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PART 1

SIMULATION OF GROUNDWATER FLOW



1. INTRODUCTION

1.1 Purpose of Manual

This manual Is prepared with a dual purpose. The first section will

Introduce you to the finite element-Galerkin method for solving partial

differential equations and the second part consists of a documentation that

will permit you to use the accompanying computer program In solving problems

of areal groundwater flow. The manual is designed for the practicing hydrolog-

1st rather than the theoretician. Accordingly we will omit detailed discuss-

Ions of equation development and error analysis, and refer the interested

reader to recent publications in the numerical methods, structural engineering

and water resources literature.

1.2 that is the Finite Element-Galerkin Method?

As the name would imply the finite element-Galerkin method evolved

from the marriage of the finite element method of integration and the Galerkin

method of generating approximate integral equations. The finite element

method was Introduced about two decades ago in structural engineering, more

specifically in the aerospace industry. At first It was fundamentally

intuitive, but gradually came to be associated with the calculus of variations

and the Ritz method of gensrating approximate Integral equations. There were,

however, limitations to the Ritz scheme which precluded its use in important

areas of hydrology such as contaminant transport.

Meanwhile, in the oil industry, a group of numerical analysts were

experimenting with the use of the Galerkin method of generating approximate

Integral equations. In contrast to the structural engineers, they were not

concerned with the accurate representation of domain geometry but focused

their Interest primarily on solution accuracy and numerical efficiency. As

a result the integration schemes they utilized were restricted to rectangular

sub-domains very similar to those encountered in standard finite-difference
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methods. It is important to point out, however, that the Galerkin method is

totally general and, In contrast to the Ritz procedure, could be used to

approximate all classes of partial differential equations.

Only recently have the finite-element and Galerkin methods been

combined. This combination provides the mathematical flexibility of the

Galerkin scheme with the Inherent ability of the finite-element method to

accurately represent irregular geometry.

2. THEORETICAL DEVELOPMENT

2.1 Galerkin's Method

Our objective In this section is to introduce the method we use to

generate the approximate integral equations that we later solve using the

finite-element method. This scheme, commonly known as Galerkin's method.

assumes there exists an infinite series which will exactly represent the

solution we seek to our partial differential equation. Because, in the case

of groundwater flow, this solution will be the areal hydraulic head distribut-

ion at specified times, the approximating series is of the form

where

h is hydraulic head

is the series approximation to

is an undetermined coefficient and

is a basis function.

The seris approximation (2-1) will provide an exact representation as n

approaches infinity (h will approach h). By a careful selection of the basis

functions the undetermined coefficients become the head values at

selected points (or nodes). The choice of basis functions to fulfill this

condition should he considered the key step in making the Galerkin formulation



a computer oriented solution scheme. Basis functions will be considered In

more detail later in our theoretical development.

The equation we will consider here describes transient, two

dimensional groundwater flow, including the effects of vertical transient

leakage from a confining layer. To minimize algebra during the ensuing

development we will define this equation as the operator

(2-2)
where

C is the transient leakage coefficient

T is the transmissivity

5 is the storage coefficient

Q is the strength of a sink function

is the vertical hydraulic conductivity of a confining layer

is the thickness of the confining layer

is the hydraulic head in the adjacent aquifer and

is the Initial hydraulic head in the aquifer

The sink function Q is used to introduce well discharge. To allow us to

easily incorporate this term later in the analysis we introduce the Dirac

delta function (note this Is not the Xroneker delta commonly encountered in

applied mathematics) and define Q as

The Dirac delta function has the property that, when integrated, the function

will equal in other words it enables us to treat a point

source or sink such as a well.

The transient leakage coefficient C was introduced by Bredehoeft
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and Pinder, 1970 to account, albeit approximately, for transient leakage

from a confining bed. This coefficient is developed from a one-dimensional

transient flow solution and is given by

and is the specific storage of the confining layer.

since the approximating function h becomes the exact solution h

only as n approaches infinity, for a finite series equation 2-2 will not be

exactly satisfied and there will be a residual R. Using the notation of

(2-2) this is expressed as

L(h) - R (2-4)

To solve (282) using Galerkin's method we attempt, in a sense, to minimize

the residual R. We accomplish this by first considering a complete set of

functions W (note that in the Galerkin method the basis functions turn out

to be the same set). flow imagine generating a function that would be ortho-

gonal to each of the n functions w. The only function which fulfills this

condition is zero. If we now force the residual R to be othogonal to all

possible values of w we are, in fact, forcing R to zero and thereby obtaining

a solution to 2-2. Expressing this another way

(2-5)

Unfortunately the condition expressed by (2-5) can be achieved only as n

approaches infinity and computers can deal only with finite sets of numbers.

