autocorrelation function.
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and equation 2.6.2, the spreading, the deviation of the position of a molecule from

the mean position, at time t can be quantified by x(t)2. The rate of change of xU)

may then be written as:

t+T

dx2(t) = 2x 4d = 2 I v(t) v(t+s) ds (2.6.6)dt xdt

Since there are a large number of molecules, the average rate of change of x2(t) of

all the molecules can be obtained by taking the expected value of (2.6.6) and the

result is:

t+T

dEtx2L 2 Ejv2] f R,(T)dT (2.6.7)

where E[x2] is the variance of the molecule positions which is equivalent to the

average width squared, w2 , in equation (2.6.2). The left-hand side of equation (2.6.7)

represents the rate of change in variance of the molecule positions or 2Dm as shown

in equation (2.6.2). In other words, the molecular diffusion coefficient, DM. is

directly related to the molecules' velocity autocorrelation function and it varies with

time. However, due to numerous collisions with other molecules, the velocity of a

molecule at time t+T tends to forget its velocity at t, as T becomes large. For

simplicity, we assume that the velocity autocorrelation function takes the form:

R,,(T) - e-r (2.6.8)

where /3-1 is considered as the persistence time for the velocities of the diffusing
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molecules. This means that, on the average, molecules tend to forget their previouls

velocities after a period of time p3'. This velocity autocorrelation function is shown

in Figure 2.11 as a function of

The integral of R,(7) on the right hand-side of equation (2.6.7) represents

the area under the curve bounded by 0 and t+r. It should be evident from Figure

2.1! that the value of the integral will increase initially but will approach a constant

at large values of t+r, or t+T approaches oo. This result implies the rate of spreading

of the diffusion molecules at large value of T will be a constant according to

equation (2.6.7). As a result, the diffusion coefficient, which is half of the rate of

change in E[x2 ], will increase initially but at t>>,-I it tends to stabilize. For a

particle of a radius, 10-4 cm. the persistence time, 031, is about 1.4x10-8 seconds

(Csanady. 1973). Since the scale of our observation is likely much greater than

I.4xIo-8 seconds, the time-dependent portion of the diffusion coefficient can be

neglected and the diffusion coefficient can virtually be treated as a constant value.

For much smaller scales of observations this may not be the case.

2.6.2 Advection-Diffusion Equation. Now suppose that an ideal fluid with a

tracer is moving in a frictionless pipe. In this hypothetical frictionless pipe, there

are no velocity variations caused by friction between the fluid and the wall of the

pipe, so that the velocity recorded by small instruments is constant across the cross-

section of the pipe, because friction does not exist. However, at the molecular level,

molecules move at different velocities. The size of our instruments for measuring a

flow velocity is generally much greater than the size of molecules. Obviously, the

velocity we determined from the measurement is an average value over many

molecules. This average velocity does not consider the variation in velocity of

molecules. For example, consider a tracer experiment in a frictionless pipe (Figure

2.12a). If 10,000 tracer molecules are simultaneously released at one end of the pipe

at time, to, then at various times the discharge at the other end of the pipe is

_______ DANIEL B. STEPHENS & ASSOCIATES, INC.



Scale Problem and Stochastic Methods Pace 45

PIPE

10,000

12,oJ

Li0z
0

(a)

BEAKER

(b)

.n

I tile

t50 im

0

C.,

1. 0

(c)

time

*0

L)

a.

-o

a!.,

0.0

(d)

t100

Figure 2.12. A tracer experiment in a frictionless pipe.
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collected with a beaker, and the number of tracer molecules in the beaker is cnunted.

We will observe the simultaneous arrival of all the molecules at lime. t. (Figure

2.12b), only if all the molecules move at the same velocity which is equal to the

discharge rate divided by the cross-sectional area of the pipe. However, due to the

random motion of molecules, some of the molecules will move faster than the others

and some slower. If we plot the number of molecules in the beaker versus time, we

shall have a molecule arrival time distribution shown in Figure 2.12c. This

distribution represents the number of the tracer molecules arriving at the end of the

pipe at any time, t. Figure 2.12d shows the cumulative, relative number of

molecules (i.e., the ratio of the total number of molecules collected after to to the

total number of molecules released) as a function of time. Based on the figure, 50%

of the tracer molecules exit the pipe at t50. and all the molecules are removed at tlo,.

Time t1 thus represents the arrival time of the fastest moving molecule, or the

molecule travel time along the fastest path. However, we generally do not count the

number of molecules due to the size of our instruments, and instead we use

concentration, c, (i.e., the ratio of the mass of the tracer molecules to the volume or

mass of the fluid in the beaker). Thus, Figure 2.12c is equivalent to the

concentration-time distribution (breakthrough curve), and Figure 2.12d represents the

cumulative concentration-time distribution. Obviously, the smearing or spread of the

concentration distribution is due to variations in molecules' arrival time, which in

turn are caused by variations in molecules' velocity. If the variation in velocity at

the molecular level can be handled by the diffusion coefficient discussed previously

in Section 2.6.1. the total rate of mass flux. qm. across the instrument used to

measure flow rate is thus the advective flux due to the average movement of the

fluid plus the diffusive flux due to random motion of the fluid molecules. That is;
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qm = vc + [ -Dm O

where v is the average velocity of the fluid, and c is the concentration of tracer.

The product term vc represents the advective tracer flux and Dmac/ax represents the

diffusive flux. When (2.6.9) is substituted into the equation for conservation of mass

(similar to equation 2.5.4) in one dimension, we obtain the advection-diffusion

equation:

cc + v cc DM a2c (2.6.10)

where the second term on the left hand side of the equation represents the advection

effect and the term on the right hand side of the equation represents the diffusion

effect due to random motion of molecules. Thus, a concentration breakthrough curve

which is the solution of Equation 2.6.10 in time domain reflects the arrival time of

the tracer molecules. The molecular diffusion coefficient is simply a "fudge factor"

accounting for velocity variations of molecules at a scale much smaller than the pipe.

Equation (2.6.10) is developed for tracer movement in a frictionless pipe. In

the case where the wall of the pipe is not smooth but rough, velocities measured at a

scale much larger than many molecules but smaller than the cross-section of the pipe

(say, continuum scale in fluid mechanics) will vary across the cross-section of the

pipe. The velocity is likely maximal in the center of the pipe and is minimal near

the wall. This implies that the velocity determined by a discharge rate divided by

the cross-sectional area of the pipe represents an average velocity value which

neglects the velocity variation across the cross-sectional area due to friction.

Furthermore, it also neglects the velocity variations among individual molecules.
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Now, if we assume that the velocity variations at scales smaller than the crnss-

sectional area of the pipe and those at the molecular scale can be described by Fick's

law as in the molecular diffusion process. then equation (2.6.10) is valid for this case

as well. However. the diffusion coefficient, Din. in equation (2.6.10) is replaced by a

dispersion coefficient, Dd, which lumps together velocity variations at both the

molecular scale and the continuum scale. Of course, the velocity. v, in equation

(2.6.10) represents the average over the cross-sectional area. The concentration, c,

then represents the total mass of a tracer in a volume of fluid discharging from the

cross-sectional area of the pipe. Generally. this approach is valid for tracer

movement in a long pipe as shown by G.I. Taylor (1953).

Following the above concept, surface-water hydrologists have frequently

applied equation (2.6.10) to determine tracer movement in large-scale water bodies

such as streams, rivers, estuaries, and oceans. Various successes have been reported

in the literature for instance Fischer et al., (1979). Regardless of the validity of

equation (2.6.10) for large-scale problems, the most important feature of the equation

is that the parameters have different physical meanings, depending on the scale.

Moreover, the dispersion coefficient always represents the effects of velocity

variations at scales smaller than the scale at which the average velocity is defined.

2.6.3 Hydrodynamic Dispersion in Porous Media. Now consider flow in a

porous medium (for example, a soil column). At the molecular level, each molecule

has its own velocity. At the scale of a single pore, the velocity averaged over many

molecules may not be constant over the pore space because of the roughness of the

wall of the pore, just like flow in a frictional pipe. At the scale larger than a

single pore variations in pore size, in addition to tortuosity of pore channels, will

then cause an additional velocity variation. As discussed previously, the average

fluid particle velocity defined in groundwater hydrology is the average value over

many pores or heterogeneities of many different scales, depending on the size of the
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control volume. The average fluid particle velocity does not take velocity variations

at different scales into consideration. To account for the variation in velocity due to

random motion of molecules, roughness of the pore walls, and the variation in size of

pores and tortuosity in a flow path. groundwater hydrologists borrowed the

advection-diffusion concept. In other words, in order to conserve mass. the mass

flux which is not considered by the average fluid particle velocity is lumped into the

dispersive flux term, similar to the way molecular diffusive flux was treated in the

advection-diffusion process. The smearing effect due to the variation in velocity at a

scale larger than the molecules. but smaller than the scale used to determine the

average fluid particle velocity is then attributed to hydrodynamic dispersion.

Therefore, the classic advection-diffusion equation (2.6.10) may then be directly

applied to solute transport in porous media. However, the coefficient of

hydrodynamic dispersion is used in lieu of the diffusion coefficient to represent the

coefficient of proportionality between the mass flux and concentration gradient. The

hydrodynamic dispersion coefficient thus includes the effect of variation in velocity

at many different scales (from the molecular scale to the scale at which the average

linear velocity is defined.) This approach is identical to convection-dispersion

approaches used by surface-water hydrologists in dealing with solute transport in

streams, rivers, and estuaries. However, causes of velocity variations or mechanisms

of dispersion are different.

2.6.4 Mechanisms of Dispersion in Porous Media. Mixing of tracer particles

due to dispersion is primarily an artifact related to the scale of averaging. In the

REV, the hydraulic conductivity and porosity are assumed to be constants

representing the average values over the volume. Consequently, the velocity

determined from these parameters represents an average over the volume. This

velocity describes the average solute movement as a piston type of displacement

which exhibits a sharp interface with the fluid. Smearing effects observed in the
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experiments are attributed to mixing due to subscale velocity variations within the

REV which are treated as the dispersion process. Since the size of the REV varies

with the scale of heterogeneity, mechanisms of dispersion are accordingly classified

by the scale of heterogeneity.

At the microscopic scale, mixing is caused by random motion of fluid

molecules. This process is called diffusion. At the laboratory scale, mixing is a

result of the combined effects of diffusion and velocity variation within pores, among

pores, and tortuous flow channels. This type of mixing is generally defined as local

dispersion. If the concentration of tracer particles is measured in fully penetrating

observation wells and one uses a two-dimensional depth-average flow and transport

model to simulate the process, then the field-scale dispersion reflects mixing due to

groundwater velocity variations between and within distinct hydrogeologic units, in

addition to molecular diffusion and local dispersion. This type of dispersion is

sometimes called two-dimensional macrodisperison (Gelhar et al., 1979). The term,

macrodispersion. is also used in three-dimensional flow situations if one treats the

entire aquifer as a homogeneous one. However, the two-dimensional macrodispersion

is different from the three-dimensional one in the fact that it also includes the

effects of averaging three-dimensional flow fields into two-dimensional fields (see

section 2.5). Therefore, the mechanics causing dispersion vary with the scale of

averaging.

2.6.5 Dispersivity. The dispersion concept in groundwater hydrology should

become clear by now. Overall, the dispersion coefficient is merely a parameter in

the classic convection-dispersion equation used to include variations in velocity at

subscales. However, velocity variations are not controlled only by the heterogeneity

at different scales of porous media, but also by the flow fields (directions of flow.

and magnitudes of mean velocities). For example, consider an aquifer consisting of

three homogeneous layers with equal thicknesses and with hydraulic conductivities.
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K, - 10 cm/day, K. = 1cm/day, and K3 = 100 cm/day. For simplicity. w.e will

assume porosity values of the three layers are the same and equal to 0.5. If a

constant hydraulic head gradient 0.01 is imposed on each layer. the average fluid

particle velocity for layers 1. 2, and 3 is 0.2. 0.02, and 2 cm/day, respectively. The

average velocity over the three layers is 0.74 cm/day and the variance is 1.2

cm2/day2. Now, if the gradient is increased to 0.1. the velocities are 2, 0.2. and 20

cm/day for layers 1, 2, and 3, respectively. The mean velocity is then 7.4 cm/day

and variance is 119 cm2/day2 . This simple example illustrates that velocity

variations depend on the magnitude of gradient or mean velocity, as well as the

hydraulic conductivity variation. Therefore, the hydrodynamic dispersion coefficient

depends not only on the physical characteristic of porous media but also on the flow

characteristics.

Inasmuch as flow is likely to vary with time and boundary conditions, how

can this hydrodynamic dispersion coefficient be determined so that one can predict

solute movement in porous media? One way to determine this parameter is to fit, by

trial and error, the solution of the convection-dispersion equation to the results of

tracer experiments. However, in a sense, the dispersion coefficient becomes a

parameter which may vary from one experiment to another experiment even in the

same porous medium, owing to differences in mean pore velocity. For predictive

purposes, such an approach is not suitable.

To overcome this difficulty, many tracer experiments at the laboratory scale

have been done in the past. The results of the experiments showed that the

dispersion coefficient, Dd, is linearly proportional to the average velocity (Bear. 1979):

Dd = Ov (2.6.11)

where v is the average velocity over the laboratory sample and a is the dispersivity.
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For homogenous laboratory soil columns, the dispersivity can be further related to the

particle size of porous media, and thus. can be considered constant. Because the

dispersivity is a property of the medium, predicting movement of solutes in a porous

medium under different flow fields now becomes possible.

2.6.6 Scale-Dependent Dispersivity. Taylor's (1922) analysis (Section 2.6.2)

showed that the rate of spreading of molecules grows with time or distance because

of the molecules' velocity persistence. However, the rate reaches a constant value in

a relatively short period of time and distance compared to the measuring capacity of

our instruments. As a result, molecular diffusion can virtually be represented by

Fick's law (equation 2.6.1) with a constant diffusion coefficient.

By the same token, the spreading of a tracer plume in homogeneous soil

columns will grow with time and distance because of the persistence of fluid particle

velocity. This velocity refers to the velocity of a volume of water that is much

larger than many molecules but smaller than the size of a pore. However, the

persistence diminishes due to changes in pore geometries and mixing with water from

other flow paths as the volume of water moves through many pores. Since the size

of pores in soils is small compared to the size of the REV of a soil column, the

classic convection-dispersion equation with a constant dispersion coefficient (or

constant dispersivity) is generally considered adequate to describe solute transport in

homogeneous soil columns.

In field scale problems. the effects of heterogeneity on velocity variations are

controlled by large-scale heterogeneities such as clay lenses, facies changes, and

layerings of sediments. If we assume that by averaging the hydraulic properties, the

field-scale aquifer is, in effect, homogeneous, and we use the dispersion concept to

represent the effect of the heterogeneity on solute transport, we would expect the

dispersion coefficient to grow with distance and reach a constant value at some

distance, as in the molecular diffusion process predicted by Taylor (1922) and
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observed in homogeneous soil column tests. However. a problem arises from the fact

that the size of heterogeneities (such as clay lenses) at the field-scale is many times

larger than the size of irregular pore channels in soil columns. The travel distance

which is sufficient to allow the solute particles to "forget" the influence of the

previous velocity may thus be many times larger than the size of clay lenses or

layerings. Furthermore. this distance is generally much larger than the length of our

field tracer experiments. As a consequence, the dispersivity values estimated from

the field tracer tests seem to grow with travel distance or time (Figure 2.13). This

phenomenon is known as the scale-dependent dispersion. It should be evident by

now that such a scale-dependent dispersion is a result of the scale of heterogeneity,

the scale of averaging, and the scale of observation.

Many theories accounting for the scale-dependent dispersion have been

developed in the past decade for example; Gelhar and Axness, (1983), Neuman et al.,

(1986), Dagan, (1987), Matheron and De Marsily, (1980), etc. Field experiments to

validate the theory of scale-dependent dispersivity in aquifer systems are currently in

progress at several locations in North America, for example, at the Borden land-fill in

Canada (Sudicky, 1986 and Feryberg. 1986) and in Mississippi, (Betson, et al. 1985).
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Figure 2.13. Data showing scale-dependent dispersivity (Gelhar, 1986).
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2.7 Fracture Systems

In the previous sections of the review, we focused on laws and equations

for flow and transport in porous media where large scale features such as fractures

do not exist. Such media are representative of most aquifers which consist of

unconsolidated sediments. However, most of the geologic materials at the proposed

nuclear waste repository sites are generally consolidated sediments, volcanic or

crystalline rocks. These geologic materials contain many fractures resulting from

recent or past tectonic activities. Since groundwater flows through not only the rock

matrix but also fractures, one certainly has to consider the effects of fractures in

order to determine the groundwater travel times and paths in such geologic materials.

Generally speaking, flow and transport phenomena in fractured rock are not as well

understood and characterized as in porous media. This problem can be attributed

partially to scale problems similar to those in porous media. That is, fractures are

too small to be considered as discrete flow channels but too large to be considered as

pore channels in porous media. In addition, the flow regime in fractures may vary

from laminar to turbulent flow in which the classic groundwater flow equation based

on Darcy's law is not valid. In the following sections, we will examine recent

developments in conceptualization of flow and transport in such media under both

saturated and unsaturated conditions.

2.7.1 Flow in Saturated Fractured Rocks. In fractured rocks, the size of a

fracture is generally larger than the size of pores. The density of fractures at the

macroscopic level, however, is much lower than the density of pore spaces. One has

to enlarge the size of the REV defined for porous media in order to visualize

fractured rock as a equivalent porous continuum at a large scale. In other words,

the size of the REV for fractured rocks has to contain many fractures in the same

way that the size of the REV for porous media must be much larger than many

pores. Similarly, the detailed spatial distribution of individual fractures inside the
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REV is ignored. However. if the knowledge of a detailed spatial distribution of

fractures is available, and the behavior of flow in each fracture is what we are

interested in. we may treat fractures as distinct flow channels embedded in a porous

medium. The individual fracture is then visualized as a continuum with a smaller

REV which ignores the much smaller scale flow channels within each fracture.

Evidently, the size of the REV for individual fractures is not the same as that for

the rock matrix.

Based on the discussion above, we can now classify the approaches of

modeling flow and transport in fractured rocks into the continuum approach and the

discrete approach. The continuum approach assumes that one can enlarge the REV

so that the flow behavior in both the fracture and the porous matrix can be

conceptualized as a flow system in an equivalent porous medium. This implies that

the hydraulic properties of such an REV represents averages of the properties of the

fractures and the rock matrix within the REV. Again, the detailed flow regimes in

both fractures and rock matrix are ignored.

This continuum approach can be further divided into the single network

approach and the double network approach. Such a division is necessary in

fractured rock formations. In porous media, it is generally agreed that solids are

impermeable and do not interact with the fluid in the void space. Thus, hydraulic

conductivity is defined over many pores only. However, this may not be the case in

a fractured rock system where both the fracture and the rock matrix are considered

conductive. In a steady state flow situation, the conductivities of both the fractures

and rock matrix may be represented by the notion of equivalent hydraulic

conductivity. As a consequence. a single network approach is adequate. In this

approach, a fractured medium is represented by a single network in which the

hydraulic properties are averaged over both the fracture and the rock matrix. Thus,

the general governing flow equation is written as:
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v (K Vh) = as, (2.7. 1)

where K, S.. and h represent the average values of hydraulic conductivity, specific

storage, and head over the fracture and the rock matrix within the volume of the

REV, respectively. For steady state conditions, the right-hand side of equation 2.7.1

is zero. Although the hydraulic properties of such a REV are the averages over

both the fracture and the rock matrix, they are dominated by the properties of

fractures, and the influences of the porous matrix properties are negligible. (This is

especially true for hydraulic conductivity, which is perhaps the most important

property controlling groundwater travel time). Thus, this approach assumes that an

equilibrium between the flows in both fractures and rock matrix exists. Wvhich may

not be valid for most cases.

With the single network approach, one may conceptualize a large-scale

fractured geologic formation as a heterogeneous continuum or a stochastic continuum

if heterogeneities are represented by stochastic processes (Neuman, 1987). Because the

volume over which the averaging takes place may contain several fractures and a

vast number of pores in the rock matrix, the spatial distribution of the hydraulic

properties thus becomes smooth and differentiable. The classic partial differential

equations for flow in heterogeneous porous media can now appropriately applied.

In the transient state, owing to the relatively small storativity in fractures.

the response of the fracture to pressure (or head changes) is much faster than in the

matrix. The interaction between the fracture and the porous rock matrix becomes

important. It therefore becomes necessary to define, inside the REV, two separate

networks: one representing fractures and the other the rock matrix. Each network

within the REV is considered a homogenous continuum. The spatial distribution of

fractures or the rock matrix is not required to be specified within the REV. This
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conceptualization is the so called double network or dual porosity model.

The double network approach has been used by many investigators such as

Barenblatt et al. (1960). Warren and Root, (1963), Kazemi. (1969), Zhang. (1 982),

Huyakorn et al. (1983), and Moench (1984). The approach assumes that hydraulic

responses of an REV result from two flow systems. One represents the flow in the

rock matrix network, and the other the fracture network. Flow in each network is

described by a governing flow equation. The influences of fractures on the flow

regime in the rock matrix, or vice versa, are then entered as sink or source terms in

the flow equations. More specifically, the governing differential equation for flow in

the fracture network is assumed to be described by the classic groundwater flow

equation with a source term to account for contributions from the matrix rock:

V (Kf Phi) = ,9af + q (2.7.2)

where Kr is the hydraulic conductivity of the fractures, 5 sf is the specific storage of

the fractures, and hf is the hydraulic head in the fracture network. These hydrologic

properties represent averages over many fractures in the REV. The term q in

equation 2.7.2 represents the contribution to or from the rock matrix. Similarly, for

the rock matrix the governing flow equation is given as

V*(Km Vhm) = asm - q (2.7.3)

where Km is the conductivity, SSm is the specific storage, and hm is the head in the

rock matrix network, and q represents the contribution from or to the fractures and

it is related to hm and hr. Generally speaking, this approach depicts the flow system

better than the single network approach because the non-equilibrium interaction
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between the rock matrix and the fracture is considered in the formulation of the

governing equations.

Both single and double network approaches assume the medium is

homogeneous within the REV. This assumption implies that the predicted flow

behavior represents an average over the REV. For small-scale problems, this

averaged approach may be of limited practical use and a discrete fracture approach

may be necessary.

Many discrete fracture models for flow in saturated fractured media have

been developed in the past few years (e.g., Huyakorn et al., 1983; Shapiro and

Anderson, 1983; Elsworth, 1987; and Rasmussen et al., 1987). The discrete fracture

approach is similar to the dual porosity approach. Both approaches treat the flow in

fractures and the rock matrix as two separated systems with the exception that the

discrete fracture approach assumes that an explicit knowledge of fracture distribution

in the rock formation is available. Therefore. fractures are treated as a continuum

in the same sense that a porous medium is a continuum representation of the

interconnecting pore space. However, the REV for the fracture continuum is much

smaller than the matrix. Generally, the parallel plate analogue is used to depict the

flow in the fractures. The flow regime in the host rock is represented by the classic

equations for flow in porous media. Since flow in the fracture and porous matrix

may interact, these two flow regimes are not independent. Interaction is then entered

through the coupling of the two equations. (2.7.2) and (2.7.3). However, the

parameters in equation (2.7.2) represent hydrologic properties of individual fractures

instead of averages over many fractures in the REV. An additional equation is then

used to relate q to the heads in both the rock matrix and the fracture. In order to

apply this discrete fracture approach to a field problem, the site has to be discretized

into many rock matrix zones and fracture zones which are represented by either

(2.7.2) or (2.7.3). As the number of zones increases, the number of equations (2.7.2)
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and (2.7.3) increases accordingly. Solving such a large set of differential equations

becomes a formidable task. This is one of the major drawbacks of the discrete

fracture approach. However, if the flow in the rock matrix is steady, one may focus

on the flow in the fracture system only. In this case, only the equation for the

fracture network has to be solved. This may be an alternative to the double

network discrete fracture approach.

