2782

WATEQF - A FORTRAN IV VERSION OF WATEQ, A COMPUTER PROGRAM FOR CALCULATING CHEMICAL EQUILIBRIUM OF NATURAL WATERS

By L. Niel Plummer, Blair F. Jones, and Alfred H. Truesdell

U. S. GEOLOGICAL SURVEY

n

Water-Resources Investigations 76-13

September 1976

Revised and Reprinted

December 1978 January 1984

HYDROLOGY DOCUMENT NUMBER

372

UNITED STATES DEPARTMENT OF THE INTERIOR Thomas S. Kleppe, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director

For additional information write to:

U.S. Geological Survey National Center Office of Regional Hydrologist, MS 432 Reston, Virginia 22092

Tape copies, at cost, of the source code and data table of Attachment B may be obtained from: U.S. Geological Survey, Office of Program Support Services, 802 National Center, Reston, VA 22092.

•

CONTENTS

Page

î

Abstract	
Introduction	2
Differences between WATEQF and WATEQ	2
Input	3
Description of Input Variables	4
Description of Optional Input Type 1 Optional Input Type 2 Optional Input	7
Oxidation - Reduction Options	9
Output	10
References	11

TABLES AND ATTACHMENTS

Page

1	evised Thermochemical Data Data Sources for Table 1 Footnotes to Table 1	14
Attachment a	A. Test Case, Data, and Computed Results List of Data Cards for Test Case	16 17
Attachment	B. Program Listing and Data Table	27
Attachment	C. Fauilibrium Reactions Considered by WATEOR-	60

111

ABSTRACT

WATEQF is a FORTRAN IV computer program that models the thermodynamic speciation of inorganic ions and complex species in solution for a given water analysis. The original version (WATEQ) was written in 1973 by A. H. Truesdell and B. F. Jones in Programming Language/one (PL/1). With but a few exceptions, the thermochemical data, speciation, activity coefficients, and general calculation procedure of WATEQF is identical to the PL/1 version. This report notes the differences between WATEQF and WATEQ, demonstrates how to set up the input data to execute WATEQF, provides a test case for comparison, and makes available a listing of WATEQF.

-1-

INTRODUCTION

•

WATEQF is a FORTRAN IV computer program that models the thermodynamic speciation of inorganic ions and complex species in solution for a given water analysis. The original version (WATEQ) was written by Truesdell and Jones (1973) in Programming Language/one (PL/1). With but a few exceptions, the thermochemical data, speciation, activity coefficients, and general calculation procedure of WATEQF is identical to the PL/1 version. For discussion of the program theory and original source of most of the thermochemical data, see Truesdell and Jones (1974). It is the purpose of this report to note the differences between WATEQF and WATEQ, demonstrate how to set up the input data to execute WATEQF, provide a test case for comparison (Attachment A), and make available a listing of WATEQF (Attachment B). This report also provides a list of all equilibrium reactions that are considered (Attachment C). The current version of WATEQF is written in FORTRAN 77.

DIFFERENCES BETWEEN WATEQF AND WATEQ

- 1. In addition to the 100 aqueous species used in the WATEQ aqueous model, WATEQF includes 14 species of manganese and computes saturation data for 21 manganese minerals. See Table 1 for the thermochemical data used.
- 2. All reference to maximum and minimum estimates of log K used by WATEQ have been omitted in WATEQF.
- 3. In addition to calculating pe from dissolved oxygen and Eh, pe can also be set by the dissolved oxygen relation of Sato (1960) and by the $SO_{\Delta}^{=}$ / S⁼ ratio.
- 4. The carbon-bearing species are computed from either titration alkalinity, carbonate alkalinity, or total carbon in solution.
- 5. An option has been added that allows calculation of activity coefficients of charged ion pairs from either the Debye-Hückle equation or the Davies equation.
- 6. Thermodynamic data used in the program can be changed through the use of optional input cards.
- 7. Various print options are provided to limit the amount of printed output.
- 8. WATEQF now consists of a main program and 5 subroutines, PREP, SET, MODEL, PRINT, and SAT. PREP reads the water data, converts the units of concentration to molality, and calculates all temperature dependent data at the temperature of the water

-2-

sample: SET initalize: values of individual species for the iterative Mass Action - Mass Balance loop. MODEL calculates activity coefficients and solves Mass Action and Mass Balance equations for the species considered. PRINT prints the results calculated from the aqueous model, and SAT calculates and prints the thermodynamic saturation state of the water with respect to the various minerals considered by the program.

- 9. The method of convergence on Mass Balance for anions has been changed to a more accurate and rapid convergence method, essentially identical to the method used by Truesdell and Jones (1974) for Mass Balance on cations.
- 10. The aqueous model will not be solved on analyses if pH is outside the interval 3.0 - 11.0, or if there is greater than 30 percent error in charge balance. This procedure is useful in screening data for punching and/or errors in the analysis. The procedure can be ignored, however, with the appropriate option specified in the input.
- 11. There are several changes in the aqueous model over those of Truesdell and Jones (1973) as shown in Table 1 and Attachment B, although none results in major differences between the calculations of WATEQ and WATEQF for most natural waters. The choice of speciation, thermodynamic data, and activity coefficients used by WATEQF are in a continuous process of revision, as better data become available. The responsibility for final selection of constants used in WATEQF rests with the user.

INPUT

The data matrix of species considered and thermochemical constants is read initially, either from disk or cards. The format of the data matrix is summarized as follows:

Variables

Format

(NSPEC(I),	Z(I),	GFW(I),	DHA(I),	I=1,115)	·	(5X, A8, F10.4, J		
		•					man a tea	• /

(NREACT(I), DH(I), LOGKTO(I), I=1,193) (5X, A8, 2X, 2F10.4)

Following input of the data matrix, data cards for one or more water analyses are read. Each water analysis requires 5 cards (4 data cards followed by a blank card). WATEQF can receive additional data on option cards that fit into the data stream between card 4 and the blank card (5). The required input for each water analysis is summarized as follows:

Card	Variatles	Format	Comments
1	`TITL '	20A4	Title
2	TEMP, PH, EHM, EHMC, EMFZ, DENS, DOX, FLAG, CORALK, PECALC, IGO, (PRT(I), I=1,4) IDAV: 3, ISPEC, IMIN	2F5.0, 1X, 911,	-
3	CUNITS(I) (I=1,2,3,4, 5,6)	(6E12.5,8X)	Ca,Mg,Na,K,Cl,SO ₄ (in order)
4	CUNITS(I) (I=7,35,8,45, 88,62)-	(6E12.5,8X)	$HCO_3, SIO_2, Fe, PO_4,$ SR, F (in order)
***	Optional input a	ppears here	. " 1 " 1
5	Blank card		Required to note end of data for a particular analysis

DESCRIPTION OF INPUT VARIABLES

NSPEC(I) Names of the species

·····

- 2(I) Charge of the species
- GFW(I) Gram formula wt. of ith species

DHA(I) Debye-Hückel a parameter for ith species

NREACT(I) Name of ith reaction

DH(I) ΔH_{2}^{O} for ith reaction (Kcal/mole)

LOGKTO(I) Log K for the ith reaction at 25°C

TITL General description, identifying information, etc.

TEMP Temperature in degrees C.

pH Negative log of the activity of hydrogen ion.

EHM "True" Eh of solution to which no temperature correction will be made (volts)

-4-

EHMC Electrical potential (volts) of the Eh cell with a calomel reference electrode.

EMFZ Electrical potential (volts) of the Eh cell with calomel reference in Zobell's solution.

DENS Solution density (g/cm^3) . If not known, read 1.0.

DOX Dissolved oxygen content (mg/1).

FLAG Signal for units of input concentrations (CUNITS). 0=mmoles/1, 1=meq/1, 2=mg/1, 3=ppm, 4-molality.

1.1

CORALK Carbon signal. Set to zero (or blank) if the alkalinity has not been corrected for silica, boron, etc. CORALK=1 if this correction has been made. Normally, one would report alkalinity as HCO₃ (and CO₃ if detected) and set CORALK to zero. To input total carbon rather than alkalinity, set CORALK to 2. Total CO₂ can then be input as HCO₃, or; if desired, as the individual species of HCO₃, CO₃ and H₂CO₃^{*}. H₂CO₃^{*} and CO₃^{*} are read on an optional "CONC" card. (H₂CO₃^{*} denotes H₂CO₃⁰ + CO_{2ac}).

PECALC

Signal for pe calculation. If PECALC = 0, pe is set to 100 and oxidation-reduction is ignored. =1 computes pe from Eh, -=2 computes pe from dissolved oxygen, =3 computes pe from dissolved oxygen using the Sato (1960) relation, =4 computes pe from SO_{L} / S.

.IGO

=0 or blank, if desired to have the data checked for possible input error or analytical error. pH must be greater than 3 and less than 11 and the analysis must have less than 30% error in charge balance. =1 if this check is not desired.

PRT(I), I=1,4

Signals which when set to some non-zero value (say 1) omit print of: I=1, thermochemical data table; I=2, mass balance convergence iterations; I=3, ion ratios; I=4, mineral saturation calculations. Set PRT(4) = 9 for a limited print of saturation indices including calcite, dolomite, siderite, rhodocrosite, gypsum, celestite, barite, hydroxyapatite, vivianite, fluorite, amorph. FeOOH, goethite, hematite, gibbsite, birnessite, manganite, silica gel, silica glass, chalcedony, quartz, kaolinite, sepiolite (ppt.), sepiolite, FeS (amorph.) and Mackinawite. To obtain the above printout, leave the appropriate value of PRT(I) blank or zero.

-5-

1.12000,

IDAVES

Signal used to indicate desired method of calculation of activity coefficients, γ_1 , of charged ion pairs. If 1, the Davies equation,

$$\log \gamma_{i} = -A z_{i}^{2} \left(\frac{\sqrt{I}}{1 + \sqrt{I}} - .3I \right)$$

is used. If zero, or blank, the Debye-Hückel equation,

$$\log \gamma_{i} = \frac{-A \ Z_{i}^{2} \ \sqrt{I}}{I + Ba_{i} \sqrt{I}}$$

is used. A and B are constants that depend on the dielectric constant, density and temperature of the solvent, Z_i is the charge on the ion, I is ionic strength (I= 1/2 $\Sigma_i m_i Z_i^2$, where mi is the molality of the ith ion), and ai is the "ion size" parameter. As a general rule, the Davies equation is probably accurate to ionic strengths less than 0.5 and the Debye-Hückel equation is more accurate at ionic strength less than 0.1 (Stumm and Morgan, 1970). Activity coefficients of Ca⁺⁺, Mg⁺⁺, Na⁺, K⁺, Cl⁻, SO⁺₄, CO⁺₃, and HCO⁺₃ are always calculated from the extended Debye-Hückel equations of Truesdell and Jones (1974).

- ISPEC Number of species desired in output (if less than total number possible for the given water analysis). Leave ISPEC blank or zero to obtain output for all possible species for the defined system. If ISPEC is greater than zero, ISPEC values of KSPEC (species index numbers) must be read (Type 1 optional input; see below).
- IMIN Number of minerals for which saturation data are required (if less than the total possible). Leave IMIN blank (or zero) to obtain saturation data on all possible minerals for the defined system. If IMIN is greater than zero, IMIN values of KMIN (mineral reaction index numbers) must be read (Type 1 optional input; see below).

Total concentration (units of FLAG) of Calcium (1), Magnesium (2), Sodium (3), Potassium (4), Chloride (5), Sulfate (6), Carbon, as HCO_3 , (7), Silica, as SiO_2 , (35) Iron (8), Phosphate, as PO_4^{3-} (45), Strontium (88), and Fluoride (62), where the numbers in parentheses are the appropriate species index numbers in the program. To enter other species, use Type 2 optional input cards (see below).

DESCRIPTION OF OPTIONAL INPUT

Additional input is optional and must appear between cards 4 and 5. Two types of optional input cards are used, Type 1 and Type 2. If used, Type 1 optional input cards must precede Type 2 optional input cards.

Type 1 Optional Input

.tv

These cards are used to limit the number of species or minerals in the output. Omit these cards to obtain the complete calculated results for the given water analysis. To specify individual species for which output is desired, read ISPEC values of KSPEC(I),

Variable

Format

(1615)

(KSPEC(I), I=1, ISPEC)

where KSPEC(I) is the index number of the <u>ith</u> species for which output is desired. Species index numbers are listed in the data tables of Attachment A. To specify individual minerals for which saturation data is desired, read IMIN values of KMIN(I),

Variable

Format

(1615)

(KMIN(I), I=1, IMIN)

where KMIN(I) is the index number of the <u>ith</u> mineral reaction for which saturation output is desired. Mineral index numbers are listed in the data tables of Attachment A. If values of both KSPEC(I) and KMIN(I) are entered, KSPEC(I) must be read before KMIN(I).

Type 2 Optional Input

Type 2 optional input cards are used to (1) enter the total concentrations of species not included on cards 3 and 4 ("CONC" card(s)); (2) change the convergence tests on mass balance for anion species ("EROR" card); (3) change ΔH_{C}^{O} ("DELH" card(s)); (4) change log K at 25°C ("TABL" card(s)); or, (5) change existing analytical expressions for logK(T), or enter new analytical expressions for reactions previously defined by the Van't Hoff equation ("LOGK" card(s)). It is possible to use none, 1,2,3, 4, or all 5 cases of type 2 optional input in a single data set, providing the sequencing is 1., "CONC", 2., "EROR", 3., "DELH", 4., "TABL", 5., "LOGK". The form of type 2 optional input cards is

Variable

11

Format

(WORD, (INT(I), VAL(I), I=1,5))

(A4,1X,5(I3,E12.5))

where WORD is "CONC", "EROR", "DELH", "TABL", or "LOGK". The meaning of INT(I) and VAL(I) is described below for each value of WORD.

"CONC" enters concentration (units of FLAG) of constituents not on card 3 and 4. INT(I) = 17 (H₂S), 18 (CO₃), 39 (NH₄), 51 (A1), 81(Li), 85 (NO₃), 86 (H₂CO₃), 87 (B), 90 (Ba), 98 (Br), and 101 (Mn). VAL (I) is the concentration of the INT(I) constituent.

"EROR" overrides pre-set mass balance convergence constraints on anions. Pre-set values of EROR1-EROR5 are 0.001 (0.1 percent error in mass balance). EROR1-EROR5 are entered on the "EROR" card as VAL (1) - VAL (5). In the order 1=carbon, 2=sulfate, 3=fluoride, 4=phosphate, 5=chloride. Values of INT(I) are not used.

"DELH" overrides values of the standard delta enthalpy of reaction (25 degrees C) used in computing the temperature dependence of equilibrium constants from the Van't Hoff equation. INT(I) is the index number of the <u>ith</u> reaction (see Attachment A) for which DH(I) is to be changed and VAL(I) is the appropriate new value of DH(INT(I)).

"TABL" overrides values of LOGKTO(INT(I)) (log K of reaction at 25 degr as C used in computing the temperature dependence of equilibrium constants from the Van't Hoff equation). INT(I) is the index number of the ith reaction (see Attachment B) for which LOGKTO is to be changed and VAL(I) is the appropriate new value of LOGKTO(I).

"LOGK" overrides existing analytical expressions for log K as a function of T (degree K), or enters as many as 35 new, previously undefined analytical expressions for log K (T degrees K). The form of the analytical expression must be

Log KT(INT(I)) = A + BI + C/T + DT² + E/T²,

where T is temperature in degree K and A,B,C,D, and E are fit parameters (may be zero or blank). INT(1) is the index number of reaction (see Attachment A) and INT(2)-INT(5) are ignored. VAL(1)=A, VAL(2)=B, VAL(3)=C, VAL(4)=D, VAL(5)=E.

Values of A,B,C,D, and E for analytical expressions pre-set in the program are listed in the data tables of Attachment A. Note that the analytical expression for reaction (26) is further modified in the program (see card B1600 of Attachment B). If any of the cards, "EROR", "DELH", "TABL", "LOGK", are used in a particular water data set, calculations for that data set and all subsequent data sets will use the new input values. The last card in each water analysis data set must be blank, whether option cards are used or not.

OXIDATION-REDUCTION OPTIONS

There are several possible options that result from choosing appropriate values of EHM, EHMC, DOX, EMFZ, and PECALC. To specify Eh directly, the desired value should be read as EHM (in volts). This value of Eh will not be corrected for temperature. If the redox potential with Calomel reference was measured in the field and it is desired to correct that measurement for temperature, the measured value should be read as EHMC (in volts). EHM must then be greater than 9.0. Any value of EHMC less than 9.0 is then considered real and a temperature-corrected Eh (EHM) is computed. If no Eh was measured, EHMC and EHM should be greater than 9.0. If the Eh-Calomel of a standard Zobell's solution was measured in the field, read the value as EMFZ (in volts) and EHMC will be corrected. If EMFZ is greater than 9.0, EHMC will be corrected for temperature only (provided EHMC is less than 9.0).

Oxidation-reduction equations used in calculating the distribution of species are written in terms of pe. pe can be computed from Eh, dissolved oxygen, or SO_4^{-} / S⁼. If PECALC = 1, pe is calculated from Eh. If PECALC = 2, pe is computed from dissolved oxygen. If PECALC = 3, pe is computed from dissolved oxygen using the relation of Sato (1960). If PECALC = 4, pe is computed from SO_4^{-} / S⁼ (provided SO_4^{-} and total H₂S are entered). If PECALC = 0, redox relations are ignored. If pe is to be computed from dissolved oxygen, a real value of DOX must be read, and to calculate pe from Eh requires either a real value of EHM or EHMC to be read.

Six possible examples of redox options are tabulated and discussed below:

	EHM	EHMC	EMFZ	DOX	PECALC	
1)	< 9	> 9	> 9	blank	1 -	
2)	. < 9.	> 9	> 9	> 0.0 -	2 -	
3)	> 9	< 9	> 9	blank	1	•
4)	> 9	< 9	> 9	> 0.0	2)
5)	> 9	< 9	< 9	blank	1	
6)	blank or >9	blank or >9	blank or >9	blank	0	

-9-

·ium

11

- 1) Eh is to be used without correction and pe is to be computed from Eh.
- 2) Same as 1) but pe is computed from dissolved oxygen.
- 3) Eh was measured in the field and it is desired to correct that measurement for temperature. The Eh of standard Zobell's solution was not measured. pe is to be computed from Eh.
- 4) Same as 3) but pe is to be computed from dissolved oxygen.
- 5) Eh was measured in the field as well as the Eh of standard Zobell's solution. pe is to be computed from Eh.
- 6) No information on oxidation-reduction is available, and redox relations are to be ignored. Note: For this case the iron and manganese concentrations are automatically set to zero.

Other possible options should be obvious from these examples.

OUTPUT

The output of WATEQF consists of a table of data constants used in the calculations (printed once). The output for each water analysis lists the title card and tabulates most of the input data. At the end of each iteration through the equilibria equations, the difference between the computed and analytical anion species is tabulated so that convergence progress can be followed. When convergence on the aqueous model has been obtained, various parameters that describe the solution are printed. Some of these are ionic strength, activity of water, comparison of computed and analytical charge balance, pH, pe, temperature, P_{CO_2} , P_{O_2} , total

dissolved solids, and others. The concentration of each aqueous species (value greater than zero) is printed as ppm, molality, and activity, and log values, as well as ionic activity coefficients and their logs. Mole ratios and log activity ratios are computed and tabulated. The activity product of 101 minerals and their saturation index, $\Delta G_{\rm r}$ and logK are printed. Saturation output for minerals in which the activity of an ith species in the reaction is zero are omitted from the tabulation. Parts of the output can be deleted with appropriate values of PRT(I), as described above, and by use of the ISPEC and IMIN options.

REFERENCES CITED

Busenberg, E., Plummer, L. N., and Parker, V. B., (in prep), The solubility of strontianite (SrCO₃) in CO₂-H₂O solutions between 2 and 91°C, the association constants of SrHCO₃⁺ and SrCO₃⁰ between .5 and 80°C, and an evaluation of the thermodynamic properties of Sr²⁺(aq) and SrCO₃(C) at 25°C and 1 atm total pressure. (For submission to Geochim. Cosmochim. Acta.)

Garrels, R. M., and Christ, C. L., 1965, <u>Solutions</u>, <u>Minerals</u>, and Equilibria. Harper and Row, 450 p.

Harvie, C. E., and Weare, J. H., 1980, The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-Cl-SO₄-H₂O system from zero to higher concentrations at 25°C. Geochim. Cosmochim. Acta, v. 44, p. 981-997.

Hem, J. D., 1963, Chemical equilibria and rates of manganese oxidation. U.S. Geological Survey Water-Supply Paper 1667-A.

Latimer, W. M., 1952, The oxidation state of the elements and their potentials in aqueous solutions. Prentice-Hall, Inc., 392 p.

Linke, W. F., and Seidell, A., 1965, Solubilities, inorganic and metalorganic compounds, v. 2, K-Z. Amer. Chem. Soc., Wash, D.C., 1914 p.

Marshall, W. L., and Slusher, R., 1966, Thermodynamics of calcium sulfate dihydrate in aqueous sodium chloride solutions, 0-110°. Jour. Phys. Chem., v. 70, p. 4015-4027.

McGee, K. A., and Hostetler, P. B., 1975, Studies in the system MgO-SiO₂-CO₂-H₂O (IV): The stability of MgOH⁻ from 10[°] to 90[°]C. Amer. Jour. Science, v. 275, p. 304-317.

Nordstrom, D. K., and Jenne, E. A., 1976, Fluorite solubility equilibria in selected geothermal waters. Geochim. Cosmochim. Acta (in press).

Parker, V. B., Wagman, D. D., and Evans, W. H., 1976, Selected values of chemical thermodynamic properties. Tech. Note 270-6. National Bureau of Standards, 106 p.

Plummer, L. N., and Busenberg, E., 1982, The solubilities of calcite, aragonite and vaterite in CO₂-H₂O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO₃-CO₂-H₂O. Geochim. Cosmochim. Acta, v. 46, pp. 1011-1040.

Robie, R. A., Hemingway, B. S., and Fisher, J. R., 1978, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10⁵ pascal) pressure and at higher temperatures. U.S. Geological Survey Bulletin 1452, 456 p.

Robie, R. A., and Waldbaum, D. R., 1968, Thermodynamic properties of minerals and related substances at 298.15°K(25.0°C) and one atmosphere (1.013 Bars) pressure and at higher temperatures. U.S. Geological Survey Bulletin 1259, 256 p.

Sato, Motaki, 1960, Oxidation of sulfide ore bodies. Econ. Geology, v. 55, p. 928-961, 1202-1231.

Siebert, R. M., 1974, The stability of MgHCO₃ and MgCO₃ from 10°C to 90°C. Ph.D. dissertation, Univ. of Missouri.

Smith, H. J., 1918, On equilibrium in the system: Ferrous carbonate, carbon dioxide and water. J. Amer. Chem. Soc., v. 40, p. 879-885

Smith, R. M., and Martell, A. E., 1976, Critical Stability Constants, v. 4: Inorganic Complexes. Plenum Press, N.Y., 257 p. Stumm, Werner, and Morgan, J. J., 1970, Aquatic Chemistry. Wiley-Inter-

science. 583 p.

- Truesdell, A. H., and Jones, B. F., 1973, WATEQ, a computer program for calculating chemical equilibria on natural waters. Nat. Tech. Info. Serv. P.B. 220464.
- Truesdell, A. H., and Jones, B. F., 1974, WATEQ, a computer program for calculating chemical equilibria on natural waters. U.S. Geol. Survey Jour. Research, v. 2, p. 233-248.

Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., and Schumma, R. H., 1969, NBS Tech. Note 270-4. Selected Values of Chemical Thermodynamic Properties, Tables for elements 35 through 53 in the standard order of arrangement. 152 p.

• •

JC JC -

S

ъõ

Table 1: Revised Thermochemical Data1/, 2/

Statative.

<u> </u>	NREACT	Source	AHO L	ogK 25°C	Analytical Expression for log $K(T^{O}K)^{3/2}$
10	SIDERITE	1	-6.14	-10.57	
12	DOLOMITE	2	-9.436	-17.09	
13	CALCITE	3			-171.9065 - 0.077993T + 2839.319/T + 71.595 log T
18	ANHYDRITE	4	-4.3	-4.384	
19	GYPSUM	5		_	82.090 - 3853.936/T - 29.8115 log T
22	ARAGONIT	3			-171.9773 - 0.077993T + 2903.293/T + 71.595 log T
25	KMGOH	6			0.684 + 0.0051T
31	KNAHPO	7	0.0	0.29	·
33	KKHPO	7	0.0	0.29	
36	KH2C03	34/			$+356.3094 + 0.06091964T - 21834.37/T - 126.8339 \log T + 1684915./T^2$
63	FLUOR	8		-10.50	
69	KHCO3	34/			$+107.8871 + 0.03252849T - 5151.79/T - 38.92561 \log T + 563713.9/T^2$
74	KMGC03	9		•	0.991 + 0.00667T
75	KMGHCO3	10			2.319011056T + 2.29812x10 $^{-5}$ T ²
78	KCAHCO3	3			1209.120 + 0.31294T - 34765.06/T -478.782 log T
79	KCAC03	3			-1228.732 - 0.299444T + 35512.75/T + 485.818 log T
80	KCAF+	11	4.12	0.94	
138	KC02	3			$108.3865 + 0.01985076T - 6919.53/T - 40.45154 \log T + 669365./T^2$
143	STRONT	12			155.0305 - 7239.594/T - 56.58638 log T
144	CELEST	13			73.415 - 3603.341/T - 29.8115 log T
145	BARITE	14	6.141	-9.978	$\lambda = \lambda + \frac{1}{2} \sum_{i=1}^{n} \lambda_{i} + \frac{1}{2} \sum_{i=1}^{n} $
149	KSRHCO3+	12			-3.248 - 0.014867 T
158	KMN 3+	15	25.760	-25.507	
159	KMNCL+	16	0.0	0.607	
160	KMNCL2	16	0.0	0.041	
161	KMNCL3-	16	0.0	-0.305	
162	KMNOH+	16	0.0	3.449	
163	KMN(0H)3	16	0.0	7.782	
164	KMNF+	16	0.0	0.850	
165	KMNS04	17	3.700	1.708	
166	KMNNO3,2	16	-0.396	0.059	\cdot
167	KMNHCO3+	18	0.0	1.716	

-13-

AH Togk 25°C Analytical Expression for log K(T^OK) NREACT Source I 176.620 -127.824 KMN04-16 168 150.020 -118.440 16 169 KMN04----1.019 + 0.012826 T 170 · KSRC03 12 -34.440 KHMN02-19 0.0 171 20 -24.025 17.938 172 MANGANO 20 -29.180 15.861 173 PYROLUST BIRNSITE 21 0.0 18.091 174 0.0 17.504 175 NUSTITE 21 175 BIXBYITE 20 -15.245 -0.611 20 -80.140 61.540 177 HAUSMITE -12.912 21 4.100 178 MNOH2 MNOH3 19 20.090 -35.644 179 -0.238 MANGANIT 21 0.0 180 -2.079 -10.539 RHODOCHR 20 181 2.55 182 KSRS04 22 1.6 8.760 183 MNCL2 20 -17.622 MNCL2,1W 16 -7.175 5.522 184 3.974 1.710 185 MNCL2,2W 16 17.380 2.710 MNCL2,4W 16 186 20 -40.060 23.122 187 TEPHRITE 188 RHODONIT 20 -21.885 9.522 3.800 189 MNS GRN 19 -5.790 2.669 190 MNSO4 16 -15.480 -5.711 19 -39.060 191 MN2S04,3 19 2.120 -23.827 192 MN3P04.2

-12.947

0.0

193

MNHP04

16

Table 1: Revised Thermochemical Data (continued)

Data Sources for Table 1

- 1. Log K of Smith (1918) recalculated using the WATEQF aqueous model at 30°C.
- 2. Robie, Hemingway and Fisher (1978).
- 3. Plummer and Busenberg (1982).
- 4. Log K of Harvie and Weare (1980) adjusted to be consistent with log K gypsum. ΔH_r^0 from Parker and others (1976).
- 5. Calculated from the data of Marshall and Slusher (1966) using the aqueous model of WATEQF.
- 6. McGee and Hostetler (1975).
- 7. Estimated using the pH and composition of NBS buffers (6.86 and 7.41), and charge balance.
- 8. E. A. Jenne (1975), oral communication to B. F. Jones.
- 9. Siebert (1974).
- 10. Fit to the data of Siebert (1974).
- 11. Nordstrom and Jenne (1976).
- 12. Busenberg, Plummer and Parker (in prep.).
- 13. Calculated from the data of Gallo (1935) for $SrSO_4$ precipitated as given by Linke and Seidell (1965) and consistent with the $SrCO_3$ ion pair of Smith and Martell (1976).
- 14. Parker, Wagman and Evans (1976).
- 15. ΔG_{f}^{o} , ΔH_{f}^{o} Mn⁺⁺, Wagman, <u>et al</u>, (1969). ΔG_{f}^{o} , ΔH_{f}^{o} Mn³⁺, Latimer (1952).
- 16. Wagman, et al, (1969)
- 17. ΔG^O_f, Hem (1963), ΔH^O_f Wagman, <u>et al</u>, (1969).
- 18. Hem (1963).
- 19. Latimer (1952).
- 20. Robie and Waldbaum (1968).
- 21. Garrels and Christ (1965).
- 22. Smith and Martell (1976)

Footnotes to Table 1

- 1/ No attempt has been made for internal consistency of thermodynamic data in WATEQF. Responsibility for selection of thermodynamic data rests with the user.
- ²⁴ The ion pairs Na₂CO₃ and Na₂SO₄ are no longer used in WATEQF. The CaF⁺, SrHCO₃⁺, SrCO₃^o and SrSO₄^o ion pairs has been added to the model.
- 37 Reactions are written as in Attachment C.
- ⁴⁷ Reactions 36 and 63 have been changed from dissociation (in WATEQ) to association in WATEQF. For the most part, all ion pair reactions are written as association in WATEQF, that is, most ion pair equilibria show the pair as a product. All mineral equilibria are written with the solid as reactant. See Attachment C for details of all reactions in WATEQF.

