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LARGE-SCALE MODELS OF TRANSIENT UNSATURATED FLOW AND CONTAMINANT
TRANSPORT USING STOCHASTIC METHODS :

ABSTRACT U

A new framework for modeling large-scale unsaturated flow and solute
transport systems in spatially variable soils is proposed. The large-
scale model structures are derived by averaging the local governing flow
and transport equations over the ensemble of realizations of the under-
lying soil property random fields. The resulting mean representations
are in the form of partial differential equations in which averaged or
effective model parameters occur. These effective model parameters, i.e.,
effective hydraulic conductivity, effective specific moisture capacity
.and effective macro-dispersivity, are evaluated using a quasi-linearized

fluctuation equation and a spectral representation of stationary processes.
The large-scale model structures consider the large-scale effects of soil
variability and have relatively few parameters identifiable from a realis-
tic data set.

The effective paramaters are analytically evaluated in particular
cases of practical interest, and generic expressions showing explicitly )
the dependence of the effective parameters on the different flow, trans- \\—/)
port and soil property characteristics are derived.

General methods for testing the validity of the stochastic theory
and application of the large-scale models in practical situations are sug-
gested. The spectral turning bands method developed by llantoglou and
Wilson {1981, 1982) is extended for digital generation of point values or
spatial averages of multiple, cross-correlated, stationary random fields.
Statistical inference methods are discussed and a new identification method
is presented. ‘

The most important findings of this study are that spatial variabil-
ity of the hydraulic soil properties produces significant large-scale
effects. In particular, it was found that the effective hydraulic conduc-
tivity, the mean soil moistyre content and the effective specific soil

moisture capacity show significant hysteresis, and that the effective




hydraulic conductivity is anisotropic with a degree of anisotropy '
depending on the mean flow conditions (wetting or drying). It was
also found that'in the case of unsaturated fiow. the effective macro-
dispersivities depend on the soil moisture content the type of soil
stratification and the direction for the mean flow relative to stratz-
fication and the direction for the mean flow relative to stratifica-
tion. The longitudinal macrodispersivity predicted from the stochas-

tic theory is found to be of the same order of magnitude as observed
in large-scale field experiments.

The transient unsaturated flow and steady transport results of
this study were previously unknown, have important practical implica-
tions, and should be considered in field applications such as waste
disposal control. The general stochastic modeling framework and the
simulation and identification me thods developed here are applicable

not only to unsaturated flow and transport but also to other distribu-
ted parameter systems.
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CHAPTER 1

INTRQDUCTION

1.1 Motivation of this Study

Disposal of radioactive wastes in surface or underground storage
facilities is now being designed. Uranium mill tailing disposal sites
will use unsaturated zone storage. Unsaturated zone storage is also
being seriously considered for high level wastes. The possibility of a
leak from such waste storage facilities and subsequent contamination of
water resources cannot be overlooked. Figures 1.1 and 1.2 illustrate
unsaturated zone contamination from a waste storage facility at Hanford,
Washington. Figure 1.1 outlines the setting of the waste disposal
facility. Figure 1.2 shows measurements of unsaturated zone conta-
mination several years after a contaminant leak from one of the tanks is
reported.

Potential contamination of water resources with harmful radiocactive
wastes imposes serious hazards to the environment. For this reason
extensive research activity has been undertaken recently in order to
better understand and model the behavior of large-scale unsaturated zone
systems. Modeling unsaturated flow and contaminant transport is
important.for evaluation of the proposed radioactive waste disposal
facilities. The importance of unsaturated zone modeling is emphasized by
the fact that the Nuclear Regulatory Commission and the National Water
Well Association have recently sponsorea special symposia on unsaturated

flow and contaminant transport. The challenge is to obtain valid and
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practical models chat realiscically portray_thc_complexity of largé-scale
natural unsaturaccchION systems and have r;iccively few and identifiable
parameters that can be estimated from a realistic data set.

Modeling nacural large-scale unsaturated flow systems is a very
difficult problem. One of the major.compIications is that natural soil
formations exhibit a large aegree of spatial variability of their
hydraulic soil properties (see Chapter 2). Vapor flow, temperature
dependence, etc., may further complicate the large-scale flow problem but
these effects are not considerea in this study. Predicting soil moisture
and contaminant transport in natural soil formations, using numerical
solution of the classical governing flow and transport equations,
(physical models), requires dense discretization (e.g. a grid consisting
of 106 nodes) and knowledge of the local details of the soil hydraulic
properties. Due to.the large degree of spatial soil variability,
identifying such local details is, at least today, a formidable task.

The data collection process would be extremely expensive and would
probably alter the physical characteristics and the waste isolation
capabilities of the site..

Waste disposal control applications usually require predictions of
the large-scale contamination characteristics rather than local details
of concamination. The objective then is to construct an approximate
model of }5c‘system that: (i) predicts the most important large-scale
features cf-contamination, (ii) has parameters that depend on a few and
identifiable characteristics of the soil property variability, and (iii)
evaluates the reliabflity of the approximate model predictions. In the

following developments such a model will be called “large-scale model”

15
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and its parameters "effective parameters".

In order to build valid large-scale unsaturated flow and transport
models two basic characteristics of the problem should be considered.
The first characteristic is that flow and transport in a local scale are
generally three-dimensional processes. This is due to the combined
effects of gravity and capillary forces and the complex nature of spatial
variability of the soil properties. Many field observations illustrate
this point (see e.g. Gelhar et al., 1984). The second characteristic of
the problem is that the local flow and transport characteristics (e.g.
capillary tension head and concentration), depend on the local soil
properties in a nonlinear fashion. This can be seen by inspection of the
governing local flow and transport equations. As will be seen in later
chapters the two characteristics of unsaturated flow and transport
discussed above are.important and should be considered in a consistent

modeling study.

1.2 Past Modeling Approaches

Several approaches have been proposed for modeling unsaturated flow
and transport systems with spatially variable soil properties. One
approach is to assume that local models are valid on a field scale. The
effective parameters of such models are usually interpreted as spatial
averagesiéf the local properties (see e.g. Biggar and Nielsen, 1976;
van de Pol et al., 1977). A criticism of this approach is that it does
not consider the effects of spatial variability. As was discussed above,
the system is parametrically nonlinear gnd local variability produces

important large scale effects.

16
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~Another modelfﬁg approach visua!izes'iﬁe unsaturated flow system to

be composed by 2 .series of one-dimensional, non-interacting columns,
and assumes random, but uniform over depth, soil properties'(e.g. Dagan
and 8resler, 1979, 1983; Bresler and Dagan, 1981, 1983; Milly, 1982).
This approach, at least in the applications of our interest, contradicts
reality. Numerous field observations §how that soil properties are not
uniform over depth and lateral flow is often important (see Chapter 4,
Section 4.7). |

.. The stochastic approach is a third approach proposed for analysis of

the effects of the spatial variability in unsaturated flow. This

approach is capable of realistically considering the three-dimensional

spatial structure of séil variability and the three-dimensionality of the
local flow. Stochastic analysis has been extensively used in the case of
saturated flow systems (Freeze, 1975;.Bakr et al., '1978; Dagan 1979,
1982; Dettinger and Wilson, 1981; Gelhar and Axness, 1983, etc.). In the
unsaturated flow case however, only two applications have been reported.
Andersen and Shapiro (1983) examined the case of one-dimensional steady
unsaturated flow using a Monte-Carlo simulation and a linearized
perturbation method. Their approach is conceptually interesting but it
is not applicable -in field sithations where flow is generally \
three-dimensional. - Yeh et al., (1982), examined the three-dimensional
steady{quaturated flow using a2 stochastic approach and 2 lineari:ed
perturbation method, and found that the effective hydraulic conducti&ity
in stratified unsaturated soils is anisotropic with a degrée of

anisotropy being dependent on the mean soi)] moisture content. However,

in most practical problems flow is usually unsteady and the steady-state

17




results of Yeh et al. are not applicable to these situations.

The stochastic literature discussed above investigates the flow
oroblem only. The solute transport problem in heterogeneous unsaturated
soils has not been investigated as yet in a realistic way. The models
proposed by Uagan and Bresler (1979, 1983) and Bresler and Dagan (1981,
1983) have adopted a simple one-dimensional transport model in which the
parameters are treated as spatially constant random variables. Such
models may be fitted to field observations but it is doubtful that they
can Be extrapolated beyond the small scale of observations. The
assumption that the parameters are spatially constant is obviously not
correct; the key element of natural heterogeneity, its spatial structure,
is completely neglected. Jury et al. (1982) proposed a “transfer
function"” model for modeling solute transport in spatially variable
soils. Such a model may be criticized in that it does not use any
physics about the processes involved; it is a hlack box model. 1Its
parameters do not correspond to any physical quantities and must be
calibrated based on available data for the particular setting under
consideration. Extrapolation of the predictions of such a model to
depths, settings or conditions other than the ones from which it was
derived is not possible (see discussion in Section 5.3.2).

In the case of saturated flow it is now widely recognized that the
dispersioﬂ}process is strongly affected by scale; fiela scale
aispersivities are found to be several orders of magnitude larger than
laboratory parameters. Recent research (Gelhar et al., 1979; Gelhar and
Axness, 1983; Dagan, 1982) has established the relationship between

aquifer heterogeneity and the large dispersivities observed in the

18
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field. In the case of unsaturated flow the possibility of scale

dependence of ‘the dispersion process does not seem to be widely

- recognized because large-scale measurements of unsaturated solute

trinsport are so limited. However, interpretation of some field
measurements (see Section 5.3.2) indicate such scale dependence. Another
question that needs to be answered in the case of dispersion in
unsaturated soils is the possible dependence of the large-scale

dispersion coefficients on the mean soil mofsture content. The model of

. Wilson (1974) predicts such dependence. Note however, that this work

uses a microscopic statistical pore scale model that cannot consider the
macroscopic soil heterogeneities of a scale larger than the pore scale.

The solute transport problem in unsaturated scils has not been

.investigated yet using methods that realistically incorporate the naturqj

heterogeneity observed in a2 field scale.

1.3 Scope and Findings of this Stuay

This study proposes a new modeling framework for treating
large-scale unsaturated flow and transport systems. This framework
suggests using an approximate large-scale model structure in order *o
describe the system rather than using the local physical model
structure. The objective is to provide large-scale unsaturated flow and
transport models that consider the heterogeneity of natural soil"
formations and have relatively few and identifiable parameters that can
be estimated from a realistic data set.

A stochastic approach is followed. It fis gssumed that local soil

properties are realizations of three-dimensional random fields. “he

19
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local governing flow and transport equations are averaged over the
ensemble of realizations of the underlying soil property random fields.
The stochastic methodology considers the three-dimensionality of the
local flow and transport processes, and the nonlinear dependence of the
local outputs on the local soil properties, i.e. it predicts for the
large-scale effects of local property variability.

The stochastic approach is developed herein as follows. Chapter 2
discusses the problem of spatial variability of the unsaturated hydraulic
soil properties in natural soil formations, and proposes a stochastic
representation of such variability in terms of three-dimensional random

fields. In Chapter 3 a stochastic methodology is developed for

derivation of large-scale models and evaluation of effective parameters

of large-scale unsaturated flow and transport. Chapter 4 evaluates the

effective unsaturated flow parameters in the case of transient flow in

stratified soils. Chapter 5 evaluates effective macrodispersivities in \\_//
the steady state case. In Chapter 6 a Honte-Carlo simulation method that

can be used for testing the validity of toe stochastic theory is

proposed, a spectral turning bands random field generator is developed,

and an identification method that can be used for estimation of large

scale parameters is proposed.

The most important finding of this work is that the spatial
variability of the hydraulic soil properties produces significant
large-scale effects (hysteresis, anisotropy, etc.). These effects were
previously unknown and have important implications in practical

applications such as waste disposal management.

The general stochastic modeling framework, simulation and
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identification methods developed here are new- and are applicable not only
to unsaturated flow and contaminant transport but aiso to ather
distributed parameter systems (e.g. saturated flow and transport,

gedthermal. ofl reservoir modeling, etc.).
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CHAPTER 2

STOCHASTIC REPRESENTATION OF SPATIAL VARIABILITY

OF UNSATURATED HYDRAULIC SOIL PROPERTIES

2.1 Introduction

Numerous observations of natural soil formations show that soil
materials are rather heterogenous. Visual inspection of the slopes of
excavations, for example, demonstrate this point. Because of such
heterogeneity the hydraulic properties of the soil exhibit a large degree
of spatial variability. Figure 2.1 shows observations of the saturated
hydraulic conductivity and porosity. These data are based on laboratory
analyses of cores collected from deep boreholes in the Mt. Simon aquifer
in central [1linois. These data show a large variation of hydraulic
conductivity with values ranging over four orders of magnitude. The
porosity also shows significant variability but much smaller than that of
hydraulic conductivity. Figure 2.1 also shows that the variation of the
hydraulic soil properties is not completely disordered in space but a
spatial structure (spatial correlation) exists. Many other observations
on different geologi¢c formations show similar kinds of spatial
variability of the hydraulic soil properties.

Because of the large degree of spatial variability in natural soil
formations, it is practically impossible to represent the local soil
properties in terms of deterministic functions. [f such representation
was attempted the number of the required unknown parameters would be
extremely large and impossible to estimate from a realistic data set. It

is a natural choice then to use a stochastic representation of the local

22
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Figure 2.1 Pefmeability (millidarcy) and porosity space series from
laboratory analysis of cores from a borehole in Mt. Simon
sandstone aquifer fn I1linois (Sakr,'1976).
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variations of the hydraulic soil properties. [t is assumed that the
small scale soil property variations are realizations of three-
dimensional spatially correlated random fields. The stochastic
representation is simply a useful tool of analysis which incorporates the
complex spatial variability of actual soil properties through a practical
framework requiring only a 1imi ted amount of information.

This chapter suggests a representation of the unsaturated hydraulic
soil properties in terms of stationary random fields. Section 2.2
discusses some field observations of the local unsaturated hydraulic soil
properties and proposes somé siﬁple and useful models for parametrization
of these properties. Section 2.3 suggests a stochastic representation of
these local hydraulic parameters and analyzes some real data for

estimation of basic stochastic parameters useful in later applications.

2.2 unsaturated Hydraulic Soil Properties

The two basic hydraulic properties controlling unsaturated flow are
tre unsaturated hydraulic conductivity K{u} and'the moisture retention
curve 5(v) déscribing the dependence of the sail moisture content 2 on
tne capillary tension head v (see Chapter 3). In this analysis the
unsaturated flow equation is expressed in terms of -, sO the dependence
of & on v rather than 3 is of interest here.

Figures 2.2 and 2.3 (from Yeh, 1982) show observations of the
unsaturated hydraulic conductivity K and its dependence on the capiltlary
tension head v in the Panoche silty clay loam (Nielsen et al., 1974) and
the Maddock sandy loam (Carvallo et al., 1974). Yeh (1982) discusses in

getail the data collection and analysis used for derivation of these
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curves. For the purposes of this presentation it is sufficient to
mention that the different curves shown in Figures 2.2 and 2.3 correspond
to the hydraulic conductivity at different spatial locations in the
fields under investigation. These figures ingicate a large degree of
spatial variability of the unsaturated hydraulic conductivity (note the
logarithmic scale on the hydraulic conductivity axjs).

Figures 2.4 and 2.5 show the dependence of the soil moisture content
3 on the capil1afy tension head ¢ in the Panoche silty clay loam soil
(Nielsen et al., 1974) and at a site near Socorro, New Mexico (Naldrqp at
al., 1984) Each of the curves in Figures 2.4 and 2.5 corresponds to a
different spatial location in the fietd under iévestigation and indicate
a spatial dependence of the S(W)‘curves. Ho&ever. the spatial
variability of this property is not as large as the spatial variability
of the hydraulic éonductfvity K{v) demonstrated by Figures 2.2.and 2.3.

‘In order to simplify analysis it is convenient to parameterize the
two basic hydraulic properties K(@) and 9(¢) in terms of a small number
of'parameters. Thg Fo]lowing parametrization is proposea for the
effective hydraulic conductivity: F ﬁfegd

In K(¥) = In kg -a ¥ . ’ (2.1)

The parameter ¢ may §enera11y depend on ¢ but assuming small
yariations of v around a mean value Hf it is possible to assume afl$) =
a{H). Jffglocal hysteresis exists, InKg and o also depenc on the time
histor}’;f ¥ (i.e., wetting or drying conditions). A second important

unsaturated hydraulic soil property, is the specific soil moisture

" capacity C(v) defined a;‘C(w) = - 36/39. Assuming small variations of ¢

around a mean value H, it s possiblé to write approximately
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3(p) = 8(H) + 33 | pen (¥R

Taking the derivative of this equation with respect to ¢ produces

38 (vw) 39

W 3y | y=H :

or C(v) = C(H). Note that if local hysteresis exists C(H) also depends
on the tine history of H.
For values of H not too small or too large (i.e., not a very wet or
very dry soil), and if local hysteresi§ is relatively small (see
discussion in Section 4.1), parameters InKg, a and C may be assumed to
be independent of H. This assumption is a convenient one when estimating
the statistical parameters of InKs, a and C from real data, but it is
not required in the stochastic methodology developed in later chapters. -
The parametrization of the unsaturated hydraulic properties

discussed above, seems to describe real observations (e.g., Figures 2.2, N

2.3, 2.4, 2.5) quite well and it is conveniently used in the stochastic
methodology developed in Chapter 3. Using this parametrization, the
unsaturated hydraulic properties have been expressed in terms of a
three-dimensional parameter vector P with elements InK¢, a and C.

These elements are local soil properties and they depend on the
three-dimensional spatial coordinate x. The next section discusses the

representation of these properties in terms of three-dimensional random

fields.
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2.3 Stochastic Representation of Spatial Variability of the Hydraulic

Soil Properties

It was discussed in the Introduction that, because of.the large

_degree of natural spatial variability, it is impossible to represent the

local hydraulic soil properties in terms of deterministic functions, and
that a stochastic representation seems more appropriate. Following this
discussion it is assumed that the local soil proper;iesrlnxs(i). 0(5)

and C(i) are composed of two components as follows

]n‘Ks‘Ff‘f
a = A+ v (2.2)
C =l +v

where F, A, I are large-scale components and f, a, v are small scale
components of InKg, o and C respectively. It is assumed that the
1arge-;ca1e components F, ‘A and I are deterministic-and'slow1y varying
functiohs of space and we call them "mean”, while the small scale
components f, a, v afe realizations of three-dimensional zero mean random
fields and we call them "fluctuations”.

The stochastic theory developed in the following chapters assures
that the mean properties F, A and I' are relatively constant combared to
the scale of the problem under consideration, while the local
f\uctuations have a scale of variation much smaller than the scale of the
flow dohﬁf;. This implies that the decomposition suggested by Equation
(2.2) depends:on'the{séaIe of the problem. What is viewed as a mean in a
sma}l laboratory scale model for example, may be viewed a;}a.fluctuation

in a large field scale problem. A second assumption of the stochastic

theory is that fluctuations f, a and y are realizations of stationary
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random fields. For simplicity and consistency of the results in the
applications presented in Chapters 4 and 5, and since no sufficient N,
information for evaluation of these cross-covariances exists, it is
assumed that f, a and v follow exponential cross-covariance functions
with identical correlation lengths. Two particular cases are
investigated: (i) f, a, ¥ being uncorrelated and (ii) f, a, vy being
perfectly correlated. Of course, in reality it is expected that f, a, v
are only partially correlated. The above extreme cases of correlation
were selected in order to explicitly show the dependence of ohz on the
type of correlation between f, a, ¥. It is possible then tc express the
covariance of u, v (u, v = f, a, 1) as: Cyy(r) = uCee(r) where v
depends on u, v and the type of correlation between u, v (see Section

4.3). Assuming an exponential covariance function for f, it holds:

. 2 -2 -2 ‘
~ :' -. " ]/2 3
Ceel) = ELFR) flenn)] =0l expl-(y + 2 + 30 ) 2y
A A A
1 2 3

where i is the distance vector. Equation (Z.3) is expressed in a system
of axes oriented in the directions of principal axes of anisotropy of
f(x); A1, A2, A3 are the corresponding correlation lengths and

szithe variance of f(i)‘ The spectral density function of f(i) is
defined as tne Fourier transform of Cff(i), i.e.

_ 1T -dket .
Seelk) -(_2“_)31_1! e =2 Ceels) ag (2.4)

where k is the wave number vector. Using (2.3), Equation (2.4) yields

2
9¢s A2
7

g, &
1 kl + XZ k

(2.5)

’3
S (k) = IS 552

(1 2 " 2343
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It is desirea in later chapters to apply the results of the
stochastic methodology to realistic field scale problems.
Unfortunately, the current data describing the spatial variability of the
soil_properties InKg, @ and C in real field situations, is not
sufficient to evaluate the necessary statistical parameters. In the
fqllowing. some available data on InKg, a and C, in the cases of the
Panoche clay loam, the Maddock sandy loam and the New Mexico soil, are
analyzed.

Using simple least squares curve fitting techniques, the reported
data were analyzed and parameters InKg, o and C were evaluated. Using
'simpIe averaging it was possfble to estimate the mean and variance of
these parameters. These values are summarized in Table 2.1. Given
thislimited amount of data it is 1mpdssible to estimate reliable
correlation lengths for f, a, vy (see discussion in Chapter €). Using
&\_,/ existing information about soil variability in natural soil formations

(e.g., Gelhar and Axness, 1983) an approximﬁte correlation length of i)
= 100 ¢cm in a direction perpendicular to stratification was assumed.
The‘parameters shown in Table 2.1, with A} = 100 cm and )2,

A3 > X), represent a realistic set of soil property variability

parameters and are used in sevefa1 application examples in Chapters 4 and
5. Note that data on the spatial variability of the specific moisture

capaé{fy C are not available in the case of the Maddock soil. '
However, data on C in other sofl types show a relatively small .
.coefficient of varfation oy/r. Chapter 4 shows that the effe&t of

spatial Qariability of C, for such small coefficients of variation, is

relatively small, at least compared to the effects of spatial variability
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TABLE 2.1

STOCHASTIC PARAMETERS OF HYDRAULIC SOIL PROPERTIES ~
Panoche Maddock New Mexico
A (cm-1) 0.0294 0.147 -
r (cm-1) 0.0052 - 0.00098
0 2.48 7.45 -
a2 (cm=2) 0.000067 0.0076 -
ay 2 (em=2) 8.95x10"8 - 2.x10°7
N
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of InKg and a. Since C is not the most critical parameter, the data on
the variability of C‘for the Panoche soil }ré also used in the case of
the Maddock soil-in later examples.

The data basis discussed above is very limited. A large-scale
experiment is proposed in the New Mexico desert area (Waldrop et al.,
1984). This experiment wil) collect a large amount of data sufficient
for estimation of the parameters required for application of the

stochastic theory developed in later chapters. Chaptér 6'discusses

- methods addressing the difficult’préblem of estimation of such parameters

in practical situations.
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CHAPTER 3

LARGE SCALE MODELS AND EFFECTIVE PARAMETERS OF UNSATURATED FLOW

AND SOLUTE TRAMNSPORT: A STOCHASTIC METHODOLOGY —/

3.1 Introduction

Chapter 1 discussed the need for obtaining large-scale models of
unsaturated flow and solute transport. Such models should realistically
portray the complexity of large-scale natural unsaturated flow systems
and have relatively fewAand identifiable parameters that can be estimated
from a realistic data set.

This chapter develops a general methodology for evaluating
large-scale models and effective parameters of unsteady unsaturated flow
and steady solute transport using a stochastic approach. Section
3.2 examines the transient unsaturated flow problem while Section 3.3
examines the steady transport problem. The stochastic approach assumes "/
that the local hydraulic soil properties are realizations of
three-aimensional, cross-correlated, stationary, random fields and
averages the local governing flow and transport equations over the
ensemble of soil property realizations in order to derive the large-scale
models. The method considers the three-dimensionality of the local flow
and transport processes and the nonlinear dependence of the local output
on the local soil properties. The stochastic methodology accounts for
the large-scale effects of local property variability and is capable of
predicting the statistical properties of the model error.

One of the objectives of this study is to provide analytical generic

relationships for the dependence of the effective large-scale parameters
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on the different sofl property and flow cﬁgracteristics. This is because
of the generality. simplitity and insightrgained by such results.
riumerical (Honte'Cario)'évaluatfbns on the other hand are expensive, are
valid'oﬁiy for the pariicular setting considefed. and do not offer much
insight for the depeh&ence of the effective parameters on the different
soil ﬁroperty and flow characteristics. In order to make analytical
evaluations possible, several assumptions are required, (e.g., small
Tocal pkoperty fluctdaiidns.‘etc.). To keep each step of the stochastic
theory developed in this chapier as'gedéral as possible, the necessary
assumptions are fntroauced in the steps where they are}reQuired and not
in previous steps. These'assumptions aay restrict ihé validity‘of the
resulté. However, it is possible that; even in cases where the required
assumptions are not strictly valid, the stochastic results may give
relatively good quantftative and qualftative approximationS of reality.
Since large-scaIé behaQior of-unsaturated flow and transport prdcesses is
presently highly unknown, Qe believe that e#eh qualitative information
abodt the system behaQibr is important. '

This chapter develops the general methodology for evaluation of
large-sca1é models and.effective parameters in a general fermat without
restriétiﬁg it to any particulairapbiications. This methocclogy is

applied in Chapters 4 and 5 in several caseés of practical interest.
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3.2 Transient Unsaturated Flow

This section develops a general stochastic methodology for
derivation of large-scale unsaturated flow models. These large-scale
models are expressed in a partial differential equation form and are
carable of predicting the large-scale flow characteristics.

The stochastic method follows three basic steps. In the first step
(Section 3.2.1), the form of the large-scale model and its effective
parameters are established by averaging the local governing equation over
the ensemble of soil property realizations. Evaluation of the effective
flow parameters requires evaluation of cross-correlations between local
soil properties and output fluctuations. The second step of the
stochastic methodology (Section 3.2.2) derives simplified linearized
equations relating the output fluctuations to soil property
fluctuations. The last step of the analysis, (Section 3.2.3), uses the
linearized equations derived in the second step, and some spectral
representation properties for evaluation ¢f the large-scale models and

the effective model parameters defined in the first step.

3.2.1 Derivation of Large-Scale Models and Effective Parameters

The form of the large-scale unsaturated flow model is derived below
by averaging the local governing flow equation over the ensemble of soi)
property realizations. Ignoring vapor flow and sources or sinks, the law
of zonservation of mass for scil moisture of constant density moving in

in a rigid soil matrix, simplifies to

38




g tem 71,23 (3.1)

‘where:

8 : the soil moisture content, (cm3/cmd)

qij: the specific discharge in the direction x4, (cm/sec),
X1,X2,%3 is a Cartesian coordinate system'and the standard
Cartesian summation convention of Einstein has been used. Note that
Equation (3.1) is valid on a local scale and 8 and qj correspond to
local quantities. It is further assumed that the local specific

discharge qj can be expressed by a Darcy equation

q; = K(v) 9-5-"3—:%’ o (3.2)
»where ) ) ~

¥: the capillary tension head (cm)

K: the local unsaturated hydraulfc conductivity. (cm/sec)

z: vertical positlon with z increasing downwards, {cm).
Note that the local hydraulic conductivity is assumed to be isotropic.
Substituting (3.2) into (3.1) yields the standard unsaturated flow equa-

tion:

Bk r_tx(wa—‘“’;:i—”} (3.3)

where‘c's -aé/aviis,the specific moisture capacity. The hydraulic scil
pruperties K and C are local properties, i.e., they depend on the spatial
coordinate x = (x1, x2, x3). These propérties depend also on ¥.

Further analysis requires a model for the dependence of C and K on ¥.

Assuming small variations of v around a mean value H, it is possible,
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following the discusssion in Chapter 2, to approximate C(y) =~ C(H) and
In K(¥) = InKg ~a ¢ . (3.4)

Note that the local parameters a and C may in general depend on H and its
time history. For values of H not too small or too large (i.e., not very
wet or very dry soils), and if local hysteresis is relatively small,
parameters a and C may be assumed to be independent of H (see Chapter
2). This assumption is a convenient one when estimating the statistical
parameters of the soil properties from real data, {see Chapter 6), but it
is not required in the stochastic nethodology developed in this chapter.
To simplify notation, possible dependence of a and C on H and its time
history will not be explicitly indicated in the following developments.
e note, however, that the theory is developed in a general format and
will be also valid if local parameters a and C depend on H and if local
hysteresis exists (as long as a model for these effects is provided).

it is assumed that the three local hydraulic soil properties Inkg,
a ang C are realizations of three-dimensional, cross-correlated,
stationary. anisotropic random fields:

In Kg = F + f

a = A+a (3.5a)

where 7, A and T are the mean values of In Kg, a and C and f, a, v the
fluctuations around the mean values. The local flow Equation (3.3) can
be viewed then as a partial differential equation with stochastic
parameters and therefore, stochastic output ». [t is then possible to
express ¥ as:

¥ = H +h | (3.5b)

where H is the mean of ¢ and h the fluctuations around the mean. It is
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assumeq that: (%)5thé f1uctuations f..a, ;‘;éd h are relatively small and
(ii) the scale of variations of the mean va}ués F, A, T and H is much
larger than the scale of variations of the fluctuations f, a, Y and h.
The large-scale model of transient unsaturated flow is obtained by
averaging the local governing Equation (3.1) over the ensemble of
bossible realizations of stochastic procesﬁes f, a, and y. Taking the
expected value of (3.1) with respect to f, a, and vy and using {3.2) and

the linearity of the derivative operator, Equation (3.1) yields

- 3{3[!;3]} . aii e[k .a_(_!'.sz_iz_) ” . (3.6)

Equation (3.6) is the mean flow equation. [n order to derive a more
useful form of this equation, the expected values within the brackets
should be evaluated and be expressed in terms of the mean soil -property
and flow characteristics, and the statistical parameters of>the soil
property variability f, 2 and v. ‘

The expected values on the right hand side of Eqdation (3.6) are
evaluated first. Assume that the system of axes (x), xz, x3) is
Orignted in the direction of the principal statistical anisotropy axes of

f, 2 and y. Substituting (3.5) into (3.4) yields:

K=k e ~Ah=-Ha-ah | (3.7)
) m
where
. F _=AH_ -AH :
Km e e z KG e . (3.8)
Let:
3v +2) _a(Wehez) _ . . ah
3x1 axi Ji +5x_i (3‘.9)
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where Jj = 3{(H + 2)/3xj is the mean hydraulic gradient. Using (3.7)
and (3.9), the expected value in the right hand side of Equation (3.6) is

written as:

- Ah - Ha - ah

Elq,] = Ky Elef W, +3 ) . (3.10)

e
In order to evaluate this expected value, expand the exponential in a

Taylor series

ef AN TN L (- A - Ha - an) e (F - an - Ha - am?

where, assuming that fluctuations f, a, vy and h are small, third and
higher order terms have been neglected. Substituting (3.11), Equation

(3.10) yields:

Ela,] =k f9;(1 + % E[(f - Ah - Ha)®])

(-3 4
b=

+ EL(f - AR - Ha)

1 (3.12) "

i

Q)
>

where the expected values of fluctuation products of third or higher
order have been neglected. Note that in the particular case of f, a, v
ana h being jointly Gaussian random procasses, the expected value in
Equation (3.10) can be evaluated without using the Taylor series
expansion. This approach uses the joint characteristic function of f, a,
Y ana h, (see Yeh et al., 1682).

As will be seen later, the expected values of Equation (3.12) depend
on tné mean flow characteristics H, Jj, Jz, J3 and Jy = 3#H/3t in

a complicated and nonlinear manner. The problem of defining an effective

hydraulic conductivity tensor Kjj is now discussed. Such tensor should
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have the property: E[qj]) = KjjJdj, where Kjj is a symmetric ten-
\\_// sor. Since E[qj) depends on the spatial gradients Jj in 2 nonlinear
fashion, in order to determine an effective symmetric hydraulic

conductivity tensor Kjj an additional assumption is required.

Define:

K‘ : E[qi]
ii =
J;

(3.12)

while Rij}s 0 for i * j, where xj are thezbrinCipal statistical
anisotkopy axes of f, a8, v. Note that since Elqi] depends banj in a
a2 nonlinear fashion, other definitions of an effective hydraulic
conductivity tensor are possible as long as tﬁe reIatfonship Elqi] =
Riij is valid and Eij is symmetric. The assumption that Rij has as

principal axes, the principal statistical anisotropy axes of f, a, v, was

made in order to be consistent with the safurated flow case where a
unique effective hydraulic conductivity'tensor'indépendent of Jj |
exists, .and having principal axes as defined above (Gelhar andnAxness.
1983). The effective hydraulic conductivities i{j, génefa!Iy depend on
J1, J2, Jd3, J¢ and H, in a nonlinear fashion. As will be seen |
later, the above definition of iij, facilitates expressing the mean
flow equatfon (3.6) in a form similar to the local governing Equation

(3.2). Substituting (3.12), Equation (3.13) yields:
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o

- T.
€ 1 .
Kig =K [(1+ =0 ¢ 3;] (3.14)
where
o2 = £l - an - H?) = ol v A% g(n?) + Wl ol

- 2A E[fh] - 2H E[fa) + 2AH E[ah] (3.15a)

_ oA ah . ah ah
v, = E[(f - Ah - Ha) = 1= Eff ax; ] - HEa ii;] (3.15b)

where, assuming that h is stationary, it holds that 2 E{h ah/3xj] =
a{eln2]}/axj = 0. Evaluation of the effective hydraulic
conductivities Rii has now been reduced to the evaluation of the
expected values E(h2], E[fh], E[an], E[f ah/axi], and E[a 3n/3xi].

The left hand side of the mean flow Equation (3.6) is now examined.
The expected value E[68] specifies the mean soil moisture content 0@ =
E{3]. Substituting ® into Equation (3.6) yields a mean equation of the
same form as the local Equation (3.2). The mean soil moisture content
Q@ is evaluated as follows. For small fluctuations h, it holds:

G

8(v) = 8(H) - Ch, where C = -ae/awlwsu. Substituting (3.5) and
taking the expected value yields:
@ = E[6(H)] - E[yh) . (3.16)

The effectjve specific moisture capacity is defined by

N 30
Cs-a—R (3.17)

Evaluation of the mean soil moisture content 9 and the effective specific

moisture capacity C has been reduced to the evaluation of the expected
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value E(Yh] where E[e(H)].is assumed to be a known characteristic of
spatial variability of 8(H). In the Special case of a linear dependence
of 6§ on ¢, it holds 8 = -Cy + 8¢ ana Equation (3.16) reduces to

O = {-TH + E[90]} - E[yh]. Substituting (3.13) and (3.17) into (3.6)

yields the large-scale transient unsaturated flow model:

] 3 [‘ a(H + Z)l

'r’ c;— IJ‘EK . (3.18)

Note that the large-scale transient unsaturated flow model is of the same
form as the local governing Equation (3.3). The effective parameters of
the mean flow mogel Are given by Equations (3.14), (3.15). (3.16) and
(3.17). The remaining problem is to evaluate the cross-correlations

be tween Ehe output fluctuations and the soil property fluctuations f,

2, Y in Equations (3.15) and (3.16). Section 3.2.2 derives an
approximate linearized expression relating h to f; a2, Y. Section 3.2.3
uses this linearized expression for evaluation of the expected values in
Equation {3.15) and (3.16) and the corresponding effective parameters

Rii- 9 and E,

3.2.2 Linearized Fluctuation Equation

This section derives a linearized perturbation e&uation relating the
capillary tension héad fluctuatfons'h-to the soil property fluctuations
f, a and Y using the local flow Equation (3.3). Consider the flow at a
point Iocated far away from the boundaries of the flow domain.

Substituting (3.4) into (3.3) and expanding derivatives yields

R 3(LnK_ = ap) .
C W s 3y + 2) 2 -
explay) + 9% . (3.19)
Ks 5T ° 9K 3Ky
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Substituting (3.5), the left hand side of Equation (3.19) is written as:

_C 3 _ AH - F  Ah + Ha - f + ah 3(H + h)
L= 'K'; explay) 55 = (I +v) e e —— (3.20}

A Taylor series expansion of the exponential in (3.20) yields

eAh#Ha'f*&h=1+(Ah,Ha-ffah)+TH (3.21)

where Ty are the remaining higher order terms. Substituting (3.21)

into (3.20) produces

AH - F ( 3H aH ah
L=e [zt (A neHra-Tfey)geelss +

+ (T ah + A yh + Hvya - yf +7ah)-aa-% +

+ (AT h+H a -T f+7T ah+y+ Avyh + Hya - yf + yah) %% +

3(H + h).
3T : . . (3.22)

+ TH (r +v)

The terms inside the brackets of (3.22) have been set in the following
order. The first term is independent of the fluctuations f, a, v, h,
{zero order term). The following five terms are linear in the
fluctuations, (first order terms). Llastly come the remaining second and
higher order terms. To simplify notation Equation (3.22) is written as:
N L=Llg+Ll] +Ly (3.23)
where Lo.'ll. and Ly are the zero, first and higher order terms
respectively. | |

The first component of the first term in the right hand side of

(3.19) is written as follows:
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a(enK - ay) ak:nks - AH - Ah - Ha - ah)

\-/ axi | axi
_af aH__, 3h ah 22 _ 3(ah)
rraih Fol TS T i T (3.24)

where it is assumed that spatial variation of F and A is slow, and
3F/3xj and 3A/3xj are small. Substituting (3.5), and using (3.9),

the right hand side of Equation (3.19) is written as:

2(LnK_ =~ ay)

: s aly + 2) 2, .
R = X - YTV
i i
= (-J'l A ?r:—i + VZH) +
af ah oH 9a 3aH 23h 2
MAUE FARTILS P b P T Tl v E
a({ah) of 3h ah 2 oK ah
; + [- Js - A ) a -
\_/ 1‘3xi §xi 3xi axi éxi Exi
3a_ 3h _ a(ah) ah
- H axi axi 1x‘ K] (3.25)

The terms of (3.25) have been set in the following order. The first two
terms are independent of fluctuations, (zero order terms). The following
six terms are linear in the f1uctuations, (flrst order terms). Lastly

a-=r-

come s(x_higher order terms. To simplify notation (3.25) is written as:

R = RO + R1 + RH . (3.26)

Equation (3.19) can then be written as:

LO + L1 + LH e Ro + R1 + RH (3.27)




where Lg, L1, LK, Rg, R], Ry are given by (3.22) and (3.25),
respectively. Taking the expected value of (3.27) with respect to f, a

and vy yields _
Lo *+ E[Ly] = Rg + E(R] (3.28)

where the expected value of the linear terms is zero. Subtracting (3.28)

from (3.27) procuces

L, + L, - ElL

= - )
Lt Uy R, + R, - E[R . (3.29)

Hi
Assuming that fluctuations f, a, vy and h are relatively small, the
higher order terms can be approximated by their expected values, i.e.,
Ly = E[Ly] and Ry = E[Ry]. Equation (3.29) then yields L

aR] or

AM-F ((Ar h ¢ HF a -T f +v) F‘ +T ;ﬂ]

af ah , 3H 2a aH ah 2
"’ir;;‘di"wi’"irx;a J”m “ﬁ‘lsx—,*"“ (3.30)
Oefine:
1 3H
G = T 5% (3.31)
m
3H i
L1 zJi +W - - . . (3-32)

where Kn is given by (3.8). Substituting (3.31) and (3.32) into (3.30)

and rearranging terms yields
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ah l(m’ 2

92, : | ah ;;
Km r af da
=r-L(JiWi+rGf)-(Jiuﬁi+ba)-GY] (3.23)
where:
N
b = J, ﬁ? + HrG | (3.34)

Equation (3.33) is a first order approximation describing the

" capillary tension head fluctuations h in terms of the soil pfoperty
fluctuations f, a and y. This equation represents a three-dimensional
time varying linear system. The soil property fluctuations f, a, y are
viewed as system inputs while the capillary tensfon head fluctuations h
 are viewed as the system output. Equation (3.33) was obtained by ~
linearizing the local governing Equation (3.2) around the mean soil
properties F, A, T and mean flow characteristics H, Jj, J2, J3 and

J¢. These mean soil properties and flow characteristics are viewed 2s
system parameters in (3.33). Due to the dependence of the fluctuation
equation on thé mean flow characteristics, the expeéted values of
Equations (3.15) and (3.16) and the corresponding effective parameters
Rii. 0 and E depend on the mean capillary tension head H and its
derivatives Jj, Jz, J3 and Jy. This results fn a nonlinear mean

flow equation. In addition, because of the dependence of kii- e, anc c
on J¢ = 3H/3L, it is e*pected that these parameters will show
hysteresis. Note that although the fluctuation equation was linearizec
'  around the mean soil propertiés and flbw'chqracteristics, the mean flcw

equation, deve16pea in Sec;ion 3.2.1, considers the basic nonIineari:ies
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of the local flow equation. In fact, these local model nonlinearities
and the existence of local spatial variability are responsible for the
large-scale hysteresis effects discussed above,

In order to make further use of the linearized Equation (3.33)
possible, assume that the mean soil properties and the mean flow
characteristics vary slowly in space, compared to the correlation lengths
of the fluctuations f, a, vy and h. [t is also assumed that the
boundaries of the flow domain are at a relatively large distance compared
to the correlation lengths of the fluctuations. It is then possible to
assume that f, a, vy and h are realizations of stationary random fields
and derive a wave number domain form of the linear fluctuation Eguation
(3.33). Note that in the transient flow case, the mean flow
characteristics (H, etc.) are time varying. This implies that the -
output h of (3.33) is generally time varying and ah/at ¢+ 0. In certain
cases, (see Chapter 4), it is possible to ignore term 3h/3t. In other </
cases however, it is not possible to ignore this term, The following
analysis considers the general case of 3ah/3t = 0.

