
R88.05

NUMERICAL SIMULATION OF
SOLUTE TRANSPORT IN

RANDOMLY HETEROGENEOUS
POROUS MEDIA: MOTIVATION,

MODEL DEVELOPMENT,
AND APPLICATION

by
ANDREW F. B. TOMPSON

EFSTRATIOS G. VOMUVORIS
and

LYNN W. GELHAR

RALPH M. PARSONS LABORATORY
HYDROLOGY AND WATER RESOURCE SYSTEMS

Report Number 316

Prepared with the support of the
Nuclear Regulatory Commission, Contract NRC-83-174

National Science Foundation, Grant ECE-8311786

February, 1988



R88-05

NUMERICAL SIMULATION OF SOLUTE TRANSPORT IN RANDOMLY
HETEROGENEOUS POROUS MEDIA: MOTIVATION,

MODEL DEVELOPMENT, AND APPLICATION

by

ANDREW F.B. TOMPSON
EFSTRATIOS G. VOMVORIS

LYNN W. GELHAR

RALPH M. PARSONS LABORATORY

HYDROLOGY AND WATER RESOURCES SYSTEMS

,.

Report Number 316

Prepared with the Support of the
Nuclear Regulatory Commission, Contract NRC-04-83-174 and

The National Science Foundation, Grant ECE-831 1 786

FEBRUARY 1988



ABSTRACr

A particle tracking, or "random walk" solute transport model is developed to study detailed
contaminant movements through large, synthetic heterogeneous flow systems in porous media. Such
simulations can be used to examine the large time and spatial effects of the variable flow field on the
expanding solute plumes. More specifically, the large scale experimental dispersive behavior can be
compared with theoretical predictions based upon stochastic analyses. The particle tracking model is
developed from first principles and is shown to be the most computationally efficient model for this
type of application. Computational issues regarding the model's implementation are discussed,
including the choice of time steps, boundary and initial conditions, and conversion of solutions to
concentration fields. The model is applied to some simple test problems and then to two large,
three-dimensional, heterogeneous, saturated flow systems. The results of these preliminary
investigations are analyzed and compared with results of stochastic theories. They are also used to
plan more comprensive simulations to be carried out in the future.
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L INTRODUCTION

1.1 Scope. This report is intended to review the design, development and implementation of a

detailed solute transport model for use in studying contaminant movements through large

heterogeneous flow systems in porous media. The model is based upon a particle tracking or

"random-walk" approach and is meant to be applicable to large, three-dimensional problems dealing

with the transport of dilute solutions of conservative materials through saturated or unsaturated

flow regions. The interest in carrying out these simulations stems from a desire to examine the

detailed spatial and temporal effects of developing solute plumes in heterogeneous porous media.

Although such investigations can be carried out and analyzed in many different ways, we specifically

wish to compare the results of these simulations and their mean characteristics directly with the

large scale, mean predictions of several stochastic transport theories [e.g., Gelhar et al., 1979,

Matheron and de Marsily, 1980, Gelhar and Axness, 1983, Dagan, 1984, Gelhar, 1984, and Mantoglou

and Gelhar, 1987ab,c]. As developed, the transport model can also be implemented in another way

for the solution of larger-scale, mean transport equations, as developed in the stochastic theories.

Applications of this sort would involve larger-scale, mean velocities and effective dispersion

coefficients and would form an integral part of a new, practical, and more credible modeling approach

[Gelhar, 1986,19871.

1.2 Background. It is well known that subsurface porous materials can exhibit a large degree of

natural variability, in terms of both their specific type and spatial distribution. Geologic formations

that act as flow conduits are often characterized by highly variable three-dimensional structures

consisting of layers, lenses, and perhaps, fractures in various materials ranging from sands and gravels

to clays or rocks. Corresponding to these material fluctuations is a similar variablility in the

characteristic hydraulic parameters used for the description of both flow and transport in porous

media scale balance equations [e.g., Hassanizadeh and Gray, 1979a, b]. Although these balance laws

are phrased in terms of spatially variable coefficients, their use in classical numerical models to

obtain reliable, large scale predictions of flow and transport (in space and time) through variable

media can be hampered by several factors. In many cases, geologic properties can vary over spatial

scales too small to be accurately resolved (much less physically measured) in a discretized numerical

model [e.g., Gelhar, 19841. Depending on the medium and problem size, such a detailed representation

could conceivably require an immense number of nodes ( 0 9 ?) to account for the necessary detail

over the flow domain. A usual procedure in these situations is to consider a number of homogeneous

layers or zones and treat hydraulic variabilities element- or node-wise in a traditional finite element

or finite difference grid. Such an approach ostensibly ignores the effects of any fine variations of the
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hydraulic parameters within the elements or between the nodes. However, it will typically involve

the fitting of smooth solution(s) through measured points with partially manipulated,

representative parameters. This process basically accounts in some part for measurement errors in the

parameters as well as the aforementioned sub-grid scale variabilities, although it is neither

quantitative nor predictive in nature. The resultant solutions essentially represent an averaged

behavior on a scale closer to the size of an element, grid increment, or length scale of the input

parameter variation. They do not necessarily reflect variabilities of quantities defined around the

laboratory or representitive elementary volume (REV) scale if significant heterogeneities of these

parameters exist within computational elements.