((**T^OK**)

List of data cards for test case

SEA WATER TEST CA 25.0 8.22 0.500 412.3 1291.8 141.682 4.28 CONC 98 67.3 CONC 51 0.002	SE PROM NORDS 9.9 9.9 10768. 0.002 87 4.45 81 0.181	TROM, ET AL. 1.023 6.6 399.1 0.06 90 0.02 101 0.0002	301000001 0 19353. 8.14 85 0.29	SYMPOSIUM. 0 2712. 1.39 39 0.03
---	--	---	--	---

Attachment A: Test case, data, and computed results

•

.

•- -

OUTPUT OF TEST CASE

- 2

.

;

DATA

I NREACT	DE	LOGKTO	I NSPEC	Z	dha	ŒW
1 RFE +3	9.7000	-13.0380	1 CA	2	6.0	40.0800
2 KFEH+2	20.1150	-15.2280	2 NG	2	6.5	24.3120
3 KFECH+	13.2180	-9.5000	3 NA	ī	4.0	22.9898
4 KFECH3	30.3000	-31.0000	4 K	ī	3.0	39.1020
5 KFEGO4	13.6100	-9.1180	5 CL	-1	3.0	35.4530
6 RFECL	18.1520	-11.6000	6 504	-2	4.0	96.0616
7 KFECT2	0.0000	-10.9190	7 8003	-1	5.4	61.0173
8 RFECL3	0.0000	-11.9250	8 FE	2	6.0	55.8470
9 KFESO	3.2300	2.2500	9 FE	3	9.0	55.8470
10 SIDERITE	-6.1400	-10.5700	10 FECH	2	5.0	72.8544
11 MAGNESIT	-6.1690	-8.2400	11 FECH	ī	5.0	72.8549
12 DOLOMITE	-9.4360	-17.0900	12 FE(OH) 3	-1	5.0	106.8690
13 CALCITE	-2.2970	-8.4800*	13 FEHPOA	ī	5.4	
14 KH3SIO4	8.9350	-9.9290*	14 H2S AQ	ō	0.0	34.0799
15 KH2SIO4	29.7170	-21.6170*	15 FESO4	ī	5.0	151.9086
16 KHPO4	-3.5300	12.3460	16 FECL	2	5.0	91.3000
17 KH2P04	-4.5200	19.5530	17 ANAL H2S	ō	0.0	34.0799
18 ANHYDRIT	-4.3000	-4.3840	18 003	-2	5.4	60.0094
19 GYPSUM	-0.0280	-4.6020*	19 MGCH	ī	6.5	41.3194
20 BRUCITE	0.8500	-11.4100	20 MEF	ī	4.5	43.3104
21 CHRYSOTL	27.5850	-51. :00	21 10003 10	ō	0.0	84.3214
22 ARAGONIT	-2.5890	-8.3360*	22 MGHC03	ĭ	4.0	85.3293
23 KMCF	4.6740	1.8200	23 MGSO4 AQ	ō	0.0	120.3736
24 KCAS04	1.5000	2.3090	24 H4SI04A0	ō	0.0	96.1155
25 KMGCH	2.0900	2.2100*	25 E35104	-1	4.0	95.1075
26 KH3B03	3.2190	-9.2350*	26 H2SIO4	-2	5.4	94.0995
27 KNH3	12.4770	-9.2440*	27 GH	-1	3.5	17.0074
28 FORSTRIT	4.8700	-28.1100	28 FECT.2	ī	5.0	126.7530
29 DIOPSIDE	21.1000	-36.2200	29 CACH	ī	6.0	57.0874
30 CLENSTIT	6.6750	-16.8700	30 CAHOO3	ī	6.0	101.0973
31 KNAHPO	0.0000	0.2900	31 CACO3 AO	ō	0.0	100.0890
32 TREMOLIT	90.2150	-140.3000	32 CASO4 AO	ō	0.0	136.1416
33 KKEPO4	0.0000	0.2900	33 FECL3	ŏ	0.0	162.2060
34 KMGHPO4	3.3000	2.8700	34 FESO4	ō	0.0	151.9086
35 KCAHPO4	3.3000	2.7390	35 SIC2 TOT	ā	ā.ā	60.0848
36 KH2003	-2.1770	6.3520*	36 H3B03 A0	Ö	0.0	61.8331
37 SEPIOLIT	26.5320	-40.1000	37 82803	-1	2.5	60.8251
38 TALC	45.0650	-62.2900	38 NH3 AQ	Ō	0.0	17.0306
39 HYDNAG	-25.5200	-37.8200	39 NH4	1	2.5	18.0386
40 ADULAR	30.8200	-20.5700	40 MGPO4	-1	5.4	119.2834
41 ALBITE	25.8960	-18.0000	41 MGHZPO4	1	5.4	121.2993
42 ANORTH	17.5300	-19.3300	42 NAC03	-1	5.4	82.9992
43 ANALCH	18.2060	-12.7000	43 NAHCO3	Ō	0.0	83.9909
44 RATCA	67.8600	-49.0900	44 NASO4	-1	5.4	119.0514
45 PHLOG	0.0000	-63.5300	45 POI	-3	5.0	94.9714
46 ILLITE	54.6840	-40.3100	46 KSO4	-1	5.4	135.1636
47 KAOLIN	49.1500	-36.9100	47 HPO4	-2	5.0	95.9794
48 HALLOY	44.6800	-32.8200	48 H2PO4	-1	5.4	96.9873
49 BEIDEL	60.3550		49 CAF+	1	5.0	59.0784

-17-

50 CRÍCR	54.7600	-90.6100	50 NAHPO4	-1 5.4	118.9692
51 ALINIT	29.8200	-85.3200	51 AL	3 9.0	26.9815
52 GIBCRS	14.4700	-32.7700	52 ALCH	2 5.4	43.9889
53 BOEHM	11.9050	-33.4100	53 AL(CH)2	1 5.4	60.9962
54 PYROPH	0.00.0	-42.4300	54 AL(CH) 4	-1 4.5	95.0110
55 PHILIP	0.0000	-19.8600	55 ALP	2 5.4	45.9799
56 ERION	0.0000	0.0000	56 ALF2	1 5.4	64.9783
57 CLINOP	0.0000	0.0000	57 ALF3	0 0.0	83.9767
58 MORDEN	0.0000	0.0000	58 ALP4	-1 4.5	102.9751
59 NAHCOL	3.7200	-0.5480	59 ALSO4	1 4.5	123.0431
60 TRONA 61 NATRON	-18.0000 15.7450	-0.7950 -1.3110	60 AL (904) 2	-1 4.5	219.1047
61 NATRON 62 THRNAT	-2.8020	0.1250	51 KHPO4 52 P	-1 5.4 -1 3.5	135.0814
63 FLOOR	4,7100	-10.9600	63 ESO4	-1 4.5	18.9984 97.0696
64 MINTCA	58.3730	-45.0000	54 H	1 9.0	1.0080
65 HALITE	0.9180	1.5820	65 FEH2PO4	1 5.4	152.8340
66 THENAR	-0.5720	-0.1790	66 HZS CALC	0 0.0	34.0799
67 MIRABI	18.9870	-1.1130	67 ES	-1 3.5	33.0720
68 MACKIT	0.0000	-4.5310	58 S	-2 5.0	32.0640
69 KH003	-3.5610	10.3290*	69 SRBCC3	1 5.4	148.6373
70 100003	8.9110	1.2680	70 202	ō ō.ō	31.9988
71 KNAH003	0.0000	-0.2500	71 PCH4	0 0.0	16.0430
72 KNAS04	1.1200	0.7200	72 AH20	0 0.0	18.0153
73 KKSO4	2.2500	0.8470*	73 MGHPO4	0 0.0	120.2914
74 740003	2.7100	2.9800*	74 CAHPON	0 0.0	136.0594
75 IMG2003	1.0770	1.0560*	75 CAP04	-1 5.4	135.0514
76 KMG904	4.5000	2.2380	76 CAH2PO4	1 5.4	137.0673
77 RCACH	1.1900	1.4000	77 FE(CH) 2	1 5.4	89.8616
78 RCAH003	4.1100	1.0950*	78 FE(CH) 3	0 0.0	106.8689
79 KCA003	3.5560	3.2240*	79 FE(CH) 4	-1 5.4	123.8762
80 KCAF+	4.1200	0.9400	80 FE(CH) 2	0.0.0	89.8616
81 KALCH	1.4300	9.0300	81 LI	1 6.0	6.9390
82 KALCE2	0.0000	18.7000	82 LICH	0 0.0	23.9464
83 KALCHA	-11.1600	33.0000	83 LISO4	-1 5.0	103.0006
84 KALP 85 KALP2	0.000	7.0100	84 NEACALC 85 NO3	1 2.5	18.0386
85 KALF2 86 KALF3	20.0000 2.5000	17.0200	85 B2CC3	-1 3.0 0 0.0	62.0049 62.0253
87 KALF4	0.0000	19.7200	87 B TOT	0 0.0	10.8100
88 KALSO4	2.1500	3.0200	88 SR	2 5.0	87.6200
89 XASO42	2.8400	4.9200	89 SRCH	1 3.0	104.6274
90 KE904	4.9100	1.9870*	90 BA	2 5.0	137.3400
91 KH2SC	-65.4400	40.5440	91 BACH	1 5.0	154.3474
92 XH25	5.2990	-6.9420*	92 NE4SO4	-1 5.0	114.1002
93 KES	12.1000	-12.9180	93 BCL	0 0.0	36.4610
94 ROCY	34.1570	-20.7800	94 NACL	0 0.0	58.4428
95 KC84	-57.4350	30.7410	95 R.L	0 0.0	74.5550
96 HYXAPT	17.2250	-59.3500	96 H2904	0 0.0	98.0775
97 FLUNPT	19.6950	-65.7900	97 SRCC3	0 0.0	147.6294
98 CENIC	4.6150	-3.5230	98 BR	-1 4.0	79.9090
99 NIGADI	0.0000	-14.3000	99 FEE2PO4	2 5.4	152.8340
100 SILGEL	5.5000	-2.7000	100 FEHPO4	0 0.0	151.8200
101 SILCLAS	4.4400	-3.0170	101 199	2 6.0	54.9400
102 QUARTZ	6.2200	-4.0050	102 /81	3 9.0	54.9400
103 XFECH2	0.0000	-18.7080	103 MNCL	1 5.0	90.3970
104 KP2CH3 105 KP2CH4	0.0000	-25.6380 -34.6380	104 MNCL2 105 MNCL3	0 0.0 -1 5.0	125.8540 161.3110
105 KFECH2	28.5650	-20.5700	105 MNCH	1 5.0	71.8480
107 VIVIAN	0.0000	-36.0000	107 MN(CH) 3	-1 5.0	105.9640
108 MAGNET	-40.6600	-9.5650	108 MMP	1 5.0	73.9400
109 HEMATI	-30.8450	-4.0070	109 10904	ō ō.ō	151.0060

a

-18-

Ś

0.0000 6.3700 110 MAGHEM 25.5550 -44.1970 111 COETH -63.1900 112 GREENA 0.0000 113 FECH3A 0.0000 4.8850 62.4800 -64.2400 114 ANNITE 115 PYRITE 11.3000 -18.4800 0.0000 -34.9700 116 MONTEF -29.7800 117 MONTAB 0.0000 118 HUNTITE -25.7600 -30.5100 0.0000 119 GREGITE -17.9700 0.0000 -3.9150 120 FESPPT 0.0000 2.7000 121 RFEH2P . 6.4590 122 KCAPO4 3.1000 3.4000 123 KCAH2P 1.4080 3.1000 6.5890 124 KMGP04 125 KMGH2P 3.4000 1.5130 126 KLICH 4.8320 0.2000 127 KLISO4 0.0000 0.6400 128 KNH4R -187.0550 119.0770 129 LAUMON 39.6100 -30.9600 130 KSROH 1.1500 0.8200 131 KBACH 1.7500 0.6400 0.0000 1.1100 132 KNH4SO -30.0000 133 KHCL 0.0000 0.0000 134 KNACL -30.0000 135 KKCL 0.0000 -30.0000 -11.3850 0.0000 136 KH2504 137 KO2 SATO 0.0000 138 KCC2 -4.7760 -1.4680 3.6000 139 KFEHPO 0.0000 -7.6130 140 KFEHP+ 0.0000 12.9900 -31.6100 141 ALCH3A -11.5200 142 PREHNT 10.3900 143 STRONT -0.4000 -9.2710* 0.2280 144 CELEST -6.5780* 145 BARITE 6.1410 -9.9780 -8.5850 146 WITHERIT 6.9500 -26.4000 147 STRENGIT -2.0300 148 LEON 90.0700 -69.5700 1.1800* 14, KSRHCOB 6.0500 150 NESQUE -5.7890 -5.2110 151 ARTIN -1.8420 -18.4000 33.4570 -21.4950 152 K 02AQ 153 KW 13.3410 -13.9920* 154 SEP PT 0.0000 -37.2120 -15.4050 26.1400 0.0000 -35.0600 155 DIASP 156 WAIRKT -26.6200 157 KFEHP2 -7.5830 -25.5070 158 KM 3+ 25.7600 159 KHAKIA 0.0000 0.6070 0.0000 160 RMNCL2 0.0410 0.0000 161 KMACL3--0.3050 3.4490 7.7820 162 KM KH+ 0.0000 163 RM:(CH) 3 0.0000 0.8500 164 8225+ 0.0000 3.7000 -0.3960 165 KM1904 1.7080 166 KMNN03.2 0.0590 167 KUNHCO3+ 0.0000 1.7160 168 121204-176.6200 -127.8240 169 10004-150.0200 -118.4400

4

.

110 MN(NO3)2 0 0.0 178.9560 111 MNHCO3 1 5.0 115.9590 112 MNO4 -1 3.0 118.9400

5.0

118.9400

183.6800

87.9480

-2 5.0

0 0.0

-1

113 MNO4

114 SRS04

115 EMNO2

170 KSR003	5.2200	2.8100*
171 XHM02-	- 0.0000	-34.4400
172 MANGANO	-24.0250	17.9380
173 PYRCLUS	r -29.1800	15.8610
174 BIRNSIT	E 0.0000	18.0910
175 NUSTITE	0.0000	17.5040
176 BLOBYITI	E -15.2450	-0.6110
177 HAUSHITI	E -80.1400	61.5400
178 MNCH2	4.1000	-12.9120
179 MNCH3	20.0900	-35.6440
180 MANGANT	0.0000	-0.2380
181 RHODOCH	R -2.0790	-10.5390
182 KSRS04	1.6000	2.5500
183 MNCL2	-17.6220	8.7600
184 MMCL2,19	v −7.1750	5.5220
185 MNCL2,20	1.7100	3.9740
186 MNCL2,4V	17.3800	2.7100
187 TEPHRITI	2 -40.0600	23.1220
188 RHODONT	r -21.8850	9.5220
189 MNS GRN	-5.7900	3.8000
190 MNSO4	-15.4800	2.5690
191 MN2904,3		-5.7110
192 MN3PO4,2	2.1200	-23.8270
193 Maiipo4	0.000	-12.9470

• •

*** DENOTES THAT AN ANALYTICAL EXPRESSION FOR RT HAS BEEN USED

SUMMARY OF ANALYTICAL EXPRESSIONS OF THE PORM LOG R = A+B*T+C/T+D*T**2+E/T**2+P*LOG T

				Ĺ	. /		
I	NREACT	A	В	c	Q	E	F
13	CALCITE	-171.9065	-0.0779930-0	2839.3190	0.0000E-01	0.00000E-01	7.1595000E+01
14	REISIO	6.3680	-0.016346000	-3405.9000	0.0000E-01	0.00000E-01	0.000000E-01
15	KH2SI04	39.4780	-0.065927000	-12355.1000	0.0000E-01	0.000000B-01	0.000000E-01
19	MPSUM	82.0904	0.000000000	-3853.9360	0.00005-01	0.000000E-01	-2.98114805+01
22	ARAGONT	r -171.9773	-0.077993000	2903.2930	0.00002-01	0.000000E-01	7.1595000E+01
25	KHOOH	0.6840	0.005129500	0.0000	0.0000E-01	0.000000E-01	0.00000005-01
25	XH3BC3	28.6059	0.012078000	1573.2100	0.00002-01	0.0000000-01	-1.32258005+01
27	KNEB	0.6322	-0.001225000	-2835.7600	0.00002-01	0.000000E-01	0.000000CE-01
36	1012003	356.3094	0.060919640	-21834.3700	0.00008-01	1.6849152+06	-1.2683390E+02
69	XBOO3	107.8871	0.032528490	-5151.7900	0.0000E-01		-3.8925610E+01
73.	LIKSO4	3.1060	0.000000000	-673.6000	0.0000E-01	0.000000E-01	0.000000CE-01
74	IMGC03	0.9910	0.006670000	0.0000		0.000000E-01	0.000000E-01
75-	- IMGHCO3	2.3190	-0.011056000	0.0000		0.0000005-01	0.0000000E-01
78	TCARCO3	1209.1200	0.312940000			0.0000002-01	-4.7878200E+02
79	RCA003	-1228.7320	-0.299440000	35512.7500		0.0000005-01	
90	XE904	-5.3505	0.018341200	557.2461	0.0000E-01	0.000000E-01	0.000000E-01
92	KH2S	11.1700	-0.023860000	-3279.0000		0.000000E-01	0.000000E-01
143	STRONT	155,0305	0.000000000	-7239.5940	0.0000E-01	0.000000E-01	-5.6586380E+01
144	CELEST	73.4150	0.000000000	-3603.3410		0.000000E-01	-2.7443700E+01
149	KSRH003	-3.2480	0.014867000	0.0000		0.000000B-01	0.0000000E-01
153	KW	-606.5220	-0.097611000	31285.0000		-2.170870B+06	2.1868434E+02
170	KSROOD	-1.0190	0.012826000	0.0000		0.000000B-01	
		TEST CASE FROM			IN ACS SYMPOS	IUM.	

pr

•

INITIAL SOLUTION

36° 27

TEMPERATURE = 25.00 DEGREES C PH = 8.220 ANALYTICAL EPMCAT = 605.645 ANALYTICAL EPMAN = 605.585

***** OXIDATION - REDUCTION *****

÷ .

0E+01 0E-01 0E-01 0E+01

0E+01 0E-01 JE+02 JE+02 JE+01 JE-01 JE-01 JE-01 JE-01 JE-01 JE+01 JE+01 JE+01 JE-01 JE-01 JE-01 DISSOLVED OXYGEN = 6.600 MG/L EH MEASURED WITH CALOMEL = 9.9000 VOLTS MEASURED EH OF ZOBELL SOLUTION = 9.9000 VOLTS CORRECTED EH = 0.5000 VOLTS FE COMPUTED FROM CORRECTED EH = 8.452

*** TOTAL CONCENTRATIONS OF IMPUT SPECIES ***

CA 2 1.06618E-02 -1.9722 4.21783E MG 2 5.50708E-02 -1.2591 1.32151E NA 1 4.85452E-01 -0.3139 1.10157E K 1 1.05786E-02 -1.9756 4.08279E CL -1 5.65772E-01 -0.2474 1.97981E SO4 -2 2.92608E-02 -1.5337 2.77438E BOC3 -1 2.40662E-03 -2.6186 1.44941E SIO2 TOT 0 7.38288E-05 -4.1318 4.37844E FE 2 3.71173E-08 -7.4304 2.04600E PO4 -3 6.54794E-07 -6.1839 6.13800E SR 2 9.62870E-05 -4.0164 8.32722E	
NA 1 4.85452E-01 -0.3139 1.10157E K 1 1.05786E-02 -1.9756 4.08279E CL -1 5.65772E-01 -0.2474 1.97981E SO4 -2 2.92608E-02 -1.5337 2.77438E HOO3 -1 2.40662E-03 -2.6186 1.44941E SIO2 TOT 0 7.38288E-05 -4.1318 4.37844E FE 2 3.71173E-08 -7.4304 2.04600E PO4 -3 6.54794E-07 -6.1839 6.13800E SR 2 9.62870E-05 -4.0164 8.32722E	
CL -1 5.65772E-01 -0.2474 1.97981E SO4 -2 2.92608E-02 -1.5337 2.77438E HC03 -1 2.40662E-03 -2.6186 1.44941E SIO2 TOT 0 7.38288E-05 -4.1318 4.37844E FE 2 3.71173E-08 -7.4304 2.04600E FO4 -3 6.54794E-07 -6.1839 6.13800E SR 2 9.62870E-05 -4.0164 8.32722E	-04
SO4 -2 2.92608E-02 -1.5337 2.77438E HC03 -1 2.40662E-03 -2.6186 1.44941E SIO2 TOT 0 7.38288E-05 -4.1318 4.37844E FE 2 3.71173E-08 -7.4304 2.04600E FO4 -3 6.54794E-07 -6.1839 6.13800E SR 2 9.62870E-05 -4.0164 8.32722E	
H003 -1 2.40662E-03 -2.6186 1.44941E SI02 TOT 0 7.38288E-05 -4.1318 4.37844E FE 2 3.71173E-08 -7.4304 2.04600E FO4 -3 6.54794E-07 -6.1839 6.13800E SR 2 9.62870E-05 -4.0164 8.32722E	
SIQ2 TOT 0 7.38288E-05 -4.1318 4.37844E FE 2 3.71173E-08 -7.4304 2.04600E FO4 -3 6.54794E-07 -6.1839 6.13800E SR 2 9.62870E-05 -4.0164 8.32722E	
FE 2 3.71173E-08 -7.4304 2.04600E PO4 -3 6.54794E-07 -6.1839 6.13800E SR 2 9.62870E-05 -4.0164 8.32722E	
PO4 -3 6.54794E-07 -6.1839 6.13800E SR 2 9.62870E-05 -4.0164 8.32722E	
SR 2 9.62870E-05 -4.0164 8.32722E	·03
SR 2 9.62870E-05 -4.0164 8.32722E	·02
	-00
F -1 7.58306E-05 -4.1202 1.42197E	-00
NH4 1 1.72371E-06 -5.7635 3.06900E	·02
AL 3 7.68264E-08 -7.1145 2.04600E	-03
LI 1 2.70351E-05 -4.5681 1.85163E	-01
NO3 -1 4.84751E-06 -5.3145 2.96670E	-01
B TOT 0 4.26659E-04 -3.3699 4.55235E	-00
EA 2 1.50931E-07 -6.8212 2.04600E	-02
ER -1 8.72903E-04 -3.0590 6.88479E	
M 2 3.77301E-09 -8.4233 2.04600E	

-21-

*** CONVERGENCE ITERATIONS ***

ITERATION	SI-ANALOOJ	52-504T0T	SI-FTOT	S4-PIOT	SS-CLTOT
1	1.3575-03	9.883 <i>E</i> -02	4.7995-05	5.276E-06	1.507E-09
2	3.4575-04	5.120 <i>E</i> -03	2.4385-05	4.487E-07	-1.809E-10
3	9.8055-06	-8.828 <i>E</i> -05	1.8055-07	-7.034E-10	2.773E-11
4	1.5775-06	1.189 <i>E</i> -05	7.8865-08	9.951E-10	-3.830E-12
5	1.0645-07	2.805 <i>E</i> -07	4.1765-09	4.410E-11	-7.816E-14

۰ ۱

SEA WATER TEST CASE FROM NORDSTROM, ET AL. PAPER IN ACS LYMPOSIUM.

.

****DESCRIPTION OF SOLUTION ****

	ANAL.	corp.	PH	ACTIVITY H20 = 0.9805
EPMCAT	605.64	584.79	8.220	PO02= 3.8445578-04
EPMAN	605.59	584.74		LOG POO2 = -3.4152
			TEMPERATURE	PC2 = 3.546381E-17
EH = 0.5	5000 PE =	8.452	25.00 DEG C	PCH4 = 0.000000E-01
PE CALC	S = 100.	000		CC2 TOT = 2.106494B-03
PE CALC	DOX= 12.3	58	IONIC STRENGTH	DENSITY = 1.0230
PE SATO	DOX= 2.2	48	5.799422E-01	TOS = 35972.8HG/L
TOT ALK	= 2.4142	+00 MEQ		CARB ALK = 2.346E+00 MEQ
	= 5.359E			

IN COMPUTING THE DISTRIBUTION OF SPECIES, PE = 9.452 EQUIVALENT EH = 0.500VOLTS

:

.