The soil property fluctuations f, a, vy were assumed to be
realizations of three-dimensional, stationary random fields. They may
then be expressed in the wave number domain as follows: (see, e.g.,

Lumley and Panofsky, 1964)

Flx) = (1] e?&% qz¢(x)
alx) = [[f e az,(x) (3.35)

Hg)=!}!eﬂﬁ dzy (k)
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where j = /=T, X, the spatial coordinate, k, the wave number vector, and
dZ¢, di,, az,,‘ihé FourierFStieltjes spectralhamplitudes of f, a

and Y. At each time t, the output fluctuations h are stationary in
space. It is then possible to view h as a realization of a time varying,
but spatially stationary, random field and, using the spectral

representation, express h in the following form:

hix, t) = [[] oKX dZp(k, t) (3.36)

where the Fourier-stieltjes amplitudes dZp are time dependent.
Substituting (3.35) and (3.36) into (3.33) and recalling the uniqueness

of the spectral representation

K

3y ,om 2, .2, .2 . .
Tt (kl + kz + k3 + ArG + JALi ki) y

K .
m . .
- [(;Ji ky + TG) dZy = (JHI; ky + b) dz, - G sz] (3.37)

where y = dZp(k, t). Equation (3.37) specifies a set of ordinary
differential equations with unknown vqriable y and parameter k. In order
to evaluate the effective parameters, defined in Section 3.2.1, using
spectral respresentations, (3.37) musﬁ be solved for y for each value of

parameter k. The general solution of (3.37) is given by:

o« t ‘
R t / gl(x) dx “-f gl(r) dr
y(k, t) = [y(k, 0) + [ glr) e ® at J e ® (3.38)
0
where
(t) = n (k2 + k% + 4% + 4G + AL, k) (3.393)
9)(t) == [k + ky + kg JAL¢ Ky -3
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glt). = == [(jo; Ky + TG) az,

. aH -
- (JHIy Ky + J, X + HrG) dZ, - G azy] . (3.39)

In the transient case, functions g, g) depend on t, since the mean

flow properties H, etc., depend on t. Function g(t) may be written
as:
g(t) = gf(t) dZf + ga(t) dZa + gy(t) dZY {3.40)

where functions gf, ga and gy are defined by comparison to (3.39b).

Equation (3.38) may then be written as:

kB = KD Yk, 0) v ell) GZ(k) + W (k) OZ,(0) + M (0) @2, ()

where a dependence of W, Wf, Wa, W, on t is implied ang

t
- 91(1) art
Wik, t) =e© (3.42)
= t
y C et t . eg g,(x} dx " -£ 3,(:) & 3.43)
f,a‘Y -’ = do gf.a'Y L} e -

It seems impossible to derive a general analytical closed form
solution of fquation (3.43). This is because of the complicated form of
the forcing functions gj and gf 3 ,y. In certain cases however, it is
possible to derive such solutions. Lets examine, for example, the case
of H relatively large (dry soil) and 34/3t > 0 (drying) conditions.

using (3.8) and (3.31), Equation (3.37) simplifies to

al
dy - - .Y
3 + AJT. Y (de H dZa —13—) Jt (3.44)



where J¢ = 3H/3t. Assume that Jy, J2, J3, Jy are practically
independent of time t and that H increases as a linear function of t,

i.e., H = Hg + Jy t. Equation (3.44) can then be written as:

9y

| n+AJéty>=>61+‘62 t (3.45)
~ where S 527 N
61 = Jt (de - Ho dZ‘ - —:.—)
' (3.46)
5, = - 2 gz
2 - Yt "Ta ‘
Equation (3.45) can be solvéd analytically (see Appendix A). Its
solution is gived by | |
dZY
dZ, - HdZ, - ¥4
y(-k.. t) 8[ f X a -r- . % ] R
T A
8 ) -Ad, t
1 2 t
+ [y(k, 0) - - ] e (3.47)
- lJt (AJt)Z |

At large time t, the term multiplied by e-AJt t, (transient part of

the so]ution); is relatively small and Equation (3.47) simplifies to

dz
a2, - H dl, = ot dZ
f a H a
y(k) = —% + — . (3.48)

A
Note that if derivative ay/at was assumed to be zero in Equation

(3.44), the estimated y would be given by

a2

v

f'HdZa‘—f.—'-
A L]

dZ
(3.4¢

[N

y(k) =
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Comparison to (3.48) shows that the error due to assuming 3y/at = 0 is
dZy3/A2. For AH > 1 (dry soil) term dZ,/A2, in (3.48) is
insignificant compared to H dZ;/A. For a wet soil however, term

dZa/A2 may be important and cannot be ignored. Chapter 4 uses a

similar but more general procedure for evaluating the solution of
Equation (3.37) in the case of a stratified soil. It is shown there that
the assumption 3y/3t ~ Q is valid for large H (i.e., relatively dry
soils).

In the following developments it is assumed that (3.37) has been
solved, (analytically or numerically), and its solution, in the form of
(3.41), has been obtained. For simplicity, it is assumed that time t is
relatively large and H(i. t) in (3.42) is approximately zero. Equation

(3.41) then simplifies to:

y(k) = dz, (k) = Wc(k) dZe(k) + W (k) dZ, (k) +u (k) dz (K) (3.50)

where Wi, Wy, Wy are three-dimensional system response functions,

and a time dependence of y, Wf, Wy ana W, is implied. Equation

(3.50) expresses the spectral amplitudes of the capillary tension head
fluctuations h as a linear function of the spectral amplitudes of the
soil property variations f, a and vy. Section 3.2.3 develops a
methodology for evaluating the effective model parameters, defined in
Section 3.2.1, using the spectral Equation (3.50) and some properties of

spectral representation.
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©3.2.3 Evaluation of Effective Parameters Using Spectral Representations

This section uses the linearized wave;hdmber domafn equation
developed in Section 3.3.2 and some spectral representation properties,
in order to evaluate the expected values in (3.15$ and (3.16). After
evaluation of these expected values the effective unsa tura ted flow
parameters kii- o, C are easily assessed from (3.14), (3.16) and
(3.17). This section develops the general methodology‘without
restricting it to any'particular application. Spec{fic evaluations and
applications are given in Chapters & and 5.

Some spectral representation properties are now briefly discussed
since they are extensively used in this section. Consider two
cross-correlated stationary random fields u(x) and v(x). If dZ,(k),
dZy(k) the corresponding random Fourier-Steltjes amplitudes of u(x) and

v(x), the following property holds: (Lumley and Panofsky, 1964)

suv(E) d£ ; if 51 * 3.2 = .'i

. *
EldZ (k) dZ (k,)] = { (3.51)
Pl T2 0 ; otherwise

where Suv(ﬁ) is the cross-spectral density function of u and v. The

expected value of Etu(i) v(ﬁ)] can be evaluated as follows:

Eluv] = E'[j‘fj X az (k) [] edex 6z, (k)] =

Co e s k) dk —_— (s

Evaluation of the effective parameters Kjj, © and C requires

evaluation of the expected values: E(h2], E[fh), E[ah], E[f 3ah/3xj],
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E(a 3h/3x;] and E[vh] using the general linearized Equation (3.50),
relating aZ, to dZf, dZ,, 4y, and the spectral representation

properties (3.51), (3.52). If the cross-spectral density functions of
soil property fluctuations are known, these evaluations reduce to
computation of several quite complicated three-dimensional integrals.
Analytical evaluation of the resulting integrals is not possible in
general. In certain cases however, (see e.g., Chapter 4), it is possible
to analytically evaluate these integrals and derive closed form

expressions for the effective parameters.

Ef h2|

The variance of h, apl, is given by (3.52) as

Enf) sels ffIs () dk . (3.53)

-0

Using (3.50) and (3.51) the spectral density function Sp, is given by

P = 1 e y [ o *) (Xl * -
San() = g EL(H 02+ 4, a2, ¢ @2 )Cig a2+, 02, 0 s
_ 2 T 2
B ‘Nfl Sef * ’"a, Saa * ,wv’ Spy *
* " * . N*
* W Wy Sgg g W S Wy We Sip
* * *
+ W W S +H W.S _+W WS (3.54)

a vy Tay v f “yf Yy a “ya

where it is assumed that the cross-spectral density functions of the soil
property random fields f, a and v are known.
The variance .2 can then be evaluated from the three-

dimensional integral (3.53).
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E(fh]

" Term E[fh] is given by
E(fh) = E[hf] = [[] Spelk) ak
where 3p¢ is given by

I Y *y
Spe T E{(Ng aZg + W, dZ, + W dZ ) aZ]

=z W_ S + W Saf + W S
2 Y Y

f “ff f *
Evaluation of E[fh] has been reduced to evaluation of the
three-dimensional integral (3.55), where it is assumed that the

cross-spectral density functions of f, &, and vy are known.

Elah]

It holds:

E(ah] = E[ha] = [[] Spalk) ak
where Spa is given by

f 1 r 4 * 3
Spa =gk E[(Wg aZg + W, dZ, + K dZ ) dz,]

s wf Sfa + wa Saa + HY SYa .
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Ef

It holds: N

g_"_ . 5__ [m 2 a2 (1) = m XX (je) @z, () (3.59)

and E{f 3h/3axj] can be evaluated by

Ef | - E{gﬂ- f] = jjj (3k;) S, ¢(K) dk (3.60)

where‘shf is given by (3.56).

ah

Ela =—]

Similarly as above it holds:

Ela 31 = 111 (3k;) S, (K) ok (3.61)

] -

where Spa is given by (3.58).

Elyh]
Term_&[yh] is given by
Elyh] = {ij shY(E) dk (3.62)
where
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1 - *
S, = 3 E[We dZo + W, dz, + W, dZ) qz ]

hy

a Nf SfY + Ha SaY + HY SYY . (3.63)

The effective properties Riio 0 and E cgﬁ now be evaluated using
(3.14), (3.15), (3.16) and (3.17). Note that We, Wa, R' depend on
the mean soil prdperiies F, A and T and the mean flow characteristics
Ji, Jz. J3 add Ji = 3H/3 L, Eva!uatioﬁ of the effectiQe
parameters requires knowledge of the mean soil properties F, A, [ and the
‘cross-spectral density functions of f, a and vy. The dependence of the
effect{ve parameters on the mean flow‘characteristics suggests a
nonlinear large-scale flow model. In additioq, it is expected that the
effective flow paraméters Rii- 0 and C will show hystéresis. This is

because these parameters depend on the time history of the capillary

tension head through the time derivative Jy = 3H/at.
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3.3 Steady Solute Transport

This section develops a general stochastic method for derivation of
large-scale unsaturated solute transport models. Similarly to the ~r
unsaturated flow case, the method follows three basic steps. In the first
step (Section 3.3.1), the form of the large-scale transport mode!l and its
effective parameters (macrodispersion coefficients) are derived by
averaging the local governing transport equation over the ensemble of
soil property realizations. Evaluation of the effective transport
parameters requires evalgations of the cross-correlations between
concentration and specific discharge fluctuations. The second step of
the stochastic methodology (Section 3.3.2) derives simplified linearized
equations, relating concentration fluctuations to specific discharge

fluctuations and the specific discharge fluctuations to soil property

fluctuations. The last step of the amalysis (Section 3.3.3) uses the

linearized equations derived in the second step and some spectral W,
representation properties for the evaluation cf the large-scale transport

models and the effective macroaispersion coefficients defined in Section

3.3.1.

3.3.1 Derivation of Large-Scale Models and Macrodispersion Coefficients

This sectioq derives the form of the large-scale transport model by
averaging the local governing transport equation cver the ensemble of
soil property realizations. The analysis of this section closely follows
the analysis of Gelhar and Axness (1983) which was developed for the
safuratec flow case. The general equation describing transport of an

ideal nonreactive conservative solute by unsaturated flow is given by:
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sl 5.2-‘- [cﬁ.gé} -‘cqil. i de1,2,3 (3.64)
where it is assumed that $oil moisture is homogeneous (constant density
and viscosity) and
¢ : concentration of transported soluté
8 : soil moisture content
Eij: local bulk dispersion coefficient, equal to 60
Dij: dispersion coefficient tensor (including hydrodynamic
| dispersion and wolecular diffusion).
‘Aﬁsuming steadyrstate. Equation_(3.64)‘simplifies to
a(cq,)= 2 (¢ ac] _
KL axy tTiJ SE; )

(3.65)

It is assumed that the local coefficient of bulk dispersion E£;j is
constant. As will be seen in'Cﬁapter 5, in several cases of interest the
results are not very sensitive to parameter Eqj. |

Consider the concentration c as the output of (3.65). Due to spatial
variability of parameters f and a the local specific discharge qi is
spatially variable resulting in a spatially va?iable concehtration c.
Similarly to Section 3.2.1, it is 2ssumed that parameiers f and a are
realizations of three-dimensional stationary random fields. The local
specific . discharge q; and the concentration c are considered to be
realizations of stationary random fields as well,
Let:

TRCRC AR bd (3.66)

c=sc+cC




where 61. C are the mean of Qi. ¢ and qgi', ¢' the corresponding
fluctuations around the mean.

The large-scale model of steady solute transport in unsaturated
soils is derived by averaging the local governing Equation (3.65) over
the ensemble of realizations of the random fields f and a. Taking the
expected value of (3.65) with respect to f and a, yields

3'Elcq.
el (e, 2Elely (3.67)
5xi 57? ij ~ ox. . :
The expected value in the right hand side of {3.67) represents

the mean ¢. Substituting (3.66), the expected value in the left hand

side of (3.67) is written as

E[cqi] = C ai + E[c'q;] . (3.68)

Term ¢ gj represents the convective flux associated with the mean flow
while term Elc'qi'] is a macroscopic dispersive flux due to the spatial
variation of Qi .

Assuming that the macroscopic dispersive flux can be expressed in a

‘Fickian form, we may write

3 (3.69)

Inc

E{a; ¢*] = - Eis

[V

X,
J

where £ij is an effective bulk macrodispersion coefficient tensor.
Define a macrodispersivity tensor

PR | 3.70
A * (3.70)

where generally Ajj may depend on q. Equation (3.67) may then be
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written as

aeq) ac
7*1 x 3"1 [(EIJ + Aij Q) ﬁ;] . (3.71)

This is the large-scale transport equation and it is of a similar form as
the local iransbort Equation (3.65). Note that the tota) large-scale
dispersion coefficient is: Ejj + Ajj q, where the bulk

macrodispersion coefficient Eij = Aij q accounts for the additional
dispersion due to thg spatial variability of qj.

Evaluation of the macrodispersivity Ajj and the bulk
macrodisper;ion coefficient Eij requires evaluation of the expected
value E{qj' ¢'] in (3.69). Section 3.3.2 derives linearized
expressions relating gi' and ¢' to f and a. These expressions are used
in Section 3.3.3 for the evaluation of the expected value of (3.69) and
the corresponding Eij and Ajj. Note that the analysis in Section
3.3.3 will estadblish directly that the Fickian form assumed above,

(3.69), is correct.

3.3.2 tinearized Fluctuation Equations

This section derives linearized equations relating the specific
discharge and the concentration fluctuations to soil property
fluctuations. First, a linearized perturbation equation, relating ¢' to
qij' is derived using the local governing equation of steady transport
©(3.65). Following Ge}par and Axness, (1983), substituting (3.66) into

(3.65) and expanding products, yields.

2,= . )
‘ 5%; [ayc+a;¢c +qcrajc']e By 2.é§;:s§}l (3.72)
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where Ejj is assumed to be a constant. Taking the expected value of

(3.72) produces the mean equation

\./
2 -
3 - < [ ] 2 ) o

Subtracting the mean Equation {3.73) from the local Equation (3.72)

produces
d {‘ C. + . E + ] C. ‘E[ [ C.]} = E 32 E (3 74)
; 9 9 4 9; ij o ex; .

Assuming that qi' and c¢' are small, the second order term qj'c’ -
E[qj'c']| may be neglected. The first order approximation describing
the concentration fluctuations ¢' in terms of specific discharge

fluctuations qj' is then

2 .,
3 sy = - . = a [
rodlL I I T P Frul (3.75)

i i%7j
/

! it is assumed for convenience that the coordinate axis xj} is aligned in

the direction of the mean fluid flow so that q1 = g and Q2 = q3 =

0, (see Figufe 3.1). MNote that this orientation of axes is different
than the one in the flow case; the system of axes xj, x2, x3 is now
not aligned in the principal statistical anisotropy directions. The

local dispersion tensor may than be approximated in the form, (Naff

1978)
an 0 0
f = -
tsij] 0 a;q 0 (3.76)
‘ 0 0 aTq

where a_ and atr are the local longitudinal and transverse

dispersivities. Expanding the left term of (3.75) and utilizing (3.76},
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Figure 3.1 Coordinate system x1', x2', x3' corresponds to the
. principal anisotropy axes of f, a, y. The ellipse
represents an equal covariance level, Axis x1 of
coordinate system xj, x2, x3 is oriented jn the
direction of the mean specific discharge q. Note that
the direction of the mean specific discharge, is different
than the direction of the mean head gradient J
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(3.75) reduces to:

] 2’ 2. 2 ]
;;5- qg—i—-qlaL-—-—z vap (5. ‘—z" (3.77) "
i i ax
2 %

where the conservation of mass equation 3g;/3xj = 0 has been used.
Equation (3.77}) is an approximate linearized partial differential
equation relating concentration fluctuations c¢' produced as a result of
specific discharge fluctuations q;j'. The mean specific discharge q is
a parameter to this equation.

Assuming that qi' and c' are realizations of three-dimensional
stationary random fields, it is possible to express qj', ¢' in the wave

number domain as follows:

Q] =m Iz (k)

H (3.78)

¢' = Jff &2 az (x) :

Substituting into (3.77) and recalling the uniqueness of the spectral

representation gives

dz_ = - f_T b (3.79)
¢ q{jkl+aLk1+aT(k +k)]

where index j corresponds to repeated summation.
Next, a linearized equation relating q;' to f and a is derived.

The specific discharge is given by
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a5 = Kl )’“’—xi— JONCARE -~ I R Y
where frem (3.7)

f - Ah - Ha - ha

K(y) = Km e (3.81)
with Ky given by (3.8). Expanding the exponential and assuming
products of fluctuations are small, (3.81) gives
K(y) = Km {1 + f - Ah - Ha) . (3.82)
Using (3.82), (3.80) gives
3h ah oh eh
q1=Km(Ji+Jif JiAh JiHa"‘s—x?"‘fs—x—- Ahr— Has—;).
v (3.83)

~Taking the expected value of (3.83), subtracting the mean eguation from
(3.83), and assuming products of fluctuations are equal to their mean

values, yields the following linearizea equation
e 1 ah '
aj =a; = Elg;] =k [lz5=- 3,8 h) + 3, (f-Ha)l . (3.83)
i

Equation (3.84) relates the specific discharge fluctuations to the
capillary tension head and soil property fluctuations. Using spectral

representations, (3.84) yields

azq* = K [(3kg = A 9y) dz, + J,(dZ, - K az, )] . (3.85)

~The Fourfer-Stieltjes amplitudes dZp are related to dZ¢ and dZ,

by (3.373: In the steady state case 3K/3t and G are zero and (3.37)

simplifies to

j(aZ, - H a,) Jj (Jj 5—-) az,

42, = 3 . (3.86)
+ jAL1 ki
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Substituting (3.86) into (3.85) gives:

dzqi = Ni dzf + vi aza (3.87)
where
3 (8, Kl - K K)o+ JA (L. - J0) K
O -~ ) _J ) (3.88)
k¢ + JAL. k.
L ;&
V. = K
1 m
SHI. (8. k% - k. K.) - JAH. (L. - 3.) k. - (§ k, - AJ.) (3. 2B
J i) i) LI | 37l i J J axj
y S .
k™ + JAL, k; (3.89)

Equations (3.79) and (3.87) relate fluctuations c¢' and q;' to soil
property fluctuations f and a. These equations are used in Section 3.3.3

for evaluation of E[c'qj] and the corresponding Ajj-

3.3.3 Evaluation of Effective Macrodispersion Coefficients Using Spectral

Representations

A methodology for evaluation of E{c'qj'] and the

macrodispersivities Ajj is developed in this section. The methodology
utilizes the steady-state linearized equations derived in Section 3.3.2.

Using the spectral representation theorem, term E[c'qj']| is given by

fll]xa' 2 - aE -
Elc'as] {L, chi(i) ak Ay @ 57; (3.90)

where from (3.79) and Scq; = E{dZ¢ dZg;*!
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s (k) 9y & 75 (3.91)
z - . 91
cq; - : ¢ é <y
i q [.)k1 ta ky +ay (ky ¢+ kl)]
From (3.91) in‘(3.90) it is evident that the macrodispersive flux is
Fickian, i.e. proportional to the mean concentration gradient; the
resulting macrodispersivity is then
. s (k) dk
RN QjQi; - g e
Tooa® = L3k e k] teglky +k3)]
. 2 2, .2
L3 Squo (k) L3 by va Ky v ey (g 0 gl 5o
z : dk (3.92
- Z ] 7 . 112 -
q k1+[aL k1+aT (k2+k3)]
Note that (3.92) is identical to the result for the saturated flow case
\\_// " (Gelhar and Axness, 1983, Eq. 28'). Howevér. the mean specific discharge
and the spectrum of the specific discharge fluctuations is different in
the unsaturated flow case as discussed below.
Using (3.87) and (3.51) the cross-spectral density function
Sqjqq 15 given by: ' '
1 g Y, 4z, + ¥, 02"
quqi'EEE[“i dze + ¥y dz, MW, dZ, + § 92,) ]
e W, W VLS
=Wy Wy Sep v Vi ¥y 35 ®
V * * ( 3
+ Hj F Sfa + VJ ¥, §af . 3.93)
Note that the spectral density function in (3.93) should be expressed in
coordinate system kj, kp, k3, (see Figure 3.1), which is generally
different than system ky', k', k3' 2ligned in the direction of
\_/ ) -8

. ﬁ* - - I | . ’



the principal anisotropy axes. Let S(kj', kp°', k3') be the
expressions for the spectral density functioas in (3.93) in the system of .\~‘/
principal anisotropy axes k}', k2', k3'. The corresponding
spectral density function in an arbitrary system of axes kj, kp, k3
is given by S(ayj kj, azj kj, a3j kj), where ajj are the
directional cosines 3jj = cos (xi', xj) and ki' = ajj kj,
(see, Gelhar and Axness, 1983}.

The mean flow model (3.18) is capable of predicting the mean
capillary tension head H and its spatial derivatives J1', J2°, J3'
in the principal anisotropy directions xy', x2', x3', (see Figure
3.1). In order to be able to evaluate Ajj from (3.92) and use the
large-scale dispersion model (3.71), the mean specific discharge q, the
directional cosines ajj, and the components of the gradient 3 on the -

X1, %2, X3 axes, must be evaluated as a function of H and Jp’,

J2', J3'. Note that in the general anisotropic case the direction of /

the mean specific discharge £[q] = (q1, q2, q3) is in general
different than the direction of the mean gradient J = (o', J2°,
J3'), (see Figure 3.1). It is thus necessary to evaluate both the
magnitude and direction of q for a given set of K, J1', J2', J3'
values. Assume for simplicity that Xy = A3 and, without loss of
generality, that J3 = 0. The mean specific discharge §3 in the
principal anisotropy direction x3' then is zero. The specific
discharge qj in the directions x}' and x2' is given by

(3.13) where %ii are given by (3.14) and (3.15). The magnitude of £{q]

-is then given by




/70 \ (3.94)
(KllJl) + (K 2)
and the direction of £[q] is given by
K J.
¢ = arctg (——0 22 2 (3.95)
Kjpdy
where § defines the direction of the axes ‘1? x2, x3 with respect
to axes x1', x2', x3', (see Figuré 3.1). The directional cosines
2§ 3, (ki = aij‘kj). are then given by
cosé -sfnp 0
[aij] = | sing cosy O . | (3.96)

0 0 1
The effective hydraulic conductivities kll- Rzz can be evaluated as a

special case of the general theory developed in Section 3.2 for 3H/3t =

0. The components of the gradient J on axes X1, X2, xj are

evaluated from (3,93),>(3.94), (3.95), and (3.96). Assuriing that the
cross-spectral aensity functions of the soil property fluctuations f and
a are known, the macrodispersivities Ajj can be evaluated from (3.92).
Note that the ip;egral in (3.92) is of a very complicated form which in
general, will require numerical evaluation. In certain cases,(see
Chapter 5). it is possible to ana]ytically eva]uate this integra1 and
.derive relatively simple closed form expressions for the

macrodispersivtties Aij.
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3.4 Summary and Discussion

This chapter developed a general methodology for derivation of
large-scale models of transient unsaturated flow and steady contaminant
transport, and evaluation of the effective model parameters. Section 3.2
examined the transient unsaturated flow probliem while Section 3.3
examined the steady transport problem. A stochastic wmethodology that
accounts for the local soil property variability and the basic
nonlinearities of the local governing equations was developed. It was
assumed that the local soil properties are realizations of
three-dimensional stationary random fields with known means and
cross-spectral density functions. The stochastic approach followed three
steps. In the first step, (Sections, 3.2.1, 3.3.1), the form of the
large-scale models and the effective model parameters were derived. The
second step, (Section 3.2.2, 3.3.2), related the output fluctuations h,

Qi' and ¢' to the soil property fluctuations f, a and vy, through "/

i three-dimensional, linearized, partial differential equations. The third
step, (Section 3.2.3, 3.3.3), evaluated the effective parameters, defined
in the first step, using the linearized equations derived in the second
step and some spectral representation properties.

The large-scale models derived in this chapter are expressed in a
partial differential equation form and are capable of predicting the
large-scale flow and transport characteristics (mean behavior) rather
than local details. The effective parameters of the large-scale models do
not depend on the actual realization of the local soil properties but
they rather depend on a few parameters describing the statistics of local

variability, (e.g. mean, variances, correlation scales, etc.). As it is
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discussed in'ChaBtér 6, these parameters caﬁ bé estimated from a finite
data set and/or prior information about so*] property variability. Note
that since the large-scale model predicts large-scale characteristics of
flow and transport, rather than local details, a prediction error {mode)
errcr) -is introduced. The stochastic methodology is capable of}evaluating
the statistical properties of this error which provides a measure of
reliability of model predictions. The effective parameters also depend on
the mean flow parameters H, Jy, J2, J3 and J¢.

The purpose of this chapter was to present the general methodology
without focusing on specific evaluations and applications. Thus the
conclusions are of qualitative rather than quantitative nature. It was
found, that in the unsaturated flow case, a unique effective hydraulic
conductivity tenscr does not generally exist and that the effective
parameters iii; e, and E depend on the mean flow parameters H, Ji,

Jp, 3 and 3H/3t. The dependence of the effective parameters on the
mode) output suggests a nonlinear mean flow model, while the dependence
on the time history of H (through 3H/3t) suggests a hysteresis of the
effective parameters. The effective macrodispersivities Aij depend on

the mean capillary tension head H and on the specific discharge q. These
effects are due to local spatial variability and the parametric
nonlinearity of the local governing equations. Note that these effects
are not predicted by traditional models since these models do not
realistically consider the spatial variability of the local soil
properties, the three-dimensionality of the flow and transport processes
ang the parametric nonlinearity of the local governing flow and transport

equations.
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Application of the general methodology developed in this chapter
generally requires numerical evaluations. In some cases of practical
interest however, analytical evaluations are possible. Analytical results
are highly attractive because of their simplicity, flexibility and the
insight they provide. Chapters 4 and 5 derive analytical generic expres-
sions for the effective parameters in such cases. Chapter 4 examines
unsteady flow in stratified formations, while Chapter 5 examines steady

transport in statistically isotropic or stratified formations.
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CHAPTER ¢
TRANSTENT UNSATURATED FLOW [N STRATIFIED SOILS

4.1 Introduction

In order to evaluate the effective flow parameters using the general
stochastic theory developed in Chapter 3, several three-dimensional
integrals must be evaluated.. These integrals are quite complex and are
not gener2lly analytically tractable. Hatural soil formations are often
stratified. The hydraulic soil properties of stratified sofl formations
may be visualized as realizations of three-dimensional, statistically
anisotropic random fields with correlation lengths in directions parallel
to stratification being significantly larger than the correlation length
in the direction perpendicular to stratification. This chapter examines
the case of transient unsaturated flow in such stratified soil forma-
tions. The stratified soil assumption allows analytical evaluation of
the three-dimensional integrals of Section 3.2.3 and allows derivation of
relatively simple generic expressions for the effective large-scale model
parameters and the variance of model errors. Thése expressions are use-
ful since they explicitly indicate the dependence of the effective para-
meters on the various soil property and flow characteristics.

Thelggtlinerof this chapter is as follows. Section 4,2 derives a
simp1ifiéd¥expression relating the éapilIary tension head fluctuations to

the soil property fluctuations using the disparity of the correlation
scales in a stratified soil., Sections 4.3, 4.4 and 4.5 derive closed
form expressions for the effective parameters and the variance of the

model errors. Simple asymptotic expressions which are valid in particu-
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lar ranges of the soil property and the mean flow characteristics, are
also derived. In addition, several examples investigating the dependence;;_’/
of the variance of the model errors and the effective large-scale model
parameters on the mean flow properties are given for the cases of a

Panoche clay loam and a Maddock sandy loam soil.

The most important findings of Sections 4.3, 4.4 and 4.5 are:

(i) The effective hydraulic conductivities, the mean soil moisture
content and the effective specific moisture capacity show
significant hysteresis.

(ii) The effective hydraulic conductivity is anisotropic with a
degree of anisotropy depending on the mean flow conditions
(wetting, drying).

These effects are due to the spatial variability of the local soil pro-
perties and they are not due to local hysteresis and anisotropy.

Section 4.6 shows that the quasi-steady assumptions introduced in N
Section 4.2 are valid if the soil matrix remains relativey dry. I[f the
soil is wet and the water addition is rapid, unsaturated flow may nct be
governed by diffusion type laws. Section 4.7 gives a physical
interpretation of the large-scale hysteresis and anisotropy, compares the
results of the stochastic theory to a series of field observations, and
discusses the implications of these results on waste disposal

applications.
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4.2 Stratified Soil Simplifications

This section derives a simplified spectral equation relating the
capillary tension head fluctuations to the soil propefty fluctuations
using the disparity of the correlation scales in a stratified soil.

The general linearized spectral Equation (3.37) is simplified as
follows. The solution of (3.37) is given by (3.38) where functions
gi{t), g(t) depend on k and are given by (3.39). Using the transfor-
mation u; = A} kj, uz:alxz k2, u3 = A3 u3, where 1], |
A2, X3 the correlation lengths with A2, xj >Ai, Equations

(3.39) are written as:

K
mol 2 2 2 ,,.2 2
9,(t) = = [:2- (uj + 85 u; + 65 u3) + NG +
1

A
+ 5 (Ly g + 6, Lzruz + 64 Ly ugl] (4.1)

K . - .
meed ¢

g(t)

[

—

3H -
U3 + Ji E-X-; + HI'G}] dZa

_r J8 - '
L X;'-Jl u, + 62 Jz u, + 63 J3
- G dZy 3 ' - (4.2)

where §3 = Aj/Ap, 83 = A1/x3, For 2 stratified soil with
stratification parallel to x2, x3, 62, §3 ~ 0. Functions g}
and g are well behaved functions of uj, U2, u3z. Taking the limit

of (3.38) for 55, &3 = 0, gives
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t T
. £ g (x) dx - £ gylr) av
ylk, t) = [y(k, o) + [ g'(r) e dr} e (4.3)
0
where g1', g}' are the limit expressions of g(t} , gj(t) for &2,
63+ 0, i.e.,
Km 2
gi(t) = lim [gl(t)] = = (k] + ATG + jAkI] (4.4)
§,,8.+0
2" 3
’H’m ) l(I'l r
g'(t) = 8.8 570 [g(t)] = = ({43, k; +TG)aZ, -
"3
- (H I,k + 3, 2 4 ohre) ez, - 6 dz] (4.5)
171 i B'i'i' a vyl :
Substituting (4.4) and (4.5) into (4.3), it is easy to see that (4.3) is
the solution of the following ordinary differential equation. \_—/
3y Kn 2 3
n 7 : =
Tt MK e ‘kl + ATG + jJ A L1 kl- y
Km
— ({39, %, +TG) dZg - {jH I k +b)dZ, -G azY[ (4.6)
where b = Jj 3H/3xj + H[G. Let
g'(t) = S¢ (t) dZg + 9, (t) dZa * g dZY (4.7)
where gf', ga', gy' are functions of k] and they are independent
of ky, k3 ana are given by comparison of (4.7) to (4.5). Assuming
that time t is relatively large and the effect of the initial conditions
‘\_/'
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y(k, 0) in (4.3) is relatively smal}, Equation (4.3) can be written as

1

y(k) = a2, (k) = Welk)) dZelx) + Wilk)) aZ (k) * W!(k;) 42 (k) (4.8)

where a time dependence of y(k), aZp(k), W¢', W', W, is implied

and W¢', Wa', W' are givén by

L 4 t
t ] gj{x)ax -f g(r)er
' ' o) o - .
h f.a.Y(kl. t) = []o gf.a’Y e dT] e : . (4.9)

The conc]usion of the above analysis is that_ih the case of a stratified
soil the spectral amplitudes of the capillary tension head fluctuations‘
can be evaluated from Equation (4.6). The solution of (4;6) is in the
form of (4.8), where Wg', W3', W, ' are functions of k) and are
independent of kp, k3.

As will be seen in Sections 4.3, 4.4 and 4.5, because functions
W', Wa', Wy' in Equation (4.8) are independent of %k and k3,
the integrals in Section 3.2.3 can be integraied with respect to k2 and
k3 and are thus reduced to one-dimensional integrals. lﬁ order to
perform the remaining integrations with respect to kl, fun;iions We',
Wa's Wy' of (4.8) must be determined. Since functions g;' and
9f,a.y Of (4.9) are of a complex form;,it seem§ impp;sib1e to
aerivg_;imple and general §1osed form solutions for We', Wy', W',
Since our objective is to obtain analytical results, we rust seek an
approximate solution to (4.9). To obtain ﬁuch an approximate sp}ution,
assume that dy/3t in (4.6) is very small éompared to the other terms.

Equation (4.6) then yields
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JJ, k, + TG JHJ, k, + Db

11 1 1
y = dZ, = 42, - dz_ -
l . f Z . a J/
k1+AI‘G+JAL1kl k1+Al‘G+JAle1 N
- — G 6z, . (4.10)
k1+AI‘G+JAL1kl

Sections 4.3, 4.4, and 4.5 evaluate the variance of the capillary tension
head and the effective parameters of the large-scale unsaturated flow
model using the general theory developed in Chapter 3 and the simplified
spectral Equation (4.10).

Note that the assumption of 3y/at being small introduces some error.
The significance of this error is evaluated in Section 4.5. It is found

there that in the transient case and at large mean capillary tension head-

H (relatively dry soils), the assumption 3y/3t = 0 is justified. For H
small however, {(relatively wet soils), the assumption 3y/3at = 0 may not N
be appropriate. It is discussed in Section 4.5 that flow in such cases

is usually rapid and highly unpredictable (particularly in coarser soil

layers) and it may not be governed by diffusion type laws. It is

possible that the whole idea of using a diffusion type mean flow model

(such as tEquation 3.18) may not be suitable in such cases. In view of

this discussion the results of the next sections should be taken as

strictly valid only in the cases when the soil is relatively dry, (i.e. &

is large). Note that the case of flow in dry soils is of practical

significance in many applications, such as waste disposal in arid [

environments,
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4.3 Variance of the Capillary Tension Head ﬁiuctuations

This section evaluates the variance of the capillary tension head
fluctuations h in the case of a stratified soil using the general theory
developed in Chapter 3, and the simplifications discussed in Section 4,2
Section 4.3.1 evaluates the variance oﬁ analytically. The derived
expressions however; are of a quite complex form. Section
4.3.2 derives some simplified asymptotic expressions for a%. valid at
particular ranges of the mean flow characteristics. These asymptotic
e?pressions are quite simple and they explicitly indicate thé dependence
of the variance on the different soil property and flow characteristics.
Section 4.3.3 applies the results of the stochastic theory to the Panoche
silty clay loam and the Maddock sandy loam soils.

Note that the fluctuations h are defined as the'diffefence between
the local capillary tension head ¢ and the predictions of the
large-scale model H, Thus the variance'of h gives an estimate of the

reliability of the large-scale model predictions.

4,3.1 zZvaluation of the Capillary Tension Head Variance

The variance oﬁ is given by (3.53) where Spp(k) is given by

(3.54). In the case of a stratified soil the spectral amplitudes dZj

are approximately given by (4.8), where the response functions We',

Wa', Wy'-depend on k] and 2re independent of kp"and k3.

Rep1acin§fwf. Wa, Wy .in (3.54) by We', Wy', Wy' substituting

(3.54) into (3.53) and integrating the resulting equation.with respect to

ko and k3 gives
2. 7 st (k) dk | (4.11)
°h * 2 et T ‘ :
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where

1 - ' 2 [} -0'2 * ¢ 2 ’
Stn = |wf] Stf * l“al Sia * le sw +
WE M e W TSt e N TS
* W Wy Spa * Wp Ml Sp 4N ME Se (4.12)
' Ml ' e lot ' ' e
YR Sav voe, A Svf * HY " SYa

The primed functions S'yy {u,v = f,a,y) in (4.12) are given by

] = fi
Salky) = LD Sy (k) dky dkg (4.13)

for u and v following an exponential cross-covariance function, (4.13)

simplifies to

s Ay A, A
$' (k,) = [f w 1 2 3 ak, dk
WL = 022, .2 2,,22 2
171 2 "2 3 ¥
aiv xl
= . (4.14)
n(l+k§ kﬁ

Evaluation of a%, using Equations (4.11), (4.12) and (4.13), re-
quires knowledge of the cross-covariance functions of the sdil property
fluctuations f, a and vy. Since no sufficient information about the fcrm
of thesa cross-covariances presently exists, it is assumed that f, a anc
vy follow exponential cross-covariance functions with identical correla-
tion lengths. Two particular cases are investigated: (i) f, a, v being
uncorrelated and (ii) f, a, vy being perfectly correlated. In reality, of

course, it is expected that f, a, v are only partially correlated. The
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i.e.,

Saa
\\r// Svy

Sfa

Sva

Saa

Syy

Say

above extreme cases were selected in order to better illustrate the
depenaence of o% on the type of correlatlon between f a, v. Let g2,

n2 be the ratios of the variances of a and y to the variance of f,

fal
~N
[]
~rdo’n

(4.15)

>
(]

-nqml -<°N
[

The cross=spectral density functions of f, a, v are then related to the
spectral density function of f by

(i) f, a, Y uncorrelated

= g2 S¢¢
= n S¢f

= 0 , (4.16)

= 0
= 0

(ii) f; a, v perfectiy correlatea

= 52 S¢f
= n2 S¢¢

(4.17)

= {n Sff
= n S¢f
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i.e., in general it holds: Syy(k) =w Sff(k), where u = t?, n2, )
0, ¢, gn, or n depending on u, v and the type of correlation between f, ~_ /
a, Y. Substituting into (4.13) and assuming an exponential covariance

for f, (4.13) and (4.14) yield

2

g; A
. - . _ f 1
Suv(kl) =p sff(kl) =y __2__2_ {(4.18)
n(1 +X1 kl)

where u are given from (4.16) or (4.17).