We are forced, therefore, to consider a finite subset of values

which generally makes our solution approximate rather than exact.

Bredehoeft, J. D. and G. F. Pinder, Digital analysis of areal flow in
multiquifer groundwater systems: a quasi three-dimensional model, Water
Resource. Res.



Thus we require N conditions of orthogonality of the function R and the basis

functions Recalling the definition of orthogonal functions

thse conditions can be expressed as

Introducing the definition of (2-2) we obtain

Equation (2-7) can be integrated by parts to obtain

where and are the direction cosines between the normal to the surface

S and the x and y co-ordinate axes respectively. It is Interesting to note

that derivatives in transmissivity that implicitly appear in (2-7) are not

in Substituting (2-1) Into (2-8) gives us the final form of the

approximating equations.

A formal substitution for the last term in (2-9) was not made because the

quantity In brackets is in fact, the flux across the boundary of the region



S. This term thus represents a flux boundary condition and is referred

to in the calculus of variations as a natural boundary condition. The other

type of boundary condition encountered in groundwater flow is the constant

head condition which is designated as an essential boundary condition. The

task remains to determine the form of the basis functions .

2.2 Basis Functions

Examination of equation 2-9 reveals that, in order to generate a set of

algebraic equations to solve for the undetermined coefficients It is

necessary to perform integrations of the form

fortunately the required number of integrations can be reduced substantially

through a judicious choice of the functions w.

The original Galerkin formulation assumed that each basis function

was defined over the entire region of interest. The idea of defining these

functions as piecewise continuous functions defined as non-zero only over a

small subarea of the total region was key in generating an efficient numerical

scheme. There are two basic philosophies on how the basis functions and

subregions or elements should be defined. In the petroleum industry emphasis

has been placed on higher-order functions defined over simple elements,

generally squares or rectangles. Structural engineering, on the other hand,

has utilized relatively simple basis functions defined over irregular

elements, principally triangles or rectangles which may, in some cases, have

curved sides. The element that is used in this program is fundamentally a

rectangle which may be deformed In a specific way. This element is referred

to in the structures literature as a deformed isoparametric quadrilateral

element. Because of its irregular geometry it is necessary to use numerical
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integration (more specifically gaussian quadrature) to evaluate the integrals

appearing in (2-9). To facilltate this integration the irregular element

defined in (x, y) space (global co-ordinates) is transformed into a local

co-ordinate system (local co-ordinates). A typical element in .xy)

space and its transformed equivalent in space Is shown in Figure 1.

A basis function is defined for each node such that it is non-zero

only over the element on which the node is located. Since a node is nearly

always located on more than one element, each node will have associated with

It several sub-basis functions (commonly called shape functions in the

structures literature), one for each of these elements. Each of the sub-

basis functions is Integrated only over the element on which it is defined

as non-zero, thereby reducing the computational effort considerably.

A typical sat of sub-basis functions is illustrated in Figure 2.

There are two important characteristics common to each of these three

functions: they are at the node for which they are defined and they

are sero at every other node, Including nodes in the element over which they

are defined. Consider the impact these two characteristics of basis functions

have an evaluating the series given by equation 2-1, which we introduced

at the beginning of our discussion. Assume you wish to determine the

approximate value of h, which we designated h, at some node k. Because the

basis functions are zero at all nodes the series evaluated at k would

reduce to

Moreover, because wk Is defined as unity at node k the desired head value is,

i n fact, the undetermined coefficient H. In practical problems, where

one is generally satisfied with a solution at specified points, the numerical

problem reduces to one of solving for
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GLOBAL COORDINATES
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Fig. 1. Deformed Isoparametric quadrilateral element In globaland local co-ordinates.
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Fig. 2. Basis function along for corner node with
two adjacent sides of Indicated orders



2.3 Matrix Equations

The equations of 2-9 can be written in matrix form as

where (Al and are matrices and and (F) are column

vectors Typical elements of [A], [B|, and (F) are

Where, as discussed earlier, the last term in F is considered as a known

boundary condition.