2.7.2 Flow in Unsaturated Fractured Rocks. As mentioned previously, many

flow and transport models based on the single or double network continuum approach

and the discrete fracture approach have been developed for saturated fractured rocks

in the past few years. However, models for flow and transport through unsaturated

fractured rocks are rare. Existing models are based on the single continuum or

discrete fracture conceptualization. No double network or dual porosity model has

been developed. Available discrete fracture models for unsaturated fractured rocks

generally use the single network approach without considering the interaction between

the fracture and the rock matrix or assume some simplified flow system. This is

mainly attributed to the inherent difficulty in the discrete fracture approach as

discussed above, complexity of unsaturated flow, and difficulties in determining

unsaturated hydraulic properties in fractured rocks. The complexity stems from the

fact that unsaturated flow systems are generally nonlinear. The nonlinearity of the

systems becomes even more severe due to the presence of the fractures, and high

contrast in hydraulic conductivity between rock matrix and fractures.

An example of the application of this type of model is the work by Wang

and Narasimhan (1985). They used the single heterogeneous continuum approach to

simulate flow in a hypothetical, unsaturated fractured rock. A formula for

calculating fracture conductivity under partially saturated conditions was developed.

Saturated permeability of a fracture is assumed to be described by a generalized

cubic law. Under partially saturated conditions, the effects of distortion of flow
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paths by the air phase within a fracture plane were taken into account by a phase-

separation constriction factor in the cubic lawv. The reduction of flow area in the

plane was considered by summing the aperture distribution function to a saturation

cutoff aperture, which is inversely proportional to the pressure head. Based on the

theory and aperture distribution within fractures, they generated the fracture

hydraulic conductivity-saturation, and saturation-suction curves for the densely

welded tuff of the Topopah Spring Member at Yucca Mountain, southern Nevada.

Moisture retention curves were measured from core samples. Using the relative

permeability formula developed by van Genuchten (1980), and the retention curves,

unsaturated hydraulic conductivity curves were estimated. These characteristic curves

of fractures and porous matrix were then used to simulate the desaturation of a small

fracture tuff column with discrete vertical and horizontal fractures with the aid of a

computer model, TRUST.

The results of their study showed that the early transient changes from fully

saturated conditions to partially saturated conditions were sensitive to fracture

properties. However, the quasi-steady changes of the fluid flow of a partially

saturated, fractured, porous system could be approximately simulated without taking

the fractures into account. Peters et al. (1986), and Wang and Narasimhan (1985)

derived the effective permeability of a partially saturated, fractured-porous medium

and showed that the effective hydraulic conductivity was the sum of the fracture and

matrix permeabilities weighted by the cross-sectional areas of the flow channels.

They applied this effective continuum approximation to vertical infiltration problems.

Huang and Evans (1985) proposed a discrete fracture model to simulate flow

and transport processes in three-dimensional fractured media. The model was

developed to provide estimates of global hydraulic conductivity within a rock mass

for specified distributions of fracture orientations, apertures, and densities. The

model was also designed to calculate solute travel times and breakthrough curves.
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However. the model assumed steady, saturated flow conditions, and used a piston

flow approximation for simulating mass transport. The model later wvas extended

with some simplified assumptions by Rasmussen (1987) for applications to variably-

saturated fractured media. This was accomplished by defining a characteristic curve

which related the total head within the fracture to a critical aperture using capillary

theory. Also, an integrated air/water flow formulation was developed to explain

hysteretic effects within the fracture rock network as the fluid potential changed.

Finally, the ability to account for matrix diffusion of solutes into the walls of the

fractures was added.

Neither the continuum nor the discrete fracture unsaturated flow models

have been verified with either laboratory or field experiments. However, there is

research in progress (e.g. at the University of Arizona) to characterize unsaturated

flow in natural fractured rocks at laboratory scales. The results of this study may

provide a means to verify the conceptual models discussed above. Other conceptual

models with stochastic approaches (Yeh et al., 1985 a. b, and c) should be developed

to improve our predictive capability related to flow through unsaturated fractured

rocks.
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3.0 GROUNDWATER TRAVEL TIMES AND PATHS

One of the NRC performance objectives for High Level Waste Repositories.

commonly referred to as the "groundwater travel time (GWITT) objective," is stated

in 10 CFR 60.113 (a)(2) as:

"The geologic repository shall be located so that pre-waste-emplacement

groundwater travel time along the fastest path of likely radionuclide

travel from the disturbed zone to the accessible environment shall be at

least 1,000 years or such other time as may be approved or specified

by the Commission."

The definition of groundwater travel times and paths is not immune from

the scale problems discussed previously. Generally speaking, groundwater travel path

is known as the path along which groundwater travels. Consequently, groundwater

travel time is defined as the time required for groundwater to travel along this path

from one location to another. Mathematically, it is defined by

t= ds
= (3.1)

where t is the groundwater travel time, x is the distance of the path which

groundwater travels between the two locations, and v is the velocity of groundwater.

This definition seems to be quite clear, and, in fact, it is widely used by

groundwater hydrologists. However, there are problems associated with this

definition. First of all, what volume does the groundwater in the definition

represent? Does it represent a cubic kilometer of groundwater, a cubic centimeter of

groundwater, or maybe a molecule of the groundwater?

The need to define the volume of groundwater arises from the way the
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groundwater velocity. v in equation (3.1), is determined in groundwater hydrology.

As discussed in section 2.2, the continuum approach is the foundation of groundwater

hydrology. That means we are not interested in. and in fact, are not able to

determine how a volume of water smaller than a pore moves through intricately

interconnected pore channels. Thus, the velocity of groundwater is defined over an

REV which is much larger than many pores. If one can clearly define the size of

an REV, the ambiguity in groundwater travel time and path may be partially

resolved. However, the size of an REV may vary with the scale of heterogeneity

which in turn depends on the scale of the problem that we deal with. The size of

an REV may also depend on the scale of the hydrologic test we conduct to determine

aquifer properties. Even if we could define an acceptable size of the REV, we may

not be able to determine the exact manner in which a radionuclide travels, because

the REV concept ignores the velocity variations smaller than the size of the REV.

The velocity variation will cause some fluid or tracer particles to arrive earlier than

the arrival time predicted from the average velocity for the REV. If we assume that

the molecular diffusion is negligible, we may be able to define the REV to be

several times larger than a molecule. If this is the case, then the groundwater travel

time can be determined provided that the knowledge of the intricate pore channels is

available. The question now is: how can one delineate the complex pore channels in

a geologic formation over an area of 100 km2 ? This approach is obviously

impossible, and we are forced to characterize hydrogeologic properties at some scale

which is much larger than the pore scale. However, the effects of the subscale

velocity variations become more important as the size of the REV increases.

Based on the above discussion, pre-waste-emplacement groundwater travel

times and paths are not clearly defined concepts. "The fastest path" described in 10

CFR 60.113 will vary with one's definition of scale. Therefore, the travel time

criteria will be subject to interpretation and will be difficult to enforce. For
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regulatory purposes, defining the occurrence of a threshold mass flux over a specified

area of the accessible environment seems to be more appropriate. This is due to the

fact that a concentration level reflects the total mass resulting from many different

scale transport phenomena over a certain volume. Thus. the loophole in 10 CFR

60.113 can be eliminated. As a matter of fact, the fastest arrival of a certain

concentration level at the accessible environment can be easily determined by

application of the dispersion concept. The use of a cumulative concentration

threshold is at the heart of the EPA criteria to evaluate the performance of a

repository.

The NRC groundwater travel time criteria are specifically designed to

pertain to pre-waste emplacement groundwater conditions. According to these

criteria, the scale at which we want to delineate a flow path and characterize the

hydraulic parameters appears to be arbitrary, but it is certainly less than 5 km.

Whatever the scale chosen, it is essential to use consistent scales throughout the

determination of the hydrogeologic parameters in the groundwater travel time

equation. For example, it would not be appropriate to have a conceptual model in

which the fastest path is along a sequence of voids in sandstone identified in thin

sections and where the hydraulic conductivity is obtained from aquifer pumping tests

which fully penetrate the sandstone. For practical purposes, the scale at which field

measurements are made will limit the scale of the path that can be considered in the

NRC travel time analysis. It does not seem reasonable to expect field investigations

to result in characterization of single fractures or pore sequences as paths of likely

radionuclide transport, at least over distance of 5 km. Although the volume of

aquifer represented by a measurement is not known precisely, in most cases, the field

measurement scale would seem to be on the order of meters or tens of meters.

Therefore, paths of likely radionuclide transport will be one or more readily

identifiable zones, such as layers within formations, major fault zones, or perhaps
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entire formations. Stochastic methods would account for heterogieneity and travel

time uncertainty within these paths.

3.1 Sources of Uncertainty in Predicting Groundwater Travel Times and Paths.

Regardless of the problems with the definition of groundwater travel time.

we will assume that the groundwater travel time and path are defined for a specific

size of an REV. We now will proceed to briefly discuss the sources of the

uncertainty in predicting groundwater travel time and path. More in-depth

discussion on this subject can be found in the paper by Bonano and Cranwell (1988).

To predict groundwater travel times and paths in geologic media, we first

have to construct a conceptual model. The model generally simplifies the complex

flow and transport processes in geologic media so that it can be represented with a

tractable mathematical model. For example, flow through porous media is

conceptualized as a continuum by the concept of the REV so that differential

calculus applies. Continuum. discrete fracture, and dual porosity models are

conceptual models which simplify the complex flow system in fractured rocks. Once

the conceptual model has been formulated, it is then translated into mathematical

expressions, usually partial differential equations with associated boundary and initial

conditions. If the parameter values in the governing equations are well defined,

analytical and numerical methods can then be employed to solve these equations for

the flow system subject to any input stress. Once the flow behavior is determined,

the travel time of groundwater can thus be calculated at a pre-determined scale of

interest.

There is no uncertainty in groundwater travel times and paths themselves,

but uncertainty in predicting them. If one uses the classic approach as outlined

above to predict groundwater travel times and paths, it is evident that sources of

uncertainties are attributed mainly to: (a) uncertainties in conceptualizing natural
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processes, (b) uncertainties in mathematical models. and (c) uncertainties in data

required by the mathematical model.

3.1.1. Uncertainty in Conceptualization. To describe groundwater flow in

geologic media, we often rely on Darcy's law and the continuity equation. The law

and the equation, as discussed earlier, are based on the concept of REV which is

much larger than many pores. Thus, the law and equation are not strictly valid for

groundwater flow through individual channels which are much smaller than the

volume of an REV. Certainly, applying the REV concept for flow through

individual pore channels will cause uncertainties in prediction. As an example, a

heterogeneous aquifer can be conceptualized as effectively homogeneous by averaging

the heterogeneities. As discussed in the previous section, the head determined from

an equivalent homogeneous aquifer does not match the head from true heterogeneous

one, unless a proper averaging procedure is used. Unquestionably, errors in

conceptualization add uncertainties in prediction. Generally speaking, the major

uncertainty in conceptualization lies in the area of flow through fractured rocks,

especially flow through unsaturated fractured rocks. Although several conceptual

models (such as discrete fracture, dual porosity, stochastic continuum approaches) have

been proposed to conceptualize flow through fractured rocks, none of these have been

verified with field experiments. Difficulties in monitoring flow behavior or in

determining the fracture hydraulic properties of unsaturated, fractured rocks, even in

the laboratory, further cast doubt on the validity of current conceptual models for

flow through unsaturated, fractured rocks. Since there is no way to assess the

validity of conceptual models at present, the uncertainty due to errors in

conceptualization is entirely unknown.

3. 1.2. Uncertainty in Mathematical Models. If one can somehow obtain a

workable conceptual model or assume the uncertainty in the conceptualization of a

natural flow process is negligible, the next source of uncertainty arises from the
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formulation of mathematical equations based on the conceptual models and the

solution of the mathematical model.

Uncertainties associated with the formulation of a mathematical model are

generally attributed to mathematical simplifications during its formulation. For

instance, neglecting the effects of fluid density gradients and changes in hydraulic

conductivity due to deformation of porous media, and mixing expressions for moving

and fixed coordinate systems (see Appendix B) causes uncertainties in the governing

equation for three-dimensional groundwater flow. Similarly, the two-dimensional

depth-averaged groundwater flow equation neglects the contribution from the product

of hydraulic conductivity and head variations in the vertical direction (i.e., when

horizontal flow is assumed). Stochastic models, such as those based on the first order

analysis, (Gelhar and Axness, 1983, Dagan, 1987, Neuman, 1987, etc.) ignore higher

order terms. All of these simplifications lead to uncertainties in mathematical

models.

After a mathematical model is formulated, analytical methods often give

exact solutions to a problem. However, the solutions are limited to simplified

situations such as homogeneous aquifers of infinite lateral extent. More complex

problems have to rely on numerical methods. No numerical method is completely

error-free. Two basic types of errors which are inherent in a numerical computation

are truncation and roundoff errors.

Finite difference, finite element, integrated finite difference, and boundary

element methods generally are the numerical methods for solving groundwater flow

and transport equations. They approximate the governing partial differential

equations by a discrete formula; the solutions are thus subject to truncation errors.

For instance, the finite difference groundwater flow model uses a Taylor series

expansion to obtain the approximation of the head gradient:
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dh h. - hi -

dx A ~~+ O(AxN) (3. 2)

The term O(Ax) represents the remaining higher order terms which are omitted in the

formulation of the finite difference analog of the gradient. This type of error is

called truncation error, since it is produced by truncating an infinite mathematical

series. Numerical dispersion in the solution of a convection-dispersion equation is a

typical result of the truncation error. In addition, a numerical analysis has to be

conducted by a computational device such as a computer. The accuracy of the

solution produced by the computational device depends on the number of significant

figures available in the device. This type of error is called round-off error. These

two sources of error add some uncertainties to the prediction of groundwater travel

times and paths. Although these errors always exist, they can be minimized if a

proper procedure such as small size grids. and small time steps is used.

The major problem associated with numerical models may lie in solving the

governing equation of flow through unsaturated porous media or fractured rocks.

The governing equation is generally nonlinear, i.e., the hydraulic properties in the

governing equation, such as hydraulic conductivity, are functions of the dependent

variable, so that the hydraulic property is unknown before the equation is solved.

For nonlinear problems, an iterative scheme always must be used. There is no

guarantee that the iterative scheme will give an exact solution or any solution at all.

Furthermore, the nonlinearity of the equation becomes even more severe if the

medium is heterogeneous, coarse textured, or fractured. Solutions often diverge, and

in these cases no solution can be obtained (Freeze, 1971). If numerical solutions are

obtained for complex problems, generally no exact analytical solution is available for

assessing the accuracy of the solution. Thus, the uncertainty in mathematical

modeling of flow in unsaturated porous and fractured materials is still a topic of
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research.

3.1.3 Uncertainties in Data Required by Mathematical Models. Berore

mathematical models can be solved by either analytical or numerical methods.

information about parameters in the equations, and boundary and initial conditions

(for transient situations) must be specified. These parameters and conditions are

generally tailored to physical or chemical properties of a specific site or geologic

formation. The lack of a complete data base to characterize the properties of the site

certainly introduces uncertainties in the solution of the mathematical models. This

type of uncertainty is mainly a result of field heterogeneity.

In order to use any mathematical models to predict groundwater flow, values

of the parameters and boundary conditions in the models have to be specified.

These parameters include hydraulic conductivity, or transmissivity, storage coefficient.

porosity. etc. If the aquifer is conceptualized as homogeneous, these parameter values

should be easily obtained from a single hydraulic test. The aquifer can then be

fully characterized. However, in reality, there is heterogeneity in aquifer hydrologic

properties at all scales. For any field problem, virtually an unobtainable amount of

data is required to completely specify the spatial distribution of these parameters

everywhere in the aquifer. Only a limited amount of data will actually be available

from a real site investigation. Furthermore, boundary and initial conditions are

generally not clearly defined in most fields. For instance, recharge rate to

groundwater reservoirs is generally difficult to measure, especially its temporal and

spatial variability. Locations and types of boundaries are seldom known in field

situations. Predictions based on few data values are thus characterized by

uncertainty.

Incomplete information on the spatial distribution of the aquifer parameters

also causes inconsistencies in the hydrologic data collected as inputs to mathematical

models. The inconsistency in data is directly related to the scale problem discussed
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previously. Hydraulic tests for determining hydraulic parameters of the aquifer

material generally are aquifer tests, slug tests. or laboratory tests of core samples.

Each of these tests determines the hydraulic properties of aquifer materials of

different sizes. For example. the hydraulic properties determined from an aquifer

test generally represents the effective properties of the aquifer material within the

influence of the test. The zone of influence depends on the time scale of the aquifer

test. Consequently, the hydraulic parameter values vary with the time and spatial

scale of the test. On the other hand. the hydraulic parameter values obtained from a

slug test may represent the properties of the aquifer material adjacent to the

borehole. A laboratory test gives the value of the parameter for the size of the core

sample. Thus, the inconsistent data set results in uncertainties in predictions.

Available field data for modeling groundwater flow are collected with

various types of tests, and represent the parameter values of different sizes of

aquifer material. It is inconsistent to use data collected from a test at one scale as

input to a mathematical model at another scale to determine the groundwater flow.

Furthermore, the size of grid used in the numerical model for a large basin generally

exceeds by orders of magnitude the scale of hydraulic tests. Since aquifers are

inherently heterogeneous, the parameter obtained from the hydraulic test may not be

the representative one for the mathematical model. Such inconsistencies further

augment the uncertainty in groundwater travel time and path predictions.

There is another problem regarding the use of data obtained from hydraulic

tests as input to numerical models. Generally, the parameter values obtained from

hydraulic tests represent effective properties of the area of influence. However, the

effective properties may depend on the flow regime as well. For example, all

hydraulic tests in boreholes involve radial flows. It is not known whether effective

parameters estimated from radial flow tests in a heterogeneous aquifer are

representative of parameter values for flow other than radial flow. It may not be
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appropriate to input effective mean parameter values derived from radial flo w into a

numerical model to predict groundwater travel times and paths where uniform flow

occurs.

Moreover, field heterogeneity introduces uncertainties in aquifer test data

(Butler. 1986; Javandel and Witherspoon. 1969). The aquifer test is the standard

method used by hydrogeologists to evaluate the transmissive and storage properties of

subsurface material for groundwater resources evaluations. Driscoll (1986) and many

others detailed the procedures for carrying out a successful test. Generally, the

procedure is rather straightforward; a well is pumped, and water level responses are

measured over space and time. The response data are then analyzed using methods

based on analytical solutions to the problem of flow to a pumped well. The results

from this analysis give us the transmissive and storage properties of the aquifer.

The most common analytical solution used is the so-called Theis solution for

confined-radial flow.

The Theis solution is derived for flow to a well in an extremely idealized

aquifer. It is a mathematical model in which there are many simplifying

assumptions, the major of which is the assumption that the aquifer is homogeneous.

In fact, as pointed out earlier, aquifers are heterogeneous at all scales. Applying the

Theis solution to a heterogeneous aquifer may, however, be justified if one replaces

the heterogeneous aquifer by an equivalent homogeneous one. This substitution

implies that parameters such as transmissivity and storage coefficient, obtained from

the classical analysis of the aquifer test data should, therefore, represent the average

values over the flow regime. As an example, based on numerical simulations of flow

to a pumped well in a stratified aquifer, Javandel and Witherspoon (1969) concluded

that the drawdown observed at any location in the aquifer virtually converges to the

Theis solution at large times. This implies that the hydraulic conductivity estimated

from the Theis solution corresponds to the arithmetic mean of the hydraulic
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conductivity values of individual layers. In a perfectly stratified, confined aquifer.

the drawdowns under steady state flow, at all the depths at a given radial distance

must be the same because of constant head boundary conditions imposed at the well

and at large distances. This analysis is identical to the soil column analysis where

flow is parallel to the layering (section 2.4.1). Thus, it is clear that the effective

hydraulic conductivity is the arithmetic mean. The results of their study are,

however, not realistic because aquifers are generally not perfectly stratified.

Recent numerical experiments by Butler (1986) considered transmissivity as a

stochastic field. In contrast to the finding of Javandel and Witherspoon (1969). Butler

indicated that the geometric mean is a good approximation of the effective

transmissivity obtained from aquifer tests in heterogeneous aquifers, if the drawdown

in a fully penetrating well at large times is used. However, most observation wells

do not fully penetrate the thickness of the aquifer. The head observed in a well

tapped into a small portion of a thick heterogeneous aquifer does not represent the

depth-averaged head (or the ensemble averaged head, if ergodicity is assumed). In

section 4.3.1 (Figures 4.15 a, b and 4.16a) we will clearly illustrate this point.

Figure 4.1Sa and b are the head distributions in two possible heterogeneous aquifers.

and the head distribution in an equivalent homogeneous aquifer is shown in Figure

4.16a. Thus, the results of these studies are not conclusive. Regardless of exact

type of average the effective hydraulic conductivity or transmissivity represents, the

Theis solution based on these averaged aquifer properties predicts the drawdown in

the equivalent homogeneous aquifer. Certainly, this drawdown does not correspond

to the actual drawdown in the real aquifer which is heterogeneous, even if the head

is a depth-averaged one. The drawdown determined from the Theis solution simply

represents the average (ensemble average) of all possible drawdowns at a given radial

distance in a plane. This concept is well illustrated in Figure 3.1 where dashed lines

represent the actual irregular drawdown as may be expected in a heterogeneous
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_-DRAWDOWN BASED
ON THE THEIS
SOLUTION
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ACTUAL DRAWDOWN
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x

Figure 3.1. Plan view of the actual drawdown in a heterogeneous aquifer (dashed
line) and the drawdown predicted from the Theis solution for an
equivalent homogeneous aquifer (solid line). Dot shows the location
of the pumping well.
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aquifer, and solid lines represent the average drawdown. If one recognizes these

limitations, then the application of the Theis solution to heterogeneous aquifers is

appropriate in theory.

Limitations of the equivalent homogeneous aquifer concept are generally not

well recognized. As a consequence, most procedures to analyze the aquifer test data

are inconsistent with the theory. Again, if a heterogeneous aquifer is visualized as

an equivalent homogeneous one, the drawdown predicted by the Theis solution should

represent some kind of spatially averaged piezometric surface or drawdown at a

radial distance. On the other hand, if one applies the Theis method to determine

transmissivity and storage coefficient values of a heterogeneous aquifer, one has

already replaced the heterogeneous aquifer by an equivalent homogeneous one. Thus.

to be theoretically consistent, the spatially averaged drawdown from a very large

number of observation wells at a given radial distance should be used to determine

the aquifer properties. These properties should then represent the true effective

properties of the equivalent homogeneous aquifer. However, there are only a limited

amount of observation wells available in most field tests. As a matter of fact, many

of the tests may have only one observation well. The drawdown observed in a

single well does not necessarily represent the average drawdown at a certain radial

distance, unless the aquifer has an uncorrelated random or statistically independent

hydraulic conductivity field (for the definitions of the statistic terms, see section 4 or

Appendix A). In these two cases, one may assume that the vertically averaged head

value may be equivalent to the horizontally averaged one. Many recent field data

have, however, shown that the hydraulic conductivity data in aquifers exhibit

statistical anisotropy (layering). The transmissivity and storage coefficient values

determined by the Theis solution with the drawdown data at a single well are thus

not the effective ones. Therefore, a logical question one may ask is: What do the

estimated transmissivity and storage coefficient values from the well hydrograph at a
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single well represent? How much do the estimated values deviate from the true

values? Are they reliable parameter values for determining the groundwater travel

time and path?

Inconsistencies in interpreting aquifer test data have long been recognized.

However, hydrogeologists have ignored these inconsistencies and still perform the

analysis with the hydrograph from a single well. This is due to the fact that the

estimated transmissivity and storage coefficient values, even though they may be

erroneous, generally produce reasonably accurate piezometric surfaces or drawdowns.