The idea behind many of the stochastic approaches mentioned above is to try to quantitatively

account for the effects of these small scale parameter variabilities so that they can be reliably

included in large scale predictive models without any extravagant data acquisition or grid resolution

expense. The usual theoretical approach employs a simple model representation of the smaller scale

variabilities and attempts to mathematically discern the resulting effects on, say, the flow and

concentration fields. The locally variable hydraulic parameter distributions are represented

mathematically as realizations of stationary spatially correlated random fields [Vanmarcke, 19831.

Each field is characterized in an approximate way by its first two statistical moments, namely the

mean, variance about the mean, and a correlation structure with an associated set of integral or

correlation length scales [Gelhar, 19841. Although the hydraulic parameters are not truly "random",

this construct seems to be an appropriate approximation in many problems where the parameter

variability about an unchanging (or perhaps linearly varying) mean is roughly constant (i.e., "locally

stationary") over the flow domain of interest [e.g., Ababou, et al., 1985, Gelhar, 19871.

The ultimate objective is to use this sort of parameter representation as an input to the classical

balance equations mentioned above. Corresponding to the mean values of the input parameters will be

mean, or smoothed output fields (i.e., head, velocity, concentration) that satisfy larger scale, mean

balance equations phrased in terms of these quantities and effective (or, large scale) hydraulic

parameters. The effective coefficients embody the influence of the small-scale variability otherwise

not directly present in the mean equations. These averaged balance equations are the ones meant to be

used in everyday practice. They would be solved numerically in the familiar fashion for the mean

(e.g., smoothed) output fields as discussed above, and they would employ the effective coefficients

derived from the theory. The variability of the true (or locally measured) values about the predicted

mean solution as well as the effective parameters can be quantified in terms of the statistical

parameters used to describe the variable medium. Measurement of the statistical quantities is meant

to be much easier than mapping out the entire distribution of the hydraulic parameters themselves.

This process, in a sense, systemizes the usual ad-hoc modeling procedures described above. It also
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provides a framework for judging the reliability of these models in terms of a different fitting

procedure: instead of trying to force the numerical (mean) solution to fit all the measurements

(quantities now seen to be representative of different scales), one now tries to fit the measurements

within a band" around the mean solution, the width of the band being related to the predicted local

variability discussed earlier. These methods are analogous to similar procedures utilized in the study

of turbulence [Monin and Yaglom, 19751.

1.3 Scales. Implicit in all of this work is a conscious recognition of two distinct spatial scales,

although many others could be hypothesized. The first is the familiar "REV" or local scale around

which the traditional porous media continuum variables, balance equations and numerical models are

developed Hassanizadeh and Gray, 1979a, b]. Most laboratory studies as well as many kinds of field

measurements are made (more or less) at this scale. Point head observations, multilevel concentration

samples, some hydraulic conductivity evaluations and laboratory dispersivity measurements serve as

examples. Here we are not considering the differences between theoretically-based REV scales and

those based around the scale of a measuring instrument [see the discussions of Cushman, 1984, Baveye

and Sposito, 1984, and Whitaker, 19861; such effects can be treated routinely within a stochastic

framework, however, by incorporating an appropriately weighted linear filter to represent spatial

averaging. The second spatial scale is the larger "ensemble" or "mean" scale about which the mean

balance equations, effective coefficients, and smoothly varying solutions discussed in the stochastic

literature are defined. Although not formulated in a volumetric sense, quantities formulated about

this scale are meant to be representative of regions larger than an REV, and would typically be

different than the smaller scale counterparts if significant variabilities of the small scale processes

exist. This is essentially the scale around which many traditional models with manipulated

parameters and smoothly varying results are centered, even though it is not usually recognized as

such, and is the one implied above when mean or averaged balance equations are discussed.

1.4 Objectives. The primary ain-of the present and complementary [e.g., Ababou, et al, 1985]

numerical investigations is to develop a flow and transport model to solve the local balance equations

for fluid mass, momenta and solute mass in a large, three-dimensional saturated or unsaturated

domain characterized by heterogeneous distributions of hydraulic parameters. It is then desired to

analyze the behavior of the local solutions and compare them with larger scale results predicted by

the stochastic theories mentioned above.