In the sequence of steps leading up to equation 2-9 we have tacitly

assumed that the time derivative would be treated using a finite-difference

approximation. Although the time derivative may also be Incorporated into

the Galorkin scheme by simply making w a function of time, our experience

indicates that, in general, It is advantageous to use a finite difference

approach. There are several finite difference schemes that can be used,

each having inherent advantages and disadvantages. Our experience indicates

that an implicit backward difference scheme provides the most accurate

solutions to groundwater-flow problems at minimum cost. In the backward

difference representation a first order correct scheme is used to

approximate the time derivative and the spatial derivatives are written
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at the new time level. The appropriate matrix equation is

or rearranging for ease of computation

where the unknown values appear on the left hand side of the equation and

the known values on the right. It is important to note that the matrices

and need be generated only once unless the geometry of the element

configuration is changed. A second important observation is that the matrix

This is important not only because only half of

the matrix need be stored, but also because of the decreased computational

effort required to generate a solution to the simultaneous equations. When

the "two-step" upper triangularization-back substitution scheme is used the

major effort involved in triangularization is required only when the time

step A is changed. It may prove advantageous to back substitute several

times before again changing the time step, since back substitution requires

relatively few arithmetric calculations.

Although it may not be obvious from equation 2-12 the coefficient

matrices are not only sparse (contain a majority of zero elements) but are

also banded. The bandwidth of non-zero elements in the coefficient matrices

plays a significant role in the amount of computational effort required to

solve (2-14) and it is important to minimize this parameter. The bandwidth

is a function of the maximum difference between nodal numbers occuring on

the same element. The difference occuring in the element of Figure 1, for

example, is 6 (7-1) and, If this was the maximum difference encountered

after examining all elements, the half-bandwidth would be 7 (the maximum

difference plus one). You will soon learn from experience that the minimum

Weaver, William Jr., Computer Programs in Structural Analysis, Van
Nostrand Reinhold Co., New York, 1967.
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bandwidth is generally obtained by numbering sequentially in the direction

of the smallest dimension of the model. To illustrate this point reference

Is made to Figure 3 where a model consisting of five elements and 27 nodes

is numbered first using the procedure described above (case A) and then along

the length of the model (case 8). In case A the half-bandwidth of nine is

dictated by element 3 where the maximum nodal difference is eight (10-10).

The half-bandwidth.of 19 in example B is determined by element where the

difference is 18(9-1). Example A further demonstrates that when the

minimum dimension convention is adhered to, the use of higher order elements

Is generally at the expense of an increased bandwidth.

2.4 Boundary Conditions

Constant head and constant flux are the two boundary conditions

generally encountered in groundwater flow problems. The constant flux

condition was mentioned earlier, and is easily incorporated by simply

specifying a value for the last team in equation 2-9, which may be written

where is the normal flux along S. When the flux is assumed constant

along an element face of length L the integration of ( 2-15) will give the

nodal allocations indicated in Figure 4. When the total flux crossing

the boundary is known, such as at a well bore, the allocations are made In

the same way. In contrast to finite difference methods, a point sink can

be represented using the Galerkin-finite element scheme by simply allocating

the appropriate discharge to a specific node.

Constant-head boundaries are handled by specifying the initial

head conditions at the appropriate boundary nodes and factoring out those

rows and columns in the coefficient matrix associated with those nodes.
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Fig. 3 Two identical element configurations with markedly
different bandwidths dictated by the choice of nodal
numbering scheme. Bandwidth of A is nine, of is 19.
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Inasmuch as constant-head nodes are thus effectively eliminated from our

matrix equation, we will be left with (N-N) equations In (N-N) unknowns with

being the number of constant-head boundary nodes.

2.5 Parameter Definition

Examination of equation 2-2 reveals that there are four aquifer

parameters to be specified in order to simulate transient, two dimensional

groundwater flow. These parameters can, in theory be specified either for

each node or for each element. Because the numerical solution requires

slightly less computational effort when parameters are assumed constant over

an element the storage coefficient S, the head in the adjacent aquifer

and the ratio of vertical hydraulic conductivity to aquitard thickness

are specified for each element. The transmissivity may be specified either

by element or by node and this choice is left to the discretion of the user.

A modest improvement in solution accuracy can be anticipated when nodal

transaissivity is used.

2.6 Numerical Integration

Although the Integration scheme used in the program is invisible to

the user it is discussed here for the benefit of those readers who wish to

examine and understand the computer code. As indicated earlier the basis

functions w are defined, and the numerical integrations performed, in the

local coordinate system. Equation 2-9 is, unfortunately written in

globe coordinates and must be transformed to the system. To

perform the transformation of the basis function derivatives and we

use the relationship



where J is defined as
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Fortunately the matrix J can easily be evaluated numerically from the

relationship

where x x2 and yl y2 ....are the nodal coordinates. This relationship

(2-18) may be obtained by developing a series similar to (2-1) for the

spatial variables x and y, and substituting this information into (2-17).