DISTRIBUTION OF SPECIES

1	Ľ	SPECIES		PPN	MEALITY	ACTIVITY	LOG ACT	GAMMA
	2344567867238	CL SOA BCC3 CC3 E2CC3 CE	~~~~~~~~~~~~~~~~~	3.6391 E+02 1.1471 E+03 1.0616 E+04 3.9267 E+02 7.8448 E-06 1.9353 E+04 1.4332 E+03 8.4326 E+01 2.1032 E+00 6.6763 E+01 3.6421 E-02 7.1244 E-01 6.7300 E+01 2.0370 E+01	9.41042-03 4.89042-02 4.78592-01 1.04082-02 8.06622-09 5.65772-01 1.54632-02 1.43242-03 3.63262-05 1.11562-05 1.11562-05 3.88672-05 8.72902-04 5.10962-06	2.34582-03 1.40852-02 3.37932-01 6.02565-09 3.52092-01 2.79642-03 9.66162-04 7.51962-06 1.30892-05 1.65802-06 2.90342-05 6.52082-04 3.81702-06	-2.630 -1.851 -0.471 -2.189 -8.220 -0.453 -2.553 -3.015 -5.124 -4.883 -5.780 -4.537 -3.186 -5.418	2.49285-01 2.88022-01 7.06095-01 6.22318-01 6.22318-01 6.22318-01 6.74525-01 2.0701E-01 1.17335+00 7.47025-01 7.47025-01 7.47025-01 7.47025-01

	23 MGSO4 AQ 0	6.7662E+02	5.8259E-03	6.8132E-03	-2.167	1.1695E+00
	22 MGHC03 1	1.7440E+01	2.1183E-04	1.5824E-04	-3.801	7.4702E-01
	21 MGC03 AQ 0	7.0310E+00	8.6422E-05	1.0107E-04	-3.995	1.1695E+00
	20 MGF 1	1.5114E+00	3.6169E-05	2.7019E-05	-4.568	
						7.4702E-01
		7.2038E-03	1.3079E-07	9.7701E-08	-7.010	7.4702E-01
	32 CASO4 AQ 0	1.5009E+02	1.1426E-03	1.3363E-03	-2.874	1.1695E+00
	30 CAH003 1	4.1603E+00	4.2857E-05	2.8908E-05	-4.539	6.7452E-01
	31 CACC3 AQ 0	6.2602E+00	6.4826E-05	2.9633E-05	-4.528	4.5712E-01
	49 CAF+ 1	4.5265E-02	7.9411E-07	5.9321E-07	-6.227	7.4702E-01
	44 NASO4 -1	7.6256E+02	6.6387E-03	4.9593E-03	-2.305	7.4702E-01
	43 NAH003 0		1.5699E-04	1.8360E-04	-3.736	1.1695E+00
	42 NACC3 -1	5.0491E+00	6.3051E-05	4.71002-05		
		5.7367E-27	1.0174E-31		-4.327	7.4702E-01
				1.1898E-31		1.1695E+00
	46 KSO4 -1	2.2217E+01	1.7036E-04	1.2727E-04	-3.895	7.4702E-01
• • •	95 KCL 0	1.4027E-28	1.9500E-33	2.2805E-33		1.1695E+00
	63 HSO4 -1	2.0499E-04	2.18 88 E-0 9	1.6351E-09	-8.786	7.4702E-01
	24 H4SIO4AQ 0	6.6431E+00	7.1635E-05	8.3776E-05	-4.077	1.1695E+00
	25 H3SIO4 -1	2.0112E-01	2.1917E-06	1.6373E-06	-5.786	7.4702E-01
	26 H2SIO4 -2	1.6236E-04	1.7883E-09	5.5690E-10	-9.254	3.1141E-01
		6.1303E-10	1.1377E-14	3.5429E-15		3.1141E-01
	9 FE 3	6.8319E-14	1.2679E-18	9.18502-20		7.2442E-02
		2.17835-08	3.0989E-13	9.6502E-14		3.1141E-01
	11 FECH 1	1.7155E-11	2.4405E-16	1.8231E-16		7.4702E-01
	12 FE(CH) 3 -1	2.1072E-16	2.0436E-21	1.5266E-21		7.4702E-01
•	77 FE(CH)2 1	6.0351E-04		5.1998E-09	-8.284	7.47022-01
	78 FE(CH) 3 0	8.7651E-04	8.5007E-09	9.9414E-09	-8.003	1.1695E+00
	79 FE(CH)4 -1	2.5883E-03	2.1656E-08	1.6177E-08	-7.791	7.4702E-01
	80 FE (CH) 2 0	1.8720E-14	2.1591E-19	2.5251E-19	-18.598	1.1695E+00
	13 FEHPO4 1.	1.5315E-16	1.0456E-21	7.8105E-22		7.4702E-01
	100 FEHPO4 0	5.6461E-14	3.85455-19	4.5078E-19		1.1695E+00
	65 FEH2POA 1	1.0872E-15	7.3728E-21	5.5076E-21		7.4702E-01
		3.8461E-17	2.6083E-22	8.12235-23		3.1141E-01
	15 FESO4 1	4.1916E-13	2.6598E-18	2.13635-18		7.4702E-01
	16 FECL 2	2.5080E-13	2.8471E-18	8.8660E-19		3.1141E-01
•	28 FECT2 1	2.4518E-13	2.0048E-18	1.4976E-18		7.4702E-01
	33 FECI3 0	6.9599E-15	4.4472E-20	5.2009E-20		1.1695E+00
	34 FESO4 0	2.2080E-10	1.5065E-15	1.7618E-15	-14.754	1.1695E+00
	101 MN 2	1.1764E-04	2.2193E-09	6.9111E-10	-9.160	3.1141E-01
	102 MN 3	4.4526E-21	8.3999E-26	6.0851E-27	-26.216	7.2442E-02
· · · ·	106 MNCH 1	2.9902E-07	4.3136E-12	3.2223E-12	-11.492	7.4702E-01
	107 MN (CE) 3 -1	2.6103E-14	2.5532E-19	1.9073E-19		7.4702E-01
	111 1003 1	5.20038-06	4.6480E-11	3.47225-11		7.47.2E-01
	109 MISO4 0	1.2291E-05	8.4362E-11	9.8660E-11		1.16952+00
		1.5327E-15	8.8768E-21	1.0381E-20		1.16952+00
· · ·						
	103 MNCL 1	1.1494E-04	1.31785-09	9.84465-10	-9.007	7.47025-01
	104 MNCL2 0	9.7768E-06	8.0515E-11	9.4161E-11	· · - ·	1.1695E+00
	105 MNCL3 -1	3.1141E-06	2.0008E-11	1.4947E-11		7.4702E-01
	108 MT 1	1.3566E-08	1.9016E-13	1.4206E-13		7.4702E-01
	112 MO4 -1	1.5361E-24		9.9 991E-30		7.4702E-01
		3.1528E-23	2.7474E-28	8.5555E-29	-28.068	3.1141E-01
	115 HAND2 -1	1.2526E-14	1.4761E-19	1.1027E-19	-18.958	7.4702E-01
	51 AL 3	2.7238E-12	1.0463E-16	7.57972-18	-17.120	7.2442E-02
	S2 ALCH 2	1.8354E-09	4.3244E-14	1.3466E-14		3.1141E-01
	- 53 AL(OH) 2 1	8.22772-06	1.3980E-10	1.0444E-10		7.47025-01
	54 AL(OH) 4 -1	7.02995-03	7.66865-08			7.47025-01
				2.2520E-15		3.11412-01
	55 NLP 2		7.23160-15			
	56 ALF2 1		4.8102E-14	3.5933E-14		7.47025-01
	57 ALF3 0	1.34609-09	1.0012E-14	·1.9427E-14		1.1695E+00
	58 ALF4 -1	3.76018-11	3.78452-16	2.8271E-16		7.4702E-01
	59 ALSO4 1	3.52725-12	2.9711E-17	2 .219 5 E-1 7	-16.654	7.4702E-01
			· ·		•	
· · · · ·						
1 a 1 a 1						

.

-23-

.

60 AL(SO4)2	-1	1.3953E-12	6.6003E-18	4.9306E-18	-17.307	7.4702E-01
45 PO4	-3	3.0245E-06	3.3007E-11	2.39115-12		7.24425-02
47 HPO4	-2	9.50398-03	1.0263E-07			
48 H2PO4	-ī	3.8854E-04		3.1960E-08	-7.495	3.1141E-01
40 MGPO4			4.1521E-09	3.1017E-09	-8.508	7.4702E-01
	-1	2.0140E-02	1.7500E-07	1.3073E-C7	-5.884	7.4702E-01
73 MGHPO4	0	3.3117E-02	2.8534B-07	3.3371E-07	-6.477	1.1695E+00
41 MGH2PO4	1	2.2302E-04	1.9056E-09	1.4235E-09	-8.847	7.4702E-01
75 CAPO4	-1	2.8153E-03	2.1605E-08	1.6140E-08	-7.792	7.4702E-01
74 CAHPO4	0	4.6141E-03	3.51485-08	4.1105E-08	-7.386	1.1695E+00
76 CAE2PO4	1	3.2958E-05	2.4921B-10	1.8617E-10	-9.730	7.4702E-01
61 XHPO4	-1	7.0421E-05	5.4032B-10	4.0363B-10		7.47022-01
50 NAHPOA	-1	3.2358E-03	2.8190E-08		-9.394	
36 H3B03 AQ	Ō	2.2109E+01		2.1058B-08	-7.677	7.4702E-01
			3.7059E-04	4.33405-04	-3.363	1.1695E+00
37 H2BO3	-j.	3.2903E+00	5.6067E-05	4.18838-05	-4.378	7.4702E-01
25 NO3	-1	2.90005-01	4.8475E-06	3.6212E-06	-5.441	7.4702E-01
38 NEB AQ	0	1.5606E-03	9.49735-08	1.11072-07	-6.954	1.1695E+00
39 NH4	1	2,7361E-02	1.5721E-06	1.1744E-06	-5.930	7.4702E-01
92 NH4SO4	-1	6.2346E-03	5.6633E-08	4.2306E-08	-7.374	7.4702E-01
91 LI	Ĩ	1.7882E-01	2.6709B-05	1.9952E-05	-4.700	7.4702E-01
82 LICH	ā	1.0358E-06	4.48335-11			
83 LISO4	-1	3.2400E-02	3.2602E-07		-10.280	1.1695E+00
	-			2.4355E-07	-6.613	7.4702E-01
88 SR	2	6.4010E+00	7.5717E-05	2.3579E-05	-4.527	3.1141E-01
69 SR8003	1	6.6899E-02	4.6648B-07	3.4847E-07	-6.458	7.4702E-01
97 SR003	0	1.3785E-02	9.6782E-08	1.13195-07	-6.946	1.1695E+00
89 SRCH	1	3.4905E-05	3.4577E-10	2.5830E-10	-9.588	7.4702E-01

MOLE RATE ANALYTICAL		HOLE RATIOS FROM COMPUTED HOLALITY			LOG ACTIVITY RATIOS			
CL/MG CL/NA CL/X CL/AL CL/FZ CL/SOA CL/BOO3 CL/HOC3 CL/MG	5.3065E+01 1.0274E+01 1.1655E+00 5.3483E+01 7.3643E+05 1.5243E+05 1.5243E+07 1.9336E+01 2.3509E+02 1.9360E+01 4.5890E+01	CL/CA CL/MG CL/NA CL/NA CL/NA CL/NA CL/NA CL/FE CL/SO4 CL/HCC3 CL/HCC3 CL/HCC3 CL/HCC3 CL/MG NA/K		1.1569E+01 1.1822E+00 5.4358E+01 5.4073E+15 4.9729E+13	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	NL/H3 FE/H2 CA/MG	2 2 2 2	13.8103 14.5888 7.7488 6.0314 7.5397 1.9894 -0.7785 1.7174

SEA WATER TEST CASE FROM NORDSTROM, ET AL. PAPER IN ACS SUMPOSIUM.

PHASE	INP	RT .	log inp	LOG RT	lap/kt i	og lap/kt
40 ADULAR	2.354E-22	2.6925-21	-21.593	-20.570	9.488E-02	-1.023
41 ALBITE	1.332E-20	1.000E-18	-19.875	-18.000	1.332E-02	-1.875
141 ALCEDA	3.455B-35	2.455E-32	-34.462	-31.610	1.407E-03	-2.852
51 ALUNIT			-93.339	-85.320		-8.019
43 ANALON	1.499D-16	1.9952-13	-15.824	-12.700	7.513E-04	-3.124
18 ANEMORIT	6.560B-06	4.130E-05	-5.183	-4.384	1.588E-01	-0.799
114 ANNITE	••••		-99.610	-84.240		-15.370
42 ANCRUS	6.324D-26	4.677E-20	-25.199	-19.330	1.352E-06	-5.869

ij.

÷

		_					
		1.764E-08		-7.754	-8.336	3.824E+00	0.583
	ARTIN	1.072E-22	3.9815-19	-21.970	-18.400	2.694E-04	-3.570
145	BARITE	1.314E-10	1.052E-10	-9.881	-9.978	1.249E+00	0.097
	BOEHM	3.524E-35		-34.453	-33.410	9.057E-02	1.043
20	BRUCITE	3.872E-14	3.890E-12	-13.412	-11.410	9.953E-03	-2.002
	CALCITE	1.764E-08		-7.754	-8.480	5.325E+00	0.726
	CELEST	6.593E-08		-7.181	-6.578	2.497E-01	-0.603
	CHALC	8.714E-05		-4.060	-3.523	2.905E-01	-0.537
	CHLOR			-82.129	-90.610		8.481
	CHRYSOTL			-48.347	-51.800		3.453
		3.441E-18	1.349F	-17.463	-16.870	2.551E-01	-0.593
	CLINOP	1.640E-28		-27.785	0.000	1.640E-28	-27.785
	SILGEL	8.714E-05		-4.060	+2.700	4.367E-02	-1.360
		1.972E-36		-35.705	-36.220	3.273E+00	0.515
		1.868E-15		-14.729	-17.090	2.299E+02	2.361
	ERION	1.172E-22		-21.931	0.000	1.172E-22	-21.931
	FECHIA	3.958E+05		5.597		5.158E+00	0.712
	FLUAPT			-57.487	-66.790	JAJUUTUU	9.303
	FLUCR	1.978E-12	1 0065-11	-11.704	-10.960	1.804E-01	0.744
		1.359E-31		-30.867	-28.110	1.751E-03	
-	GIBCRS	3.455E-35		-34.462	-32.770		-2.757
	COETH	3.4332~33	1.0305-33			2.034E-02	-1.692
	GREENA				-44.197		7.827
	GPSM	6 307E-06	3 4003-05	-86.145	-63.190		-22.955
	HALITE	6.307E-06			-4.602	2.524E-01	-0.598
	HALLOY	1.190E-01	3-0135401	-0.925	1.582	3.115E-03	-2.507
		1 6638-11	6 0/03 OF	-39.018	-32.820	1 6605-16	-6.198
	HEMATI	1.662E+11		11.221	-4.007	1.689E+15	15.228
	HUNTITE	2.096E-29	2.0205-21	-28.679	-30.510	6.782E+01	1.831
	EYDMAG			-41.346	-37.820	•	-3.526
	HYXAPT			-58.731	-59.350		0.619
	ILLITE			-42.470	-40.310		-2.160
	KAOLIN			-39.018	-36.910		-2.108
	KMICA			-52.483	-49.090		-3.393
	LAUMON	4.4335-34	1.096E-31	-33.353	-30.960	4.048E-03	-2.393
	LEON		-	-66.697	-69.570	-	2.873
	MAGADI		5.0122-15	-22.430	-14.300	7.415E-09	-8.130
	MAGHEM	1.662E+11		11.221	6.370	7.088E+04	4.851
	MAGNESIT	1.059E-07		-6.975	-8.240	1.841E+01	1.265
	MAGNET	1.457E+00	2.723E-10	0.163	-9.565	5.350E+09	9.728
	MONTCA			-48.613	-45.000		-3.613
	MONTEF		1.J72E-35	-32.294	-34.970	4.739E+02	2.676
	MINTAB		1.660E-30	-27.199	-29.780	3.809E+02	2.581
	MORDEN	1.774E-26		-25.751	0.000	1.774E-26	-25.751
	MIRABI	2.623E-04		-3.581	-1.113	3.403E-03	-2.468
	NAHCOL	3.265E-04		-3.486	-0.548	1.153E-03	-2.938
	NATRON		4.8872-02	-6.152	-1.311	1.443E-05	-4.841
	NESQUE	9.984E-08		-7.001	-5.211	1.623E-02	-1.790
	PHILIP	1.809E-21	1.360E-20	-20.743		1.310E-01	-0.883
	PHLOG		• • • • • • • •	-61.812	-63.530		1.718
	PREE T	3.423E-16	3.020E-12	-15.466	-11.520	1.133E-04	-3.946
- III - 54	PYROTH			-47.129	-42.430		-4.699
744	QUARTZ	6.714E-05	9.886E-05	-4.060	-4.005	8.815E-01	-0.055
	SEPIOLIT			-39.016	-40.100		1.084
		2.664E-20		19.574	-10.570	9.898E-10	-9.004
		8.714E-05		-4.060		9.062E-02	-1.043
		2.112E-31		-30.675	-26.400	5.304E-05	-4.275
	STRONT	1.7735-10	3.3045-10	-9.751	-9.271	3.306E-01	-0.481
	TALC	-	C CAR- A-	-56.458	-62.290		5.832
	THENAR	3.193E-04		-3.496	-0.179	4.822E-04	-3.317
62	TIPNAT	5.429E-07	1.334E+00	-6.075	0.125	6.314E-07	-6.200

-25-

32 TREMOLIT	107 060	340.300		
	-127.858			12.432
60 TRONA 2.595E-10 1.603E-01	-9.569	-0.795	1.681E-09	-8.774
107 VIVIAN	-66.663	-36.000		-30.663
146 WITHERIT 3.534E-13 2.500E-09		-8.585	1.359E-04	-3.867
154 SEP PT	-39.016	-37.212		-1.804
155 DIASP 3.524E-35 8.710E-36	-34.453	-35.060	4.046E+00	0.607
156 WAIRET 4.6178-34 2.3998-27	-33.336	-25.620	1.9258-07	-6.716
172 MANGANO 1.866E+07 8.670E+17	7.271	17.938	2.153B-11	-10.667
173 PYRCLUST 1.256E+1 7.261E+15	15.099	15.861	1.7295-01	-0.752
174 BIRNSITE 1.256E+15 1.233E+18	15.099	18.091	1.018E-03	-2.992
175 NUSTITE 1.256E+15 3.192E+17	15.099	17.504	3.935E-03	-2.405
176 BEXEYITE 7.2935-04 2.4495-01	-3.137	-0.611	2.978E-03	-2.525
177 HADSMITE	55.148	61.540		-6.392
178 MNCH2 1.900E-21 1.225E-13	-20.721	-12.912	1.551E-08	-7.809
179 MNCH3	-43.557	-35.644		-7.913
180 MANGANIT 2.674E-02 5.781E-01	-1.573	-0.238	4.626E-02	-1.335
181 RHODOCHR 5.1978-15 2.891E-11	-14.284	-10.539	1.798E-04	-3.745
183 MNCL2 8.567E-11 5.754E+08	-10.067	8.760	1.4895-19	-18.827
184 MXL2.1W 8.400E-11 3.327E+05	-10.076	5.522	2.525E-16	-15.598
185 MXL2.2W 8.2375-11 9.419E+03	-10.084	3.974	8.745E-15	-14.058
186 MNCL2.4W 7.9198-11 5.1298+02	-10.101	2.710	1.544E-13	-12.811
187 TEPHRITE 3.035E+10 1.324E+23	10.482	23.122	2.292E-13	-12.640
188 RHODONIT 1.1245-06 3.327E+09	-5.949	9.522	3.379E-16	-15.471
		2.669	4.141E-15	
	-11.714		4.1410-13	-14.383
191 192304,3	-60.092	-5.711		-54.381
192 MBP04,2	-50.724	-23.827		-26.897
193 MNHPO4 2.209E-17 1.130E-13	-16.656	-12.947	1.955E-04	-3.709

!

ļ

1.

ì

منتي. ر. .

-26-

SOURCE CODE

 $\{ \boldsymbol{s}_{i} \}_{i \in \mathcal{I}}$

:

C C	**** FROGRAM WATEOF **** A FORTRAN IV VERSION OF WATEO	A 10 A 20
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	REVISED FROM PL1 VERSION OF TRUESDELL AND JONES. NIEL PLUMMER, SUMMER 1972.	A 30 A 40
č	LATEST REVISION JANUARY, 1984	A 50
C C		A 60 A 70
C	**** DESCRIPTION OF INPUT - 5 CARDS ARE REQUIRED ****	A 80
č	CARD 1 TITLE, JOB DESCRIPTION. (A80) CARD 2 TEMP, PH, EHM, EHMC, EHMZ, DENS, DOX, FLAG, CORALK, FECALC, IGO,	A 90 A 100
č	(PRT(I), I=1,4), IDAVES, ISPEC, IMIN	A 110
ç	(5(F6.0,1X),2F5.0,1X,911,213)	A 120
c	TEXPTEXPERATURE IN DEGREES C PHNEGATIVE LOG ACTIVITY H+	A 130 A 140
č	RIM DEFEDDED FH SEE OPPIONS	A 150
ç	EHMCMEASURED EH SEE OPTIONS	A 160
C	EMFZMEASURED EH OF ZOBELL SOLUTION DENSDENSITY OF SOLUTION (G/OC)	A 170 A 180
č	DOXDISSOLVED OXYGEN (MG/L)	À 190
C	FLAGSIGNAL FOR UNITS OF INPUT CONCENTRATION.	A 200
ç	0 (OR BLANK) = MACLE/L, 1=MED/L, 2=MG/L, 3=FFM, 4=MOLALITY. CORALK=0 IF ALKALINITY HAS NOT BEEN CORRECTED FOR BORCH ETC.	A 210 A 220
č	AND THE ORIGINAL EXPRESSION OF WATED IS TO BE USED. =1 IF	A 230
Ċ	CARBONATE ALKALINITY (CORRECTED FOR NON-CARBONATE ALKALINITY	A 240
C C C	SPECIES) HAS BEEN INPUT. =2 IF TOTAL INORGANIC CARBON IS	A 250
č	INFUT RATHER THAN ALKALINITY. =3 IF ALKALINITY HAS NOT BEEN CORRECTED FRO BORON ETC. = SIMILAR TO CORALK=0, EXCEPT THAT	A 260 A 270
č	ALL POSSIBLE NON-CARBONATE ALKALINITY SPECIES ARE CONSIDERED.	A 280
C	PECALC=0 WILL SET PE TO 100, =1 COMPUTES PE FROM EH,	A 290
ç	=2 computes pe from dox(theoretical). = 3 computes pe from the sato relation, = 4 computes pe from 5 sol	A 300 A 310
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IGO=0, OR BLANK, IF DESIRED TO HAVE DATA CHECKED FOR INFUT	A 320
C	error, ph must be greater than 3 and less than 11, and the	A 330
ç	ANALYSIS MUST HAVE LESS THAN 30% ERROR IN CHARGE BALANCE. =1 IF THIS CHECK IS NOT TO BE MADE.	A 340 A 350
č	(PRT(1), I=1,4), CAN BE SET TO 1 TO DELETE PRINT OF	A 360
Č	THERMOCHEMICAL DATA, MASS BALANCE CONVERGENCE ITERATIONS,	A 370
ç	RATIOS OF IONS, AND MINERAL SATURATION, RESPECTIVELY. PRT(I)	A 380
č	SHOULD BE SET TO ZERO OR BLANK TO OBTAIN THE RESPECTIVE FRINT. IDAVES=1, ACTIVITY COEFFICIENTS OF CHARGED ION PAIRS ARE	A 390 A 400
Č	CALCULATED FROM THE DAVIES EQUATION. =0 (OR BLANK), ACTIVITY	A 410
Č	COEFFICIENTS OF GEARGED ION FAIRS ARE CALCULATED FROM THE DEBYE-HUCKEL EQUATION. IDAVES HAS NO EFFECT ON GAMMA(1)-	A 420 A 430
č	DEBYE-HOCKEL EQUATION. IDAVES HAS NO EFFECT ON GAMMA(1) - GAMMA(7), AND GAMMA(18).	A 440
č	ISPEC = NUMBER OF SPECIES DESIRED IN OUTPUT (IF LESS THAN TOTAL	A 450
ç	Possible). To obtain output of Molality, Activity, ETC. Of All possible species for the defined system, leave ispec	A 460 A 470
č	BLANK (OR ZERO), IF ISPEC GT. ZERO, ISPEC VALUES OF KSPEC	A 480
C C C	(SPECIES INDEX NUMBER) MUST BE READ (SEE BELOW). IT ISPEC =	X 490
C C	BLANK (2ERO), OMIT KS. 2C CARD(S). IMIN = HUMBER OF MINERALS FOR WHICH SATURATION OUTPUT IS	A 500 A 510
č	DESIRED (IF LESS THAN TYTAL POSSIBLE). TO OBTAIN SATURATION	A 520
Č	DATA ON ALL POSSIBLE MINERALS FOR THE DEFINED SYSTEM, LEAVE	A 530
0000	IMIN BLANK (OR 2ERO). IF IMIN GT. 2ERO, IMIN VALUES OF KMIN (MINERAL INDEX NUMBER) MUST BE READ (SEE BELOW). IF IMIN =	A 540 A 550
č	(MINERAL INDEX NOBER) HIST BE READ (SEE BELCH). IF THIN = BLANK (OR ZERO), OHIT KMIN CARDS(S).	A 550
Ċ	CARD 3 CA MG NA K CL SO4 $(6(E12.5), 8X)$	A 570
С	CARD 4 HOOS SID2 FE POA SR F (6(E12.5),8X)	A 580 A 590
C C	OPTICNAL CARDS OF TYPE 1 APPEAR HERE OPTICNAL CARDS OF TYPE 2 APPEAR HERE	A 600

-27-

WATER AVALYSIS.)	A 610 A 620 A 630 A 640
ALL OPTIONAL INPUT	630
ALL OPTIONAL INPUT MUST APPEAR BETWEEN CARDS 4 AND 5	
ALL OPTIONAL INFUT MUST APPEAR BETWEEN CARDS 4 AND 5	640
TYPE I CARDS MUST PRECEED TYPE 2 CARDS.	N 650
	660
	A 670
	A 680
	A 690
	N 700
	N 710
	720
	N 730
	N 740
	N 750
	N 760
	N 770
	780
	N 790
	N 800
	810
	N 820
	N 830 N 840
	A 850
	N 860
	N 870
	N 880
	N 890
	1 900
	910
	920
	930
	940
	950
	960
	970
REACTION (25 DEG. C) USED IN COMPUTING THE TEMPERATURE	980
DEPENDENCE OF EQUILIBRIUM CONSTANTS FROM THE VANT BOFF EQUATION.	1 990
	1000
IS TO BE CHANGED AND VAL(I) IS THE APPPRIATE NEW VALUE OF	1010
DH(INT(I)).	1020
	1030
'TABL'. OVERTIDES VALUES OF LOCKTO(IMP(I)) (LOG & OF REACTION AT)	
	1050
	1060
	1070
	1080
	1090
LOGY. OVERIDES EXISTING ANALYTICAL EXPRESSIONS FOR LOG K AS A	
	1110
ANALYTICAL EXPRESSIONS FOR LOG K (T DEG.K) . SIX VALUES ARE	N1120
	V130
READ, INSTEAD OF THE NORMAL FIVE. THE FORM OF THE	
READ, INSTEAD OF THE NORMAL FIVE. THE FORM OF THE ANALYTICAL EXPRESSION MIST BE	1140
READ, INSTEAD OF THE NORMAL FIVE. THE FORM OF THE ANALYTICAL EXPRESSION MUST BE LOG KT(INT(I))=A+B+T+C/T+D+T**2+F/T**2+F*LOG(T) //	1150
READ, INSTEAD OF THE NORMAL FIVE. THE FORM OF THE // ANALYTICAL EXPRESSION MIST BE // LOG KT(INT(I))=A+B+T+C/T+D+T**2+E/T**2+F*LOG(T) // WHERE T IS TEMPERATURE IN DEG. K, AND A, B, C, D, E AND F ARE FIT //	N1150 N1160
READ, INSTEAD OF THE NORMAL FIVE. THE FORM OF THE ANALYTICAL EXPRESSION MUST BE LOG KT(INT(I))=A+B*T+C/T+D*T**2+E/T**2+F*LOG(T) WHERE T IS TEMPERATURE IN DEG. K, AND A, B, C, D, E AND F ARE FIT PARAMETERS (MAY BE ZERO OR BLANK). INT(I) IS THE INDEX NUMBER	1150 1160 1170
READ, INSTEAD OF THE NORMAL FIVE. THE FORM OF THE ANALYTICAL EXPRESSION MUST BE LOG KT(INT(I))=A+B*T+C/T+D*T**2+E/T**2+F*LOG(T) WHERE T IS TEMPERATURE IN DEG. K, AND A,B,C,D,E AND F ARE FIT PARAMETERS (MAY BE ZERO OR BLANK). INT(1) IS THE INDEX NUMBER OF REACTION AND INT(2)-INT(5) ARE IGNORED. VAL(1)=A,VAL(2)=B,	N1150 N1160 N1170 N1180
READ, INSTEAD OF THE NORMAL FIVE. THE FORM OF THE ANALYTICAL EXPRESSION MUST BE LOG KT(INT(I))=A+B*T+C/T+D*T**2+E/T**2+F*LOG(T) WHERE T IS TEMPERATURE IN DEG. K, AND A,B,C,D,E AND F ARE FIT PARAMETERS (MAY BE ZERO OR BLANK). INT(1) IS THE INDEX NUMBER OF REACTION AND INT(2)-INT(5) ARE IGNORED. VAL(1)=A,VAL(2)=B, VAL(3)=C,VAL(4)=D,VAL(5)=E,VAL(6)=F.	1150 1160 1170

.