Using (4.12), (4.1€) or (4.17) and (4.18), the variance c% may be
evaluated from the one-dimensional integral (4.11). In order to deter-
mine Spp' in (4.12), knowledge of functions W¢', Wa', W' is
required. As it was discussed in Section 4.2, it is impossible to obtain
simple analytical expressions for W¢', Wa', W' in the general
case. [n certain cases however, (see Section 4.5), it is possible to -/
neglect term 3y/3t in (4.6) and obtain relatively simple expressions fcr
We', Wa', W' given by {4.10). It will be seen below that for
these cases it is possible to analytically evaluate the variance.

Substituting the values of W¢', Wy’ and W, ' given by (4.10)
into (4.12) and using (4.16), (4.17) and (4.18), (4.12) yields:

(i) f, a, Y uncorrelated

(1+;H2)J

2.2 ...
Sah(kl) - 1 kl + i7" +n7) +z b ¢ xl (191
(k§ + ar6)€ + A% LT &S SR
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(ii) f, a, v perfectly correlated

(1-em2 2 eire-o-n0?  oda)
S (k) = .
hh™"1 (k + arg) + A% LS kS w(1 +2§ «S)

1

Note that (4.19) and (4.20) are of the following general form.

2 2
a¢ *1 al kl + a, 1

S, (k) =
hh "1 N 2 2
" kl+a3k1+a4 1+a$k1

where
2 2
25 = 240G+ A% LT
2 2 2
a4 = A 'r G
Ly 2
ag = Xy

and ay, aj are given by

(i) f, a, vy uncorrelated

2.2, .2
3, = (1 +¢° H) J1
2, = (r2 + n?) 62 + g2 p?

(ii)°f, a, v perfectly correlated
h | 2, 2
a; = (1-g i)y

a, = (ré - gb - nG)
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Substituting (4.21) into (4.11), the variance aﬁ is given by

azx
2 . f 1l
I 2 I1 {4.26)
where
= a1 kf + az 1
11 = | y v yi dkl (4.27)
o} kl + a3 kl + a4 1+ as kl

Integral I} is evaluated in Appendix C for positive or negative values
of the determinate A = ag - 434 = a2 L% + 4ArG. Substituting I[;

(4.26) yields, for a > 0

ar’a, +a, a

2 2 /33 ¥ 313,35 773, 3, 35+ 3, - 3, a3 3,
oy = o¢ A — " Ny
e 3
(ArG) /4ATG + A" L] (1+a, g - 23 3)
a, -~ a, 4
- a, 1 25 ] (4.29)
2
(1+a,25-a3250%
while for 4 < 0
2.2, (217% 731333547353, 35 -3, 3,353
h*ofF - 7
(ATG) (A L) (1 +a, ag - ay 2
a, =~ a, a.
- a, - S ] (4.29)
(1 +a, ap -3y as)xl

where aj, ap are given by (4.23) or (4.24) and a3, ag, as are
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given by (4.22).

The linearized equations relating h to f, a, v Qere derived in Chap-
cer J using linearization around the mean soil properties and the mean
flow characteristics. In response, this produces functions W', W',

Wy' which cepend on the mean characteristics F, A, I, J1, J2 J3,

and Jy (J¢ = aH/3t). The variance oﬁ determined above depends on

these characteristics but it also depends on the statistical parameters

of local soil property variability i.e., the variances o%. og. 03

and the correlation length 2] in the direction perpendicular to strati-

fication. We may then write:

2 _ 2 2 2 2 _ | '
op =9y (Fu A, Tyog, 05, 00, 05 Hy dp, d5, 35, 0,) o (4.30)

h

Sectioﬁ 4.3.3 aives some -examples illustrating the denendence of oi
on several of these parameters.

ote that although the expressions for the variance (4.28), (4.29)
are of a clecsea form, it is difficult, because ¢ the complex form of
these'expressions. to visualize the dependence of cﬁ on each of the
parameters of Equation (4.30). Next section derives §ome asymptotic

expressions for oﬁ that are valid at particular ranges of the flow

- conditions H and 3H/3t., These expressions are very simple and explicitly

-t

indicate the dependence of ag on the different parameters of (4.30).
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4.3.2 Asymptotic Expressions

This section derives some simplified asymptotic expressions for the
variance oﬁ. These expressions are derived by examining the magnitude
of variable G in (4.28) and {(4.29). VYariable G is defined by (3.31).

Substituting K, from (3.8), (3.31) gives

-F _AH 2H
G e e é_t- . (4.31)

Note that G is proportional to the exponential eAH and the time deriva-
tive 3H/3t. In the transient case 3aH/3t # 0 and when H is large, (rela-
tively dry soil), eAH tends to + and parameter G tends to * =, depend-
ing on the sign of 3H/3t. In the case of 3H/3t > 0 (drying conditions)
G » +=, while in the case of 3H/3t < 0 (wetting conditions) G+ ~. In
the steady state case or in the case of H small (wet soil) and 3H/3t
small (almost steaay state) parameter G » 0. In other words, for
transient flow in a dry soil G + *=, while in the steady case or
transient flow in a relatively wet soil G » 0. Since these cases are of
interest in practical situations, it is important to investigate the

form of the variance oﬁ for G+ *= and G + 0.

2,2

For G » += the determinate A = A~ L] + 4ArG is positive and the

variahte o% is given by (4.28), where aj, ap are given by (4.23) or
(4.24) and a3, a4, ag are given by (4.22). Substituting aj,
ap, aj, aa, as into (4.28) and taking the limit G » +» yields

(i) f, a, vy uncorrelated

2 2 121 + 2 W) 4 4t (4.32)
[+] L e |
h = of T2
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(ii) f, a, v perfectly correlated

r2(1+c2 K #nl o

2, .2 : (4.33)
ch of' AZ l.2
For G+ 0, & > 0 and (4.28) yields:
(i) £, a, vy uncorrelated
2 °§‘1 (2 22 2., aH 12,2
o, = 36 (1 + ¢°HE)+ g5(4 YEAS) +
h AL (1+at,A) 1 URTTIE
1 171
2, . 3H 2 |
1 4 (J‘l 57;) (I*A,Ll Xl) _
*—_ iAI‘Bi J | (4.34)
(ii) f, a, v perfectly correlated
2 °§*1 (2 ( 12 4 2, 2 142
ar = Jé (1 - gH)® + gL Jd, AE o+
h STl L AL A) L iaxy o1
1t 1M1
2 ., aH 2
g (9 5;?) (1+ad xl]
+ lAl‘u‘ . (4.35)
infinity

Equations (4.34), (4.35) suggest that the variance oﬁ tends %o

as G - 0. Note however, that Jj aH/axy generally depends on 3H/3t,

ji.e., it depends on G. For a soil moisture plume moving in 2 stratified

 so0il for example, the condition G » 0 (or SH/at + 0) corresponds to the

central part (core) of the plume, Near the core of the plume it is

expected that the spatial gradients of the capillary tension head H are
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relatively small so that Jj 3H/a3xj = 0. In the cases when the

square (J; 3H/3x{)2 tends to zero faster than |3H/at|. (4.34) and N

(4.35) simplify to

(i) €, a, v uncorrelated

2 2 2,2
G2 tit e W (4.36)
h AL (T AL T
(ii) f, a, v perfectly correlated
2 2 42
I et U Uil (4.37)
h L S RN :

Note also that it is possible to avoid the infinite variance for G » 0,

by selecting a different spectrum for f, a, v which does not include \;’/
certain large-scale spectral components. For G+ -=, A < 0 and (4.29)

gives:

(i) f, a, v uncorrelated

2 2

2 2
2 .2 Ir°(1+¢”H") +n 1
o =% 7 [1of1-1_-1_-1 1] (4,38)
(if) f, a, v perfectly correlated
2 2 .2 2
2 2 T(1 +¢° H") +n® « 27 1
o, * o T2 (1 «».A..L.._r-1 l] . (4.39)

Note that the variance for G » -=» is equal to the variance for G + +=

multiplied by the factor 1 + 1/A L} A|. Note also that the expres-

~_
90

Bz




>

sions (4.36) and (4.37), obtained here as a particular case of the
general transient results for G - 0, were also obtained by Yeh et al.,
(1982),using a lessvgeneral steady state analysis.

Let us now discuss the implications of the above results. The
condition G » + occurs when 3H/3t is positive and large (drying), A
and/or H are large (coarse and/or dry soil) and F is small (small Kg).
For G + += the variance is given by (4,32) and (4.33). Note that in
these cases a% is independent of the mean soil property F, the
correlation length 1, the flow gradients Ji, Jz. J3 and the
magnitude of 3H/3t. If it is further assumed that uslrzis small,
(which is usually the case, see'Chap:er,Z) and ¢H is re!a;ively large,

(dry soil), (4.32) and (4.33) simplify to

| 2.2
2. 2eiu %t (4.40)

We conclude that in this particular case ag is also independent of T,
c$ and on the type of correlation between f, 2 and y. The variance
aﬁ depends on AZ, af and HZ only, through (4.40). Note that for a
given soil (9,2 and A constant) on2 increases as H2 so that the
coefficient of variation of ¥ is constant under these conditions.

The condition G » 0 occurs when IH/at is small (steady state), A
and/or ] are relatively small (ftne textured and wet soil) and/or f is

large (large Xg). For G+ 0 and (J5 3H/3x1)2 + 0 faster than G,

the variance cﬁ is given by (4.36) or (4.37). Note that in this case

a% is indépendent of ?. r, gf. J2, J3 and the magnitude of aH/at.
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If it is further assumed that ¢H is large (dry soil), Equations (4.36),

(4.37) simplify to

2 2 2
2_ 2 M1 he " (4.412)
b7 of KT TR

a

while for zH small (wet soil) (4.36) and (4.37) simplify to

2
2 2 M9 (4.410)

o, =@
h f A tl (L + K411 X&)

-~

The condition G » -= occurs when 3H/3t is negative and has a rela-
tively large magnitude, (wetting), A and/or H are large, {(coarse and/or
dry soil), and F is small, (small Kg). For G+ — the variance ag
is given by (4.38), (4.39). Note that in these cases c% is incependent
of F, Jp, J3 anc the magnitude of 3H/3t. Contrary to the G +» +
case cﬁ for G + == depends on the gradient J] and the correlation
length A1, If we further assume that o$ is small and zH relatively
large, Equations (4.38) and (4.39) simplify to
02 H2

2 a 1
o )

(4.42)
In this particular case, og is independent of T, c$ and of the type
of correlation between f, a, v.

The asymptotic expressions developed in this section are very useful
because they offer valuable insight about the dependence of :ﬁ on the

11 parameters F, A, T, c%, o§, o$, A1, J1, 92, J3, Jt and
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on the type of corre]ition of f, a, Y. This is important since evalua-
tion of the dependence of o%»on each of these parameters would require
sensitivity analysis with respect to 11 different variables. The asymp-
totic results derived in this section show that the variance of h is
generally larger in the case of wettfng conditions than it is in the case
of drying conditions. Because of this, the vertical hydraulic conductiv-
ity is smaller'in the case of wetting than it is in the case of drying,
(see, Sections 4.4 and 4.7.1).

The next section shows that these asymptotiC'exprgssions are very

close to the exact results at the appropriate ranges of H and aH/at.

4.3.3 Application and Discussion

This section gives several examples for the dependence of the vari-
ance on different soil and flow characteristics and compares the values
derived using the approximate expressions of Section 4.3.2 to the exact
values. Since a% depends on a large number of variables, (12 varia-
5les), only a particular set of parameter values is considered. In order
for these examples to be as realistic as possible, we have chosen to use
combinations of soil parameters that have been observed in-the field,
instead of using arbitrary parameter values. Two types of soil were
selected for i1lustration: the Panocﬁe clay loam and the Maddock sandy
loam soils (see, Chapter 2). It is assumed that parameters F, A, T,

a%, dg. a$ and Ay are independent of H and they do not show
hysteresis. For illustration, only the case of f, &, v being
uncorrelated is examined.

Following the discussion in Section 4.3.2 the most important flow
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characteristics that affect the variance.'particularly at large H (dry
soils), are H and Jy. For this reason, the dependence of aﬁ on H
and Jy is investigated. The values of the spatial derivatives are
fixed to J; =1, J2 = J3 = 0. These conditions are approximately
valid near the central part {(core) of a soil moisture plume moving in a
horizontally stratified formation. The dependence of aﬁ on H and J¢
is shown in Figqures 4.1, 4.2, 4.3 and 4.4. Figures 4.1 and 4.2
correspond to drying and wetting in the Panoche soil while Figures 4.3,
4.4 correspond to drying and wetting in the Maddock soil respectively.
These figures plot og as a function of H for a set of discrete values
of Jy. The values of a% predicted using the asymptotic expressions
of Section 4.3.Z2, for G + 2= and G + 0 are also plotted for comparison.
Note that the asymptotic curves depend on H and the sign of Jy but they
are independént of the magnitude of Jg.

Examination of Figures 4.1, 4.2, 4.3, 4.4 shows that oﬁ depends on
H and J¢ (especially its sign). For H and/or Jg small a% follows
closely .the asymptotic curve predicted for G+ 0. This curve is practi-
cally independent of the magnitude and sign of Jy but it depends on H.
As H increases however, the value of aﬁ diverges from the G + 0
asymptote. The variance a% then depends on both the magnitude and the
sign of Jy. For a fixea H, o% increases as ,aﬂlatl increases. In

addition aﬁ tends to be larger for 3H/3t < 0. As H continues to

increase, c% approaches the G + += or G » — asymptotes, depending on
the sign of Jy. These asymptotes are independent of the magnitude of
Jt but they depend on the sign of Jt. The variance for 3H/3t < 0 is

1 + 1/ALy M) times the variance for 3H/3t > 0. Note that the value
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of H where a% diverges from the G + 0 asymptote and converges to the

G + t= asymptotes increases with decreasing |aHlat|.

Comparing Figures 4.1 and 4.2 to 4.3, and 4.4 shows that c% is

much larger for the Maddock soil than it is for the Panoche soil. This
may be explained by the fact that the Maddock sofl has a larger variety

of textures than the Panoche sofl (Iarger cf). ‘Note also that the G +

4o, G+ 0and the G+ == asymptotes‘Iievclose to eacﬁ other in the

‘Maddock than they do in the Panoche sofl. This is in accordance with the
“asymptotic Equations (4.32), (4.36) and (4.38) since in the case of a

Maddock soil parameter A is relatively large and ALy A1 =« 1 + Alj

A1. Parameter A is Iarger and ALy X1 + 1 is closer to ALi A1

in the Maddock than it is in the Panoche soil. ' | | =
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4.4 Effective Hydraulic Conductivities : (x~\‘

This section evaluates the effective hydraulic conductivities in :;;Jf
case of a stratified sofl in directions perpendicular to stratification
(x1) and parallel to stratification (x2, x3). The general theory
developed in Chapter 3 and the simplifications discussed in Section 4.2
are used. Section 4.4.1 analytically evaluates the expected values of
(3.15) and the effective hydraulic conductivities iii: i=1, 2, 3
given by (3.14). .The expressions derived for iii are of a quite
complex form. Section 4.4.2 derives asymptotic relationships for~§i1

when G » 2= and G » 0. These expressions are of a simple form and show

the depeannce of the hydraulfic conductivity on the different soil
property and flow characteristics, Sectioﬁ 4.4.3 applies the results of
the stochastic theory to the Panoche silty clay loam and the Maddock :
sandy loam soils. ;\_,)

4.4.1 Evaluation of the Effective Hydraulic Conductivities

Similarly to Section 4.3 {1t {s assumed that f, a, vy follow exponen-
tial cross-covarfiance functions with identical correlation lengths. Thé .z
two cases of (1) f, a, v befng uncorrelated and (ii) f, a, v being per-
fectly correlated are investigated. The cross-spectraf density functions ;
of £, a, v are then related to the spectral density function of f through
(4.16) or (4.17), where parameters 2 and n are defined by (4.15).
In order to evaluate the effective hydraulic conductivites, using
(3.14) and (3.15), the expected values E[fh], E(fal, E[ah], E[Ff ah/ax{]

and E[a 3n/3x4] are evaluated as follows.
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Using the approximations discussed in Section 4.2 for a stratified

L

sofl, the spectral amplitudes dip are given by Equation (4.8), where
the response functions H‘f; H'a. H'f>depend on ki and are inde-
pendent of k2, k3. Replacihg Wf, Wa, W, in Equation (3.56) by

W'f, W'a, W'y, substituting (3.56) into (3.55), and integrating the
resulting equatfon with respect to k2 and k3 gives:

ELfR) = [ Spelky) d kg (4.44)

where

tmg Y ¢! (Y oyt ¢t
Shf Hf Sff + Ha S‘f + “v Svf . (4.45)

The brimed functfons S'yy (u=f, a, Y; vef,a,v) in (4.45) are

given by (4.13). Substituting the expressfons f0r>H'f, W'a, Wy

given by (4.10) into (4.45;) and using (4.16), (4.17) and (4.18), (4.45)
yields - |

(i) f, a, v uncorrelated

39 Kk '
s' (k,) = + Sce(kq)
hf'*1 ? ‘ £
COKEC MG ¢ JAL K
- 2, a2c2 -3 2 g
re + AL, J,) kT + ATSG 3, k% - wrG(L, - J
St T U 1 - MY 1)21 Spelk,) (4.46)

; +§
Y Z £,4,2 1,.,¢ e, 24,8
(k] + AP6)° + A°LYK) (k] + AG)“ + ALY Ky

(i1) f, a, v perfectly correlated
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R P e L PR Q
MY ey + gLk ED

- 2
(b, + AL; 9,(1 - cH)]k; + b, ArG

+ (4.47) -
(k% + are)® + A%LS K .

2
J1(1 - TH) ky + (Ar6 (1 - ¢H) Jy = ALy b))

+ 3K } Siq(k,)
1 (Z + wa)% + 272 e
1 15 :
‘where :
aH ;
b, = 16 - {9, ,;7-+ HFG) =nG =(r -n) G -¢gb (4.48) }

and for f, a, v following an exponential covariance function Sgp' is 4
given by (4.18). Substituting (4.47), (4.48) into (4.44) and because t@g,\?
integral of the term multiplying j ki is zero (odd term), (4.44) is K /

written in the following general form

2 2,
202,12 » k
g[fn] s —F 1 10t 1 dk,  (4.49)
¥ o ky+a,ks+a, 1+a, ks 1 :
1 Y33 % 4 571 :
where a3, a4, as are given by (4.22) and- ay, az are given by
- (1) f, a, v uncorrelated
3 = re+A ) (4.50)
ay = ar2 g2
(11) f, a, v perfectly correlated .
],

102



a; = TG -g(J§ AH/axq + HTG) - nG + ALy 91 (1 - gH)

(4.51)
(re - c(Jf 3H/3x{ + ITG) - nGjATG .
Equation (4.49) 1s written as follows: |
2 cg xl
ELFh] = it 1, : (4.52)

Inteqra1 I 1s evaluated in Appendix C for positive or negative values

of the determinate & = agz- fa4 = a2 Lf + 4ATG. Sudstituting I,

(4.52) yields, for 8 > 0

aya, +a,a,a,. ~v/a,a, a8, +a, -2 i a
erfn] = o2 2, [ 1235 "3 83512 "2 23 % _

(ATG) 74ATG + Asz (1+a,a § = W)

a, - 2,8, - |

- &g 1,25 ] (4.53)

(1+2,2 5 - 35 2\,
while for &4 < 0
—_— 0? 6aff5; ta ¢ o fz A =2, + 3,25 2 )
(arg) (AL,) (1 +a, 2 - 24 24
- -2,
i e S SR (4.54)

'l
5(1“4‘5"“3 2y

where aj, az are given by (4.50) or (4.51) and 23, 24, 25 are
given by (4.22). ' ‘
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Similarly as above, substituting (3.58) iato (3.57) and integratin( \2
the resulting equation with respect to k2, k3, yields

E(ah] = ] Spa(ky) dk, (4.55)

where
[ ] ] [ ] [ ] [ ] [ ] ]
S uf Sfa + Ha saa H' Sra . (4.56)

Substituting Wg', Wy' W,' given by (4.10) and using (4.16), (4.17),
and (4.18), (4.56) yields

(1) f, a, v uncorrelated
JH J1 kl +b -

2
St o(k,) =
(k% + are) + 3 AL & I Stety

Silky) = =

2 (0 + AL 3 1) K+ b oare

_—
(k% + ar)* + AZ_EE K
Hidy k2 4 (H Jy TG - ALy b) :
191 X1 :
+ 3K (kz - Ars)zf+ Az*z*kz* Seelky) (4570
Ly K

(11) f, a, v perfectly correlatad

Spalky) = € Shelk,) - (4.58) -

2
£’
I’
3

where Sps'(ky) is given by (4.46) or (4.47). Substituting (4.57),
(4.58) and (4.18) into (4.55) and because the integral of the the multi-

A
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1
|
|
|
|
|
|
'
|

plying j kp is zero, (4.55) s written as:
2ccd, = a kz + 2
f 1 171 2 1 dk (4.59)

x 4 l Z 1
k1 + 43 k1 + a, 1 +~as k1

where a3, a4, 35 are as in (4.22) and 2], 32 are givenby
(i) f, a, v uncorrelated
a; = g2 (b + ALy Jg H) :  (4.60)
a; = =¢2b &G
(ii) f, a, v perfectly correlated
a; = g[b + ALy 91 (1 - cH)]  (4.61)
2; = Lb ATG B | ‘
Equation (4.59) can be written as follows

2 c% 11
ECah] = 11 (4.62)
where integral I is evaluated in Appendix C. For & > 0, E[ah] is
given by
E(ah] = o 2, ( -
' ' g £
i, -2, '
1 25 ] (4.63)

-2
S(1+ 2, ag - 35 8)A,

while for A < 0
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/a4 =2, 3, 3 ¢+ /34 3, 35 = 3y + 3, 3, 3 i {,,;t
Z
(ArG) (A Ll) (1+ a, 35 = 34 35]

-a
2 1
E(ah] = ag 2, [

-3 (4.64) :
5 (1+a, agﬁ- a3 3g)A,

where aj, a2 are now given by (4.60) or (4.61) and a3, ag, 25
are given by (4.22)

ah
E(f 5;;]

For a stratified sofl, (3.60) simplifies to

E[f ;%7 = ] ) sty ak,

where Spg' is given by (4.46) or (4.47). It holds:

(1) f, a, v uncorrelated

2
Jy k= A6(L, - Jy)

- T, 152,28
(k] + Ar6)“ '+ A%LT k]

(kg Spetky) = [= %) Ky

2 2.2
(r6 + AL J,) k + Ar°G

+jk ] Sielky)
i a 4 £, & .6 ff' ol
(ky + APG)© + A"L] Kk}
(i) f,a, v perfectly correlated é




3,01 - cn) kF + (APG(L - cH) 3y - AL b

L T .+, 8.8
(k] ¢ APG)S + A Ly k]

11

(3 k) Spelk,) = [- ky ky +

[b, + AL, (1 - )] K2+ boare

2 2 2 2
(k] + AG)° + & L1 ¥

Substituting (4.66), (4.67) and (4.18) into (4.65) and dropping integrals
of odd terms, (4.65) gives for i = 1,

2, e 2 2
20c A (a, k5 + a,) k]
gedh).f 1) 23 21 1 g (48
1 ky ¢ a, kl ta 1+ e kl
where a3, ag, a5 are as in (4.22) and aj, a2 are given by
(1) f, a, v uncorrelated
a1 = =J} ~ (4.69)

a = ArG (L3 - 91)
(i1) f, a, v perfectly correlated |
a3 = =Jj (1 - gH) o o
az = -[ATG (1 - gh)dy = ALy by] .
Equation (4.68) is written as 9

L ’ o 2
20, )
e[ 30 11, (4.71)
1

where integral I2 is evaluated in Appendix D. For & > 0, (4,71) gives
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E[fg-"x-l- . C\ |

a, /a4 +ta,3,35 %2 3, la4 -3 3, /a4 -3,

2
“t Ml — '
(ArG) 73ATG + A°LS (1 + a, a2 - a, ag)
1 43~ 233
d, = 4, 3 :
. Ll (¢.72) §
(1+a, a5 -2ay235) 2
while for A < O
€03 -
1
azx [-a2/a4-a2 a3 -3, 3, a5/a4+al 33/344-31 a, . 3
f 2 :
1 (arg) (AL,) (1 +a, ag - a5 ag) R
A, = A, 3,
+ 1z ] (4.7

7
(1 +a, a5 - 23335}

where aj, ap are now given by (4.69) or (4.70) and a3, a3, as
are given by (4.22).
For 1 = 2, 3, substituting (J ki) Spg'(ky) into (4.65) yields

g[ f g_:T] a0 (4.74)

Abeu®ii s a
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For a stratiffed sofl (3.61) simplifies to
E[ oh n '

where Spa' is given by (4.57) or (4.58). It holds

(1) f, a, v uncorrelated

2
H 3y k] + (K 9, ArG - AL, b)

2
(J ki) S! (k,) = ~g[=k Ky +
ha "1 l (ki+ArG)z+ AS L}klr
“,(b+AL1.J1H)k§+bArG]s.( ) 1)
+ . ; —— k 4.76
(11) f, a, v perfectly correlated
(J ki) sﬁa(kl) =g (J ki) sﬁf(kl) . (4.77)

" Substituting (4.76), (4.77) and (4.18) into (4.75) and dropping fntegrals

of odd terms, (4.75) gives for { = 1,

2 2
(2 k1 * 2 %y 1 d, (4.78)
e ¢ a 1¢ta ‘;2 1 *

ky + 23 k) + 2, 8 ky

ot b d
v - 2CedAy ®

where a3, a4, ag are as in (4.22) and a), 22 are given by
(i) f, a, Y uncorrelated

a; = J g2 H

(4.79)
Ay = g Jy ATG - ALy b)
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(11) f, a, v perfectly correlated
ay = = gJd1{l - gH)

az = - ¢[ArG (1 -gH)Jy - ALy by)

. (4.80)
Equation (4.78) is written as
. 2 3
r¥-rip :
ah f 1 :
E[a a,‘1] —1 (4.31)'

where integral I, is evaluated in Appendix D. For & > 0, (4.81) gives

E[a g-::-ll a

c,2,\[°z”“—4“‘z%"s“l‘a*’s“:t'*’1‘3"%"13‘4 .
f ' are e 2l 8 2
(arg) 74arG + ALy (1 + 3, a%- a3 2)

a, = a,
. 1~ %%

V4
(1 +a, a5 -2, ag) 1,

]

while for 4 < 0

Efa %:—1] =

lﬁz-aza4a5-a1 a4a5/a4+a1 a3/a4+a1a4+

é
(arg) (A Ll] (1+a, 3 -2,
a, - a, a
. 1 - 323

4
(1 +a, 2z -2, 35) 2

2. ("%
ag 3yl

4
"

JRIENER D+« AR

)

(4.83)

N
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where a), ap are now given by (4.79) or (4.80) and a3, 24, s
are given by (4.18)
For 1 = 2, 3 (4.75) yields

£fa §:—i] .0 (4.84)

~ Given the expressions for E(fh], E[ah], E[f 3n/ax;] and
E(a 3h/3x{] evaluated above, and the expressions for the variance
E[h2) evaluated in Section 4.3.1, terms ‘: and v of (3.16) can'be

, : : A
evaluated. The effective hydraulic conductivities Kij can then

4
.

determined from (3.14).‘
Similarly to the variance, the effective hydraulic conductivities

A 4 - ’

Kii depend on the following soil property and mean flow characteris-

tics:

- - 2 2 2., . 4
Kqg = Ky (F, A, T, Ts Ta Oys Ags By 3y, 350 I3, Jt). ({.85)

“Section 4.4.3 gives illustrative examples for the dependence of Rif on
some of these parameters. Note that although a closed form expression,
~ has been derived for‘?ii because of the'comp1ex form of this expression
it {s difficult to visdaIiie the dependence of iif on each of these
parameters; " The next section Herives some asymptotic expressfions for

forsy

Rii that @;;”valid at particular ranges ofiH'and aH/at. These
expressjohs'are very simple and explictly show the dependence of Rii on
each of the parameters of Equation (4.85). In addition, these

expressions suggest a modification of the effective hydraulic
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conductivities evaluated using (3.14).

4.4.2 Asymptotic Expressions, Modification of the Effective Hydraulic

Conductivities

This section derives some simplified asymptotic expressions for
G+ %= and G » 0. These expressions explicitly show the dependence of
Kij on the different variables of (4.85). Because of their simplicity,

‘these asymptotic e;pressions make analyses, comparisons, etc., very

easy. In fact, as will be seen later in this section, the asymptotic
results show that the effective hydraulic conductivities evaluated, usingg
the approximate (4.14), are a first order approximation of the exact
results. This'suggests a modification of (3.14) (exponential
generalization), in order to account for the error due to neg1écting
higher order terms. Since the evaluations are quite lengthy for economy
of space, only the case of f, 2, v being uncorrelated {s examined.
Similar re;ults can be easily obtained for f, a, v being perfectly
correlated.

Similarly to Section 4.3.2, simplified asymptotic expressions for
Kii are derived by letting variable G, given by (3.31) tend to te or 0,

(see discussfon in Section 4.3.2). This requires evaluating asymptotic

expréssions for E(fh], E[ah], E[f ah/ax;] and E[a an/axy] G » + = for 2
G+ 0. ) ;
-~ '..3_
ECfh]
Asymptotic expressions for E[fh] are derived first. For G » 4=, '
2,2

A = A°L] + 4ArG is positive and E[fh] is given by (4.53) where aj,
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a2 are given by (4.50) and a3, a4, ag are given by (4.22). Sub-
stituting a3, &2, a3, 24, 35 into (4.53) and taking the limit
for G » += yields

. af . N
E[fh] = - . (¢.86)
For G » 0, (4.53) yields
2 .
: . de dy A

For G+ —=, & 1s negative and (4.54) ylelds

d2 :

Elah] |
Asymptotic expressions for E[ah] are now derived. For G+ +=, A is
positive and E[ah] is given by (4.63) where aj, 2y, a3, 24, ag
are given by (4.60) and (4.22). Substituting aj, az, a3, ag,
ag into (4.63) and taking the limit for G + += yfelds

2
Efah] = -u§ L . (4.89)

For G » 0, (4.63) gives

CL

aH
E(ah] = = + (9 )] .
a, - PYRY 1%

(4.90)
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For the case of J{ 3H/axj = 0, which is expected to be valid near'the < '
core of a sofl mofsture plume, (see discussion in Section 4.3.2),

Equation (4.90) simplifies to

a% J1 11 cz H
E(ah] = - T . (4.91)
171
For G+ -=», A is negative and (4.64) yields
E(ah] = <2 e H (4.32)
f X . .

E[f gl;I]

Similar asymptotic expressions are derived for [f ah/ax;]. For

-

G+ +=, A is positive and E[f ah/ax1] is given by (4.72) where aj, -
az, a3, a4, as are given by (4.69) and (4.22). Substituting

ay, az, a3, ag, as into (4.72) and taking the limit for G + +=

gives
el =0 . (4.93)
1
For 6 » 0, (4.72) gives 3
2 3
ge J b
S R . . (4.94) %
1 1+AL 1 :
171 <
For G + ==, & is negative and (4.73) gives o
N
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c2
f

E[f gJ}I ‘4' - Tx; . (4.95)

As was discussed fn Section 4.4.1 the expected values E[f ah/axg]; f =

2, 3 is always zero.

Efa ,3,271

Asymptotic expressfons for the term E[a 3h/ax)] are now derived.
For G » +=, & {s positive and E[a ah/ax)] 1s given by (4.82), where
ay, 22, a3, a4, ag are given by (4.79) and (4.22). Substitut- »
ing a1, az, a3, 24, &5 into (4.82) and taking the limit for G »

+= produces
ah
E[a g==] = O . (4.96)
% I
For G » 0, (4.82) gfves
¢ ¢ H
sh ] ’
¢ For Jj 3H/3x§ = 0, this equatfon simplifies to
c% ‘Z H
(4.98)

ah
E[a e=] = .
,a‘l T+ x1 
For G » ==, & {s negative (4.83) gives
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ah "? < o
E[a s—x-l- s —A—rl- . (4.9¢

As was discussed in Section 4.4.1, the expected value E[a 3h/3x¢];

i =2, 3, is always zero.

Using the above asymptotic results, simplified expressions for ii‘
are derived. The case of J{ 3H/3xqy = O is examined for {llustra-
tion. The term af

for ECh2), ELfh), and ECah), (3.15a) yields, for

» given by (3.153), fs evaluated first. Substituting 5

G+ 4o

[
-
S S
L )

(4.100)

For G + 0 {Case of aH/ax{ = 0}
2 a% (1 + ;2 Hz)

e * T AT
3 l+ 1%

(4.101) &

while for G + -=

2,2 2 3
2 _ 21+ H _n 1 ‘
ot ot (rvyp! - (02 ]

Term vy, given by (3.15b), is now evaluated. Substituting
ECf an/axj], E[a 3n/axy], (3.15b) gives, for G + +=» |

11 =0 . (4.103)
For G+ 0
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2

g, J .
ee—t il (1ec?dy) (4.108)

1+ ALYy |

while for G + —=
23
T = - 1[1+;2 W) . ( 4.105)
ALy A, |

The.variables.fz, T3 are always zero.
Substituting the above expressions foricf. vy into (3.14), the ~
following asymptotic expressfons for the effective hydraulic

conductivities are obtatned, for G + ¢=

o2 2
n
Km[l + ’f
(4.106)
z 2
‘K[1+—r] .
For G+ O 2
s . [1_f1+csz]
n = kll TR
(4.107)

2
°f 1+ 4 HZ

L K2 = Kall * o T, ]

while for G ¢ ==
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2 ,2.2
ek f1-0f Leedud %
11 "m T ALY al

X

1
(1*1—;'11?;';)]

) 2 (4.108)
.G 2 ,2 g, N "

. f 1+cH f
22 = Kplt + o e v 1+ TFA Y, I

3

Note that for 3H/3x{ = 0, the lateral hydraulic conductivity K33 is
equal to izz.

The coefficient of variation of the specific moisture capacity
C="0 +v is usually small, 1.e., o»},'/rzs a% nzll"'2 <1. Equations
(4.106) are then further simplified to

xll.' l(m
(4.109):
K22 = Xn
while (4.108) simplifies to: \/
2
% ,K[l_"f 1+;"’uz]
11 m T KEI X'l_ v
(4.110) °
2
o 2 i
Y = f 1+ ; H
K11 Km[l * = S ] .

These simplified asymptotic expressions for l.(“ have been derived for G
absolutely large or G small. A physical interpretation of this assump- i
tion is given in Section 4.3.2. As a reminder, it is mentioned that
G + += corresponds to drying in relatively dry soils, 6 + -» corresponds .-

to wetting in relatively dry soils, and G + 0 corresponds to the steady
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state case. Note tﬁéélthe expressions (4.107), derived here as a parti-
cular case of the general transient results for G + 0, were also obtained
by Yeh, et al., (19825 using a less general steady state ana\ys{s. Note
also that for AL) A3 large, the hydraulic conductivities in the case
of wetting, giéen by (4.110), tend to the ;teady state hydraulic conduc-
tivites (4.107). |

The above expressions for the effective hydraulic conductivities
were derived using (3.14). This equation was obtained by expanding
(3.10) in a Taylor series and retafning only the fiékt and second order
terms. Note that the exponents fn (3.10) and (3.11) depend on the mean
capiliary ten;ion head H. Fdr H relatively small, it {s expected that
(3.11) is approximately valfd. For H large, however, the higher order
terms, in (3.11) could be fmportant since they depend on powers of H -
(H3, W4, ...). It is thus expected that the expressions derived
previously for the effective hydraulic conductivities, using (3.14), will
be valid only for H relatively small while for H relatively large these
expressions will not be valid. Inithe case of a perfectly stratified
formation and if f, a, v are assumed to follow normal probability density
functions and J2, J3 =~ 0, the effective hydraul{c'conductivitfes can
be directly ev;\dated'with no need to expand the exponéntigl in (3.10).
Such éxprgésiohs ;re derived below and are compared to the effective
hydraulic conductivity expfessions derived previously.

For Jz, J3 = 0, assume that the flux of water péra11e1 to
stratification is small. The specific discharge in a direction

perpendicular to stratification {s given by
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- k(y) Up t2)

ql axl

Because the lateral flux is small, the law of conservation of mass sug- °
gests that q; is approximately constant over xj. DOividing (4.111) by
K(y) and taking the expected value of the resulting equation yfelds

Elq, X"Hw)) = ﬂ%:_zl .

(4.112)
1 1 :

For qi constant, using Equation (3.13) we get

a 1 B
Kiy 2q/d, 3 —= (4.113)
11 ek Tw) . _.
i.e., the effective hydraulic conductivity Rll is equal to the harmonic:%
mean of the unsaturated hydraulic conductivity. Substituting (3.5), the

expected value E[X~l(y)] is given by

o2
€

E[K-1(¢)] = %; E[ef - Ha - Ah - ah] - %_ e z (4.114) -
m e

where Kn 1s given by (3.8), cf is the varfance of ¢ = f - Ha - Ah

given by (3.15a), fluctuation products of an order higher than second

are ignored and the relationship E(e€] = e °§I2 (Gaussfan £ ) 1is used.
Substituting (4.114) into (4.113) yields the effective hydraulic ;ﬁ
conductivity f(u i
i

5

°

‘ Ry ke 2 (4.115) %
#
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where of 1s given by (3.152).

The lateral effective hydraulic conductivity izz is now
evaluated. For J2 = 0, it can be assumed that 3(H + h)/3x2 «
3H/3x2. Then

Elay) = E[X(¥) a—‘f’x;",--—‘l] - €[xtv)] 3, (6.116)

’ E[qzl

f.e., the lateral hycraulic conductivity is equal to the arithmetic mean
of the unsaturated hydraulic'conductivity. Substituting (3.5) and taking

the expected value, Equation (4.117) gives

62
€

P '2- l
FZZ =K e (4.118)

where af is as defined above. For J3 = 0 the lateral effective
hydraulic conductivity R33 is also given by (4.118).
Asymptotic expressions for the effective hydraulic conductivities

predicted by the second approach are now derived for G + te and G + 0.
_ . 9

'Substituting'the previously derived expressions for ce. given by

(4.100), (4.101) and (4.102), into (4.115), (4.118) and assuming

that o2/t% < 1 ylelds, for G + +=
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- e N
Kpy = Kg expl- ‘f—Z'] " K C
(4.119)

2 2
Gf'\

Kzz = K exp[ ——2—] b K .