The only other transformation required is the replacement of the element of

area dx dy by the relationship

The limits of integration i n the loc al co o rdina t e sy s t em b ecom e - 1 and +1

in both integrals and we obtain for a typical element

Similar expressions are developed for the remaining terms in 2-12 without

the introduction of any additional transformations. Terms of the form of

(2-20) are appropriate for integration by Gauss points. in this method of

Integration particular values of the function to be integrated are calculated

at selected points in the domain of integration (In this case within the 2



by 2 square of the local coordinate system). These values are weighted in

a prescribed manner and summed to give the value of the desired integral. The

numbers of points required to provide an exact solution depends upon the

degree of the polynomial being integrated. A polynomial f(xy) of degree

2NI requires N2 points distributed evenly over the area of integration. A

4 by 4 rule is used In the accompanying groundwater flow program. For a more

detailed discussion of Gauss points, their location and their weighting

factors see Zlenkiewicz and Cheung, 1967, p. 263.1

3. PROGRAM DOCUMENTATION

3.1 Introduction

The accompanying computer code was developed by G. F. Pinder and

E. 0. Frind for solving transient, areal, groundwater flow. The theoretical

foundation of the code and a comparison with an alternative finite-difference

scheme is presented in Pinder and Frind, 1972 Other modifications were

recently added by P. C. Trescott of the U.S. Geological Survey, Reston,

Virginia.

3.2 Program Structure

The computer code is written in FORTRAN IV for use on the IBM

360-370 series computers. It consists of a main program and five subroutines,

SHAPEI, CLAY, PLOT, DBANDI, and SBANDI. SHAPEI generates the particular

values of the shape functions, their derivatives and the determinant In

for Integration using Gauss points. CLAY provides the transient

leakage coefficients necessary to simulate vertical flow into or out of the

aquifer due to adjacent confining beds. PLOT presents information pertaining

to nodes on an (xy) plot generated on the line printer. DBANDI places the

Zlenkiewicz, 0. C. and Y. K. Cheung, The Finite Element Method in Structural
and Continuum Mechanics, p. 263, McGraw-Hill, New York, 1967.

pinder. G. F. and E. 0. Frind, Applicationof Galerkin's procedure to aquifer
analysis, Water Resourc. Res. 1972.



coefficient matrix in upper triangular form. SBANDI used the results obtain-

ed from DBANDI in conjunction with the known vector to back substitute for

the desired solution at a particular time step.

Because the coding of the Galerkin-finite element method Is some-

what difficult to follow care has been taken to provide adequate comment

cards in the program.

3.3 Program Logic

Input to the program is straight-forward with the exception of the

element Incidence, which is a description of the nodal arrangement around

each element. Because this information is read in with a "free" format,

some effort must be expended by the computer in translating the card image.

In addition the use of mixed elements requires the condensation of the

unused nodes around each element. Twelve nodes must be initially assumed

for each element and, depending upon the order of basis function assumed

for each side, from four to twelve of these nodes may be actually used.

All operations involving numerical integration are performed

element by element. The first step in the computational algorithm, there-

fore, is the calculation of information required for numerical integration.

This information is obtained for all nodes on a given element. The

integrations indicated in (2-12) are now performed and element coefficient

matrices generated. These matrices contain all the coefficient information

for the element under consideration and, because these matrices are

symmetric, only half of the elements need be calculated. The Information

from the element coefficient matrices are allocated to the global coeffi-

cent matrices, which are used in solving the (N-M) simultaneous equations.

boundary conditions or wells are encountered this information is

placed in the known vector. The matrix equation 2-14 is solved by upper-

triangularimation and back-substitution. Trangularization is necessary



only once provided the coefficient matrices are not modified. Unfortunately

the matrix depends upon At and a tradeoff results between the computational

advantages of changing the time step and the additional effort of upper

trangularization. Back substitution requires relatively little computational

effort.

The printer-plotting capability is provided because the numerical

results are in general, difficult to interpret due to the arbitrary

arrangement of the nodes. To permit the individual representation of nodes

in close proximity, only three significant figures can be used to describe

the plotted parameters. Although this constraint limits the usefulness of

the plot for detailed analysis, it nevertheless provides a convenient

mechanism for quickly evaluating the numerical results.
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4.1 input Data
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Miscellaneous Comments on Data Input

Although the G format alloys considerable flexibility

in data input, it is important to recognize that when an E

or I format specification is implied the rules governing these

specifications must be followed. Note particularly the numbers

read using E or I specification must be right justified in their

field.