To be consistent with the fundamental hypotheses of the stochastic theories [e.g., Gelhar, 1984,

Mantoglou and Gelhar, 1987a,b,c] the variable hydraulic parameter field(s) will be modeled as

realizations of spatially correlated random fields. Flow fields will be developed for independent
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study as well as input to the transport model here. The local transport simulations will be used to

examine large time and spatial effects of the variable flow fields on a developing solute plume, and,

in particular, investigate the nature of the mean, large scale dispersive behavior. The stochastic

results of Gelhar et al., [1979], Gelhar and Axness, [19831, Dagan [19841, and Gelhar, [1987] generally

indicate that this behavior can be described by an asymptotic Fickian relationship in terms of

constant macrodispersivities and the spatial gradient of the mean (large scale) concentration. Other

topics, such as the specific influence of locally variable dispersivities on these phenomena, the

concentration variability or variance, as well as the specific effects of the kind of underlying

correlation structure selected to represent the variable hydraulic parameters can be studied.

The local simulations will focus on the generation of a large single replicate of the hydraulic

parameters over space and the use of this "artificial" domain for the flow and transport studies. This

is similar in concept to the approach of Cole, et al. [19851 who consider saturated two-dimensional

flow and transport in a "numerical groundwater laboratory" characterized by five distinct kinds of

materials distributed according to a cross sectional photograph of an actual alluvial deposit. Their

model computed flow on a grid of roughly 260,000 nodes and used a particle tracking technique for

transport based only upon a constant local diffusion coefficient. Our approach has been designed to

consider three-dimensional problems for both saturated and unsaturated problems with up to as many

asi 0 7 nodes and will involve local transport equations based upon velocity dependent dispersion

coefficients. Our approach is similar also to those of Schwartz, [1977], Smith and Schwartz, [19801,

and Uffink, [19831 who consider saturated two-dimensional problems based on conductivities

distributed either in layers, as grid-like inclusions in an otherwise homogeneous medium, or randomly

in space as done here. All of these investigations use particle tracking methods to model solute

movement.

Unlike Smith and Schwartz, [19801, however, we will not consider Monte Carlo analyses which

involve repeated simulations of the same flow and transport problem in the same region with

different realizations of the conductivity field (with identical statistics). This approach can be

useful for identifying "worst case" scenarios and it is, of course, the proper arena for numerical

verification of any ensemble stochastic theory. Our approach is a pragmatic one, however, and is

designed to simultaneously test both the theory and the implicit ergodic hypothesis that allows one

to use ensemble theory to approximate the behavior of a single realization. This rationale is

practical for the following reason: as repeated aquifer realizations do not occur in the real world,

assessment of the utility of the mean or averaged balance equations as well as the theoretical

predictions of local variability might best be made under the circumstances for which they

ultimately are meant to be used: a "single replicate" of a large, statistically homogeneous porous

medium
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A secondary objective of this study is to review the theoretical and computational aspects of

particle tracking methods with regard for their use in this and other transport investigations.

1.5 Report Outline. In the next two sections, specific details of the problem setups will be reviewed,

including a review of the governing equations, physical system, and the choice of the particle

tracking technique for our transport simulations. In sections 4 and 5, the theoretical basis of the

"random-walk" model will be presented in brief and a discussion of its relative merits and

disadvantages will be given, from both a theoretical and computational point of view. Section 6 will

review a number of applications of the simulator to a preliminary selection of model problems. The

relevant results will be compared with predictions of stochastic theories. Section 7 will include

further comments on these and future problems and a discussion of other potential applications of this

model.
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2. PHYSICAL SYSTEM AND GOVERNING EQUATIONS

2.1 Local System and General Balance Laws. Consider a porous medium composed of a rigid solid

phase partially saturated with both an air and water phase. Let the water phase contain a dilute

solution of a non-reacting and non-sorbing chemical species such that the overall bulk fluid properties

such as viscosity and density remain unchanged by the presence of the solute. Furthermore, assume

that this medium is locally homogeneous so that a single representative elementary volume (REV)

can be defined and used everywhere in some domain n to define local scale continuum balance

equations for the mass and momenta of each phase as well as the solute mass [Bear, 1972;

Hassanizadeh and Gray, 1979 a, b]. Attention here will be restricted to the isothermal balances of

fluid mass and momentum and solute mass in n, the first and last of which are given by

d (pe) V(Pev) = 0 (1)

d(p3e) V-(pevw) + V J = 0 (2)

The variables in (1) and (2) are microscopically averaged (REV) continuum quantities associated

with the porous medium and are defined at all points X in 0. They will be considered as local porous

medium properties (as opposed to larger scale mean or effective properties referred to elsewhere) and

are defined by

p = constant, mass averaged fluid density,

e(xt) = fluid void fraction, or porosity,

v(X,t) = mass averaged fluid seepage velocity,

w(Xt) = mass averaged mass fraction of the chemical species, and

J (X, = mass averaged, nonadvective flux vector of the chemical species.