For G+ 0

]
Fal
(]
b
o
r~—
[]
(\10
-~
%
[a—

IV
(4.120)

»x?
)
x
(13
b
o
—

22

while for G + =

;2
9 142 Ko
AL !

o

1 K exp[
(4.121)

a 2,2
f + H
ap * Ky exp[ ot LEEA 1‘ - ]

F a4
[']

Comparing the above equations to (4.109), (4.107) and (4.110), we

see that (4.109), (4.107) and (4.110) are equal to the first two terms of :

a Tayiar series expansion of the exponential in (4.119), (4.120) and %;
(4.121). Note that for a% and g¢H relatively small, the two 3

sets of equations approach each other. For c% and /or ¢H large how-

ever, the discrepancy between the two sets of equatfons is significant.

Equations (4.115) and (4.118) and the corresponding asymptotic
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expressions (4.119); (4;120) and (4.121) were obtained without expanding
the exponential.in (3.10). It is thus expected that the#e equations are
closer to reality.»at least in the particular case of a stratiffed sofl,
than the corresponding results (3.14) and (4.109), (4.107), (4.110),
obtained using a Taylor series expansion in (3.10). For this reason

(4.115), (4.118) and their aﬁymptotic expressions (4.119), (4.120) and

(4.121’ are used in further analysis. " Note that the varfance cf is
evaluated from (3.152) and the results of Section 3.4.1.

The effective hydraulic conductivities Eii are generally‘given by
some quite complicated expressions (see Section 4.4.1). The asymptotic
expressions (4.119), (4.120) and (4,121) are useful since they are very
1simp1e}and they explicitly show the dependence of Ef{ on the different
soil property and flow characteristics at different ranges of H an 3H/3t,

rThe implicaiions_of the asymptotic results are now discussed. The
condition G + += occurs when aﬂlaf is bositive and relatively large (dry-
ing), A and/or H are large (éoarse'andlor dry soil) and F fs small (small
Kg). Fbr G + + the effective hydraulic conductivities are given by
(4.119). Note that if °$,r2 <1, it holds 111 ~ izz =« Kn, where
Kn = ef eAH, This implies that, in this case, the effective
hydraulic conductivitfes can be evaluated by an expression similar to the
local hydraulic conductivities. The ‘effective“ saturated hydraulic
conductivity Kg = eF, is equal to the geometric mean of the local
saturated hydraulic conductivity Kg and the “effective” po're size
distribution parametervk4is‘equa1 to the arithmetic mean_of the local
pore size distribution parameter a. Note that k11. in this case, is

independent of rz, c%. ci, af, X1, 91, J2, J3 and J¢ and
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depends only on F, A, and H.
The condition G » -» occurs when 3H/3t is negative and has a rela5-fj

tively large magnitude (wetting), A and/or H are large, (coarse and/
or dry sol), and F is small, (small Kg). For G+ -= and a$/r2 <1,
the effective hydraulic conductivities are given by (4.121). Note that f
in this case iii is different than the corresponding i{i in the

drying case. Here Kif 1s given by a product of Ky by an

exponential term. This term is due to local sofl property varfability
and 1s predicted by the stochastic theory since this theory takes into
account the existence of local variability. Traditional abproaches do
not predict this term and the necessary adjustments of i}i‘in the case
of wetting. This {s because these approaches do not realistically ac-~ 4
count for the existence of variadbility of the local sofl properties. Note~

P
that in the case of wetting and large H (dry soil) in depends on F, A, j

2: °'$9 J2,

a% °a- A1, H and J] and it is independent of T
J3 and J¢. It is further observed that, in this case, K11 is

anisotropic with a degree of anisotropy given by

2,2

2
K 1+¢ H2 g *+ 9, H
W

22

= exp [df ] = axp [—-E[-—r—] .. (4.122)

"u
The “dagree of anisotropy increases as c% and ag fncrease and
AL) Ay decreases. The degree of anisotropy depends on the mean
capillary tension head H and it increases as H increases (dry soil). A
physical explanation of this effect is given in Section 4.7.

Note that in the above case, the effective hydraulic conductivities ;i f
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depend on -the meaq,flgw gradieht J1 perpendiqular to stratification.
Because Rii depend§ éﬁ J1, 1t 1s generally 1@po;sib1e to define an
effective hydraulic conductivity tensor 1ndebendent of J;. If J
does not vary significantly around a consfant_vaIue J1 le.g., J1 = 1)
howevér. it is possible to aﬁproximaté iii(dl) with the value of

R{i at Jj. To see this, expand i;i in a Tay]orrséries as follows:

aK
Y - - 1i -
Kee(dy) = Koo(dy) ¢ {Jy = d,) =
1i'Y1 1'% n-lla_Jl 171
2.2
v (3 2 1+g" H -
Kez(3,){1¢ @ (Jy = Jdy)
1l e o Axg23, - ¢t 1

where it 1s assumed that soil is horizontally s;ratified t.e.,

L} =J) ¢+ 3H/ex) =291 = 1.
This equation shows that {f J; does not vary significantly around 5}
and/or c% is small, Ay large (i.e., soil tends to be homogeneous) and
A is large (coarse soil), it is possible to write kf' -~R11(31)-
Since ifi is independent of spatial gradfents Ji, J2,:J3, we may
conclude that, in this particular case, an effective hydraulic
conductivity tensor independent of spatial gradients, exists.

The condition G « 0 occurs when 3H/at is small (steady state), A
and/or H-are small (fine textured and/or wet soil), and/or F is large
(large Kg). For G+ 0 the effective hydraulic conductivites are given
by (4.120). Here 211_15 given by a product of Kn by an exponential

term as well., As was discussed in the G + == case, this term is due to




the existence of local varfability and it is not predicted by traditiona] ™

approaches. Simflarly to the wetting case, i11 depend on F, A, a%.
a§, A1, H an¢ J1, but are independent of rf 9y, J2, J3 and

Jt. Note that for ALy A1 large (coarse and/or spatially smoothly
varying soil) these hydraulic conductivities tand to the hydraulic ?
conductivities (4.121) corresponding to the wetting case. The effectiveé
hydraulic conductivities are anisotropic in this case as well. The i

degree of anisotropy is given by

- 2 2 ,2

K 2 2 g, +a_H b
<22 = exp [°3 1 +1‘ 1" ] = exp | f - al ] . (4.123) 4
X ¥ Ty

11
The degree of anisotropy also increases as H increases (drying), but 1t.f
1s smaller than that in the wetting case, particularly for small ALy ‘
A1 (i.e., fine and of small scale variqb!e soil). Equation (4.122),
derived here as a particular case of the general transient results for
G » 0, was also obtafned by Yeh, et al., (1982), using a steady state
analysis.

Similarly to the wetting case, the effective hydraulic
conductivities Rf{ depend on Ly in the case of G » 0 as well. It is
thus generally impossible to define an effective hydraulic conductivity
tensor which is independent of Jj. If J1 = Jj. howeyer, it is
possidble to approximate §11(J1) - i11(31). In this particular

case, such an approximate hydraulic conductivity tensor exists.

The simplified asymptotic expressions developed in this section %

proved very useful. Using these expressions, it was possible to compare




‘the approximate effective hydraulic conductivities for a stratified soil
 obtained using the expansion of the‘exponentiai in.(3;10). to the exact
effective hydraulic conductivities. In addition, the simpiified asymp
totic expressions offered valuable insight about the dependence of Kii
on parameters F, A, T, sf. 3,. A1, H, Jd3, J2, J3 and Jt_ |
This {s important since evaluation of the dependence of kif on each of
the above parameters would require sensitivity analysis with respect to
12 variables. The'asymptotic results derived in this section show that
the effective hydraulic‘conductivities depend on thevflow conditions
(wetting, drying). which suggests 2 hysteresis oi the effective hydraulic
conductivities. In eddition. the anisotropy ratio of the effective
hydrauiic conductivities depends on the flow conditions (wetting, drying)
and on the mean capiiiary tension head.

Section 4.4.3 applies the results of Section 4.4.1 and 4.4.2 to the

Panoche clay loam and the Maddock sandy loam sofls.

4.4.3 Applications and Discussion

This section gives several exemples for the dependence of the effec-
tive hydraulic conductivities on the different sofl and flow characteris-
tics, and compares the values derived using‘the approximate espressions
“of Section‘4 4,2 to the exect values., Since the effective conductivities
depend on & large number of variabies (12 variabies), only a particular
set of parameter values is considered. 1n order for these exampies to be
as‘reaiistic as possible, ne have Choosenrto ose combinations'of soil
parameters that have been'observed in the field, instead of using

arbitrary peraneter values. The Panoche clay loam and the Maddock sandy
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loam soils are selected for illustration. It is assumed that parameteg;:
F, A, T, u%, ag, a$ and 2] are {ndependent of H. For

illustration only the case of f, a, v being uncorrelated is examined.
Note that iii generally depends on the mean flow characteristics H,
J1, J2, J3, Jt. Because of the dependence of Rii on the term G

= gAH J¢, the dependence of Kijj on H and J¢ is stronger and more

important than the dependence on Jj, J2, J3, particularly at large k
H (dry soils). For this reason, this sectfon {nvestigates the dependencé
of 211 on H and J¢. The values of the spatial derivatives are fixed
to J; =1, J2 3J3 = 0. This is approximately valid near the
central part (core) of a sofl moisture plume, moving fn a horizontally
stratified formation. Evaluation of iig for other soil parameters or
mean flow conditions is straightforward, using the general equations
developed in Section 4.4.1.

Following the discussion in Section 4.4.2, the effective hydraulic
conductivities 211. izz are given by (4.115) and (4.118)
where'og is given by (3.152), and the expected values of (3.15a) are
evaluated in Section 4.4.1. Since i11, izz are doth directly related

to os the varfance af

is evaluated first. The dependence of af on
H and Jy is shown in Figures 4.5 and 4.5, Figure 4.5 corresponds to
the Panoche soil,while Figure 4.6 corresponds to the Maddock soil. These
figufes plot ag as a function of H for a set of discrete values of
J¢. The values of a§ predicted, using the asymptotic expressions of
Section 4.4.2, for G+ 2=, G+ 0, are also plotted for comparison. Note

that these curves depend on H and the sign of J¢ but they are indepen-

‘ .
abtiddivstont neidm - .10 ‘.-.‘.m't'-w-ni-" W i "

dent of the magnitude of Jg.

Examination of Figures 4.5 and 4.6 shows that af generally A

L
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depends on H andzdg; {(especially its sign)..'For H and/or IJt| sﬁa1l
05 follows closely the asymptotic curve predicted for G + 0. This
curve is practically independent of the magnitude and sign of J¢ but it
depends on H, As H increases however, af diverges from the G + 0
asymptote, The variance cf then depends on both fhe magnitude and the
sign of J¢. For J¢ < O, of tends to be larger than the G+ 0
asymptote. For a fixed H, of decreases with increasing J¢. As H
continues to increase cf approaches the G + = asympfote. depending on
the sign of J¢. Note fhat the value of H where aﬁ diverges from the
G + 0 asymptote and convergences to the G + iw asymptotes increase with
increasing 'aH/atI. Note also that for J¢ < 0, cf generally increases
for incrgasing~H,wh1le for J¢>0, af reaches & maximum and then starts _
to deérease‘to the G + += asymptote which is independent of J¢ and H.
cOmpafing Figure 4.5 to Figqre 4.6 shows that af is much larger
for the Haddock'soil than it‘is for Panoche sofl. This may bg explafined
by the fact that the Maddock sofl has a larger variety of textures than
the Panoche soil. Note also that the G+ - and G + 0 asymptotes lie |
closer to each other in the MaddockAthan,in the Panoche soil., In fact,
in the Maddock soil af is practically independent of J¢ for J¢ < C.
This is in achrdance to the asymptotic Equations (4.120), (4.121) since
in the Maddock soil case parameter A is relatively large and ALy A =
1 + ALy 2§, In the case of the Panoche sofl however, AL} 1y is
relatively small andvthe two asymﬁtotes are significantly different.
Note also, tha; thg ;symptptjc value of;cf for G » +=, given by GE =
_ai/rzl‘is:relatheiy small, particularly in the Maddock sofl case.
This justifies the approximation Ky = Kag = Kq (see 4.126, 4.127).
Given the values of cf evaluated above, the natural logarithms of.
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Varifance of &= £ - Ah - Ha versus the mean capillary ten-
sion head H for the Panoche sofl. The curves correspond to
different values of Jy. The asymptotic curves for G+ 0,
G» =, and G» = are also shown.
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. different values of Jy. The asymptotic curves for G+ 0,
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the corresponding effective hydréulic conductivities ill. izz can be (:
evaluated using (4.115) and (4.116). Sudstituting Ky from (3.8),
(3.118) and (3.119) yield

o2

1nK,, = F = AH = -
i T (4.123)
2

Y €
‘nKzz'F-m+T ]

Using (4.123{ lnill, lnizz are evaluated and they are plottad in
Figures 4.7 and 4.8, Figure 4.7 corresponds to the Panoche soil while
Figure 4.8 corresponds to the Maddock soil. Since 1nk11 and 1nizz

are directly proporticnal to 03 the previous discussion for the
dependence of as on H and J¢ provides useful information for the
dependence of Inill, lnizz on H and Jg. Figures 4.7, 4.8 show thatA

P
‘211. K22 depend on H but they also depend on J¢ and particularly on

iii on J¢ suggests a hysteresis of the effective hydraulic conductiv-
ities., Figures 4.7, 4.8 also show that Rzz 1s generally larger than
ill» particularly in the-case or wetting (J¢ < 0). In the case of
drying, izz - R11 = Kp. "
In order to better {llustrate the hysteresis and anisotropy of the i
effective hydraulic conductivities, lnill and lnizz are plotted as a
function of H for Jy == 0.01 cm/sec in Figures 4.9, 4.10. These
figures show that i11, izz generally depend on the sign of J¢, :
(1.e., wetting or drying conditions). The effaective hydraulic conducti- L;

vity perpendicular to stratification i11. is smaller for decreasing H
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Figure 4.9 Vertiéal and lateral effective hydraulic conductivities
- versus the mean capillary tension head H for the Panoche

sofl, with J¢ = + 0,01 cm/sec, f1lustrating hysteresis
and anisotropy of the effective hydraulic conductivities.
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(wetting), than it fs for increasing H (drying). The lateral effective
hydraulic conductivity igz however, 1s larger for decreasing H
(wetting) than it is for increasing H (drying). It is further observed
that Rzg is generally larger than ill- The anisotropy ratio
Ezzl£11. in the case of wetting, fis relatively large, particularly at
large H (dry soil). In the case of drying however, Rzz is
approximately equal to 211 (Ezz . ill = Ky) which implfes that
the soil dries out fsotropically,

The effective hydraulic conductivities Ki{, in the above examples,
were evaluated and plotted for different sets of values of H and Jt.

These values were selected for 11lustration purposes;add theyvdo not

correspond to any particular real problem.  In order to further

11lustrate the hysteresis and anfsotropy of the effective hydraulic

~ conductivities, 1t is desired to evaluate iii for a set of H and J¢

values corresponding to a real problem. In a real situation. H, Jes
etc., should be determined by fterative solution of the governing
large-scale (mean) flow equation, given the inftial and boundary

conditions of the specific problem. This requires numerfical solution of

. the large-scale equation and 1t s out of the scope of the present work.

In some cases however, it is possible to obtain simple approximate

~ analytical solutions of the mean flow equation,

7 Letlus consider, for example, the case of a water input pulse at the
soil surface. It is assumed that the inftial mean capiiIarj tension head
in the sofl matrix is uniform with depth. It {s also assumed that the
flow 1s approximately vertical, and the vertical hydraulic conductivity
is E11 = Kn,» independent of the flow conditfons. It is then possible
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to analytically evaluate H and J¢, using the approximate perturbation
method describaed in Wilson (1974), (see Appendix D).

The case of a Maddock soil with f, a, v being uncorrelated is

WA e

considered for {llustration. Two different water pulse depths at the
soil surface are examined, f.e., water depths of 50 cm and 30 cm. The :
mean flow parameters H and Jy are evaluated as a function of time at a <

depth of 10 m. The initial capillary tensfon head is assumed to be Ho l;

- a0 D 0 R o A

= 300 cm. Figures 4.11 and 4.12 plot H as a function of time as the sot:
moisture plume passes the 10 m depth. Given the calculated values of Hé;
and J¢ and EquétionsA(4.123). the corresponding effective hydraulic 3
conductivities are determined and are plotted in Figures 4.13 and 4.14 §}
a function of H at the depth of 10 m as the sofl mofsture pulse moves '
past this depth. The sign of Jy 1s also fllustrated by the d1rect10narf:
'arrows in these figures. For the 50 cm water input depth, H decreases '
from Hy = 300 cm to a relatively small value where the effective
hydraulic conductivities approach the limiting curve G » 0, independent f{f
of the sign of J¢, (see Figure 4.13). However, for the lower water f
input depth, the minimum value of H is relatively large and the effectivéf'
hydraulic conductivities do not approach the asymptote G+ 0. As a ;
matter of fact, for the range of H, values in this case eAH {s always
relatively large and 211, Rzz remain close to the G » +» or G+ -»
curves, depending on the sign of Jy. Since for H large these curves

are far from each other, the values of 211, izz Jump for the G +

1 i vtad oo koo

to the G » +» curve as H reaches {its minimum value and J¢ changes sign

(see Figure 4.14). Figures 4.13 and 4.14 show similar hysteresis and

anisotropy effects as Figures 4.3, 4.40. Note that the effective

JTE
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Figure 4.11 Mean capillary tension head versus time at a depth of 10m

-for a water pulse of 50 cm at the soil surface.
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Figure 4.12 Mean capillary tensfon head versus time at a depth of 10 m
for a water pulse of 30 cm at the soil surface.
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hydraulic conductivity at the wetting front of the soifl moisture plume is
generally smaller than the one fn the drying front. Since the

approximate perturbétion method assumes equal values of the effective

hydraulic conductivity at both fronts, the estimated values of H and J¢

may not be very realistic. In order to obtain more realistic estimates

of H, J¢, the mean flow equation should take into account the

hystgresis of 211. Nevertheless. even appkbximated. the above example
shows similar hystéresis and ahisotropy’effécts for the effective
hydrau1ic conduciiQitigs. as did the exampies fn Figures 4.11, 4.12,

It fs'of interest to note that the local sofl properties were
gssuméd to be nonh;steretic and isotropic. This impifes that the hyster-
esis and anisotropy of the large-scale effective hydraulic conductivities
are not due tb local hysteres{s aﬁd anisotropy bat they are due to the
ihe spatiai variabiliiy of the local soil properties. The fact that
spatial variab&lity on sofl properties fntroduces hysteresis of the
effective'hydkaulic éonductivitfes 1sAa preﬁiously unkown 2and important
result since it cannot be pfédicted by traditionai models. Section 4.7
givés an 1nterpreiation ofvthé large-sca1e hysteresi; and anfsotropy,

predicted by the stochastic theory, and discusses a series of field

obseréations showing agreement with these résults.




4.5 Mean Sofl Moisture Content and Effective Specific Moisture Capaciti

This section evaluates the mean soil moisture content and the . { )
effective specific moisture capacity in the case of a stratified soil
using the general theory developed in Chapter 3 and the simplifications ';‘

discussed in Section 4.2. Section 4.5.1 analytically evaluates the

expectad value E[yh] in (3.16) and the corresponqing mean soil
moisture content @ and the specific moisture capacity E. using Equatiohs;;
(3.16) and (3.17). The expressions for o and E. derived in Section ;
4.5.1, are of a quite complex form. Sectfon 4.5.2 derives asymptotic g
relationships for © and E when G + 4= and G» 0. These expressions'are '
quite simple and they explicitly indfcate the dependence of 9 and E on
the differeﬁt soil property and flow éharacteristics. Section 4.5.3

gives examples applying the results of the stochastic theory. -

4.5.1 Evaluation of the Mean Soil Moisture Content and the Effective

Specific Moisture Capacity

-

The mean soil mofsture @ and the effective specific moisture
capacity ¢ require evaluation of the expectad value E[yh]. Similarly to ;
Sections 4.3 and 4.4 it 1s assumed that f, a, v follow exponential ;
cross-covarfance functions with identical correlation lengths. The two

cases of (1) f, a, v uncorrelated and (ii) f, a, v perfectly correlated ?

v,

are investigated. The cross-spectral density functions of f, a, v are

then related to the spectral density function of f through (4.16) or

. .,..“?.4.'9_‘-;,..' o

(4.17), where parameters g and n are given by (4.15).
Using the approximatfons for a stratified sotfl discussed in Section

4.2, the spectral amplitudes dZ, are given by (4.8), where the
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response functions W¢', Wa', Wy' depend on kj and are

independent of kz;‘ij.‘ Replacing Wf, Wa, W, in (3.63) by

We', Wa', W', substituting (3.63) into (3.62) and integrating the
resulting equation with respect to kp, k3 yields

E[vh] =£ Spy (kp) 0Ky (4.124)

where

shT = W Sfr + Ha SaY +_“Y SYT (4.125)

The primed functions Syy' (u, v = f, a, Y) In (4.125) are given by
(4.13). Substituting the expressions for Wg', Wa', W, given by
(4.10) into (4.125) and using (4.16), (4.17) and (4.18), (4.125) yfelds

(i) f, a, v uncorrelated

2 :
] ) G
s, (k;) = = Z See (ky) =
A Y T

(4.126)
-nek,? - nlared ne AL,k \
[— 12‘ o SR oy zllzzzsff“‘l’

-

(ii) f,ay perfectlyrcorfeiated

ShY (kl) L 1] shf (kl); ’ i . (4.127)




where Spf' 1s given by (4.47) and for f, a, v following exponential

Ca

covariance functions, S¢f' is given by (4.18). Substituting (4.126),
(4.127) into (4.124) and because the integral of the term muitip\ying
. jky is zero (odd term), (4.124) can be written in the following general

form

Zafzi

L

. 2
1] a1k, "+ 2, 1
0

E[yn] =
4 Z 2
Kyt agk St a, 1+ agk,

dk, (4.128)

where a3, ag, ag are given by (4.22) and aj, ap are given by

(1) f, a, v uncorrelated

a; = -n2 6
(4.129) -
ag = n2Are? o
(11) £, a, v perfectly correlated i
a, = n[r6 - g(J 2y wre) -n6 + AL (1-gH)]
1 15?1 171
3
« (4.130) ¥
a, = n[r6 - £(3. 23 + #re) - a6) ArG ¥
2 i??i s
Equation (4.128) is written as follows
2082,
E[yh] = —w— 1, (4.131)
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Integral I is evaluated in Appendix C. For & = a32 - 4a4 > 0,
E{vh] is given by |

(ATG) 7 4ArG+ Azl.l-z (1+ ‘4‘52' 2g2)

8 " 8%

-~ (4.132)
5 2 J
(1 + YL a3a5)>.l

while for & < 0 _ :
a /3, ~a,8,8, +72, 8,8, - 8, + 8,3.2
4 4 _ 4 -
E[Yh]'cflet 1 174785 : 25_2 2 2°3°§  _
(ArG) ( ALI) (1 fra4a5 - ‘3‘5)

8y = 28

-3
5 2

(4.133)

where'al. az; are given by (4.129) or (4.130) and a3, a4, s
are given by (4.22). | |

Given E[yh], the mean sofl mofsture content @ can be evaluated from
(3.16) where it is assumed that the sofl characteristic E[6(H)] is
known. The expected'value E[vh] depends on the same sofl property and
mean fjow characteristics as the effective hydraulic conductivity.

Equation _(3.16) then gives

o = glstm)] - alF, A T, 0%, 0,2 0 a0 K3 9, 350 3 (4130)

where ¢ = E[yh]. Given the above'expression for the mean soil moisture

content, the effective specific mofsture capacity E can be evaluated from
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In the special case of 8 being linearly dependent on v (3.16)

reduces to @ = (-TH + E[94]) - E[¥h] and Creduces to C =T +

a(E[yh])/3H, where 9, the soi]l moisture content at saturation.
Section 4.5.2 derfves asymptotic expressions for 0 and é when G » :r}:.
and G » 0. These expressions are very simple and they explicitly ‘
indicate the dependence of 9 and E on the different parameters of
(4.134). Section 4.5.3 gives examples for the dependence of o

and C on H and Je.

4.5.2 Asymptotic Expressfons A

This section derives asymptotic expressions for E[vyh], 6 and ¢ when, . 3§
parameter G » += or G » 0. For discussion on the meaning of these 1imi¥;_4é
of parameter G see Sections 4.3.2 and 4.4.2. The cases of f, a, vy being &
uncorrelated or perfectly correlated are considered.

Asymptotic expressions for E[Yh] are derived first. For G+ +», A =
a3l - 4ag4 > 0 and E[vh] 1s given by (4.132). Substituting aj,
az, a3, ag and as, given by (4.129) or (4.130) and (4.22), into

(4.132) and taking the limit for G +» +» gives
"(f) f, a, v uncorrelated
2n2

g
E[yn] = - 4+~ (4.136)
AT
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W,

(11) 'f, a, v perfectly correlated

2
-} ‘

E[vh] = = [T (1K) = 0%
I

For G » 0 Equation (4,132) yields

(i) f, a, vy uncorrelated

E[vh] =0

(ii) f, a, v perfectly correlated

2 .

E[vh] =
1+ALiX1

(4.137)

(4.138)

(4.139)

For G » ==, & is negatfve and E[yh] fs given by (4.133). Substituting

ay, 22, a3, a4 and ag and taking the limit for G » =, (4.133)

produces,

(1) f, a, Y uncorrelated

E[vh] = f,.'.:.;__

(1) f, a, Y perfectly correlated

2

E[vh] = —- [T (1-2H) - n2]
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Asymptotic expressions for © and C are easily obtained by 7

substitution of the asymptotic expressfons for E[yh] derived above, into

(4.134) and (4.135). Asymptotic expressions for E for example, are given 3 :
as follows, for G » g

(1) f, a, v uncorrelated

¢ - 2UE{])

(i1) f, a, v perfectly correlated

2
s, A(elew)] %M
- Aggon) 2

while for G+ 0

(1) ¢, é. v uncorrelated
¢ s a;a!a(u)ll

(1i) f, a, v perfectly correlated

2
s _a(Efa(H) of A It
C= 'Lm—‘u'r-wrr

(s.145) ¥

AN
In the special case of 9 being linearly dependent on % it holds ;
-a(Efo(H)])aH =1
/
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Asymptotic expressions for © can be easily obtained using (4.134)
and (4.136)-(4.141). Note that for f, a, v uncorrelated and

‘072/Ar<<1. E[yh]-o and e=E[6 (H)] for G+4= or G+0. In this case the

effects of spatial variability on the mean sofl moisture

ey ke enid

content and the effective specific moisture capacity C are small In the
case of f, a, v being perfectly correlated however, E[yh] depends on H
and E[vh] can be significant. Spatial variability in this case can have
a significant effect on @ and E Since f, 2, v are expected to be, at
least partially. correlated we may

infer that spatial variability produces a large-scale effect on
parameters e and C.

The above simplified asymptotic expressions are useful since they
show the type of dependence of & and C on each of the following
parameters F, A, T, o2, 2%, oy, 2y, H, 31, J2, J3,

J¢ and E[8(H)]. |

4.5.3 Applications and Discussion

This section‘gives examples for the dependence of the mean sofl
" moisture content € on the mean capillary tension head H, fn the Maddock
soil, Section.d 5‘1. showed that € not only depends on H, but 1t also
depends on its time derivative Jt. i. e. ) depends on the flow
conditions (vetting or drying) Because of this dependence it is
expected that e will show hysteresis similarly to the effective hydraulic
conductivity. In order to demonstrate this effect. 6 should be evaluated
for a set of pairs of values of H and J¢ that correspond to 2 real

problem. As was discussed in Section 4.4.3, obtaining H and J¢ for a
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real problem requires a solution of the large-scale flow equation subje
to the initial and boundary conditions of the prodblem. This is a
difficult problem of numerical analysis and its solutfon 1s out of the :ﬁ
scope of this work. Nevertheiess. it is possible to select a realistfc;
time history for H and J¢ based on physical‘arguments, past field
observations, etc. This approach is followed here.

Consider the case of a leak from a waste disposal tank at a time
- later than the time when the leak ended. The soil moisture plume
generated from thé leak tendsrto move vertically due to gravity forces
and diffuses in all directions due to capillary forces. Because there 1 
an asymmetry in the directions of the gravity and capillary forces in t ¢
wetting and drying fronts of the plume, (gravity and capillary forcas aéi
in the same directfon fn the wetting front, but they act in opposing %
directions in the drying front), 1t is expected that the magnitude of
time gradient of H in the wetting front will'be larger than that in the
drying front. Although in typical cases J¢ depends on H as well,
assume for simplicity that J¢ depends only on the wetting or drying
conditions. Taking into account the above discussion a value of Jy =

-10-2cm/sec was selected for the wetting front while a value of Jy =

-10-15cm/sec was selected for the drying front, ‘
The mean sofl moisture content © is evaluated in the case of f, a, v a

befng perfectly correlated and is plotted as a functfon of H in Figure

4.15. This figure also plots the mean soil moisture content that would

have been predicted by aksimple model which assumes C = r. Figure 4.15

ﬁi
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Figure 4,15 Mean sofl mofsture content versus mean gapillary tension
head for the Maddock soil for Jy = 10°15 cm/sec and
Jg = 1072 cm/sec, 11lustrating hysteresis of the mean
soil moisture content.
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shows that © is generally smaller than what it is predicted by

deterministic models and that 0 and E depend on H but they also depen

Jg, 1.e., they show a hysteresis effect. In the case of wetting o fis

smaller than the corresponding © in the case of drying. 1f f, a, v are ?:
partially correlated a smaller hysteresis is expected. :
It is of interest to note that the local parameters were assumed tofé-
be nonhysteretic. This suggests that the hysteresis of the mean soil
moisture contant © and the effective specific moisture capacity E. are

not due to local hysteresis but they are due to spatial varfability of

by traditional models. Section 4.7 gives a possible physical
interpretation of such hysteresis. =
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4.6 Evaluation of Assumption ah/3t = 0

One objective of this report is to provide simple generic

‘ expreésions for the large-scale effective parameters. In order to make

analytical evaluations feasible'several dssumptions were necessary in the

‘different steps of the analysis (see Chapter 3). The effective

parameters evaluated in previous sections assumed that sh/at in (4.6) is

small (see Section 4.2). The conditions when the assumption 3h/at is
appropriate are now investigated. A trial and error procedure is used.
It is first assumed that the true value of dZ is approximately given
by (4.10). Using (4.10) an estimate of the.variance of ahfat is
obtained. If this estimate is relatively small it is expected that ah/at
« 0 and (4.10) 1s a good‘apprbximatlon of dzh; 1f the varfance of
ah/at is relatively.large .however, it is not possible to assume h/at = 0
and (4.10) is not a good ipproximation of dZp. '

| Section 4.5.1 evaluates the varfance of 3h/fat and investigates its
relative magnitude, Section 4.6.2 derives some simplified asymptotic
expressions and investigates the conditions when the expressions

deve loped fn previous sections are dppropriate.

4,.6.1 Evaluation of the Yartiance of ah/at

let.yy = dzhlﬁyhe value of dZp estimated from.Equation
(4.10).-5A53ume that dzh1 is approximately equal to the true value of
dZp. Taking the derivative of (4.10) with respect to time, (see
Appendix E), assuming that second order derivatives of H and the squares
(3H/2t)2 and [exp(-AH)]2 are relatively small, the derivative ay/dt

simplifies to
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a(dzh) J JIA kl

- .- Y a, -
A L TN A

33, (1-HAYK, - A(Jigﬂ } 416

- () az,
kl + ArG + § AL1 1
or
ay - ] ]
3T * Ve dZp vV dz,

where V§' and ¥3' are defined by comparison to (4.146). Let h
correspond to y = dZp. It holds

h -HI od XX dz,

and taking the derivative of h with respect to t yields

oy 3(dZ,)
g,%.w dEI_oA

Taking the complex conjugate of (4.149), multiplying by (4.149) and using’i '

the spectral representation property (3.51), gives the variance of ah/at

e3n? - m S4q(k)AK

where
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(4.147);

(4.1

(4.129) %
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3

3(dz,)  3(dz,) :
Saalk) = E[( se) (—em) ] -

12 0‘2 " % '
* Ivf' Sgg * ‘va' Saa * Ve VaSh t vf va Saf * (4.151)

Similarly to Sections 4.3, 4.4, 4.5 it is assumed that f, 2, v follow
exponential covariance functions with idensical corrélation lengths. The
two cases of (i) f, a, v being uncorrelated and (i1) f, a, v being
pérfsctly correlated are. {nvestigated. The crdss-spectrai density
functions of f, a, v are then related to the spectral densfty function of
f through Equations (4.16) or (4.17), where parateters £2 and n are
defined in (4.15). o -

Substituting (4.151) into (4 150) and fntegrating with respect to

k2, k3 yields o - ,
| ELGM?] = [I] 5440k, ok, (4.152)
where
] 2 ] ] 2 ] ‘ ] L ¢ ‘e [ ] [ ]
Saa = Vel “See t |Val® Saa * Ve V2 Sta * Vg Yy Sy - (4.153)

The primed functions Syy' (u'v = f. 2, 1) 1in (4.153) are given by
(4.13). Substituting the expressions for vf R Va given by (4.146)
into (4.153) and using (4.16), (4.17) and (4.18), (4.153) yfelds
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(1) £, a, v uncorrelated

[9,28%+ c23, 201-0M%] x4+ c¥[acy, 5" ) - r6)2

(k ) = @eth2s' (x.y »;; '
Sdd TR ,N)z RS 7T el
(4.154)
(ii) f, a, v perfectly correlated
[3,A + 23, (1-#A)] % 2+ 2¥[ACy, r y -re}? ., (4.155) %
(k ) = : ™ T mols Az—iz;-z (5¢) ff( L
1

For f, a, v following exponential covarifance functions.ASff' is given

by (4.18). Substituting (4.154), (4.155) into (4.152), gfves

2 2
TR - a1"1 * 3, 1

2 .
2
E[( ) ] —— ( ) / dk (4.1
it D L kb agk v a, 1+ askl2 1 5\\,;)

where aj, ag, as are given by (4.22) and aj, a2 are given by

(i) ¢, a, v uncorrelated

2,2, .2, 2,1 a2
(4.157) 3

) = eA0, - ) -6)2
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(i1i) f, a, v perfectly correlated

2
-2y = [3,A + g (1-0R)]

oy (4.158)
2., 3K 2
Equation (4.156) is written as follows
2 A |
EELOL L L L T (4.159)

Integral I is evaluated in Appendix C as a function of a3, 22,

a3, a4, as.
Let us now examine the relative magﬁftude of term ah/at, compared to

-

the term KpAGh = A (3H/3t) h at the left hand side of (3.33). We have

chosen to compare 3h/at to this term because this term has certain things
in common to 3h/3t, i.e. 1t is independent of spatial derivatives and it
" is proportional to 3H/3t as is 3h/at (see Equations 4.149, 4.146). The

relative significance of each of these terms depends on the ratio of

their variances given by

l
*

e[ (32
. nz = - Ewtf ]2 (4.160)
L A nd
; and aging (4.159) and (4.26) yields
l 2 4
, : [} [ . (4.161)
| F
/d. '
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where Iy' is evaluated for the aj, az given by (4.157), (4.158),

while Ij is evaluated for aj, ap given by (4.23), (4.28). 1If

p2 <¢ 1, 1t my be assumed that term 3h/3t {s not important and can be
ignored compared to the other terms of (3.33). If p2 is significant

however, it 1s not possidle to ignore this term.

discusses the implications of these results.

4.6.2 Asymptotic Expressions, Comparisons and Discussion

This section derives some simplified expressions for the ratfio
p2, examines the magnitude of p2 relative to one and discusses the
implications of the results.

Asymptotic results for p2 are derived when parameter Gt= or G»0.
For Griwm, A= a32 - 4a4>0 and E[(3h/3t)2] (s given by

a /2, +aa,3. ~-73, a. + a, - 3a,2.a
E[(g'%)zl'“fle[ 174 17475 4“5 2 2°3°5

2 2 2 _
(ArG) 74ArG + AL)® (1 +a,a." - a53;)

A, = 4,2 ' -
- 3 1 25 1 &he . (4.162)
(1 +aa;"-a:1, ;

Subifiiuting ay, a2, 33, 24 and ag given dy (4.157) or (4.158)

and (4.22) into (4.162) and taking the limit for Gr+» yields
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(1) f, a, y uncorrelated

X
3 = -Ez- (50° (4.163)

-

(ii) f, a, v perfectly correlated

2 2
Ce

E[ (n _AT T (4.164)

For G»0 Equatfon (4.162) yields (in the case of

aH
J15%, " 0).

(1) f, a, v uncorrelated

a2, 09,28% ¢4, 1-m 9
hey o % M1t 1 3l 2
e[ (5p)°) = mes iy (£p)°  (4.165)

(11) f, a, v perfectly correlated

, - 2 ,
o I[JIA +59,(1 HA)] (3H)2
ALy {1+ ALAY)

. (4.166)

el 33 =

For G+ ==, & is negative and E[(3h/3t)2] is given by

-alli: ik STYLY +-/iz 2,3 =2, + 2242,
» Z . 3
(APG) (AL (1 + a2 ‘3‘.5"

(57 = 0¢dy |
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a1 T 3534 ] @342
Z
(1 + a4a5 - aaas)xl

~ag (4.167

Substituting aj, az, a3, a4, a5 and taking the limit for G + O,
(4.167) produces

(i) £, a, Y uncorrelated

2.2
0, _ -
f3H? - ._E.‘,_ [1+ Ir'ir;] (9?2 (4.168)
(1) f, a, v perfectly correlated
2,2
e 3D?) - —Ez— (1+ n.irl.] ELOL (4.169)

Using (4.160) and the asymptotic expressions for E[h2] derived fn ©
Sectfon 4.2.2, produces the following asymptotic expressions for p2,
for G + +»

(i) f, a, vy uncorrelated

2 4l

p..
Azirz(l + 2% + nz}

- (11) £, a, v perfectly correlated

2
0 2 ;zr

AS[re(1 + c%H%) + - 2nr)

For G+ 0
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(1) f, a, v uncorrelated

2 _ a2+ - wn)?

s (4.172)
A1 + gHe) ~
(#1) f, a, v perfectly correlated
2 _ 1A+l - Ha)yl
| - A%(1 -~ cH)
while for G+ = o
(i) f, a, v udcorrelatéd
2
2. &
pC = (4.174)
Ar2(L + ¢ D) + 0l
(11) f, 2, v perfectly correlated -
02 ¢t . (4.175)

A 1é(1 + cHE) + né - anr)

Let us now discuss the implications of the above results. First
note that for Jy + O we have steady state conditions and it is thus
expected that ah/at in (3.33) tends to zero. For J¢ ¢ O (transient

conditfons) Equations (4.170) - (4.175) show that p2 depends in genera)
on H, For 5;,* 0 and H large (dry soil), 1t holds G + 2= and 0l is
given by (4.170), (4.171), (4.174), (4.175). Note that in this case

. o2 is independent of the magnitude and sign of J¢, but 1trdepends on
H. For large H, (4.170),:(4.171), (4.174) and (4.175) simplify even

further : o : o - L P

163




2, 1
pl = oy (4.176)
ASH |

and since H is large p2 << 1. For a Maddock soil, for example, and
H>100 cm, then p2 < 0.0046 << 1, This implies that for H relatively
large (dry soils) term 3h/3t is much smaller than term Kq AGh in
Equation (3.33) and it can be ignored. For small H, (wet soils), G is
relatively small. In this case p2 is given by (4.172), (4.173). For H
small, these tarms are of the order.of one, This implies that in the
transient case and small H (wet soils) term ah/3t is of the same order of =f
magnitude as term KpAGh in Equation (3.33), f.e. 3h/3t is {mportant and
cannot be ignored in this case.