。。

<u>____</u>

A1210 IF ANY OF THE CARDS, 'EROR', 'DELH', 'TARL', 'LOCK', ARE USED IN A PARTICULAR WATER DATA SET, CALCULATIONS FOR THAT DATA SET AND ALL SUBSEQUENT DATA SETS WILL USE THE NEW INFUT VALUES. DELH AND TABL С A1220 Č A1230 A1240 CARDS CAN BE USED TO OVERRIDE PRE-EXISTING ANALYTICAL EXPRESSIONS. THE OFDER OF TYPE 2 OPTIONAL INFUT CARDS IS 'CONC', 'EROR', 'DELH', 00000 A1250 A1260 'TABL', AND 'LOCK', IF ALL 5 ARE USED. THE LAST CARD IN EACH WATER ANALYSIS DATA SET MUST BE BLANK. A1270 A1280 A1290 IMPLICIT DOUBLE PRECISION (A-H,O-I) **A1300** INTEGER D, E, DD, RBIT, CORALK, 1(120), PRT(4) **A1310** INTEGER PECALC, PECK A1320 DOUBLE PRECISION MI (120), KT (200), LOCKT (200), LOCKTO (200), MATOT, LE20 A1330 1, MU, NATOT, KTOT, MITOT, LITOT, NH4TOT, KA A1340 CHARACTER *8 NSPEC(120), NREACT(200) CHARACTER *80 TITL A1350 A1360 COMMN MI, IT, LOGAT, LOGATO, RW, D. E. DD, C. R. T. F. TENE, A. B. PE, PES, PEDO, P 1ESATO, FECK, PECALC, PH, TENIPE, TENIPH, ALFA(120), GAMMA(120), AP (200), XLA 2LFA(120), Z. CINITS (120), ANIALMI (120), GFW(120), DHA(120), RSPEC, NREACT, **A1370** A1380 A1390 3DH (200) , AH2O, LH2O, ERORI , EROR2 , EROR3 , EROR4 , EROR5 , EHM, DENS, DOX , XLMI (A1400 4120), ITER, FBIT, CLSAVE, CORALE, MU, LCHEK (200), CO2TIT, ANALCO, SITOT, CAT A1410 SOT, MITOT, KTOT, NATOT, SOATOT, FETOT, PTOT, ALTOT, FTOT, BTOT, LITOT, NHATOT A1420 6, SRIOT, BATOT, CLIOT, MATOT, ICK, PRT, TITL, EPMCAT, EPMAN, NEQU, ISPEC, A1430 7KSPEC(120), IMIN, KMIN(200), TDS, IDAVES, IPRT, JJ, JK A1 440 JJ=0 A1450 JK=0 A1460 D-115 A1470 E=193 A1480 IPRI=0 A1490 NEO0+22 A1500 OPEN (UNIT=9, FILE='WATEOF, DATA', STATUS='OLD') A1510 DO 11 I=1,D 11 READ (9,*) NSPEC(I),Z(I),GFW(I),DHA(I) **A1520** A1530 DO 12 I=1,E A1540 12 READ (9,*) NREACT(I), DH(I), LOGKTO(I) A1550 10 CONTINUE A1560 READ (5,70, END=40) TITL A1570 ICK=0 A1580 CALL PREP A1590 IF (ICK.ED.1) GO TO 10 CALL SET A1600 A1610 20 CONTINUE A1620 CALL MODEL A1630 IF (ITFR. 20.25) GO TO 30 A1640 IF (FBIT.ED.1) GO TO 20 IF (ITER.LT.2) GO TO 20 A1650 A1660 CALL PRINT A1670 IF (PRT(4).HE.O.AND.PRT(4).NE.9) GO TO 10 A1680 CALL ENT A1690 co 10 10 **A170**0 30 WRITE (6,80) GO TO 10 40 CLOSE (UNIT-9) A1710 A1720 A1730 ENDPILE (UNIT-6) A1740 A1750 STOP A1760 C A1770 50 FORMAT (5X,A8,2X,I2,3X,F10.4,1X,F4.1) 60 FORMAT (5X,A8,2X,2F10.4) 70 FORMAT (A80) A1780 A1790 A1.800

80 FORMAT (4X, 'CONVERGENCE DID NOT OCCUR WITHIN 25 ITERATIONS, '/4X	A1 810
1, 'CALCULATION TERMINATED',///)	A1 820
END	A1 830
SUBROUTINE PREP	B 10
IMPLICIT DOUBLE PRECISION (A-H,O-3)	B 20
INTEGER D, E, DD, RBIT, CORALK, 3(120), FLAG, PRT(4), SIGN(2), PECALC, PECK	B 30
DIMENSION INT(6), VAL(6), INPT(22), GRAMS(120), IEDU(50), COEF(6,2)	B 40
100), V(120), IDH(50), INTT(50)	B 50
DOUBLE PRECISION MI(120), NT(200), LOCKT(200), LOCKTO(200), MNTOT, LH2O	B 60
1, MU, NATOT, KTOT. MITOT, LITOT, NH4TOT, KW	B 70
CHARACTER *8 N. 3EC(120), NREACT(200), WORD, CARD(6)	B 80
CHARACTER *80 TITL	B 90
COMMON MI, KT, LOCKT, LOCKTO, KH, D, E, DD, C, R, T, F, TEMP, A, B, PE, PES, FEDO, P	B 100
12SATO, PECK, PECALC, FH, TENEPE, TENEH, ALFA(120), GAMMA(120), AP(200), XLA	B 110
2LFA(120), Z, CUNITS(120), ANALAI (120), GFW(120), DHA(120), NSPEC, NREACT,	B 120
3DH (200), AH2O, LH2O, ERORI, ERORI, ERORI, ERORI, ERORI, ERORI, ERORI, ERORI, ERORI, DIN, XLMI (B 130
4120), ITER, RBIT, CLSAVE. CORALK, MU, LCHEN (200), COITIT, ANALOO, SITOT, CAT	B 140
50T, MGTOT, KTOT, NATOT, SCATOT, FETOT, PTOT, ALTOT, FTOT, BTOT, LITOT, NEATOT	B 150
6, SRIOT, BATOT, CLTOT, INTOT, ICK, FRT, TITL, EHMAN, NEQU, ISPEC,	B 160
7KSPEC(120), MIN, KUIN(200), TDS, IDAVES, IPRT, JJ, JK	B 170
DATA CARL/'CONC', 'ENCR', 'DELH', 'TABL', 'LOGK', '''/', SIGN/''', '*'/	B 180
DATA IEQU/13,14,15,19,22,25,26,27,36,69,73,74,75,78,79,90,92,143	B 190
1,144,149,153,170,28*0/	B 200
DATA COEP/72*0.0,-171.9065,-0.077993,2839.319,2*0.0,71.595,6.368	B 210
1,-0.016346,-3405.9,2*0.0,39.478,-0.065927,-12355.1,21*0.0,	B 220
882.0904,0.0,-3853.936,2*0.0,-29.81148,12*0.0,	B 230
2-171.9773,-077993,2903.293,2*.0,71.595,12*.0,.684,.0051295,4*.0,	B 240
328.6059,0.012078,1573.21,2*0.0,-13.2258,0.6322,-0.001225,-2835.76,	B 250
451*0.0,356.3094,0.06091964,-21834.37,0.0,1684915.0,-126.8339,	B 260
5192*0.0,107.8871,0.03252849,-5151.79,0.0,563713.9,-38.92561,	B 270
618*0.0,3.106,0.0,-573.6,3*0.0,0.991,0.00667,4*0.0,2.319,-0.011056,	B 280
70.0,0.000022981,14*0.0,1209.12,.31294,-34765.05,2*0.0,-478.782,	B 290
%-1228.732,-0.29944,35512.75,2*0.0,485.818,60*0.0,-5.3505,0.0183412	B 300
9,557.2461,9*0.0,11.17,-0.02386,-3279.0,303*0.0,155.0305,0.0	B 310
%,-7239.594,2*0.0,-56.58638,73.415,0.0,-3603.341,2*0.0,-27.4437	B 320
\$,24*0.0,-3.248,0.014867,22*0.0,-606.522,-0.097611,31286.0,0.0,	B 330
i-2170870.0,218.68434,96*0.0,-1.019,0.012826,184*0.0/	B 340
DATA INPT/1,2,3,4,5,6,7,35,8,45,88,62,17,18,39,51,81,85,87,90,98,1	B 350
101/	B 360
C-2.302585092	B 370
F=23.0603	B 380
R=1.98719B-03	B 390
ERCR1=.001	B 400
ERCH2=.001	B 410
ERCH3=.001	B 420
ERCH4=.001	B 430
ERCH3=.001	B 440
ICK=0 PEDO-100.0 PESATO-100. PES-100.0	B 450 B 460 B 470 B 480 D 480
DO 10 I=1,D	B 490
CUNTIS(I)=0.0	B 500
ALFA(I)=0.0	B 510
MI(I)=0.0	B 520
XLMI(I)=0.0	B 530
IF (Z(I).ED.0) V(I)=1.0	B 540
IF (Z(I).ED.0) GO TO 10	B 550
IF (Z(I).LT.0) V(I)=-1.0*Z(I)	B 560
IF (Z(I).GT.0) V(I)=-1.0*Z(I)	B 570
- /-/-/	

:

1

Ī

-30-

، . ـ • • -

	10 CONTINUE	B 580
	PECK=0	E 590
	WRITE (6,620)	
		B 600
	READ (5,630) TEMP, FH, EHM, EHMC, EMFZ, DENS, DOX, FLAG, CORALK, PECALC, IGO	B 610
	1, (PRT(I), I=1,4), IDAVES, ISPEC, IMIN	B 620
	IFLAG-FLAG	B 630
	IF (IPRT.ED.1) PRT(1)=1	B 640
	IF (PRT(1).NE.0) GO TO 70	B 650
	WRITE (6,640)	
		B 660
	DO 30 I=1,D	B 670
	ISIG-SIGN(1)	B 680
	DO 20 J=1,NEDU	B 690
	IF (I.ED.IEDU(J)) ISIG=SIGN(2)	B 700
	20 CONTINUE	B 710
	WRITE (6,650) I, NREACT(I), DH(I), LOCKTO(I), ISIG, I, NSPEC(I), I(I),	B 720
	LCHA(I), GW(I)	B 730
	30 CONTINUE	B 740
	DD=D+1	B 750
	DO 50 I=DD.E	B 760
	ISIG=SIGN(1)	B 770
	DO 40 J=1,NEDU	B 780
	IF (I.EQ. IEQU(J)) ISIG-SIGN(2)	B 790
		B 800
	WRITE (6,660) I, NREACT(I), DH(I), LOEKTO(I), ISIG	B 810
	50 CONTINUE	8 820
	WRITE (6,570)	B 830
	DO 60 I=1,NEQU	
		B 840
	WRITE (6,580) IEQU(I), NREACT(IEQU(I)), COEF(1, IEQU(I)), COEF(2, IEQU(I	B 850
	1)), COEF (3, IEQU(I)), COEF (4, IEQU(I)), COEF (5, IEQU(I)), COEF (6, IEQU(I))	B 860
	60 CONTINUE	B 870
	70 CONTINUE	B 880
	IPRT=1	B 890
	WRITE (6,670) TITL	8 900
	READ $(5,680)$ (CINITS (INPT (I)), I=1,6)	B 910
		B 920
	IF (ISPEC.GT.0) READ (5,590) (KSPEC(I),I=1,ISPEC)	B 930
	IF (IMIN.GT.0) READ (5,590) (KMIN(I), I=1, IMIN)	B 940
	80 CALL READ (NORD, INT, VAL)	B 950
	IF (WORD.NE.CARD(1)) GO TO 100	B 960
	DO 90 I=1,5	B 970
	IF (INT(I).EQ.0) GO TO 90	B 980
	CINITS (INT(I))=VAL(I)	B 990
	90 CONTINUE	B1000
	03 07 02	B1010
1	LOO CONTINUE	B1020
	IF (WORD.NE.CARD(2)) GO TO 110	B1030
		B1040
		B1050
		B1060
		B1070
		B10 80
		B1090
	GO TO 100	B1100
		B1110
•		
		E1120
		B1130
	DH(INT(I)) = VAL(I)	B1140
	JJ=JJ+1	B1150
	IDH(JJ)=INT(I)	B1160
	WRITE (6,700) INT(I), NREACT(INT(I)), VAL(I)	B1170
	· ····································	

•

-31-

120 CONTINUE B1180 CALL READ (WORD, INT, VAL) B1190 **CO TO 110** B1200 130 IF (WORD.NE.CARD(4)) GO TO 150 **B1210** DO 140 I=1,5 B1220 IF (INT(I).EQ.0) GO TO 140 B1230 LCCRTO(INT(I))=VAL(I) B1240 JX=JX+1 B1250 IRTT(JK)=INT(I) **B1260** WRITE (6,710) INT(I), NREACT(INT(I)), VAL(I) B1270 140 CONTINUE B1280 CALL READ (WORD, INT, VAL) B1290 GO TO 130 B1300 150 CONTINUE B1310 С B1320 С B1330 С VANT HUFF EDUATION FOR EFFECT OF T ON K B1340 č B1350 T=TEMP+273.15 B1360 C1=(298.15-T)/(298.15*T*C*R) B1370 DO 170 I=1,E B1380 LOCKT(I)=LOCKTO(I)-DH(I)*CL B1390 LOHEX(I)=0 B1 400 IP (LORT(I).LT.-38.0.OR.LORT(I).GT.38.0) LOUX(I)=1 B1410 IP (LCHEX(I).EQ.1) GO TO 160 XT(I)=10.**LCEXT(I) B1 420 **B1430** 160 CONTINUE B1440 170 CONTINUE B1 450 XW=KT(153) B1460 C B1470 C B1 480 С AVALYTICAL EXPRESSIONS FOR EFFECT OF T ON K **B1490** 180 IF (WORD.NE.CARD(5)) GO TO 220 IF (INT(1).ED.0) GO TO 210 B1500 B1510 DO 190 I=1,6 B1520 COEF(I, INT(1))=VAL(I) B1530 190 CONTINUE **B1540** IEQ=0 B1550 DO 200 I=1,NEQU **B1560** IF (IEQU(I).EQ.INT(1)) IEQ=1 B1570 200 CONTINUE B1580 IP (120.20.0) NEOD=NEOD+1 IP (120.20.0) IEQU(NEQU)=1NT(1) B1590 B1 500 WRITE (6,720) INT(1), NREACT(INT(1)), COET(1, INT(1)), COET(2, INT(1)) 1, COET(3, INT(1)), COET(4, INT(1)), COET(5, INT(1)), COET(5, INT(1)) B1610 B1620 210 CONTINUE B1630 CALL READ (WORD, DYT, VAL) B1540 CO TO 180 B1650 220 CONTINUE B1660 IF (HORD. EQ. CARD(6)) GO TO 230 B1670 WRITE (6,600) CALL READ (WORD, INT, VAL) B1680 B1690 **CO TO 220** B1700 230 CONTINUE B1710 DO 280 I=1,NEDU **B1720** IF (JJ.ED.0) CO TO 250 DO 240 11-1,JJ B1730 B1740 IF (IEQU(I).EQ. IDH(71)) GO TO 280 B1750 240 CONTINUE B1760 250 IF (JK.EQ.0) CO TO 270 B1770

-32-

		DO 250 11=1,JK	B1780
		IF (IEQU(I).EQ.IKTT(I1)) GO TO 280	B1790
	260	CINTINUE	B1800
	270	CONTINUE	B1810
		LOCKT(IEQU(I))=COEF(1,IEQU(I))+COEF(2,IEQU(I))*T+COEF(3,IEQU(I))/T	
		1+COEF (4, IEQU(I)) *T*T+COEF (5, IEQU(I))/(T*T)+COEF (6, IEQU(I))	B1830
		2*DLOG10(T)	B1840
		IF (IEQU(I).EQ.26) LOCKT(26)=LOCKT(26)+DLOCIO(557)	B1 850
		<pre>KT(IEQU(I))=1E1**(LOCKT(IEQU(I)))</pre>	E1860
	280	CONTINUE	B1870
		KH=KT(153)	B1880
C			B1890
Č			B1900
C		CALGULATION OF ANALYZED MOLALITY	B1910
		IF (FLAG.NE.0) GO TO 300	B1920
		DO 290 I=1,22	B1930
		CUNITS (DPT (I) = CUNITS (DPT (I)) * GFW (DPT (I))	B1940
	290	CONTINUE	B1950
		FLAG=2	B1960
		GO TO 320	B1970
	300	CONTINUE	B1980
		IF (FLAG.NE.1) GO TO 320	E1990
		DO 310 I=1,22	B 2000
		CINITS (INPT (I)) =CINITS (INPT (I)) *GFW(INPT (I))/V(INPT (I))	E2010
	310	CONTINUE	E2020
		FLAG-2	E 2030
	320	CONTINUE	B2040
		IF (FLAG.NE.2) GO TO 340	B2050
		DO 330 I=1,22	B2060
	220	CUNITS (INPT (I)) = CUNITS (INPT (I)) / DENS	B2070 B2080
	330	CONTINUE FLAG=3	B2080
	340	CONTINUE	B2100
	340	IF (FLAG.NE.3) GO TO 370	B2110
		Cl=0.0	B2120
		DO 350 I=1,22	B2130
		Cl=Cl+ClNTIS(INFT(I))	B2140
	350		E2150
		CISAVE-CI	B2160
			B2170
			B2180
		MI(INPT(I))=(CINITS(INPT(I))/(1.0E+03*GFW(INPT(I))))*CL	B 2190
			E2200
		GRAMS(INPT(I))=CUNITS(INPT(I))*DENS	B2210
	360	CONTINUE	<u>B2220</u>
1	.	C1=1.0/C1	B2230
	· .	GO TO 410	B224 0
	1 70	CONTINUE	B2250
		Cl-0.0	B2260
		IP (FLAG.HE.4) GO TO 530	B2270
		DO 390 J=1,3	82280 82290
			B2300
		Cl=1.0-Cl*1.0E-06 DO 380 I=1.22	B2310
		MI(INPT(I))=CINITS(INPT(I))	B2320
		C2=C2+MI(INFT(I))*GFW(INFT(I))*1000.*CL	B2330
	380	CANTINIE	B2340
	240		82350
	390	CONTINUE	B2360
		CISAVE-CI	B2370
		í,	

		Cl=(1.0-ClSAVE*1.0E-06)	B2380
		DO 400 I=1,22	52390
		GRAMS(INPT(I))=MI(ENPT(I))+1000.+GFW(INPT(I))+Cl	32 400
		IF (MI(INPT(I)).GT.0.0) XLMI(INPT(I))=ILGID(MI(INPT(I)))	B2410
	400	CONTINUE	B2420
	410	CONTINUE	B2430
		TDS=0.0	B2440
		DO 420 I=1.22	82450
		ANALMI(INPT(I))=MI(INPT(I))	B2 460
		TDS=TDS+GRAMS(INPT(I))	B2 470
	420	CONTINUE	B2 480
		EPMCAT-0.0	B2 490
		EPMAN=0.0	B2500
С			B2510
ž			B2520
C C		CALCULATION OF CATION-ANION BALANCE	
6		DO 430 1=1.22	B2530
		IF (1(INFT(I)).GT.0) GO TO 425	B2540
			B2550
		EPMAN=EP:AN-\$(INPT(I))*MI(INPT(I))*Cl	B2560
		GO 10 430	B2570
		EPHCAI-EPHCAI+2(INPT(I))*MI(INPT(I))*Cl	B2580
	430	CONTINUE	B2590
		EPHCAT=EPHCAT*1000.	B2500
-		EPMAN=EPMAN=1000.	B2510
С			B2520
Č			B2530
C		CALCULATION OF EN FRON FIELD DATA	B2640
		IF (EHM, LT. 9.0) GO TO 470	B2650
		IF (EMTZ.GT.9.0) GO TO 440	B2660
		C1=0.429+2.4E-03*(25.0-TEXP)-EFT	B2570
		GO TO 450	B26 80
	440	Cl=0.244+8.6E-04*(25.0-TEMP)	B2690
	450	CONTINUE	B2700
		IP (EPPC.LT.9.0) GO TO 450	B2710
		GO TO 470	B2720
	460	ERME ERMC+C1	B2730
	470	CINTINUE	B2740
		PEEH=EHU/(C*R*T/F)	B2750
		IF (PECALC.NE.O) CO TO 475	B2760
		PD=100.	B2770
		H1(8)-0.0	82780
		HI (101) -0.0	B2790
		WRITE (6,560)	B2800
	475	IP (2594.GR.9.0) PETE=100.	82810
		WRITE (6,620)	B2820
		WRITE (6,730)	B2830
		WRITE (6,740) TEMP, PH, EPMCAT, EPMAN	B2840
		WRITE (6,750) DOX, ENMC, EMPS, IFLAG, CORALK, PECALC, IDAVES, EM, PEER	B2850
		IF (PECAL, ED.1) PE-PEEH	B2860
		WRITE (6,520)	B2870
		WRITE (6,760)	B2880
		DO 480 I=1.22	B2890
		IF (MI(INPT(I)).LE.0.0) GO TO 480	B2900
		WRITE (6,790) NSPEC(INPT(I)),S(INPT(I)),MI(INPT(I)),XLMI(INPT(I))	B2910
		REIS (6,750) REFECTED (1) / SCENE (1) / RECENT (1) / RECE	B2920
		CONTINUE	82930
	400	WRITE (6,620)	B2940
			82950
		WRITE (6,620) IF (PRT(2).NE.0) GO TO 490	B2960
		WRITE (5,520)	B2970
		12000 / VIVEVI	500 J 1 V

F

ł

-34-

		C1=(1.0-C1SAVE*1.0E-06)	E2380
		DO 400 I=1,22	£2390
		GRAMS(INFT(I))=MI(INFT(I))*1000.*GFW(INFT(I))*C1	E2 400
		IF (MI(INPT(I)).GT.O.O) XLMI(INPT(I))=DLOGIO(MI(INPT(I)))	E2410
	400	CONTINUE	E2420
		CONTINUE	E2430
		TDS=0.0	E2440
		DO 420 I=1,22	E2450
		ANALMI (INPT(I)) =MI (INPT(I))	E2460
		TDS=TDS+GRAMS(INPT(I))	B2470
	420	CONTINUE	E2480
		EPHCAT=0.0	E2490
		EPMAN=0.0	E2500
C			B2510
C C C			B2520
Ē		CALCULATION OF CATION-ANION BALANCE	B2530
-		DO 430 I=1,22	B2540
		IF (1(INPT(1)).GT.0) GO TO 425	B2550
		EPMAN-EPMAN-Z(INPT(I))*MI(INPT(I))*CL	E2560
		GO TO 430	B2570
	425	EPHCAT=EPHCAT+S(INPT(I)) *MI(INPT(I)) *Cl	B2580
		CONTINUE	B2590
		EPHCAT=EPHCAT=1000.	B2600
		EPMAN-EPMAN*1000.	B2610
С			B2620
Č		•	B2630
C		CALCULATION OF EH FROM FIELD DATA	E2640
		IF (EM.LT.9.0) GO TO 470	B2650
		IF (EMTZ.GT.9.0) GO TO 440	E2660
		C1=0.429+2.4E-03*(25.0-TEMP)-EMFZ	E2670
		GO TO 450	B2680
	440	Cl=0.244+8.6E-04*(25.0-TEPP)	B2690
	450	CINTINUE	B2700
		IF (IHMC.LT.9.0) GO TO 460	E2710
		GO TO 470	B 2720
		EH-EHC+C1	B 2730
	470	CINTINUE	B274 0
		PEEH=EHW/(C*R*T/F)	E 2750
		IF (PECALC.NE.0) GO TO 475	B2760
		PD-100.	B2770
		MI(8)=0.0	B2780
		MI(101)=0.0	B2790
	498	WRITE (6,560)	E2800 E2810
	4/3	IF (EHM.GZ.9.0) PEDH-100. WRITE (6,620)	E2820
		WRITE (6,730)	B2830
5		WRITE (6,740) TEMP, PH, EFMCAT, EFMAN	E2840
·		WRITE (6,750) DOX, ENC. EMFZ, IFLAG, CORALK, PECALC, IDAVES, EM, PEEH	E2850
		IF (PECALC. ED. 1) PE-PEEH	E2860
	11	WRITE (6,620)	E2870
		WRITE (6,760)	E2880
		DO 480 I=1,22	B2890
	-	IF (NI(INPT(I)).LE.0.0) GO TO 480	E2900
		WRITE (6,790) NSPEC(INPT(I)), S(INPT(I)), MI(INPT(I)), XLMI(INPT(I))	E2910
	2	, GRANS (DEPT (I))	B2920
		CONTINUE	B2930
		WRITE (6,620)	B2940
	:	WRITE (6,620)	E2950
		IF (PRT(2).NE.0) GO TO 490	B2960
		WRITE (6,620)	B2970

-34-

		WRITE (6,770)	
	400	CONTINUE	B2980
	430		B2990
		IF (IGO.EQ.1) GO TO 500	B3000
		IF (PH.LT.3.0.CR.PH.GT.11.0) GO TO 540	B3010
		CUM=((EPMCAT-EPMAN)/(1.+EPMCAT+EPMAN))*100.	B 3020
		IP (ABS(DUM).GT.30.) GO TO 540	B3030
_	500	CONTINUE	B3040
C			B3050
C C			B3060
С		TEMPERATURE EFFECTS ON DEBYE-HUCKEL SOLVENT CONSTANTS	B3070
		S1=374.11-TEP	B3080
		S2=S1**0.333333	B3090
		S3=SQRT((1.0+0.1342489*S2-3.946253E-03*S1)/(3.1975E03151548E0*S2	B3100
	1	L-1.203374 E-3* 51+7.48908E-13*51**4}	B3110
		17 (T.LT.373.15) GO TO 510	B3120
		C1=532120/T+233.7620-T*(T*(8.2922-7*T-1.417E-3)+.929720)	B3130
		GO TO 520	33140
	510	C1=87.74E0-TEAP*(TEAP*(1.41E-6*TEAP-9.398E-4)+.4008E0)	B3150
		CONTINUE	B3160
		C1=SQRT(C1+T)	83170
		A=18246.0E02*53/C1**3	B3180
		B=50.29*S3/C1	B3190
		GO TO 550	B3200
	530	WRITE (6,780)	B3210
		ICK=1	B3220
		GO TO 550	B3230
	540	WRITE (6,510)	B3240
		ICK=1	B3250
	550	CONTINUE	B3260
	-	RETURN	B3270
C			B3280
Č			B3290
Ċ			B3300
	560	FORMAT (5X, 'IRON AND/OR MANGANESE HAVE BEEN SPECIFIED WITHOUT REDO	B3310
		1X', /5X, 'INFORMATION, IRON AND MANGANESE TOTALS HAVE BEEN CHANGED',	B3320
		2' TO ZERO.',/)	B3330
		FORMAT (//, 1X, """ DENOTES THAT AN ANALYTICAL EXPRESSION FOR KT HA	B3340
		IS BEEN USED',////,1X, 'SUMMARY OF ANALYTICAL EXPRESSIONS OF THE FOR	
		24',/1X,' LOG K = A+B*T+C/T+D*T**2+E/T**2+F*LOG T*///,2X,'I NREA	
		CT',9X,'A B C D E	B3370
		A 2'/)	B3380
	580	PORN'T (1X, 13, 2X, A8, 1X, F11.4, 1X, F14.9, 1X, F11.4, 1X, 1PE11.4, 1X,	B3390
		11PE13.6,1X,1PE14.7)	B3400
		FORMET (1615)	B3410
	610	FORMAT (/,2X, 'WARNING- INFUT ERFOR, SEARCHING FOR BLANK CARD') FORMAT (/,2X, 'WARNING-CHECK INFUT PH AND/OR CATION-ANION BALANCE	B3430
		1',/12X,'CALCULATION TERMINATED')	B3440
	620	FORMAT (//)	B3450
	630	FORMAT (5(F6.0,1X),2F5.0,1X,911,213)	B3460
	640	FORMAT (//,37X,'',/,37X,'DATA',/,37X,'',//,3X,'I',1X,'NREA	B3470
		1CT',8X,'DH',7X,'LOGTO',10X,'I',1X,'NSPEC',6X,'1',2X,'DHA',5X,'GFW	B3 480
		2',/)	B3490
		FORMAT(1X, 13, 1X, A8, 2(1X, F10.4), A1, 6X, 13, 1X, A8, 2X, 12, 2X, F3.1	B3500
		1,1x,F10.4)	B3510
		FORMAT (1H , I3, 1X, A8, 2(1X, F10.4), A1)	B3520
		FORMAT (1H1, (A80),//)	B3530
		PORMAT (6(E12.5),8X)	B3540
		PORMAT (A4,1X,5(13,E12.5))	B3550
		FORMAT (1X, 'NEW DATA *** DELTA & FOR REACTION ', 13, 1X, A8, ' HAS BEE	B3560
		IN CHANGED TO ', F9.4)	B3570