It is also assumed that the local fluid momentum balance is given by the modified form of Darcy's

law,

ev = q = -KV(h + z) (3)

Here,
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q(x,t) = e the Darcy fluid mass flux,

K(X,t) = a local, scalar hydraulic conductivity,

h(xt) = p(x.t)/pg = the local pressure head, g being the magnitude of the

gravitational acceleration and p(xt) being the gauge pressure relative to

atmospheric, and

Z = the elevation above some reference datum (specifically along a direction parallel

with the gravity vector).

The coordinate system X = Xi (x.y.z) is assumed orthogonal, z being in the vertical, and fixed

with the medium.

Three constitutive approximations for e, K, and J are adopted to further describe and simplify

the porous medium under study. The moisture content and conductivity are chosen to closely parallel

the work of Mantoglou and Gelhar [1987abcJ:

e = er h - hr S (er-eo)/C (unsaturated) (4)

e0 C(h - hr) (8r-eo)/C < h - hr < (unsaturated)

o - h - hr 2 0 (saturated)

K [ K eo(h - hr). h - hr < (unsaturated) (5)

Ks h - hr 0 (saturated)

where

30(x) = the saturated fluid void fraction, or effective porosity, at X.

C(X) a Wah = a linearized soil moisture capacity at X,

dX) = alinearcharacteristic In K -- h slope at X,

Ks(x) = the saturated hydraulic conductivity at X, a scalar,

or = a constant, dry or residual moisture content, and

hr = a small, positive constant residual pressure head above which saturated

flow exists.

Notice that in the special case of saturated flow, (x,t) e0 x), and the head and velocity

fields will be steady (if the boundary conditions are time independent). The local nonadvective flux

is assumed to obey a general Fickian relationship [Bear, 19721:
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J = -e13Vo (6)

where O(x.t) is the widely used velocity-dependent hydrodynamic dispersion tensor for an

isotropic medium:

D = (CoTV D)I ((L - T)VV/V (7)

Here, V(X.t) is the magnitude of the velocity, dL(X) and dT(X) are local longitudinal and

transverse dispersivities, respectively, and 0 (x) is a molecular diffusion coefficient that includes

the effects of the medium tortuosity. Groundwater velocities V are typically on the order of

1 0 - 1 02 cm/day in magnitude (i.e., 1 0-5- 0 cm/sec). As measured in local laboratory

situations, the magnitudes of d and D are 0 ( ) cm and 0 (1 0 -5) cm2 /sec, respectively.

2.2 Larger Scale System and Mean Balance Laws. All of the material coefficients introduced above

(e0. K , C, o0, 0, l Land dT) represent some aspect of the local (REV scale) medium behavior.

If the local medium characteristics vary over regions much larger than the REV scale, these

properties would most generally become spatially dependent. Spatial heterogeneity in the saturated

conductivity K s (or its natural logarithm), for example, is well documented, and variabilities in

other hydraulic parameters or fields are also widely reported e.g., Gelhar, 1984, 1987, Hoeksema

and Kitanidis, 1985, Wierenga, et al., 1985, Yeh, et al., 1985b, Yeh, et al., 19861.

In the stochastic models discussed above, attention is generally focused on the influence of the

spatial variation of i n(K ) on the hydraulic flow fields. The characteristic length over which

fluctuations of n K are observed is the correlation or integral scale, X (Figure 1). This quantity

can be dependent on direction and is used to parameterize the statistical (or, correlation) model of the

variable medium. Depending on the medium, the magnitude of X can range anywhere from 0. 1 to

1 000 meters [Gelhar and Axness, 1983, Gelhar, 1984, 1987, Hoeksema and Kitanidis, 19851.

Observations of the n(KS) process generally indicate that it can vary about a mean or trend F(x)

that can remain constant or vary linearly over a much larger scale L, perhaps on the order of 1 to

1 0 kilometers, and that this itself can be dominated by a larger regional scale LF, indicative of a

nonlinear nature of the trend [Gelhar, 19861. The degree of local variability about F (x) is measured

by the standard deviation statistic C f of n(K ). This can range from 0.2 (uniform media) to 5 or

more (very heterogeneous media).