The above results have a reasonable physical {nterpretation. InNthe:
transient case in a relatively wet soil, a sofl mofsture plume tends to M
move rapidly, especially in the coarser soil layers, due to gravity </
forces. Because of such rapid movement, the local values of the g
capillary tension head ¢ and its fluctuations h = y-H tend to change '?
rapidly with time and 3h/3t is generally not zero. In order to develop ]
models in the case of a relatively wet soil, term ah/at must be

considered in (4.6). It is possible however, that in such cases of rapid

water movement, the whole idea of using a large scale diffusion type mean
flow hndel, similar to the one in (3.18) is not possible. Field
observations show that flow in such cases {s highly unpredictable and it
is possible that even approximate predictive models do not exist in these
cases. Nevertheless, most waste disposal situations involve dry soil
formations, significant depths to the water table and small rates of <

leakage. In these cases, it is expected that the vadose zone remains
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relatively dry and the movement of the sofl mofsture plume can be
predicted using a diffusion type mean flow model similar to (3.18). The

effective parameters of such a model are evaluated in Sections 4.4, 4.5,
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4,7 Interpretation of Results

The stochastic theory of transient unsaturated flow in stratifie\\_’/‘
soils produced the following results: (i) the large-scale effective
hydraulic conductivities K{f. the mean sofl moisture content 9 , and
the large-scale effective moisture capacity é show significant
hystaresis, 1.e. their values depend on the mean flow conditions

(vetting, drying) and (ii) the effective hydraulic conductivity kii is };7

conditions.

This section discusses the origin and implications of these resulfsfﬁf
and reviews several field observations for comparison. Section 4.7.1 ﬁf:
gives a physical interpretation of the hysteresfs and anisotropy of thejg
large-scale parameters. Sectfon 4.7.2 discusses a serfes of pertinent;ﬁg
field observations and compares them to the stochastic theory (' ;
predictions. Section 4.7.3 discusses the implications of the results Ev‘f;

the stochastic theory on practical waste disposal control applications.

4.7.1 Interpretation of Hysteresis and Anfsotropy of Large-Scale

Unsaturated Flow Parameters .

B #‘lg‘k&m L

The stochastic theory developed in Chapters 3 and 4 and the
expressions derived in Section 4.4 and 4.5 predict that the effective
large-scale parameters show hysteresis and anisotropy effects. These
large~scale effects were obtafned using d;nhysteretic and isotropic local
parameters, This implies that the predicted large-scale hysteresis and
anisotropy are not due to hysteresis and anisotropy of the local

parameters but they are due to the existence of spatial variability of

s
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~ the local sofil properties. Note that the stochastic theory developed in

Chapter 3 can take into account hysteresis and anisotropy of local

parameters if such hysteresis and anisotropy exist and can be described

: mathematically. However, Chapter 4 did not consider such local effects

. for three reasons: (i) existing mathematical nodels of local nysteresis

are often oversimplified and of unknown reliabflity, (ii)iif local
hysteresis and anfsotropy were assumed it would be impossible to know
whether the predicted Iargefscale hysteresis and anisotropy are due to
spatial variability of soil properties, or to local hysteresis and
anisotropy. Also the reiativevsignificance of each factor, i.e. local
hysteresis and anisotropy and spatiai Variability. wouid\be unknown and
({i1) the soils in tne experiments where typical observations of
hysteresis and anisotropy are cbtained, usuaily show spatial varfability,
(e.g. stratification~of sand‘due to gravity forces). Since spatial
variability proddces hysteresis and anisotropy, it is possible that the
hysteresis and anisotropy observed in these experiments are (at least
partly) due to spatial soil variability within the experimenta1
apparatus and may not be due to hysteresis and anisotropy of the local
parameters (generated from pore scale effects).

The hysteresis and anisotropy results were predicted using the local
governing;f]ow equation and & realistic representation of the spatfal

variaoilitj of a;stratified sofl in terms of three-dimensional

statisticaily anisotropic random fields. A possible physical

interpretation of the iarge-scale hysteresis and anisotropy 1s given

below. Aithough highly quaiitative. such physfcal interpretation is

~ useful since it gives 2 physica1 justification and 2 useful intuitive
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interpretation of the mathematical results of the stochasti§ theory.
VYisualize the soil matrix as bein§ composéd of many discrete soil -

layers (i.e. silt, clay, sand, gravel, etc.). The hydraulic soi}

properties of such a medfum vary discretely with depth., This is an

approximation to the continuous variability assumption used by the

stochastic theory. Consider the movement of the soil moisture plume,
generatad from a leak from a waste disposal tank (see, e.g. Figures 1.1;%
1.2), at times af;er the 1eak'stops. Assume that the inftfal soil E
moisture content is felatfvely low (high H) and that the leak rate is
relatively small, so that it does noi saturate the soil métrix.» Underi?

the effect of gravity forces the sofl moisture plume tends to move

the capillary tansfon head gradfents, the soil moisture tends to diffuse',_
in all directions. Note that as the plume moves vertically, wetting (\_//
conditions (3H/3t < 0) prevail at the front part of the soil moisture :
plume while drying conditions (3H/at > 0) preya11 at the top part of thel’
plume, As will be discussed below such a stratified sofl can show a
large-scale hysteresis and anisotropy.

The hysteresis and anisotropy of the effective hydraulic
conductivities is discussed first. Let us examine the movement of the
wetting front of the plume. As the wetting front moves vertically, it
encounters a series of dry coarse soil layers. Water meets a relatively
large resistance in entering these dry coarse soil layers because at
high capillary tensfons heads H (dry soils) the unsaturated hydraulic
conductivity of coarse layers is very small (see. Figure 4.16). As a
result, even when significant vertical gravity and capillary forces .
N/,
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UNSATURATED HYDRAULIC CONDUCTIVITY

CAPILLARY TENSION HEAD

Figure 4.16 Schematic graph showing the dependence of the unsaturated
hydraulic conductivity K(v) on the capiIIary tension head ¢
for a sandy. and clayey sofl,
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exist, the coarse sofl layers inhibit the vertical movement of the

plume. Because of inhidition of the vertical movement, the soil moistu
content in the plume front increases and produces high lateral
gradients. Water then tends to spread laterally in the fine sofl layer{é
since the unsaturated hydraulic conductivity of fine layers is relative1;
large aven at high H (dry soils), (Figure 4.15). Looking at the overal{;
mean behavior of the system we may conclude that vertical movement {s 3
generally inhibited while lateral movement is pronounced at the wettingié
front of a sofl moisture plume. This implies that at the wetting front :-
(3H/at < 0), the vertical effective hydraulic conductivity Rll is 5
small while the lateral effective hydraulic conductivity izz is large, i
Let us now examine the movement of the drying part of the plume. .
the drying part of the plume moves vertically, the coarse layers it
encounters are not as dry as in the wetting front (at a given mean
capfllary tension head), but they are rather wet since the core ({.e, the
wettest part) of the plume was previously there. [t is expected that
these layers do not inhibit vertical movement in this case and water
moves with ease vertically through the sofl matrix. In addition, since
vertical flow is not inhibited, no concentration of the soil moisture,

producing large lateral gradients, is expected in the drying part of the )

that water moves with ease vertically and there is no reason for
pronounced lateral movement at the drying part of a soil moisture plume.
This suggests that in the drying part of the plume, the vertical

effective hydraulic conductivity s large while the lateral effective
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hydraulic conductivity .is relatively small. }

The above discuésion implies that the effective hydraulic
conductivities of a stratififed soil do not only depend on the capillary
tension head but they alsc depend on the wetting or drying conditions,
i.e. they show hysteresfs. In addition the effective hydraulic
conductivity is anisotropic with a degree of dnisotropy depending on the
mean flow conditions (wetting or drying). In the case of wetting, the
degree of anisotropy is 1arge while in the case of drying, the degree of
anisotropy is small., This behavior of the hydraulfc conductivities of a
stratified soil is fn agreement with the stochastic theery results (see.v
Figures 4.9, 4.10). |

A physical interpretation of the hysteresis of the mean soil
moisture content and the effective specific soil moisture capacity {is now
given. It was discussed earlier that the large-scale hysteresis {s due
to local soil variability and fis not due to pore scale effects. It is
possible however, to explain this large scale hysteresis by analogy to
the ink bottle effect occurring in a pore scale. Figure 4,17 shows an
analogy of ihé large-scale stratified system to a pore having diameters
of variable sfze. As water in the wetting front of the soil moisture
plume moves vertically, it encounters difficulty in entering the coarse

sof1 layers, or, by analogy, the large diameter part of the pore model.

. As'a result, the'soil mofsture content at the wetting froat of the plume '

is relatively small for a given H. in the drying part of the plume
however, as water moves vertically {t tends to stay in the finer sofl
layers. or, by analogy, in the small diameter parts of the pore model,

and requires additional tension in order to le;ve these finer soil
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Stratified Soil | Pore Model

loam

gravel’

clay

v loam

sand

clay

Figure 4.17 An example of a discretely stratified sofl and a
corresponding pore model analog.
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layers. This results in a relatively large sofl mofisture contenf at tﬁe
‘drying part of the plume for a given H. The above discussion suggests
that, because of sofl property varfability, the e(H) curve shows
hysteresis. Such large-scale hysteresis and the direction of the
hysteresis loop are in agreement with the predictions of the stochastic
theory (see Figure 4.15).

The above discussion may provide a physical justification of the

' stochastic theory. Another point {llustrating the existence of

large~-scale hysteresis is now discussed. The hysteresis observed in 2
local scale 1s usually attributed to pore size variations {(e.g. ink
bottle éffect, etc., see, e.g. Bear, 1972, 1979). These varfations are 2
form of microscopic scale spatfal v#riability; Since these microscopic
scale varfations produce hysteresis of local parameters, it is reasonable
to expect that ‘soil property varfations in a larger scale also produce a
large-scale hysteresis. - Since spatiaf varfabfifty is the rule rather

than the exception, it s expected that such large-scale hysteresis could

“be important. It is also possible that the hysteresis obsgrved in the

laboratory or in the field, or at least a major part of it, is due to

- spatial variabfifty of local properties and it is not due to pore scale

effects. If this fs the case, the stochastic model provides a physically

" and mathemattci11y justified model for predicting hysteresis. This is

. important since ﬁist models of hysteresis are, to a largg_gegree.

arbftrary.

:4,7.2 Discussion of Field Observations of Unsaturated Flow

Section 4.7.1 gave & physical interpretation of the large-scale
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of the stochastic theory predictions it {s of {interest to examine some
pertinent large-scale (field) observations. Unfortunately, only few an&tﬁ
incomplete field scale observations of unsaturated flow exist. It is ;
thus impossible to quantitatively compare the results of the stochasticfi
theory to real field observations. It is possible however, to perform f.
qualitative comparisons. This section discusses a series of field b
observations which are qualitatively in agreement with the predictions dl;

the stochastic theory. A large experiment is proposed §n the New Mexicof

‘.

-

desert in order to collect data for validation of the stochastic theory i3
results (see, Waldrop, 1984).

An fmportant result of the stochastic theory is that in stratified &
soils the vertical effective hydraulic conductivity is small while the :
lateral effective hydraulic conductivity is large in the wetting front.,ﬁL \
The degree of anisotropy of the effective hydraulic conductivities
increases as the capillary tension head increases (i.e. the soil dries
ou£). This result has important implications in waste disposal control = : T
applications since it implies a relatively small vertical movement and a f
large lateral spread of contamination. A serfes of field observations
discussed below are in agreement with this result,

Routson, et al., (1979) investigated the time history of leakage
beneath a radiocactive waste storage tank at Hanford, Washington. The é?
sofl formation consists of glaciofluvial deposits with principal units
consisting of pebbly and medium sand. The deposits are bedded, and sharp -
boundaries often exist between sediment types. Bedding consists of thin, .

nearly horizontal, discontinuous laminations and cross-stratified
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, sedimentary units. The climate where the tank s located {s arid and the

sediments have a low soil moisture content. In 1973, 2 leak from a

storage tank was observed. Measurements of unsaturated zone
contamination. using gamma radfation logs in wells around the tank,
indicated significant laterai movement of wastes in the sediment layers,
at least at the fnitial stages of the Tegk (between 1973-1974). At later
stages of the leak, flow is so slow that iateral movement‘cannot be
detected. given that the radioactive decay of tracers is relatively rapid
(105 Ru has 2 half life of approximately one year) Plotted isopleths

of 106 Ru (the min radioactive component of the waste liquid) also

show lateral movement. Lateral spread is much larger than the diameter
of the tank, while vertical movement 1s restricted to on-the order of ten
meters (see Figure 12). The report assumed that the lateral spread {s
due to unsaturated flow and sediment 1ayering but no physical expianation
that leads to such phenomenon was given., Lateral movement is probably
due to the relatively high tensions occurring in such dry sofl

materials. Horizontal stratification enhances such movement, since at
high tension hydraulic conductivities of fine textured materials are

relatively high and water may prefer to spread laterally in fine beds

“than to move vertically through coarser ones. These ohservations are in

accordance with the result of the stochastic theory that"in dry soils

.r.;-

(large H) the iaterai hydraulic conductivity is much Iarger than the
vertical effective hydraulic conductivity.
. The papers of Crosby et al.. (1968 1971) discussed observations of

sofl moisture and poiiutants below a septic tank drain field area in the

Spokane Valley in Washington, The sediments belowrthe drain field

175




consist of glacial outwash deposits and are prodably higply stratifie
The environment is also arid. Moisture data in the unsaturated zone -
below the drain field indicated unexpectedly high tensfon conditions .
below a depth of 7-10 m. Under such high tensions, gravitational ;ﬁ
movement of water cannot be expected. Since water {s continuously adde{{
in the drain field the law of conservation of mass requires an accountiﬁi-
for the lost moisture. The authors assumed that water must be moving
latarally away from the drafn field and be removed to the atmosphere byfﬁ:
evapotranspiration. If the assumptfon about lateral flow f{s correct, 3
these field observations also suggest a large lateral effective hydraulifu
conductivity coﬁpared to the vertical, at high moisture tensions. .
Price et al., (1975) reported on the movement of wastes in the
unsaturated zone below a waste disposal crib at Hanford, Hashington. T ;i
sedihentary units below the crib are stratified and consist of layers*/'\;
medium to very fine sand, pebdly very coarse to medium sand and sandy
silt. The crid is located in an arid environment and the initial soil
moisture of the sediments is relatively low. Sediment samples were
analyzed for radiocactivity and isopleths of Pu and Ah were plotted.

These data show a lateral movement of wastes in the unsaturated zone

o s R S 8 T AN,

below the‘crib extending to a width of 10m, encompassing the crib
perimeter. The waste 1iquid was more prone to spréad laterally in the
medium to very fine sand unit than to move deeper into the pebbly very
coarse to medfum sand unit. This observation also shows that at
relatively dry stratified soils a high lateral and small vertical
hydraulic conductivity is to be expected.

Knoll and Nelson (1962), descr{bed soil mofsture movement beneatﬁ/g
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..six inch square grip. The soil of the study area consisted of a

. relatively homogenéoﬁs fine sand. except féf ébme thin irregularly blaced
lenses of a material of slightly different porosity. The sofl matrix was
Ainitially relatively dry. Water application was controlled so that
ponding was always maintained in the crib. The lateral spread of soil
moisiure was quite significant and was more pronounced at the 2m depth.
The authors suggested that this {is probably due to the existence of a
léns of a2 slightly more permeable material at this depth. This
exﬁeriment indicated that for initially reIAttvely dry soil and small

- sfze of application area, relative to the. observed depth of the
unsaturated zone, dry sofl conditions below the sofl éurface enhance the
lateral spread of sofl moisture. This indicates a large lateral
effective hydraulic conduétivity et high moisture tensions.

Prill (1977), discussed mofsture moVemeht in the unsaturated zone
below four artificial groundwater recharge ponds. The alluvial deposits
below the ponds consisted of layers of sand and gravel interbedded with
- clay, silty clay and loam layers. The ponds are circular with 15 m
~ diameters. Before the start of ponding, the sofl moisture content in the
sediments-below the pond was relatively high (with a 70 percent degree of
- saturation), -Measurements of sofl moisture content peneath and around
the pond (to a depth of 10 m) indicated vertical movement of the moisture
front E;;;no significant lateral spread. Wetting front patterns
suggested thgt a major part of the applied water (estimated to be around
90 percent) moved downward beneath the pond. Lateral movement was very
. slow and}was‘restricted,tora-short-distahce even in the finer texture

layers. This 1is probably due to the fact that at high soil moisture
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contents, gravitational forces may be more fmportant than capillarity
forces. This experiment suggests that when the initial soil moistur(:_’;
high, the water application rate is rapid and the application area is '

large, relative to the depth of observed unsaturated zone the soil
mofsture content below the application surface can be large and iateral‘ﬁ
spread may not be important even in stratified soils. This observation:
is in agreement with the stochastic theory since for increasing soil .
moisture content the effective hydraulic conductivity anisotropy ratio 15
expected to decrease. i
The observations by Trautwein.and Danfel (1983) are particularly :
. interesting since they sample a very large unsaturated flow system whichf
extends to a depth of 120m below the ground surface. The leakage of (
waste water in the unsaturated zone beneath a waste disposal evaporation__'
pond was studied. The sofl formation consists of alternating layers o* f
sand and clay. Borings in the vicinity of the pond revealed that 20 b-;
years after pond construction pond water moved to a depth of 94 m. The 3
authors attempted to model unsaturated flow beneath the pond using a
one-dimensfonal finfte element unsaturated flow mode. Functional
relationships were assumed for soil moisture characteristic curves and
hydraulic conductivity curves at each soil layer, depending on the soil
type. These relationships were adjusted so that the results of the model
Qould fit the mean sofl moisture data well. Comparing the adjusted model
-yvalues of saturated hydraulic conductivity Kg to measured laboratory
values shows a large discrepancy. Field values are one or two ordersAof
magnitude larger than laboratory values. This suggests that seepage from

the pond occurred at a much faster rate than would have been predicted i

st
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using the laboratbrj measurements of K¢. Uﬁing the laboratory

measurements, the model would have pred'icted,that the contaminant front
would have moved only a few feet in 20 years, while in actualfty the
front moved approximate1y 100m. The large differences between laboratory
and field values of Ks.are probably due to macroscopic féatures and
natural sofl heterogeneity not accounted for in laboratory experiments;
The authors have based their one-dimensional flow assumptioh on the
fact that the dimensions of the pond (590 m x 100 m) are much greater
than the thickness of the unsaturated zone (approximately 100 m).
However, field investigations of the site (Kent, et al., 1982), show an
extremely large lateral spread of water in the unsaturated zone. The

contamination plume extends laterally to a distance of about 2000 m .

‘around the pond! Some of the lateral spreading at this site may be due -~

to the formation of saturated perched water zones above the water table.
0bviou§1y. the one-dimensional assumption does not seem justified. A
three-dimensional model 1s required for a more realistic treatment of the
flow in the unsaturated zone of this setting; ' |

In order to complete thi; discussion some pertinent laberatory
experiments are reviewed. Crosby et al. (1968), reported & series of
laboratory experiments performed fn order to invéstigate jhe conditions
for lateral movement in stratified soils. Fine, medium and coarse sands

were bedded fn 2 sand box model. Water was added to a square inch

~surface area. Under highfﬁater application rates, water essentially

moved as saturated masses or ribbons to the bottom of the model. This is

in accordance with the observations of Prill et al., (1977), discussed

above. Under low water application rates however, capillary dispersion
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of water in the finest layers was able to keep {1 pace with water

additions before the lateral) doundaries of the laboratory model affecte{lk }

the flow. These observations are also in accordance with the stochastic ¢
result of an increasing effective hydraulic conductivity ratio with E
incréasing sofl mofsture tension H.

Palmquist, et al. (1962), descrided a laboratory experiment which
contains some pertinent observations. A tank model was filled with glass j§
beads forming a porous matrix. Water was applied through a small crib atﬁ?.
 the upper surface of the porous matrix. A first model consisted of 2

initially dry glass beads of 0.47 mm-diameter (corresponding to medium

to a relatively narrow vertical column. A second model consisted of
three layers qf 0.036 mm dfameter glass beads (sflt size) separated by
two layers of 0.47 mn beads. Aftar water applicatfon started, water in —

the small diameter bead layer initially @oved away from the crib at

nearby equal vertical and horizontal velocities, until {t reached the top
of the higher diameter bead layer. Water then tended to move laterally
in the fine bead layer instead of moving into the coarser layer. After

pressure buflt up, water eventually moved in the coarser layer. These

o ALY e

observations show that sofl stratification enhances lateral flow.

The field_observatfons discussed above are in agreement with the
predictions of the stochastic theory for aniso;ropic effec;tye hydraulic
conductivities in the case of uet;}nj, with a degree of anfsotropy
increasing as the mean capillary tension head increases (i.e. soil dries
out). Thaesa field observations correspond to relatively short times of

observations and the movement of the drying part of the sofl mofsture >
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Plume is not observed. It is thus impossible to compare the hysteresis

predioted by the stochastic theory to these field observations.

. Comparison of the hysteresis predicted by the stochastic theory to the

hysteresis'observed»in small field_sca]e and laboratory experiments (see,
e.g. Bear, 1979), shows that the hysteresis ioops for the vertical
hydraulic conductivity and the mean soil moisture content have the same
‘direction as observed onest 'Note that hysteresis,in such experiments is
usually attriboted to pore scale effects. Since spatial variability is
the rule ratner than the exception it is possible that the observed

hysteresis, or at_1east part of it, is due to spatial variability (e.gq.

' sand stratification).

The fact that the hysteresis loops predicted from the stochastic
theory are similar to observed ones.‘strengthens the valfidity of the
stochastic theory and it may.suggest that hysteresis observed in
experiments may, at least partly, be due to spatial varfability and not
due to pore scale effects_which it s now attributed to (see, e.g. Bear,
1972, 1979). |

It was suggested in Section 4.6 that. flow in the case of 2
reiatively wet sofl can be very rapid and it may not be possibIe to
describe it by a diffusion type equation, Some field observations

‘seem to indicate such behavior. Starr; et al, (1972) provided

experimcntai evidence for the existence of fast flow moving in discrete
fingers in a coarse 1ayer of a stratified sofl. The soil consisted of a

60 cm Iayer of sandy loam over 2 1ayer of coarse sand. Two experiments

were performed. !n the first experiment. a stee1 cylinder 1.8 m in

diameter was driven into the soil to a deptn of 3.6 . A depth of 45 ¢m
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of water containing a green dye was infiltrated ifnto the column. After _

infiltration ended, successive layers of soil were removed from the (::,/
cylinder and the dye pattern of each newly exposed surface was :
photographed; In layers near the soil surface a general green hue was

observed. Over the cross-sectional &reas below 1 m, 12 discrete fingers
of flow were observed. The fingers ranged from 5 to 20 ¢cm in diameter

and occupied only 5 percent of the taotal cross-sectional area of the

_ cylinder. These observations suggest that in the case of ponding in this f
layered, fine over coarse soll, water moves fa discrete three-dimensional :

fingers in the coarse subsoil, rather than as a one-dimensional front.

The locations of such fingers may be controlled by natural
heterogeneities of the sofl, i.e., they may tend to occur in the coarser -f

reglons which offer less resistance to flow under wet conditions. Simple..¥

%

plots adjacent to the first experiment, was studied. It was observed gé
N
[

calculations show that the flow ia such fingers 1s very rapid. In a

second experiment the solute movement under four 4.6 by 6.1 m ponded

-

that saveral salt pulses reached depths of 120 c¢cm and 180 cm very soon
after they had reached the 60 cm depth. Such rapid movement may be due

to fast flow in the coarse layer in discrete fingers of flow similar to

the ones observed in the first experiment. The paper concludes
that!uater moving through layered field soils may move rapidly in fingers ;
of rapid flow through coarse subsoils. The assumption of a F
one-dimensional front type flow under these field conditfons may lead to
gross errors if it is used to estimate the time the solutes arrive at the «x
water table, A similar type of flow moving in discregg fingers in coarse

layers of stratified soils were observed in the laboratory experiments
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discussed in Palmquist. et al, (1982).

Quisenberry and Phillips (1976) studied percolation of rapidly
surface-applied water in fleld soils with strong structure. Several 2.13
by 2.13 m plots were est;blished in two types of soil, Maury silty loaﬁ
and Huntington silty clay loam. The experiments show that water movement
through the profi1e'is,characterized by an initial rapid movement of
water into the soil and subsequent movement to a depth depending, to a |

large extent, on the 1n1tial‘water content, The relative increase of

water content throughout the profile corresponds very well with the

increase in chloride concentration. This suggests that water moved
through the profile without displacing much of the initial water. It was
~assumed that water moved primarily fn soil structures called macropores.

The amount of displacement that occurs depends on the rate of water

~movement on the macropores as compared to the soil matrix.

Johnston, et al, (1983) reported preferential flo& in hipe-like
channels associated with root channels, in lateritic profiles in Western
Australia. A 4.4 L by 2.3 m plot was established, and a tracer solution
containing Rhodamine and NaCl replaced naturalrraianII in the plot. The
soil profile under!ying the plot consisted of a humus-rich sandy topsofl
~grading into sandy gravels that,rin turn. overlay a weathering profile,
deve1opg§ on both granise andrdo1er1t1c parent rocks, granitic on the
wesi and?ﬁoleritic on the east side of the plot. Granite saprolite was
coarser grained shan the,doIeritg. andrincluded qeep descending roots.
Brighthhodamine WT staining was found around the root channels of the

granite saprolite._fndicating preferential flow of water in these

- channels, The tracer solution also moved deeper in the coarser grained
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granite saprolite, but lateral dispersion was mora pronounced in the ~
finer grained dolerite, The lack of evidence of vertical flow in the(::,/
dolerite 1is most 1ikely associated with its finer texture. Large
continuous voids observed in the dolerite saprolite prodably do not
conduct water, since these voids would only transmit water if their
uppermost extensfon intersects a saturated layer. The paper concluded
that the physical and hydraulic properties of both the clay rich matrix
and the more permeable fnclusions, the areal frequency of preferential
flow paths and the{r connection with an overlying source of free water,
are of paramount ifmportance to their role as structures bypassing the
relatively impermeable unsaturated clays. ;
Thomas and Phillips (1979) also discussed the sfgnificance of water .i

movement in macropores. They concluded that water movement in macropores %

s influenced by the rate of water addition, soil structure, relative
sizes of pores, clay orfentatfon, sofl water content and tillage. They -
further discussed the most {mportant consequences of water movement in
such macropores. They suggested that recharge of groundwater can begin
long before soil reaches field capacity. Also some of the salts in the.

surface of a sofl will be moved to a much éreater depth by rain or

pc i ey

irrigation, and because of this it is not Tikely that water will carry a
surge of contaminants to groundwater at some time predictable by Darcian
flow theory.

Buma (1981) and Beven and German (1982) provided further discuséion
and evidence of the significance of macropores in vadose zone flow and
transport. These papers suggest that rapid flow through macropores

depends on moisture contant and rate of water application. Large
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continuous voids will be filled and conduct water only at suctions close

'to zero (i.e., near saturation). In low moisture conditions these voids

are empty and do not contribute to water flow,
The above papers show that when soil is well structured, (i.e.,
large oaz) and relatively wet, fast gravity flow may be significant.

As was discussed in Section 4.6, flow in these cases is probably not

characterized by diffusion type laws and it may be impossible to model it

using & mean equation of the form of 3.18.

4.7.3 Implications of the Stochastic Theory Results onANaste Disposal

Applications

Harmful wastes are presently disposed in facilities near the surface

of dry stratified sofl formations (see, e.g., Figures 1.1, 1.2). The

possibility of leakage from such facilities cannot be overlooked since a
high risk to the environment is involved. For a risk assessment
evaluation, it is necessary to be able to predict the movement of a

contaminant plume if such a leak occurs. Sections 4, 7 1 and 4.7.2

discussed the general movement of a soil moisture plume. produced by a

leak from a waste disposal tank, as would have been predicted by the
stochastic theory developed in this section. Such movement {s now
compared to the movement that would have been predicted by & classical
deterministic model that uses 2 simple average of local properties as
effective parameters. | )

Consider for example. the waste disposal tank of Figure 4.18. It 1is
assumed that the stratified soil matrix below the tank is initially

dry. It is also assumed that the leek rate is relatively small so it
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does not saturate the sofl matrix, and that the rainfall rate {is
insignificant, The leak generates a sofl moisture plume that moves

vertically and laterally under the influence of gravity and capillary

forces. :

At the initial stages of the leak the sofl mofsture content, in thef,
soil matrix, increases, particularly at the front part of the plume. .
This implies wetting conditions and a negative aH/at. Under wetting

conditions the stochastic theory predicts a small vertical and a large

plume is relatively small and that the plume spreads laterally at

considerable distaﬁces. A tradftional deterministic model, using as _
effective hydraulic conductivities an average of the local properties, oﬁ; :
the other hand, would have predicted a significant vertical movement (\_’)

(under gravity forces) and a relatively small lateral movement. This igg

situation is depicted in Figure 4.18. This figure shows the shape of the~§§
central part (core) of the plume at times t1, t2 (t] < t2) as ?;_
predicted by the stochastic theory and as predicted by a simple ;%g
deterministic model, ;

Let us now examine the movement of the piume at times after the leakf§§
stops. Assume that the soil moisture front has not yet arrived at the
watar table by the time the leak stops. Under the influence of
gravitational forces the soil moisture plume tends to continue moving
vertically. At locations at the front part of the plume, soil moisture
content tends to fncrease with time, as the core moves vertically. This

suggests wetting conditions (3H/3t < 0) at the front. At locations at
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. Figure 4,18 ° Schematfc graph showing the movement of a mofsture plume
generated from a leak from a waste storage tank as would
have been predfcted by the stochastic theory developed in

) this chapter and a classical deterministic theory. The

§ S  curves correspond to equal sofl mofsture levels near the

y core part of the plume and time tz is larger than tj.
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the top part of the plume however, soil moistﬁre content is expected to:
decrease with time as the core moves vertically. This suggests drying &
conditions (J¢ > 0). At the central part of the plume, soil moisture
content remains relatively constant which implfes steady-state »
conditions. Since wetting conditions prevail at the front part of the ﬂf
plume, it is expected, based on the results of the stochastic theory,
that vertical movement of ihis front 1s still slow and the plume
continues to spread laterally. In the drying part of the plume however.fe
vertical hydraulfc conductivities are large. It fs thus expected that :
the top part of the plume (partfcularly the one near the core where
capillary diffusion towards the sofl surface is relatively small) mOVES‘Ef
faster than the wetting part. This sftuation is depicted in Figure i
4.19. This figure shows the movement of the central part (core) of the:}
plume at tﬁmes t3, t4 (t3 < t4)_after the leak has stopped, as

would have been predicted by the stochastic theory and by a classical
model,

Note that the vertical flow gradient is smaller in the drying part
of the plume than it is in the wetting part of the plume. This is
because the capillary tension forces oppose gravity forces. Because of )
the capillary forces, acting in an opposite direction to the direction of k
flow, part of the sofl moisture in the drying part of the plume does not
move with the core of the plume but lags behind. This sftuation is
depicted in Figure 4.20. This results in a gradient of J¢ being Z

absolutely larger in the wetting front than ft is in the drying front

;unl"} Wty o+o- e

(see also discussion in Section 4.5.3).
The general movement of a soil moisture plume described above, baseq,' g

C
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Figure 4.19 Schematic graph showing the movement of the soil mofsture
plume after the leak stops, as would have been predicted by
the stochastic theory and a classical deterministic theory.
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. on the results of the stochastic theory, seems plausible based on

~ physfcal and intuitive arguments (see, Section 4.7.2). We may conclude
fhat a contamination leak in such arid stratified sediments spreads
laterally while vertical movement is relatively slow. As a result,
contamination may arrive at the water table mdch later than what would
have Seen predicted by a classical one-dimensional model and areally
extensfve contamination may occur, Since evaporation rates in arid
climates can be high; it 1s possible that the contaminated water is

- removed to the atmoéphere by evaporation before reaching the water
table. The field data discussed in Section 4.7.2 (e.g., Corsby et al.,
1969) suggest such a possibility.

4.8 Summary and Conclusion

This chapter deriveq effective parameters of large-scale transient
unsaturated flow in stratified soiis and evaluated the variance of the
large-scale model predictions. Such models are required for modeling the
unsaturated flow {n waste disposal and other applications in the fields
- of hydrology, agriculture, etc.

The theory of the chapter is'developed'by six seétions. Section 4.2
derived a simplified expression relating the capillary tension head
fluctuations to the soil property fluctuations, using the disparity of
the correlation scales in stratified soils. Sections 4.3, 4.4 and 4.5
derived closed fcrm,expressiﬁns for the effective parameters and the
variance, SeQera1fsjmplified asymptotic expressions were also derived
which are valid at particular ranges of the soil property and the mean

- flow characteristics. These expressfons are useful since they explicitly
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11lustrate the dependence of the effective parameters and the variance ii

the different soil properties and the mean flow characteristics. Nog

Sections 4.3, 4.4 and 4.5 also give several examples for the dependencegf

of the effective parameters and the varfance on the mean capfllary | f

tension head and its time derivative for two types of soil: the Panoche Ei

silty clay loam and the Maddock sandy loam soil. The main findings of

Sections 4.3, 4.4 and 4.5 are :

(f) the effective hydraulic conductivity, the mean sofl moisture
content and ihe effective specific soil mofsture capacity show
significant hysteresis. The hysteresis loops of the vertical and
the lateral hydraulic conductivities have opposite directions
The vertical hydraulic conductivity 1s smaller for
wetting than it {s for drying conditions. However,the lateral
hydraulic conductivity, is larger for wetting than it is for dryin &
conditions. The mean sofl moisture content is smaller for wetting
than it {s for drying cond{tions. ;

(ii) The effective hydraulic conductivity is anisotropic with a degree of f“
anisotropy depending on the mean capillary tension head and the mean -
flow conditions. In the case of wetting the degree of anisotropy isi

large and increases as the mean capillary tension head increases.

In the case of dryiag however, the degree of anisotraopy is %
relatively small (i.e. soil dries out isotropically). #

Note that the local parameters used in the stochastic theory are assumed
to be nonhysteretic and isotropfc. This implfes that the predicted
hysteresis and anisotropy'are due to spatfial varfability of the local

sofl properties and they are not due to pore scale effects.

192




PR R

E
<
£
v
Ky
-
L}

e

el IO S C M PEXPNRPRRERIPR FEEYRIN

Section 4.6 evaluated the errors due to neglecting term 3h/at in
Séctioh 4.2, It was found that in the transient flow case, term 3h/at is
small when the soil is relatively dry. In the case of a wet soil

however, this term cannot be fgnored. Since hazardous wastes are usually

| disposed in relativeiy dry sofls we may infer that the stochastic theory,

based on the assumption that 3h/at is small, is appropriate in these

cases. However, fn the cases of a relatively wet soil- it may be

| impossible to model the mean flow by a diffusion type mean flow model.

Flow in such cases can be very rapid and highly unpredictable (especfally

in the coarser layers) and may not be govérned by a gradient transport

~relationship. several field observations suggest such a passibility.

-sectfon 4.7 gave & possible physical inierpretation of the
large-scale hysteresis and anisotropy, examined a series of field
observations Shéwing agreement uith’fhe'results of the stochastic theory,
and discussed the implication of thesé results on ﬁaste‘disposa] control
applications. This section showed that the large-scale hysteresis and
anisotropy,. predicted by the stochastic theory, are physically and
intuitively plausible and are in agreement with field observations.

Hysteresis is usually attributed to micrpscopic pore scale
varfability (i.e. ink bottle effect, etc.). This chepter has shown that
soil property varfability also produces hysteresis of the large-scale
parametérs. The hysteresis loops for the vertical hydraulic conductivity
and the sofl moisture content observed in'experiménts. have the same
direction as the hysteresis loops predicted from the stochastic theory.
The fact that large-scale ﬁysteresis is physically and intuitively

p1ausib1é might suggest that the hysteresis observed in expériments {s at
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This effect could be anticipated since spatial varfadbility exists even
small scale experiments. If the above implication is true, the |
stochastic theory provides a mathematically and physically justified f;
model for predicting hysteresis. This is jmportant since models of .;3f

hysteresis are, to a large degree, arbitrary.

in dry soils a contamination plume tends to spread laterally while ':E~;
vertical movement is slow. As a result, contamination may arrive at the%"i
water table much later than {s predicted by classical cne-dimensional .
models, and areally extensive contamination could occur. _

The large-scale hysteresis and anisotropy results of this chapter g
are new and were previously unknown in the field. They have importanﬁ/;t"

practical implications and they should be considered in the numerical \f§§;

£

modeling of large-scale unsaturated flow systems. %




, CHAPTER §
MACRODISPERSION IN UNSATURATED SOILS

5.1 Introduction

This chapter evaluates effective macrodispersivities in unsaturated
sofls in the steady state case, uSing the general theory developed in
Chapter 3 and certain sihp\ificaticns that allow analytical evaluation of
the corresponding three-dimensional integrals, Section 5.2 derives some
relatively simple expressions for the‘macrodispersiviiieQ in terms of the
local dispersivities, the soil property and the ﬁean flow characteris-
tics. The cases of a statistically isotropic or statistically anisotrop-
ic sofl are examined. Section 5.3 applies the results of the stochastfc
theory for evaluation of the macrodispersivities corresponding to the
Panoche clay loam and the Maddock sandy loam soils, and discusses the
implications of the results. Several field observations are also

analyzed and are compared to the predictions of the stochaitic theory.
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5.2 Evaluation of Macrodispersivities

This section evaluates the macrodispersivities A{j in three cases( ;

of interest. Section 5.2.1 examines macrodispersion in the case of one

dimensfonal steady vertical infiltration in a statistically isotropic
sotl, Section 5.2.2 examines macrodisparsion in a horizontally stratified§

soil when the mean flow is perpendicular to stratification while Section

5.2.3 discusses the more general case when a lateral flow gradient - ii
exists. These sections provide generic analytical expressions for the i
macrodispersivities Ajj. Analytical evaluation was possible using the i
fact that the local longitudinal and- transverse dispersivities ai and :

at are relatively small compared to the correlation lengths of the soil

properties, The disparity of the correlation scales is also used in the -

analysis of a stratified sofl (Section 5.2.2) to simplify the

avaluations. <:::>
. 3

§.2.1 Statistically Isotropic Soil

This section evaluates the macrodispersivities Ajj in the case of
a statistically isotropic soil formation, i.e. A1=A2=A 3=k, using
the general theory developed in Chapter 3. Note that thg expression for é
Ajj in (3.92) was derived assuming that the coordinate axis :
xy. is or}ented towards the direction of the mean flow vector g. The
mean flow equation (3.17) predicts the components Jp‘, J2', J3' of
the head gradient J in a spatially fixed set of axes xy', x2',
x3'. In order to evaluate Ajj and be able to use the mean transport
model (3.71), the magnitude and direction of G must be determined as a

function of J1', J2', J3'. In the case of a one-dimensional steady

\\
pr I COS TN
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vertical infiltration, aulaxj is relatively small. The assumption
qH/axy = 0 impliéshsmall lateral mean gradiéﬁts; In a statistically
{sotropic formation, 1t is expected that under small lateralvgradients.
Tateral flow is relatively small, (Thisris hot true for a statistically

anisotropic soil; see Section 5.2.3.) This fmplies that vector q is

wkiigert . .

oriented in the vertical directfon, f.e. axis x; 1s oriented towards

the vertical directidn'and that Jy is approximately equal to the

magnitude of J which 1s known.
For 3H/axj small it holds Ly = Jg and Jj 3H/axy = O,

PRI I 0 W S

Equations (3.87), (3.88) and (3.89) then simplify to

2
| 3,08,y k& = kek.)
g =k A1 1*1

(dZf -H dZa) . (5.1)
G m @+j&§1 : -

Using the spectral representation prdperty (3;51).Athé cross-spectral

‘density function quqi'(s given by

1 .
S e « E[dijdzqij

QjQ1

2,, .2 2 _

n BGERR

2
825 ¢elk) (5.2)

Rl

where an exponential cross-covariance function for f and a, with
identical correlation length, {s assumed. Parameter 82 s giveq by

(see discussion in Sectfon 4.3),
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(1) f, a uncorrelated

B2 al +C2H2

(11) £, a perfectly correlated

2 . (1-¢H)?

where £2 = g,2/0¢2, Substituting (5.2) {nto (3.92) gives
2.,2,2 . 2

At = f@ J1 8 n (6 k -k kl) (311 Jkl)
q2 - k* + AL % ¢

2 2., 2
[-3ky +a %, + arlk,4ky")] © o
T ¢
<, [chlz + c.r(kzz+k3 )] f

The product in the numerator of the first term {s expanded to
611611k4 - 6uk2kjk1 - 611k2k1k~1 + lqkjklz.