-35-

710 FORMAT (1X, 'NEW DATA *** LOCKTO FOR REACTION ', 13, 1X, AS, ' HAS BEE B3580 IN CHANGED TO ', F9.4) 720 FORMAT(1X, 'NEW DATA *** LOGAT FOR REACTION ', 13,1X,A8,' = ',/1X, 11PE15.8,'+',EI5.8,'*T+',EI5.8,'/T+',EI5.8,'*T**2+',EI5.8,'*T**2+', B3590 B3600 E3610 2E15.8, "*LOG T') **E**3620 730 FORMAT (30X. .. -'./.30X.'INITIAL SOLUTION'./.30X.'-**B3630** · ,///> **B3640** 1 740 FORMAT (10X, 'TEMPERATURE = ', F6.2,' DEGREES C E3650 FH = ',F6.3,/,10X 1, 'ANALYTICAL EPHCAT = ', F8.3,' ANALYTICAL EPHAN = ', F8.3,//) B3660 750 FORMAT (5X, "***** OXIDATION - REDUCTION *****',///,1X, 'DISSOLVED O E3670 IXYGEN = ',F6.3,' MC/L',/,IX,'EH MEASURED WITH CALCHEL = ',F7.4,' V 20LTS',9X,'FLAG CORALK PECALC IDAVES',/,IX,'MEASURED EH OF 20BE', 3'LL SOLUTION = ',F7.4,' VOLTS',5X,11,4X,11,6X,11,6X,11,/,IX B3680 B3690 **B3700** 4, 'CORRECTED EH = ',F7.4,' VOLTS',/,1X,'PE COMPUTED FROM CORRECTED **B3710** 5EH = ',E7.3,/) **B**3720 760 FORMAT (15X, '*** TOTAL CONCENTRATIONS OF INPUT SPECIES ***',//,25X 1, 'TOTAL',13X, 'LOG TOTAL',12X, 'TOTAL',/,8X, 'SPECIES',8X, 'MOLALITY' 2,12X, 'MOLALITY',11X, 'MC/LITRE',/,8X, '-----',8X, '-----',12X,'-**B3730** E3740 R3750 E3760 B3770 1, 'S1-ANALCO3', 3X, 'S2-SO4TOT', 4X, 'S3-FTOT', 5X, 'S4-FTOT', 4X, 'S5-CLTO **B3780** E3790 2Ť' ,/) 780 FORMAT (1X, 'INFUT ERFOR-UNITS OF CONCENTRATION ARE NOT ENGIN', £3800 B3810 1//1 790 FORMAT (1H ,7X,A8,13,3X,1PE12.5,9X,0PF9.4,8X,1PE12.5) **B3820** ĐĐ E3830 SUBROUTINE SET С 10 C 20 IMPLICIT DOUBLE PRECISION (A-H.O-Z) 30 INTEGER D, E, DD, REIT, CORALK, 2(120), PRT(4), PECALC, PECK C С 40 DOUBLE PRECISION MI (120), KT (200), LOCKT (200), LOCKTO (200), MYTOT, LH2O 50 1, MU, NATOT, KTOT, MOTOT, LITOT, NH4TOT, KH C CHARACTER *8 NSPEC(120), NREACT(200) 60 CHARACTER *80 TITL 70 80 COMMON MI, KT, LOCKT, LOCKTO, KV, D, E, DO, C, R, T, F, TEMP, A, E, PE, PES, PEDO, P C С 90 1 ESATO, PECK, PECALC, PH, TENPE, TENPH, ALFA(120), GAMMA(120), AP(200), XLA 2LFA(120), Z, CINTTS(120), ANALMI(120), GW(120), DHA(120), NSPEC, NREACT, С 100 Ċ 110 3DH (200) , AH2O, LH2O, ERORI , EROR2 , EROR3 , EROR4 , EROR5 , EH4, DENS, DOX, XLMI (120 130 4120), ITER, RBIT, CISAVE, COPALK, MJ, LCHEK (200), CO2TIT, ANALCO, SITOT, CAT С SOT, MOTOT, KTOT, NATOT, SOATOT, FETOT, PTOT, ALTOT, FTOT, BTOT, LITOT, NHATOT С C 140 6, SRIOT, BATOT, CLTOT, MATOT, ICK, PRT, TITL, EPMCAT, EPMAN, NEQU, ISPEC, 7KSPEC(120), IMIN, KMIN(200), TDS, IDAVES, IPRT, JJ, JK С 150 Ċ 160 Ċ 170 C 180 INITIALIZE STARTING VALUES FOR ITERATIVE LOOP C 190 AH20-1.0 Ĉ 200 DO 10 I=1,D С 210 GNMA(I)=1.0 220 10 CONTINUE С 230 CO2TIT=MI(7)+2.0*MI(18) С C 240 ANALCO-CO2TIT C 250 IF (CORALK.EQ.2) CO2TIT=MI(7)+MI(18)+HI(86) C 260 SITOT=MI(35) C 270 CATOT-MI(1) C 280 C 290 MGTOT-MI(2) NATOT-MI(3) C 300 C 310 C 320 KTOT=MI(4) SOUTOT=MI(6) PETOT-MI(8) C 330 C 340 PTOT=MI(45) PIONIC=PIOT

С

Ċ

	ALTOT=MI(51)	
	FTOT=MI (62)	C 350
	BTOT=41 (87)	C 360
	LITOT-MI (81)	C 370 C 380
	NH4TOT=MI (39)	C 390
	SRIOT=MI (88)	C 400
	BATOT=MI (90)	C 410
	CLTOT=HI (5)	C 420
	Mator=MI (101)	C 430
	MI (35) =0.Q	C 440
	MI (87) =0.0	C 450
	TENPH=10.**PH	C 460
_	ALFA(54)=10.**(-PH)	C 470
Ç		C 480
U U U		C 490
C	CALCULATION OF ANION ACTIVITIES EXCEPT CC2 AND PO4 SPECIES ALFA(5)=MI(5)*GAMMA(5)	C 500
	ALPA(5)=HI(5) -GARTA(5) ALPA(6)=HI(6) +GARTA(6)	C 510
	ALFA(62) =MI(62) *GAMA(62)	C 520 C 530
	ALFA (85) =MI (85) *GAMA (85)	C 540
	ALFA(98) =MI (98) =GAMMA(98)	C 550
	ALFA(27) =AH2O+KH+TENPH	C 560
	MI(27) = ALFA(27) / CAVMA(27)	C 570
	MI(64)=1ED/(TENPH*GAPPIA(64))	C 580
	ALFA(63) =ALFA(6) *KT(90) /TENPH	C 590
_	MI (63) =ALPA (63) /GAMA (63)	C 600
C		C 610
Ċ		C 620
С	CO2 SPECIES	C 630
	IF (CORALK. ED. 2) GO TO 20	C 540
	C1=2.0*TENPH/(GAMMA(18)*KT(69))	C 650
	MI(7)=CC2TIT/(1.+CAMMA(7)*Cl) C2=KT(36)/(TENPH*CAMMA(86))	C 660 C 670
	ALFA(7) = HI(7) + GAPPA(7)	C 680
	$M1(18) = C1^{ALFA(7)}/2.$	C 690
•	MI(86) =C2*ALFA(7)	C 700
	ALFA(18) MI(18) *GAPPA(18)	C 710
	ALPA (86) = 11 (86) *GATTA (86)	C 720
•	GO TO 30	C 730
	20 CINTINUE	C 740
	MI(7) =CO2TTT/(1.0+GAMMA(7) *((XT(36)/(TENPH*GAMMA(86)))+TENPH/(XT(6	C 750
	19) *GAMRA(18))))	C 760
	MI(18)=HI(7)*GAMMA(7)*TENPH/(GAMMA(18)*KT(69))	C 770
	MI(85)=MI(7)*GAMMA(7)*XI(35)/(TENPH*GAMMA(85))	C 780
	ліра(7) =ні (7) *Gлуна(7) Ліра(18) =ні (18) *Gлуна(18)	C 790 C 800
	ALFA(10)	C 310
	30 CONTINUE	C 820
С		C 830
Č		C 840
Ċ	PHOSPHATE SPECIES	C 850
	MI(45)=PTOT/(1.+(KT(17)*GAMMA(45)/(GAMMA(48)*TENPH**2))+(KT(16)*GA	C 860
	1)#(A(45)/(TENPH*GA)#(A(47))))	C 870
	ALPA (45) =HI (45) =GAIMA (45)	C 880
	ALFA(47) = KT(16) * ALFA(45) / TENPH	C 890
	NI (47) = ALFA (47) /GAMMA (47)	C 900
	ALFA(48) =KT(17) *ALFA(45) / (TENPH**2)	C 910 C 920
	MI (48) =ALFA (48) /GAMA (48) ITER=0	C 920
	RETURN	C 940
	200 · 20 / 20	

-37-

C3	C 950
SUBROUTINE READ (WORD, INT. VAL)	D 10
IMPLICIT DOUBLE PRECISION (A-H.O-2)	D 20
CHARACTER *8 WORD	D 30
DIMENSION INT(6), VAL(6)	D 40
CLARACTER *80 LINE	D 50
READ(5,10) LINE	D 60
10 FORMAT (A80)	D 70
READ (LINE, 20) WORD, (INT(I), VAL(I), I=1,5)	D 80
IF (WORD.NE. 'LOCK') RETURN	D 90
READ (LINE, 20) WORD, (INT(I), VAL(I), I=1,6)	D 100
20 FORMAT (A4,1X,6(13,E12.5))	D 110
RETURN	D 120
	D 130
SJEROUTINE MODEL IMPLICIT DOUBLE PRECISION (A-H,O-2)	E 10
INTEGER D, E, DD, RBIT, CORALK, Z (120), LIST(8), LIST1 (5), LIST2 (18), LIST3	E 20 E 30
1(9), PRT(4), PECALC, PECK	E 40
DOUBLE PRECISION MI (120), KT (200), LOCKT (200), LOCKTO (200), MMTOT, LH20	E 50
1, MU, NATOT, KTOT, MITOT, LITOT, NH4 TOT, KW, MIHALF, LIALK (11)	E 60
CHARACTER *8 NSPEC(120), NREACT(200)	E 70
CHARACTER *80 TITL	E 80
DIMENSION NPAIR(5), LIM(11), LIK(11), LIC(11), LIA(11), L2M(14), L2K(1	E 90
14), L2C(14), L3M(7), L3K(7), L3C(7), L4M(14), L4K(14), L4C(14), L4	E 100
2A(14), L5M(9), L5K(9), L5C(9)	E 110
COMMIN MI, KT, LOCKT, LOCKTO, NI, D, E, DD, C, R, T, F, TEMP, A, B, PE, PES, PEDO, F	E 120
1ESATO, PECK, PECALC, PH, TENMPE, TEMPH, ALFA(120), GAMMA(120), AP(200), XLA	
2LFA(120), Z, CLEITS(120), ANALMI(120), GW(120), DHA(120), NSPEC, NREACT,	E 140
3DH (200), AH2O, LH2O, EROR1, EROR2, EROR3, EROR4, EROR5, EHM, DENS, DOX, XLMI (E 150
4120), ITER, RBIT, CISAVE, CORALK, MU, LCHEK (200), CO2TIT, ANALCO, SITOT, CAT	E 160
SOT, MGTOT, KTOT, NATOT, SOATOT, FETOT, PTOT, ALTOT, FTOT, BTOT, LITOT, NHATOT	E 170
6, SRIOT, BATOT, CLTOT, MNTOT, ICK, PRT, TITL, EPMCAT, EPMAN, NEQU, ISPEC, 7KSPEC(120), IMIN, FMIN(200), TDS, IDAVES, IPRT, JJ, JK	E 180 E 190
DATA LIST/17,35,66,70,71,72,84,87/	E 200
DATA LISTI/42,43,44,50,94/	E 210
DATA LIST2/8,9,10,11,12,13,15,16,28,33,34,65,77,78,79,80,100,99/	E 220
DATA LIST3/82,83,88,89,69,97,90,91,114/	E 230
DATA LIM/7,21,22,30,31,42,43,86,111,69,97/,LLR/69,74,75,78,79,70,	E 240
171,36,167,149,170/,L1C/64,2,2,1,1,3,3,64,101,88,88/,L1A/18,18,7,7,	E 250
£18,18,7,7,7,7,18/,LLALK/1.0,2.0,1.0,1.0,2.0,2.0,1.0,0.0,1.0,1.0	E 260
2,2.0/,12M/15,23,32,34,44,46,59,60,63,83,92,96,109,114/,12K/5,76,24	E 270
3,9,72,73,88,69,90,127,132,136,165,182/,L2C/8,2,1,8,3,4,51,51,64,81	E 280
4,39,64,101,88/,L3M/20,55,56,57,58,108,49/,L3K/23	E 290
5,84,85,86,87,164,80/,L3C/2,51,51,51,51,101,1/,L4H/13,40,41,47,48,5	E 300 E 310
60,61,65,73,74,75,76,99,100/,L4K/140,124,125,16,17,31,33,121,34,35, 7122,123,157,139/,L4C/8,2,2,64,64,3,4,8,2,1,1,1,8,8/,L4A/47,45,48,4	E 320
65,45,47,47,48,47,47,45,48,48,47,155/16,28,33,93,94,95,103,104,105	E 330
9/,L5K/6,7,8,133,134,135,159,160,161/,L5C/8,8,8,64,3,4,101,101,101/	E 340
\$,NDAIR/11,14,7,14,9/	E 350
ITTER=ITTER+1	E 360
	E 370
	E 380
CALCULATION OF TOTAL HOLALITY AND AH20	E 390
J=] 	E 400
C1=0.0	E 410
DO 20 I=1,D	E 420 E 430
IF (J.GT.8) GO TO 5 IF (I.EQ.LIST(J)) GO TO 10	E 440
5 CI=CI+NI(I)	E 450
CO TO 20	E 460

с с с

	10 J=J+1	E 470
	20 CONTINUE	E 480
	AH2C=1.0-0.017*C1	E 490
	LH20=DL0310 (AH20)	E 500
	IF (DOX.GT.0.0) PEDO- (DLOGIO(KT(152))+PH+0.5*LH20-0.25*DLOGIO(DOX	7 510
	1/3253))	E 520
	IF (DCX.GT.0.0) PESATO-(DLOGI0(XT(137))+PH+0.5*LH20-0.25*DLOGI0(D	2 670
	10x/32E3))	E 540
	IF (PECALC.ED.2) PE>PEDO	£ 550
	IF (PECALC.ED.3) PE-PESATO	E 560
~		E 570
ç		
Č	CALGULATION OF ACTIVITY COEFFICIENTS	E 580
C C		E 590
	X1=0.0	E 600
		E 610
	DO 40 I=1,D	E 620
	IF (I.EQ.LIST(J)) GO TO 30	E 630
	M_MJ+0.5*M_(I)*Z(I)*Z(I)	E 640
	GO TO 40	E 650
	30 J=J+1	E 660
	40 CONTINUE	E 670
	MIRALF=SQRT (MJ)	E 680
		Z 590
		E 700
		E 710
		E 720
		E 730
	GAM4A(5) =GAM4A(4)	E 740
	GAMMA(6)=1E1**(C1/(190+B*590*MUHALP)=0.04*MU}	E 750
	DO 60 I=8,D	E 760
	IF (2(I).20.0) GO TO 50	E 770
	IF(IDAVES, EQ.1) GAMMA(I)=1E1**(-A*Z(I)**2*((MUHALF/(1.0+MUHALF)	E 780
	1-0.3*MD)))	E 790
	IF (IDAVES.ED.1) GO TO 50	E 300
	GAMMA(I)=121**(~A*MUHALF*2(I)**2/(1E0+DHA(I)*B*MUHALF))	E 810
	CO TO 60	E 820
	50 GAMMA(I)=10.**(0.1*MJ)	E 830
	60 CONTINUE	E 840
	$GAMMA(7) = 1 E^{*}(-A^*MUHALP*3(7) **2/(1E0+DHA(7) *B^*MUHALP))$	E 850
	GAMMA(18)=1 **(-A*MUHALF*2(18)**2/(1ED+CHA(18)*B*MUHALP))	E 860
	GANMA (86) =11 ** (HD* (170.01/T8798+.0013935*T) +HD* HD* (28.81/T210	
	18+.0003641*T))	E 880
	GN#SA(30) = GN#SA(7)	E 890
	GA/HA(31)=1/1**(-0.5*/H)	£ 900
C		E 910
Ē		E 920
Č	SULFUR SPECIES AND PE CALCULATION FROM S	E 930
	CL=KT(92) *TENFH/GAMMA(67)	E 940
· •	C2=KT(92) *KT(93) *TENPH**2/GAMMA(68)	E 950
	HI(14) = HI(17) / (150 + GAMMA(14) * (C1 + C2))	E 960
	ALPA (14) -+11 (14) -GAPPIA (14)	E 970
	ALFA(17) -MI(17) *GAMMA(17)	Z 980
	HI(67) = ALFA(14) +C1	E 990
	MI (68) =ALFA (14) *C2	21000
	ALPA(67) = 41 (67) * GAHA (67)	E1010
	ALFA (68) =MI (68) *GAPA (68)	E1020
	C1=ALFA(5)*ALFA(14)	E1030
	IF (CL.GT.0.0) GO TO 70	E1040
	GO TO 80	21050
	70 PES=0.125*LOGKT(91)+0.125*DLOGL0(ALFA(6))-1.25*PH=0.125*DLOGL0	E1060

	1(ALFA(14))-0.5*LH20			£1070
	IF (PECALC.EQ.4) PE=PES			E1080
	80 CONTINUE			E1090
`	IF (PECALC. ED. 0.0. OR. PE. GE. 100.) GO TO 90			E1100
	TEMPE=10.**(-PE)			E1110
	GO TO 100 90 TENMPE-1.0		2	E1120 E1130
1	00 CONTINUE			E1140
C				E1150
C				E1160
C	SILICA SPECIES			E1170
	C1=KT(14) *TENPH/GAMMA(25)			E1180
	C2=KT(15) *TENPH**2/GAMMA(26) MI(24) =SITOT/(1.0+GAMMA(24)*(C1+C2))			E1190 E1200
	ALFA(24) =MI(24) *GAMA(24)			E1210
	MI(25)=ALFA(24)*C1	· .		E1220
	MI (26) = ALFA (24) *C2			E1230
	ALFA(25) =MI(25) *GAMPA(25)			E1240
	Alfa(26)=mi(26) *gamma(26)		x	E1250
с с				E1260
č	BORIN SPECIES			E1270 E1280
	C1=GAMA(36) *KT(26) *TENPH/GAMA(37)			E1280
	MI (36) =BTOT/(1.0+C1)	•		E1300
	MI(37) =C1*MI(36)	•		E1310
	ALFA (36) =MI (36) *GAMMA (36)			E1.320
_	ALFA(37) =MI(37) *GAMMA(37)			E1330
с с				E1340
C C				E1350
Ç	Nitrogen species C1=Tenph*kt(27)/Gamma(38)			E1 360 E1 370
	C1=12AFA-K1(27)/GAFFA(38) C2=ALFA(6)*KT(132)/GAFFA(38)			E1380
	MI(39) =NH4TOT/(1E0+GAMMA(39)*(C1+C2))			E1 390
	ALFA(39)=MI(35)*GAMMA(39)			E1400
	MI (38) =ALFA (39) *C1		•	£1410
	ALFA (38) =HI (38) *GAPHA (38)			E1420
	MI (92) =ALFA (39) *C2			E1430
~	Alfa (92) =MI (92) *Gamma (92)			E1440 E1450
с с с		1		E1460
č	MAGNESIUM SPECIES			E1 470
•	MI (19) =ALFA (27) *KT (25) /GAVEA (19)			E1 480
	MI (20) =ALFA (62) *KT (23) /GAPPIA (20)			E1 490
	HI (21) =ALFA (18) *RT (74) /GAPPA (21)			E1500
	MI (22) =ALFA (7) *KT (75) /GAMMA (22)			E1510
	MI (23) =ALFA (6) *KT (76) /GAMAA (23) ~ MI (40) =ALFA (45) *KT (124) /GAMAA (40)			11520 11530
	MI(41)=ALFA(48) *KT(125)/GAMA(41)	•	· · ·	E1540
	HI (73) =ALFA (47) *KT (34) /GAPHA (73)		•	E1550
	MI(2)=MGTOT/(1.0+GAMMA(2)*(MI(19)+MI(20)+MI	(21)+HI (22	2)+MI(23)+MI(4	E1560
	10)+HI(41)+HI(73)))			E1570
	ALFA(2)=~~~(2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		E1580
	CL=ALFA(2) Do 110 I=19,23			E1.590 E1.600
	MI(1)=C1*MI(1)			E1610
	ALFA(I) = MI(I) = GAPPIA(I)			E1620
1	10 CONTINUE		·	E1630
	MI (40) =C1*MI (40)			E1640
	ALFA(40)=HI(40) *GANHA(40)	and the second	- <u>-</u>	E1650
	MI(41)=C1*HI(41)			E16 60

 \sim

-40-

	ALFA(41)=MI(41)=GAMMA(41)	E1670
	MI(73) =C1*MI(73)	E1680
	ALFA(73) =MI(73) *GAPPIA(73)	E1690
С		E1700
C C		E1710
C	CALCIUN SPECIES	E1720
	MI (29) =ALPA (27) *RT(77) /GAMMA (29)	E1730
	MI(30) = ALFA(7) * RT(78) / GAMA(30)	E1740
	MI(31)=ALFA(18)*KT(79)/GAMMA(31)	E1750
	MI (32) =ALFA (6) *KT (24) /GANMA (32)	E1760
	MI (74) =ALFA (47) = KT (35) /GAVMA (74)	E1770
	MI (76) =ALFA(49) *KT(123) /GAMMA(76)	
	MI (75) =ALFA (45) *KT(122) /GAMMA (75)	E1780
	MI (49) =ALFA(52) *KT(80) /GAMMA(49)	E1790 E1800
	MI(1) =CATOT/(1.0+GAMMA(1)*(MI(29)+HI(30)+HI(31)+HI(32)+HI(74)+HI(7	EL 500
	15)+MI(76)+MI(49)))	
	C1=NI(1)*GAYMA(1)	E1 820
	ALFA(1) =C1	E1830
	DO 120 I=29,32	E1 840
	MI(I)=Cl*MI(I)	E1 850
		E1 860
	ALFA(I)=MI(I)*GAMMA(I) 120 CENTINUE	E1 870
		EL 880
	$MI(74) = C1^{4}MI(74)$	EL 890
	ALFA(74) -HI(74) -GAHSA(74)	E1 900
	MI(75) =C1*MI(75)	E1910
	ALFA(75) =HI (75) +GAHA(75)	E1 920
	MI (76) =C1*MI (76)	E1 930
	ALFA(76) =MI(76) =GAPMA(76)	E1 940
	NI(49) =C1*NI(49)	E1 950
	ALFA(43) =MI(49) *GAMMA(49)	E1 960
C C		E1 970
С		21,980
C	SCOTUN SPECIES	E1 990
	MI(42)=ALFA(18) *KT(70)/GAMMA(42)	22000
	MI (43) = ALFA(7) * KT(71) / GAMPIA(43)	22010
	MI (44) =ALFA(6) *KT(72) /GAMMA(44)	E2020
	MI (50) =ALFA (47) *KT(31) /GAMMA(50)	E2030
	HI (94) =ALFA(5) *KT(134) /GAHNA(94)	
	MI(3) =NATOT/(1.0+GAMMA(3)*(MI(42)+MI(43)+MI(44)+MI(50)+MI(94)))	E2040
	ALFA(3) =HI(3) *GAMA(3)	£2050
	C1=ALFA(3)	E2060
	DO 130 I=1.5	E2070
		E2080
	MI(LISTI(I))=CI*MI(LISTI(I))	E2090
	ALFA(LISTI(I))=HI(LISTI(I))=GAHA(LISTI(I))	E2100
	130 CONTINUE	£2110
ւ.	·	E2120
<u> </u>		E2130
C		E2140
	MI(46)=ALPA(6)*KT(73)/GAMMA(46)	22150
	HI(61)=ALFA(47)*XT(33)/GAMA(61)	E2150
	HI (95) =ALFA (5) *KT(135) /GAMMA (95)	E2170
	HI(4)=KIOT/(1.0+GAPHA(4)*(MI(46)+HI(61)+HI(95)))	E2180
	ALFA(4) = MI(4) *GAMMA(4)	E2190
	Cl=ALFA(4)	E2200
	MI(46) =C1*MI(46)	E2210
	ALFA(46) =>>1 (46) *GA/FIA(46)	E2220
	MI(61)=C1*MI(61)	E2230
	ALPA(61)=HI(61) *GAVHA(61)	E2240
	MI (95) =C1*MI (95)	22250
	ALPA(95) -MI(95) *GAMMA(95)	E2260

•

-41-

.

С			E2270
Ĉ			E2280
C		ALIMINIUM SPECIES	E2290
		MI (52) =AL FA (27) *KT (81) /GMMA (52)	E2 300
		MI (53) =ALFA (27) **2*KT(62) /GAMMA (53)	E2310
		MI (54) =ALFA(27) **4*KT(83) /GAMMA (54)	22320
		MI (55) =ALFA (62) *KT (84) /GAPPIA (55)	E 2330
		MI (56) =ALFA (62) **2*KT (85) /GAMMA (56)	E2340
		MI(57) = ALFA(62) **3*KT(86) /GAMMA(57)	E2350
		MI (58) =ALFA (62) **4*KT (87) /GAMIA (58)	E2360
		MI (59) =ALFA(6) *KT(88) /GAMMA(59)	22370
		MI(60) =ALFA(6) **2*KT(89)/GAMMA(60)	E2380
		MI(51) = ALTOT/(1.0+GAMMA(51) * (MI(52) + MI(53) + MI(54) + MI(55) + MI(56) + MI	E2390
		1 (57) +MI (58) +MI (59) +MI (60)))	E2400
		ALFA(51)=MI(51)*GAMMA(51)	E2410
		CL-ALFA(51)	E2420
		DO 140 I=52,60	E2430
		MI(I)=C1*KI(I)	E2440
		ALFA(I)=MI(I)*GAMMA(I)	E2450 E2460
~	140	CONTINUE	E2460
C			E2 (80
Ċ			E2490
		IRON SPECIES	E2500
		IF (ABS(PE).LT.20.0.AND.FETOT.GT.0.0) CO TO 150 CO TO 170	E2510
	160		E2520
	130	MI(10) = KT(2) * AH2O*TENTH/(TENTPE*GATTA(10))	E2530
		MI(11)=KT(3)*AH2O*TENFH/GAMMA(11)	E2540
		MI (12) = KT (4) + AH2O++3*TENFH++3/GAMMA(12)	E2550
			E2560
		MI(15) =KT(5) *ALFA(6) / (TEXMPE*GAMMA(15))	22570
		MI (16) =KT(6) *ALFA(5) / (TEMPE*GAMMA(16))	22580
		MI (28) =KT (7) *ALFA (5) **2/(TENHPE*GAMA(28))	E2590
		MI (33) =KT (8) *ALFA (5) **3/ (TENMPE*GAMA(33))	E2600
		MI(34)=RT(9)*ALFA(6)/GAMMA(34)	E2610
		MI(65)=RT(121)*ALFA(48)/GAMMA(65)	£2620
		HI (77) =KT (103) * (AH2O*TENPH) **2/(TENPE*GANHA (77))	2630
		HI (78) =KT (104) * (AH2O*TEMPH) **3/ (TEMPE*GAMMA (78))	E2640
		HI (79) = KT (105) * (AH2O*TEMPH) **4/(TEMPE*GAMMA(79))	E2650
		MI (80) = KT (105) * (AH2O*TENPH) **2/GAMMA (80)	E2660
		MI (99) =KT (157) *ALFA (48) / (TENDE*GANHA (99))	E 2670
		MI(100)=KT(139)*ALFA(47)/GANNA(100)	E268 0
		MI(8)=FETOT/(1.0+GANHA(8)*(MI(9)+HI(10)+HI(11)+HI(12)+HI(13)+HI(15	£2690
		1) +HI (16) +HI (28) +HI (33) +HI (34) +HI (65) +HI (77) +HI (78) +HI (79) +HI (80) +H	2700
		21(100)+MI(99)))	E2710
		ALPA(8)=HI(8)*GATIA(8)	E2720
	•	CL-ALFA(8)	E2730
-		DO 160 I=2,18	2740
		MI(LIST2(I))=Cl*MI(LIST2(I))	22750
		ALFA(LIST2(I))=HI(LIST2(I))=GAMHA(LIST2(I))	E2760
		CONTINUE	E2770 E2780
		GO 10 190	E2790
	110	CONTINUE	E2800
		DO 180 I=2,18	12810
	100	MI(LIST2(I))=0.0	E2820
	TOU	CONTINUE ALFA(8)=MI(8)*GAMMA(8)	E2830
	100	ONTINE	E2840
C	#3.A		E2850
č		NANGANESE SPECIES	12860

-42-

с			E2870
		IF (ABS(PE).LT.20.0.AND.MNTOT.GT.0.0) GO TO 200	E2880
		GO TO 240	52890
	200	MI(102) = KT(158) / (GAMMA(102) *TENDE)	22900
		MI(103) = KT(159) * MI(5) * GAMMA(5) / GAMMA(103)	22910
		HI (104) =RT(160) *MI(5) **2*GAMMA(5) **2/GAMMA(104)	22920
		MI (105) = KT (161) *MI (5) **3*GAMA (5) **3/GAMA (105)	E2930
		MI (106) = KT (162) *MI (27) *GAMMA (27) /GAMMA (106)	E2940
		MI (107) = KT (163) * MI (27) **3*GAMMA (27) **3/GAMMA (107)	E2950
		MI (108) =KT(164) *MI (62) *GAMMA (62) /GAMMA (108)	E2960
		MI (109) = KT (165) * MI (6) * GAPPIA (6) / GAPPIA (109)	E2970
		HI (110) = KT (166) * HI (85) **2*GAMMA (85) **2/GAMMA (110)	E2980
		MI(111) = KT(167) * MI(7) * GAMMA(7) / GAMMA(111)	E2990
		XMI112=LCGRT(168)+4*LH2O-(DLCG10(GAMMA(112))-8*PH-5*PE)	E3000
		IF (XMI12.LT38.) MI(112)=0.0	E3010
		IF (XMI112.LT38.) GO TO 210	E3020
		NI(112)=10.**XMI112	E3030
	210		E3040
		XMI113=LCCKT(169)+4*LH2O-(DLCG10(GAMMA(113))-8*PH-4*PE)	E3050
		IF (XMIII3.LT38.) MI(113)=0.0 IF (XMII13.LT38.) GO TO 220	E3060
		MI(113)=10.**XMI113	E3070 E3080
	220	CNTINE	E3090
		MI(115) = KT(171) * AH2O**2/(GAMMA(115) * ALFA(64) **3)	E3100
		MI (101) = MENTOT/ (1.0+GAMPIA(101) * (MI (102) + HI (103) + HI (104) + HI (105) + HI (53110
	1	11C5) +MI (107) +MI (108) +HI (109) +HI (110) +HI (111) +HI (112) +HI (113) +HI (11	E3120
			E3130
		ALFA(101) = MI(101) *GAMMA(101)	E3140
		C1=ALFA(101)	E3150
		DO 230 I=102,113	E3160
		$MI(I) = CI^*MI(I)$	E3170
		ALFA(I)=MI(I)*GAMMA(I)	E3180
	230	CINTINUE	E3190
		MI (115) -C1+MI (115)	E3200
		ALFλ(115) = MI(115) *GAMMλ(115)	E3210
		<u>CO</u> TO 260	E3220
	240	DO 250 I=101,113	E3230
	150	MI(I)=0.0	E3240
	200	Continue MI (115) =0.0	E3250 E3260
	260	CONTINUE	E3270
c	700		E3280
č			E3290
č		CALCULATION OF POZ AND POH	£3300
•		IP (ABS(PE).LT.19.0) GO TO 270	£3310
		GO TO 280	E3320
	270	C1=DLOG10(XT(94))+PH+PE+0.5*LH20	23330
		ALFA(70)=10.**(4.0*C1)	E3340
	280	CONTINUE	E3350
		IF (ABS(PE).LT.19.0.AND.ALFA(7).GT.0.0) GO TO 290	E 3360
		CO TO 300	5370
	290	XLALFA(71)=(DLOC10(RT(95))-8.0*PE-9.0*PE-3.0*LE2O+DLOC10(ALFA(7)))	E3380
		IF (XLALFA(71).LT38.) GO TO 300	E3390
	200	ALFA(71)=10.**XLALFA(71)	E3400 E3410
с	200	CONTINUE	E3420
č			E3430
č		LITHIUN, STRINTIUN, BARIUN SPECIES	E3440
		C1=KT(126) *ALFA(27) /GAMMA(82)	E3 450
		C2=KT(127) *ALFA(6)/GAMMA(83)	E3 460