Because we intend to compare our results to large scale stochastic theories based upon stationarity

assumptions, interest here will be limited to those systems that possess some degree of local

stationarity; i.e., ones where X/L and C5 f/L are much smaller than unity [Gelhar, 1987]. Thus,
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domains of length less than or equal to L are usually considered. The n(K s) variability over such a

region is usually approximated by

In KS(X) = F(X) f(x) (8a)

where F (X) is the mean or expectation of n(KS), at most a linear function, and f (X) is a

perturbation from the mean. The perturbation is modeled as a zero-mean stationary random field

with a correlation structure R f f (,). The variance C2f is simply R f f (0). Although every random

field possesses an infinite set of moments, it is only the first two, namely F (X) and R f f (I), that are

used to specify the degree of variability and structure of the natural system and n(K s). Because of

this approximation, it is not necessary to know the exact form of the joint probability distribution

function associated with f. Nevertheless, a large body of evidence suggests that the marginal

densities of KS are log-normal [Freeze, 19751, so the n KS process will be considered as a normally

distributed random field.

For unsaturated systems, the influence of the spatial variation of d(X) and/or C(X) is also

included in the stochastic models of Yeh, et al. [1985a, 19861 and Mantoglou and Gelhar, [1987a].

Their spatial behavior is similarly approximated:

o(X) = A * a(x) (8b)

c(x) = r ax) (8c)

Here, A and r are the constant means of o and C. respectively, and a(x) and Z(x) are stationary,

spatially correlated random fields. For simplicity, the correlation models of a and Z are presumed to

differ from R f r by multiplicative constants ( 2 a/d 2 r or C 2 /d 2 r), and cross covariances

between 3, V, and f are either assumed to be perfect or nonexistent. For lack of other information,

they will also be modeled as normally distributed fields.

As mentioned in §1.4, there exists a set of mean hydraulic output fields that correspond to the

means of the parameter fields and their modeled variabilities. These are conserved according to a set

of larger scale, mean balance equations similar in form to those in §2.1. The form of the larger scale

equations is generally found by inserting the model parameter representations (8) into the balance

laws (1), (2), and (3) and forming the mean or expected value of these equations under the joint

probability distribution used to model the variabilities of f, a, and W. These laws will be

approximate because only the first and second order moments of f, a, and are used to characterize

their distributions in the theoretical analyses. They can be thought of as filtered equations, affected
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by the small scale equations and parameter variabilities, and typically are meant to be used over

regions of scale L (Figure 1) where the parameter variabilities are approximately stationary.

Although we will not be solving the mean equations in this investigation, they are presented below

for consistency in the discussion. The forms are somewhat general and are only meant to convey the

essence of the approach used in the saturated and unsaturated theories.

Corresponding most generally to equations (1) and (2) are the mean balances of fluid and solute

mass

a (pe) * V(pev 0 (9)
at

(piU A) + Vp ) V(Jlocal Jrmacro) = 0 (10)

where the density p is still assumed locally constant. The fluid momentum is conserved in terms of a

mean form of Darcy's equation (3):

Here, (xt), 7(xt). and p(x,t) a 7cx,t) are the large scale, mean quantities,

representative of behavior in spatial regions on the order of a correlation scale. Corresponding to the

constitutive relationships (4) and (5) are the larger scale forms

a e r or h- hr (ereO' )/r (unsaturated) (12)L e r - hr) (ereT - )/ < - hr < 0 (unsaturated)

60 h - hr 0 (saturated)

KG u hGU hr < 0 (unsaturated) (13)

KG Is h hr 0 (saturated)

where (x. t) is a mean pressure head.

In the formulations (9) - (13), new or modified quantities appear that reflect the influence of the

local variabilities on the large scale processes. The estimation of functional forms and

parameterizations for them generally constitutes a closure problem and is one of the fundamental

goals of any stochastic model aimed at quantifying larger scale phenomena. The effective hydraulic
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conductivity, , for example, is most generally tensorial (and perhaps nonlinear) in nature and is

written in terms of the geometric mean of the saturated conductivity, K G(X) = eF(X), and a

function of the statistical quantities used to characterize the modeled medium. In saturated

applications, gs generally depends on 2f and the correlation scales, i [Gelhar and Axness,

1983; Gelhar, 1987] and is essentially constant. In the unsaturated approaches of Mantoglou and

Geihar [1987a,bcI, for example, gU(X,t) depends on d2 a, 2f, the local head variance CY2h. A,

r X, i as well as the mean pressure head, h. its spatial gradient, and its partial time derivative.