Since S¢p is an even function of k, the terms multiplying jki, in

(5.4) are odd in k3, k2 or k3 and produce a zero contribution to B
the integral, Note also that for i#j term 8438 §1k% = 0, while

T TR TR {

terms §11k2k sk, §51k2Kkiky and kikjk12 ape

gy N

either zero or odd in k1, k2 or k3. This implies that A¢j5 = 0

. '(.»

for {#j, 1{.e. in the isotropic case one of thé principal axes of the
matéodispersivity tensor is oriented in the direction of the mean flow.

The longttudinal macrodispersivity Aj; is given by
AL J2ek,0)? 3
11 "2 3.2, 2, 2 ., 2., 212

chl hT(k +k

Seelk) dk  (5.5)

198




0V DA Sy "

S RO, T I,

where parameter v2 is given by
Y = (5.6)
, Km Jl E '

and is evaluated later, Using the transformatfon ug=ikj this

equation gives

2,2 2
o I?I (u, +u3 ) c[u1 (uz +u,°)]
157 & uz+AzL12;z g S [u TR 32)]2,
. Sff(ul, Uy, u3) dul_duz du, | (5.7)

where ¢ = a| /A and ¥ = aT/eL. An‘exact analytical evaluation
of_this integral does not seem possible. However, {t s possible

to obtain an approximate‘so]ution using the fact that ¢ << 1 (see the
discussion in Gelhar and Axness, 1983). Note that for uj2 ¢ 0 the
integrand in (5.7) 1s proportional to ¢ and for € << 1 it has a
negiigible contribution. The main contribution to the integral comes
from u; =~ 0. Letting u = cv, (5.7) {s then written as

(u 2, 2)2 Z 2+u(u 2)
A TZ !If—n 3 l e ¢ 3 e 12
YA - [(c 22+u32)2 + AL za ¢ ] {vo+ [cCv +u(u2 +u,%)] %
. Sff(cv, "2' u,) dv duz du, . ‘ (5.8)
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Taking the limit for £ + 0 produces

2 2,2
(uz + u, )

1 -
A = A

Z°TZ

T A - Lv

1

u(u"’2+ "32’ S,(0 ) dv du, d
° ,u .u Y u u .
T L TR PRLTY 2 du3

Substituting for S¢f corresponding to an exponential covarfance

function gives

. aleu !7! (u22+ u32)3
urzgr U oo atomn
2 —r S & duyduy.
vo o+ u(u2 + uy ) (1 + u, +uy )

This integral is evaluated in Appendix G. The longtitudinal

macrodispersivity Ajy is given by

2
ge A 1 1{
Mt TTEE (5.11);

Nota that for AuT « 0 this equation {s of the same form as Equation
(33) of Gelhar and Axness (1983). In this case Aj; is proportional to
A, f.e. it is connectively controlled.

The longitudinal macrodispersivity A2 is given by

[ T
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22 2 &+ AL

- ko 4+

2
T
1 X1

2 2 2

4 l 2
+ [ccl_l:1 + aplk, "+ ky

Zz Serld) & o (5.12)

and using uj = Akqy, c= ay/A and ¥ = ay/ay gives

. 2 2
o2 '—ETGL i1 —4. ulzuzi 72
v - u + AL xul

ulz ' u("zz +‘"32) S, ) du;du.d (5.13)
U, ,U,,U usdu,du, . .l
+cz[u12+u(u;2+u32)7 e

2
Y

Taking the 1imit for ¢ + 0, and substituting for S¢f gives

A, E - du,du,du.. £.14
?2 LA { - T?’?ul (1+u27" 17273 '

This integral fs analytically evaluated in Appendix H. The resulting

transvers_ﬂe_ﬂmcrodispersiv‘lty Azz is given by

e

LA z
0 B
Ay L (g+ g o] T) (5.15)

where g1, g2 are functions of AL]: and they are given by




g,(x) -1-52--5-3+-1%+(--1%+33) n(1+x)
X b 4 b 4 X

X X :

5 12 .6 12, .12 _ 16 4 (5.16

gx) 3~ r 5ty -3+ - = + =) In{l+x) N
ot A e A e A S

where x = ALjA. Functions g1 and g2 are plotted in Figure 5.1.
Note that for x + 0, 91, 92 tend to g1 = 1/15, g2 = 4/15. In

this case (5.15) is of the same form as equation (36) of Gelhar and

Axness (1983). Noté that A2z depends on the local dispersivities a,

FRTECITARY Y RN

the transverse macrodispersivity in this case fs not.convection

controlled but 1t is controlled by local dispersion.

vy D T R

In order to be able to evaluate Aj, parameter v2, given by
(5.5), must be determined. Using (3.13), (5.6) giies

K
B!

where Rll the effective vertical hydraulic conductivity given by (3.14)
and (3.15). Using Equation (3.5.13) of Yeh (1982) and taking into

account variability of the pore side distridbution parameter a, gives

- 22]

Kyg® K{ltg o 8 . .wmi

where
Tn(1+x) 1 3 1 41n(l+x) 1
g{x) 3 ——— - : + - - +
X ¥x i? X x3 x2(1+x)
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and x = ALjy. Function g{x) is plotted in Figure 5.2. Note that

for x = AL}y » 0, g+ 1/6. It is possible to use the exponential
modification of the effective hydraulic conductivity discussed in Chapter ﬁ_ﬁ
4, This modification s physically justified in the stratified soil

since no physical justification for using such generalization in the
isotropic case exists. Substituting (5.18) Equation (5.17) gives
R (5.20) 48
where 8 fs given by (5.3) or (5.4). Using (5.10), (5.15) and (5.20) it 8
is now possible to evaluate the macrodispersivities Ayi. Section 5.3 g

gives examples for the dependence of Ayj on H and q for the Panoche h

clay loam and the Maddock sandy loam sofls. (:://

5.2.2 Statistically Anisotropic Soil with the Mean Flow Perpendfcular to

Stratification

This section evaluates the macrodispersivities Ajj in the case of

a stratified soil and mean flow perpendicular to stratification. The

case of horizontal stratification with {sotropy in the plane of
stratification, zero 1ateraf mean hydraulic gradfents and unity vertical ¥.
gradient are examined. This case corresponds to steady vertical mean '
fnfiltration where gravity forces dominate. Since a lateral gradient does ‘
not exist the mean specific discharge q is oriented in the downward

vertical direction xj, and the -angle ¢ of Figure 3.1 is zero (see

et A
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Section 3.3.3).

Similarly to Sectfon 5.2, the macrodispersivity A¢q, in the case
of 3H/axj= 0, 1s given by (5.4). For axes xj, x2, x3 being
orfented in the principal directions of statistical anisotropy, the
spectral densfty function S(k) in (5.4) {s even with respect to ki,
k2, k3. Following the discussion in Section 5.2, (5.4) gives Agj =
0 for { » §, while Ayy, Az2 are given by (5.5), (5.11), and v2 is
defined by (5.6). Usihg the transformation uy = A1k;, uz =

Ak, u3z = Akj, whére A1 and X are the correlation lengths {n

directions perpendicular and parallel to stratificatfon, (5.5) and (5.10)fi

o+ - 5

give *
0l - (u 2, 2)2 =
Ant T'zf st Sl T 72 2 Fg T 72
Ty e [u1 + 4 (u2 M ES )]+ A lexl Uy

:[u12 + u&z(uz2 + u32)] 1 ' g;_,/

dulduzdu3 (5.2

v 2 2 P V.4 F IR YA 2y 2 (1
up 4 euy " usSu,% ] (1 + 6% *
and
*
o
a2 - 0. 2.2 3
A22"‘2‘2f ‘2“1. /1 T2 1{22 T2 i
%y - [u, +8%u,% ug)]) %+ A leii uy
u12+ usz(u22+ uaz’ 1 (5.22)
. du,du.du 5.22
u, e :Z[u s u62(u42+ u 2;]2 (L+uys)y 1 23
1 1 2 3
where § =2 11/A, € 3 a /Ay, u = at/ag.
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It {s generally impossible to analytically evaluate the integrals in
(5.21), (5;22). Using the fact that € << 1, these {ntegrals afe further
simp]ified._gnd it is possible to evaluate analytically. Two cases are
examined: (1) & > ¢ « 0 (mild stratification) and (i{) &§ = O (strong
stritificqtion).

Let § >> €. This implies that the anisotropy ratio § = x;/a
cannot be assumed to be zero. Integrals (5.21), (5.22) in this case can
be evaluated simiiafly to the isotropic case using the fact that ¢ << 1.

Let uy = ev, Equation'(S.Zl) then gives

2 (u 2, u32)2

A 5%
11 ;2‘ I__{! [cove + 62(u . "32’32 . Alez:Z‘z

A2+ ye?(u,? + ugd)

l
. . 7 = dvdu du.. (5.23)
Ve s [£2;2+ uﬁz(uzz+ uazijz (L4ev"+ u, 2, uy ) e

Taking the 1imit for ¢ + 0 gives

o (u 2+ u 2)3
A11“'2"2f gy HI P 57 32 7,22
x (u u3 ) A L1 @ v
1 1
. 42 dvdu,du . (5.24)
€ uZEl(u 3272 (1 + uz ZTZ 2 3 A

This fntegral {s evaluated in Appendix I. Substituting from Appendix I

gives P
21

o .
f"1 1

A Ld . (5-25)

11 Y2 T+ ALlcT
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This equation is similar to (5.10), which corresponds to a statistically '
{sotropic sofl. Note however, that v2 in (5.25) is different than y2

in (5.10). The longitudinal macrodispersivity Ayy is convection
controlled in this case as well. Thé transverse macrodispersivity for § ¢
» 0 {s evaluated as follows. Taking the limit for ¢ » 0, (5.22)
simplifies to

\ afz 2 I'!.l uzz[ulz+ ucz(uzzi- 032)]
= a
ctee 72 L & [u12+ 62(u22+ uzz)]!'r AlezA lrulz
1 .
. du,du,du . (5.26) -%
T LR | 4

Substituting ai = exj, and given that ¢ << 1, the main contributfon

to the integral comes from u12 » 0. Substftuting uy = ev gives 5
\ cfz 52, 2 f}.f uzz[czvz-t- u62(022+ uaz)]
T ——y €
2 .4 ' . [tzvzi- 62(u22+ u32)12 + ATlelesz;z
. — 1 g dv du,du, (5.27) .
(1 +e¢v®+ u,“+ u,®)
i :
or
A_,. °f2 ) ﬁf u22[':2,‘24_ uaz(u22+ u32)]
= -3 A, 8
1 dv du.d ' 2
377 v du,du, (5.28)

(1+cv+uz+u3)
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where 8 = ¢/, Taking the limit of (5.28) for € + 0 gives

0,2u,% u,?)

c -
Ay = == Apus? Jf] 7

LA Al - [84C+ (u22+ u'.iz)?']2

% B _
. dvdu,du . {5.29)
Vi Y4 2773
(1 + Uy "+ ug )

The integral in (5.29) is evaluated in Appendix J. Substituting from
Appendix J gives

bl Lo (5.30)

The transverse macrodiﬁpersivity in this case is not convectively
controlled but {t is qetermined by local dispersion.

The macrodispersivitiés Aij‘are now evaluated for & being very
small, (i.e. perfectly stratified sofl). The 1on§itﬁdina1
macrodispersivity Ay 1s evaluated first. 'Taking the limit of the
second term of‘the integrand in (5.21) for §2+ 0, and the 1imit of the

denominator of this term for €2 + 0, gives

) e 2 - (u 2, u 2)2
My ey s Il
~xly = [uy% 6%, % u, )T £ A lex uy

. m dulduzdu3' ‘. (5.31)




given that ¢2 and 82 = 0 the main contribution to this integral comes (’““&
from uj2 = 0. Substituting uj = cv gives

s 2 - (u 2’ u 2)2
A ® '2"2f Ll 7.2, 2 zz 23 7 22,222
*‘y = [8%“+ (u, ¢ uy“) )€ + A lex 8%y
. ;
. dv du,du . (5. 32)
(1 + :sz; u, 4 uy ;2 273

where 82 = ¢2/82 and taking the limit of the 1ntegrand for ¢+ 0
produces

o 2 (u 2+ u 2)2
R ”f 7T 5
;2;? [85v4+ (u,%+ u.%)) &
2 3 3
. % -, dvdu,du, . | (5.33)
(1 + u + u3 ) . -
i/’—'\v
This integral {is evaluated in Appendix K. The longitudinal \-//
macrodispersivity in this case is given by
‘lﬁfz
All = ;;2' le R (5.34)
Note that Ay; » 0 as § » 0. The longituainal macrodispersivity is
conyection controlled in this case as well. The transverse
maéibdispersivity A22 in the case of § being small s now evaluated.
Taking the limit of the second tarm of the fntegrand in (5.22) for 62 »
0, and the limit of the denominator of this term for ¢2 + 0, (5.22)
simplifies to
\/
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) 2 2 2
N -4 « u, u
| “zz"g'? GZ“L I =y 71‘% 7_2;17‘
| =%y = [u §%(u, 4 uy }]€ + A L, %%y
4 ¢ et dujduydu,
i (1 +u°) 17273
E This integral is evaluated in Appendix L. The transverse
macrodispersivity for 62 + 0 is given by
2
@ a
f L .2 1,
A,, = §° In(1+ =) . (5.35)
22 -2:2 ALIY1 E? ' : :

Note that §2 tn(1¢1/62) +« 0 as §2 » 0. The transverse

N AR 0 N ST £ 2

macrodfspersivity fs controlled by local dispersfon fn this case.
Parameter v2, in the case of a stratified sofl, fs evaluated as

follows. Using (5.17) and substituting Rl! given by (4.120), which

e v oI, MY
Sl

corresponds to the steady state case, yfelds

2
(- % )
e 2 3

Y o ——g (5.36)

where 8 1s given by (5.3) or (5.4). Section 5.3 gives examples for the
dependence-of Ajj on H and q in the case of a Pannoche clay loam and 2

Maddock ‘sandy loam soil.

5§.2.3 Statistically Anisotropic Sofl with Arbitrary Orfentation of Mean

Flow

This section evaluates the macrodisbersivities Afj n the general

case when 2 lateral gradient exists and the mean flow is not
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perpendicular to stratification (see Figure 3.1). Ia this general case.ii
Aij is given by (3.92), where Sqjqq 2re 9iven by (3.87), (3.88)

and (3.89), q is gfven by (3.94), and the directional cosines ajj are
given by (3.95) and (3.96). This section evaluates Aqj in the |
particular case of a horizontally stratified soil and 3H/3xj being
relatively small. The assumption 3H/3xj small implies small lateral :
gradients. In a statistically anisotropic formation however, due to the é:‘.
large lateral hydraulic conductivities, even small lateral gradients may ?? :
produce significant lateral flow (see Chapter 4). We may then conclude :
that {n this case, the mean specific discharge vector 5 is not orfented
towards the vertical direction x1* but it s inclined to the vertical
direction with an angle ¢ (see Figure 3.1). Note that the mean flow
model (3.17) predicts the components J1°', J2°', J3' of the mean
gradient vector J tn the principal axes of statistical ahisotropy. *In
order to evaluate Ayj (from 3.92) and be able to use the mean transport ':;;"

model (3.71), the magnitude and direction of E must be determined as a

function of J1', J2°, J3'. In this section, Ajj 1s evaluated in

two steps. First, Aqj is evaluated assuming that q is known. Then

vector q is evaluated 1n terms of the gradients J1°, J2°, J3'.
Assuming that 3H/3xj is small, it holds ‘that Lj = Jj and Jj
3H/axy = 0. Equations (3.87), (3.88) and (3.39) then simplify to

2
3,(8, k= k,k,)
az, =k J ;1 17§
9y k+ JAL

- (4, - W az)) . (5.37)
R

Using the spectral representation property (3.51), the cross-spectral
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density function‘hsasqi 1s'evaiuated

s 1 * =
qitp 3 E[quj "zq,’]

2 2
n k* + ;z(L

See (k) (5.38)
4 ff ‘=
'L

where 8 is given by (5.3) or (5.4).

Equatfon (5.38) 1s expressed in the system of axes xj, x2, X3
which are not necessatily identical to the principal statistical
anisotropy axes xl » X2', x3'. Assuming an exponential covariance
function for f and a, and using the transformatfon k{'= a{j kj
where a{j are the directional cosines: aggy = cos(xj’, x{),

S¢(k) fn (5.38) is given by

) e 7202y (5.39)
3 _ ;2[1+>.12(alj j)2 +2 2(azj j) +2 2(a3j J)2

(k k

z.

Substituting (5.38) into (3 92) and noting that the term multiplying
Jky 1s odd and therefore has zero contribution to the integral,
(3.92) simplifies to

2,2 . 2, . 2 _
e K22 @ 33 (6,k% - kkg)6 kP = K gk)
e 2 - K+ ALK )P
2, 2,2
a k& + arlk,” + k)
Nl Wi e M Seelk) €k .  (5.40)

£l v é
Ky [oyky* aqlky“e k)]
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Expanding the product in the numerator of the first tarm, the above

equation is written as

Ay = '23'2 (3595P = 359,04 = 3p95 % * Ip3nRy 4o
1

where v2 is given by (5.6) and

2 2 2
U ;4 ? Lkl _ aT(kz L )Z Tz Serlk) &
2 2, 2 2
Oy 1T = ol W +;3 ’ 7 Serlk) &
o Atk B ok [ak % aplk®s k5] = (.
2 2 2
- k,k +a (k + k )
<17 KgKnkn ! i Bl
R{ gmn {f m Seplk) dk

(Ly j)‘z k1 + [a kl + aT(k 3T)]Z

Integrals (5.42) are all of the folowing general form

2 2 2
- C(k) a, k,“+a (k + k)

- X% AT(I..:I j)z kl + [a L aT(kzri- ksz)]z

Seelk) dk  (5.43);

whare C(k) fs obtdined by comparison to (5.42). Using the fact thate =

al/Ay << 1, the above integrals can be further simplified. Using the

transformation uj = A1k (5.43) becomes

—
W -t




-

Sarivy, Lo ol b il

11

ok earGlat o

-

P
A3

e
by
.

e LANGE ®0. a0, L N,y

u
1
c( vl kys kg)

I"”!Auz 2. .22 ,2Lu
1

2, ., 2, 2 2
c[ul + uxl (kz + k3 )]

u
1
S K,, ko) du,dk,dk, (5.44)
" cz[u;‘i uxlztk22+ ksz)]? ff(rl » Ko K3l Cuyka0Ks

where ft is assumed that L3 = J3'= 0. For uj2¢ 0 the integrand
in (5.44) is proportional to ¢ and has a negligible contribution. The

mafn contribution comes from uj2 = 0. Let u; = cv, Equation

(5.44) then {s written as

¢ ({l. kge ky)

"J”'h — T -~ *
( v kS S S WS TEY Lok
1
2.2 2,. 2 2
€S ud, (k,“+ k.%)
4 3

¢ - S (
ver (eSS m 2(k22+ kgz)lz Xy

and taking the limit for ¢ » 0

o o, k,, k)
1) 3 >

had (kz + k?)z* A2L22k22 v +p s(ot kzo ka) dvd 2d 3 { )

where

2,. 2 2
p = udy (k"¢ kq ) . Using
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Equation (5.46) simplifies to

Lerff cw'kz'kar) g S(0,ky,Ky) dkydk (5 4
.y ‘ . .48)1

The spectral deasity functfon $(0,k3,k3) {s given by (5.39) where now
k1 = 0. Using (3.96), (5.48) is written as

a,lexz - €(0,k,,k,q)
1= Y Y PR TS L
—- (k%% ky)o A%, %,
1
. , dk.,dk, =
[1+x122;n20kéz+ xzcosz¢k22+mzk32]z 23
W L c(0,k.,k.) (5.49) k>
’_—fll Il T zg 322 3 , 1{ 777 dk0ky -4
where €
b2 = xlzsin2¢ + xzcoszo (5.50) ft

and ¢ 1s the angle between axes xl‘ and x, (see Figure 3.1). 2
Usihi the transformation u2 = bk2, u3z = Ak3 the above integral is .3
expressed as :
u, u
2 4 2 3
1= —raf:lx 1] {b ?0?}-"; —r—y L duyduy  (5.51)
== (0% E%uy") T ATL DU, (1 + w7
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where :
2
2 2" ' A

-
.

EI A

Note that in general £2 and AszzbZ are not zero. Using (S. 41)

-
-

and (5.51) the macrodispersivities Aqy are evaluated as follows:

HE o3 -

2
A A
% M1 2 4
Ay —2— (T22+ x 723* 4 1’33)

c.a

P e 3,° €4 1 |
22 :71_" -17 33 : -
. .cf xlx -J2 €4 T
L
R (1 2 1)
A,,= o 3 +&
Tl e A 23* % Ta
and Az = A1z, Aj3 = A3 = A23 = A32 = 0, where
1? —z—-z—n—-z—,-,—z" 4 L
T du,du
(u + €%, ) + A L by, (1+u“) 23
2 2
«© U. U
e 3 1
T,a = ff du,du (5.54)
B L% )% L%, e 23
2 3 2 2
4
s ] iy i G
- (u + €%, )°+ A Lz b "2 (1+u ) 273

217

T -




In Appendix M, integrals T2, T23, T33 are reduced to one

dimensional integrals, which require further numerical integration. No
that the mean flow (3.17), predicts the components of the

gradient J in the axes of statistical anisotropy xl‘. xz'.

x3'. In order to be able to use Equations (5.53) and the mean
transport model (3.71), parameters v, & and the components of J oﬁ axes
Xs Xge Xg must be evaluated. This requires eva]uation of

the direction and magnitude of the mean flow vector §.

Using Equation (3.13), the mean flow in the direction of the axes

xl' and xz' can be expressed as follows

q; = Kii J; (5.55)

where Eii must be evaluated for Ji', J2', J3'. Assuming that a
Ji1'= 1, J2' = 0 and J3' = 0, it is possible to approximate these (\;:}
effective hydraulic conductivities to the effective hydraulic |
conductivities corresponding to J;' =1, J2' = 0and J3' = 0. The

effective hydraulic conductivities in the case of a stratified soil havek
been evaluated in Section 3.4. Using (4.120), which corresponds to the

steady state and substituting 8, given by (5.3) or (5.4) we obtain

0.2

- f B ' '
W kool -7 gt At ey

- Of Bz [ ] ¢
qp Ky expl —- ITKEIXI} g * Kpe2 dp

where the definition of o3, p2 in (5.56) is obvious. The mean

specific discharge then is given by
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kX3 "‘V’WJ Ve,

R T

e e 202 2,212 |
qa=k (6,201% ¢ 0,202 | (5.57)

while the directional angle ¢, between axes Xps xl' {see Figure

‘ 3.1) is given by

| 9, 2 82 Y2 P2 92
¢ = arctg (=) = argtg { exp[o, T‘IEITI] T } = arctg [SI H ] . (5.58)
q
1

Given the values of ¢ and J;*, J2', the components of J in the axes

Xi» Kos Xy Can be evaluated using Jyj = ajj Jj', or

e [} [}
J1 J 1cos ¢ +J 2sin ¢

£ = ' : !’ (5.59)
J2 J1 sin ¢ + Jz cos ¢ .
Substituting (5.57) and (5.59), (5.6) gives
2.2 2,12
p J. +D JI
v? 11 22 ) (5.60)

Ez(Jl cos ¢ + J; sin o)z

Parameter € is given by (5.52).} In conclusion, if J3', J2' and H are
known, ﬁgg.effective macrodispersivities Ayj are evaluated from
(5.52)';ﬁere parameters £, v2, Jj, J; are given by (5.52), (5.60), |
(5.59) ;ﬁd q and ¢ are given by (5.57) and (5.58).

In tﬁe case of Jp' + 0, it holds q = 51. and ¢ = 0. Equation
(5.52) then yfelds A1) = dfz.lllYZ and A2 = A33 = A2 =
0. A simiIir result was derived in Section 5.3 (see Equation 5.25).

Note that in the general case of Jp' ¢ 0, the lateral macro-
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dispersivities A2, A33, A12, evaluated using (5.52), are non

-

zero. NWe conclude that in this case the transverse hydraulic gradient {\_’/

J2' may cause a relatively large coavectively controlled transverse

dispersion.
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5.3 Applications, Discussion and Comparisons to Field Observations

This section gives examples of application of the stochastic theory,

- and compares the results to field observations. Section 5.3.1 evaluates

the macrodispersivities corresponding to the Panoche clay loam and the
Maddock sandy loam soil using the theorj developed in Section 5.2, and
gives an interpretation of these results. Section 5.3.2 discusses and
analyzes several field observatfoﬁs and compares them to the predictions

of the stochastic theory.

§.3.1 Applications and Discussion of Results

The macrodispersivities Aj{ and the bulk macrodispersion
coefficient Eii- are evaluated as a function of the mean capillary
tension head and the mean specific discharge for the Panoche clay loam

and & Maddock sandy loam soil (see Chapter 2). The cases of 2

| statistically isotropic and a stratified soil, with flow perpendicular to

bedding, are examined, It is assumed that the soil properiy fluctuations
f and 2 are uncorrelated.

Figure 5.3 plots the longitudinal macrodispersivity Aj; as a
function of the mean capillary tensfon head H using (5.11), (5.20) and
(5.3), assuming that o caT = 1l cm, and % = 100 ecm. Figure 5.4
plotﬁ the transverse macrodispersivity A2z as a function of H using
(S.i;j. (5.16), (5.20) and (5.3). These plots corresbond to an isotropic
so0i) formation. These figures show that as H increases, (i.e., soil

desaturates), Apy and A22 initially increase. After reaching 2

maximum value, A1y and Az start to monotonically decrease for

‘increasing H. This behavior can be explained as follows.
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Figure 5.3 Longitudinal macrodispersivities A * versus mean capillary
tension head H for an isotropic so} with A = 100 cm and
aL zat =1 cm,
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Assume that the soil matrix is initfally saturated (H = 0). When H.
{ncreases, the coarser volumes of the soil start to desaturate and thei\_,/
flow goes around them through the finer soil paths. In this case, flow
has to follow a more tortuous path than the one in the saturated case.
This results in an A{i which inftially increases as H increases. As
the soil matrix continues to desaturate however, the finer soil volumes
begin to desaturate. It is then possible that the continuity of the flow
paths is interrupted, {.e. volumes of fine soil may contain stagnant
water masses whiéh cannot move since they are impeded by a relatively
coarse soil. It is expected then that, at large H, the macro-
dispersivities A{i decrease for {increasing H. Wilson (1974), pradicted
a similar type of dependence of A¢j on the soil moisture content using
a microscopic statistical pore scale model. The dependence of Afj'bnA
H, in our model, {s due to spatial varfability and not to pore scale
effects, since such effects were not considered. We may then conclude
(similarly to Chapter 4) that spatial varfabflity and microscopic (pore
scale) variability produce similar effects.

Figure 5.3 shows that for H small, the longitudinal macro-
dispersivity for the Maddock soil {s larger than the one for Panoche
sof1. This {s probably due to the larger varfability of the saturated
hydraulic conductivity in the Maddock soil. As H increases however,

A}y in the Maddock soil drops relatively fast while the A1}
corresponding to the Paanoche soil remains more constant. This is
probably due to the fact that the Maddock sofl has a larger variety of
textures than the Panoche soil., Because of this, 1t is expected that as

the Maddock soil desaturates the coarser volumes of soil empty quickly.
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This generatés ipmppiIe water masses in the finer soil volumes. This may
explain the fast deérease of Ay for 1ncreasihg K in this soil. In the
relatively uniform Panoche §oil however, the soil desaturates almost
uniformly throughout the soil form&tion and immobfle soil water volumes
are not generated. This could explain the 1nsensiti§ity of Ayj on H,
shown in Figures 5.3, S5.4.

Comparison of Figure 5.3 to 5.4 shows that the longitudinal

macrodispersivity Ay{ is much larger than the transverse

macrodispersivity A2, As (5.11) shows, Ay} is proportional to Ay

and it is governed by convective flow. The transverse macrodispersivity
Azz’however, given by (5.15), is proportional to the local
dispersivities. This implies that the transverse macrodispersivity in
this Case.wis governed by local dispersion. This explains the fact that
Aj1 s significantly larger than A22.

"In the one-dimensional steady state infiltration case examined in
Sections 5.2.2, 5.2.3, there is a one to one dependence of the mean
specific discharge q = i}l to the mean capillary tensioﬁ head H. It is
of interest to evaluate the dependence of the macrodispersivities Ajq
to the mean specific discharge q. For the set of values of H shown in
Figure 5.3. 5.4, Ajj are evaluated from (5.18), (5.11) and (5.15).
Figure)§,s and 5.6 plot the longitudinal and transverse
macrbdigpersivities as a function of q. Thesé figures show that at large
q, A4y are practfcally independent of q. For q small however, Ajj

depend on q. To further illustrate a point, Figures 5.7 and 5.8

plot the bulk macrodispersion coefficfents E{{ = Aj§q as 2 function

of q. These curves resemble a linear dependence of Ef{ on q. Note
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that the slope of these curves for q being relatively small depends on q,
(see also Figure 5.5, 5.6). The Eii corresponding to such small values \_/
of q however, is relatively small and it may be possible to assume that
Eii‘fs proportional to q without a significant overall error. ¥e may

then conclude that the bulk macrodispersion coefficient is given by

Ejg = A4 9 (5.61)

where the macrodispersivities Ay are practically independent of the
specific discharge q. )

Figure 5.9 plots the longitudinal macrodispersivity Ali using
Equations (5.25), (5.36) and (5.3). This case corresponds to a
statistically anisotropic soil formation with the mean flow perpendicular m
to stratification and & >> ¢. These figures show that Ayj inéreases |
monotonically for increasing H. This is because as H increasesy -+ 0 \~4/
(see (5.36)). This result may not be very realistic since evaluation of
SQjQi in (3.92) required expansion of the exponential in (3.81),

(3.82), which for H relatively large may not be appropriate.
Figures.5.10 and 5.11 plot Apy and Ell as a function of q in this

case. Figure 5.10 shows that A} depends on q at small q (large H).
Figure 5.11 however, suggests that 211 is approximately proportional to
q.

The transverse macrodispersivity A2z in this case (8§ > 0) is

given by Equatfon (5.30). Comparison to (5.25) shows that Az; ~ 0.004
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§A11. For § = 0.1 for example, A22 = 0.0004 Ap;, where A1] is
plotted in Figures 5.9, 5.10.

The Tongitudinal and transverse macrodispersivities Ary', A2,
in the case of § -~ 0, are gfven by (5.34) and (5.35). Comparing (5.34)
and (5.35) to (5.25) gives: Ay1' = 0.784 Ajy; in efther sofl, while
A22' = 0.0017 82 ln(l+1/62f A1y in the Panoche soil and A2’ =
0.00034 §2 1n(1+1/82) Ajq in the Maddock soil.

Table 5.1 summarizes the values of macrodispersivities Ajq when q
is large;. This table shows that for dacreasing § = Ay/A, the macro=
dispersivities Ajy decrease. [t is also seen that generally Az <«
Aj1. This {s because the longftudinal macrodispersivity A;y is

governed by convective flow while the transverse macrodispersivity Az;

b1
)
™

is determined by local dispersion. Note however, that in the more -
general case discussed in Section 5.2.3, when lateral flow in a
stratified sofl exists, the transverse macrodispersivity could be \\-4/

significant due to convective transport.

5.3.2 Discussion of Field Observations and Methods of Analysis

Unfortunately, only a few field scale macrodispersivities have been
reported and the analytical methods used in their derivation are often
questionable. Nevertheless, it may be useful to analyze reported
paramefers and compare them to the ones predicted by the stochastic
theory. This section reviews several pertinent field observations and

discusses the methods used for analysis of the observations.
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\\—’J ; TABLE 5.1
Macrodispersivities Ay (cm)
Panoche soil Maddock soifl
Soil Type “Longitudinal  Transverse Longitudinal  Transverse
A1] A22 A1l A22
Isotropic
Statistically
anisotropic 7
S large (8<=0.1) 5.0 0.002 12.0 0.005
Statistically )
anisotropic .
§ small (5=0.01) 0.039 1.6x10-6 0.093 3.0x10-7
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Biggar and Nielsen (1976) described experiments conducted in an
agricultural setting. Breakthrough curves were obtained at six depths E\_a/
the centers of twenty 6.5 m-square plots, following a pulse of Cl1 and
NO3 solution. Then, a simple one-dimensional transport model with
constant parameters, an apparent diffusion coefficient, D, and an
apparent pore water velocity, vg, was fitted to each breakthrough
curve. A possible criticism of such parameter estimation procedure is
that since the parameters D and vg have been assumed to be uniform over
depth they should be fitted simultaneously with the breakthrough curves
at all depths (at each location). Fi'tting a model with different D and
vg at each depth, contradicts the assumption of constant D and vg.

The paper suggests that fitted values of D and vg follow a lognormal
-distribution. D s correlated with vg through an almost linear
relationship (D = 0.6 + 2.93 vgl.11; D in am?/day, vg in

c¢m/day). Using the data of their Figure 7, we determined an average ~/
value of Aj) = 5 cm for the longitudinal macrodispersivity. The paper
further discussed the number of samples required in order to obtain a
reliable estimate for the mean values of D and vg. This is another

weak point of the paper since it implies that the mean values of D and
vg are the effective parameters that should be used in the mean models
for estimation of mean concentrations. Such an assumption does not seem
to be justified since the system is nonlinear in the parameters, and
local variability has a large-scale eff;ct.

The experiments and methods for calibrating for D and vg reported
in Van de Pol, ei al. (1977) and Xies (1982), are similar to Biggar and
Nielsen (1976). Thus the criticism on the fitting'for D and vg also
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applieﬁ. The fitted values again seem to follow a lognormal
distribution. Kies data also show that D is related to vg through an
almost linear relationship. The data of Van de Pol, et al. (1977)
suggest a value of the lqngitudinai macrodispersivity‘hllt- 9.41 cm,
whi]é'the data df Kies (1982) syggest 2 value Aj} = 16.8 em. These
papers aiso imply that the mean valués of D and vg should be used in
modelt predicting the mean concentrgtion. Again, this assumption does
not.seem justified. Kies' data show an fncrease in the mean:values of D
with depth below the soil surface. He also observed that the average
solute velocitigs; Vs, calcuiqted by fitting vs‘to the breakthrough
curves, is larger than the'mean pore water velocfties vq. This is
probably due to the fact‘thtt most of the water ﬁay'be moving in larger
structures with higher velocitiés than the average pore water velocity
(calculated by dividing the average infiltration rate by the average soil
moisture content). He also observed that the ratio vg/vp 1ncrea;es
with depth, aﬁd that C1 travels faster and disperses more than NO3.
warrick: et al. (1971) reported on & field experiment in 2 6.1 m by
6.1 m plot 1n the Panoche clay Ioam sofl. A solute pulse was applied on
the surface of the sofl and was observed as it moved through the soil
profile. Experimental data and & numerical soil roisture flow model
showed that the infiItration rate approached steady state in a relatively
short time. A one-dimensional governing equatfon for the solute
concentration was solved analytically. Using this solution and value of
the velocity founq from the}infiltration rate, the qaximumuconcentration
was determined as a function of time and dispersion coefficient D.

Comparing this model to experimentalldatg. a valug of D = 0.07 cm2/min
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close to 0.05 cm2/min better described the data at small times, whereas \~—/

(A1; = 2.7 cm) gave the best fit. They observed that a value of 0

0 = 0.1 cm2/min was more nearly correct at large times. This suggests
that 0 may 1n§rease with the time or distance the solute has travelled,
The approach used in this paper for evaluating D is fundamentally
different than the one used in Biggar and Nielsen (1976), Yan de Pol, et
al. (1977) and Kies (1981). The velocity here fs estimated from |
infiltration data, and the parameter D {is fitted to the maximum observed
concentrations onIﬁ. and not to the whole breakthrough curves. A
possible criticism of this approach 1§ that information available
regarding the shape of the breakthrough curves {s not used in the
estimation procedure, so the estimated parameters are possibly not
optimal.

Warrick, et al. (1971) observed that the calculated distribution
curves do not penetrate the soi1Iprof11e as deeply as the measured ones.\\_’/
A similar phenomenon was observed in Kies (1982). This may be a
reflection of preferential flow paths with most of the water moving
through the larger water-filled pore sequences. Warrick et al. also
observed that solute was not present in the advancing mofsture front but
lagged behind nearer the soil surface. This phenomenon has been observed
elsewhere (e.g., see Andersen and Sevel, 1963). It ii/called the
soluta-lag effect (Gelhar, 1977). A probable explanation f§s that a
pressure wave generates displacement of old capillary water at
successively increasing depths. Simple calculations (Gelhar, 1977) show
that the moisture front travels with speed vy = dK/dO while the solute

travels with spéed ¥s = K/8. For typical sofls, then vy >> vg
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(e.g. vy = 20vg). _

Foster (1975) and Oakes (1877) present another possible explanation
of the solute-lag_effect fn the English Chelk, based on fracture flow
with ﬁatrix diffusion. For the data of Young, et al. (1976), Oakes
(1977) reports a dispersivity value of 20 cm.

The paper of Andersen and Sevel (1968) is interesting since they
made an effort to evalua:e an effective dispersion coefficient on 2 large
scale (20 m deep) system. Environmental tritium data was taken in a
group of four boreholes which had been gugered at time fntervals of about
two years, Soil moistqre profiles had been. measured regularly by the
neutron method in the boreholes. A simple displacement yith dispersion
model, assuming constart'travel veloc}ty, cpnstant dispersion coefficient
and constant soi1~mqistunercontent throughoqt the profile, was tested. A
eiSpersion coefficient of D = 10-7 mz[sec yielded a good fit for ihe

‘tritium profiles. This corresponds to 2 longitudinal dispersivity A))

= 0/v = 70 cm. Soil moisture profiles indicated a gropagation velocity
of the moisture front ef about 3 to 3.5 m/month. The actual flow
veloeity eetimated by environmental tritfum profiles however, seems to be
only 4.5m year. Thfs solute lag effeet is similar to the one observed- by
Harrick. et al. (1971) anﬁ discussed above. .

Jur!L;et a1,j(1982),describe a series of field experiments made 1in

order to-test a transfer function model. This model may be criticized in

| that it does not use any‘physics about the processes involved; it is a

black-box model. Its parameters do not correspond to any physical
quantities and must be calibrated based on available data for the

partieuiar setting under consideration. Extrapolation of the predictions
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from which it was derived, is not possible. The data presented in the \/

of such a model to depths, settings or conditions other than the ones

paper in‘o}der to validate the model clearly demonstrates our point. For
example, Figure 5.12 presents measured breakthrough curves and predicted
ones, obtained from the transfer function model of Jury, et al. (1982).
Comparison between these curves indicates that the model overestimates
the soluta concentrations near the surface, yields a good fit at 90 cm,
and underestimates them at larger depths. It appears that the model was
calibrated so thaf it fits the data at the 90 cm depth. The differences
between theory and experiment are stétistically significant; the model
predictions fall above the 95 percent confidence interval of the data at
30 cm and below it at 180 cm.

) '.’Mﬁ#%:’; .