This surprising result may be attributed to the fact that the variation in head is

relatively insensitive to the variation in T values. The groundwater system as far as

head and T are concerned, is a filter. The error in T estimates is always damped

out, and the calculated head using incorrect T values is often still in close agreement

with the observed one. This filtering effect in groundwater systems has been clearly

manifested in the results of stochastic analyses of groundwater flow through

heterogeneous aquifers (Bakr et al. 1978; and Mizell et al. 1982). On the other hand,

in an inverse problem (such as estimating T and S values using head data from

aquifer tests), a tiny error in head or drawdown values may result in a significant

departure of T values from the true one. Many hydrologists have experienced this

type of problem. For instance, significantly different T estimates can be obtained by

several groundwater hydrology experts using the same well hydrograph and the same

procedures. Regardless of the significant differences in T values, the drawdown

predicted with these T values is surprisingly close to the true drawdown value due

to the damping effect. Therefore, one may draw the conclusion that the standard

aquifer test analysis using one well may be adequate for the purpose of evaluating

the well yield or drawdown of water levels. However, note that the primary interest

in this case is the drawdown or head.

In the case of determining contaminant movement or groundwater travel time
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and path in a groundwater system, the major controlling factor is not the hydraulic

head but the hydraulic conductivity or transmissivitv value, and the hydraulic

gradient. Velocity of groundwater flow is determined by Darcy's law and is the

product of conductivity. gradient and the reciprocal of the porosity. The variation in

porosity and gradient are relatively small compared to the variation in conductivity.

Therefore, the accuracy of predicted groundwater velocity may depend heavily on

correct hydraulic conductivity or transmissivity values. An accurate prediction of

groundwater velocity thus dictates correct estimates of transmissivity values from the

standard aquifer test procedure.

Other sources of error are those due to instrument or human errors in

estimating hydraulic parameters, even for a homogeneous aquifer. These types of

errors could enter the modeling process and add uncertainty to the prediction of

groundwater travel times and paths.

Of course, there are many other sources of errors in the prediction of

groundwater travel times and paths which have not been discussed in this review.

Generally speaking, sources of uncertainty in predicting groundwater travel time and

path include: (a) uncertainties in conceptualization, (b) uncertainties in mathematical

models, and (c) lack of a complete data base to characterize the variability of aquifer

materials. For saturated porous media, uncertainties due to the errors in

conceptualization and mathematical models are relatively small at the laboratory scale.

or at least, it is believed their importance is relatively minor. This conclusion is

supported by the fact that many small-scale laboratory experiments in the past have

demonstrated the validity of mathematical models. Therefore, the major difficulty in

the prediction of groundwater travel time in saturated porous media seems to lie in

extrapolating these models to large-scale field problems where hydraulic properties of

the aquifer materials vary spatially.

To predict groundwater travel times and paths in unsaturated, fractured
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rocks. all of the sources of errors discussed above may play very inmportant roles.

This postulation stems from the fact that there is no satisfactory technology for

measuring hydraulic properties for this type of material. because of the complexity of

unsaturated flow and the scale of fractures. The lack of a demonstrated effective

measurement technology hinders the development a workable conceptual model for

flow in these complex types of media. Although there may have been some

conceptual models (such as Wang and Narasimhan, 1985) developed in the past, none

of them have been verified even with laboratory experiments, because of the

difficulties in the development of a proper monitoring tool. -If we can not verify the

conceptual model in a small-scale laboratory experiment, we can not make predictions

in field situations where the hydraulic properties of fractures and rock matrix are

highly variable. In view of these difficulties, there are large uncertainties in

predicting groundwater travel times and paths in unsaturated and fractured rocks.

Finally, "the groundwater travel time" and "the fastest path" as described in

CFR 60.113 are not clearly defined concepts. Even if all the sources of uncertainties

in predicting groundwater travel and path discussed above are identified and

resolved, the GWTT criterion would vary with one's definition of scale; it will be

subject to interpretation and will be difficult to enforce. As suggested in this report,

defining the occurrence of a threshold mass flux over a specified area of the

accessible environment is more appropiate for regulatory purposes. Unless this

problem is clarified, uncertainty in groundwater travel time will always exist.
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4.0 APPROACHES TO SPATIAL VARIABILITY

As discussed in section 3.0, spatial variabilities (heterogeneities) of geologic

materials at various scales present difficulties for us to extrapolate our mathematical

models to large-scale field problems. Therefore, spatial variability is the major

source of the uncertainty in predicting groundwater travel times and paths. If the

field heterogeneity problem can be resolved, the uncertainty in groundwater travel

time and path prediction can be significantly reduced.

One approach to determine groundwater travel times and paths in a

heterogeneous groundwater basin is to use the concept of REV. If one can define an

REV that is large enough so that the entire aquifer within the accessible environment

can be visualized as homogeneous, the mean groundwater travel time and path can

then be determined through a deterministic simulation. However, this groundwater

travel time represents only the average arrival time of groundwater particles and does

not depict arrival times of groundwater particles along either the fastest or the

slowest path, owing to variations in hydrologic properties at scales smaller than the

size of REV.

To include the subscale variability, one must incorporate the dispersion

process as discussed previously. However, this approach is not immune from scale

problems. One of the problems is how to define an REV for effective (mean)

hydrologic properties of the aquifer. More precisely, how can the effective hydraulic

conductivity and dispersivity values be determined from hydrologic tests performed at

a particular scale? Although a well controlled, large-scale hydraulic test (aquifer test)

seems to be appropriate for this purpose (Williams, 1988), we do encounter problems.

We must determine how to design such tests and how to analyze the data (see
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Section 3.1.3, and Williams, 1985). Dispersivitv values must also be determined.

While a large-scale tracer test is desirable, the time, physical. and economic

constraints of such a test make this approach impossible.

An alternative is to conduct many small-scale hydrologic tests to delineate

spatial distributions of hydrologic properties at a specific scale of our interest (i.e.,

the size of our sample). Knowing the detailed spatial distributions of the properties,

a deterministic model can adequately simulate a groundwater travel time and path

distribution for fluid particles leaving the disturbed zone of a repository under pre-

waste emplacement under given conditions. Such a simulated groundwater travel

time distribution contains information about travel times pertaining to fast and slow

paths of groundwater movement at the scale of our interest. However, the scale of

the field problem, for example, the accessible environment (5 km), is generally much

larger than the scale of our sampling device (i.e.. an observation well is consider as a

point compared with the accessible environment). To predict a groundwater travel

time distribution from data collected at the scale of our instruments would require

enormous manpower, time, and expense to collect information for such a degree of

spatial resolution. Therefore, this deterministic approach is considered impractical in

terms of the amount of data required to specify the actual complex three-dimensional

heterogeneity. Thus, one has no choice but to use a limited amount of data to

determine the groundwater travel time and path. Uncertainties always exist in the

prediction, and an assessment of the uncertainties in predictions is necessary.

However, the deterministic approach provides only one possible outcome from a given

data set. It does not produce many possible groundwater travel times and paths

resulting from many possible hydrologic properties at unsampled locations, and thus

one can not evaluate the precision of the predictions.

Recent advances in stochastic groundwater hydrology and geostatistics have

shed light on resolving the uncertainty problems due to spatial variability. In the
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following sections, we will discuss the necessity of characterizing heterogeneity in

terms of statistics, and will discuss methods to quantify the uncertainties in our

predictions of hydrologic responses of groundwater systems due to field heterogeneity.

4.1 Stochastic Representation of Hydrologic Properties

Large-scale hydrologic tests to obtain the effective hydrologic properties at

the scale of the accessible environment may be problematic and impractical.

Accurate prediction of groundwater travel times and paths in a field-scale problem

requires a large set of data obtained from small-scale tests. On the other hand, it is

practically impossible to obtain such a large data set. So, a logical question to ask

is: how can we obtain a meaningful or useful prediction using a limited amount of

available data? Two approaches to address this question are to: (1) use effective

hydrologic parameters derived from averaging the available data to predict the mean

behavior of the aquifer and the deviation of the behavior from its mean, or (2)

interpolate or extrapolate hydrologic parameter values measured at sample points to

the locations where no measurements are available.

In the first approach, the effective properties are derived using theoretical

formulas to combine data from small-scale tests. For example, the effective hydraulic

conductivity of a layered aquifer can be determined from conductivity values of

individual layers, using either harmonic or arithmetic means as discussed in Section

2.4.1. This approach is equivalent to the large-scale test approach but differs in the

way that effective properties of an aquifer are derived. For instance, the large-scale

test approach relies on observed responses of an aquifer and simplified equations.

such as for instance, the Theis solution.

The second approach is similar to the small-scale test approach, but property

values are estimated at unsampled locations by mathematical tools such as Kriging or
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regression. However, the estimates are not exact and an evaluation of the deviation

from the "true values" is required. Theories for both approaches require statistical

information of the parameter values. This means that a statistical description of

aquifer heterogeneity is necessary.

The statistical description of aquifer heterogeneity implies that hydraulic

properties of the aquifer are viewed as random variables. Generally speaking, a

random variable is a function whose values are real numbers and depend on

"chance" or probability. To illustrate the application of the random variable concept

to spatial variability of groundwater hydrology, let us consider the problem of

estimating the hydraulic conductivity at a location where we have no experimental

means to determine the hydraulic conductivity value. The value of hydraulic

conductivity at this location may be guessed by examining the texture or other

characteristics of drill cutting samples. Obviously, a variety of values may be

assigned to the sample by different groundwater hydrologists. If we summarize all

of the estimates by plotting the number of estimated values falling in different

intervals, we observe a distribution (frequency distribution) of the guessed hydraulic

conductivity values. As shown in Figure 4.1a, most values are clustered around

some central value, and the frequency of occurrence declines away from this central

point.

The random variable concept can also be interpreted in the following way.

There are many different hydraulic conductivity values in a heterogeneous aquifer.

If the hydraulic conductivity value at a location is unknown and we have to guess a

value from all the possibilities, the chance of selecting a particular hydraulic

conductivity value, K,, may be expressed as the ratio nl/n. n1 is the number of

hydraulic conductivity values in the entire aquifer, which equal to KI, and n is the

total number of all possible hydraulic conductivity values in the aquifer. A plot of

the probabilities of selecting different hydraulic conductivity values versus all the
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Figure 4.1. Frequency distribution of (a) hydraulic conductivity,
and (b) inK data in the Borden aquifer (Sudicky, 1986).

DANIEL B. STEPHENS & ASSOCIATES, INC.



Scale Problem and Stochastic Methods Paste 84

possible hydraulic conductivity values is called a frequency or probability distribution

of the hydraulic conductivity of the aquifer. Based on this conceptualization, the

hydraulic conductivity value depends on probability or chance. Namely, it is not

completely predictable: only proabilities can be associated with the possible values

and hence the values are considered as realizations of a random variable. The

frequency distribution determines the likelihood (or probability) that a specific

hydraulic conductivity value will be found at a particular location.

Frequency distributions of most hydrologic properties of an aquifer generally

are taken to be either normal or lognormal. A normal distribution is characterized

by a symmetric bell shape. Lognormality implies that the distribution of the

logarithms of a random variable has a normal distribution (Figure 4.lb). However,

the distribution of a log-normal random variable itself is positively skewed (Figure

4.1 a). Many field data have shown that the distribution of porosity data in a given

aquifer is usually normal (Law, 1944 and Bennion and Griffiths, 1966), altough recent

work by Hoeksema and Kitanidis (1985) suggests that the storage coefficient may be

log normally distributed. Hydraulic conductivity data are usually reported to be

approximately lognormal (Law, 1944; Bulness, 1946; Warren et al., 1961; Bennion and

Griffiths, 1966; Ilyin, 1971; Bakr, 1976, and Freeze, 1975), as are transmissivity

values (Delhomme, 1979; and Hoeksema and Kitanidis, 1985). There are exceptions

however, as shown by Jensen et al., (1987). Figure 4.1 shows a skewed distribution

of hydraulic conductivity values in a sandy aquifer and a more normal distribution

of natural log of the hydraulic conductivity values, InK.

Inasmuch as different aquifers are formed by different geologic processes,

the distributions of hydrologic properties of different aquifers are likely to be

different. To characterize the distribution one generally uses statistical moments of

the random variable. The first moment refers to its mean. the second moment to the

variance (the spread of the distribution) and the third moment to the skewness (a
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measure of its symmetry). Figure 4.2 schematically illustrates distributions of the

logarithms of hydraulic conductivity values in a sandstone and a shale unit.

Although the hydraulic conductivity distribution of the two geologic materials is

lognormal, the mean hydraulic conductivity value of the sandstone unit is larger than

the shale unit and the variance is larger in the shale than in the sandstone.

The application of the random variable concept to hydraulic conductivity

values seems to be valid only if no actual measurement of the parameter value is

available. However, it is suitable for analysis of uncertainty in hydrologic property

values. Even if one can determine hydrologic property values at every point in an

aquifer. due to spatial variability of the property it is still appropriate to consider the

hydraulic conductivity value as a random variable at the location. That is to say,

the value represents only one of many possible geological materials that may have

been deposited at a given point when the geological environment was created. This

random variable concept can certainly be applied to other sample locations. Thus.

hydraulic conductivity values of an aquifer may be considered as a collection of

many random variables in space. This infinite sequence of random variables is

generally referred to as a stochastic process (or a random process, random field or

random function).

For example, the set of hydraulic conductivities along a transect can be

considered as one possible outcome of a stochastic process. In a stochastic process

the value of the quantity, say conductivity, K(x), is a random variable for each

location x. Namely, if conductivity is observed at locations xl, x2 ,... .xn, the K(x1 ) is

a random variable, K(x2) another random variable, and so on out to K(xn). Each has

a probability distribution and furthermore the probability distributions may be

interrelated. The chance of finding a particular sequence of hydraulic conductivity

values along the transect depends not only on the probability distribution of the

hydraulic conductivity at one location but also on those at other locations. This

________ DANIEL B. STEPHENS & ASSOCIATES, INC.



Scale Problem and Stochastic Methods Page 86

_ SA[IDSTOIrE
L U

Li

LU ~ SiL

lnK

Figure 4.2. Frequency distributions of the hydraulic conductivity values
of a sandstone and a shale unit.
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implies that actual hydraulic conductivity values, along the transect are one possible

sequence of K(x) out of all the possible sequences. In the vocabulary of stochastic

processes, all these possible sequences are called an ensemble, and a realization refers

to one of the possible sequences (Figure 4.3).

In order to determine the probability of occurrence of a particular sequence

of random variables, a joint distribution of these random variables must be known.

The joint distribution is completely defined only if the probabilities associated with

all possible sequences of K(x1) values along the transect are known. Similar to the

distribution of a single random variable, the joint distribution of random variables is

also characterized by its moments. However, this joint distribution is seldom known

in real-life situations because hydraulic conductivity values sampled along a transect.

for instance, represent only one realization out of the ensemble of the hydraulic

conductivity values along the transect. Therefore, one must usually resort to

simplifying assumptions, namely, stationarity and ergodicity.

Stationarity (or strict stationarity) implies that any statistical property (joint

distribution, mean and variance) of a stochastic process remains stationary or constant

in space. Ergodicity means that by observing the spatial variation of a single

realization of a stochastic process, it is possible to determine the statistical property

of the process for all realizations (De Marsily. 1986). Since in reality one always

deals with a specific geologic formation (one realization) rather than an ensemble of

such formations, one has no choice but to adopt the assumption of ergodicity as a

working hypothesis for the stochastic approach.

Because it is difficult to obtain all of the joint distributional information

required and because in many cases important properties are assessed by moments

like the mean, variance or other lower order moments, an assumption of weak or

second order stationarity is often invoked. The first moment (mean) of K(x) is

defined as:
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g = E[K] = { K f(K) dK (4.1.1)

where E[ ] stands for the expected value, and f(K) is the joint density distribution of

K. This means that the expected value of a stochastic process is its probabilistic

average (or ensemble average). The second moment (autocovariance or covariance

function) is then defined as:

c(Q)=cov [K(x+(), K(x)] = E[ (K(x+()-,L)(K(x)-#) ] (4.1.2)

The second-order stationarity assumptions are that (i) u = E[K] is constant, and

cov[K(x+{), K(x)] only depends on (, (i.e., c(() = cov[K(x+(),K(x)]) where ( is called the

separation distance. If the separation distance is set to zero, the covariance function

becomes the variance, 02 . An autocorrelation function is simply defined as the ratio

of covariance function to its variance, i.e.:

p = c() (4.1.3)
0.2

Values of the autocorrelation function are always in the range between -I and 1.

The autocorrelation function represents the persistence of the value of a property in

space.

To explain the idea of the autocorrelation function, we will consider two

identical sine waves, w(x)=sinx, except they are separated by a distance E as shown

in Figure 4.4a. Note that the sine waves are strictly deterministic functions. If a

correlation coefficient, r, between these two waves is calculated, by regression
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analysis, r has to be I if ( = 0; if w(x) is plotted against %k'(x+j) at ( = 0, all the

points will lie on a 45 degree line since they are identical (Figure 4.41). As one of

the waves is shifted by a distance E#AO, the plot of w(x) vs. w(x+() will start to

scatter around the diagonal line as shown in Figure 4.4c. The correlation becomes

less than unity because the values of the waves no longer correspond at every

distance. As the wave moves out of phase exactly by one half of a wavelength, the

scattering become even more significant and the correlation drops to zero (Figure

4.4d). This zero correlation indicates that the points of the two waves at this

separation distance are completely different. Figure 4.4e shows that a further

increase of the separation distance will reduce the scattering but the correlation

becomes negative. As the separation distance approaches one half wavelength, i.e.,

the trough of one wave matches the peak of the other, and the correlation drops to

-I (Figure 4.4f). This r = -I value implies that these two waves are identical but in

an opposite manner. If one plots the r values at each separation distance vs. the

separation distance, one obtains a plot of an autocorrelation function (Figure 4.4g).

Therefore, the autocorrelation function is a measure of the similarity of the series at

different separation distances.

Generally, the autocorrelation function of hydraulic conductivity data tends

to drop rapidly as the separation distance increases. The decline of the correlation

may be represented by many different autocorrelation models. The one commonly

used is an exponential decay model (Bakr et al., 1978; Gutjahr et al., 1978, Gelhar et

al., 1979, Yeh et al., 1985a, b, c):

p(W) = expL-.] (4.1.4)

where p(() is the correlation function, ( is the separation distance, and X is the
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correlation scale. The correlation scale is a characteristic length beyond which the

correlation between data is no longer considered significant. However, this definition

is rather arbitrary and an integral scale is often used instead. The integral scale is

defined as the area under a autocorrelation function if the area is a positive and

nonzero value (Lumley and Panofsky, 1964). For the exponential model (equation

4.1.4), the integral scale is a separation distance at which the correlation drops to the

exp(-l) level. At this level, the correlation between data is considered insignificant.

That is, the data points separated by distances larger than the correlation scale are

only weakly associated with each other.

On an intuitive basis, the correlation scale may be interpreted as the average

length of clay lenses or sedimentary structures. Hydraulic property values of the

samples taken within the clay lens tend to be similar; correlation between sample

v\alues is near unity. However, sample values are quite different if one sample is

taken within the clay lens and the other outside the lens; the resulting correlation

will be small. Thus, the autocorrelation function is a statistical measure of the

spatial structure of hydrologic parameters. Table I presents a summary of

correlation scales for hydraulic conductivity or transmissivity in a variety of geologic

environments in which data were collected by methods ranging from cores to

pumping tests. We must point out that there has been very little published research

to confirm the geologic significance of the correlation length (Byers and Stephens.

1983; MacMillan and Gutjahr. 1986).

For the sake of simplicity. the above discussion on autocorrelation function is

restricted to one-dimensional data (i.e., data collected along a transect). The concept

can be applied to a two- or three-dimensional data set as well. For example, a

commonly used three-dimensional exponential autocorrelation function in groundwater

hydrology is:
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Table 1 JVariances and correlation scales for log hydraulic
conouctivity or log trans-nissivity (Gelhar, 1986).
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IF -1/21
P(O ) = exp1_L( I/yj)2 + (E2/X2) + (,/\3)2 F (I.1a)

where t is the separation distance, and 41, 42, and 43 are separation distances in x, y,

z directions, respectively. Integral scales in the x, y, and z directions are X. X2, and

X3, respectively. If the integral scales are the same in all directions, then the

stochastic process is called a statistically isotropic process. If these values are

different, then it is called a statistically anisotropic process. Note that statistical

isotropy and anisotropy are different from hydraulic conductivity anisotropy in

classical hydrology. Statistical anisotropy simply implies that the hydrologic property

(such as hydraulic conductivity) of an aquifer is correlated for a longer distance in

one direction than in other two directions. For instance, in a perfectly stratified

aquifer (e.g. laterally continuous "layer cake" sedimentary sequence), correlation scales

in the horizontal directions are likely to be the same, but they will be much longer

than the correlation scale in the vertical direction. This is due to the fact that

within each layer, the material is considered to be effectively homogeneous. A short

vertical correlation scale reflects a rapid lithologic change in the vertical direction.

In Figures 4.5a and b, statistically isotropic and anisotropic aquifers are schematically

illustrated. Figure 4.5c depicts an ellipsoid formed by anisotropic correlation scales.

Hydrologic property values within the ellipsoid are considered correlated or similar.

and those outside the ellipsoid are uncorrelated or dissimilar. A three-dimensional

correlation function generally represents more closely the average physical dimensions

of sediment bodies (such as clay lenses) than the one-dimensional correlation function.

If a stochastic process (e.g. hydraulic conductivity) has a constant mean we

refer to the process as having no drift; that is, the first statistical moment is constant

over distance. If a process exhibits no drift and its autocorrelation function depends
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(a) Statistically isotropic aquifer and a sphere formed by an
isotropic covariance function.
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(b) Statistically anisotrooic aquifer

(c) An ellipsoid formed by a
three-dimensional anisotroDic
covariance func:ion.
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,igure I.5. Schematic diagrams illustrating stochastic zonceots in
ground-water hydrology.
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on the separation distance only, the process is considered as a second-order stationarv

(or statistically homogeneous) process. If the spatial distribution of hydrologic data is

second-order stationary, one is then able to use the first moment and its covariance

function to characterize its spatial variability. On the other hand. data that do not

fit the definition of the second-order stationarity process are considered as non-

stationary processes. A non-stationary process describes data which has a definite

trend in space (i.e., the mean varies with distance or the covariance depends not just

on the separation distance). For example, in a sedimentary basin a formation may

have facies changes which cause hydraulic conductivity to decrease gradually toward

the center of the basin. However. for many cases the data with a trend may still be

treated as a stationary process after the trend is removed.

Figure 4.6 schematically illustrates the meanings of stochastic terms discussed

above. In Figure 4.6a, a regular sine wave and its autocorrelation function are

shown. Figure 4.6b shows a signal created by a random number generator. The

autocorrelation function drops rapidly from +1.0 at 0 separation distance, then

fluctuates slightly about 0. This type of behavior indicates that the signal is

uncorrelated or statistically independent from one point to the next. Both of these

series are stationary: that is, no significant trend exists in the data, and the

covariance presumably only depends on the separation distance. A non-stationary

signal is shown in Figure 4.6c, where the data increase steadily in value along the

sequence. The autocorrelation function shows steadily decreasing correlation. Figure

4.6d shows a combination of Figures 4.6a and b, a sine wave with superimposed

noise (uncorrelated signal). Perfect autocorrelation does not occur except at 0

separation distance, but the periodic component of the series is revealed by the

second peak in the autocorrelation function. Figure 4.6e is a combination of Figures

4.6a, b. and c, a sine wave combined with a linear trend with superimposed noise.

Due to the existence of the trend. the series is non-stationary. Note that the trend

-_______ DANIEL B. STEPHENS & ASSOCIATES, INC.



Scale Problem and Stochastic Methods Scale Problem andStochasticMethodsPage 97

V V V V �)
- 'in

<JI~~~~~~~~~

0 1 0 - 200 10
(a)

ml f nhAAi1AM. (A ~ A P J 4
II

0

-1I
-

-

\IJ\j~yV WIV II'V ~Y 4 V\ Wv -~I

7
0 10
IU Q,

t
(b)

-I

0

-1

0 10 (C)

I
10 (a)

.�] � N. am A I, aI ,I I I I T

�p

0.