The terms (xt) and CX.t) are two other new effective quantities that are means of two

perturbation terms. The first, f = pe, w(where ' - and C& a - U) represents

the influence of the variabilities of moisture on the mean solute transport, a process that has, to date,

not been studied in detail. The second, C X YhF, where h h - h represents the effect of

pressure head variabilities on the mean moisture content, and has been discussed briefly by Mantoglou

and GeLhar [1987ab,cI and Mulford [19861.

Contributions to the mean nonadvective flux from local dispersion, J local' are often excluded

from larger scale models [e.g., Dagan, 19841, or treated approximately. Its overall effect on the mean

transport is frequently thought to be small, however it is believed to influence the structure of

J macro in some cases. Geihar and Axness [19831 and Mantoglou and Geihar [1987a,bcI, model

Jlocal as in (6) and (7), where 0 is ignored and GV is replaced by the mean flux Tand its

components, such that

J loca PElocal'V(° (14a)

The tensor Elocal is essentially eD of equation (6) evaluated in terms ot the mean components of

the flux, T. where 0 is neglected. The large scale nonadvective flux J macro P )', is the

result of local, porous medium velocity fluctuations and is believed to be quite important in the

overall transport process, both in saturated and unsaturated systems. Within the framework of a

simple perturbation expansion that ignores products of three or more deviation terms, J macro is

generally found to behave approximately according to a Fickian-like relationship

Jmacro - PEmacrot) (14b)

where Emacro(t) is usually written in terms of the so-called marcrodispersivity tensor, q(t),

with q being the magnitude of the mean flux, . The specific nature of the components of At) is

discussed in detail in GeLhar and Axness, [19831, Dagan, [1984], Gelhar, [1987], and Mantoglou and

GeLhar [1987ab,c] to which the reader is encouraged to refer. It will suffice to say here that certain
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components of A(t) have been evaluated in dosed form for certain kinds of problems under specific

simplifying assumptions and appear to take on constant asymptotic values for large solute travel time

or distances, in effect making (14b) an exact Fickian relationship. Since they originate from stochastic

models, these are strictly ensemble results and only make sense in the familiar, single replicate forum

in an ergodic (large scale) sense. According to this approach, the nature of the mean solute dispersion

at small travel times or distances is embodied in a time dependence of the macrodispersivity A(t).

Although some expressions have been developed for some time-dependent components of A(t) it

will generally be difficult to confirm these results exactly in single replicate situations, whether

they be found experimentally (as in our computations) or in field experiments. A specific

demonstration of the use of the asymptotic, effective dispersivity tensor in a large-scale, mean

simulation will be presented in section 6.

For the most part, the large scale asymptotic effect has been borne out in many physical

situations and theoretically to varying degrees [e.g., Gelhar, 1986], although some theoretical results

occasionally indicate otherwise [e.g. Matheron and deMarsily, 19801. It is the subject of a great deal

of debate and will be discussed further in section 5 and the applications in section 6.

2.3 Discretized Local Domain. Let us return now to the local simulation problems and consider how to

appropriately define the large and heterogeneous flow region. In order to obtain statistically

meaningful local output fields for the single replicate simulations, a flow and transport domain C

(a subset of Q) must be considered whose characteristic length L i in the i -t h coordinate direction

is much larger than the corresponding correlation scale of the n(K s) field in the same direction (Li

>> X). This is chosen to ensure that variabilities in the output fields have sufficient room to

develop in space in the absence of boundary effects. Similarly, it is also desired to have a

computational resolution AXi much less than Xi (AXi << L so that detailed local behavior on a

scale close to the REV can be modeled. The choice of A x i may also be affected by the degree of

variability (e.g., d 2 f) of the local parameter distributions. A relatively smooth variation in the

parameter values is required so that physical behavior within a cell or element is representative of

the small scale (REV) as well as to make the ensuing computations more tractable [Ababou, et al.,

1985].

The choices L 25 Xi and 4AXi have been postulated by Ababou, et al., [1985] as a

possible domain-discretization that roughly satisfies the above constraints (Figure 2). More recent

suggestions have considered raising L i to 30 X i or X i to 5 A x i. The ideal three-dimensional

problem would be equivalently discretized in all three directions and could thus possess anywhere

from one- to as many as ten-million ( o - 1 07) nodes. The sheer size of this problem will imply

that extreme care be taken in the design and use of the numerical simulators for flow and transport.
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2.4 Local Saturated Problem. Given the random distribution of the saturated conductivities K S(x) in

space, the general flow problem on the finite domain Qc with suitable conditions on the boundary

aQC will simply involve the solution of (1) and (3), using (4) and (5). Combination of (1) and (3) with

p = constant yields an equation for the saturated head field:

VIK V(h Z)] = 0 (15)

The velocities can be derived from

e 0v = q = -KSV-(h z) (16)

For saturated problems, our operating hypotheses will presume that spatially variable porosities eo
are either small or unimportant in the overall flow and transport process (paralleling the stochastic

work of Gelhar and Axness, 1983, Dagan, 1984, Mantoglou and Gelhar, 1987a, for example), and their

effects will not be included in the current analyses. In this case, the saturated transport equation with

p = constant becomes

at(PW) + V (pvG) - VD-V(pG))] = 0 (17)

which can be solved on QC given the velocity field and suitable auxiliary conditions for () or the

mass concentration defined by C = p. Notice that local models based upon (17) will be able to

include the effects of a spatially variable dispersion tensor D(X.t). The spatial dependence could

arise from locally variable velocities, dispersivities, diffusion coefficients, or a combination of all

three. These options could be retained for comparisons with stochastic theories based upon no local

dispersion [e.g., Dagan, 19841, spatially constant dispersion coefficients [e.g., Gelhar and Axness,

1983, Mantoglou and Gelhar, 1987ab,cl, or spatially variable coefficients [e.g., Gelhar, et al., 19791.

2.5 Local Unsaturated Problem. The general unsteady flow problem implies

a (pe) - V[K Vh + z)] 0 (18)at

must be solved on QC with appropriate auxiliary conditions in conjunction with the state equations (4)

and (5). In the most general case, it will be necessary to specify the randomly correlated distributions

of o(x), (X), as well as K 3(X). The velocities or fluxes can be found from (4), (5), and
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ev = q = -KV-(h + z) (19)

The transport simulations will be based upon

at(pew) + V (pevw) - V teO V(Pw)1 = 0 (20)

assuming the velocity and moisture fields as well as a sufficient set of auxiliary conditions are

supplied. The density is again assumed constant. If desired, this more general formulation would be

capable of simulating saturated/unsaturated systems, as well as systems with variable porosities;

these possibilities, however, will not be considered here.

2.6 Auxiliary Conditions. Most flow simulations will involve the specification of two kinds of

conditions on the boundary dQC, usually a combination of Dirichlet conditions (specified h) or

second-type normal flux conditions (specified n-V(h z), n being an outward normal vector to

80c). When used, the specified flux is often set to zero, although this is by no means necessary. In

addition, the unsaturated problem is time dependent and will require an initial condition for h in

Qc* Auxiliary conditions on e can be based upon those for h and the state equation (4). The transport

problem will require an initial condition for X or in QC as well as Dirichlet (specified X or c) or

flux (specified n* Vat) conditions on 80c. Nonzero Dirichlet or flux conditions are usually

associated with mass inflow to QC. Because it is physically impossible to know concentrations or

solute fluxes at downstream or outflow boundaries at future times, the boundaries are typically

assumed to be remote and far removed from any solute mass during the period of simulation. Fixed zero

Dirichlet or flux conditions can be applied here to satisfy the necessity of auxiliary conditions

without affecting the true solution.
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3. SELECrION OF COMPUTATIONAL MODELS

3.1 Generation of Parameter Fields. As mentioned ealier, the heterogeneous parameter fields K sWx).

od(x), and C(X) to be used in the local flow simulations are to be modeled as spatially correlated

random fields. These will be generated by a three-dimensional turning bands random field simulation

technique, as discussed by Mantoglou [19871 and Tompson, et al. [19871. The turning bands simulator

generates single or multiple replicates of a normal N(0, 1 ) stationary random process z x) with

zero mean, unit variance, and a user-supplied correlation structure R f f (,). Such fields can be

manipulated to give realizations of the desired physical parameters. For example, the n K X)
process in (8a) is modeled as an N(F.c 2 f) field, so the KS(X) field can be found from a realization

zWx) by

KsCx) = exp[z(x)csf Fx)] (21)

If none of the three fields In(Ks x)), oWX) and CX ) are cross correlated, then they should be

generated from three independent replicates of the simulator. If they are all perfectly cross

correlated, then they should only differ by a multiplicative constant from a single replicate.

Although not considered in this and the theoretical analyses, the case involving the simulation of

three fields partially cross correlated could be approached using a matrix method as discussed by

Mantoglou [19871.

Other variable parameter fields that could be included in the flow or transport simulations

include the saturated porosity e0 (which was earlier assumed constant) or the dispersion

coefficients. These coefficients are based upon local dispersivities 'L(X) and o'T(X), velocities

v(xt) and diffusion coefficients Ox). Spatial variation in the velocities derives directly from the

flow problem and the K distribution; variations in the dispersivities have been linked to the K 

field [Gelhar, et al., 19791 and could be chosen otherwise if desired; and fluctuations in the diffusion

coefficient are never considered because its contribution to large scale transport mechanisms is minute

and usually neglected from the start in most analyses.