MI(81)=LITOT/(1.0+GAMMA(81)*(C1+C2)) ALFA(81)=MI(81)*GAMMA(81) E3470 E3480 MI(82)=C1*ALFA(81) MI(83)=C2*ALFA(81) E3490 **E3500** C1=KT(130) *ALFA(27) /GAPMA(89) C2=KT(149) *ALFA(7) /GAPMA(69) **E3510** 23520 C3=KT(170) *ALFA(18) /GAPMA(97) E3530 CS=FT(18C; *ALFA(6)/GAMA(114) MI(L)=SRTOT/(1.0+GAMA(88)*(C1+C2+C3+C5)) C4=GAMA(88)*MI(88) E3540 £3550 E3560 MI (89) =C1*C4 **E3570** MI (69) -C2+C4 E3580 MI (97) =C3*C4 23590 MI (114) -CS+C4 **E3600** Cl=KT(131) *ALFA(27) /GAPHA(91) MI(90) =BATOT/(1.0+GAPHA(90) *C1) **E3610** E3620 MI (91) = GAMMA (90) *MI (90) *C1 **E3630** D0 310 I=1,9 ALFA(LIST3(I))=MI(LIST3(I))*GAMA(LIST3(I)) E3640 E3650 310 CONTINUE E3660 С SUMMATION OF ANION SPECIES E3670 N-NPALR(1) E3680 IF (CORALK.NE.2) GO TO 330 E3690 S1=MI(18) 23700 DO 320 I=1,N E3710 SI=SI+MI(LIM(I)) 23720 320 CONTINUE E3730 CO T. 350 23740 330 MATILIJE Ĕ3750 51=2.0*MI(18) E3760 DO 340 I=1,N E3770 Sl=Sl+LlALK(I) *MI(LlM(I)) E3780 E3790 340 CONTINUE 350 CONTINUE E3800 N=NPAIR(2) E3810 S2=MI(6)+MI(60) E3820 DO 360 I=1,N **E3830** 52=52+MI(L2M(I)) E3840 360 CONTINUE E3850 N=NPAIR(3) **E3860** \$3=MI (62) +MI (56) +2.0*MI (57) +3.0*MI (58) E3870 E3880 DO 370 I=1,H E3890 53=53+MI(L3M(I)) 370 CONTINUE E3900 E3910 N=NPAIR(4) ----- SI-HI(45) E3920 DO 380 I=1,N E1930 E3940 54=S4+MI(LAM(I)) 380 CONTINUE E3950 E3960 N=NPAIR(5) \$5-MI(5)+HI(28)+HI(104)+2.0*(MI(33)+HI(105)) E3970 DO 390 I=1,N E3980 SS=SS+HI(LSH(I)) E3990 390 CONTINUE E4000 ANALCO-CO2TIT E4010 E4020 C MASS BALANCE ON CARBON E4030 IF (COZTIT.LE.G.C) GO TO 460 ACT=KT(69) *ALFA(64) E4040 SUH-0.0 E4050 SUI1-0.0 E4060

10-

-44-

	1-179 79/11	
	N=NPAIR(1)	E4070
	DO 400 I=1,N	E4080
	MI(LLM(I))=RT(LLR(I))*ALFA(LLC(I))/GAMMA(LLM(I))	E4090
	IF (LLA(I).5Q.7) MI(LLM(I))=MI(LLM(I))+ACT	E4100
	SIR=SIR+MI(LLM(I))	E4110
	SUMI=SUMI+LIALK(I)*MI(LIM(I))	E4120
400	CINTENE	E4130
	IF (CORALK.NE.2) GO TO 420	E4140
	MI (18) = ANALCO/ (1.0+GAV9(A(18) * SUM)	E4150
	ALFA(18) =MI(18) *GAYMA(18)	E4160
	DO 410 I=1.N	E4170
	MI(L1M(I))=MI(L1M(I))*ALFA(18)	E41.80
	ALFA(LLM(I))=MI(LLM(I))=GAMMA(LLM(I))	E4190
410	CONTINE	E4200
44 4	GO TO 460	
420	CNTINE	E4210
440	IF (CORALE.EQ.1) GO TO 440	E4220
	IF (CORALK.ED.3) GO TO 430	E4230
		E4240
	ANALCO=CC2TTT-MI(25)-2.0*MI(26)-MI(27)-HI(37)-2.0*MI(45)-HI(47)-HI	E4250
	1(54)-MI(67)-2.0*MI(68)-MI(82)	E4260
	CO TO 440	E4270
430	CINTINUE	E4 280
	SUMALR=MI(29) +MI(76) +MI(19) +MI(41) +MI(11) +MI(10) +MI(99) +MI(52) +MI(E4290
	1106) +HI (25) +HI (37) +HI (82) +HI (89) +HI (91) +HI (38) +HI (67) +HI (48) +HI (27	E4300
	2) +2.0* (MI (74) +HI (73) +HI (50) +HI (61) +HI (80) +HI (100) +HI (13) +HI (77) +HI	E4310
	3(53) +HI (25) +HI (68) +HI (47)) +3.0* (HI (75) +HI (40) +HI (12) +HI (78) +HI (107	E4320
	4) +HI (115) +HI (45)) +4.0* (MI (79) +HI (54)) -HI (64) -HI (63) -HI (93) -2.0*MI (E4330
	596)+HI (59)+2.0*MI (97)	E4340
	ANALCO-COZTIT-SUMALK	E4350
440	CONTINUE	E4360
	IF (ANALCO.LT.O.O) ANALCO=0.0	E4370
	MI(18) = ANALCO/(2.0+GAMMA(18) * SUM1)	E4380
	ALPA(19)=MI(18) *GAMMA(18)	E4390
	DO 450 I=1,N	E4400
	MI(LIN(I))=MI(LIN(I))*ALPA(18)	E4410
	ALPA(LIN(I)) -MI(LIN(I)) -GAMMA(LIN(I))	E4420
450	CNTINE	E4430
	CONTINUE	E4440
c	MASS BALANCE ON SULPATE	E4450
•	IF (SONTOT.LE.O.O) GO TO 500	E4450
	N=NPAIR(2)	E4470
	DO 470 I=1,N	E4480
	MI(L2M(I)) = KT(L2K(I)) = ALPA(L2C(I)) / GAPPA(L2M(I))	
470		E4490
4/0		E4500
	MI(15) - MI(15)/TEMPE	E4510
	MI(60) -MI(60) *ALFA(6)	E4520
	MI(96) =MI(96) *ALPA(64)	E4530
	SUM-HI (60)	E4540
• ·	DO 480 I=1,N	E4550
	SUM=SUM+HI(12H(1))	E4560
480	CONTINUE	E4570
	NI(6) = SOATOT/(1.0+GAAMA(6) *SUM)	E4580
	ALPA(6) - HI (6) *GAPPA(6)	E4590
	DO 490 I=1,N	E4600
	MI(L2M(I)) = MI(L2M(I)) * ALFA(6)	E4610
	ALFA(L2H(I))=HI(L2H(I))=GAMA(L2H(I))	E4520
	CONTINUE	E4630
	CONTINUE	E4640
С	MASS BALANCE ON FLUORIDE	E4650
	IP (FTOT.LE.0.0) CO TO 540	E4660

-45-

			•
		N=NPAIR(3)	E4670
		DO 510 I=1,N	E4680
		MI(L3M(I))=KT(L3K(I))*ALFA(L3C(I))/GAMMA(L3M(I))	E4690
	510	CONTINUE	E4700
		MI (56) =MI (56) *ALFA (62)	E4710
		MI (57) =MI (57) *ALFA(62) *ALFA(62)	E4720
		MI(58)=MI(58)*ALFA(62)*ALFA(62)*ALFA(62)	E4730
		SUM=MI (56) +2.0*MI (57) +3.0*MI (58)	E4740
		DO 520 I=1,N	E4750
		SUM=SUM+MI(L3M(I))	E4760
	520	CONTINUE	E4770
		MI(62)=FTOT/(1.0+GAMMA(62)*SUM)	E4780
		ALFA(62)=MI(62)*GAMMA(62)	E4790
		DO 530 I=1,N	E4800
		MI(L3M(I))=MI(L3M(I))*ALFA(62)	E4810
		ALFA(L3M(I)) = MI(L3M(I)) * GAMMA(L3M(I))	E4820
		CONTINUE	E4830
_	540	CONTINUE	E4840
С		MASS BALANCE ON PHOSPHATE	E4850
		IF (PTOT.LE.O.O) GO TO 580	E4860
		N=NPAIR(4)	E4870
		C1=KT(16) *ALFA(64)	E4880
		C2=KT(17) *ALFA(64) *ALFA(64)	E4890 E4900
		DO 550 I=1,N MI(L4M(I))=RT(L4K(I))*ALFA(L4C(I))/GAMMA(L4M(I))	
		IF (LAA(I).ED.47) MI(LAM(I))=MI(LAM(I))=C1	E4010 E4920
		IF $(LAA(I).EQ.48) MI(LAM(I))=HI(LAM(I))=C2$	E4930
	650		E4940
	220	MI(13) =MI(13)/TENMPE	E4950
		MI(48) = MI(48) + ALFA(64)	E4950
		MI (99) =MI (99) /TENMPE	E4970
		SUM=0.0	E4980
		DO 560 I=1,N	E4990
		SUM=SUM+MI(IAM(I))	ES000
	560	CINTINUE	E5010
		MI(45)=PTOT/(1.0+GAMMA(45)*SUM)	E5020
		ALFA(45) =MI(45) *GAMMA(45)	E5030
		DO 570 I=1.N	E5040
		MI(LAM(I))=MI(LAM(I))*ALFA(45)	ES050
		ALFA(IAM(I)) = MI(IAM(I)) * GAMMA(IAM(I))	E \$060
	570	CONTINUE	ES070
	580	CONTINUE	E 5080
C		MASS BALANCE ON CHLORIDE	E5090
	1.1	IF (CLTOT.LE.0.0) GO TO 620	E 5100
		N=NPAIR(5)	E5110
	· • ·	DO 590 I=1,N	E 5120
		MI(L5M(I))=KT(L5K(I))*ALFA(L5C(I))/GAMMA(L5M(I))	ES130
	590	CINTINUE	E5140
		MI(16)=MI(16)/TENHPE	ES150
		MI (28) =MI (28) *ALFA (5) / TEMPE	E\$160
		MI(33)=MI(33)*ALFA(5)*ALFA(5)/TEMPE	ES170
		MI (104) =MI (104) *ALFA(5) MT (106) =MT (106) *RT F3 (5) *RT F3 (5)	ES180
		MI(105)=MI(105)*ALFA(5)*ALFA(5) STAL MT(20)42 0+MT(20)4MT(20()42 0+MT(205)	ES190 ES200
	•	SUM-MI(28)+2.0*MI(33)+MI(104)+2.0*MI(105)	ES200
		D0 600 I=1,N	ES220
	600	SUM-SUM-MI(LSM(I)) CONTINUE	ES230
	900	MI(5)=CLTOT/(1.0+GAMMA(5)*SUM)	E5240
		ALFA(5)=MI(5) *GAMMA(5)	ES250
			5260

10年

-46-

	MI(LSM(I))=MI(LSM(I))*ALFA(5)	E\$270
	ALFA(LSM(I))=MI(LSM(I))*GAMMA(LSM(I))	£5280
	CONTINUE	E5290
620	CONTINUE	E\$300
	ALFA(85)=MI(85) *GAMMA(85)	E\$310
	ALFA(98)=MI(98)*GAMA(98)	E 5320
	Alfa(27) = AH2O=KW=TENPH	E\$330
	MI(27) =ALFA(27)/GAMMA(27)	E\$340
	MI(64) = 1ED/(TENPH+GAMMA(64))	E5 350
	TESTI=SI-ANALCO	E5360
	TEST2=S2-SCATOT	£\$370
	TEST3=53-FTOT	E\$380
	TEST4=S4-PTOT	E5390
	TEST5=S5-CLTOT	25400
		E5410
	IF (S1.EQ.0.0.CR. ANALCO.LE.0.0) CO TO 630	ES 420
	IP (ABS(TESTI).GT.ERCRI*ANALCO) RBIT=1	ES 430
630	GO TO 640	E5440
	ANALCO=0.0	E5450
040	CONTINUE	E\$460
	IF (S2.50.0.0) CO TO 650	ES470
650	IF (ABS(TEST2).GT.EROR2*SOATOT) RBIT=1 CONTINUE	ES 480
930		E5490
	IF (S3.EQ.0.0) GO TO 660 IF (ABS(TEST3).GT.EROR3*FTOT) RBIT=1	E\$500
660	CONTINUE	ES510 ES520
000	IF (S4.EQ.0.0) CO TO 670	ES530
	IF (ABS(TEST4).GT.ERCRA*PTOT) RBIT=1	E3530
670	CONTINUE	E\$550
	LF (S5.ED.0.0) GO TO 680	ES560
	IF (ABS(TESTS).GT.ERORS*CLTOT) REIT=1	25570
690	CONTINUE	25580
900	IF (PRT(2).NE.0) GO TO 690	E\$590
	WRITE (6,700) ITER, TEST1, TEST2, TEST3, TEST4, TEST5	E3500
690	CINTINUE	E5610
	RETURN	E3620
С	· · · · · · · · · · · · · · · · · · ·	E5630
č		E\$640
č		E\$650
	FORMAT (1H ,3X, I3, 5X, 5(1PE10.3, 2X))	E3660
	2ND	E5670
	SUBRUITINE PRINT	P 10
	IMPLICIT DOUBLE PRECISION (A-H, O-Z)	P 20
	INTEGER D, 2, DD, RBIT, CORALK, 2(120), LIST4(106), LIST5(8), PRT(4)	7 30
	INTEGER PECALC, PECK	2 40
	DOUBLE PRECISION MI (120), AT (200), LOST (200), LOST (200), MATOT, LH20	2 50
	1, MJ, NATOT, KTOT, MGTOT, LITOT, NHATOT, KM, RATIOL(10), RATIO2(10), RATIO3	P 60
	2(8),XLGAM(120)	2 70
	CHARACTER *8 NSPEC(120), NREACT(200)	2 80
	CHARACTER *80 TITL	7 90
	COPPON MI, KT, LOGKT, LOGKTO, KH, D, E, DD, C, R, T, F, TEMP, A, B, PE, PES, PEDO, P	
	1ESATO, PECK, PECALC, PH, TENPHPE, TENPH, ALFA(120), GAMMA(120), AP(200), XLA	F 110
	2LFA(120), 3, CUNITS(120), ANALMI(120), GFW(120), DHA(120), NSPEC, NREYCT,	7 120
	30H(200), AH2O, LH2O, EROR1, EROR2, EROR3, EROR4, EROR5, EHM, DENS, DOX, XLMI (F 130
	4120), ITER, FOIT, CLSAVE, CORALK, MU, LCHEK (200), CO2TIT, ANALCO, SITOT, CAT	P 140
	SOT, METOT, KTOT, NATOT, SONTOF, FETOT, PTOT, ALTOF, PTOF, BTOF, LITOF, NHATOF	7 150
	6, SRIOT, BATOT, CLTOT, MATOT, ICK, PRF, TITL, EPMCAT, EPMAN, NEQU, ISPEC,	P 160
	7KSPEC(120), IMIN, KMIN(200), TDS, IDAVES, IPRT, JJ, JK	P 170
	DATA LIST4/1,2,3,4,64,5,6,7,18,86,27,62,98,19,23,22,21,20,29,32,30	P 180
	1,31,49,44,43,42,94,46,95,63,96,93,24,25,26,14,67,68,8,9,10,11,12,7	P 190

•

.

-47-

	,61,50,36,37,85,38,39,92,81,82,83,88,69,97,89,
590,91/ DATA LIST5/1,2,3,4,9	51-8-6-7/
CEPMAN=0.0] [0] 0] 1
CEPMCT=0.0	
ELECT=0.0	
DO 20 I=1,D	
ELECT=ELECT+2(I)*MI	
IF (2(1).GT.0) GO T	
CEPMAN-CEPMAN-Z(I)*N	MI(I)
GO TO 20 10 CEPMCT=CEPMCT+2(I)*1	
20 CONTINUE	
ELECT=ELECT*1000.	
	*(1.0-CISAVE*1.0E-06)
CEPMCT=CEPMCT=1000.	*(1.0-C1SAVE*1.0E-06)
S1=MI(7)+MI(18)+MI(2	21) +MI (22) +MI (30) +MI (31) +MI (42) +MI (43) +MI (86) +M
1I(111)+MI(69)+2.0*M	I (97)
PC02=0.0	
XLPC02=-99.9 IF (S1.GT.0.0) GO TO	~ 70
GO TO 40	D 30
	*(108.3865+0.01985076*T-6919.53/T-40.45154
1*DLOG10(T)+669365.0/	
XLPC02=DLOG10(PC02)	
40 CONTINUE	
EHPE=PE*C*R*T/F	
SUMALK=MI (30) +MI (29)	+MI(76)+MI(19)+MI(22)+HI(41)+HI(43)+HI(11)+HI(
	I (106) +MI (111) +HI (25) +MI (37) +HI (82) +HI (89) +HI (9
	(7) +MI (48) +MI (27) +2 .0* (MI (74) +MI (31) +MI (21) +MI (I (61) +MI (80) +MI (100) +MI (13) +MI (77) +MI (53) +HI (26
	47))+3.0* (MI (75) +HI (40) +HI (12) +HI (78) +HI (107) +H
	(MI (79) + MI (54)) - MI (64) - MI (63) - MI (93) - 2.0* MI (96)
6+MI (69) +2*MI (97)	
SUMALK=SUMALK*1000.	
	+MI(22)+MI(43)+MI(111)+2.0*(MI(31)+MI(21)+MI(42
1) +MI(18)) +MI(69) +2.0	
CARBAL=CARBAL*1000. WRITE (6,110) TITL	
WRITE (6,120)	
WRITE (6,120)	
WRITE (6,130) AH20,1	EPMCAT, CEPMCT, PH, POO2, EPMAN, CEPMAN, XLPOO2
WRITE (6,130) AH2O, H 1, ALFA (70), EHH, PE, TEP	MP, ALFA (71), PES, S1, PEDO, DENS, PESATO, MU, TDS
WRITE (6,130) AH2O, H 1, ALFA(70), EH4, PE, TE 2, SUMALK, CARBAL, ELECT	MP, ALFA(71), PES, S1, PEDO, DENS, PESATO, MJ, TDS T
WRITE (6,130) AH2O, I 1, ALFA(70), EH4, PE, TE 2, SUMALK, CARBAL, ELECT IF (PECALC.NE.0) WRI	MP, ALFA (71), PES, S1, PEDO, DENS, PESATO, MJ, TDS T ITE (6, 140) PE, EHPE
WRITE (6,130) AH2O,1 1,ALFA(70),EHM,PE,TEM 2,SUMALK,CARBAL,ELECT IF (PECALC.NE.0) WRI WRITE (6,150)	MP, ALFA (71), PES, S1, PEDO, DENS, PESATO, MJ, TDS T ITE (6,140) PE, EHPE
WRITE (6,130) AH2O, H 1,ALFA(70),EH4,PE,TE 2,SUMALK,CARBAL,ELECT IF (PECALC.NE.0) WRI WPITE (6,150) DUM-10.**(-38)	MP, ALFA (71), PES, S1, PEDO, DENS, PESATO, MJ, TDS T ITE (6, 140) PE, EHPE
WRITE (6,130) AH2O,I 1,ALFA(70),EHM.PE,TEP 2,SUMALK,CARBAL,ELECT IF (PECALC.NE.0) WRI WPITE (6,150) DUM=10.**(-38) DO 50 I=1,D CUNITS(1)=0.0	MP, ALFA (71), PES, S1, PEDO, DENS, PESATO, MJ, TDS T ITE (6,140) PE, EHPE
WRITE (6,130) AH2O,I 1,ALFA(70),EHM.PE,TEP 2,SUMALK,CARBAL,ELECT IF (PECALC.NE.0) WRI WPITE (6,150) DUM=10.**(-38) DO 50 I=1,D CUNITS(1)=0.0	MP, ALFA (71), PES, S1, PEDO, DENS, PESATO, MJ, TDS T ITE (6,140) PE, EHPE
WRITE (6,130) AH2O,I 1,ALFA(70),EHM.PE,TEP 2,SUMALK,CARBAL,ELECT IF (PECALC.NE.0) WRI WPITE (6,150) DUM=10.**(-38) DO 50 I=1,D CUNITS(1)=0.0	MP, ALFA (71), PES, S1, PEDO, DENS, PESATO, MJ, TDS T ITE (6,140) PE, EHPE
WRITE (6,130) AH2O, I 1, ALFA(70), EHM, PE, TEM 2, SUMALK, CARBAL, ELECT IF (PECALC.NE.0) WRI WPITE (6,150) DUM=10.**(-38) DO 50 I=1,D CUNITS(1)=0.0 IF (MI(1).LT.DUM) GC CUNITS(I)=MI(I)*1000 XLMI(I)=DLOG10(MI(I)	MP,ALFA(71),PES,S1,PEDO,DENS,PESATO,MJ,TDS T ITE (6,140) PE,EHPE O TO 50 0.*GFW(I)*(1.0-1.0E-06*CLSAVE)
WRITE (6,130) AH2O, I 1,ALFA(70), EHM, PE, TEM 2,SUMALK, CARBAL, ELDC: IF (PECALC.NE.0) WRI MPITE (6,150) DUM=10.**(-38) DO 50 I=1,D CUNITS(1)=0.0 IF (MI(1).LT.DUM) GC CUNITS(1)=MI(1)*1000 XLMI(1)=DLOG10(MI(1) XLALFA(1)=DLOG10(ALF	MP,ALFA(71),PES,S1,PEDO,DENS,PESATO,MJ,TDS T ITE (6,140) PE,EHPE O TO 50 0.*GFW(I)*(1.0-1.0E-06*CLSAVE))) FA(I))
WRITE (6,130) AH2O, I 1, ALFA(70), EHM, PE, TEM 2, SUMALK, CARBAL, ELDC: IF (PECALC.NE.0) WRI NPITE (6,150) DUM=10.**(-38) DO 50 I=1,D CUNITS(1)=0.0 IF (MI(1).LT.DUM) GC CUNITS(1)=MI(1)*1000 XLMI(1)=DLCG10(MI(1) XLALFA(1)=DLCG10(GAM	MP, ALFA(71), PES, S1, PEDO, DENS, PESATO, MJ, TDS T ITE (6,140) PE, EHPE 0 TO 50 0. *GFW(I)*(1.0-1.0E-06*CLSAVE))) FA(I)) MA(I))
WRITE (6,130) AH2O, I 1,ALFA(70), EHM, PE, TEM 2,SUMALK, CARBAL, ELDC: IF (PECALC.NE.0) WRI MPITE (6,150) DUM=10.**(-38) DO 50 I=1,D CUNITS(1)=0.0 IF (MI(1).LT.DUM) GC CUNITS(1)=MI(1)*1000 XLMI(1)=DLOG10(MI(1) XLALFA(1)=DLOG10(ALF	MP, ALFA(71), PES, S1, PEDO, DENS, PESATO, MJ, TDS T ITE (6,140) PE, EHPE 0 TO 50 0. *GFW(I)*(1.0-1.0E-06*CLSAVE))) FA(I)) MA(I))

.