I I C

Figure 4.6. Some idealized time series, Y(t), and their autocorrela-
tion functions, p(E). (a) Sine wave with wavelength of
20 units. (b) Sequence of random numbers or "noise".
(c) Sequence of linearly increasing numbers of "Lrend".
(d) Sine wave plus random noise (sequence a plus sequence
b). (e) Sine wave plus random noise plus linear trend
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1973).
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further reduces our ability to discern the periodic component in the series.

Using the stochastic concept, many field data have been collected and

analyzed in the past decade. One typical example is the analysis of hydraulic

conductivity data in the Borden sandy aquifer, collected by Sudicky (1986). Thirty-

two core samples were taken from cross-sections of two perpendicular transects.

Each core sample was cut into subsamples of 0.05m in length. A total of 1279

hydraulic conductivity measurements were made from these small samples. Figures

4.7 and 4.8 offer a view of the spatial variability of hydraulic conductivity in the

aquifer. The results suggest that the Borden aquifer is heterogeneous over the

distance that the measurements were performed with the local hydraulic conductivity

field having a complex, lenticular structure. Several very distinct but thin lenses of

low hydraulic conductivity are clearly visible in the profiles. A stochastic

characterization of the spatial variability was carried out. The variance of InK (the

natural logarithms of K) was found to be 0.38. which included the variance due to

uncorrelated variations below the scale of measurement (nugget effect, Section 4.2).

Autocorrelation functions of the two cross-sections in the horizontal and vertical

directions are illustrated in Figure 4.9 a.b.c and d. Using equation (4.1.5), Sudicky

(1986) found that the autocorrelation function of InK is anisotropic with X, = X2 = 2.8

and X3 = 0.12 m, in horizontal and vertical directions, respectively.

4.2 Geostatistics

As mentioned in Section 4.1. there are two approaches to deal with aquifer

heterogeneities: (1) the effective hydrologic property approach, and (2) estimation of

property values at unsampled locations. The first approach will be explored in the

later section dealing with spectral analysis. Here we will discuss some basic concepts

and tools for the second approach. Detailed discussions can be found in textbooks by

Journel and Huijbergts (1978) or De Marsily (1986).
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Geostatistics is basically a statistical method to estimate or interpolate the

parameter values at points in space where no samples are available. The technique

has been widely used for decades in the mining industry to estimate ore grades

(Journel and Huijbergts, 1978). Recently, the technique has been applied to

groundwater hydrology to deal with spatial variability problems. In principle,

geostatistics concepts are similar to the stochastic concepts. They both are used to

deal with variables distributed in space. However, some of the terminology is

different. For example, the term "random function" is used in geostatistics to

defined a collection of correlated random variables. That is, at a point xl, the

function, F(xl) is a random variable and the random variables at xl and x2+( are not

independent but correlated. From this definition, it is clear that the random function

is equivalent to the stochastic process defined earlier. Similarly, a "regionalized

variable" is used in geostatistics to define a function f(x) which takes a value at

every point x of coordinates (xI, x2, X3) in three-dimensional space (Journel and

Huijbregts, 1978). A regionalized variable is simply a particular realization of a

certain random function or stochastic process. We will point out some other

differences in the following text.

Two important parts of geostatistics are (1) identification of the spatial

structure of the variable (variogram estimation, trend estimation, etc.) and (2)

interpolation or estimating the value of a spatially distributed variable from

neighboring values taking into account the spatial structure of the variable (kriging,

co-kriging, etc.. Davis, 1973).

Similar to the autocorrelation function described previously, the variogram

is simply a way of defining the spatial structure of a random field. Variogram

analysis is based on the intrinsic hypothesis which is less stringent than the second-

order stationarity assumption. Recall that second-order stationarity requires that the

data have a constant mean and the covariance function depends on the separation
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distance only. However, the intrinsic hypothesis requires only that the mean of the

differences of the data values is constant, and the variance of the difference of data

values depends on the separation distance, i.e. [K(x+() - K(x)] satisfies:

E[K(x+() - K(x)] = m (4.2.1)

2 var[K(x+() - K(x)] - y(y) (4.2.2)

where K(x's are regionalized variables, and y is a function of i. and not of x. y(Y)

is called the variogram, sometimes also called semivariogram. Figure 4.10 shows the

general behavior of a variogram. As indicated in the figure, when the variance of

the variable is finite, the variogram tends towards an asymptotic value equal to this

variance, var[K(x)]. This is called the sill of the variogram, and the distance at

which the variogram reaches its asymptotic value is called the range, X. The range

is analogous to the correlation scale discussed earlier: beyond the range, the

regionalized variables K(x) and K(x+E) are no longer correlated. In fact, the

variogram is a mirror image of the covariance function if the data is a second-order

stationary process.

The main types of variograms commonly used to fit sample variograms

(variograms estimated from field data) are: linear, spherical, exponential, Gaussian,

and cubic. Figure 4.11 shows the shapes and equations of these variograms.

Generally, a linear variogram, as shown in Figure 4.11a, suggests that the process has

an infinite variance and that there is no covariance function. i.e., it is not a second-

order stationary process. In this case, one has to rely on the intrinsic hypothesis to

analyze the data. Theoretically, all variogram plots pass through the origin; the

variogram is zero at a separation distance of zero. However, variograrns obtained
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from field data often exhibit a jump at the origin. as shown in Figure 4.12. This

apparent jump is called the nugget effect and represents the uncorrelated subscale

variability or measurement errors. The variogram can be either isotropic or

anisotropic as in the covariance function. It is also likely that there are multiple

correlation scales that appear when testing over different scales. ranging from

laboratory to field to required scale. Figure 4.13, (Gelhar, 1986).

The other part of geostatistics is Kriging. The most general form of Kriging

is termed "Universal Kriging," in which the values of points may be estimated from

irregularly distributed samples in the presence of trends (or nonstationarity). If the

data set is stationary, a less involved operation can be used to estimate the values of

points. This technique is referred to simply as "Ordinary Kriging" or "Kriging" (see

Bras and Rodriguez-lturbe, 1985. and Journel and Huijbregts, 1978).

A common application of Kriging in groundwater hydrology is the estimation

of hydraulic conductivity or transmissivity values at unsampled locations in between

test wells (see Delhomme, 1979). For example, in an attempt to use a two-

dimensional, finite difference, groundwater flow model to simulate flow fields in a

groundwater basin, one may design a 2000 node mesh for the entire basin. However,

only 50 measured transmissivity values scattered around the entire basin may be

available. To objectively assign transmissivity values to the remaining nodes, one

may have to resort to use of mathematical tools. Kriging is one of the possible tools.

To find the hydraulic conductivity estimate K' of the unknown quantity K0,

Kriging uses a weighted sum of all the available sample values (measured hydraulic

conductivity values):

n
KS XiK 1 (4.2.3)

i=I
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Figure 4.13. Hypothetical InK variogram illustrating the notion of scale-
dependent correlation scales (Gelhar, 1986).
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where Xi are the weighting factors, and K; are sample values. In order to limit the

choice of the weighting factors, we will impose two conditions. The first condition

is that the expected value of the estimate of K should be the same as the expected

value of K, i.e.,

E[ K]= E [ K] (4.2.4)

It follows that in the constant mean case the sum of the weighting factors has to be

unity.

n

Z Xi = 1 (4l.'.5)
i= 1

The second condition is that the error of estimation should be minimal:

E[ (K' - K)2 = = minimum (4.2.6)

This latter condition, along with 4.2.5 leads to a system of equations of the form:

nZ Xj Y(Xi - xj) + A = Y( Xi - x0 ) (4.2.7)

j=o1

where y(x1 -x; ) represents the variogram corresponding to a separation distance (

equal to the distance between points xi and x;. Similarly, y(x1 - x0 ) represents the

variogram over a distance equal to that between the point to be estimated and the

point x;. jp is a Lagrange multiplier. Combining the constraint that the weighting

DANIEL B. STEPHENS & ASSOCIATES, INC.



Scale Problem and Stochastic Methods Paize 110

coefficients must sum to one. the system of equations can be solved to obtain optinmal

Xi values which can then be input to equation (41.2.3) to obtain the estimate of K

The estimator, K' is a linear combination of the n data values (4.2.3). The n weights

Xi are calculated to ensure that the estimator is unbiased and that the estimation

variance is minimal. Kriging is a best linear unbiased estimator (BLUE).

The Kriged estimate Kg is based on samples located a distance away from

the estimated point. The values at these distant points are only partially related to

the value at the Kriged point, the degree of relationship being expressed by the

variogram. Therefore, we do not expect our estimate, K', to be exact. The

inexactitude of the estimate is the Kriging variance, rK, which is:

n

oK (x0) = XE j -Y(X - xO) + Ai (4.2.8)

j= I

The smaller the variance, the greater the reliability of the estimate K' . Conversely,

an estimate with a large associated variance must be utilized with caution. One can

also use the Kriging variance in determining the optional location for additional field

tests. For example, hypothetical locations can be added to the actual data base to

calculate the reduction in the Kriging variance. Thus, Kriging could be a valuable

tool in quantifying uncertainty in interpolated data and in assessing the value of

additional data during site characterization.

Kriging is different from other interpolation or extrapolation techniques

because it considers the spatial structure (variogram) of the variable. It also provides

a measure of the probable error associated with estimates of the unknown values.

However, for many cases, Kriging may have no advantages over polynomial trend

surface and may even perform poorly by comparison (Davis, 1973). Unlike some
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regression models that fit a surface to the data base, Kriging preserves the values at

points of measurement. Note that the model and objections behind polynomial or

surface fitting differ from those in kriging. For that reason a comparison bet\s een

them may not be appropriate. In trend surfaces the objective is to fit the mean

value while in kriging reconstructing the actual surface is the goal in this sense

kriging includes a kind of conditioning.

Kriging can also be used in conjunction with numerical simulations that may

be useful in calculating ground water travel time. In a numerical model the aquifer

is discretized into grids, within which hydraulic properties are assumed to be

uniform. However measurements of transmissivity or hydraulic conductivity, for

example, represent a much smaller scale than the grid blocks of the model. In

contrast to ordinary Kriging described previously in this section, block Kriging can be

used to obtain average properties for the grid block (De Marsily, 1986). That is, the

spatial correlation structure obtained from local measurements can be used to

interpolate on an point or area basis. De Marsily et al. (1984) describes a method of

identifying hydraulic characteristics of a reservoir from aquifer pumping tests which

combines Kriging and numerical simulation. The approach allows one to utilize a

variety of available hydrogeologic information at different scales. Kriging has also

been used by Devary and Doctor (1982) to estimate uncertainties in pore velocity at

the Hanford site from estimated fields of hydraulic conductivity, effective porosity.

and hydraulic conductivity. A similar approach to estimate pore velocity is described

by Neuman (1984).

In most field problems, groundwater hydrologists are likely to have both

transmissivity and hydraulic head, or the specific capacity data. Hydraulic head and

specific capacity are generally correlated with transmissivity. It may be desirable to

estimate transmissivity values at unsampled locations, using both measured

transmissivity and hydraulic head values or specific capacity data, instead of using
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transmissivity only. This type of technique using the Kriging concept is called co-

Kriging. Detailed discussion on this subject is available in De Mlarsily (19S6).

Gutjahr (1981), and Kitanidis and Vomvoris (1983). Neuman (1984). Willianms (1987),

and Hoeksema and Kitanidis (1984) applied this approach to groundwater flow

simulations.
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4.3 Stochastic Analysis of Spatial Variability

The statistical description of spatial variability of hydraulic properties of

subsurface materials has led many researchers to investigate the effect of randomly

distributed parameters on the governing equations. The model used to investigate this

type of problem is generally called a stochastic model. Although stochastic and

deterministic models use the same governing flow and transport equations for porous

media, the former differs from the latter in that its input functions are uncertain

and, therefore, the model output must be described in probabilistic rather than

deterministic terms (Neuman, 1982).

For example, a deterministic, three-dimensional, groundwater flow model

requires values of hydraulic conductivity and storativity at every point in three-

dimensional space, if we assume that the initial and boundary conditions and sink

and source terms are prescribed. The output from the deterministic model is a

realization of hydraulic head values corresponding to those parameters at each point

in space. However, in a stochastic model, the hydraulic conductivity and storativity

are considered as stochastic processes in space which are described in terms of

means, covariances, and other statistical terms, instead of a value at each point. The

output consists of many possible head distributions that relate to the input

parameters. Therefore, the head is a stochastic process which can be described in

terms of statistical parameters such as mean, variance, covariance, etc. In other

words, the stochastic model produces a probabilistic result which can be utilized to

assess the uncertainty in predictions due to heterogeneity of aquifer properties.

In the past few decades, many researchers in groundwater hydrology have

applied stochastic models to study flow and transport through heterogeneous porous

media. The following is a summary of these works which include Monte Carlo

simulation, conditional simulation, spectral analysis, and fractal analysis.
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4.3.1 Monte Carlo Simulation. The most intuitive approach to dealing \with

spatial variability in a stochastic sense is called Monte Carlo simulation. It is a very

powerful method, since fewer assumptions are required than in all of the other

stochastic methods. However, it may require extensive computer time and a careful

analysis of the results. The principle of the method is rather simple. The method

assumes that the probability distribution of the variable (for example, hydraulic

conductivity) and its covariance function are known from measured field data. Then,

many possible realizations of hydraulic conductivity values that conform to the

assumed probability distribution can be generated by using a pseudorandom number

generator with special techniques (Gutjahr, 1987; Smith and Freeze, 1979; Mantoglou

and Wilson, 1982). Each realization of the parameter values is input to flow and

transport equations which are then solved by either numerical or analytical methods.

In most cases, numerical methods are used. Thus, a solution is obtained for each

realization of the input parameters. If there are N realizations of input parameters

used, there are N realizations of output from solving the governing equations. It is

then possible to statistically analyze the output for each realization to obtain expected

value, variance, covariance, and distribution. The idea is illustrated in Figure 4.14.

There are difficulties associated with the simulation method. First, a large

number of realizations is necessary in order to obtain meaningful statistics. This

implies that extensive computer CPU time is required, and this method is costly.

Second, a groundwater basin has to be discretized into many elements or blocks in

numerical simulations. Using a direct numerical solver (such as Gaussian elimination)

to solve such a large system of equations in numerical models is generally not

feasible because of memory storage limitations of computers. Often, the solution

technique has to rely on iterative methods. Iterative techniques may reduce the

memory storage problems but may not result in the convergence of the solutions to

the true ones for highly variable input parameter values. In variably saturated flow
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situations or other highly nonlinear flow and transport systems. the governing

equation must be solved by iterative methods. and one is often unable to obtain a

solution even for homogeneous properties. The difficulties in obtaining solutions for

flow and transport in such nonlinear systems with stochastic parameters are

tremendous. Although these are grave difficulties. one major drawback of the

approach is that no clear relationship between the statistics of input parameters and

output parameters can be easily derived.

Applications of Monte Carlo simulations to investigate the effect of

heterogeneity on flow through porous media were first used by Warren and Price

(1961). Following their work, studies were made by Warren and Skiba (1964), Bibby

and Sunada (1971). and Heller (1972). All of these works are related to petroleum

reservoirs. The first study directly related to groundwater hydrology was carried out

by Freeze (1975). Freeze essentially extended the approach of Warren and Price

(1961) to the multivariate case in which hydraulic conductivities, compressibilities, and

porosities all vary randomly in space and are mutually correlated. The objective of

his study was to investigate the uncertainty in hydraulic head prediction due to

aquifer heterogeneity. Groundwater travel times and paths depend partially on the

hydraulic gradient distribution, which in turn is related to hydraulic head

distribution. Uncertainties in predictions of head distribution, of course. will result

in uncertainties in prediction of groundwater travel times and paths. Thus, it is

appropriate to discuss his work in detail in this section. Furthermore, discussion on

the weakness of his work may lead to a better understanding and future utilization

of Monte Carlo techniques to predict groundwater travel times and paths.

Freeze (1975) considered both steady-state flow under constant head

boundary conditions and transient consolidation of a clay layer under similar

boundary conditions and prescribed head at time zero. A one-dimensional flow

domain was discretized into many blocks. Random hydrologic parameters (log

-_______ DANIEL B. STEPHENS & ASSOCIATES, INC.



Scale Problem and Stochastic Methods Pa,-e 117

hydraulic conductivities, compressibilities, and porosities) were assigned to each block,

and these parameter values were independent from those at adjacent blocks (i.e.. no

correlation structure was considered in generating the random hydraulic parameters).

An analytical method and a numerical method were used to determine the hydraulic

head distributions for steady and unsteady flow, respectively. Solutions were then

analyzed for a given number of blocks and a given choice of statistical parameters

such as mean parameter values, variances, and correlation coefficients between

parameters.

Based on the Monte Carlo analysis, Freeze concluded that (I) there is no

simple way to define an equivalent homogeneous porous medium for transient flow in

a heterogeneous porous medium; and (2) the consideration of spatial variability of

hydraulic properties in a stochastic sense may lead to very large fluctuations in the

computed hydraulic head values. Therefore, he expressed the pessimistic view that

the prediction of hydraulic head using any deterministic model may suffer from very

large errors. He further questioned the usefulness of determining aquifer

characteristics by means of aquifer test analyses, which rely on deterministic

analytical solutions and the assumption that the aquifer is homogeneous.

Such pessimistic views on groundwater flow modeling by Freeze were

challenged by Gelhar et al. (1976). They attributed the large variance in calculated

hydraulic head in Freeze's work to the dimensionality of the model used. They

indicated that the head variance will be reduced significantly in three-dimensional

models. When a one-dimensional model is used, the flow must travel directly

through impermeable layers. The hydraulic head gradient near an impermeable layer

thus has to increase substantially to allow water to flow. In a three-dimensional

problem, water takes the least resistant route and avoids the impermeable paths.

Therefore, the head gradient is smaller than in the one-dimensional case. Head

variance in a three-dimensional model is also much smaller than in the one-
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dimensional case. Furthermore. Freeze's analysis assumed that hydrologic paranmeters

in adjacent finite difference grids were independent. but within a grid the properties

were constant. This assumption implies that the parameter values are correlated over

a block; that is. the size of the block determines the correlation scale. Bakr et al.

(1978) showed that the head variance is directly proportional to the square of the

correlation scale. Consequently, the choice of the size of the block could

significantly affect magnitude of the head variance. Therefore, Freeze's analysis was

most likely overly pessimistic.

More realistic simulations than Freeze's study on uncertainties in hydraulic

head were later conducted by Smith and Freeze (1979a and b) using a Monte Carlo

technique. Steady flow through one- and two-dimensional random hydraulic

conductivity fields was simulated using a finite element model. The hydraulic

conductivity K was assumed to be lognormally distributed. Anisotropic spatial

correlation structures (statistical anisotropic covariance function) of the random

conductivity values were incorporated by using a first-order nearest-neighbor

autoregressive model. One technical weakness of their work is that one has minimal

control on the shape of covariance function generated by the nearest-neighbor model.

In the two-dimensional analysis, a hypothetical rectangular aquifer was used in which

constant hydraulic head boundaries were imposed on two opposite sides of the

aquifer and no flow boundaries on the others.

The results of their simulations show that for the case of unidirectional

(uniform) flow, the uncertainty in hydraulic head must be interpreted in light of the

ratio of the correlation scale to length of size of the aquifer. The uncertainties in

head (represented by the standard deviations of hydraulic head distribution) increase

as the extent of the heterogeneity increases and/or as the correlation scale/length

ratios increase. A comparison of the results of one- and two-dimensional flow

regimes indicated that the standard deviation is smaller in the two-dimensional
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problem. They also investigated the effects of nonuniform flows by rearranging the

boundary conditions of the hypothetical aquifer. The results from nonuniform flow

fields simulations led to the conclusion that the uncertainty in model predictions

depends upon both the spatial heterogeneity in hydraulic conductivity and the flow

regime. The uncertainty in the predicted head values is greatest where the mean

hydraulic head gradient is large and the uncertainty in hydraulic head values tends

to diminish near the constant head boundaries. Generally speaking, their results are

in agreement with those obtained by a spectral method (Mizell et al., 1982). As

pointed out by Neuman (1982), the results of Smith and Freeze (1979b) also illustrate

that the concept of an equivalent uniform porous medium is not appropiate for the

cases where the mean hydraulic gradient is not uniform (such as during a pumping

test where the flow is convergent) or when the mean hydraulic conductivity varies in

space.

In Smith and Freeze's work, they also addressed the problem of scale which

is critical in determining groundwater travel times and paths. They pointed out that

by using single conductivity values in the finite difference blocks or finite elements,

spatial variations on a scale smaller than the block or element do not contribute to

the variability in the finite element solution. They suggested that in order to obtain

an accurate solution in modeling a given field situation, the finite difference or

element model must reproduce all the significant scales of heterogeneity that

contribute to the prediction uncertainties at the scale of the model. This statement

concurs with the previously stated position in this review on the concept of

groundwater travel times and paths. Dispersion representing subscale variability must

be included in the analysis of groundwater travel times and paths.

Smith and Freeze (1979b) also emphasized that the scale at which

heterogeneities are to be described in the analysis of uncertainties will be related to

the scale of the flow analysis. They stated: "... in a regional flow the model would
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preserve the regional structures and patterns of conductivity variability. On the

other hand, in considering flow to a tile drain, the description of the spatial

heterogeneity would reflect the local dependence in the region about the drain."

Such a statement seems to be a contradiction of their earlier statement that the effect

of subscale variability should be considered in the simulation. In our opinion, the

fastest path can best be predicted by characterizing local scale of heterogeneities.

For example, if we are interested in the water level in a well, then the scale used to

depict heterogeneities should be equal to the size of the screen in the well.

Certainly, heterogeneities larger than the screen but much smaller than the size of

heterogeneities forming the regional structures will affect the response of the well.

As an example, the drawdown at a well tapped into a large sandstone lens

embedded in a dolomite formation will be affected by the hydraulic conductivities of

both the lens and the formation. Hydraulic conductivity variations smaller than the

size of the screen (such as the conductivities of thin layers of gravel within the lens)

can be ignored. This is because the water level is a quantity averaged over

variabilities at scales much smaller than the screen. This is true for water level

measurements in a well. However, in the case of groundwater travel times and

paths, one may want to consider the variability at scales smaller than the screen,

inasmuch as some fluid particles would move rapidly in those thin gravel layers.

One of the studies relevant to NRC's criterion of pre-waste emplacement

groundwater travel times in a potential repository site was conducted by Clifton et

al. (1985). He applied the Monte Carlo technique to examine the sensitivity of the

travel time distribution predicted by a reference case model to: (I) scale of

representation of the model parameters, (2) size of the model domain, (3) correlation

range of log-transmissivity. and (4) cross-correlations between transmissivity and

effective thickness.

For this study, a rectangular area with dimensions 20 by 10 km was selected
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as the reference case from the deep basalt beneath the Hanford site in southcentral

Washington state. Impermeable boundaries were set along the two longer dimensions,

and constant head boundaries were set along the shorter dimensions so that the

regional hydraulic gradient was 10-3. A steady-state, two-dimensional, horizontal

groundwater flow regime was assumed. A finite difference flow model was used.

The rectangular area was divided into square finite difference grids I km on a side.

An effective thickness was defined as the product of the effective porosity and

actual flow domain thickness. The effective thickness represents the area of

effective, or hydraulically active, pore space in a vertical cross-section of the flow

domain of unit width and thickness. Effective thickness of the area of the reference

case was deterministically set at a uniform value of 4x10-2 m. Transmissivity was

treated as a statistically isotropic stochastic process representing the uncertainties in

inputs and was assumed to be log-normally distributed. Ten thousand random

transmissivity fields were generated by using an unconditional estimator (Clifton and

Neuman, 1982) with a spherical variogram model. The geometric mean of the

transmissivity values was 0.153m2/day, and the variance, and correlation scale of the

log-transmissivity values were 3.35, and 5 km, respectively. These random

hydrologic fields were input to the finite difference model to generate 10,000

hydraulic head fields.