The reason for this discrepancy, we believe, is that the transfer
function model, or any other one-dimensional convective transport model\\"/
yields predictions that correspond to a linear incfease of dispersivity
with depth. It is possible that at small depths the dispersivity
increases with the depth but it could approach a constant value as the
depth increases. In that case, the predicted breakthrough curves of
Figure 5.14 would show less spread and greater maximum values at larger
depths, i.e., they would trend toward agreement with the measured data.
Gelhar et al., (1984), evaluated a value of the longitudinal
mac;ﬁﬁispersivity A11 = 9.45 cm, using the data reported by Jury et
al., (1982), and spatial moment methods.

Table 5.2 summarizes the values of the longituqinal

macrodispersivities discussed above along with the longfitudinal scale of

the experiment. Some laboratory observations are also included for
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.TABLE 5.2

FIELD DISPERSIVITIES, Ay

' Longitudinal
Type of Yertical scales dispersivity

Author Experiment of experiment (m). Aplm)
Yule and
Gardner, :
(1978) Laboratory 0.23 0.0022
Hildebrand and
Himmelblau,

- (1977) Laboratory 0.79 - 0.0018
Kirda, et al., -
(1973) Laboratory 0.60 0.004
Gaudet, et al., .
(1977) Laboratory 0.94 0.01
Brissaud,
et al, i 0.0011,
(1983) Field 1.00 0.002
Warrick, et al.
(13971) Field 1.20 0.027
Yan de Pol,
et al.
{19717) Field 1.50 0.09%941
B8iggar and
Nielsen,
(1976) Field 1.83 0.05
Kies,
(1981) Field 2.00 0.168
Jury, et al. ’
(1982) Field 2.00 0.0945
Andersen, et al, .
(1968) Field 20.00 0.70
Oakes,
(1977)

Field 20.00 0.20
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comparison. In order to quantitatively compare the observed
macrodispersivities to the ones predicted by the stochastic theory, the
statistical properties of soil variability, the mean flow conditions,
etc., shodld be known in the particular settings where A,{ were

observed. Since such paraméters are not known wé must restrict ourselves
to qualitativé comparisons only. Comparikon of Table 5.2 to Table 5.1
shows that the longitudinal macrodispersivities predicted by the
stochastic theory are of the same order of magnitude as the observed ones
at large scales of observation,

"In the case of saturated flow, {t has peen observed that
dispersivity shows an apparent increase as the scale of the experiment
increases, (see Gelhar et al., 1983). A possible theorétical explanation
of this behavior s given in Gelhar et al. (1979). Figure (5.13) plots ~
the unsaturated longitudinal macrodispersivities, givén in Table 5.2, as
a function of the sca]e'of the experiment.k Although the data at larger
sca1e§ are limitéd. the few existing data'points show an increase of\

A1l with the scalevof the experiment, in analogy to the saturated flow
case. The stochastic theory predicts that the longitudinai dispersivity
may depend on}other factors, such as soil type, soil heterogeneity and

moisture content; however, it s not possible to recognize any dependence'

of Aj] on these factors, due to the dearth of data.
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5.4 Summary and Conclusion

This ohapter evaiuatéd effectivé macrodispersivities in unsaturated
soils, using tho general theory devoloped in Chapter i. Certain
simplifications a11lowed analytical evaluation of the corresponding
three~dimensional integrals. : |

Section 5.2 derived exoressions for}thevdacrodispérsivities in terms
of the local dispersivities; the soil property, and the mean flow
characteristics.: Section 5.2.1 examined the case of a statistically
isotropio/soii'formation. 'Using the faot’that € =agi/A <« 1, the
corresponding integrals were simplified aod_oero anaiyticaliy étaiuated.
It was found that the longitudinal macrodispersivity is oroportionai to
the correiation length 11, i.e. longitudinal dispersion process is

controlled by convective transport. However, the traosverse

rmacrodispersivity is proportionai to the local dispersivities and

indepenoent.of the correlation scale, i.e. in this case tbe transverse
dispersion is governed by local dispersion.

Section 5.2.2 examined the case of a statisticaily anisotropic soil
when the mean flow is perpéndicular to stratification. ‘Two cases were
examined: (i) & = 2Ay3/x being relatively large (miidvstratificatioo)
and (i) & = 0, (strong stratificatioo)Q Simiiarly'to the isotropic
caso; longitudinal dispersion is governed by conveotive transport while
transversééﬁispersion is goVerhedABQ iocai‘disporsion. Note that in the
case of miid stratification. A1} 1s independent of 6 but Azz is

proportional to §, 1. e. Azz decreases as the degree of stratification

{ncreases. In the case of strong stratification however. A11 and A22

| depend on &, Ajp is proportionai to §, ‘while A22 is proportionai to
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62 1n(1+1/62) = 52, This implies that fn the case of strong g
stratification, Ajj and A2 decrease as stratification increases. ,L\_aj
For § + 0 (perfectly stratified soil), Ay}, A2z + 0, i.e. in this '
case only local dispersion exists. | __?
Section 5.2.3 discussed the more general case of macrodispersion in “%
a stratified soil formation when a lateral flow gradient exists. In this
case, even a small lateral gradient can produce significant lateral
flow. This flow may generate a significant convectively controlled

transverse dispersion.

Section 5.3 applied the results of the stochastic theory, and

compared these results to field observations. Section 5.3.1 evaluated .§§
the macrodispersivities corresponding to the Panoche clay loam soil and -;i
the Maddock sandy loam sofl. It was found that in the case of a w;L

statistically isotropic sofl, the macrodispersivitfes Aj; and Az2

o

generally depend on the mean capillary tansion head H. As soil
desaturates, Ay} and A22 initially increase but after reaching a
maximum value they tend to decrease monotonfcally. This phenomenon is
probably due to spatial variability of the soil properties. A similar
type of dependence is predicted by the s:atistical pore scale model of
Wilson (1974). This suggests that spatial varfability produces effects
simi]gr to microscopic varfability (compare to the hysteresis effect
discussed in Chapter 4). Plotting the bulk macrodispersion coefficient
Eii against the mean specific discharge q, showed that Eii is
practically proportional to q. This result of the stochastic theory
is in accordance with several field observations discussed fn Section

5.3.2. In the case of a statistically anisotropic soil, the stochastic
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theory predicted tﬁif ﬂ{{ 1n;reases,monotonicain as H increases. This
resui; could be due to ignoring higher order terms in the stochastic
analysis. Plots of Eii yersds q, showed that Eii fs practically
proportional to q in this case as well,

Section 5.3.2 reviewed 2 series of reported field observations and

discussed the methods used for analysis of the cbservatfons in the

correspondinq publications. It was found that the reported field scale

dispersivities are very few and that the anglytical methods used in their
derivation are often questionable. >Nevertbe1ess. qualitative comparisons
of these macrodispersivity values to the ones predicted by the stochastic
theory showed them to be of the same order of magnitude. The few
existing field observatfons indicated that the longitudinal dispersivity

4A11 may increase with the scale of experiment. Due to the dearth of

data it was not possible to recognize any dependence of experimentally
observed Ajj on other factors such as soil type, soil heterogeneity and

moisture content,

e
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CHAPTER 6
METHODS FOR TESTING THE VALIDITY OF THE STOCHASTIC THEORY

AND APPLICATION OF LARGE~-SCALE MODELS

6.1 Introduction

This chapter discusses methods that could be used for testing the
validity of the stochastic theory and applying the large-scale models to
real field problems. Section 6.2 suggests a Monte-Carlo approach for
testing the validity of the stochastic approach and extands the spectral
turning bands method, developed by Mantoglou- and Wilson (1982), for digi-
tal generation of pdint values or spatial averages of multiple, cross
correlated, statistically anisotropic, stationary random fields. Section
6.3 discusses the important application problem of estimating the
parameters required in large-scale models. Statistical inference methods
are discussed and a new parameter identification mathod 1s developed.

This chapter assumes that numerical codes capable of solving the
governing unsaturated flow and transport equations exist. Of course,
accuracy and cost may restrict the applicability of such codes.

However, it is felt that these problems will scon be solved since

computer capabilities are increasing very rapidly today.
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6.2 Testing thé Va1idity of the Stochastic Theory Using Monte-Carlo

Simulation

In order to obtaih analytical expressions for the dependence of the
effective parameters on the different soil property and flow char-
acteristics, several aésumptions were required in the analysis of the_
previous chapters ﬂe.g.. stationarity, smallness of fluctuations, etc.).
It is thus of interest to investigate the validity of the quantitative
and qualitative predictions of the stochastic theory in more general
cases when the assumptions used in their derivation do not strictly
hold. Section 6.2.1 proposes a five step Monte-Carlo procedure for
testing the validity of the stochastic theory. This procedure requires
computer generation of multiple (vector), three-dimensional statistically
anisotropic random fields. Section 6.2.2 extends the spectral turning
bands method for éeneration of such fields. This method may be'used~for.
computer generation of realizations of soil property fluctuations, as

required by the Monte-Carlo procedure.

6.2,1 Monte-Carlo Procedure

This section proposes a Monte-Carlo procedure that can be used for
testing the validity of the stochastic theory. The procedure follows

five steps. First a model for the mean and the covariance functions of

the lo ;;;soil properties.tnxg, a and C is selected. The selected
statis%iggi parameters shduld take realistic values and should consider
the §tatistiéal aniﬁofropy (str;tificsiioh) usually observed in the
field.

In the second step, realizations of the cross-correlated soil pro-
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perty random fields f, a and v, that conserve the theoretical statistics
selected in the first step, are generated. The spectral turning bands'
method, developed in the next saction, can be used in this step.

In the third step, the flow and concentration outputs ¢ and c,
corresponding to each soil property realization generated in the second
step, are evaluated. This step requires numerical solution of the
governing flow and transport equations. Numerical approximation errors
and high cost are important considerations in this step.

The fourth step, involves analysis of the output realizations ¢ and
c. Given the series of realizations of ¢ and ¢ obtained in the third
stap, the ensemble mean Hyc and cuc are easily evaluated using
ensemble averaging. In addition, the effective parameters can be
estimated from (3.10), (3.13) and (3.16) where the cross-correlations in
these equations can be evaluated using ensemble averaging.

The fifth and last step of the Monte-Carlo procedure involves com
parison between the predictions of the stochastic theory and the Monte-
Carlo simulation results. Two different types of comparison are sug-

gested. First, given the theoretical statistics of the soil properties,

selected in the first step, and the "true” mean Hyc and Cuc, the
stochastic theory developed in Chapters 3, 4 and 5, is used in order to
derive estimates of the effective parameters., These parameters are
comparedféézthe “true” effective parameters évaluated'in the fourth step
using Monte-Carlo simulation. A second comparison consists of “running”

a numerical model using the effective parameters estimated by the
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stochastic -theory and comparing these large-scale model outputs
H§T. CST» to the “true" mean values Huc, cMc predicted from the:
Monte-Carlo simulations in the fourth step. Such comparisons favolve

testing of significance for the errors Hsy-Hyc and cST=CMC.

6.2.2 Extensions of the Spectral Turning Bands Method

The turnfng bands method for simulation of isotropic random fields

. was origina]ly proposed by Matheron (1973) and was applied for simulation
of certain types of random fields having particular forms of covariance
function using a Moving Average unidimensional process generation

(see Journel, 1974; Chiles, 1977). Mantoglou and Wilson (1981, 1982),
developed 2 much more flexible spectral turning bands method where the
unidimensional processes are simulated using a spectral generator., This
method is capable of diréct1y simulating point values or spatial averages
of statistically 1sdtropic or anfisotropic two dimensional random fields.
This sectioﬁ extend§ the spectral turning bands method for computer

‘ generation of multiple, (vector), cross-correlated random fields. The
proposed methodology is very general and it can generate point values or
spatial averages of two or three-dimensional, fsotropic or anisotropic
multiple random fields.

:;ﬁLet Yi(x); 1 =1, k, represent a set of two or three-dimensional,
crﬁi#-correlated. Zero mean.f;tatfonary anisotropic random figlds. having
kné&n cross-covariance and_cross-speétral densfty functions Cjj(r),
Sij(k) where Ciy(r) = E[Yi(ﬁ) Yj(y_r_)] and x, r represent spatial

and k represent wave number coordinates. The objective §s to generate
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(using a digftal computer) realizations of random fields Yy(x) that
praserve the known cross-covarfance and cross-spectral density functions \J
Cij(r), Sqj(k). Functions Cij(r) and Sij(x) form a Fourier

Transform pair, so that following properties hold.

r_Jker
C,; (r) = == S,.(k) dx (6.1)
i ‘& Ja“e {318 X
1 - l(..
Se, (k) = —— I Jeer ¢, (r) dr (6.2)
= ()" Rne ==

where n is the dimensionalfty of the field (n=2 or 3). It is convenient
to use a vector-matrix notation in the following developments. Define

the vector random field

Y,(x)
Z (x) =] Y,(x) (6.3) W,

Yy(x)

and its cross-covariance function matrix
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Clr) = g[2z(x) ZT(x+r)].=

E[Y,(x) Yy(xer)] E[Y;(x) Yy(xer)] ... E[Y,(x) Ye(x+r)]
o | E[Y,(x) Y (xer)) E[Y,(x) Yp(xer)] ... E[Y,(x) Y, (x+r)]

..CI.....I...'..I'......l..'.........C.....V...........

E[Ye(x) Yy (xer)] E[Y (x) Yy(xer)] oo E[Y (x) Y (xer)]

| Cyy(r) CIZ_(L, Ciklr)
= | Culn)  Cpulr)  Copln) o . (6.4)

GO B OB SO0 GOPOOSSIBDNOIBSOEOSOSIOSTS

Caln) G (L’ Skl

where T represents matrix transpose. Define a cr_dss-spectra‘l density
function matrix S(k) having as elements the cross-spectral density =

functions S{j(k). Equations (6.1) and (6.2) then can be expressed in

\~—// ~the following matrix form
e [ EIscwa 0 (6.8)
< o= |
Stk) = =2 [ eELe(r) e (6.6)

=T (2n) g1

rwhe‘r__,_ewtbe in_,tggral,of a8 matrix {s defined as the matrix of the integrals
of;its elements. ,

Instead of geﬁerating‘the three-dimensional field directly, the
turning bands method gener_a‘te's unidimensional processes on several lines,
usingua.unidimensiona'l covariance function matr_ix that corresponds to the

known two- or three-dimensional one. Then at each point of the two- or
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three-dimensional space a weighted sum of the corresponding values of the
one-dimensional processes is assigned.

Assume that we want to generate point values of the two or
three-dimensional random field at the discrete nodes (i, j, k) in region
P of Figure 6.1. Choose an arbitrary origin 0 in the two- or
three-dimensional space and generate lfnes so that their corresponding
direction vectors u are uniformly distributed on the unit circle or

sphere. Along each line 1, generate stationary unidimensional discrete

processes having zero méan and covariance function matrix.gfl)(c)

where ¢ is the coordinate on line i. The correspondence between gfllc)
and the given two- or three-dimensional covariance matrix gjg) will

be derived later. Note that in the general anisotropic case gﬁl)(c)
depends on the direction of line 1. Onto line 1, orthogonally project
the points of the field where we want to generate values, and assign them
the corresponding values of the one-dfmensfona1 discrete processes. If
N(i, j, k) is a point of the region having location vector X, then the
assigned value from line i will be Z}l)(cui) where ¢y =

XN°ui is the projection of vector xy onto line i (see Figure 6.1),

uj is the unit vector on line 1, and XN°uj represents the inner

product of vectors xy and uj. Take L lines as i. For each line
generate an independent unidimensional realization using‘gsl)(:) as
covarfance function matrix. Then at every point N of the region, there
are L assfigned values EPICN" = Zjl}ﬁN'Ei)n where

i=1, ..., L, from the unidimensional simulations. Finally, assign the

following value, to point N
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Figure 6.1 Schematic representation of the three-dimensional field P
- and the turning bands lines.
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Z(x,) = - f 2 (x cu,) (6.7
e R I ) "

as the realization of the two or three-dimensional random field.

The realizations generated using (6.7) have a zero mean. The objec~

tive is to choose a proper unidimensional covariance =C__$“(c) {or spec-
tral density function gsl)(k)lso that Zs defined in (6.7) has the

proper two- or three-dimensfonal covariance or spectral density function
matrix g(:). S(k). Také two points xj, x2 in the two- or three-
dimensional sp-ace. The covarfance function matrix of the simulated field

is
Salxpe 2p) = ElZ,tx)) g (x))]

L L
=t 1T eV eu i el -

fal jal
.1y g[2{ (x,ouy) 24T -)}sl'fc“H~ ) (6.8)
T 4, S 2108y 24 20y T &= £y y

where unidimensional processes along two different lines are assumed to
be uncorrelated and r = x2 - x1. The expected value

E[_Z_sn(_y-u') _z_$“f_§g-3n] represents the covariance

function' matrix of the one-dimensional processes on line i between points
X1°ui and—}rgj. which, since unidimensional processes are

stationary, is written as _E}“(L'Hf). For uniformly distributed

lines in the two- or three-dimensional space, vector Ui is uniformly
distributed on the unit circle or on the unit sphere, and the right-hand
side of (6.8) is only a function of r for large L.‘ This implies that

process Zg is stationmary and we can write ~—
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C.(r) =4 1 c{V)

(reu,) . (6.9
=5 - T i=1 :j - - )

For L »+ », using the law of large numbers Equation (6.9) becomes

. |
Lolrd = Vm { {-iil cru} = gl Pirew) -

d £g”(gg) plu) du " (6.10)
where subscript u implies dependence of g(l)on direction u, c represents

the unit cifcle or sphere and p(g) fs the probability density function of
u which becomes 1/2x or 1/4r in the two- and three-dimensional cases,
réspective]y.and du represents a differential length or area on the unit
circle or sphere at the end of yector 55

The tﬁree-dimensional case is examined fifst. Because of station-
arity of the processes, without loss of generality, we define orthogonal
X1, x2, x3 &xes with origin point x] and with x3 axis fn the
direction of vector r = xa - x1, as shown in Figure 6.2. The unit
sphere where the vector u ends is also shown. Using spheriéa! coordi-
nates reu = r cos¢, where r = l:] and du = sin$ d) d8. Integral (6.10)
then gives

R T

1 T |
. fff g?(:) = »z? v£ 'Lf c ev(r cos¢) sing ds do o (6.11)

=¢s

(subscripts ¢, 6 of E(lz imply depéndence of E‘l) on direction ¢, €). Let

§f%!e(k) the spectral density function matrix cdrresponding to the
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unit sphere

Figure 6.2 Definition sketch for the three-dimensional case, showing
the unit sphere.
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"~ covariance fdnction E‘éle. It holds

c(1)

¢y treose e [ e sSa L (612)

Substituting into (6.11) and usihg the symmetry of the spectral densities

yields:

X =
] ! E"k r cosé s(l) (k) S'M dk do ds .(6.13)
o ¢

o%?

(r) ='%;

-s-

Define orthogonal coordinates kj, k2, k3 in the wave number space.
The differential volume dkjdkadk3 is given in spherical coordinates
by: dkjdkadk3 = k2 sing dkdéde where k =

‘ /kl + kz + k3, 1" k sinp sine, kz =k sind coss, k3 sk Siﬂ°f Note_'

that the limits of the integral in (6.13) cover the whole
three-dimensional space R3. Using orthogonal coordinates (6.13) is

expressed as

| or S35 (K)
Elr) m edkr %;z- dk, dk, dky . (6.14)

To preserve the given three-dimensional covariance function matrix, Eﬁz).
substitute Cs(r) = C(r). Comparing then (6.14) to (6.5) and using the

uniqueness of the Fourier transform ylelds:

s‘:f (k) = 20 k2 S(k)

= 2 k2 S(k sin sing, k sing cos8, k sins) | (6.15)

This equation relates the spectral density function matrix of the one-
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(1) to the spectral density function matrix

(1)

dimensional processes Z
of the three-dimensional process. Note that depends on the

direction ¢, 8 of the corresponding line where the unidimensional process
%)

is generated. Since gf ,0 are known, the one-dimensional processes 3‘1)

can now be generated using a one-dimensional generator as will be
discussed later,

The tﬁo-dimensional case is now investigated. Because of stationar-
ity of the processes, withoyt loss of generality, we define orthogonal
axes xj, x2 with origin point X1 and with x3 axis in the direc-

tion of vector r = x2 - x1, as shown in Figure 6.3. The unit circle

.where the vector u ends {s also shown. Using polar coordinates rusr

sind and du = d3. Integral (6.10) then gives

C.(r) =1 ]ac‘”( in8) do (6.16)
=s£ -5°=° r st .

where the subscript 9 implies dependence of g_(el)on 8. Let _g_‘élk) the

spectral density function matrix corresponding to the covariance

function matrix g‘é? It then holds

cWr stng ) = [ oIk T SIn0 sl (6.17)

o -
S

Substit&i{ﬁg into (6.16) and using the symmetry of the spectral densities

gives

2x .
ey =3 [ edk st gy g | (6.18)
Define orthogonal coordinates k), k2 in the wave number space. The

differential volume dkjdkz is given by dkidk2 = kdkd® where
260
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Figufe 6.3 Definition sketch for the two-dimensional case, showing the
unft circle.
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k = /kl 2 a klcose and k = kzsine. Note that the limits of

! N
the integral in (6.18) cover the whole two-dimensional space R2. Using :

orthogonal coordinates (5.18) is expressed as

arees Gal e s b

o ff odker
__gs(:) !I e = - = dkl dkz . (6.19)

-

In order to preserve the given two-dimensional covariance function
matrix, substitute Cs(r) = C(r). Comparing the (6.19) to (6.5) and

using the uniqueness of the Fourier transform gives

.5 s (k) =k s(x) =
3 -
= vk S(k cos9, k sine) . (6.20)

This equation relates the spectral density function matrix of the one-

(1) 45 the spectral density function matrix of -/

(1)

dimensional processes Z

of the two-dimensional process S.  Note that $'°' depends on the

direction 8 of the corresponding line where the unidimensional process

is generatad. Given _}éz the one~-dimensional processes can be

generated as will be discussed below. |
The method proposed by Shinozuka and Jan (1972) is briefly discus-
sed for generation of the one-dimensional vector processes 3‘%1&) on

line { oﬁfgirection 9 or 4, 9in the two- and three-dimensional case

respectively., Let
" cos (kj g + ¢j1)

2Dy a2 T a,tk,) akt’2 | cos (k. ¢ +4, ) (6.21)

-1 j,l'.:i J J jz ’

cos (kj g+ ojK)
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where £y(k) 1s ‘6btained by decomposition -6f matrix Si(l’(k). given
by (6.15) or (6.20) in the two- and three-dimensional case respectively,

i.e.,

LT (1) ‘
g, g = st (6.22)

°JL are independent random angles uniformly distribqted between 0 and

2, kj = (§ - 1/2) 8k and kj =k + 8k for § = 1, ..., M. It

. has been assumed that the spéctral density function ééllk) is
fnsignificant outside the region [@, ¢+ ). The discretization frequency
&k {s defined as ak = 2/M, where M {s the number of harmonics used. The
frequency &k is a small random frequency added in order to avoid
periodicities and is uniformly distributed between -ak'/2 and ak'/2 where
ak' 1s a small frequency Ak' <« Ak, The magnitude of the errors due to
using a finite number of harmonics in the one-dimensional process is
discussed in Mantoglou and Wilson, (1982).

Equation (6.10) {s obtained in the 1imit as the number of Tines L
tends to infinity. Of course only a finite number of lines can be used
in application thus an error s fntroduced (see Mantoglou and Wilson, |
1982). The lines in (6.10) are assumed to be randomly oriented on the
two- or three-dimensional space. The same TBM equatfons are 2lso
obtained by spacing the lines evenly on the unit sphere or circle with
prescribed directions. Mantoglou and Wilson (1982) show that the
simulated covariance obtained using the even line spacing approach
converges to the theoretiéal covariance much faster than the random line

~approach.

Spacing 2 number of 1ines evenly on the unit circle 1s a trivial
263 1
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problem, However, spacing a number of lines evenly on the unit sphere is
only possible for a specific set of number of lines (e.g9., 3, 15, ...).
In two-dimensions Mantoglou and Wilson (1982) show that a number of 8-16
lines 1s generally a satisfactory choice. In three-dimensions,
experience has shown (Journel and Hui jbregts, 1978) that a group of 15
lines, joining the midpoints of the opposite edges of a regular
icosahedron, is adequate for practical applications in the isotropic
case. In the anisotropic case however, a larger number of lines might be
required. Spécing of a number of ‘lines in the unit sphere then could be
accomplished by dividing the unit sphere into regions of approximately
the same size and shape.

The method developed above {is very general and is capable of simula-
ting anisotropic fields having any type of anisotopy. In certain cases
(e.g., point processes) it is possible to generate the anisotropic field
by generation of an isotropic field followed by a 1inear transformation
of the coordinate system. In other cases however, (e.g., areal average
processes) it is not possible to use such transformation and it is
necessary to use the general anisotropic method described above.

The problem of direct generation of spatial averages of vector
process Z (x) 1s now discussed. A spatial average process is generally

defined as..

2,(x) = A] h(x-s) 2(s) ds (6.23)

where A is the support (averaging) region in the two- or

three-dimensional space and h(i) is a weighting function. Using a wave
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number repres‘entation of (6.23)‘ and the pnnberties of convolution yields

a2 (%) = HK) ye) (6.24)

where H(k) {s the Fourfer transform of h(x). Using the property
S(k) = E[dz(k) dZ*(k)T] produces

S = i) |? st (6.25)

For a known spectfa] ‘density function matrix S{k) the corresponding spec-
tral density function matrix 3a of the spatial 'process Zp can be
evaluated from (6.25). Given Sp(k) the general TBM developed earlier

can be used for dinect generation of the areal ai:érage process.

c .

The waée number response 'H(E) of spatial filter h(x) is evaluated as
follows | |

Hk) = 2o [ e n(x) ax (6.26)
= (&) pn

In the three-dimensional case and for 2 rectanguiar block average process

for example it holds

l .
o v ORI {nside block
23 =

P h(x) = { o _ S (6.27)
= "» 0 ; X outside block

where L1, L2, L3 the block dimensions. Assuning that the block is
'oriented in the direction of the axes xl.' X2, x3. substituting
(6.27) and evaluating (6.26) yields |
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8
H(k) = sin sin sin . 6.28
CELE KK, (2) ( ) ( ) (6.28)

In the two-dimensfonal case for rectangular areal average process it

holds

Ix

1
EIE; : ifnside the rectangle
(6.29)
o ; outside the rectangle

hix) = {

1%

where Lj, L2 the dimensions of the rectangle in the xj and x2
directions, respectively. Mantoglou and Wilson (1981) evaluate the

corresponding two-dimensional wave number response function as

H(&) a t;r;l—lr-z- sin (-2—) sin ( ) o (6.30)

Given (6.28) and (6.30) the spectral density function of the averaged
three- or two-dimensional process is evaluated from (6.25). Using
(6.15) or (6.20), the spectral density function of the corresponding
one-dimensional process {s evaluated. The one-dimensional processes are
generated using the generator described by (6.21) or any other
one-dimensional generator (e.g., by matrix decompo;ition).

Conifder for f1lustration the case of a singie three-dimensional
point process (i.e. K = 1) having an exponential covariance function
(Equation 2.3). Then from (6.15) the corresponding one-dimensional

processes have covariance functions given by
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0 %50, B (6.31)

(1+ xf késin% sin?e Y kzsfnzo cos%e ¢ ¢ kzsin%; )

¢,0 iy
. ¥ 2 3

and they can be generated by (6.21), where in the single random field

- case (k=1), Equation (6.22) gives:

@ ok) = (s{un V2
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6.3 Estimation of Large-Scale Model Parameters Using Statistical

Inference and System Identification Methods

The effective parameters derived in the previous chapters depend on
the large-scale trends (means) of the soil property variability and on
the stochastic. properties of local soil property variability (variances,
correlation lengths, etc.). In order to be able to use the large-scale
flow and transport models in applications, these soil property character-
istics should be evaluated using available information. Three types of
information can be available depending on the particular application.

The first type includes direct observations of the local soil properties
at a finite number of observation points. The second type of information
includes observatfons of the local capillary tension head and/or concen-
tration outputs. Such observations will dbe available only after the real
system has been excited with water and tracer inputs. The last type of
information includes prior knowledge about the soil varfability. Such
knowledge may be based on geologic information, an expert's judgment,
etc. Although often qualitative, this information can be very important
since it could suggest an appropriate parametric model for the mean soil
properties (e.g., constant, linear, polynomial trend, etc.) the form of
the covariance function for the local soil properties (exponential,
etc.) a prior mean and covariance for the unknown parameters, etc.

Sectfqﬁrs.3.1 discusses the problem of estimating the soil parame-
ters, required by the large scale models, when observations of the local
soil properties are available. Section 6.3.2 discusses the more general

system identification problem when observations of the system output
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and any other observations or prior infdfﬁaiion are available, and

develops a new identification method.

6.3.1 Statistical Inference Methods

This section discusses the problem of {inferring the stochastic para-
meters of soil property variability, when point measurements of the local
- soil properties are available. The stochastic parameters include the -
mean, variances, spectral density functfons, etc. and are required for
specification of the large-scale models. - Since 'statistical inference is
an important topic of the parameter estimatfon literature, the following
presentation is by no means complete. The intentfon fs to discuss some
inherent problems and to mentfon the existence of some new methods that
. might be useful in this problem. |

Estimation of the statistical parameters of a soil property random
field is 'associated with two inherent problems. The first problem comes
from the fact that only one realizatfon of the random field can be
observed (i.e., the existing realization). As 1t is impossible to esti-
mate an underlying probability density function of a random variable from
2 single observation of the'varfable.‘it is- impossible to estimate the
'statistical properties of a random field from only one of {ts realfza-
tioﬁE%L In order to get this theoretical difficulty across two approaches
co&ﬁ%%be fol!owed;"ln the first approach it might be assumed that simi-

- lar séilfformations (e.g., glaciofluvial deposits at different settings
.jn the New Mexico Desert area) are different realfzatfons of the same
underlying random field. This is similar to assuming that the generating

power at the time of formatfon of these sediments did not arbitrarily
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generate them but generated them according to}some probability law,
depending on what materials existed in the area, laws of physics, etc.
This approach of assuming that similar soil. formations are realizations
of one random field will be particularly useful in the future when
sufficient information characterizing the nature of variability of
different types of soil formations has been collected and analyzed.

A second approach for estimating the stochastic properties of a
random field from one only realization, requires an ergodic hypothesis.
Because this hypothesis often generates conceptual difficulties in the
field of hydrology, a simple and intuitive -interpretation is given below.
The ergodic hypothesis assumes that space averages of a single realiza-
tion of a random field are equal to the ensemble statistics. In other
words, evenvonly one realfzation carries sufficfent information about the
statistical properties of the underlying random field. This assumption
cannot be proved or disproved, since one realization {is available.
Nevertheless, this assumption helps in (i) removing large-scale varia-
tions that their exact form is of importance in the problem under consid-
eration and we may not want to model them as random and (ii) identifying
the properties of a random field that produces realizations that look
like the observed reality. The ergodicity assumption {s simply a
conveniegggtool of analysis. Its appropriateness in a particular problem
depends.dégihether the final product is.useful or not.

A second difficulty associated with the practical problem of esti-
mating the statistical parameters of a random field, {s the fact that

even the one existing realization of the random field is not known at
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each point ih:;pice; It is only known at ijfeu sampling locations and
the sampling domain is of a finite size. |

Despite the above theoretical and practical difficulties, estimation
of the statistical parameters of a random field, can be feasible {f
sufficient data exist and the estimation method is appropriately designed

and used. The remainder of this section discusses several approaches

 that have been proposed for inference of stochastic parameters of random

fields. Since the literature on the subject fs extensive, the following

dfscussion fs brief and by no means complete. The objective is to point

out some important aspects that should:be considered and give some basic

references. | ..
The first step of the statistical inference of random fields problem

is to evaluate the mean.(trend) of the underlying process. Usually &

parametric mean model is assumed (e.g., constant, linear, polynomfal,

etc.). The form of the mean model selected depends on how the data

look, the judgment of the modeler, the type of required application,

etc. If a constant mean model is assumed, the mean can be easily evalu-

ated as a spatial average of the local measurements. If a spatially

~ varying mean model is assumed, the model coefficients can be estimated

using a least squares or a parameter estimatfon method (e.g., kriging,
see. ﬂnurne! and Hufjbregts, 1978; Delfiner, 1976; Chauvet et al., 1982;
Davfd; 1977, etc). A |
The residual process is obtained by subtracting the mean from the
local measurements. The residuals are assumed to be zero mean statfonary
and'ergo&ic; The second and most difficult step of the statistical

inference problem is estimation of the stochastic properties of the
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residuals (i.e., covariance, spectral density function, etc.). Note that
the stochastic theory developed in previous chapters requires avaluation
of the spectral density functions of the residuals rather than the covar-
iance function.

Two basic approaches could be followed for estimat{on of the spec-
tral density functions of the residual processes. The first approach
follows three staps. In the first step the local measurements are
processed and the sample covariance function C(r{) at discrete separa-
tion distances ry are obtained. If the measurements are obtained in a
reqular sampling lattice, estimates of ther covariance can be obtained as
a spatfal average of the products of point measurements lying on same
distances, (see, e.g., Davis, 1973). If measureménts are frreqularly
spaced, it is possible to discretize distances in several intervals and
take a spatfal average of products of measurements that fall into parti-
cular intervals, (see, e.g., Journel and Huijbregts, 1978; Agterberg,
1970; lavid, 1977). The second step of this approach consists of fitting
a covariance function model C(:) to the discrete sample values of the
covariance function C(rj) odtained in the first step (see, e.q.,
Agterberg, 1970). Parametric models having a few parameters (e.gq.,
exponential, spherical, etc., covariance models) are particularly useful
and very;ggpular. The third step of the analysis consists of evaluation
of the sé@ctral density function S(E) by taking the Fourier transform of
the covariance function C(r) estimated in the second step.

The second approach follows two steps only. The first step consists
of obtaining estimates of .the covariance function C(rj) at discrete

separation distances, similarly to the first approach. The second step
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consists of d}féff estimation ‘of the spééi;él density function S(i) with-
out 1htermédiate evaluation of the covariance function.

Although both approaches are seemingly similar, the~second approach
seems more attractive for two reasons. First one usually knows more on
the spectrum side than on the covariance side and may take into account
such knowledge in the estimation procedure. In our problem for example,
we know that different components of the spectrum have different contri-
butions to the output (see, e.g., Equation 3.37), so an appropriate
weighting could be chosen for a better estimation of the more important
components of the spectrum. When estimating the covariance function
however, this {s not'possib1e since the effects of the different separa-
tion distances of the soil properties on the outpui are not known. A
second property that makes spectrdl estimation more attractive is that
the spectral estimates tend to be uncorrelated while covariance estimates
are usually correlated. As a result statistical confidence limits are |
easily established for spectra but not for the covarfance.
| The spectral estimation problem 1s now briefly discussed. There
seems to exist a large number of methods and their effectiveness largely
debents on the parti;u]ar application, Fourier transform methods have
been extensively used in the past. However, several recent methods such

as the maximum 1ikelihood method and the maximum entropy method are gain-

Aing‘incréasing fnterest fn the multidimensional case and are the subject

of current research activity in this field (McGlellan, 1982). Since some
of these methods are very promising and unknown in the field of hydrol-

ogy, they are briefly discussed below mainly for reference purposes.
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The Fourier transform methods consist of taking the Fourfer trans-
form of the covariance function estimated at a discrete number of separa-
tion distances. At small separation distances the covariance function is
estimated from a large number of pairs of points. At large separation
distances however, only a few number of pairs of points are available and
significant errors in the estimated discrete values of the covariance
function are expected. In order to make the method more robust, 2
smoothing (windowing) p(ocedure is usually used (see, e.g., Jenkins and
Watts, 1968). There are three problems associated with using these
methods in the multidimensional case. First, the sampled data should be
available in 2 uniform grid. Second, in the multidimensional case there
are only a few windows to choose from (McClellan, 1982). The third
problem is that these methods do not produce a high resolution estimate.

The maxfmum Yikelihood method (e.g., Cason, 1969; Larimore, 1977)
does not require regular sampling or windowing and yields a high resolu-
tion estimate of the spectral density function. The objective of the
method is to evaluate the spectral density function by maximizing the
probability of occurence of the measurements. The maximum 1ikelihood
method is of particular interest since it is relatively simple and very
flexible,

The maximum entropy method proposed by Burg (1968), can provide good
resolution on lower frequency estimates. In the one-dimensional case
this estimate can be combuted from a 1inear autoregressive type equa-
tion. The maximum entropy estimate provides a good resolution even when

the sampled part of the random field is of a limited size. [t seems
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that this metﬁb&iis particu]af1y suited;iﬁ?our applications, where only a
" 1imited part of the realization is observed and high resolution at lower
| frequencies is important. This method, requires solution of avnonlinéaf
optimization problem which might be computationally favolved. The

efficiency of this algorithm should be demonstrated using real data.

1 6.3.2 System Identification

' In the context of this study system identification s defined as the
- derivation of a prédictive model of & system using any available informa-
tion, including observations of the system output. This section

- discusses the problem of the {dentification of unsaturated flow systenms,
The theory of this section can be ea;ily extended to the saturated flow
case and to the contaminant transport problem.