_

,

-48-

	DO 60 J=1, ISPDC	F 800
	IF (LIST : I). EQ. KSPEC(J) GO TO 70	F 810
	60 CONTINUE	. –
		F 820
	GO TO 80	F 830
	70 CONTINUE	F 840
	WRITE (5,160) LIST4(I), NSPEC(LIST4(I)), 2(LIST4(I)), CUNITS(LIST4(I)	
	1),MI(LIST4(I)),ALFA(LIST4(I)),XLALFA(LIST4(I)),GAMMA(LIST4(I))	F 860
	80 CONTINUE	F 870
	LP (PRT(3).NE.0) GO TO 100	F 880
С	•	P 890
С		P 900
C C	CALCULATION OF MOLAR RATIOS AND LOG ACTIVITY RATIOS.	P 910
-	DO 90 I=1.8	F 920
	IF (ANALMI(LISTS(I)).LT.15-30) ANALMI(LISTS(I))=1E-30	F 930
		F 940
		P 950
	RATIOL(I)=ANALMI(5)/ANALMI(LIST5(I))	F 960
	2ATIO2(I) = MI(5)/MI(LIST5(I))	F 970
	90 CINTINUE	F 980
	ratiol (9) = analmi (1) / analmi (2)	F 990
	RATIOL (10) =ANALMI (3) /ANALMI (4)	F1000
	RATIO2(9)=MI(1)/MI(2)	F1010
	RATIC2 (10) =HI (3) /HI (4)	F1020
	$RATIO3(1) = XLALFA(1) + PH^{*}2.$	F1030
	RATIO3(2)=XLALFA(2)+PH*2.	F1040
	RATIO3 (3) =XLALFA(3) + PH	F1050
	RATIO3(4) = XLALPA(4) + PH	F1060
	RATIO: $(5) = XLALFA(51) + PH^33$.	F1070
	RATIO3(6) \approx LALFA(8) + PH ⁺ 2.	F1080
	RATIO3(7) = XLALFA(1) - XLALFA(2)	
		F1090
	RATIO3(8)=XLALFA(3)-XLALFA(4)	F1100
	WRITE (6,120)	F1110
	WRITE (6,170) (RATIOL(I), RATIO2(I), RATIO3(I), I=1,8), (RATIOL(I)	F1120
	1,RATIC2(I),I=9,10)	F1130
	100 CONTINUE	F1140
	WRITE (6,110) TITL	F1150
	RETURN	F1160
C		F1170
C C		F1180
č		F1190
	110 FORMAT (/1X, A80)	F1200
	120 FORHAT (//)	F1210
	130 FORMAT (//,22X, "****DESCRIPTION OF SOLUTION *****',//,10X, "ANAL."	71220
	I'V FORME (////// I'V DESCRIPTION (SO a LOSA / //////////////////////////////////	
	1,5X, 'COMP.',9X,'PH',11X,'ACTIVITY H2O = ',P7.4,/,1X,'EPHCAT',	F1230
	2F8.2,2X,F8.2,6X,F6.3,9X, 'PCC2= ',1FEL3.6,/,1X, 'EPMAN ',0FF8.2	71240
	3,2X,F8.2,21X,'LOG POO2 = ',F8.4,/,30X,'TEMPERATURE',6X,'PO2 = ',	P1250
	41PE13.6,/,1X,'EH = ',0PF6.4,2X,'PE = ',P7.3,4X,P6.2,' DEG C',5X,	F1260
	5'PCH4 = ',1PC13.6,/,1X,'PE CALC S = ',0PF8.3,26X,'CO2 TOT = ',1PE1	F1270
	63.6,/,1X,'PE CALC DOX=',0PF7.3,9X,'IONIC STRENGTH',4X,'DENSITY = '	F1280
	7,F8.4,/,LX,'FE SATO DOX=',F7.3,9X,1PEL3.6,5X,'TDS = 'OPF9.1,	F1290
	S'MG/L',/,1X,'TOT ALX = ',1PE10.3,' MED',22X,'CARB ALX',	F1300
	9' = ',E10.3,' MED',/,1X,'ELECT = ',E10.3,' MED',/)	P1310
	140 FORMAT (1X, 'IN COMPUTING THE DISTRIBUTION OF SPECIES, '/, 1X, 'PE = '	F1320
	1, E7.3, 5X, 'EQUIVALENT EH =', F7.3, 'VOLTS',//)	P1330
	150 FORMAT (///.25X.'	
	1PECIES',/25X,'',//,2X,'1',2X,'SPECIES',9X	F1350
	2, 'PPN', 7X, 'MCLALITY', 3X, 'ACTIVITY', 4X, 'LOG ACT', 4X, 'GAMMA',/)	F1360
	160 FORMAT(1H , IJ, 1X, A8, IJ, 1X, 1PE11.4, 1X, E11.4, 1X, 1PE11.4	P1370
	1,1X,0PF7.3,1X,1PE11.4)	F1380
	170 FORMAT (//,3X, 'MOLE RATIOS FROM',9X, 'MOLE RATIOS FROM',/,2X,	F1390
	The Pointer (1) 1941 LINES CONTROL COMP. 1944 LINES CONTROL CONT. 11 1944	• • • • • •

	I'ANALYTICAL MOLALITY',7X,'COMFUTED MOLALITY',7X,'LOG ACTIVITY',	F1400
-	2' RATIOS',/,1X,3(21('-'),4X),/,1X,'CL/CA = ',1PE11.4,4X,'CL/CA'	F1410
	3,' = ',El1.4,4X,'LOG CA/H2 = ',OPF9.4,/LX,'CL/NG = ',1PE11.4,	F1420
	(4X, 'CL/MG = ', EL1.4, 4X, 'LOG MG/H2 = ', OPF9.4, /LX, 'CL/NA = ',	F1430
	51PE11.4,4X,	F1440
	5'CL/NA = ',Ell.4,4X,'LOG NA/H1 = ',OPF9.4,/,1X,'CL/K = ', /1PE11.4,4X,'CL/K = ',Ell.4,4X,'LOG K/H1 = ',OPF9.4,/,1X,'CL/AL	F1450 F1460
	3 = ',1PE11.4,4X,'CL/AL = ',E11.4,4X,'LOG AL/H3 = ',0PF9.4,/,	F1400
)1X, 'CL/FE = ',1PEL1.4,4X, 'CL/FE = ',EL1.4,4X, 'LOG FE/H2 = ',	F1480
:	SOPF9.4,/,1X,'CL/SO4 = ',1PE11.4,4X,'CL/SO4 = ',E11.4,4X,'LOG CA/	F1490
1	SMG = ',0PF9.4,/,1X,'CL/HCO3 = ',1PE11.4,4X,'CL/HCO3 = ',E11.4,	F1500
	54X, LOG NA/K = ',0PF9.4,/,1X, 'CA/NG = ',1PE11.4,4X, 'CA/NG = '	F1510
	<pre>s,El1.4,/,lX,'NA/K = ',El1.4,4X,'NA/K = ',El1.4) END</pre>	F1520 F1530
	SUBRITINE SAT	G 10
•	IMPLICIT DUBLE PRECISION (A-E,O-Z)	G 20
	INTEGER D, E, DL, REIT, CORALK, 2(120), LISTS (24), PRT(4)	G 30
	INTEGER FECALC, PECK	G 40
	DIMENSION LIST7(101), LIST8(15), LIST9(25), LIST0(101) DOUBLE PRECISION MI(120), KT(200), LOCKT(200), LOCKTO(200), MNTOT, LH2O	G 50 G 60
1	.MI.NATOT.KTOT. MATOT. NHATOT. KW	G 70
-	CHARACTER *8 NSPEC(120), NREACT (200)	G 80
	CHARACTER *80 TITL	G 90
	COMMON MI, KT, LOEKT, LOEKTO, KH, D, E, DD, C, R, T, F, TEMP, A, B, PE, PES, PEDO, P	G 100
	lesato, peck, pecalc, pe, tenmpe, tenph, alfa(120), gamma(120), ap(200), xla llfa(120), z, cunits(120), analmi(120), gfw(120), dha(120), nspec, nreact,	G 110 G 120
	ILF A(120), 4, CONTIS(120), ANNALL(120), KEN(120), BEA(120), ROPEC, RAEALI, IDH (200), AH2O, LH2O, ERORL, EROR2, EROR3, EROR4, EROP5, EHM, DENS, DOX, XLMI (G 130
	1120), ITER, RBIT, CLSAVE, CORALK, MU, LCHEK (200), CO2TIT, ANALCO, SITOT, CAT	G 140
	ot, Mitot, Ktof, Natot, Soatot, Feiot, Piot, Altot, Fiot, Biot, Litot, Nhatot	G 150
	, SRIOT, BATOT, CLTOT, MYTOT, ICK, PRT, TITL, EPMCAT, EPMAN, NEQU, ISPEC,	G 160
	/KSPEC(120), IMIN, KMIN(200), TDS, IDAVES, IPRT, JJ, JK DATA LIST6/1,2,3,4,5,6,7,8,9,11,18,24,27,40,45,47,51,54,62,67,88,9	G 170 G 180
1	0,101,102/	G 190
	DATA LIST7/40,41,141,51,43,18,114,42,22,151,145,49,53,20,13,144,98	G 200
<u></u>	1,50,21,30,57,100,29,12,56,113,120,97,63,28,52,111,112,119,19,65,48	G 210
	2,109,118,39,96,46,47,44,129,148,68,99,110,11,108,64,116,117,58,67,	G 220
	859,61,150,55,45,142,115,54,102,37,10,101,147,143,38,66,62,32,60,10 17,146,154,155,156,172,173,174,175,176,177,178,179,180,181,183,184,	G 230 G 240
	5185,186,187,188,189,190,191,192,193/	G 250
	DATA LIST8/107,108,109,110,111,112,113,114,115,119,120,173,174,175	G 260
	1,177/	G 270
	DATA LIST9/13,12,10,181,19,144,145,96,107,63,113,111,109,52,174	G 280 G 290
	1,180,100,101,98,102,47,154,37,120,68/	G 300
		G 310
	CALCULATION OF ION ACTIVITY PRODUCTS	G 320
	DO 20 I=1,24	G 330
•	IF (ALFA(LIST6(I)).LT.1.E-38) GO TO 10 ALFA(LIST6(I))=DLOGIO(ALFA(LIST6(I)))	G 340 G 350
	GO TO 20	G 360
10	ALFA(LIST5(I))-2EA	G 370
20	CONTINUE	G 380
	AP(10) = ALFA(8) + ALFA(18)	G 390
	AP(11)=ALFA(2)+ALFA(18) AP(12)=ALFA(1)+AP(11)+ALFA(18)	G 400 G 410
	AF(12)=AFA(1)+AFA(1)+AFA(16) AP(13)=AFA(1)+AFA(18)	G 420
	AP(18) = ALFA(1) + ALFA(6)	G 430
	AP(19) = AP(16) + 250 * LH20	G 440
	AP(20) = ALFA(2) + 2E0 + ALFA(27)	G 450 G 460
·	AP(21)=3ED*ALFA(2)+2ED*ALFA(24)+6ED*ALFA(27)-5ED*LH2O	U 40V

• • • • • • • • •

CCC

λP(22) = AP(13)	G 470
AP(28)=2ED*ALFA(2)+ALFA(24)+4ED*(ALFA(27)-LH2O)	G 480
AP(29) =ALFA(1) +ALFA(2) +2ED*ALFA(24) +4ED*ALFA(27) -6ED*LH20	G 490
AP(30) =ALFA(2) +ALFA(24) +2E0 *ALFA(27) -3E0 *LH20	G 500
AP(32)=2E0*ALFA(1)+5E0*ALFA(2)+8E0*ALFA(24)+14E0*ALFA(27)-22E0*LH2	G 510
10	G 520
AP(37)=2E0*ALFA(2)+3E0*ALFA(24)+4E0*ALFA(27)-4.5E0*LH2O	G 530
AP(38)=3ED*ALPA(2)+4ED*ALPA(24)+6ED*ALPA(27)-1E1*LH2O	G 540
AP(39)=5ED*ALPA(2)+4EO*ALPA(18)+2EO*ALPA(27)+4EO*LH2O	G 550
AP(40)=ALFA(4)+ALFA(54)+3ED*ALFA(24)-8ED*LH2O	G 560
AP(41) = AP(40) - ALFA(4) + ALFA(3)	G 570
AP(42)=ALFA(1)+2ED*(ALFA(54)+ALFA(24))-8ED*LH2O	G 580
AP(43)=ALFA(3)+ALFA(54)+250*ALFA(24)-550*LE20 AP(44)=37 PA(4)+250*(37 PA(54)+37 PA(24))=350*E=1350*F	G 590 G 600
AP(44) =ALFA(4) +3ED*(ALFA(54) +ALFA(24)) -2ED*PH=12ED*LE2O AP(45) =ALFA(4) +ALFA(54) +3ED*(ALFA(2) +ALFA(24)) +6ED*ALFA(27) -1E1*LH	
120	G 620
AP(46)=.6E0*ALPA(4)+.25E0*ALPA(2)+2.3E0*ALPA(54)+3.5E0*ALPA(24)-1.	
1251*PH=11.251*LH20	G 640
$AP(47) = 2ED^*(ALPA(54) + ALPA(24) - PH) - 7ED^*LH2O$	G 650
A2(48)=AP(47)	G 560
C1=(SORT(MI(1)*GAHMA(1)+MI(2)*GAHMA(2)+MI(3)*GAHMA(3)))	G 670
IF (C1.GT.0.0) C1=DLOG10(C1)	G 680
IF (C1.LE.0.0) C1-224	G 690
AP(49)=.33E0*C1+2.33E0*ALFA(54)+3.67E0*ALFA(24)-2E0*PH-12E0*LH2O	G 700
AP(50)=5E0*ALFA(2)+2E0*ALFA(54)+3E0*ALFA(24)+8E0*ALFA(27)-1E1*LH20	
AP(51) = ALFA(4) + 3E0 + ALFA(51) + 6E0 + ALFA(27) + 2E0 + ALFA(6)	G 720
AP(52) = ALFA(51) + 3E0 + ALFA(27)	G 730
AP(53)=AP(52)-LH20	G 740
AP(34) =2E0*ALPA(34) +4E0*ALPA(24) -2E0*PH=12.0*LH2O	G 750
AP(55) =.5E0+(ALFA(3)+ALFA(4))+ALFA(54)+3E0+ALFA(24)-7E0+LH2O	G 760
AP(56) =ALFA(3) +ALFA(54) +3.5ED*ALFA(24) -6ED*LH2O	G 770
C2=(MI(3) *GAMA(3) +HI(4) *GAMA(4))	G 780
If (C2.G1.0.0) C2=DLOE10(C2)	G 790
IF (C2.LE.O.O) C1=2E4	G 800
AP(57) =.500*C2+ALPA(54)+500*ALPA(24)-8.500*LH20	G 810
AP(58) =.5ED*C2+ALFA(54)+4.5ED*ALFA(24)-8ED*LH2O	G 820
AP(59) = ALPA(3) + ALPA(7)	G 830
$AP(60) = 3ED^{+}ALFA(3) + ALFA(7) + ALFA(18) + 2ED^{+}LH2O$	G 840
$AP(52) = 2ED^*ALPA(3) + ALPA(18) + LH2O$	G 850
AP(51) = AP(52) + 9ED*LH2O AP(51) = AF FA(1) + 2ED*LH2O	G 860
AP(63) =ALFA(1) +2E0*ALFA(62) AP(64) =.167E0*ALFA(1) +2.3320*ALFA(54) +3.67E0*ALFA(24) -2E0*EH-12E0*	G 870 G 880
11920 11920	G 890
AP(65) = ALPA(3) + ALPA(5)	G 900
AP(66) = 2E0 + ALFA(3) + ALFA(6)	G 910
AP(67) = AP(66) +1 E1 *LH20	G 920
AP(68) =ALFA(8) +ALFA(67)+FH	G 930
AP(96)=5ED*ALFA(1)+3ED*(ALFA(47)-LH2O)+4ED*ALFA(27)	G 940
AP(97) =500 * ALFA(1) +300 * (ALFA(47) - LH2O) +300 * ALFA(27) + ALFA(62)	G 950
AP(98) -ALFA(24)-2ED*LEZO	G 960
AP(99) =ALFA(4)+7E0+ALFA(24)+PH-9E0+LF20	G 970
AP(100) =AP(98)	G 980
AP(101) = AP(98)	G 990
AP(102) = AP(98)	G1000
IP (ABS(PE).LT.20.0) GO TO 30	G1010
CO TO 40	G1020
30 CONTINUE	G1030
AP(107) =3E0*ALFA(8)+2E0*ALFA(45)+8E0*LH20	G1040
AP(108)=3E0*ALFA(9)-PE+4E0*LH2O+8E0*PH	C1050
AP(109)=200*ALFA(9)+300*LH2O+600*FH	G1060

-51-

AP(110)=AP(109)	G1 070
AP(111)=ALFA(9)+3E0*ALFA(27)-LH2O	G1080
AP(112)=3E0*ALFA(8)+2E0*ALFA(24)+6E0*ALFA(27)-5E0*LE20	G1 090
AP(113)=ALFA(9)+3E0*(LH2O+PH)	G1100
AP(114) = AP(45) + 3E0 + (ALFA(8) - ALFA(2))	G1110
AP(115)=ALFA(8)+2EO*(ALFA(67)+PE+PH)	G1120
AP(119)=3E0*ALFA(8)+4E0*ALFA(67)+2E0*PE+4E0*PH	G1130
AP(120)=AP(68)	G1140
AP(173) =ALFA(102) +2*LH2O+4*PH+PE	G1150
AP(174) = AP(173)	G1160
AP(175) = AP(173)	G1170
AP(177)=3*ALFA(101)+4*LH2O+8*FH+2*FE	G1180
GO TO 60	G1190
40 CONTINUE	G1200
DO 50 I=1,15	G1210
J1=LIST8(I)	G1 220
AP(J1)==6000.	G1230
50 CONTINUE	G1240
PECK=1	G1250
60 CONTINUE	G1 260
AP(116) =.29*ALFA(2)+.23*ALFA(9)+1.58*ALFA(54)+3.93*ALFA(24)-10.*LH	G1280
120 AP (117) =.45*ALFA(2)+.34*ALFA(9)+1.47*ALFA(54)+3.82*ALFA(24)-9.2*LH	
	G1300
120+ .76*PH AP(118)=3E0*ALFA(2)+ALFA(1)+4E0*ALFA(16)	G1310
$AP(110) = 3ED^{-}ALFA(2) + ALFA(1) + 4ED^{-}ALFA(10) - 4ED^{+}LE20$	G1320
AP(141) = AP(52)	GI330
AP (141) = 2E0 * (ALFA(1) + ALFA(54) + PH) + 3E0 * ALFA(24) - 8E0 * LE20	G1340
AP(143)=ALFA(88)+ALFA(18)	G1.350
AP(144) = ALFA(88) + ALFA(6)	GI 360
AP(145) =ALFA(90) +ALFA(6)	G1370
AP(146) = ALFA(90) + ALFA(18)	GI 380
AP(147) = ALFA(9) + ALFA(45) + 2E0 + LE20	G1390
AP(148)=2E0*ALFA(1)+4E0*ALFA(54)+8E0*ALFA(24)-17E0*LE20	G1 400
AP(150) =ALFA(2) +ALFA(18) +3E0*LE20	GI 410
$AP(151) = 2E0^{+}ALFA(1) + ALFA(18) + 2E0^{+}ALFA(27) + 3E0^{+}LH20$	GL 420
AP(172) =ALFA(101) +LH2O+2*PH	G1430
AP(176)=2*ALFA(102)+3*LH2O+6*PH	G1440
AP(178)=ALFA(101)+2*ALFA(27)	G1450
AP(179) = ALFA(102) + 3 + ALFA(27)	G1460
AP(180)=ALFA(102)+2*LE20+3*FH	G1470
AP(181) = ALFA(101) + ALFA(18)	G1.480
AP(163) = ALFA(101) + 2 + ALFA(5)	GL 490
AP(184)=AP(183)+LH2O	G1500
AP(185) =AP(183)+2*LH20	G1510
~ AP(186)=AP(183)+4*LE20 ,	G1520
AP(187)=2*ALFA(101)+ALFA(24)+4*FH	C1530
AP(188)=2*ALFA(101)+ALFA(24)+2*PH-LH2O	G1540
AP(189)=ALFA(101)+ALFA(67)+PH	@1550
AP(190)=ALFA(101)+ALFA(6)	G1560
AP(191) =2*ALFA(102) +3*ALFA(6)	G1570
AP(192)=3*ALFA(101)+2*ALFA(45)	G1580 G1590
AP(193) =ALFA(101) +ALFA(47)	G1230
	G1600
AP(155)=AP(52)-LH20	G1610
AP(156)=AP(129)-2*LH2O	G1620
WRITE (6,140)	CI 630 CI 640
WRITE (6,150)	G1650
IF (PRT(4).NE.9) GO TO 67	G1660
INFRINT=25	GT000

-52-

		DO 66 I=1, INFRINT	G1 670
		LISTO(I)=LIST9(I)	G1680
	66	CONTENUE	G1690
		GO TO 65	G1700
	67	INPRINT=101	G1710
		DO 68 I=1, INFRINT	G1720
		LISTO(I) = LIST7(I)	G1730
	68	CONTINUE	G1740
		DO 100 I=1, INPRINT	G1750
	••	IF (IMIN.ED.0) GO TO 80	G1760
			G1770
		DO 70 J=1.IMIN	G1780
		LF (LISTO(I).EQ.RMIN(J)) K=1	G1790
	70		G1 800
	10	IF (X.EQ.1) GO TO 80	G1810
		GO TO 100	G1 820
	04	CONTINUE	
	00		G1830
		IF (AP(LISTO(I)).LT38.0.OR.AP(LISTO(I)).GT.38.0) GO TO 90	G1 840
		IF (LCHER(LISTO(I)).EQ.1) GO TO 90	G1850
		DUM-AP(LISTO(I))-DLOGLO(KT(LISTO(I)))	G1.860
		LF (DUM.GT.75.) GO TO 90	G1 870
		XIAP=10.+*AP(LISTO(I))	CI 380
		RAT=XIAP/RT(LISTO(I))	G1 890
		XLRAT-DLOGIO(RAT)	CI 900
		DELGR=C*R*T*XLRAT	G1910
		WRITE (6,160) LISTO(I), NREACT(LISTO(I)), XIAP, KT(LISTO(I)), AP(LISTO	
		l(I)),LOGET(LISTO(I)),RAT,XLRAT	G1.930
		GO TO 100	G1 940
	- 90	IF (AP(LISTO(I)).LT5000.0.OR.AP(LISTO(I)).GT.5000.0) GO TO 100	GL 950
		XLRAT=AP(LISTO(I))-LOGAT(LISTO(I))	GL 960
		DELGR=C*R*T*XLRAT	G1 970
		WRITE (6,170) LISTO(I), NREACT(LISTO(I)), AP(LISTO(I)), LOGET(LISTO(G1.980
	2	11)),XLRAT	G1 990
	100	CINTINUE	G2000
		IF (PECK. ED. 1. AND. PECALC. NE. 0) GO TO 110	@2010
		GO TO 130	@2020
	110	WRITE (6,180)	@030
		DO 120 1=1,15	C2040
		WRITE (6.190) NREACT(LIST8(I))	@2050
	120	CONTINUE	G2060
		CINTINUE	G2070
	294	RETURN	G2080
С			G2090
č			G2100
	140	FORMAT (//)	G2110
	164	FORMAT (//,6X,'FHASE',6X,'LAP',7X,'KT',6X,'LOG LAP',2X,'LOG KT',	G2120
		14X, 'IAP/KT', 2X, 'LOG IAP/KT',/)	@1130
		FORMAT(1H , I3,1X,A9,2(1PE10.3),2(1X,0PF9.3),1X,1PE10.3,	@140
		11X,0PP9.3)	G2150
		FORMAT (1H , I3,1X, A8,21X,2(F9.3,1X),9X,F10.3)	G2160
		FORMAT (///,1X,'PE IS GREATER THAN 20 CR LESS THAN -20',/,1X,'AN',	
		'OWNAL (///, LA, PE IS GREATER THAN 20 OR LESS THAN -20 (/, LA, AN, 1'D THE FOLLOWING MINIERAL REACTIONS HAVE BEEN DISREGARDED',/)	G2180
		FORMAT (1H ,20X,A8)	G2190
	130	END	G2200
			49904

·i

ì

DATA TABLE

1.00			
'CA '	2	40.0800	δ.Ο
'MG '	2	24.3120	6.5
'NA '	' 1	22.9898	4.0
'K (1	39.1020	3.0
		33.1020	
		35.4530	3.0
1504	-2	96.0616	4.0
5-14-1 			
'HCC3 '	· -ī	61.0173	5.4
'FE '	2	55.8470	6.0
15			
'FE	3	55.8470	9.0
'FECH '	Ż	72.8544	5.0
	-		
'FECH '	' 1	72.8549	5.0
"FE(OH) 3 '	· -1	106.8690	5.0
	-		
'FEHPO4 '	' 1	151.8200	5.4
H2S AQ	Ö	34.0799	0.0
143 NY			
'FESOA	1	151.9086	5.0
'FECL '	2	91.3000	5.0
'ANAL H2S '	0	34.0799	0.0
'003 '	-2	60.0094	5.4
'NGOH '	1	41.3194	6.5
'HGE '	1	43.3104	4.5
-	-		
"MGCCG AO "	0	84.3214	0.0
MGBCC3	i i	85.3293	4.0
	-		
'MGSON AO '	0	120.3736	0.0
'H4SI04A0 '	Ŏ		
		96.1155	0.0
'HBSIO4	' -1	95.1075	4.0
INDETON 1	-		-
	-	94.0995	5.4
'OH '	-1	17.0074	3.5
		106 7630	
'FET2 '	1	126.7530	5.0
'CACE '	1	57.0874	6.0
	-	101 0073	
	1	101.0973	6.0
'CACCO AQ '	0	100.0890	0.0
		126 1416	
	0	136.1416	0.0
'FECI3 '	0	162.2060	0.0
'FESOL '	0	151.9086	0.0
'SIO2 TOT '	0	60.0848	0.0
	•	61.8331	0.0
'H2B03 ·	-1	60.8251	2.5
	-		
- Marca - Marc	•	17.0306	0.0
'NH4 '	1	18.0386	2.5
INGPO4		119.2834	5.4
LTTL CAL			
"MGH2PO4 '	1	121.2993	5.4
'NACC3 '	-1	82.9992	5.4
'NASCOS '	0	63.9909	0.0
'HASO4 '	-1	119.0514	5.4
"POL		94.9714	5.0
IKSO4	-1	135.1636	5.4
'EPOI '	-2	95.9794	5.0
122POL	-1	96.9873	5.4
'CNP+	1	59.0784	5.0
'NAHPOI '	-1.	118.9692	5.4
66 214 W.S			
nu		26.9815	9.0
17.0E 1	2	43.9889	5.4
	•	60.9962	5.4
'AL(OH) 4 '		95.0110	4.5
	6	45.9799	5.4
ALF2 1	1	64.9783	5.4
117.53			
	v	83.9767	0.0
TALE4	-1	102.9751	4.5
			1 6
	•	123.0431	4.5
'AL(SO4)2 '	-1	219.1047	4.5

-54-

-55-

KFECL	18.1520	-11.6000
	0.0	-10.9190
	0.0	-11.9250
	3.23 -6.14	2.25 -10.57
ي ج جب جب جب جي ج	-6.1690	-8.2400
	-9.4360	-17.09
'CALCITE	-2.2970	-8.4800
	8.9350	-9.9290
NULSION	29.7170	-21.6170
1411 04	-3.5300	12.3460
'RH2PO4 '	-417200	19.5530 -4.384
'GYPSUM '		-4.602
BRUCITE	0.8500	-11.4100
'CIRYSOTL	27.5850	-51.8000
'ARAGONIT '	-2.3030	-8.3360
*KMGF	9.0/90	1.6200
KCASO4	1.0000	2.3090
KH3B03	2.0300	2.2100 -9.2350
'REG	912734	-9.2350
'FORSTRIT '	4.8700	-28.1100
'DIOPSIDE '	21.1000	-36.2200
'CLENSTIT '		-16.8700
'RNAEPO	0.0	^.29 00
TREMOLIT		-140.3000
KKEPO4	V.U	0.2900
KCAHPO4	3.3000	2.8700 2.7390
'RH2003		6.3520
'SEPIOLIT '		-40.1000
'TALC '		-62.2900
"HYDMAG	-23:3200	-37.8200
ADULAR	30.0200	-20.57(3)
ALBITE	25.8550	-18.0000
'ANORIH 'ANALOM	17.5300 18.2060	-19.3300 -12.7000
IDUCA		-49.0900
PHLOG '		-63.5300
'ILLITE '	54.6840	-40.3100
KACLEN .	49.1500	-36.9100
BALLOY	44.6800	-32.8200
BEIDEL	60.3550	-45.2600
'CELOR '	54.7600 29.8200	-90.6100 -85.3200
'GIBCRS '		-32.7700
BOERM		-33.4100
PYROPH	0.0	-42.4300
PHILIP '	0.0	-19.8600
ERION		0.0
COLUCE	0.0	0.0
'MORDEN '	v.v	-0.5480
TRONA '	941200	-0.7950
'NATRON '		-1.3110
'THRNAT '	-2.8020	0.1250
FLOOR		-10.96
MONTCA	20.3730	-45.0000
'HALITE '	0.9180	1.5820

. • •t:

-56-

'THENAR		-0.5720	-0.1790
MIRABI	•	18.9870	
	1		-1.1130
MACKIT		0.0	-4.5310
'XHCC3	•	-3.5610	10.329
' KNACO3		8.9110	1.2580
KNAHCO3		0.0	-0.2500
RNASO4		1.12	0.7200
KKSO4	I	2.25	0.3470
*RMGC03	1	2.7100	2.9800
KMGHC03	• •	1.0770	1.0650
KHGSO4		4.5	2.2380
	,		
' KCACH		1.1900	1.4000
KCAHCO3	1	4.1100	1.0950
'KCACO3	•	3.5560	3.2240
KCAF+	ŧ	4.1200	0.9400
'KALCH	1	1.43	9.030
KALCH2		0.0	18.700
KALCH4	•	-11.16	33.00
'KALP	•	0.0	7.0100
'KALF2	•	20.0000	12.7500
XALF3		2.5000	17.0200
KALP4		0.0	19.7200
KALSO4	•	2.15	3.02
XASC42	•	2.84	4.92
'KHSO4	•	4.91	1.987
'X125C	1	-65.4400	40.5440
11125		5.2990	-5.9420
'KHS		12.1000	-12.9180
KCXX		34.1570	-20.7800
"RCH4	1	-57.4350	30.7410
'HYXAPT	•	17.2250	-59.3500
FLUAPT	•	19.6950	-65.7900
'CHALC		4.6150	-3.5230
MAGADI		0.0	
			-14.3000
'SILGEL		5.5000	-2.70
SILGLAS	•	4.4400	-3.0170
'QUARTZ	•	6,2200	-4.0050
'KFECH2		0.0	-18.708
KFECH3		0.0	-26.638
		0.0	-34.638
KFECH4			-34.030
KFECH2		28.5650	-20.5700
'VIVIAN		0.0	-36.0000
'I'GNET	t	-40.6600	-9.5650
HEMATI	•	-30.8450	-4.0070
MAGHEN		0.0	6.3700
'GOETH		25.5550	-44.197
GREENA		0.0	-63.1900
'FECH3A	•	0.0	4.8850
ANNITE	•	62.4800	-84.2400
PYRITE		11.3000	-18.4800
MONTEP		0.0	-34.9700
MONTAB		0.0	-29.7800
			-23. 6100
HANTITE		-25.7600	-30.5100
GREGITE	•	0.0	-17.9700
FESPPT	•	0.0	-3.9150
KFEH2P	1	0.0	2.7000
KCAPO4		3.1000	6.4590
KCAH2P		3.4000	1.4080
'KMGPO4			6.5890
		3.1000 3.4000	1.5130
KHGH2P	•	2*4000	1.2120

i

-57-

'RLIOH	4.8320	0.2000
- NLLSOA	0.0	0.6400
NUMBER OF	-10110330	119.0770
'LAUMON '	39.6100	-30.9600
KSRCH	1.1500	0.8200
'KBACH		0.6400
INTHASO	0.0	1.1100
		-30.0
'RHCL	0.0	
KNACL	0.0	-30.0
'KKCL '	V.V	-30.0
'KH2SO4 '	0.0	-30.0
KO2 SATO	0.0	-11,3850
'KCC2 '	-4,776	-1.468
KFEHPO '		3.6000
NI LIFU	V.V	
NA GALLY	U.U	-7.6130
ALCEDY .	77+3304	-31.6100
PREHINT	10.3900	-11.5200
STRONT	-0.400	-9.271
'CELEST '	0.228	-6.578
BARITE		-9.978
WALLSHOLD .	4.3744	-8.585
'STRENGIT		-26.4000
'LEON '	30.0100	-69.5700
KSRHCO3	6.05	1.18
'NESQUE	-5.789	-5.2110
ARTIN		-18.4000
n ueng	2244210	-21.4950
NA	73.3470	-13.9920
'SEP PT '	0.0	-37.2120
'DIASP '	-15.4050	-35.0600
WAIRKT		-26.6200
KFEHP2		-7.5830
	105 7600	
NULL OT	2311040	-25.5070
KMINCLA	V+V	0.6070
'KINCL2 '	0.0	0.0410
'KNNIJ- '	0.0	-0.3050
"KINNOH+ "	0.0	3.4490
KMN (OH) 3		7.7820
'RISE+		0.8500
	911444	1.7080
KIEN03,2		0.0590
*KPRHCO3+		1.7160
'RICKO4-	276.6200	-127.8240
10101-		-118.4400
	5.22	2.81
	0.0	-34.4400
		17.9380
	-2414944	
	-2312040	15.8610
'BIRNSITE	0. 0	18.0910
'NUSTITE '	• • • •	17.5040
'BIXBYITE	-15.2450	-0.6110
'HAUSAITE	-80.1400	61.5400
	4.1000	-12.9120
FRALE	20.0900	-35.6440
L.C. MARTIN		
FEARE LIAS	0.0	-0.2380
	-2.0790	-10.5390
KSRSO4	1.6	2.55
Fig. Parkette	-17.6220	8.7600
	-7.1750	5.5220
MNCL2,2W	1.7100	3.9740
14. Parkit, § 6. 11	1.1100	313144

-58-

MNCL2,4W	17.3800	2.7100
'TEPHRITE '	-40.0600	23.1220
'RHODONIT '	-21.8850	9.5220
'MNS GRN '	-5.7900	3.8000
MNSC4	-15.4800	2.6690
'MN2504,3 '	-39.0600	-5.7110
'MNBP04,2 '	2.1200	-23.8270
MNHPO4	0.0	-12.9470

.