Although a satisfactory element can be generated out of

very irregular geometry, there are occasions Then a particular

element geometry will lead to an ill-conditioned matrix. When
this situation arises the upper triangularization algorithm

will again fail. Unfortunately those elements with the most

extreme shapes are not, necessarily, responsible for the ill-
conditioning. One recognized source of difficulty involves the

location of side nodes. While we have not discussed specifically

the location of side nodes, it has been tacitly assumed that they
would be placed such as to bisect a side in the case of a

quadratic element or to trisect a side in the case of a cubic

element. In practice these restrictions are unnecessary and one

has considerable freedom in locating nodes along a side.

-26-



An ill-conditioned matrix may be generated, however, by locating

a side node too near a corner node.

Figures 6 and 7 are provided for those users totally

unfamiliar with card input to a digital computer. Figure 6 is a

diagrammatic representation of a card deck and a sample coding

form is presented in Figure 7. Figure 8 Is a printout of the data pre-
sented In Figure 7.

To facilitate modification of the program to accomodate

problems of varying size, the accompanying program uses object

time dimension statements. As a result only one dimension

statement (the first in the main program)is dependent upon

problem size. Table 2 is provided to assist the user in making

changes to minimize the storage requirements of the program where

is the number of nodes, NB is the half-band width, N is the

degrees of freedom and is the number of elements.

Table 2. Major arrays with dimensions indicated symbolically
by variables from data set 3.

4.19 Printed Output

While the printed output is basically self-explanatory a

few additional comments may be warranted. The nodal coordinates

printed are identical to those read and have not been multiplied by

the scaling factor. The degrees of freedom printed under the

heading "Finite Element Data refer to the number of equations to be

solved and differ from the total number of nodes by the number of

constant-head nodes where, as indicated earlier, no equation is

generated. The global coefficient half-baadwidth presented
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immediately preceeding the first computed head solution is the

actual half-band required an contrasted to the estimated value

provided as input to the program.
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PART 2

COMBINED GROUNDWATER FLOW AND MASS TRANSPORT



1. INTRODUCTION

1.1 Purpose and Scope

In this second section of the manual we will extend the concepts

presented in part 1 to include the movement of conservative solutes. To

simplify the presentation it is assumed that the contaminant does not signifi-

cantly change the density of the fluid and that a two dimensional areal repre-

sentation, as indicated in part 1, is appropriate. Because the groundwater

flow section of the transport code is virtually the same as that presented

earlier let us now examine the species transport equation.

2. THEORETICAL DEVELOPMENT

2.1 Governing Equation

Areal, two dimensional transport of a conservative solute through

a groundwater reservoir can be written

where b is the saturated thickness of the aquifer [L],

c is the concentration [ML 3

is the concentration of the discharging (recharging) fluid [ML 3

is the concentration of the fluid discharging (recharging) the

aquifer through leakage [ML-3

the dispersion coefficient

is the hydraulic conductivity of the confining bed

is the thickness of the confining bed

q is the mass average flux vector L

Q Is the rate of fluid withdrawal

is the porosity.

-31-



It is apparent from the units of D and q that they represent vertically

Integrated parameters, i.e.

where and q are point values.

In the most general case time derivatives of head would appear in the trans-

port equation and concentration time derivatives in the flow equation. These

terms are generally small, however, and have been neglected in this development.

2.2 Galerkin Formulation

The approximating integral equations required for the finite-element

formulation are obtained for the flow and transport equations using Galerkin's

method. Following a development analogous to that presented in part 1 we

approximate the unknown concentration and certain of patially dependent

parameters in terms of the basis functions

The flux is obtained through differentiation of the head solution

as follows

where, in this code, the transmissivity is assumed constant over an element.

Note that the derivatives of the basis functions (and consequently the fluxes)
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used in this analysis are discontinuous at element boundaries and care must

be exercised in choosing elements so that continuity of mass is satisfactorily

maintained.

The approximating integral equations are obtained from Galerkin's

scheme by making the residual, generated by substituting (2-4) into (2-1),

orthogonal to each of the N basis functions W:

This may be expanded and reformulated in matrix form as

where typical elements of N, M, and F are:

where the unit normal vector. The time derivative Is approximated

using finite differences as in part 1.

In formulating the equations in this way we have assumed that the

dispersion tensor is symmetric This is indeed the case

for the dispersion-velocity relationship we are using, namely,
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(this Is a reasonable assumption for most field situations). While equation

(2-9) can be solved as presented it is often modified to facilitate computer

coding. The continuity of fluid flow is generally used to eliminate the

spatial derivatives of the flux terms (terms six and seven In 2-lOa). Oc-

casionally it is advantageous to apply Green's theorem to terms five and six

In equation (2-1). This approach will generate a natural mixed-type boundary

condition instead of the second type indicated in the surface integral of

equation

PROGRAM DOCUMENTATION
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