Figures 4.15a and b show the hydraulic head distributions of realizations

3,899 and 5.120. In Figure 4.16a, the mean of the ensemble of 10.000 head field

realizations is plotted. It is evident that the ensemble mean head field closely

approximates the deterministic head field. This deterministic head field refers to the

head field determined by assuming an equivalent homogeneous medium with the

mean transmissivity. Interestingly, this result illustrates the fact that the head

distribution in a constant head permeameter, calculated by using a single hydraulic

conductivity value, represents an ensemble average. That is, it is an average head
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distribution over many possible head realizations due to heterogeneities at scales

smaller than the permeameter. Thus, it is clear that the deterministic approach (such

as determining hydraulic conductivity from a soil column test) in groundwater

hydrology is closely related to the stochastic approach. More importantly, the result

here also supports the view that it is important to use head measurements averaged

at many locations (observation wells) to determine mean hydraulic properties from

aquifer test data (see section 3.1.3). Figure 4.16b shows the standard deviations of

hydraulic head fields. The standard deviations decrease toward the specified constant

head boundaries. This indicates the importance of boundary conditions on the

uncertainty analysis.

In the analysis by Clifton et al., (1985) the average fluid particle velocity

was determined from the transmissivity, hydraulic head gradient, and effective

thickness values. The statistics of groundwater travel times were determined from a

selected pathline in each of these 10,000 hydraulic head fields. Each pathline had

the same starting location and same linear distance (10 km) between starting and

termination points. The distribution of the groundwater travel times resulting from

the 10,000 pathlines is shown in Figure 4.17. The median travel time (i.e., the travel

time at 50% probability) is 21,500 yr. In other words, the probability that the

predicted groundwater travel time between the two points is less than 21.500 yr is

about 0.5. if the exact arrangement of transmissivity values within the flow domain

is unknown. The standard deviation of the log-travel-time is 0.84 (one standard

deviation above the mean). The results in Figure 4.17 indicate the probability of a

predicted groundwater travel time less than 5000 yr (approximated from Figure 4.17)

is 0.16 and less than 200,000 yr is 0.84. Such a groundwater travel time distribution

thus provides us with a measure of the uncertainty in the predicted groundwater

travel time.

One can also use this distribution to address the effect of heterogeneity on
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groundwater travel time. if the ergodicity assumption is used. That is. the

probability distribution of ground-water travel time obtained from this analysis is

equivalent to that of the time for a large number of groundwater particles released at

the left boundary to travel across of the flow domain and exit the right boundary

(e.g. Figure 4.15, and 4.16). This groundwater travel time distribution indicates that,

on the average, 50% of the particles will arrive at the ending line within 21.500 yr.

Due to the existence of some fast paths, 84% (one standard deviation less than the

mean) of the groundwater particles will cross the flow domain in less than 200.000

yr. Therefore. the spread of groundwater travel times reflects spatial variations in

fluid particle velocity, i.e., deviations of the velocities from the mean, within the

flow field. In fact, this probability distribution is similar to the concentration

distribution in a soil column tracer test discussed earlier with the exception that this

distribution does not consider velocity variations at scales smaller than the finite

difference block.

When a numerical groundwater flow model is used, the flow domain

generally has to be discretized into many smaller grids. Because there are practical

limits on the total number of grids used to represent a model domain, there will in

turn be some limit on the minimum size of a block. Property values assigned to the

block represent the averages over the block, and consequently variations at subscales

are neglected. The larger the block is the more subscale variability is ignored.

Therefore, the size of block used in the numerical simulation will influence results of

the analysis, regardless of its impact on the accuracy of the numerical solution.

Figure 4.18 illustrates the effect of the size of blocks (zones) on the probability

distribution of groundwater travel time. As indicated in the figure, both the mean

travel time and the standard deviation of log travel time (a measure of the arrival

time variability) decrease as the size of the block increases. In the work by Clifton

et al. (1985), the mean travel increased by 41%, from 16,000 to 23,500 years. when
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the grid blocks size in the model decreased from 5.0 to 0.5 km. This result is anainl

illustrative of the importance of considering subscale variability in the prediction of

the ground water travel time.

Impacts of the correlation scale of transmissivity values on the groundwvater

travel time distribution were also investigated in the study by Clifton et al. (1985).

The travel time distributions from six random fields with different log-transmissivity

correlation scales are illustrated in Figure 4.19. A constant variance in transmissivity

was assumed in all six cases. As the correlation scale increases, the mean and

standard deviation of log travel time also increase. At first inspection, this result

may not seem intuitively correct, and an explanation is required. Generally speaking,

the heterogeneity is characterized by the magnitudes of both variance and correlation.

That is. a homogeneous medium has a zero variance and infinite correlation scale.

and conversely, a highly heterogeneous medium has a large variance and small

correlation scales. Thus, a variance assigned to a perfectly correlated medium (i.e., a

medium with infinite correlation scale) may strictly represent uncertainty in

measurements of the parameters. For other cases, one can explain the physical

meaning of the results as follows. If the correlation scale is zero, spatial variations

in transmissivity values between the starting and the ending points along the travel

path are statistically independent. This implies that the heterogeneity encountered by

a particle in each realization will be the same regardless of the sequential

arrangement of the transmissivity values. Hence, the arrival times are identical

among realizations. As the correlation scale increases, the sequential arrangement of

the transmissivity values becomes important. This results in different arrival times

among realizations.

Clifton et al. (1985) also found that an increase in the degree of cross-

correlation between transmissivity and effective thickness causes a decrease in the

variability of the predicted groundwater travel times. Independence between
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transmissivity and effective thickness results in a greater \ariability in the predictcd

travel times. The groundwater travel time distribution was found to be sensitive to

the size of the model domain. The average travel time became longer as the width

of the model domain decreased, and vice versa.

In summary, the results of the study by Clifton et al. (1985) shows that

groundwater travel times are sensitive to parameters characterizing the spatial

variability, the scale of representation of model parameters, and the size of model

domain. A major technical drawback of the study is that the calculation of pathline

was not clearly presented. This may have significant impacts on the accuracy of the

predicted travel times, especially if the medium is heterogeneous. Comparisons of the

relative importance of various factors on the groundwater travel time distribution was

absent. This information would be helpful in the analysis of uncertainties in travel

times. Overall, the results of the study are pertinent to the understanding of some

sources of uncertainty in groundwater travel time calculations.

Another interesting analysis of uncertainties in groundwater travel times and

paths due to sample size was carried out by Cole and Foote (1987). In their study, a

hypothetical, two-dimensional, square aquifer with two realizations of hydraulic

conductivity field was used. The first realization represented a real world analog of

the hydraulic conductivity field. It was derived from a block of Nevada topographic

data to ensure that it contained a variety of spatial correlation scales related in a

natural way. The topographic data. which were nearly normally distributed, were

scaled in order to allow them to represent a reasonable range for the logarithm of

hydraulic conductivity. In the second realization, the hydraulic conductivity field

was filtered using a simple moving average technique to remove the high spatial

frequency perturbations in hydraulic conductivity data (i.e. small-scale variations in

K). The filtered data could be viewed as the data collected from large-scale

hydraulic tests in which small-scale phenomena are averaged out. The unfiltered log
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K data set had a sample mean of 0.0814 and a standard deviation of 1.'8. and the

filtered data have a mean of 0.0821, and a standard deviation of 1.18. In Figure

4.20, a comparison of the unfiltered and filtered log K distribution along a cross-

section is shown. The autocorrelation function for the data set was determined to be

anisotropic. The longest axis of the correlation ellipse was nearly diagonal to the

square aquifer, running from north to south. The anisotropy ratio of the correlation

lengths was about 3. Two flow situations were examined: Case (1) east-west flow,

where east and west sides of the square aquifer were assigned as prescribed head

boundaries, and impermeable boundaries were assigned at the other two sides; Case

(2) south-north flow, where south and north sides of the aquifer were assumed to be

prescribed head boundaries and impermeable boundaries were set for the other two

sides. The flow domain was discretized into 257x257 grids and hydraulic head and

stream functions were calculated using a finite difference model for steady-state

saturated flow. The convective velocity vector was calculated at each grid location

from the stream function (or hydraulic gradient), hydraulic conductivity, and effective

porosity. A particle tracking technique was used to determine groundwater travel

times. Some of the results of the analysis are illustrated in Figure 4.21

Several conclusions were drawn from the results of the analysis by Cole and

Foote (1987). The arrival times of 50% of the total number of particles in both Cases

I and 2 were reduced if the filtered data set was used (Figure 4.21). The filtered

hydraulic conductivity field produced a narrower arrival time distribution because

filtering results in reducing the number of different pathways. According to Foote

and Cole (1987), simulations using the filtered data tended to underestimate the first

arrival of particles if flow was more nearly aligned with the longest correlation scale

of the hydraulic conductivity field (Case 2), and to overestimate the time of arrival if

flow was perpendicular to the direction of the longest correlation scale of the log K

field (Case 1).

_______ DANIEL B. STEPHENS & ASSOCIATES, INC.



Scale Problem and Stochastic Methods Pa,-,e 137

:A.a

I-u

(a) U-nfltered

= 3.z
= -- a
-- 3..
- 3.3

_; L:

, L &

I
2.;.
I I

j

4
j
j
I
j
4
4
j E2

T.- I.Altr-, II

F

(b) Filtered
r.,

At,

Ar

v f 11: --5; - I L.

lyw-ww

REQUENCY DOMAIN

-Figure 4,20. A comoarison of the unfiltered (a) ano f:ilterec
(b) log K data along a cross-section of a nypo-
thetic aquifer. (Cole and Foote, 1987).

________ DANIEL B. STEPHENS & ASSOCIATES. INC.



.'�rnlp Prnhipm and Stncha-,fic Methods Page 1 33a...I Pro.e ... c vtca~i vehd Pag 133.... _ , ................ ,

3

Unfiltered Case

14

4-.

b

S

(a)
31

a~I

a .=

t

3C,:

Filtered Case

i

(d)

-LM. Lw.m M&. =
I Time Sir UXIC.

LOLM LM M=. .ML
X T1Wt STEPS ~X1O1

a

:1
3

1

I; a� 3

112 (b) (e)

112

n

4t

I

= 3

= A

.mx I m I== .3
I 1IfE S7IS MCIiO M. I ' 71? LMT 3x: Go

2/4

(C) R'o

-3!

()

Y4

z I
G!

5'
1

, -

.U

IL= ;=.= 13LM MMU
,- -I.'IME S.Ers (XID

Figure 4.21. Particle arrival versus time curves (for the particles to travel
1/4, 1/2, and 3/4 of the distance across the domain) calculated
for a pulse release of particles from a source in the east-west
flow condition. Results are shown for the unfiltered data set
(a-c) and for the filtered hydraulic conductivity data set (d-f.
(Cole and Foote, 1987).
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The results of the simulation are not conclusive because only two realizations

of hydraulic conductivity fields (i.e., unfiltered and filtered) were employed.

However, the effects of the REV assumption (i.e., the properties are uniformly

distributed within the average volume), the scale of hydraulic testing, and size of

spatial discretization in numerical simulations are well manifested in the analysis

inasmuch as the filtering procedure is analogous to the averaging process in deriving

hydraulic parameters from large-scale hydraulic tests. Similar spatial averaging

procedures are often used in numerical models because hydraulic parameters assigned

to each finite element or finite difference block represent the averaged values over

the element or the block. These two conclusions agree with those by Clifton et al.

(1985) (see Figure 4.18). The results of this study again demonstrate the problem

with the groundwater travel times and paths concept.

As pointed out in section 2 dealing with basic concepts in groundwater

hydrology, every property defined in groundwater hydrology involves a volume

(REV). The property of the REV represents an average value over the volume, and

the subscale variation in this property is ignored. The results of the analysis showed

that ignoring the small-scale variability in hydraulic conductivity will result in

underestimating the first arrival of tracer particles, overestimating the mean travel,

and predicting a narrower arrival time distribution (Figure 4.18). Such effects may

play a crucial role in regulating any nuclear waste repository facility, since the

subscale velocity variation affects the fastest path by which groundwater travels. So.

what is the proper volume for defining groundwater travel times and paths in order

that the effects of subscale variations can be safely ignored? If one selects a volume

that is large, then how do we account for subscale phenomena? On the other hand,

if one selects a volume that is too small, then how do we characterize a large-scale

aquifer with the properties defined over such a small volume? This is the dilemma

we face if the concept of groundwater travel times and paths is to be used for
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regulatory purposes.

One of the key issues of the high-level nuclear waste repository site

characterization program is determining if large-scale or small-scale hydraulic tests

should be conducted to delineate the fastest path groundwater travel. This issue has

been discussed earlier in various sections of this report, however. additional research

addressing this issue has been presented by Smith and Schwartz (1981b). The

objective of their study is to investigate the uncertainty in predicting mass transport

due to three sources of uncertainties in data input to a model: (I) uncertainties due

to the unknown spatial variation of the medium parameters. (2) uncertainties inherent

in the particular model chosen to account for the heterogeneity, and (3) uncertainties

related to the boundary conditions imposed on the flow domain.

A hypothetical water table aquifer was studied where the sides and bottom

were assumed to be no-flow boundaries for both water and solute, and the water

table represented the upper boundary for the region. A particle tracking model

(Smith and Schwartz, 1980) was used to simulate the transport of a tracer in this

aquifer. Monte Carlo simulation was used to form estimates of the probability

distributions on model output. Hydraulic conductivity and porosity values of the

aquifer were assumed to be statistically homogeneous, and their spatial structure was

represented by a nearest-neighbor model (Smith and Freeze. 1979a). Furthermore,

hydraulic conductivity and porosity were considered to be correlated and lognormally

and normally distributed, respectively. Three hundred realizations of hydraulic

conductivity and porosity fields were analyzed for transport of 600 particles.

Statistics (mean and standard deviation) were computed for the first and last arrival

times, as well as, for the arrival time of the maximum mass.

Most of the results are similar to those by Clifton et al. (1985), and Cole and

Foote (1987). However, Smith and Schwartz (1980) also investigated cases where

large, recognizable, geologic structures (such as stratifications) were present. The
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aquifer consisted of layers of two distinct materials (sand and silt). WVithin each

layer, hydrologic properties were assumed to be statistically homogeneous processes.

Figure 4.22 shows the schematic diagram of the layered geologic formations with thin.

relatively uniform higher-conductivity layers used in their simulation experiments.

Table 2 summarizes the statistics of simulation results for the two scenarios shown in

Figure 4.22. Results of the simulations showed that the fraction of mass which

moves relatively quickly into the higher conductivity bed determined the initial

arrival statistics. Because a small standard deviation in log hydraulic conductivity

was assigned to the bed, the result is a smaller standard deviation in the initial

arrival time than that in non-layered case. However, uncertainties in predicted

arrival times can still be fairly large because of the sensitivity of transport to the

within-layer heterogeneity. Again, this result is supportive of the position of this

report on the importance of subscale variability. The result also sheds light on the

high-level nuclear waste repository site characterization program. Large-scale

permeable formations have to be identified by geologists or hydrogeologists as

suggested by Williams (1988). However, small-scale tests are also necessary in order

to define the variability within the formations. The subscale variability should then

be treated stochastically.

Schwartz et al. (1983) employed a Monte Carlo technique to analyze

macroscopic dispersion in fractured media. Mass transport in hypothetical two-

dimensional, fractured aquifers was simulated using a particle tracking technique.

Fractures in the aquifers are represented as linear features defined in terms of the

location in space of their midpoints, their orientation with respect to the coordinate

axes, their length, and their aperture. Some of these parameters were considered as

random variables in the analysis. The fracture length distribution was assumed to

have a negative exponential distribution. The distribution of fracture aperture was

considered to be lognormal. Flow in the fractures was idealized as laminar flow
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Figure 4.22. Schematic diagram of the layered geologic media with
thin, relatively uniform higher conductivity layers
used in the simulation experiments. (Smith and
Schwartz, 1981).
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Table 2. Comparison oF transport behavior in systems Fith thin, relatively
uniform higher conductivity layers extending across thme basin.
(Smith and Schwartz, 1981).
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through smooth parallel plates so that the cubic law which relates fracture hydraulic

conductivity to fracture aperture could be applied. Sets of fractures were generated

in a rectangular, two-dimensional aquifer with the assumption that the rock matrix

had zero permeability. The aquifer was bounded by two constant head and two no-

flow boundaries. A finite difference model was used to determine the hydraulic

head distribution, and mass transport was then simulated using a particle tracking

technique. The results of the study showed that the mass transport phenomena in

fracture rocks are so complex that the classical macroscopic convection-dispersion

equation does not seem to be appropriate. A single value of dispersivity or

dispersivity function does not appear to characterize correctly the pattern of mass

spreading in a fracture system.
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4.3.2 Conditional Simulation. Conditional simulation is a special kind of

Monte Carlo simulation technique. Unlike the Monte Carlo simulation discussed

above, it imposes sample values at the sample points. That is. in each realization,

parameter values are kept constant and equal to the measured values at a particular

location. Thus, there will be no uncertainty at measurement points.

The complete theory of a conditional simulation procedure based on kriging

is given by Matheron (1973) and Journel and Huijbregts (1978). A schematic

illustration of the conditional simulation is shown in Figure 4.23. Briefly, the

procedures of the conditional simulation are: (1) to generate nonconditional

simulations, that is, to synthesize different realizations of the random field of

hydraulic properties which maintain the actual covariance function that has been

inferred from the data, and (2) to condition of the simulations obtained in the first

step by making the realizations consistent with the measured sample values, The

first step is identical to the Monte Carlo simulation. For the second step, one has to

employ kriging. From the actual sample values, kriging yields an estimate KS (x)

(Figure 4.23a). If x is not a sample point, the true value K(x) is not available, and

the kriging error K(x) - K' (x) remains unknown. However, the true value, K(x),

equals the estimate plus the error in the estimate which we can write as:

K(x) = K' (x) + [K(x) - K' (x)] (4.3.1)

Kriging can be performed using the measured values at the actual sample locations as

data in a given nonconditional simulation (Figure 4.23b). The sample value of the

given nonconditional simulation S(x) can be decomposed as the sum of the kriging

estimate S' (x) and the kriging error, i.e., S(x) - S* + [S(x)-S' (x)]. Since this is

derived from the nonconditional simulation, all terms are known. Note that [S(x) -

S- (x) = 0] at the sample locations. By substituting S(x)-S* (x) for K(x)- K* (x), the
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Figure 4.23. A schematic illustration of the conditional simulation.
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K. (x) for the conditional simulation is defined as:

Ks (x) = K' (x) + [S(x) - S (X)] (4. 3.)

Therefore, K, (x) is consistent with the measured values at the sample points, Ks (x)

and K(x) have the same covariance functions. The average of many conditional

simulations at a given point x is the kriging estimate, and their variance is the

kriging variance.

Generally speaking. hydraulic property fields resulting from conditional

simulation are; (1) smoother than unconditioned fields, but (2) more variable than

kriged fields which essentially represent the conditional expected values.

The first application of conditional simulation to groundwater hydrology

probably was the work by Delhomme (1979). He used 45 transmissivity data

collected in the Bathonian aquifer in Normandy to investigate the effect of

conditioning transmissivity values at sample locations on the uncertainty of the

hydraulic head distribution. The first case he examined was steady- state flow

through a rectangular hypothetical aquifer 10 km in length and 7.5 km in width.

The aquifer was bounded by three impermeable boundaries and one constant head

boundary. A uniform recharge over the aquifer area was assumed. Transmissivity

values were considered to have a lognormal distribution with a spherical

semivariogram as the spatial correlation structure. Thirty sample values were used

with kriging to estimate the transmissivity at unsampled nodes of a 0.25 x 0.25 km

regular grid. Fifty realizations of the logarithm of transmissivity (log T) fields

incorporating the 30 samples were generated. Then, 50 head surfaces corresponding to

the 50 transmissivity conditional simulations were produced by a numerical model.

The results of the simulation indicated that conditioning by 30 log T samples did not

lead to any significant decrease in uncertainty in head values at the center of the
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aquifer. This was attributed to the fact that these 30 log T values were samnpled far

away from the outflow boundary which was a major controlling factor of the flow

regime. Conclusions drawn from this study illustrate: (1) the importance of the

locations of the log T samples with respect to the boundary conditions. and (2) that

knowledge of head values at some locations and recharge rates. In addition,

conditioning log T values may be helpful in reducing uncertainties in predicting

hydraulic head values in heterogeneous aquifers.

Case 2 of the study by Delhomme (1979) is the Bathonian aquifer where it is

bounded to the north by the sea. Steep hydraulic gradients occur in the southern

part of the area which are due to local dewatering of mines. Discharge from wells,

rainfall infiltration, interaction with streams, and leakage to or from overlying and

underlying aquifers were considered in the simulation. Two possible sources of

uncertainty on transmissivity were considered: (I) spatial variability and scattered

sampling, and (2) measurement errors in T sample values. A similar approach to

Case I was used. The conclusions drawn from the results of the analysis of Case 2

are: (I) the head surface cannot be reconstructed correctly from only the sample

values of T. and (2) constraints on some head values tend to improve the agreement

between simulated and observed head surfaces, without the transmissivity field

necessarily being correct. Again, the flow rates to and from boundaries play

important roles in reconstructing the head surface. Delhomme finally concluded that

using conditioning on both head and log T values may be necessary in order to

reduce the uncertainty in predicting the true head surface.

Conditional simulations pertinent to NRC's definition of groundwater travel

time and path criterion were conducted by Smith and Schwartz (1981). They used

this technique to study the role of hydraulic conductivity data in reduction of

uncertainty in prediction of mass transport. Two cases were examined. In Case 1,

they investigated the extent to which uncertainties in transport predictions are
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reduced when hydraulic conductivity data act to constrain the possible arrangement

of the heterogeneities. In Case 2, they investigated uncertainties in transport

predictions using a hydraulic conductivity distribution estimated from a limited set of

data.

In the first case. a hydraulic conductivity distribution along a two-

dimensional, vertical cross-section of a hypothetical water table aquifer was generated

using the nearest-neighbor model. They assumed statistical parameters (mean and

variance) to characterize the variability of conductivity. This realization was

assumed to be an analog of the site. Hydraulic conductivity values were sampled in

this realization on a preselected grid, and this data set was used to estimate the

parameters of the hydraulic conductivity distribution. The movement of contaminants

from a hypothetical waste repository was simulated to determine various arrival times

as solute mass exited from the aquifer.

As we described in the previous section (4.3.1), Monte Carlo simulations (300

realizations of hydraulic conductivity fields) were carried out based on the estimated

statistical parameters without considering the conditioning at the sample grid using

sample data. The movement of a swarm of 600 particles in each hydraulic

conductivity realization was simulated using a transport model. The mean and

coefficient of variation (i.e., standard deviation/mean) for each of the times of initial,

maximum mass, and last arrival resulting from the 300 possible realizations were then

analyzed. The results cf this analysis represent the uncertainty in prediction. A

small subset of the hydraulic conductivity values was sampled from the analog of a

real-world site and was then used to constrain the hydraulic conductivity values at

the sample locations. Three sample grids were used: Grid A had 12 sampling points,

Grid B, 24 points, and Grid C, 36 points. Three hundred hydraulic conductivity

fields were simulated in which the hydraulic conductivity values are identical to the

sample values at the sample points.
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Again, the mean and coefficient of variation for each of the arrival time

distributions were analyzed. A comparison of the means and coefficients of variation

of the unconditional and conditional simulations determined the effect of knowledge

of hydraulic conductivity values at sample locations on uncertainty in prediction.

That is, a decrease in the coefficient of variation can be taken as a measure of the

reduction in the uncertainty in prediction. Effects of varying the number of samples

were investigated. Surprisingly, for their data base, results of unconditional and

conditional simulations indicated that knowledge of additional hydraulic conductivity

data did not lead to large reductions in the uncertainty in the velocity field. This

result is relevant to identifying uncertainties in groundwater travel time and in

assessing data needs for site characterization.