ł

-59-

UMBER	MINERAL NAMES	MINERAL OR Species Abr	REACTION	
1		KPE +3	$Fe^{+2} = Fe^{+3} + e^{-1}$	
2		KFEH+2	$Fe^{+2} + H_20 = Fe0H^{+2} + e^- + H^+$	
3		KFE011+	$Fe^{+2} + H_20 = Fe0H^+ + H^+$	
4		KFEOOH	$Fe^{+2} + 2H_20 = Fe00H^- + 3H^+$	
5	an a	KFES04	$Fe^{+2} + SO_4^{-2} = FeSO_4^+ + e^-$	
<u>к</u>		KFECL	$Fe^{+2} + C1^{-} = FeC1^{+2} + e^{-}$	
` 7		KFECL2	$Fe^{+2} + 2C1^{-} = FeC1_{2}^{+} + e^{-}$	
8		KFECL3	$Fe^{+2} + 3Cl^{-} = FeCl^{\circ}_{3} + e^{-}$	
9		KFESO	$Fe^{+2} + SO_4^{-2} = FeSO_4^{\circ}$	
10	siderite	SIDERITE	$FeCO_3 = Fe^{+2} + CO_3^{-2}$	
11	magnesite		$M_{g}CO_{3} = M_{g}^{+2} + CO_{3}^{-2}$	
12	dolomite		$CaMg(CO_3)_2 = Ca^{+2} + Mg^{+2} + 2CO_3^{-2}$	
13	calcite	CALCITE	$CaCO_3 = Ca^{+2} + CO_3^{-2}$	
14		KHJSIO	$H_4 S10_4 = H_3 S10_4^- + H^+$	
15		KH2S10	$H_4 S10_4 = H_2 S10_4^{-2} + 2H^+$	
16		KHP04	$H^+ + PO_4^{-3} = HPO_4^{-2}$	
17	****	KH2PO4	$2H^{+} + PO_{4}^{-3} = H_{2}PO_{4}^{-}$	
18	anhydrite	ANHYDRIT	$CaSO_4 = Ca^{+2} + SO_4^{-2}$	

•

(

19	gypsum	GYPSUM	$CaSO_4 \cdot 2H_2O = Ca^{+2} + SO_4^{-2} + 2H_2O$
20	brucite	BRUCITE	$Mg(OH)_2 = Mg^{+2} + 20H^{-1}$
21	chrysotile	CHRYSOTL	$Mg_3Si_2O_5(OH)_4 + 5H_2O = 3Mg^{+2} + 2H_4SIO_4 + 6OH^{-1}$
22	aragonite	ARAGONIT	$c_{a}c_{3} = c_{a}^{+2} + c_{3}^{-2}$
23		KMGP	$Mg^{+2} + F^{-} = MgF^{+}$
24		KCASO4	$ca^{+2} + so_4^{-2} = caso_4^{\circ}$
25		кмсон	$Mg^{+2} + OH^{-} = MgOH^{+}$
26		кнзвоз	$H_{3}BO_{3} = H^{+} + H_{2}BO_{3}^{-}$
27		KNH 3	$NH_4^+ = NH_3 + H^+$ L^{\times}
28	forsterite	FORSTRIT	$Mg_2SiQ_4 + 4H_2O = 2Mg^{+2} + 2H_4SiO_4 + 40H^{-1}$
29	diopside	DIOPSIDE	$CaMgSi_{2}O_{6} + 6H_{2}O = Ca^{+2} + Mg^{+2} + 2H_{4}SiO_{4} + 40H^{-1}$
30	clinoenstatite	CLENSTIT	$MgSiO_3 + 3H_2O = Mg^{2+} + H_4SiO_4 + 20H^-$
31		KNAIIPO	$Na^+ + HPO_4^{-2} = NaHPO_4^{-1}$
32	tremolite	TREMOLIT	$Ca_2Mg_5Si_8O_{22}(OH)_2 + 22H_2O = 2Ca^{+2} + 5Mg^{+2} + 8H_4SiO_4 + 14OH^{-1}$
33		ккнро	$K^{+} + HPO_{4}^{-2} = KHPO_{4}^{-}$
34		KMGHPO	$Mg^{+2} + HPO_4^{-2} = MgHPO_4^{\circ}$
35		ксанро	$Ca^{+2} + HPO_4^{-2} = CaHPO_4^{\circ}$
36	*****	КН2 СО З	$HCO_{3}^{-} + H^{+} = CO_{2}(aq) + H_{2}O$
37	sepiolite	SEPIALIT	$Mg_2Si_3O_{7.5}(OII) \cdot 3H_2O + 4.5II_2O = 2Mg^{+2} + 3II_4SIO_4 + 4(OII)^{-1}$

•

٠

Ć

•

.

.

-61-

38	talc .	TALC	$Mg_3S1_4O_{10}(OH)_2 + 10H_2O = 3Mg^{+2} + 4H_4S1O_4 + 60H^{-1}$
39	hydromagnesite	HYDMAG	$M_{g_5}(CO_3)_4(OH)_2 \cdot 4H_2O = 5Mg^{+2} + 4CO_3^{-2} + 2OH^{-1} + 4H_2O$
40	adularia	ADULAR	KALS1308 + 8H20 = K ⁺ + A1(0H) $_{4}^{-}$ + 3H45104
41	albite	ALBITE	$NeAlSi_{3}O_{8} + 8H_{2}O = Na^{+} + A1(OH)_{4}^{-} + 3H_{4}S1O_{4}^{-}$
42	anorthite	ANORTH	$CaAl_2Sl_2O_8 + 8H_2O = Ca^{+2} + 2A1(OH)_4^- + 2H_4S1O_4$
43	analcime	ANALCM	NaA1S1206 · H20 + 5H20 = Na ⁺ + A1(OH) + 2H2S102
44	muscovite	KMICA	$KA1_{3}S1_{3}O_{10}(OH)_{2} + 12H_{2}O = K^{+} + 3A1(OH)_{4}^{-} + 3H_{4}S1O_{4} + 2H^{+}$
45	phlogopite	PHLOG	$K_{3}^{\text{Mg}} = 10H_{2}^{(0H)} + 10H_{2}^{(0)} = K^{+} + 3H_{3}^{+2} + A1(0H)_{4}^{-} + 3H_{4}^{(0H)} = 60H^{-}$
46	illite	ILLITE	$K_{.6}^{Hg}_{.25}^{A1}_{2.3}^{S1}_{3.5}^{O}_{10}^{(OH)}_{2}^{+11.2H}_{2}^{O} = .6K^{+}_{+.25Mg}^{+2}_{+2.3A1}^{+}_{(OH)}_{2}^{+3.5H}_{2}^{S10}_{2}^{+1.2H}^{+}_{+1.2H}^{+}_{-1.2H}^{+1.2H}_{$
47	kaolinite	KAOLIN	$A1_{2}S1_{2}O_{5}(OH)_{4} + 7H_{2}O = 2A1(OH)_{4}^{-} + 2H_{4}S1O_{4} + 2H^{+}$
48	halloysite	HALLOY	$A1_2S1_2O_5(OH)_4 + 7H_2O = 2A1(OH)_4^- + 2H_4S1O_4^- + 2H_4^+$
49	beidellite	BEIDEL	$(Na,K, \frac{1}{2}Mg)_{.33}A1_{2.33}S1_{3.67}O_{10}(OH)_{2}+12H_{2}O = .33(Na,K, \frac{1}{2}Mg)^{+}+2.33A1(OH)_{4}^{-}+3.67H_{4}S1O_{4}+2H^{+}$
50	chlorite	CHLOR	$Mg_{5}Al_{2}Sl_{3}O_{10}(OII)_{8} + 10II_{2}O = 5Mg^{+2} + 2Al(OH)_{4} + 3H_{4}SlO_{4} + 80H^{-1}$
51	alunite	ALUNIT	$KA1_3(SO_4)_2(OH)_6 = K^+ + 3A1^{+3} + 2SO_4^{-2} + 60H^-$
52	gibbsite	GIBCRS	$A1(OH)_3 = A1^{+3} + 30H^{-1}$
53	bochmite	Boehm	A10(0H) + $H_2 0 = A1^{+3} + 30H^{-1}$
54	pyrophyllite	PYROPH	$A1_2S1_4O_{10}(OH)_2 + 12H_2O = 2A1(OH)_4 + 4H_4S1O_4 + 2H^+$
55	phillipsite	PHILIP	Na.5K.5A1S1308-H20 + 7H20 = 0.5Na ⁺ + 0.5K ⁺ + A1(0H) ⁻ ₄ + 3H2S104
56	erionite	ERION	NaAlS1 _{3.5} 0 ₉ 3H ₂ 0 + 6H ₂ 0 = Na ⁺ + A1(OH) ₄ + 3.5H ₄ S10 ₄

62 -

· 57	clinoptilolite	CLINOP	$(K,Na)A1Si_50_{12} \cdot 3.5H_20 + 8.5H_20 = (K,Na)^+ + A1(0H)_4^- + 5H_4Si0_4$
58	mordenite	MORDEN	$(Na,K)AlSi_{4.5}O_{11} \cdot 3H_2O + 8H_2O = (Na,K)^+ + Al(OII)_4^- + 4.5H_4SiO_4$
59	nahcolite	NAHCOL	$NaHCO_3 = Na^+ + HCO_3^-$
60	trona	TRONA	$NaHCO_3 \cdot Na_2CO_3 \cdot 2H_2O = 3Na^+ + HCO_3^- + CO_3^{-2} + 2H_2O$
61	natron	NATRON	$Na_2CO_3 \cdot 10H_2O = 2Na^+ + CO_3^{-2} + 10H_2O$
62	thermonatrite	THRNAT	$Na_2CO_3 \cdot H_2O = 2Na^+ + CO_3^{-2} + H_2O$
63	fluorite	FLUOR	$CaF_2 = Ca^{+2} + 2F^{-}$
64	Ca-montmorillonite	MONTCA	$C_a \cdot 17^{A1} \cdot 2.33^{S1} \cdot 3.67^{O_{10}(OH)} + 12H_2^{O} = .17Ca^{+2} + 2.33A1(OH)_4^{-} + 3.67H_4^{S1O_4} + 2H^{+}$
65	halite	HALITE	$NaCl = Na^+ + Cl^-$
66	thenardite	THENAR	$Na_2SO_4 = 2Na^+ + SO_4^{-2}$
67	mirabilite	MIRABI	$Na_2SO_4 \cdot 10H_2O = 2Na^+ + SO_4^{-2} + 10H_2O$
68	mackinawite	MACKIT	$FeS + H^{+} = Fe^{+2} + HS^{-}$
69		KHC03	$co_3^{-2} + H^+ = Hco_3^-$
70		KNACO3	$Na^+ + CO_3^{-2} = NaCO_3^{-1}$
71		KNAHCO3	$Na^{+} + HCO_{3}^{-} = NaHCO_{3}^{\circ}$
72		KNASO4	$Na^+ + SO_4^{-2} = NaSO_4^{-1}$
73		KKSO4	$\kappa^{+} + so_{4}^{-2} = \kappa so_{4}^{-}$
74		KMGC03	$Mg^{+2} + CO_3^{-2} = MgCO_3^{\circ}$
75		KMGHCO3	$Mg^{+2} + HCO_3 = MgHCO_3^+$
	((

76		KMGSO4	$Mg^{+2} + SO_4^{-2} = MgSO_4^{\circ}$
77		KCAOH	$Ca^{+2} + OH^{-} = CaOH^{+}$
78		KCAIICO3	$Ca^{+2} + HCO_3^- = CaHCO_3^+$
79		KCACO3	$Ca^{+2} + CO_3^{-2} = CaCO_3^{\circ}$
80		KCAF+	$Ca^{+2} + F = CaF^{+}$
81		KALOH	$A1^{+3} + 0H^{-} = A10H^{+2}$
82	, 	KALOH2	$A1^{+3} + 20H^{-} = A1(OH)_{2}^{+}$
83	*****	KALOH4	$A1^{+3} + 40H^{-} = A1(0H)_{4}^{-}$
84		KALF	$A1^{+3} + F^{-} = A1F^{+2}$
85		KALF2	$A1^{+3} + 2F^{-} = A1F_{2}^{+}$
86		KALF3	$A1^{+3} + 3F^{-} = A1F_{3}^{\circ}$
87		KALF4	$A1^{+3} + 4F^{-} = A1F_{4}^{-}$
88		KALSO4	$A1^{+3} + S0_4^{-2} = A1S0_4^+$
89		KASO42	$A1^{+3} + 2SO_4^{-2} = A1(SO_4)_2^{-1}$
90 [°]	********	KHSO4	$H^{+} + SO_{4}^{-2} = HSO_{4}^{-2}$
91		KH2SC	$SO_4^{-2} + 10H^+ + 8e^- = H_2S + 4H_2O$
92		KH2S	$H_2s = H^+ + Hs^-$
93		KHS	$HS^{-} = H^{+} + S^{-2}$
94		коху	$.5H_20 = .250_2 + H^+ + e^-$

C.

.

1

.

-64-

05		КСН4	$HCO_3 + 8e^+ + 9H^+ = CH_4 + 3H_2O$
95			$Ca_5(PO_4)_3(OH) + 3H_2O = 5Ca_{*}^{+2} + 3HPO_4^{-2} + 4OH^{-2}$
96	hydroxyapatite	HYXAPT	$Ca_5(PO_4)_3(OH) + 3H_2O = 5Ca_1 + 5H_1O_4 + 4OH + 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2$
97	fluorapatite	FLUAPT	$Ca_5(PO_4)_3F + 3H_2O = 5Ca^{+2} + 3HPO_4^{-2} + 3OH^{-1} + F^{-1}$
98	chalcedony	CHALC	$sio_2 + 2H_2 0 = H_4 sio_4$
99	magadiite	MAGADI	$NaSi_{7}O_{13}(OH)_{3} \cdot 3H_{2}O + H^{+} + 9H_{2}O = Na^{+} + 7H_{4}SiO_{4}$
100	cristobalite	CRISTO	$sio_2 + 2H_2 0 = H_4 Sio_4$
101	silica gel	SILGEL	$sio_2 + 2H_2 0 = H_4 sio_4$
102	quartz	QUARTZ	$sio_2 + 2H_2 0 = H_4 Sio_4$
L ¹ 103		KFEOH2	$Fe^{+2} + 2H_20 = Fe(OH)_2^+ + 2H^+ + e^-$
104		KFEOH3	$Fe^{+2} + 3H_20 = Fe(OH)_3^0 + 3H^+ +e^-$
105		KFEOH4	$Fe^{+2} + 4H_20 = Fe(OH)_4^- + 4H_+^+ e^-$
106		KFEOH2	$Fe^{+2} + 2H_20 = Fe(0H)_2^0 + 2H^+$
107	in vivianite	VIVIAN	$Fe_3(PO_4)_2 \cdot 8H_2 0 = 3Fe^{+2} + 2PO_4^{-3} + 8H_2 0$
108	a magnetite	MACNET	$Fe_{3}O_{4} + 8H^{+} = 3Fe^{+3} + 4H_{2}O + e^{-1}$
109	Denatite	HEMATI	$Fe_2O_3 + 6H^+ = 2Fe^{+3} + 3H_2O$
110	BASDORICO	MACHEM	$Fe_2O_3 + 6H^+ = 2Fe^{+3} + 3H_2O$
111	goethite	COETH	$FeO(OII) + II_2O = Fe^{+3} + 30II^-$
112	greenalite	CREENA	$Fe_3Si_2O_5(OH)_4 + 5H_2O = 3Fe^{+2} + 2H_2SiO_4 + 60H^-$
113	rphous Fe(Oll) ₁ FEOH3A	$Fe(OII)_3 + 3II^+ = Fe^{+3} + 3II 0$
		2	

.

.

.

.

•

 $KFE_3A1Si_3O_{10}(OH)_2 + 10H_2O = K^+ + 3Fe^{+2} + A1(OH)_4^- + 3H_4SiO_4 + 60H^-$ 114 annite ANNITE $FeS_2 + 2H^+ + 2e^- = Fe^{+2} + 2HS^-$ 115 pyrite PYRITE $(H, Na, K)_{0.28}^{Mg} Mg_{0.29}^{Fe} Fe_{0.23}^{A1} A1_{1.58}^{S1} S1_{3.93}^{O}_{10} (OH)_{2} + 10.04 H_{20} =$ 116 montmorillonite MONTBF $0.28(H, Na, K)^+ + 0.29 Mg^{+2} + 0.23 Fe^{+3} + 1.58 A1(OH)_{4}^{-1}$ +3.93 H45104 $(H, Na, K)_{0.42}Mg_{0.45}Fe_{0.34}^{+3}A1_{1.47}Si_{3.82}O_{10}(OH)_{2} + 9.16H_{2}O + 0.84H^{+}$ 117 montmorillonite MONTAB =0.42(H,Na,K) +0.45Mg +2 + 0.34Fe +3 + 1.47A1(OH) + 3.82 H₄SiO₄ $CaMg_3(CO_3)_4 = 3Mg^{+2} + Ca^{+2} + 4CO_3^{-2}$ 118 huntite HUNTITE $Fe_3S_4 + 4H^+ + 2e^- = 3Fe^{+2} + 4HS^-$ 119 greigite GREGITE $FeS + H^{+} = Fe^{+2} + HS^{-}$ 120 amorphous FeS FESPPT $Fe^{+2} + H_2PO_4^- = FeH_2PO_4^+$ 121 KFEH2P $Ca^{+2} + PO_{4}^{-3} = CaPO_{4}^{-3}$ 122 KCAP04 $Ca^{+2} + H_2PO_4^- = CaH_2PO_4^+$ 123 KCAH2P $Mg^{+2} + PO_A^{-3} = MgPO_A^{-1}$ 124 KMGP04 $Mg^{+2} + H_2PO_4^- = MgH_2PO_4^+$ 125 KMGH2P $Li^+ + OH^- = L10H^0$ 126 KLIOH $Li^{+}SO_{4}^{-2} = LiSO_{4}^{-1}$ 127 KLIS04 $NO_{3}^{-} + 10H^{+} + 8e^{-} = NH_{4}^{+} + 3H_{2}O$ 128 KNH4R $CaAl_2Si_4O_{12} \cdot 4H_2O + 8H_2O = Ca^{+2} + 2Al(OH)_4^{-} + 4H_4SiO_4$ $Sr^{+2} + OH^{-} = SrOH^{+}$ 129 Laumontite LAUMON 130 KSROH $Ba^{+2} + OH^{-} = BaOH^{+}$ 131 KBAOH $NH_{4}^{+} + SO_{4}^{-2} = NH_{4}SO_{4}^{-2}$ 132 KNH4SO

-66-

	133		KHCL	$H^{+} + CI^{-} = HCI^{\circ}$
	134	*-= = =	KNACL	$Na^+ + C1^- = NaC1^\circ$
	135	*****	KKCL	$K^+ + C1^- = KC1^\circ$
	136		KH2S04	$2H^+ + SO_4^{-2} = H_2 SO_4^{0}$
	137		KO2SATO	$0.5H_20 = 0.250_{2(4q)} + H^+ + e^-$
	138		ксо2	$CO_{2(g)} + H_2O = H_2CO_3^*$
	139		кгенро	$Fe^{+2} + HPO_4^{-2} = FeHPO_4^{\circ}$
	140		KFEHP+	$Fe^{+2} + HPO_4^{-2} = FeHPO_4^{+} + e^{-1}$
2	141	amorphous Al(OH) ₃	ALOH 3A	$A1(OH)_3 = A1^{+3} + 30H^{-1}$
•	142	prehnite	PREHNT	$Ca_2Al_2Si_3O_{10}(OH)_2 + 8H_2O + 2H^+ = 2Ca^{+2} + 2Al(OH)_4^- + 3H_4SiO_4$
	143	strontianite	STRONT	$srco_3 = sr^{+2} + co_3^{-2}$
	144	celestite	CELEST	$srso_4 = sr^{+2} + so_4^{-2}$
	145	barite	BARITE	$BaSO_4 = Ba^{+2} + SO_4^{-2}$
	146	witherite	WITHERIT	$BaCO_3 = Ba^{+2} + CO_3^{-2}$
	147	strengite	STRENGIT	$FePO_4 \cdot 2H_2 O = Fe^{+3} + PO_4^{-3} + 2H_2 O$
	148	leonhardite	LEON	$Ca_2Al_4Si_8O_{24} \cdot 7H_2O + 17H_2O = 2Ca^{+2} + 4Al(OH)_4^{-} + 8H_4SiO_4$
	149		KSRIICO ₃	$sr^{2+} + Hco_3^{-} = srHco_3^{+}$
	150	nesquehonite	NESQUE	$M_{g}CO_{3} \cdot 3H_{2}O = M_{g}^{+2} + CO_{3}^{-2} + 3H_{2}O$
	151	(-tinite	ARTIN	$Mg_2(OII)_2CO_3 \cdot 3H_2O = 2Mg^{+2} + CO_3^{-2} + 2OH^{-1} + 3H_2O$
				-

••

-67-

٠,

- -

.

۰,

.

.

•

.

	152		KO2AQ	$0.5H_20 = 0.250_2(aq) + H^+ + e^- \rho \xi = f(\bar{\mu} \bar{\mu}, \bar{\mu})$
	153		KW - 1	$H_{20} = H^{+} + 0H^{-}$
	154	sepiolite	SEP PT	$Mg_2S1_3O_{7.5}(OH).3H_2O + 4.5H_2O = 2Mg^{+2} + 3H_4S1O_4 + 4OH^{-1}$
	155	diaspore	DIASP	A100H + $H_20 = A1^{+3} + 30H^{-1}$
	156	wairakite	WAIRKT	$CaA1_2S1_4O_{12}.2H_2O + 10H_2O = Ca^{+2} + 2A1(OH)_4^{-} + AH_4S1O_4$
	157		KFEHP2	$Fe^{+2} + H_2PO_4^- = FeH_2PO_4^{+2} + e^-$
•. •	158		KMN3+	$Mn^{+2} = Mn^{+3} + e^{-1}$
Å.	159		KMINCL+	$Mn^{+2} + C1^{-} = MnC1^{+}$
•	160	*****	KMINCL2	$Mn^{+2} + 2C1^{-} = MnC1_{2}^{0}$
	161		KMNCL3-	$Mn^{+2} + 3C1^{-} = MnC1_{3}^{-}$
·	162		KPINOH+	$Mn^{+2} + OH^- = MnOH^+$
	163		KMIN (OH) 3	$Mn^{+2} + 30H^{-} = Mn(0H)_{3}^{-}$
	164	·····	KMNF+	$Mn^{+2} + F^- + MnP^+$
	165		KMNSO4	$Mn^{+2} + SO_4^{-} - MnSO_4^{-}$
	166		KMINNO3,2	$Mn^{+2} + 2NO_3^- = Mn(NO_3)_2^0$
	167	\$ - ***	KMNHCO3+	$Mn^{+2} + HCO_3^- = MnHCO_3^+$

 $\left(\right)$

 $\left(\right)$

.

ц.

	L68			$Mn^{+2} + 4H_2 0 = Mn0_4^- + 8H^+ + 5e^-$
	169	* -	km104	$Mn^{+2} + 4H_20 = Mn0_4^- + 8H^+ + 4e^-$
	170		KSRCO3	$sr^{2+} + co_3^{2-} = srco_3^{o}$
	171		KHMNO2	$Mn^{+2} + 2H_2 0 = HMn 0_2^{-} + 3H^{+}$
	172	manganosite	MANGANO	$Mn0 + 2H^+ = Mn^{+2} + H_2^0$
	173	pyrolusite	PYROLUST	$MnO_2 + 4H^+ + e^- = Mn^{+3} + 2H_2O$
	174	δ, birnessite	BIRNSITE	$MnO_2 + 4H^+ + e^- = Mn^{+3} + 2H_2O_1$
50	175	nsutite	NUSTITE	$M_{100} + 4H^{+} + e^{-} = Mn^{+3} = 2H_20$
	176	bixbyite	BIXBYITE	$Mn_2O_3 + 6H^+ = 2Mn^{+3} + 3H_2O_1$
	177	hausmanite	HAUSMITE	$Mn_{3}O_{4} + 8H^{+} + 2e^{-} = 3Mn^{+2} + 4H_{2}O_{1}$
	178	pyrochrosite	mnoh2	$Mn(OH)_2 = Mn^{+2} + 20H^{-1}$
	179	Mn (011) 3	MNOH3	$Mn(OH)_3 = Mn^{+3} + 30H^{-1}$
	180	manganite	MANGANIT	$M_{n00H} + 3H^{+} = Mn^{+3} = 2H_2^{0}$
	181	rhodochrosite	RHODOCHR	$MnCO_3 = Mn^{+2} + CO_3^{-1}$
	182	~~~~~~~~	KSRS04	$sr^{2+} + so_4^{2-} = srso_4^{0}$

•

	183	MnC12	MNCL2	$MnCl_2 = Mn^{+2} + 2Cl^{-1}$
	184	MnCl2.H20	MNCL2, 1W	$MnC1_2 \cdot H_2^0 = Mn^{+2} + 2C1^- + H_2^0$
• .	185	MnC12.2H20	MNCL2, 2W	$MnC1_2 \cdot 2H_2 0 = Mn^{+2} + 2C1^{-} + 2H_2 0$
	186	MnCl ₂ .4H ₂ O	MNCL2,4W	$MnCl_2 \cdot 4H_2 0 = Mn^{+2} + 2Cl^- + 4H_2 0$
	187	tephroite	TEPHRITE	$Mn_2S10_4 + 4H^+ = 2Mn^{+2} + H_4S10_4$
	188	rhodonite	RHODONIT	$MnS10_3 + 2H^+ + H_20 = Mn^{+2} + H_4S10_4$
	189	MnS(green)	MNS GRN	$MnS + H^+ = Mn^{+2} + HS^-$
	190	MnSO4	MNSO4	$MnSO_4 = Mn^{+2} + SO_4^{-2}$
	191	^{Mm} 2(S04)3	MN2S04,3	$\operatorname{Mn}_{2}(\operatorname{SO}_{4})_{3} = 2\operatorname{Mn}^{+3} + 3\operatorname{SO}_{4}^{-2}$
	192	Mn3(PO4)2	MN3P04, 2	$Mn_3(PO_4)_2 = 3Mn^{+2} + 2PO_4^{-3}$
	193	MnHPO ₄	MNHP04	$MnHPO_4 = Mn^{+2} + HPO_4^{-2}$

.

•

,

.

CPO 837-202