Two basic steps of system identification are model structure selec-
tion and parameter estfmation. Selecting an appropriate model structure
is of paramount importance in most problems of identification of complex
systems (see, Mantoglou, 1983 and Mantoglou and Schweppe, 1983). Several
factors guide the model structure selection process such as model struc-
ture va11&ity and accuracy (from a physical perspective),parameter iden-
© tiffability, requirements of the parameter estimation method in terms of
’éos;pand accuracy (i.e., linearizations, iterative minimization, cover-

ge@?é;'etc..'see; M#ntoglou and Schweppe, 1983). Successful identifica-
tion often depends on selecting an appropriate model structure. Recent
identification studies have not realized the importance of this problem

- and consequently resuits produced are often questionable.
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In the unsaturated flow case for example, the model of the system
derived using physical arguments (i.e., the local governing flow Equation
(3.3)) is theoretically the most valid and accurate model of the system,
As was discussed earlier however, this model {is not very useful in appli-
cations since the model parameters correspond to the highly variable
local properties which cannot be estimated from a finite data set.
Another more pragmatic approach, which essentially represents current
hydrologic practice, is to assume that the local model is valid on a
larger scale and that the parameters of such a large-scale modef are some
smooth estimates (mean) of the local highly variadble soil properties. It
is possiblé then to estimate the model parameters from a realistic data
set, since these parameters are not the local properties but they are
large-scale trends. This approach has been extensively used for identi-
fication of aquifer flow systems (see, Townley, 1983; Clifton and Newman,
1982; Cooley, 1982; Newman and Yakowitz, 1979; Shah et al., 1978, etc).
The large-scale flow equation (usually selected without justification to
be of the same form as the local governing equation) is discretized and
the unknown parameter values are evaluated at the numerical discretiza-
tion nodes or blocks. Since the number of parameters is usually large
compared to the availaﬁle information, additional constraints concerning
the variggility of the node or block parameters are often imposed (e.g.,
zonations-parameterization, Bayesian estimation). Since the large-scale
model parameters and<their relationship to physical characteristics are
not well defined in these applications, the imposed constraints are often

arbitrary and are usually selected for mathematical convenience.
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Be;ides the iﬁsvefcritique it 1sApossf6fé%thai the fdentification
approach diScussed above mﬁy be well suited for identifiéation'bf'aquifer
flow systems since the aquifer flow systems are almost linear in the
parameters ahd\it is possible that‘the'small-kcale‘propefty fluctuations
may nb; have significaht large-scale effects (éee. Mizel et‘al;;‘l980;
Dagan; 1982); In the unsaturated flow case however; this approach is
definitely not appropfiate; The unsaturated flow system {s highly non-
- linear.in the pafameters'and. as was seen earlier, the ldcallsoil
property variability'has important large-scale effects (hysteresis,
anisotropy, etc). A valid large-scale model structure of the unsaturated
flo& system should consider the Iarge-scaie effects of local sofl
property variability. - |
The stochéstic methoddlogy developed'in Chapters 3 and 4§ provides a

means for deriving a valid large-scale model structure that takesAinto
account the largé-scale effects ofilocal soil property varifability. The
1akge—séa1e rodel structure cobtained using the stochastib theory,
provides a theoretically justified, not an arbitrary, approximation of
the large-scale processes involved and should be able to capturé'these
.large-scale flow processes. The largefscaIe model parameters depend on 2
few variables (large-scale trends, variances, correlation lengths, etc.)

which,;nn.hopeful!y be estimated using prior knowlédge about sojl
_ propeﬁ%}?yariability. measurements of . the local soil properties and the
system output, etc. Note that the large-scale model predicts large-scale
flow characteristics rather than local outputs. Because of this a model
error is introduced and the statistical properties of this error should
be taken into account in the parameter estimation procedure and during

model use,
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After the important step of model structure selection, the model
parameters must be estimated using available infbrmation. A parameter
estimation method, based on a maximum likelihood criterion, is developed
below. The metho4 is very general ahd flexible, and it can consider bdoth
soil property, capillary tension head measurements, and prior information
about the model parameters. In addition the method is physfcally consis-
tent and can take into account the effects of the model error. |

Let 8 represent the vector of unknown parameters having elements: F,
A, T, a%, og. af, A1, A2, A3, etc. Define vectors ¥,

V2, coes BN representing the capillary tension head observations,

where ¥{ include observations at a set of measurement points distri-
buted throughout the flow domain at times 1 = 1, ..., N. Similarly as
above define vectors Hi(8), H2(8), ... HN(B) to include the capil-

lary tension head predicted by the large-scale model having parameters 8,
at the locations where measurements of y were obtained at times 1 = 1,
«ees N. These model predictions can be cbtained using a numerical three-
dimensional unsaturated flow code. Vectors i are related to Hy

through

#, = H(8) +n, (6.32)

where 35;-f5= 1, ..., N, are the large-scale model errors at the meas-
urement loéifions and times 1 =1, ..., N. [If measurement errors are

present they should be added to hj. Defining
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Rl 7% IR PR IR P (6.33)
by by by
(6.32) is written as:
v=HeE)+h (6.34)

where ¢ now includes the outputrmeasurements at all locations and al}
timés. In the case when direct observations of the local soil properties
tnks, o and C exist, define vector s to include these observations. Let
P and p represent the wean and fluctuations of the soil properties at M

measurement points. Vector<g depends on the unknown parameter vector B

“and in particular on the mean properties F, A and I'. Ve may then write

s=PE)+p . (6.35)

‘Note that functions H(B) and P(B) in (3.34) and (3.35) depend on 8

directly. fhe random vectors h and Bihowever. do not directly depend on
8 but their corresponding covariances Ipp and EPP depend on 8. Let
us-3§§;her assume that prior 1nformat{;; about parameters B 1is available,
1njzg}ms of a prior mean § and a prior covariance Igg. Such informa-
tion‘may be}avéilable i1f the typeiand cﬁardcterfftfcs of the geologic
unit are available, or by using the modeler's judgment, etc. In this

case 8 can be expressed as follows.
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8=8+2 (5.36)
where B and Ipp are the prior mean and prior covariance which are
assumed to be known. Combining (6.34), (6.35) and (6.38) yields

z= 0_(3) ty (6.37)
where
¥ M) h
z=|s|s 2s)=|P8) | va=|p (6.38)
8 8 L]
The covariance matrix of v is given by
| éhh(g) ghp(_ﬂ_) 0
gw(g_) = éph(g_) épp(?-) 0 (6.39)
0 0 pr

where it is assumed that parameters 8 (which include F, A, I', etc.) are
not correlated to the actual local property fluctuations (f, a, v, etc.).

Equation (6.37) corresponds to a general nonlinear parameter esti-
mation problem. Assuming that v is a Gaussian vector the maximum likeli-
hood estimate of 3 is obtained by minimizing the following cost

functi ona‘l’ )

38) = g, (8)] + (2 - 2(8)] £on8) [z - (8] (6.40)

280



(see, e.g, Schweppe, 1973). Note thit.even when v is not Gaussian the
estimate obtained by minimizing (6.40) is a useful estimate since it has
some’attractive asymptotic properties (see, e.g., Goodwin an¢ Payne,

1977). Using (6.39), (6.40) simplifies to

) =[5, 80| ¥ [y -5(_3_)]7 _z__;yl (8)[y - R(B)] +

+{8-8)"z; Loy (s - g : (6.41)
. where
)
re s R(g) =77 | (6.42)
s Plg)

L gl = (6.43)
¥y - :
Lpl8) (@)

and‘termhtnlgpb' has been dropped from thé objective function (6.41),
. since ft is assumed to be a constant.

" In order to minimize (6.41) 1t must be possible to evaluate the
corfespcnding values of R(8) and _,,(s) given a value of €. R(E) may be
obtained by numerfical solution of the mean flow equation. The covariance
matrix _yy can be evaluated using the stochastic theory developed in
fﬁhapters 3 ana 4 as follows. 4

B Matrix Lyy includes elements of the form E[h(x1 tm)
h(_j.tn)] E[h(xi. tn) f(_m. E[h(xi- tn) alxy)],
E[h(xi. ta) Y(_J)]. where 1, j = 1, ..., N and m, ne= 1. eee,M for

& given value{of 8 these cross-correlations can be evaluated using the
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general theory developed in Chapter 3. In order to be able to evaluate
these cross-correlations, the differential Equation (3.45) must be solved
as a function of time (numerical solution seems necessary). In certain
cases however, (e.g., dry soils and relatively large times) it may be
possible to use the steady state appproximation for dZp, discussed in
Chapters 3 and 4. This approach is similar to the steady-state Kalman
Filter assumption often used in system identification studies.

The value of 8 that minimizes J(8) can be obtained by using an iter-
ative minimization algorithm (e.g., a gradient search methed). Questions
of convergence, accuracy and cost of the iterative procedure are of
importance and should be considered (see, Mantoglou, 1983; and Mantoglou
and Schweppe, 1983).

The identification method described above is very general and flex-
idble and can be used in a large variety of flow identification problems.
The particular cases when prior information and/or measurements.of local
soil properties are not available can be easily treated using simple
modifications of the general method. The case of a spatially variable
mean (trend), can also be treated using a parameterization of the mean in
terms of a basis function vector (e.g., linear, polynomial, etc.). The
identification procedure has been developed in a general format and the
suggestions for {ts application are very general. For each particular
applicatidn. the method should be modified, simplified, etc., depending
on the naiure and requirements of the problem. In some cases it may be
useful to use other techniques as well, for example, interpolation (using
kriging, etc.) of the measurements of ¢ between the measurement points,

before parameter estimation. In other cases it may be appropriate to
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assume a compléief} unknown or‘;ompletely'khéwn covariance matrix for the
model errors instead of trying to evaluate them using a quite fnvolved
procedure. Another question, yhich is important in applications, is
whether the assumed parametric model (e.g., constant mean, exponential
covariance, etc.) is appropriate. Hypothesis testing methods could be
used in order to address such questions.

Figure 6.4 11lustrates the steps of the fdentification method
discussed above. The intermediate step, where fhe effective parameters of

the 1arge-scale model structure are evaluated is also shown.
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Schematic representatfon of the steps of the identification
method. The method involves minimization of cost functional
J(8) for 8 and it involves an, intermediate step where the
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- 6.4 Summary and Discussion’

This ch;pter proposed and developed theoretical methods that can be
used in order to test the validity of the stochastic theory and apply the
large-scale models in real field problems. The suggested methods are very
general and can be used direcgly or with conceptually siﬁple modifica-
tions in the saturated flow and transport, oil reservoir modeling and
other distributed parameter problems.

Section 6.2 proposed a five step Monte-Carlo procedure for testing
- the validity of .the stochastic method. The spectral turning bands method
is extended for digital generation of pofnt values or spatial averages of
multiple, cross-correlated stationary random fields. This method is very
general, flexible and highly efficient and should have several applica-
tions in hyarology and in other fields of geophysics.

Section 6.3 investigated the problem of estimating the parameters
required for definition of a large-scale model of the system. The problem
- of estimating these parameters using the measurements - of local soil
properties (statistical inference problem) and some inherent problems and
methods of analysis are briefly discussed. Then & new identification
method is pfoposed.,This method suggests selecting for identification a
large-scale model structure of the form derived in previous chapters. It
was discussed that this structure s physically justified because it
t;;g; into account the large-scale effects of local soil variability
(Sﬁth as hysteresis, anisotropy etc.) and it has a few parameters only
that can be hopefully estimated from a limited data set. It is expected
that such Iarge-scalé model structure describes the large-scale processes

better than traditional models which ignore the existence and effects of
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spatial soil variability. In addition, since the unknown parameters are
relatively few, 1t is expected that these parameters will be identifiable
if sufficient information is available and it is properly used. Past
approaches..used in the unsaturated flow case, are based on the assump-
tion that the large-scale model structure is of the same form as the
local governing equations where the model parameters are smooth functions
of space. This approach dces not take into account the large-scale
effects of local soil varfadbility and 1t is not recommended for the
unsaturated flow case where such effects (e.g., hysteresis, anisotropy
etc.) are important. Note also that if a very dense discretization, which
can take into account the local soil variability details, was used, the
number of unknown parameters would be extremely large and not identifi-
able.

Next, Section 5.3 outlined a very general and flexible parameter
estimation methodology that can take into account local capillary tension
head and soi) property measurements as well as prior information about
the unknown model parameters. The methodology is based on a maximum like-
lihood criterion which considers the statistical properties of the model
error. The proposed methodology can be easily extended to the saturated

flow and the contaminant transport case.

286

AN



CHAPTER 7 o
SUMMARY_CONCLUSIONS AND RECOMMENDATIONS

‘ 7.1 Summary and Conclusions

This study developed a new framework for modeling large-scale,
naturally heterogeneous unsaturated flow and transport systems. Oue to

natural soil variability the 1argé-sca1e system behavior cannot be

~ adequately described by the local physical models. A general methodology

was developed for derivation of realistic large-scale models which are
capable of predicting the behavior of real uosaturated flow and transport

systems. Tpese models consider the effects of spatfal varfability of the

“hydraulic soil properties and have relatively few and identifiable

parameters that can Qe estimated from a realistic data set. A stochastic
approach was followed. It was assumed that the local hydraulic soil
properties are realizations of three-dimensional. stationary ranﬁom
fieids. The locgi goyerning flow and»;ransport gquations were averaged

over the ensemble of realizations of the underlying soil property random

'fieids. The stochastic me thodology considgrs the threé-dinensionality of

. the local flow and transport processes and the nonlinear dependence of

the local capillary tension head and concentration outputs on the Vocal
sofl properties. The s0 derived iarge-scaie models thqg account for the
large-scate.effects of spatial soll varfability. -

Chapter 2 discussed the problem of spatial variability of the

hydraulic propertfes of natural soilvformations and proposed &

representation of such variability in terms of three-dimensional
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stationary random fields.

Chapter 3 developed a general stochastic methodology for derivationn-/
of large-scale models of unsaturated flow and transport and evaluation of
effective parameters for these models. The stochastic approach used the
following three steps. First, the local governing flow and transport
equations were averaged over the ensemble of the soil property
realizations and the form of the large-scale models was constructed. In
the second step, the local fluctuatfons of the capillary tension head or
concentration cuputs were related to the local fluctuations of the
hydraulic soil properties through a set of linearized stochastic partial
differential equations. In the last step of the stochastic methodology,
the effective large-scale parameters were evaluated using the linearized
fluctuation equations derived in the second step and a spectral
representaiion of stationary processes. The large-scale models derived\\~//
using this methodology, are expressed in a partfal differential equation
form and are capable of predicting the mean capillary tension head and
the mean concentration outputs. The effective model parameters depend on
the mean soil properties and the statistical properties of soil property
fluctuations (varfances, correlation lengths), but they also depend on
the mean capfillary tension head and its spatial and time derivatives.

-In Chapter 4 the general stochastic theory of Chapter 3 was used to
evafﬁéte the effective unsaturated flow parameters in the case of
transient flow in stratified soil formations. It was found that the
effective hydraulic conductivity, the mean soil moisture content and the
effective specific soil moisture capacity show significant hysteresis.

It was also found that the effective hydraulic conductivity is
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anisotropic with a degree of anisotropy depending on the mean capillary

tensfon head and the mean flow conditions. In the case of wetting, the

degree of anisotropy is large, while in the case of drying itvis
relativeiy_smalit These effects are due to the spatfal variability of
soii’properties rather-than to pore scale effects, since the iatter were
not considered in the anaiysis. This chapter also gave a'physicai
interpretation‘of the results of the stochastic theory, examined a series

of field observations that are in agreement with these results and

,discussed the impiications‘of the stochastic theory results on practical

'applications such as waste disposal control. .

In Chapter 5 the macrodispersivities were evaluated in the cases of
a statisticaily isotropfc and a statisticaliy anisotropic (stratified)
soil formation. using.the general theory developed in Chapter 3. It was
found that the effective macrodispersivity depends on the mean capillary
tension heads This phenomenon is probably due:to the fact that the
Spatia1 variahility'of theisoii properties may introduce a dependence of
tortuosity of the unsaturated flow paths on the soii mofsture content.
The resuits of this chapter fndicated that longitudinal macrodispersion
is generally governed by convective transport. In the cases of an
isotropic sofl or a stratified sofl with mean flow perpendicular to
stratification. transverse macrodispersion is governed by 1ocal
dispersion~and it is relatively small. However, in the case of &

stratified soi1 with mean flow at an angle to stratification (Section

5. 2 3) transverse nacrodispersion is convectiveiy controlied and could be

significant. Chapter 5 also discussed a series of field observations and

compared them to the predictions of the stochastic theory.
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Chapters 4 and 5 derived rblatively simple generic relationships
showing the dependence of the effective large-scale parameters on the ~/
different soil property and flow characteristics. Such relationships are
extremely useful because of the generalit}. simplicity and insight they
provide. In order tb make analytical evaluaticns possidle, severatl
assumptions were required (e.q. station;rity. smallness of fluctuations,
etc.). These assumptions may restrict the validity of the results of the
stochastic theory in the cases where the assumptions are strictly valid.

It is expected hoﬁever. that these results will be at least qualitatively
valid in a wider variety of situations. For example, it is expectad that
the effective unsaturated flow parameters will show hysteresis and
anisotropy in finite domain problehs as well, even though the

stationarity assumptions required by the stochastic theory are not

strictly valid in such cases. Since large-scale behavior of unsaturateq\~‘/
flow and transport is presently bighly unknown, we believe that even
qualitative information is important since it may indicate important
characteristicé of the problem, thereby suggesting directions that future
research should follow.

The validity of the stochastic theory developed in this thesis
should be tested with appropriately designed experiments in order to gain
coﬁ!iﬁence in using it in applications such as waste disposal management.
6&2;%er 6 suggested testing the stochastic_theory using a Monte-Carlo
simulation meth;d. The spectra1 Turning Band Method was developed for
direct synthetic generation of point values or block averages of
multiple, statistically anisotropic, two or three-dimensional, stationary
random fields. This mathod is very general and has other geophysical

W
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| applications as welifJVChapter_s also discu;seﬁliﬁe practical problem of
estimating gheAstochéstic piéaméters required by tﬁé large=-scale
unsaturated flow and iransport models. Statistical inference methods
were briefly discdssgd and & new identification method was proposed, The
main {dea of the 1dent1f1cationmethod is to use the large-scalé mode
structuré. deriQed using the stochastic approach, rather than the
physical model structure, It 13 expected thai the large-scale model
structure will be éapable of capturing the basic large-scale flow and
transport characteristics and will be suftable in appifcations because
| this model requires only a2 few parameters that can be estimated
systematicaily from a realistic data set; o

The resulis of the stochastic theory developéd herein have important
implications oﬁ practical pfoblems such as waste dispos#l control. For
example, the stochastic theory predicts that, in relatively dry soils, a
cbntamina;ion plume tends to sﬁfeaq l;tergl]y yhilg‘vertical movement is
relatively slow. As a result, contamination may arrive at the water
| table,much_l@ter than bredicted bx classical one dimensioaal hodels and
the horizontal extent of contamination may bé much larger than
traditionally predicted (;ee Chapter 4). Such effects should be
considered in future modeling studies of large-scale unsaturated flow and
transporggéystems.

The%iéheral modeling framework proposed in this thesis is new and is
not only aép]icable to unsaturated flow and contaminated transport but
also to other distributed parameter problems (e.g. saturated flow and

contaminant transport, oil, geotherm&l reservoir modeling, etc.).
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7.2 Recommendations for Further Research

The most important conclusion of this study is that, due to the
spatiai varfability and parametric nonlinearity of local governing flow
and transport equations, unsaturated flow and transport in field settings
behave differently than was previously thought. Thus an importént
recommendation is that future research on this topic, regardless of the
methods used, should not ignore the large-scale effects of spatial
varfability.

Other more specific recommendations are related to validation,
application and extensions of the stochastic theory developed in here.
Chapter 6 provides several detailed recommendations in these directions.
It is also of interest to use a numerical solutfon for dZp in the case
of a wet soil and to investigate whether flow in such cases is of a
diffusion type. Other possible extensions of this work include treatin\\_//
the unsteady transport case, and evaluation of the variance of
concentration ¢. It also seems promising to try to extend the general
ideas to other distributed parameter systems such as aquifers or oil

reservoirs.
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APPENDIX A

This Appendix evaluates the solution of Equation (3.45), where
§1, 62 are given by (3.46) and Jy = 3H/3t > 0. The general solution

of (3.45) is given by (3.38) where now

ql(t) = 61 + Gz(t)

(A.1)
glt) = AJ,
It holds
t .
£ g (tldr = A J, t (A.2)
t A d, v
I(cl*azf)e dr =
0
§ Ad_t AJ_t § §
£ ot t ttt |1 TS S
{13; e +6,¢ lsz &I 02 | lsz TIn:TZJ} (A.3)
Equation (3.38) then gives
§, Al t Ad_t
vk 0 <yl o) e © 4spe lxﬁ-'ﬁ?ﬂl -
t t
e
bt 8 s -AJ t -
= lpg= - Il e (A.4)
Ky TR,

and using (3.46), A.4 yields
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ylk, t) = |—£ 2T, 3

1. 6,
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APPENDIX B

{ )
\\"/ In this Appendix the integral
= a fea, 1
is evaluated. The above integral {is written as
vwhere
® 2
Ry = J B1"1;"2 ok S 6.3
4 1 B.3
0 k1 + 2, kl +ta, .
R, =] 5 dk (8.4)
2. ma—3 1 *
o 1+ L k1
N\
with
Z
1_+ 2, 8 = 33 ¢
B, =2, +2a, 2,8 (B.S)
83 = -8 Bl

Integral Ry is evalutaed first. The type of integration depends
on the sign of & = ag - 4a4. For & > 0, the denominator of the
integrand in B.3 has two real and negative roots: p] = =f, p2 = =g

where f, g are given by
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LRl " o D IURL S LT B Y Y R, T2 L

a
3.1 ,72
f,g =yt /a5 da, (8.6,
and f, g, > 0. Then
2 2
B K *B  BkrR 4 G 1)
k¥ +a, k¢ +a (kS + F)(kS +g) XS+ f K¢+ )
1 Y33 %1 %y 1 1 9 1 179
c 82 - Bl f
1 g -1
(8.8)
e .19 5%
2 g -t
Integral B.3 is now easily evaluated.
Rl.cl."_ +C, _ (8.9)
¥T Y9
Substituting 8.8 and using B.§ yields W,
R =3 (ArG) 8, + 8, (8.10)
1 0
(ArG) 74ArG + Aszl

For A < 0, the denominator of the integrand in 8.3 has no real
roots. In this case a differént type of integration {s required. Since
A m§ - 4a4 < 0 it holds ’a3|/2 </33. let p =733 |Are|. It
is-possible then to express a3 as a3 = 2p cost. Using the

transformation of variables t = k%. 8.3 yields
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8, 2, s, 2
v dt (8.11)

t° + 2p(cost)t + p2

'1 -«
R, =
Rtz

Using Equation No. 3.252.12 of Gradshteyn and Ryzhik (1980), for u = 3/2,

yields.
© t1/2 ‘
Tl s | » i dt =
o t° + 2p(cost)t +p
P p'llz(coseCt) cosec(%i) sin(%) = %— 3%%%1431 (B.12)

p

Using the identity sint = 2sin(t/2) cos(t/2) yields

T 1 _
Ty = E;% cos(t/2) (B.13)
Substituting
— 2p +a
cos (¢/2) = , % (1 +cost) = --za--2 ‘ (8.14)

Equation B.13 gives

- vYep * 2
Note that =

A= ag_- 4a4 = (2ATG + AZLE)Z - 4 AZ rz Gz = Asz(Asz + 4 ArG).

since A2 1§ > 0 for & < 0 1t is ATG < 0, and |ATG| = -ArG.
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Equation B.14 then simplies to
roa N
l'ﬂq

Equation No. 3.252.12 of Gradshteyn and Ryzhik, (1980) for u = 1/2 yields

[ '1,2
TZ x| 7 : Z
o t°+ zp(cosr) t+p
% -ap732 (cosecr) cosec(iJ sin(-i) = p;_ ffﬁfi’f)
P

| 1
2 —— slt72) (8.16)

/P

Substituting 8.14 and form ArG and for ArG < 0, Equation B.16 simplifies

to E
~—

T, - L (8.17)
2 TATSITAL ]

A PANWEC T SRBAGER MY 1N

Substituting B8.15 and B.17, Equation B.1l1 yields

(M'G)fs1 - B2

R, = 5 (8.18)
1 2 (IfGI(KEli

Integral Ry is easily evaluated from Gradshteyn and Ryzhik,

(1980)
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h 1
Ry = > B, (8.19)

Given the above expressions for Ry and Rz integral Iy is

evaluated form B.2. For & > 0, substituting B.10 and B.19 Equation B.2"

gives.,
(ArG) B, + 8 B
=% 12 +x.i] (8.20)
(ArG) 74ArG + Asz

Substituting By, B2, B3 from B.5, Equation B.20 yields

TR AL VR PR PR PR PR PR

=zl

2
(ArG) v 8 - &, as)

. 31 "8, % ] (8.21)
5 T
{1+ 3 2 - 2, as)k1

while for & < 0, substituting 8.18 and 8.19, Equation B.2 gives

(ArG) B, = B, 83

T
L =2 lmreroe— * (8.22)
Substituting 8y, B2, B3 from B.S, Equation B.22 gives
t =y R 3= 2) 335473, 2,857 2, 2y 238
1 7
- (ArG) (AL;) (1 +a, ag - 24 as)
a, -2,
1 2.5 © (B.23)

- 2
5 i |
(1+2a, 8 -252.n,
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APPENDIX C

In this Appendix the integral

‘- 2 2

[ (agk) " + a,)k, 1

2 0 .3 2 Z
k1 + a3kl + a4 l+ as kl

dk, (C.1)

is evaluated. This integral is written as

I, = R,+ R

2 " R* R, (c.2)

where

(C.3)

Rza'I EEE— dkl (C.4)

with

| 81 . az + a1a4as - ala3
A :.. T
g, 1+ as a4 a3a5

Bz a -a4(a1 - aSBI) (C.5)

By =2, - a8,
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Integrals Ry and R have been evaluated in Appendix B.

Substituting

By, B2, B3 given by C.5 into B.20 of Appendix B gives for & > 0

2, /a4 + Ay, taae, /a4 -alaa'la4 -8,

T
I, =zl

| 2 2 v aal
(ArG) /4 ATG + A°L,° (1 + 343" - 243;)

8 < 33

+ ,
(1 + a4a5 - a3a5)11

whi]é B.22 gives for 4 < 0

I, =5 ,
22 [ .(Are) (AL1) {1+ a4asz- a3a5)

a; = 3

+
=i
(1+a,a5" = a,2) 2

AN
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APPENDIX D
—/

This Appendix derives an approximate solution to the one dimensional
unsaturated flow equation, when a soil moisture pulse is placed at the
soi) surface. This solution is similar to the one given b} Wilson (1974)
but here we estimate the mean capillary tension head H rather than the
soil moisture content.

It is assumed that the initial mean capillary tension head Hy is
constant throughout the soil depth. It is also assumed that the vertical
hydraulic conductivity is given by Ril = Kge~AH and that the mean
soil moisture content is given by @ = -TH+E[8g] and it is independent
of the mean flow conditions. The moisture bulse 1n6ut at the sofl
surface generates a soil moisture wave., An approximate solution
predicting the movement of this wave {is obtained as follows. \\_4/

The governing one-dimensional mean flow equation is given by

-

“ A _ 3 3 3+ x;) TP A T A
Crz = i (K1) — ] = En [KII(H)TJT]_] + T (0.1)
Let *
H = H° + H (D.2)

wherevﬂo the faitial capillary tension head and H* the fluctuation of
H around Hgy due to the generated soil moisture wave. If the
fluctuation H* is relatively small it is possible to approximate Rll

in Equation D.l by
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. 3 Ky, -
Kip(H) = Ky (K )) 4 | Hoe W, (H = H) | (0.3)

Using K1j = Kge=AH and 0.2, 0.3 gives

- a o~ . * -
KyfH) = Kyp(Hy) = KK (H ) H (0.4)

Substituting D.2 and D.4 into D.1 gives

* 2, AK (H) .2 2
~eH ‘ a'H ‘110" 3°H :
1

Assuming that the square of H* is relatively small D.5 sfmplifies to

T PAL Y R T L T ke (0.6)
or
a” k" 22"
a_'+valeoa_7 (D.7)
X1

where v = AAklllHo)/E and D = Rll(ﬂo)lb. This 1s 2 simple one
dimensional diffusion equation. Solving 0.7 for H* and substituting
into D.2 gives tﬁé:fo}%owing approximation for the mean capillary tension

head,
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L

(x1 - vt)2

H=H -Q!L_exp[-—rb-t——] (D.8) L/:

% /0T

where d the depth of water added in the pulse. Equation D.8 predicts H
as function of time at a given depth. Taking the time derivative of D.8

with respect to time gives

2 2 2,2
p (x, = vt) x, " - ¥v°t
g'}é = d/C exP[‘ 1( )3 ] [- 'z% + ‘—-'2_1 ] (D.9)
YIx Dt 4 Ot .

The pair of equations 0.8, D.9 defines the values of H and J¢ as a
function of time t at any depth xj as the soil moisture pulse moves
vertically through the soil matrix past this depth., Equations 0.8 and™
D.9 have been used for generating values H and J¢ and the corresponding

effective hydraulic conductivities in Figures 4.13, 4.14, 4.15, 4.16.
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APPENDIX €
This appendix evaluates the derivative ay/at of Equation (4.10). In :
, ) -
this evaluation 1t {s assumed for simplicity that the second order
derivatives 324/ t2 and 3 2H/x{ 3 t are relatively small. It is
also assumed that the squares |3H/3t]2 and | exp (-AH)|2 are
relatively small. Substituting the expression for G given by (3.31), iy
Equation (4.10) is written as %
| 49, (dz,~HdZ,) ky - 3, 24z | X :
S A A T B 2 P T R e
= 7 W .3f e ¢+ #
Kg(k 2 + JAL K Je 0 o il 1315 ;
i (8
- - . il
,_ dzertha, - a) Y - ,l;,!
L AN 3R it . ~ e
B l((;(!c1 +J Alel)e + 5T :‘ ‘
.:H ;

Let y =pi + P2 where p1 and pp the first and second terms of

E.1. Taking the derivative of p; with respect to t gives l
- _¢ q aH
P . e § A W e+
at ] =AH dH
Kglky™ + J ALk le ™0 + Ay .
|
lj J'(dz -HdZ,) k, = (Jgﬁ)'di | L
1'°fF a’ "1 1t Xy al "6
,2
ao-A 2 <AH, o 3H,_ =AH _ 2 -AH, ,.3H
{ e Mgl gyt Je e - Ak ke gaL e 8T ]}au
" 8 <AH, , 3H,2 it
[KG(I:1 + § Alel)e + Ara_t']




Using -the assumption 32H/3t2 = 0 and [exp(-AH)2 = 0, E.2 simplifies
to

AN
391 J Jlkl(dZa + AdZ, - A dza)-A(Jiiii)dza

It

X.e (E.3)
2 <AH_ ..9H G 3t

Dividing the numerator and denominator of E.3 by Kg a~AH gives

aH
391 J Jlkl(d2a+ Ade HAdZa) A(Jisi;) dZa -
2 - (E.4)
T (k,°+ j AL.k,) + ATG it
1 11
The second term of E.1 yields
aH
;_p_z. 3 - ! ﬁ dza .3_% +
3 z =AH. ..3H 3
-AK_(k, 2+ j AL, k,)e AH, AraHZ
G''1 1°1 ;ZZ 3

+(rdz; - TH dz, - azy)g% {- Ly

(E.S)
2 =AH, , 3H 2 3
[Kc(k1 +J ALjkgde T+ Arss]

Assuming that 32H/3t2 = 0 and dividing numerator and denominator by
Kg e*AH, E.5 gives

apz . rG dZa a
T (k12+ J ALK)) + ATG it [(k12+ JAL KD+ arg)é

2
it

(E.6)
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Assuming that the square (3H/3t)2 = 0, this equation simplifies to

0, re dz, - )
T (k12+ § ALK)) + ATE it

_

The derivative 3y/at is given by |

1

ay 3p, 2p : |

e _ (E.8) i

ﬁ

|

1

¥

I
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APPENDIX F
-/
This appendix evaluates the integral
o (u 2+ 2)3 . .
= ‘ dvdu.du
o T { TZ TZT 2. 2, Py - 2, Z,2 2773
(u,"+ uy") "+ AL e Ty VO Uy ugt)® (1 + uy "k ugt)
(F.1)
Using cylindrical coordinates
v sy
u2 = r cos 9 (F.2)
u3 = r sin 8
and integrating with respect to 9 gives
1 3 4x [ ] r7 1 1 dr dv (F.3)
ZTZ 4 Z_4 2,2 *
00 ri+a L1 A AR (1 ++°) D,
Let -
I, =f 1 1
Voa a2 7.3 @ (F.4)
r +A L1 LY

using Equation (3.264.2) of Gradshteyn and Ryzhik (1980), for u = 1 gives

1, = 5 !
12 uri(l + AL‘laLu) (F.5)

Substituting into F.3 gives

2 - 2
2n 1 r ] 1
I ar = - (F.6)
wo L+ alisr s 1+ r9° v T ALeg

I =
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APPENDIX G

This appendix evaluates the integral

R e L G T @
= ‘ du, du, du .
a o Alezxzulz (1 + ud)2 1727y
Using spherical coordinatés‘
u1 = u cosd
u, = u sind siné _ (6.2)
u3 = u sind cosd : -
and integrating with respect to &, G.1 becomes
tew. & .3 2 2
in“¢{cos“¢ + u sin"d) 1
1es) [ L3 , du & (6.3)
‘ 00 u2 + AZLIZXZ coszo (1 + uziz o .
Let !
c 4
I, =f u 1 :
1 du (G.4)
0 ¢+ Ale zCcos (1 + uf)é
and using Equatjah 8.2 of Yeh (1982), G.4 gives
1+2 Ale cosd :
o (G.5)

1. =
13 (1 + Ale coso)2
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Substituting into G.3 gives

2 N

[af /2 (1 + 2 Ale cosd ) (cos2¢+ u sinzo) 3
T

sin™) %

Q=3

(1 + ALIA coso)2

(G.6)
Let cosp = t then: =-sin é d & = dt. Then

- } (1+2ap (tZeulr - 9] 1-t?) "
o (1+Ap t)°
.7 ;1 [——2 - L) {w-nt? + (-2t u)ae
1 +ALA t 4
(o] 1 (1 + ALIX t) (6.7’

Expanding the product in G.7 gives

2
D (20e) Ty e 2020 Ty o 20 Ty = (ue1) Py = (1200 Py = u Pyl =\

2
L4
== (2T g4 2T, =Py = Py) +(2T3 - 4T, ¢+ T, = Py+2P,- PN
| (G.8)
where
T, = } l_qt=lunmas+n
15 I+ xt X X
i a t L1 .1 .1
it T L it *x " + 3 (1l + x)
N

16



T3 - } f‘ = dt = %. - .l! + .13 - lz + lg 1n(1+x)
\\_,/ 0 T+% X 3x 2x X X
! (G.9)
I e e T B
o (1 + xt) X
pz =z } ___EE___Z dt = 1, ‘% Q I-%- - £3~1n(1+x)
o (1 + xt) X ox , X%t
p:]l ¢t dteade 2o & .2 LA L& n(1ex)
DR RTEerLAARE ST A i A

o (1 + xt)
and x = ALJA, The above integrals were evaluated using the recursive
formulas (2.111.2) and (2.111.3) of Gradshteyn and Ryzhik (1980).

Substituting thesé’expressions. G.8 gives ;

- 1 =w¥[g, + g, | o : (6.10)
where
1_4 _6 .12, ,12_ 8
gy =z~ -+t ¢+ + =) In{1+x)
R e S R
o - (6.11)
§.12,.6 _12 12 _16 4, .
g, = =2 +apt 2=+ (Sf -5+ =) In(lex)
CHEE = A e A

Note that for x + O, Ih(1+x) + 0 and g1, g2 tend to g1 = 1/15;
and g2 = 4/1S,
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APPENDIX H

N
This appendix evaluates the integral
- 2 2,2
- 4, 2 e &, .4 & Z. ¢
§ (u2+u3)+ALlaLv
y— gy Py dv duy duy  (H.1)
vor us (u,"+ uyt) {1+ u,te )
2 3 2 3
using cylindrical coordinates, as in F.2, and integrating with respect to
8 gives ’
1:41}”]' r! 1 . dr dv (H.2)
008%r% A% % N vE Bt (1 rf)t
Let sty | T T ~
ALlaL 0 v2+ §'r v+tudr
AEL !a 2
1L
using Equation (3.264.2) of Gradshteyn and Ryzhik (1980) for u = 1 gives
n 1
I, = (H.3)
. 172 uGFrf(l + ALa,u)
i
Substituting into H.2 and integrating with respect to r, gives
2
1= 1 (H.4)
us 1+ M'IGT
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APPENDIX I

This appendix evaluateés the integral

2, 2 2
. o . (U, "+ u,") :
1ef]f 22 3 1

du du, du -(I.l)

951ng cylindrical coordinates, as in F.2, and integrating with respect to

6 gives
Le2e ]| r° 1 __drdv (1.2)
o o[BS+ ré)¢ (1+ ré)é
Let .
hel et Ty (1.3)
o (Bv +r®) ér ‘

Substituting into 1.2 and integrating with respect to r yfelds
23
n

I =E— (1.4)

m| oy
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APPENDIX J

This appendix evaluates the integral

2. 2.2
+uy) 1

= [8%°% (uzz:'u:,z)z]2 (1+ uzzziu

2;2 dv duz du, (J.1)
3

Using cylindrical coordinates, as in F.2, and integrating with respect to

9 gives

tadan ] r® B dv dr (J.2)

o0 [8%% r*]° (1 +r9)°
Let . -
1 r 1
Wl =7z 1.3 (3.3
o (8°v°+r’) 8r _
N

Substituting into J.2 and integrating with respect to r gives

3
x 1
123 7 (d.4)

“
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APPENDIX K

This appendix evaluates the integral

2, 2

e [ff ! "’ o du, du, du, (K.1)
: {u 12+ 8 2(u2 + uq )] + Azilz ;2 (1Leud)e 17273

Using spherical coordinates k, ¢ ind 6 and integrating with respect to 6,

K.l gives
[ = 2n "fz 7 u® cos%(1-cos%) sing L 4 du
o o u[cos% +8(1-cos ¢)]27+ AL 21 2cos ¢ {1+ u)?
, (K.2)
Using the transformation t = coss, K.2 becomes
Ithjl.? u_ t(1-t%) 1 __dta  (K.3)
00 62[:2 + 62(1 - tz)]2+ Aztlzilz t¢ (1+ uziz
Let
[ 4 |
1
I, = — du (K.4)
1 ° ;2[£2+‘62(1 tz)]z "2 2x 2 Z (1 + uZ)Z
Using Equation B.2 of Yeh (1982), K.4 gives
t2e 8201-tY) v 2 ALt
(K.5)

1, =%
L3 1% s%1-tD)] [ 2% 6201-th) + aLp,)°
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. Substituting into X.3 gives

2 [(1-62)1: + 8% 2 AL Mtlt 2(1-t%)

1
133 |
T o (16947 +52][(1-52)t + 8% ALD ]

dt (K.6)

For §2 + 0 this equation simplifies to

1,2!1(:‘*21\1. )t(l-tz)
I= dt (K.7
T o (¢ +62)(t ¢ A )

Writing

(t+2A0 )t(l-t) B,t+ 8 "B B
P A UL NN 3

¢ O e 5% LALLM, (t+ALA,)C

1) t ™1 1

(t8 + 8%) (¢ + AL A

(K.!
—/

where (after a few calculations)

Bo 2 -1

. 23311+ &%)
1 (a2+ 62)2

_ 820+ 83 (8% 3ad
2 (a2+ 52)2

(K.9)
IR
(a%+ %)

_adad- 1
(a®+ &%)
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where a = ALjA}. It is

\_/ x% |
. =3 (Bg To * By Ty + 8, T, + By Ty+B, T, (x.10) |
where
1
To z £ dtvc 1
T, = } t ae=luwma+dy
1 0% +68 2 a—;z

1
Ty = / ‘2‘l"2 dx = % arctg(é& -é%- =

0o t +§6
1, 1+ AL, (K.11)
T3 " !o Ea iy
_/ .
T, =) —ry i
o (t+ALA,) AL (1 4 ALA,)
Substituting the above expression into K.1l and taking the limit for &+0
gives '
L L (1 + ) (K.12)
THRN T )
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APPENDIX L

This appendix reduces the two-dimensional integrals (5.54) to one
dimensional integrals. Take, for example integral Tyz. Using .
cylindrical coordinates it holds

T2 * 8 }'IZT Y Y ;3 cg$4 . z *—y dras

o 0 r°(cos” 9 +38sin o)q Azfzrbzcos » (1 + r)Z
(L.1)
Let
= 3
1
1 =] ’ dr (L.2)
o a®rc+d° (1+ r'i'r)Z
where  a% = cos?y + %sindy, a? = A2 PbPc0s. (L.3)
: o/
Using r2 = x gives
1 X 1
I = dx (L.4)
2 0 azx+d2 (1+x)2
E Let

i X v 1 3 ;1 - + 32 , (L.5)

3%°x + 4 (1 + x) ax + d 1+x
where . -dz

1 388
(L.6"
B, = 1 ’ /
2 ;2-_? S
324




then

1
where -
1
I, = | dx
l 0 (azx + dz)(l + x)
and - (L.8)
1
1, = f — X
2 o (1+x)

Using Equation (3.223.1) of Gradshteyn and Ryzhik, (1980) fer u = 1 gives

dZ p-l
(:2) -1

Note that for u + 1, the numerator and denominator of the above equation

tends to zero. Then

2 2
] d u-1 _ d
I, = o2y 1in ol Y G ‘—z'—'z“"( fa?) (L.10)
1 o a® = d° usl %; (sin ux) a -d
and
1,=3 (L.11)
Equation L.6 then gives ‘ e
= S 8d” zn(dZ) 2) (L.12)
8@l - a4) 2% - ¢ &
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where a2, d2 are given by L.3. Substituting into L.1 gives

.2 . —/
T,, =4 [ I(s) cosd dd (L.13)
22 o
where I(¢) is given by L.12 and L.3. Integral L.13 cannot be
-analytically evaluated and it requires numerfcal evaluation.
o/
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