The conditional simulations in Case 2 of Smith and Schwartz (1981)

proceeded as follows. From a specified stochastic process with given parameters. a

hydraulic conductivity field was constructed. Hydraulic conductivity values were

sampled from this realization on a preselected grid, and this data set was used to

estimate the parameters of the hydraulic conductivity distribution. A second

realization was generated using these estimated parameters, while the hydraulic

conductivity values were preserved at the measurement points. Mass transport was

then simulated in this second realization. This two-step procedure was repeated over

a set of trials in a Monte Carlo simulation to form the probability distributions of the

arrival times.

Distinct differences exist between Cases I and 2. In Case 1, the parameters

of the hydraulic conductivity distribution were estimated from the hydraulic

conductivity values located on the sample grid. These estimated parameters and the

data set were then fixed for all the realizations in that Monte Carlo experiment. For

the simulation in Case 2, the estimated parameters of the stochastic process varied

with each realization, as different sets of hydraulic conductivity values are located on
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the sample grid. The statistical parameters estimated from the available hydraulic

conductivity data are different from those prescribed as the properties of the

ensemble. Thus, errors in estimating the parameters add additional sources of

uncertainty in prediction. That is, a ratio formed between the coefficient of

variation for the arrival times in the Case 2 simulations and a corresponding

unconditional simulation will indicate the extent to which uncertainties are increased

in estimating the mean and standard deviation in hydraulic conductivity. The larger

the value of this ratio, the greater the importance of uncertainties in estimating the

statistical parameters relative to the uncertainty introduced due to the unknown

patterns of spatial variation in hydraulic conductivity. Table 3 summarizes the ratio

for selected transport parameters for the Case 2 simulation. All the ratios are

greater than 1, indicating additional uncertainties due to uncertainty in estimating the

ensemble statistical parameters. However, such uncertainties are reduced as the

number of samples increases.

A general conclusion drawn from the study by Smith and Schwartz (1981) is

that unless a considerable number of field measurements are available to constrain

the patterns of spatial variation in hydraulic conductivity, large uncertainties can be

associated with seepage velocities. Individual hydraulic conductivity measurements do

not reduce the uncertainty significantly because of the dependence of the local

hydraulic gradient on the overall arrangement of heterogeneities within the flow

domain. Smith and Schwartz (1981) suggested that more emphasis should be placed

on in situ measurements of seepage velocity (fluid particle velocity). However,

seepage velocity generally varies with time, and it is difficult to take any

measurement in the field due to slow movement of groundwater. Therefore, their

suggestion may not be practical. Finally, they emphasized that a careful selection of

sample locations should focus on regions where the uncertainty in the seepage

velocity is greatest. A carefully designed. integrated sampling program may play an
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Table 3. Ratios of the coefficients of variation in various arrival
times resulting from the conditional simulation to those
from the unconditional simulation in Case 2 study (Smith and
Schwartz, 1981).

Sample Grid

A B C

Initial arrival 1.44 1.12 1.03
Time of maximum mass 1.59 1.22 1.13
Last arrival 1.61 1.32 1.30

Here u -= -1.45,, ay 0.50, A, - 12.5, A - 6.3.
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important role in the reduction of uncertainties in solute transport predictions.
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4.3.3 Spectral Analysis. Spectral analysis is generally an analytical approach

which includes perturbation analysis. This approach has been used extensively by

Gelhar and his co-workers (e.g.. Gelhar, 1976: Bakr et al.. 1978; Gutjahr et al..

1978; Mizell et al., 1982: Gelhar et al., 1979; and Gelhar and Axness, 1983; Yeh et

al., 1985a, b, and c; Mantoglou and Gelhar, 1987a, b, and c). To illustrate the

approach, let us consider steady-state flow in a heterogeneous but locally isotropic

aquifer (i.e., the hydraulic conductivity at the scale of core samples is isotropic) with

infinite lateral extent. The governing flow equation is:

a [K a] = 0. i=1,2.3 (4.3.3)

where K is the hydraulic conductivity and is a function of the spatial coordinates.

The Einstein summation convention is used (i.e., repeated indices imply summing over

the range of the indices). If K ¢ 0, equation (4.3.3) can be rewritten as:

a2 h + arnK aha-a~ ax - = 0 (4.3.4)

If the natural log of hydraulic conductivity, InK, and the hydraulic head, h, are

assumed to be second-order stationary stochastic processes, the equation becomes a

stochastic partial differential equation, and InK and h can be represented by means

and perturbations of these values about their means:

h = H + h' E[h] H. and E[h'] - 0 (4 .3.5a)

InK = F + f E[lnK] . F. and E[f] - 0 (4.3.5b)
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where H and F are the means of h and InK, respectively. The perturbations are h'

and f for h and InK, respectively. By substituting the representations (equation 4.3.5)

in equation (4.3.4), and taking the expected value of it. we obtain a mean equation:

a2H + aF + aF aH + E f ah= (4.3.6)
axiaxi aX1 ax T. L axi ax

Substracting the mean equation from equation (4.3.4) gives:

a2h' af aH + aF ah' E_ af ah' 1 + af ah 0 (4.3.7)
axiax i ax, X ax1 axT L axi axi j axi axi

If we assume that the log hydraulic conductivity perturbation f is small (aquifer is

not highly heterogeneous, say, u2 <1.5 (Ababou et al., 1988), it is logical to expect the

head perturbation h will be small. Then, it is reasonable to neglect higher order

terms so that the perturbation equation can be written as:

af AH + a alh' + 0 (4.3.8)
ax; axi ax3 ax3 axiaxi

This approximate equation describes the relationship between the perturbations in InK

and h' in a steady-state flow with mean gradients, aH/axi.

The above mathematical procedures are equivalent to visualizing the

heterogeneous aquifer as a collection of finite elements, and flow in each element is

described by the governing flow equation with a constant hydraulic conductivity

value. A collection of an infinite number of elements whose hydraulic conductivities

are spatially correlated is then equivalent to an ensemble in the stochastic sense.
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Taking the expected value (ensemble average) of equation (4.3..') wK ith stochastic

parameters is tantamount to ignoring the details of the flow behavior in each element

but examining the average behavior of the flow in all the interconnected elements.

The perturbation equation thus depicts the deviation of the flow from the mean flow

only.

Now, the problem is how to solve the perturbation equation (4.3.8) and here

the spectral method comes into the play. The spectral representation theorem

(Lumley and Panofsky, 1964) states that if a stochastic process y(x) is second-order

stationary, there is an essentially unique complex-valued, random distribution Z(k) on

the frequency axis such that:

Y(x) = I eikXdZ(k) (4.3.9)

where i is a complex number and dZ is a generalized derivative of Z(k). Equation

(4.3.9) is an example of a Fourier-Stieltjes integral. Furthermore, this process Z(k)

represents complex-value random variables in a wave number k domain. In addition,

this Z(k) process is related to covariance behavior as discussed below. More

specifically, equation (4.3.9) simply is the inverse Fourier transform of Z(k). or Z(k) is

the Fourier transform of the variable y(x) in the spatial domain. By doing this

transformation, we have tranformed the variable from the spatial domain to the wave

number domain. A physical analogy can be drawn with the effect of a glass prism

on sunlight, as shown in Figure 4.24. A beam of white light can be regarded as a

complex wave form changing with time, and composed of many colors (or

wavelengths) of light. A prism acts as a frequency analyzer and separates the beam

into its components, which appear as a rainbow display. Each colored band is

separated from its neighbor by an amount proportional to the difference in their
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I z n \( f

Figure 4.24.. A prism acts as a frecuency analyzer, transforming -nite

light (time domain) into its constituent spectrum of

colors (frequency domain). Note the signals in zrie fre-

quency aomain are uncorrelatea. (Davis, 1973).
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wavelengths or frequencies, and the intensity of each band is proportional to the

contribution of that particular wavelength to the total intensity of the original beam.

Examining the spectrum of a light source may tell us many things: the composition of

the source, its temperature, nature of the material through w hich the light passed,

and so forth.

By the same token, examining the spectrum of spatial data may tell us a

great deal about its nature and origin, information which may not be apparent in any

other way. However, in this spectral analysis, the purpose of taking the Fourier

tranform of the spatially correlated process y(x) is that after the transformation, Z(k)

has been separated from its neighbor so that it is uncorrelated and the mathematics

become easlier. Since Z(k) is uncorrelated, it has the following properties:

E[dZ(ki)dZ- (k2)] = 0. if k1 o k,

E[dZ(kl)dZ- (k2)] = S(k) ki = k2 (4.3.10)

where dZ* is the complex conjugate, and S(k) is the spectrum of y which is merely

the Fourier transform of its autocovariance function:

S(k) = 2 { elike c(X) d6 (4.3.11)

Therefore, the inverse Fourier transform of the spectrum S(k) thus gives:

00

cov[ y(x+V)'5(x) I = c(M) = eikJ S(k)dk (4.3.12)
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Using the representation theorem for the perturbation terms f and h', and assuming

uniform flow, equation (4.3.8) can be rewritten in terms of dZ processes:

iL d k (4.3. 13)dZh= k

where J is the mean gradient in the x direction, aR/ax and is assumed to be

constant. Using the properties of the dZ processes, one can derive the relationship

between the input and output spectrums, Sh'h' and Sff, respectively. That is:

2 -= (4.3.14)

By applying the inverse Fourier transform to the above equation. one thus obtains the

head covariance functions, ch'h0(0). in terms of the hydraulic conductivity covariance

function, cff((). If one uses a simple stationary three-dimensional covariance function

for InK, i.e.:

cff(V) = o2 exp -[2*/x2 + 22/x2 + 32px ]i/2 ] (4.3.15)

where X), X2, and X3 are the correlation scales in xl, x2 . and X3 respectively, the

corresponding spectrum is

ar 2 IX 21k3
Srr(k) - f(..6

fr2k4(1 + k2 X2)2 (4.3.16)
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If we assume the hydraulic conductivity covariance function is isotropic (i.e., \1 =\-

- X3 ) and take the Fourier transform of (4.3.14). the head Variance, a! . is related to

the variance of the hydraulic conductivity. ar2 by:

= ch'h' (0) J J2 Ur 2 X2 (4.3.17)

The variance equation, (4.3.17), provides us with information on how the

spatial variation in hydraulic conductivity affects the spatial variation in hydraulic

head. In other words, it provides us with a measure of the deviation of hydraulic

head from its mean value predicted using an effective hydraulic conductivity.

The spectral approach is also useful for deriving the effective hydraulic

conductivity for such a stochastic random porous medium. To derive the effective

hydraulic conductivity, we will again conceptualize the heterogenoeus aquifer as a

collection of many finite elements with spatially correlated hydraulic conductivity

values in which the flux is assumed to obey Darcy's law. Thus, the average flux

over the entire heterogeneous aquifer then becomes the expected value of all the

fluxes from each individual element within the aquifer. That is:

E[ qj ] i -E E Kgh E K ef aH + ah.1 (4.3.18a)

Using a series expansion for er. (4.3.18a) becomes:

'-Kg ED I . S P N AS2 S IAT I
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Kg J 1+, E~f[4x- (4.3. 1 Sh

where K - Kg exp(f) with E(lnK) = InK2. Equation (4.3.18b) represents the average

of fluxes in all elements, or the ensemble average of the fluxes. The last term on

the right-hand side of equation (4.3.18b). representing the cross-correlation between

the log hydraulic conductivity and the hydraulic gradient perturbations, can be

evaluated using the representation theorem as well. If we assume that Darcy's law

(i.e., flux has to be linearly proportional to the hydraulic gradient) is valid for this

ensemble flux, then:

E[ qj Kff Ji (4.3.19)

where Ji is the mean gradient in direction i (i.e.. 8H/axi) and Keff is the effective

hydraulic conductivity. Based on equation (4.3.19), Keff is merely a constant of

proportionality between the ensemble flux and the mean gradient. In other words,

Kerr is a parameter which produces the mean flux with the knowledge of the mean

hydraulic gradient. By comparing equations (4.3.18) and (4.3.19), it is easy to see

that:

Keft = K [ + Gf ] -E[f(ah/axi)] (4.3.20)

As indicated in equation (4.3.20), the effective hydraulic conductivity clearly lumps

together the variability of InK, or2 and the covariance of f and ah'/axi, E[f(ah'/axj)i,
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which varies with flow. Therefore. the effective hydraulic conductivity is not a

simple arithmetic average of all hydraulic conductivity values of individual elements,

but it depends on the flow regime as well.

Using the spectral technique discussed above, Bakr et al. (1978) analyzed the

effects of spatial variability on steady-state groundwater flow. Closed forms of head

variance expressions were derived for one- and three-dimensional flow fields in

which hydraulic conductivity is a spatially-varying stochastic process. Several

important conclusions were drawn from the results of the study. Hydraulic head

distribution tends to be smooth due to the damping effect of the groundwater flow

system. That is, the head values are correlated over a much longer distance than the

hydraulic conductivity values. The head values are anisotropic (i.e., correlated over

a longer distance in the direction perpendicular to the flow direction.), even if the

hydraulic conductivity field is statistically isotropic. The head variance can be

related to the variance of InK by:

al,= g'2 Jr X2 (4.3.21)

where /3 is a constant: I for one-dimensional flow, 1/3 for three-dimensional flow, J

is the mean hydraulic gradient, ar2 is the variance of the natural logarithms of

hydraulic conductivity, and X is the correlation scale. The equation indicates that the

variability in head predicted by a three-dimensional model is smaller than that

predicted by a one-dimensional model. This means that a three-dimensional model

would be much more appropriate for analyzing uncertainties in groundwater travel

times and paths. Furthermore, it is manifest from equation (4.3.21) that studying the

correlation scale is important in the calculation of head variance or uncertainty in

head prediction as discussed in the section dealing with Monte Carlo simulation.
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Gutjahr et al. (1978) extended Bakr's study to define effective hydraulic

conductivity for heterogeneous InK fields. They concluded that the effective

hydraulic conductivity in one-dimensional flow, perpendicular to layerings, is the

harmonic mean:

_a12

Ke = K e f (4.3.22)

where Kg is the geometric mean of K. and a72 is the variance of InK. and the

arithmetic mean for flow parallel to beddings, i.e.:

C2/2
Ke = Kg e f (4.3.23)

In the three-dimensional flow situation, the effective hydraulic conductivity is given

by:

a21a 2/6
Ke -Kg e f (4.3.24)

which is slightly greater than the geometric mean. They suggested that the geometric

mean of K may be a good estimator for the effective hydraulic conductivity values

for field situations.

Both analyses by Bakr et al. (1978) and Gutjahr et al. (1978) assumed

statistical isotropy for the random hydraulic conductivity field. Gelhar and Axness

(1983) extended the analyses by Bakr et al. (1978) and Gutjahr et al. (1978) to

investigate the effective hydraulic conductivity of large-scale aquifers in which the

hydraulic conductivity field is assumed to be statistically anisotropic. They showed
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that the effective hydraulic conductivity, in general, is a second-rank symmietric

tensor whose principal components depend on the ratios. XI/\, and \,/\3. Figure

4.25 shows that the anisotropy ratio for the case with XI = X# $ X3 is dependent on

the degree of variability of hydraulic conductivity in terms of the variance of InK as

well as the geometry of the heterogeneity as characterized by the ratio of WI/X 3.

The effective hydraulic conductivities and head variance derived from the

spectral analysis may have important practical implications on the prediction of

groundwater travel times and paths. Generally speaking, there is a limited number

of hydraulic conductivity values available for determining accurately the groundwater

travel times and paths. As a first step toward solving such a complex problem. one

may use the limited amount of data to determine the variance of InK, and thus the

effective hydraulic conductivity, using one of the equations (4.3.22). (4.3.23), or

(4.3.24), depending on the dimensionality of the model. The mean flow behavior thus

can be determined. Correlation scales can be estimated from the available data by

using autocorrelation analysis. With an estimated mean gradient, variance of InK.

and correlation scales, the head variance in a statistically isotropic medium can then

be determined, using equation (4.3.21). If there is no hydraulic conductivity data

available, one might be able to resort to the known variances and correlation scales

of similar kinds of materials reported in the literature (see table 2 ). The calculated

head variance can be used as a measure of the error in the model as the result of

unmodeled aquifer heterogeneity (i.e., the result of using effective hydraulic

conductivity). Therefore. the head variance is an appropriate model calibration target

to study for defining the detailed hydraulic conductivity distribution, provided that

other sources of error are also considered. The hydraulic conductivity field obtained

from the calibration may then be used to determine groundwater travel times and

paths. A similar application of the above spectral results to field problems was also

illustrated in the paper by Gelhar (1986).
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As emphasized many places in this report, the arrival time of a ccrtalin

concentration of a tracer is similar to the groundwvater travel time. The difference is

that no tracer particles are involved, and the concentration is defined as the ratio of

the weight of newly-arrived groundwater particles to the total weight of groundwvater

in the sample volume. If one has this concept in mind, it is clear that the

nonreactive solute transport equation is the most appropriate model for determining

the groundwater travel time. The use of the effective hydraulic conductivity predicts

only the arrival of the center of the mass plume, and the arrival of fast moving

groundwater particles due to subscale velocity variation is ignored. To analyze the

effect of velocity variations on solute transport, the macrod ispersion concept has to be

introduced. This macrodispersion approach is analogous to the analysis of molecular

diffusion at the microscopic scale discussed in section 2.6.

In order to use the macrodispersion approach, macrodispersivity must be

defined. The dispersivity value at the laboratory scale can be related to the

variation in grain size. Similarly, macrodispersivity can be related to the variation in

hydraulic conductivity values at scales much smaller than the REV of the stochastic

random field. The relationship between the macrodispersion and local-scale hydraulic

conductivity variations was derived by Gelhar and Axness ( 1983) using a spectral

analysis which will be discussed in the following section.

To examine the theory of macrodispersion, we will assume that the general

equation describing transport of an ideal conservative solute by a fluid with constant

density and viscosity in a saturated, homogeneous, three-dimensional porous media of

constant porosity, n, is:

At~~ Fj x axj~cq ] i~-1.3 (4.3.25S)
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where the standard Cartesian summation convention of Einstein is used and c is the

concentration of the transported solute, qj is specific discharge in the xl direction: EJ

is a local bulk dispersion coefficient tensor equal to nD,1 ; and Dj is the local

dispersion coefficient tensor. If Dij is isotropic (i.e.. the dispersion coefficient values

are the same in all directions), then it is equivalent to Dd defined in Section (2.6).

The local scale used here refers to the size of the volume (REV) over which the

measured hydraulic conductivity is obtained. For example, if hydraulic conductivity

is measured from a core sample, the local scale represents the size of the core.

Thus, the local dispersion coefficient stands for the velocity variation at scales less

than the size of the core sample (it includes molecular diffusion). Similarly, a local

dispersion coefficient can be used to represent the velocity variation at scales much

smaller than the scale at which the transmissivity is defined.

Conservation of total mass requires:

qi = 0 (4.3.26)axi

If a steady state condition is assumed (i.e.. nac/at = 0), equation (4.3.25) becomes:

acq j _____

8 i= Eij ax2ax (4.3.27)

This equation is assumed to be adequate to describe the local-scale dispersion. In a

large-scale heterogeneous aquifer, the log hydraulic conductivity. f; specific

discharge, q; and concentration, c, are assumed to be stochastic processes. These

parameters can be decomposed into a mean part and a perturbation part, i.e.:
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c = c + c,

f = f + fP

q= Qi + q'= i=.2.3 (4.3.S)

where the head and the prime represent the mean and the perturbation, respectively.

Substituting the above expressions into (4.3.27), one obtains:

a [(c + c')(Qi + q'i)] - Ej a2 + C] (4.3.29)[(i c 1 =E axiax.

Because the parameters are stochastic processes, equation (4.3.29) describes

concentration profiles in many realizations of possible heterogeneous aquifers (i.e.,

ensemble). Expanding terms and taking the expected value of the equation (i.e.,

taking the ensemble average) produces the mean equation:

a " c aE[q'c'] - E. ae (4.3.30)

In other words, this is a transport equation which describes the mean profile of all

the possible concentration profiles resulting from each realization of a heterogeneous

hydraulic conductivity field. Comparing this equation to equation (4.3.25), which is

the classic convection-dispersion equation, it should be evident that the first term in

the left-hand side of the equation is the convective flux associated with the mean

flow or specific discharge, and the second term is an additional flux, E[q'ic']. This

mass flux is defined as the macrodispersive flux resulting from the perturbation of

velocity which is caused by the heterogeneity of the aquifer, neglected at the size

where the effective hydraulic conductivity was defined.
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If this macrodispersive flux is Fickian in nature, that is. this flux is linearly

proportional to the mean concentration gradient (equation 2.6.1). and if the mean flowv

is aligned in the xi direction so that q = q $ 0 and q2 '3 = 0, we may then

write:

E[q'c'] = -q Aij 3 8 (4.3.31)

where A1j is the macrodispersivity tensor and q is the magnitude of the specific

discharge vector. The work by Gelhar and Axness (1983) derived expressions for

the Aij term, relating A1j to the variation in hydraulic conductivity, f'. This task

was carried out by using the perturbation technique and the spectral representation

theorem as used in the derivation of the effective hydraulic conductivity analysis.

One of the results shows that:

UaX
All =f2 (4.3.32)

where All is the longitudinal macrodispersivity. uof is the variance of f, X is the

correlation scale of statistically isotropic porous media, and y is the flow correlation

factor which depends on the direction of the mean flow and the orientation of the

heterogeneity.

The practical implication of Gelhar and Axness's work is that the

macrodispersivity values may be estimated from the knowledge of the variation of

local-scale hydraulic conductivity values without conducting a large-scale field tracer

experiment to determine the dispersivity values or the groundwater travel time.

Generally speaking, a large-scale field tracer experiment is impractical in terms of
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the time span required for such an experiment. However, local-scale hydraulic

conductivity values are frequently measured in many aquifers. Data are available

but limited. Hence. the macrodispersivity approach may provide a practical solution

to many pollution problems (such as the high-level nuclear waste site characterization

program).

However. the macrodispersivity approach produces the mean concentration

profile only, as indicated by c in equation (4.3.30). The mean concentration profile

represents the average values of concentration profiles occurring in many different

aquifers (i.e., ensemble average, see section 2.6.1). As a result, the actual

concentration profile observed in an aquifer may be quite different from the

predicted one using the macrodispersivity. For example, Figure 4.26 shows the

differences between an observed concentration distribution in the Borden sandy

aquifer and an ensemble averaged (or mean) concentration distribution calculated from

the classic convection-dispersion equation with macrodispersivity values. Determining

the difference between the two profiles is necessary. To evaluate the difference,

Vomvoris and Gelhar (1986) analyzed the mean concentration variance. They found

that the concentration variance is proportional to the mean concentration gradient and

to the variance and correlation scales of log-hydraulic conductivity; it is inversely

proportional to local dispersivity values. The results imply that the concentration

variance could be large depending on the magnitude of the parameters.

Before we illustrate the practical application of the macrodispersion theory to

the groundwater travel time problem, recall that the concentration is simply the

weight ratio of the newly arrived groundwater to the groundwater (including "new"

and "old" water) in a sample volume. If the statistical parameters of the hydraulic

conductivity distribution are known, either estimated from a limited amount of data

or obtained from information from other similar aquifers, one can then calculate the

breakthrough curve at the accessible environment using equation (4.3.30) and
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A schematic illustration of an observed depth-averaged
concentration profile (solid) and a mean profile (dash),
calculated from the macrodispersion equation (modified
from Sudicky, 1986).
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macrodispersivity values. This concentration breakthrough curve represents the

arrival time distribution of different amounts of "new" water. Consequently, if a

proper concentration of a tracer is defined as a criterion, then the arrival time can

be defined. For the reason that the calculated concentration is the mean

concentration. one should use the equations provided by Vomvoris and Gelhar (1986)

to determine the variance of the mean concentration. An error band (plus or minus

one concentration standard deviation about the mean concentration) can be calculated

which indicates the range of the uncertainty in the mean concentration profile.

Hence, the uncertainty in groundwater travel time is quantified.

Similar research on macrodispersion has been presented by many other

researchers (e.g., Dagan, 1985, 1986, 1987; Neuman et al.. 1986; Winter et al., 1984;

Matheron and De Marsily, 1983). Dagan (1987) used the Eulerian velocity field to

derive formulas for the time-dependent macrodispersivities in two-dimensional planes

and three-dimensional aquifers. This approach is similar to Taylor's theorem on

diffusion dicussed in section 2.6. However, in Dagan's analysis, the velocity field is

related to the heterogeneity structure of the hydraulic conductivity field through the

governing groundwater flow equation. The hydraulic conductivity field is considered

to be statistically isotropic. For early time periods (i.e., t << X/v). the spatial

concentration variances (the square of the standard deviation of the plume

concentration distribution: this is similar to the w2 in section 2.6.1) are given by

a2 (t) _ 8 a2 v2 t2 + 2 DL t

and a22 (t) = a233 (t) = I a2 v2 t2 + 2 DT t (4.3.33)
22 33 15 YTt

for three-dimensional flow, where a2 a222, and a2 are the concentration variances inD' 22B 33
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the direction of flow, and lateral directions. respectively. Local-scale dispersion

coefficients in the longitudinal and the transverse directions are DL and DT.

respectively. v is the mean velocity, t is time, and N is the correlation scale of the

hydraulic conductivity field. U2 represents the variance of the natural log of
V

hydraulic conductivity in three-dimensional flow and the variance of the natural log

of transmissivity in two-dimensional flow. The results of the two-dimensional flow

anaylsis are:

0.2 3 o2v2 t2=av~t

°22 = I G2 V2 t2
22 8Y (4.3.34)

For large time periods (i.e., t>>X/v), the three-dimensional results are:

all 20.2 vXt + 2DL t

0.~j u2., 2 a2X2 t
22 33 3 Y (4.3.35)

and the two-dimensional results.

a02 o 20.2 Xvt 1 - 31n(vt/X)]I L 2vt/X I

a02 a2 2 N2 [ ln(vt/X) + 0.933 ]
22 - y (4.3.36)

Note that the concentration variances (equations (4.3.33) and (4.3.34)) for early time
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periods depend on t2, implying the macrodispersion coefficient grows with time. For

late time periods, the concentration variances (equations (4.3.35. and 4.3.36)) are a

function of t only. This relationship implies that the macrodispersion coefficient is

constant over time. Moreover. equations (4.3.33 - 4.3.36) do not predict the shape of

the concentration plume but its relative size. Thus, no classic convection-dispersion

which assumes the validity of Fick's law is used.

In generally, these results compare favorably with those obtained from a

field tracer experiment (Sudicky, 1986) conducted in a sand aquifer in Canada (see

Figure 4.27). A recent field tracer experiment by Garabedian (1987) in a glacial

outwash aquifer also indicated that the stochastic results (i.e., Gelhar and Axness,

1983; and Dagan, 1987) are suprisingly robust, regardless of many assumptions used

in the development. However, the robustness may be attributed to the fact that the

variance of log hydraulic conductivity in those two aquifers is small so that the first-

order approximation used in stochastic analysis is justifiable. The validity of the

stochastic results, the reviewers of this report believe, still remains to be tested with

tracer experiments in many different geologic environments.

Overall, the major advantage of the analytical approaches by Gelhar and

Axness (1983), and Dagan (1987) is that they provide us with an explicit formula

showing the relationship between the variance of inputs (such as hydraulic

conductivity) and the head variance, or mean concentration profile and its variance,

without conducting numerous computer experiments as required by the Monte Carlo

simulations (such as Clifton et al., 1985; Smith and Schwartz, 1980, 1981a and b).

Additionally, the results of the analytical approach (i.e.. Gelhar and Axness. 1983)

also give us an explicit way to estimate the effective hydraulic conductivity and the

macrodispersivity values of large-scale aquifers if the statistical parameters

characterizing the variability of the small-scale hydraulic conductivity values are

known. The major drawback of the method is that the solution (or the formula)
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may be valid only for small values of variations in hydraulic conductivity because of

the omission of product terms in the analysis. Several studies have shown the results

to be valid even for the variance of f = 1. Therefore, one may expect the results

from the spectral analysis to be valid for most unconsolidated materials wvhere the

variance in f may be less than 1. For cases where a large variance in f is expected

(such as in fractured rocks where the variance of InK has been reported to be about

8.7, (Neuman, 1987), the validity of the method remains to be tested. The other

drawback of the spectral approach is the stationarity assumption used in the analysis.

In a basin-scale aquifer, the hydraulic conductivity field is likely to be nonstationary

because of changes in deposition environments which may contain heterogeneities of a

variety of scales, if the scale of our measurement is much smaller than the basin

scale. Moreover, the validity of the classic convection-dispersion equation for large-

scale problems is still under debate (see for example, Yeh, 1987). So. is it valid to

apply such the results of the spectral analysis to these field problems?

It is generally agreed that the validity of the stochastic results still remains

to be tested with tracer experiments in many different geologic environments. \We

previously noted a field experiment to validate the stochastic approach in an alluvial

aquifer is currently in progress in Mississippi (Betson et al., 1985). We are unaware

of similar experiments in unsaturated fractured rock. However, in the vadose zone

there are two field-scale experiments in progress in New Mexico which are designed

to evaluate multi-dimensional transport models in unsaturated media (Stephens et al.,

1984; Wierenga et al., 1986).
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4.3.4 Fractal Approach. In the past few years. geohydrologists and soil

scientists have employed statistics to characterize the spatial variability of hydrological

properties of geologic formations. Most of the hydrologic properties were found to

be correlated over a large distance. Furthermore, many experimentally-determined

variograms or autocorrelation functions of soils and geological data, exhibit some

nugget effects. These nugget effects are generally viewed as a result of small-scale

random noises which are spatially uncorrelated. This view implies that all variation

within the closest sample spacing is infinitely erratic and possesses no spatial

structure whatsoever. Although part of the nugget effect can be attributed to

measurement errors which are likely to be spatially independent, experience shows

that most of the noise at the macroscopic scale could be spatially correlated at the

microscopic scale. This implies that the variability of hydrologic data exists in all

scales and has a correlation structure at each scale (Dagan, 1986; and Gelhar, 1986).

This scale phenomena was illustrated in Figure 4.13. In other words, the hydrologic

data have a nested correlated structure. To analyze such a data set. a fractal

approach has been proposed.

Fractals are based on the idea of 'self-similarity'; that is, the variations at

one scale are manifested at another scale in similar ways. In other words. the

irregularity of a process is independent of the scale of measurement. For example,

the variation in effective hydraulic conductivity obtained from large-scale hydraulic

tests should be similar to that from small-scale tests, at least according to the fractal

concept. This self-similarity implies a long-range correlation structure in geostatistics

terminology. That is, no matter how the size of the hydraulic test varies, the

correlation between adjacent samples remains. For example. in Euclidean or classical

geometry, the length, L, of a straight line can be easily determined by:

L = N e (4.3.37)
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where N is the number of measuring units of length e. If we halve the size of c. N

will increase by a factor of two. Therefore. the length. L. is constant and

independent of the scale of the measurement.

However, the Euclidean concept of a constant distance between two points

independent from the scale of measurement may not be valid. Consider measuring

the distance of a straight line between San Francisco and Washington. D.C. The

distance as viewed by a person in outer space is essentially the length of a straight

line between the two cities. The effects of topographic variation are completely

neglected. However, the distance measured by a person on the ground will be much

longer because this person has to consider the topographic variation of the land

surface. Now, if we imagine the person is shrunk to the size of an ant. the distance

between the two cities will then be even greater than that a normal-size person

would experience, because an ant-size person has to consider not only the large-scale

topographic variations such as hills, depressions, and mountains but also small-scale

topographic variations such as heights of pebbles, rocks, and depths of cracks. The

distance between the two cities, therefore, seems to grow infinitely as the scale of the

measurement continuously decreases. This implies that the distance depends on the

scale of the observation. This conclusion is based on the assumption that the small-

scale topographic variation persists as the scale of the observation is reduced.

If the distance between two points varies with the scale of measurement, one

may then ask the question: can we relate the distance between two points measured

at our scale to those at scales different from ours? If the answer to the question is

positive, we will then be able to predict phenomena at any scale, based on what we

observed at our scale.

If we now assume that the topographic variations at all scales are self-

similar, the distance between the two cities encountered by an ant-size person can

then be scaled so that it is equivalent to that encountered by a normal-size person.
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This concept is illustrated in Figure 4.28. Suppose the distance between two points

A and B measured at a scale, e, is defined as L(e). A straight line distance. °.

represents the distance measured at a scale E=i (Figure 4.28a). The number of

measurements, N, is 1. If the measurement scale is reduced to 1/3, the topographic

variation at this scale will show up as indicated in Figure 4.28b. The distance

between points A and B becomes 42/3 (i.e. N = 4). A further reduction of the

measurement scale to 1/9 of I reveals even more detailed topographic variation

(Figure 4.28c). The number of measurements, N. required to measure the distance,

then, is 16. If the measurement scale is further decreased to 2/27, the topographic

variation at this scale is shown in Figure 4.28d. In this case, N is 64. Note that the

topographic variations in all the scales are similar in shape. Now, we plot the

measurement scale, e, versus N on log-log paper. A linear relationship between logE

and log N is found (Figure 4.29). That is:

log N - -D log e or N = f-D (4.3.38)

where D is the slope of the line on the log-log plot. For the example, D is equal to

1.2618. This slope, D, is called the fractal dimension (Mandelbrot, 1983). In general,

I < D < 2. If D - 1, N is inversely proportional to the measurement scale e, this

indicates that the line is a topologically one-dimensional object. In other words, the

topographic variation is independent of the scale of measurement. In the limiting

case of D - 2, the line will be so irregular that it fills a plane (Mandelbrot, 1983).

Again, here we are assuming that the topographic variation is self-similar at all

scales. This is the most important property of the fractal geometry. Now. if we let:

F - NeD (4.3.39)
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Figure 4.28. Schematic illustration of fractal concepts.

r is the measurement scale, N is the number of measuring
units of length a, L is the total length, and 9, is the
straight line distance between A and B.
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log N = -D log E
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log ^&

Figure 4.29. Schemnatic illustration of a linear
relationship between log :i ana log N.
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we can show that F is always a constant (F = ;D), no matter which scale of

measurement is used. Thus, with the aid of the fractal dimension. we can properly

scale the topographical variation at any scale to any measurement scale. if the

variation is fractal, i.e. self-similar. The length of the distance between two points

L(e) at any measurement scale is then given as:

L(e) - F El-D (4.3.40)

Equation (4.3.40) implies that as long as the distance between two points measured at

a scale. e. and the fractal dimension are known, one can determine the distance

between two points as observed at any other scale. The practical implication of

equation (4.3.40) is tremendous. We can predict large-or small-scale phenomena

based on what we observe at our own measurement scale.

The fractal geometry concept has been recently applied to many scientific

fields (Mandelbrot, 1967; Burrough, 1983a and b; Arya et al., 1985; Hewett. 19S6)

including groundwater hydrology (Wheatcraft and Tyler, 1988). Groundwater

hydrologists, in general, rely on small-scale tests to obtain parameters for predicting

flow or transport phenomena in large-scale geologic formations. Due to the spatial

variability of the parameters, it is generally agreed that it is impractical to delineate

the detailed spatial distribution of the hydrologic parameters in a deterministic sense.

The alternative is to use effective, or mean parameters. This method is, however,

not immune from difficulties. For example, there is field evidence showing that

dispersivity, which is an effective parameter (see section 2.6.1). grows with the scale

of experiment (Gelhar. 1986). So, how can dispersivity values obtained from small-

scale laboratory experiments be scaled to large-scale problems?

To answer the above question, Wheatcraft and Tyler (1988) developed fractal

scaling relationships to analyze dispersion in heterogeneous porous media. They
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assumed that the path of a particle in a heterogeneous medium has frau[al

characteristics. The actual length a particle travels in a porous medium Xr can ire

related to the straight line distance of the medium, X, as:

Xf 3 EC1D XSD (4. 3.41)

where EC is the fractal cutoff limit to ensure the actual length the particle travels is

finite. The limit could be the smallest REV size. From equation (4.3.41), one can

see that when the length between two points in a porous medium increases, the

length of the actual travel path of a particle increases accordingly. Now, if we

imagine a large-scale aquifer as a collection of many fractal stream tubes, the

variance of the Xr is then given as:

var(Xf) - var (ccl-D XSD) (4.3.42)

where Xs is constant. If we assume that the fractal dimension, D, is constant, then

equation (4.3.42) can be rewritten as:

var(Xf) = Xs2D var(eC I -D) (4.3.43)

Equation (4.3.43) reveals that the variation in fractal length is due to the variation in

the fractal cut-off limit and is related to the scale of the observation XS' The

variance of Xf can be considered as the spread of a plume in space. Then the

macrodispersivity is:

Ax 2 var (ec I-D) Xs eD-I (4.3.44)
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This result. if D = 1. is consistent with that derived by Mercado (1967) in which the

macrodispersivity of a perfectly-stratified aquifer is shown to grow linearly with

travel distance. The expression (4.3.44) was also verified by using random walk

models based on deterministic and stochastic fractal generators (Mandelbrot 1983).

Gelhar et al. (1979) arrived at an expression for macrodispersivity that for early

times is equivalent to Mercado's result. but for late times is equivalent to classical

Taylor's dispersion. i.e., a constant dispersivity. The asymptotic approach to a

constant dispersivity with distance predicted by Gelhar et al. (1979), Gelhar and

Axness (1983), and Dagan (1987) is contrary to the fractal concept.

Finally, Wheatcraft and Tyler (1988) concluded that the dispersion model

based on the fractal geometry concepts predicts that the field-measured dispersivity

will be scale-dependent. The strength of the scale-dependence is directly related to

the fractal dimension. They indicated that it is possible to obtain the fractal

dimension from a tracer experiment in which the breakthrough curve is obtained for

at least two travel distances. As long as the fractal dimension remains constant. it is

then possible to predict solute migration at scales larger than the scale of the

experiment in which the fractal dimension and the cutoff limit were obtained.

A direct application of fractal approach to the groundwater travel time

position may be illustrated in the following example. If we agree that the actual

travel path of a volume of groundwater is a fractal and can be adequately described

by equation (4.3.41), i.e.:

X _ e I-D X D

where, Xf is the total length of the tortuous groundwater path between two points

with a straight line distance, Xs. and if one can assume that the velocity, v, of the

groundwater is constant, the groundwater travel time is then given as:
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=f I (EQ -D (XD _3 .4 )

where tf is the actual groundwater travel time for the tortuous path between a

straight line distance. XS' If one further assume that a heterogenous aquifer can be

represented by a bundle of such stream paths in a stochastic fashion. the variance in

the arrival of tracer particles may be expressed as:

var(tf) = I Xs-D var[(Ec) 1-D]
V

(4.3.46)

The variance in tf may thus represent the possible spreading in the arrival time of

travel particles. This variance could be treated as a measure of uncertainties in

groundwater travel time prediction. Based on the above equation, the variance in

travel times will grow with Xs to the power of 2D and the variance of the fractal

cutoff limit.

The fractal approach seems to be promising. Wheatcraft and Tyler. (198X)

provided a new way of demonstrating the scale-dependent macrodispersion

phenomena. Although, as they stated, considerable work still needs to be done to

develop a more mature theory, there are some fundamental problems associated with

the fractal approach.

One of the fundamental difficulties in the application of the fractal concept

to groundwater hydrology arises from the self-similarity assumption in the fractal

analysis. Self-similarity implies that the variations in hydrologic properties are

similar at all scales. This assumption is a serious one and it still needs to be

verified.

However, there is evidence supporting the self-similar nature of aquifer

properties. An example is the porosity data reported by Hewett (1986). A sequence
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of 2189 porosity values taken at intervals of 0.5 ft from a density porosity log in a

well through a late Miocene-early Pleistocene sandstone formation (originally deposited

in a deep submarine fan) was analyzed. The results showed that the porosity values

may be correlated over 300 m. Hewett speculated an even larger range for

horizontal correlations given the anisotropic nature of sedimentary formations. Such

a long-range correlation suggests self-similarity in porosity data; the fractal approach

is most suitable to represent the data.

On the other hand, Burrough (1983a, b) examined soil spatial data series in

The Netherlands and the English Midlands that included percentage of clay, silt, pH,

thickness. soil moisture capacity and topographic height. He concluded that soil does

not vary exactly as an 'ideal' fractal but variation of physical properties is controlled

by many independent processes that can cause abrupt transitions. Thus. soil does not

possess the property of self-similarity at all scales. The spatial variation of soil

properties is suggested to be a result of several closely spaced, nested scales of

variation, occurring over short distances. He concluded that the geostatistical

approach seems to be more appropriate than fractal analysis.

In groundwater transport cases, one may assume that the actual flow path of

a particle in porous media is a fractal, as Wheatcraft and Tyler (1988) did.

However, proving the validity of the assumption may be possible, but difficult. At

present, we are somewhat skeptical of its validity. In fact, many stochastic analyses

of dispersion in heterogeneous media (Gelhar et al., 1979; Gelhar and Axness, 1983;

Dagan, 1987) showed that scale-dependent dispersion may exist only at early times of

a transport process. An asymptotic dispersivity will develop after the plume is

displaced at distances larger than the correlation scales of the hydraulic conductivity

of media.

Results of the stochastic analyses by Gelhar and Axness (1983) and Dagan

(1987) have been tested recently with carefully-designed large-scale field experiments
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by Sudicky (1986). Freyberg (1986), and Garabedian (1987). Asymlptotic

macrodispersivities indeed occurred in these field experiments shortly after the

injection of tracers. They all concluded that stochastic results by Gelhar and Axness

(1983) and Dagan (1987) are robust and are in good agreement with field data.

Although the robustness of the stochastic results may remain to be tested with many

more large field experiments conducted at various geologic environments, it seems that

continuously-growing dispersivity as predicted by the fractal approach may not exist,

at least at a practical range of the size of aquifer. In fact, the boundless dispersivity

predicted by the fractal analysis may arise from the fundamental assumption in the

fractal approach which states that the variations in groundwater particle travel path

are self-similar at all scales.

Regardless of whether the variation in flow channels in porous media (or the

variation in intrinsic permeability which is determined by pore structure) is self-

similar at all scales, the movement of the particles may not be self-similar. This is

because the flow path of groundwater is also controlled by many other factors such

as gradients, density variations, temperature variations, chemical variations, and

degree of saturation under variable saturated flow conditions. Due to the influences

of these factors, the travel path of a particle in the aquifer may likely be non-fractal,

even if the pore channel is fractal. Theoretical analysis by Matheron and de Marsily

(1980) seemed to demonstrate this conjecture. They showed that asymptotic

macrodispersivity may develop at distances much less than the correlation scale of the

hydraulic conductivity field if the flow is not parallel to the bedding. This results in

an extra mixing effect and accelerates the development of an asymptotic

macrodispersivity. This implies that the travel path no longer possesses the self-

similar nature in properties of geologic formations. Deterministic numerical

simulations of effects of heterogeneities on dispersion by Gannon and Yeh (1988)

showed similar results. Hence. if the dispersivity depends on factors other than the
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structure of porous media (which could be a fractal but needs to be proved). the

fractal approach may face a formidable task as far as practical application is

concerned.

Furthermore, it will be equally difficult to relate the parameters (such as

fractal cutoff limit and fractal dimension) in Wheatcraft and Tyler's model to

measurable physical parameters (such as hydraulic conductivity or porosity). This

relationship needs to be explored.
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5.0 SUMMARY AND CONCLUSION

There appears to be a fundamental problem with the NRC performance

objectives for High Level Waste repositories, or "groundwater travel time (G\\TT)

objective" . which is stated in 10 CFR 60.113 (a)(2) as "...groundwater travel time

along the fastest path of likely radionuclide travel from the disturbed zone to the

accessible environment shall be at least 1000 years or such other time as may be

approved or specified by the Commission." The "groundwater travel time along the

fastest path" stated in the GW1T objective is an ambiguous phrase. The fastest path

which groundwater travels can never be clearly defined because of the scale problem

in groundwater hydrology. To circumvent this problem, the travel time of a certain

concentration level of radionuclide should be used. The radionuclide or tracer would

be a hypothetical release to the accessible environment which would travel under

pre-waste emplacement hydrogeologic conditions. A concentration based standard is

preferred because of the fact that the concentration represents the total mass flux (or

total mass of newly-arrived groundwater) in a volume, resulting from flow

phenomena of various scales. With this revised definition, a convection-dispersion

equation can then be used to properly determine the arrival of the critical

hyphotetical radionuclide or tracer concentration level. This approach overcomes the

concern for data needed to compute the travel time for a particular molecule of

radionuclide to arrive at the accesible environment. Unless this problem is resolved,

the GWTT objectives will not be met.

In addition to the ambiguity of the GWTT objectives discussed above, there

is another area of difficulty. Determining groundwater travel times and paths in a

regional-scale problem is a difficult task based on the current monitoring and

modeling techniques. There are large uncertainties in predictions. These

uncertainties arise from many sources including those discussed previously. It is,
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however, generally agreed that lack of complete knowledge of the spatial distribution

of hydrologic parameters input to a mathematical models may be the major sourze of

uncertainties in predicting the travel times and paths. Means of acquiring more

detailed knowledge of the parameter distributions will certainly improve our

predictive capability. However, such techniques may not exist in the foreseeable

future unless there are some technological breakthroughs in field testing. Until then.

we may have to rely on stochastic approaches to obtain probabilistic results. Many

of these approaches are available including fractal geometry techniques,

macrodispersion methods, Monte Carlo approaches, and conditional simulation. Each

of these methods has limitations. Nevertheless, these approaches may at least provide

us with some estimates of uncertainties in the predictions which may be crucial for

regulatory and decision-making purposes. One should, however. bear in mind that

the uncertainty estimates afforded by the stochastic models are themselves uncertain.

The fractal approach recognizes the existence of variability in all scales but

assumes these variations are self-similar. With these assumptions. one can scale the

results of experiments made at one scale to another. This approach is an easy way

to estimate the uncertainty in groundwater travel times as indicated by equation

(4.3.46). However, in this approach, the parameters lack physical meaning. What

does the fractal dimension, D. mean? How can D and Ec be related to the parameters

(such as hydraulic conductivity, porosity, and their spatial variability) in the classic

groundwater hydrology? More importantly, can we define clearly the volume of

groundwater which we use to define the velocity? The tracer concentration of a

volume of groundwater may be subject to changes due to mixing from subscale

variations in groundwater velocity. Are we interested in the arrival of a volume of

groundwater or a certain concentration of groundwater? Finally, the question which

was posed in the section dealing with the fractal concept must be answered: is it

true that the groundwater travel path is a fractal? Until these questions can be
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resolved, the application of the fractal approach must be limited.

The approach using effective parameters with the macrodispersion concert

may be attractive for relatively simple hydrogeologic systems. Recent field

experiments (Sudicky, 1986; Freyberg. 1986; and Garabedian. 1987) show that mean

travel times and paths of plumes in sandy and glacial outwash aquifers can be

adequately predicted by the effective hydraulic conductivity formula developed by

Gelhar and Axness (1983).

The spatial concentration variances are also in reasonable agreement with the

stochastic results by Gelhar and Axness (1983) and Dagan (1987). However, the major

concern with this effective parameter approach is its validity in analysis of flow and

transport in highly heterogeneous aquifers where the variance of log saturated

hydraulic conductivity is greater than 1. The variance of log saturated hydraulic

conductivity in all the possible radioactive waste repository sites is likely much

greater than 1. especially in fractured aquifers. The existing analytical solutions to

stochastic differential equations are also only useful for simple flow fields, e.g.,

steady, uniform flow in a single aquifer. These stochastic results based on an

analytical approach may serve as a tool for preliminary analyses but are not

completely adequate for predictive purposes because of large variance associated with

the results.

Furthermore, the spatial concentration variance formulas in the stochastic

results (equations 4.3.33 to 4.3.36) provide us with the way to predict only the

relative size of the plume. The shape of the concentration profile still remains

unknown. The macrodispersivity defined in the stochastic analysis does not warrant

the use of the classic convection-dispersion equation (Yeh, 1987) based on Fick's law.

In addition, the variance of the predicted mean concentration profile may be large

(Dagan, 1987). Most importantly. the number of samples required to obtain accurate

estimates of the parameter values (correlation scales and covariance functions) for the
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macrodispersivity models still must be investigated. Finally, the stochastic results

need to be tested with many large-scale field tracer experiments in various geologic

environments before they can be used for predictions.

Although the Monte Carlo simulation technique may be expensive because it

requires a large number of simulations, it may be the most powerful tool among the

available techniques for predicting groundwater travel times and paths or the arrival

of the radionuclide concentration. Furthermore, conditional simulations which use

available information at sample locations will enhance our ability to model the reality.

Although the results of conditional simulations by Delhomme (1979) indicated that

using the known transmissivity values at sample locations may not reduce the

uncertainties in the prediction of groundwater hydraulic heads significantly, he

suggested that using both hydraulic head information and transmissivity values as

constraints for the simulation may be useful. In addition, the results of the

conditional simulations by Smith and Schwartz (1981) showed that the locations of the

sample data used in the conditional simulation may have important impacts on the

reduction of uncertainties. The effects of sample locations and conditioning the

simulations by hydraulic conductivity, hydraulic head, and porosity values on

predicting uncertainties in groundwater travel times and paths certainly deserves

further investigation. Regardless of the amount of uncertainties that the conditional

simulations (using both conductivity and head values) can reduce, it is rational to

include all the available parameter values in the prediction. It is clear that the

uncertainty in the simulation will be gradually reduced as more and more data

become available. Thus, the conditional simulation seems to be the only tool that

could bring us a step closer to reality.

As one approach to the problem of quantifying uncertainty in groundwater

travel times and paths in porous media using stochastic methods, we suggest the

following steps: (I) groundwater hydrologists should utilize the principles of structural
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geology, stratigraphy, and sedimentology to delineate large-scale geologic units or

structures which may contain the likely fast paths along wt hich groundwater travels

(Williams, 1988). (2) "Enough" data should be collected to characterize hydrologic

properties of as many geologic units as possible so that the general flow regime in

those units can be defined. (3) An "intensive" sampling program should be carried

out to collect hydraulic conductivity, dispersivity, porosity data from the geologic

units identified in (1) using many small-scale tests (such as core samples from

boreholes, or small-scale aquifer tests). (4) Groundwater hydrology modelers should

characterize the spatial variability of the hydrologic parameters in the likely fast flow

units by the stochastic concept (i.e., statistical distributions, spatial covariance

functions, etc.). (5) With the calculated statistics for the hydrological parameters. one

should use the effective parameter approaches (such as Gelhar and Axness, 1983; and

Dagan, 1987) for a preliminary analysis to define the mean behavior of the flow

system or to calibrate flow models (see discussion in Section 4.3 or example in

Gelhar, 1986). Note that the scale of samples should be consistent. That is, if one

decides to use a certain scale, the entire characterization program should use that

scale. Thus, the results of the calibration of models may provide a way to have a

better estimate of the statistical parameters required for conditional simulations. (6)

To complement the effective parameter approach, the inverse procedure developed by

Kitanidis and Vomvoris (1983), and Hoeksema and Kitanidis (1984) which uses both

hydraulic conductivity and head data to estimate the spatial covariance function of

the hydraulic conductivity field should be used. The results of the inverse procedure

will provide us with proper input parameter values for the conditional simulation.

(7) Finally, with the available statistical parameters obtained from either the effective

parameter approach or the inverse procedure. one should carry out conditional

simulations using solute transport equations assuming a release of a certain amount of

radionuclides at a disturbed zone to determine the uncertainty in groundwater travel
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times and paths. As more data become available. the same procedures should le

repeated with the additional data. Such an iterative conditional simulation hwill bring

our predictions close to reality step by step as more hydrologic parameter values are

available. This suggested approach generally concurs with an earlier version of the

NRC's draft generic position on groundwater travel time (Codell. 1986).

On the other hand, if the regulators would accept the mean groundwater

travel time as a measure of the hydrologic integrity of a site, then the convection-

dispersion equation would not be necessary. In this case, the ground water travel

time criterion could be calculated from effective hydraulic properties and the

groundwater flow equation.

Dr. Lynn XV. Gelhar. who is one of the leaders in the field of stochastic

hydrology, received the 0. E. Meinzer Award from the Geological Society of

America in 1987. In concluding this review, it seems appropiate to excerpt some of

his remarks on the current status of stochastic theories and key issues which remain

to be solved.

"We now understand that this heterogeneity plays a central role

regarding the large-scale mixing process in aquifers. The last decade

witnessed a rapid development of mathematical, numerical, and

statistical methodologies for evaluating the effects of heterogeneity on

transport process. In spite of the confusion which seems to still persist

in some recent literature, I believe that it is fair to say that we have

arrived at a sound theoretical description of the dominant field-scale

mixing process. Such stochastic theories provide a framework for

predicting large-scale, long term behavior from observations of aquifer

heterogeneity. Furthermore, such theories provide specific hypotheses

which can be tested systematically by comparing independent

theoretical predictions with the results of controlled field experiments.
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This allows us to scape from the circular reasoning of the curve-fitting

approach in ground-water hydrology. The stochastic approach not only

provides a critical link between small-scale laboratory measurments. but

also reveals features of the large-scale process which may not

otherwise be apparent."

.... There is a need for controlled field experiments which explore

more complex transport processes involving chemical heterogeneity,

multi-phase flow, and fractured media. A fractured rock can be

viewed as another type of heterogeneous medium which I suspect can

be treated in some cases using stochastic continuum theory. Clearly.

the problem of solute transport in fractured media is unresolved.

Oversimplified matrix diffusion-type models have been extensively

exercised using hyphotetical parameters to illustrate significant

radionuclide retardation in the context of radioactive-waste disposal.

As far as I can determine, there is no definitive field evidence which

demonstrates such retardation effects. There is an obvious need for

carefully designed field experiments to explore transport processes in

fractured rock. Why aren't experiments of this type being developed

in the United States?

A key unresolved issue is how we can characterize heterogeneity in

practical sense. Research has shown that variances and correlation

scales can be estimated using thousands of samples but our experience

indicates that parameters can be estimated crudely from indirect

geologic and geophysical observations and simple hydraulic tests. This

more practical approach needs to be pursued in a number of different

geologic environments. Heterogeneity remains a formidable difficulty

in hydrogeology. but we now have a quantitative basis for evaluating
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APPENDIX A

Glossary

Note that the glossary provided here is intended to clarify the concepts or

physical meanings of terms, instead of rigorous definitions. Although most of the

definitions refer to space series. they can be applied to time series as well.

Autocorrelation function: A function which depicts the linear correlation between a

space series at all ranges of offset distance. For example, an

autocorrelation function of hydraulic conductivity values along a transect

is a measure of the intensity of association or interdependence among the

values at all ranges of separation distances. Syn: autocorrelation,

correlation function.

Autocovariance function: A function which describes the behavior of the covariances

of two identical spatial series offset at various separation distances.

Correlation (correlation coefficient): the ratio of the covariance of two random

variables to the product of their standard deviations. The correlation

coefficient ranges from +1 to -1. A correlation of +1 indicates a perfect

direct relationship between two random variables; a correlation of -I

indicates that one variable changes inversely with relation to the other.

Between the two extremes is a spectrum of less than-perfect relationships,

including a correlation coefficient of zero which indicates the lack of any

linear relationship.

Correlation scale: A separation distance beyond which the random variables are no
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longer considered correlated. Physically, it can he related to the average

size of all sedimentary structures (for example. clay lenses) in an aquifer.

Cross-correlation function: A function which describes the correlation between two

different data series at all separation distances. For example. a cross-

correlation function of hydraulic conductivity and head values along a

transect shows the relationship between the conductivity and head values

along the transect at various separation distance. Syn: cross-correlation.

Cross-covariance function: A function which characterizes the covariances of spatial

series of two different properties (e.g., hydraulic conductivity and

porosity) at different separation distances. Syn: cross-covariance.

Co-Kriging: A method for estimating the value of a spatially distributed variable (e.g.

transmissivity) from adjacent values of two variables (such as

transmissivity and well capacity) while considering the spatial

interdependence (cross-covariance) of the two variables.

Conditional probability: The probability of occurrence of a property value at an

unsampled location if the property values at other location are known.

Conditional simulation: A data-generating technique, used with Monte Carlo

simulation. However, sample values at sample locations are preserved in

the generated data by this technique.

Covariance: A measure of the distribution of values of two properties around a

common mean and thus of their mutual variability.
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Ensemble: A collection of an infinite number of space series measuring the same

variable.

Ensemble average: An average of the property at a point in space over many

possible space series. Syn. expected value.

Ergodicity: A property of a stochastic process which says the ensemble moments

equal the corresponding averages calculated from a single realization.

These averages in turn can be approximated from a finite part of the

realization.

Expected value: see ensemble average.

First moment: see mean

Frequency distribution: A table or a plot which divides a set of data into a number

of classes. and shows the number of data belonging in each class.

Geostatistics: Statistics as applied to geology generally including correlated processes.

In groundwater hydrology. it is the application of random function

concepts to study the hydrologic properties in space.

Integral scale: A convenient measure of autocorrelation of a stochastic process. It

carries the same physical meaning as the correlation scale but is defined

more rigorously. Mathematically, it is defined as the area under the

autocorrelation function.
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Intrinsic hypothesis: A less stringent hypothesis than that of second-order

stationarity. It states that a random field is intrinsic only if the variance

of the increments of the random field is finite and these increments are

second-order stationary. Variogram analysis is then applicable.

Joint probability function: A function which describes the behavior of the joint

probability distribution of many random variables (i.e.. the probabilities of

occurrence of many random variables).

Kriging: A method for estimating the value of a spatially distributed variable from

adjacent values while considering the spatial interdependence of the

variables.

Log hydraulic conductivity: The natural logarithm of a hydraulic conductivity value.

(InK) or the logarithm of a hydraulic conductivity value to the base 10,

(logK).

Log transmissivity: The natural logarithm of a transmissivity value, (InT), or the

logarithm of a transmissivity value to the base 10. (logT).

Lognormal distribution: A frequency distribution whose logarithms follow a normal

distribution.

Mean: The sum of all observations divided by the number of observations.

Median: The value of the middle term in a set of data arranged in rank order.
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Mode: The value or group of values that occurs with greatest frequency in a set of

data; the most typical observation.

Monte Carlo simulation: A data-generating technique. It generates large samples of

data from known probability distributions.

Nonstationary process: A stochastic process which does not possess stationary

properties. Generally, it refers to a process which contains a significant

trend or where the covariance depends on location as well as separation

distance.

Normal distribution: A frequency distribution whose plot is a continuous, infinite,

bell-shape curve that is symmetrical about its arithmetic mean, mode. and

median. Syn: Gaussian distribution; bell-shaped distribution.

Nugget effect: A jump exhibited at the origin of a variogram. It generally

represents uncorrelated measurement errors or subscale variability.

Perfectly correlated process: A process which has infinitely large correlation scales.

Generally, this process has a constant value over space.

Probability: A term to describe the frequency of occurrence of an event.

Probability distribution: A distribution of frequencies of occurrence of many events.

It is approximated by a frequency distribution.

Random variable: A function whose values are real numbers and depend on
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"chance" or probability.

Random field: see stochastic process.

Random function: see stochastic process.

Range: The distance beyond which the value of the variogram equals the variance of

the random field. Similar to the correlation scale, it is the distance

beyond which the interdependence of values in a space series is

considered insignificant.

Realization: A single space series in an ensemble. For example, a set of porosity

values measured in an aquifer is considered as a realization of all the

possible porosity values of the aquifer.

Regionalized variable: A variable which is distributed in space. It is equivalent to a

realization of a stochastic process. Examples are porosity, hydraulic

conductivity, and other hydrologic properties of an aquifer.

Representation theorem: A theorem which allows a second-order stationary stochastic

process to be decomposed into sums of uncorrelated (or orthogonal)

increments in the frequency domain.

Second moment: see variance.

Second-order stationary (weakly stationary) process: A stochastic process in which the

ensemble mean (expected value) of the process is constant over space. and

________ DANIEL B. STEPHENS & ASSOCIATES, INC.



Scale Problem and Stochastic Methods Page A 7

the autocovariance function depends only on the separation distance.

Separation distance: The amount of offset in distance between the two space series

being compared.

Sill: The asymptotic value of a variogram at a separation distance equal to or

greater than the range. It is the variance of the random field.

Spectral Method: A mathematical tool used to solve partial differential equations

which contain stochastic parameters.

Spectrum: The inverse Fourier transform of a covariance function. In other words,

the covariance function has been transformed from a space domain to a

wave number domain.

Standard deviation: Square root of the variance; it describes dispersion or spread of

data around the mean.

Statistical moment: A convenient measure of the location and the shape of a

probability distribution. First, second, and third moments of a probability

distribution correspond to mean, variance, and skewness of the

distribution.

Statistically anisotropic process: A stochastic process in which the covariance function

depends not only on the magnitude of the separation distance but also on

the direction of the separation distance. That is, the correlation scales of

the process varies with change in direction.
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Statistically homogeneous process: see second-order stationary process.

Statistically heterogeneous process: Any process that does not possess the properties of

a second-order stationary process.

Statistically isotropic process: A stochastic process in which the covariance function

depends only on the magnitude of the separation distance, regardless of

the direction. That is, the correlation scales of the process are invariant

in all directions.

Statistically independent: Two random variables are statistically independent if and

only if the joint distribution of the two random variables equals the

product of the individual probability distributions of the two random

variables. That is, one random variable conveys no information about the

other random variable.

Stationary process: If the statistical properties of a spatial stochastic process do not

change over the spatial coordinates, then the stochastic process is a

stationary process. Syn. Strictly stationary process.

Stochastic process: A collection of an infinite number of random variables in space.

Variance: The average squared deviations of all possible observations from the

population mean.

Variogram: A plot of the semivariance of a random field versus separation distances.

Like a covariance function, a variogram is used to define the spatial

DANIEL B. STEPHENS & ASSOCIATES, INC.



Scale Problem and Stochastic Methods Pacte A9

interdependence of two random variables. However. variogram is not

restricted to only stationary or second-order stationary process.
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APPENDIX B

B.l Inconsistency in the Development of Governing Groundwater Flow Equations

The purpose of this appendix is to clarify some confusions in the

development of governing groundwater flow equation in saturated porous media.

Therefore, some of the inconsistencies in the derivation will be discussed.

To derive the governing groundwater flow equation, we start with the mass

balance equation. Consider the mass balance of a stationary control volume, VT

(Figure 2.4) whose shape is fixed in space and time. The principle of mass

conservation states that

{ rate of mass accumulation } { rate of mass in - { rate of mass out } (B.l)

To apply the principle to the control volume, we begin by considering the pair of

faces perpendicular to the x axis. The rate of mass in through the face at x is

(pq,)Ix AyAz, and the rate of mass out through the face at x+Ax is (pqx)lxI'x Lylz.

Similar expressions may be written for the other two pairs of faces. The rate of

mass accumulation within the volume element is (AxlyAz)(8np/at), where n is the

porosity of the control volume. The mass balance then becomes

AxAyAz [(J=Ay5z[(pqx)j x-(pqx)l x+Ax]+AxAz[(pqy)l y-(pqv)l y+Ay]+

Axty[(pq,)l z-(pqz)l z.AJ] (B. 2)

By dividing this entire equation by (AxAyAz) and taking the limit as these

dimensions approach zero, we get
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an_ apq, apq, 3pcqz B3
___ - I + _I+ -( .3aYt I aX ay +CZ I B3

This is the equation of continuity for flow through porous media. which describes

the rate of change of fluid density at a fixed point resulting from the changes in

the mass flux pq. Using the vector notation. equation (B.3) can -be expressed as:

anp -(Vpq) (B.4)
at

Here (V pq) is called the "divergence" of pq, sometimes written as div pq. Note that

the vector pq is the mass flux, and its divergence has a simple significance: it is the

net rate of mass efflux per unit volume. The equation (B.4) simply states that the

rate of increase of the density within a small volume element fixed in the amorous

media is equal to the net rate of mass influx to the element divided by its volume.

Since the p and q are functions of spatial coordinates, equation (B.3) can be

written as:

an +q, ap +qY ap +q ap - P [aq + aq, + aq. (B.5)
at a x a y a~ ZO x a y azJ

The first term on the left-hand side of equation (B.5) represents the rate of change in

fluid mass in the control volume at a fix position in space. The second term reflects

the rate of change in fluid mass as the fluid moves from one control volume to the

other at another location (change in mass due to convection). The combination of

these two changes is equivalent ot the substantial derivative (or total derivative) of

mass density in the control volume, that is, the time derivative for a path following

the fluid motion. Hence, equation (8.5) can be abbreviated thus:
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Dno = oq
Dt . 6)

This is the continuity equation describing the rate of change of density in the fixed

control volume as seen by an observer "floating along" with the fluid (or Lagrangian

point of view as oppose to Eulerian point of view. i.e., equation (13.4)). Both

equations (B.4) and (B.6) describe conservation of mass in the control volume.

For an incompressible fluid, and a rigid porous medium (i.e.. p and n are

constant over time), equation (B.4) can be expressed as

(C-q) = 0 (13.7)

B.l.l The Eulerian Point of View. The governing partial differential

equation describing flow through porous media can be derived from the Eulerian or

the Lagrangian point of view. If the Eulerian approach is used (i.e., we consider

mass balance and fluid motion in a control volume with a fixed shape and at a fixed

location in porous media), the continuity equation is

at = (B.8)

where qa is the specific discharge at the Eulerian point of view. Considering the

media deformable, and the fluid compressible, one can express equation (B.8) as:

-V=pq =n at + P a (B. 9)

The first and second terms at the right-hand side of equation (B.9) represent the rate
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of change of fluid density and the rate of change of porosity, respectiv ely, in the

fixed control volume as seen by an observer at a fixed location. Recall ihat the

compressibility of fluid is

= I dp (B.I0)

and if p is a function of p only, i.e.. p(p), then

n aP = n a Up = npf aPat ap at a (B. I I)

The second term at the right-hand side of equation (B.9) can be related to the rate of

change in pressure. Since the control volume does not deform. i.e., VT. remains

constant, the volume of solids in the control volume, Vs, may change if the porous

medium deforms. The coefficient of compressibility of porous matrix is then

I aVs I an I anao = ___ _

V e ae I-n aUe 1-n ap (B.I2)

This definition results in the same a as defined previously, assuming the control

volume deforms under stress. Therefore,

p An _ p an ap = p ca (I-n) XP
at apa at (B.13)

By making use of (B.l 1) and (B.13), equation (B.9) becomes
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-V7Pqa - npB a + poe(1-n) 0at at

or

-7-pqa = P2 g[n3 + a(l-n)] ah (B. 14)

since

h = z + P and ah = az + I ap
pg at at pg at (B. I5)

where the az/at is zero because the location of the control volume is fixed in time.

Let S, = pg(n/3 + a (I-n)), specific storage, equation (B.l5) expressed as:

-p7.q, -q,.Vp = P Ss aat (B. 16)

Generally, the second term at left-hand side of equation (B.16) is much

smaller than the first term. It can be neglected although we still assume the fluid is

compressible. Thus, the governing partial differential equation for groundwater flow

is

-7-q. = S., ah
= sat (B.17)

where qa = -K Vh. Darcy's law. This equation simply describes the flow through

porous media as seen by an observer at a fixed location in space.

B.1.2 The Lagrangian Point of View. Generally speaking, the Lagrangian
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approach in fluid mechanics implies that observations are made by followinmz the

fluid flow. Flow in deformable porous media. however, involves the nmovenlent of

both fluid and solids. Since most of our monitoring devices such as observation

wells are installed in the geologic formations, our observations are likely following

the movement of solid grains as the formations undergo deformation. In this section,

we will derive the governing groundwater flow equation from the Lagrangian point

of view (i.e.. by following the mean displacement of the solid grains instead of the

fluid.)

The classical form of Darcy's law applies in effect to the velocity of the

fluid in relation to that of the solid and not in relation to stationary space. From the

Eulerian point of view, the specific discharge. qa, is then

qa = qW + nv, (B. 18)

where q, represents the specific discharge of the fluid in the classical Darcy's law,

n is the porosity, and vs is the solid velocity in the vertical direction since we will

assume the porous medium undergoes vertical deformation only.

Using (B.18), the continuity equation defined in relation to a fixed point in

space, (8.8), becomes

-'vp(qw + nvs) = -Vpqw - apnv5 = (B. 19)az at

where the second term represents the net solid mass flux over the control volume.

Equation (B.19) can be further expanded to

-v pqw - nv, aP - pv an - pn a-v - n aao + p an
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-pq, = n do + P dn + pn av
dt dt a~~z

(B.20)

where dp/dt and dn/dt are the substantial derivatives of p and n, respectively. with

respect to the v1. That is. the rate of changes in fluid density and porosity as seen

by an observer moving at the mean velocity of solid grains.

The substantial derivative of p can be expressed as

dp = p + V Vp
dt at

Since the second term on the right-hand side of the equation is small, it can be

neglected. The rate of change in fluid density can be related to compressibility of

the fluid as we did previously.

n ~Dd = n -lP dP = npf dP
dt- dp dt- dt

(8.21)

However, the rate of change of porosity deserves some elaboration. Consider solid

volume conservation in a control volume. The continuity equation is

av S - v)at~ = -(V.V~vs (B1.22)

Recognizing that V. - (I-n)VT and VT is constant. equation (B.22) can be rewritten

in the form of
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(I-n) 5 _ na +v n = dn
CZ CZS dt

(E3. 3)

Assuming each individual solid grain does not deform. the density of solids should

remain constant. A solid mass balance leads to

am
-V ms v5 = at and

ams ams dm5 avs
at + VS az dt S z

I d(ms l/p) I dV, I dV, dre adoe X

mS /Ps dt Vs dt Vs dre dt dt dt

(13.24)

(B. 25)

and

Substituting (B.21),(B.23), and (B.25) into (B.20), one obtains

-v -pq= - p(n: + a) d2dt (B. 26)

Note that

h = z + D and dh = dz + I X
pg dt dt pg dt

(B.27)

and the dz/dt is zero because the location of the reference point is stationary as

seen by an observer following the displacement of the solid. Equation (B.27) thus

becomes:
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-PV7qW -qW -'VP = P. g(n3 + a) dh (13.2S)
dit

Assuming that pV7qw >>qw Vp and applying Darcy's law to (B.28). one obtain the

governing groundwater flow equation from the Lagrangian point of view:

V (K-Vh) = Ss dh (B.29)
dt

where S, - pg(n/3 + a) and is called specific storage. Note the expression of specific

storage is different from the one in equation (B.17) which is derived from the

Eulerian point of view. Theoretically, equation (B.29) is the correct one for field

applications because our observations generally follow the displacement of the grains

as the aquifer deforms.

However, the velocity of the solid is small. Many convenient but misleading

assumptions have been employed for practical purposes. For example, the coefficients

of compressibility of water, g, and porous matrix, a, in the fixed coordinate system

are assumed the same as those in the moving coordinate system. They are, in effect,

different. Moreover, based on the same argument, the dh/dt is replaced by ah/at and

hydraulic conductivity is assumed constant in time even if the porous medium is

deformable. These misleading assumptions lead to the classical governing groundwater

flow equation which is given as:

V (K-Vh) - pg(ng + a) -5-1= Ss ,6ih (B.30)

This equation is theoretically inconsistent since it mixes the expressions for both the

fixed and moving coordinate systems.
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The inconsistency of the classic groundwater equation mav not, however.

have significant impacts on the analysis of groundwater flow. This results from the

fact that the hydraulic head in the field is indeed observed following the

displacement of the solid grains. The specific storage is often estimated from aquifer

tests and the analysis of the test data does not require the use of the expressions for

S. Furthermore, the error in the estimation of Ss and K from field data may be so

large that misleading assumptions may not play any critical role in the analysis of

groundwater flow.
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