3.2 Flow Simulations. The flow simulations are based upon a simple 7-point finite difference

discretization of the pressure equations (15) or (18 with 4 and 5) on the computational grid pictured in

figures 2 and 3. The ultimate size of this problem has meant that extreme care be taken in the design

of efficient iterative methods for solving the large algebraic systems as well as time stepping and

iterative procedures for the nonlinear unsaturated problem. Further details of these formulations and
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the subsequent analyses of the resulting head and flow fields are contained in the report of Ababou,

[19871.

The size factor has also, in some sense, eliminated the possibility of using any kind of joint

pressure-velocity approach for this problem. In terms of the transport simulations then, it will be

necessary to know how the velocities v(X,t) or fluxes q(x,t) and moisture contents e(x,t) can be

defined from the pressure solutions. This will be discussed below in the context of the transport model

adopted for use.

3.3 Transport Simulations: Choice of Numerical Approach. Because of the individual complexity and

scope of both the flow and transport problems, it was decided to pursue the design and development of

a transport model in somewhat of an independent manner. The approach would involve building a

separate code that would run with minimal coupling to the flow code. The desire for added

flexibility in the choice and design of the transport model was seen to outweigh the disadvantage of

having to couple the two separate models when needed. A number of design features would be shared

between the models. The computational domain QC for each model will be identical in size and

shape, and equivalent discretizations of this domain will be used (although, perhaps, in different

contexts). This aids in satisfying the scale requirements reviewed in §2.3 and ensures that each model

has an equivalent degree of spatial resolution.

There are a number of possible numerical approaches for solving the transport problem. It was

decided to review a number of the more popular ones in use today and choose a method that best suited

the needs of the current investigation. Most models fall into one of the following categories:

* Conventional finite difference or finite element methods [e.g., Huyakorn and Pinder, 1983,
Pinder and Gray, 1977];

* Deforming finite element or moving mesh/characteristic techniques [e.g., O'Neill, 1981, Ewing
and Russell, 1981, Baptista, et al., 19841;

* Particle tracking/finite element or finite difference methods [e.g., Konikow and Bredehoft,
1978, Pinder and Cooper, 1970];

* Pure particle tracking based upon "random walk" approaches [e.g., AhIstrom, et al., 1977,
Prickett, et al., 1981, Ackerer and Kinzelbach, 1985, Uffink, 1987].

In order to make the choice of a numerical approach more clear, these methods will be discussed

briefly in the context of the current study.

* Conventional finite difference or finite element methods: These techniques are probably the

most frequently used in contemporary groundwater transport studies. However, if equations (17) or
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(20) are to be accurately solved on the specific discretized computational domain Qc then a number

of potential problems would have to be reconciled. These include: (1) The nature of the most simple

linear finite element approach implies that a 27-point connectivity for each equation be considered.

This would involve almost four times as many matrix storage positions in the discretized matrix than

in the flow problem and would have large implications on storage, matrix solution and time stepping

techniques when a 1 07 node problem is considered (even as compared with the flow problem).

Because of the tensorial nature of the dispersion coefficient D(x.t), the 27-point structure would be

unavoidable with the finite difference method as well (Figure 3). (2) A tremendous amount of work

will be devoted to the solution of the (ultimately) 1 07 equations per time step. Because of the

uniformity of the grid (§2.3) and the fact that the boundaries will be generally distant from the

solute (§2.6), a significant amount of this work will be spent on solutions in parts of QC never

traversed by solutes. (3) The grid Peclet number is defined by PeG = VAxi/0. where V is the

velocity magnitude and D is a typical dispersion tensor component, say o1LV+D. In cases where D /V

is much smaller than CCL (§2.1) it is conservatively approximated by PeG AX i /o(L. This

number can be basically thought of as a barometer of potential numerical problems that will occur

from discretization of equations of the form (17) [Pinder and Gray, 1977, Huyakorn and Pinder, 1983].

A value greater than 2-1 0 generally indicates poor propagation of certain large frequency spectral

components of the numerical solution that can severely affect the solution near sharp fronts (i.e., the

grid is too coarse to accurately transmit a sharp front at the given velocity). Because the spatial

increment Axi is linked from the scale considerations to the correlation length X. the Peclet number

may likely be equal to or greater than 1 0. perhaps as large asi 00. This case would arise if X is

estimatedtobe5 metersandAxi ischosenas X/5 = 1 meter.Withof = 0.1 meters,PeG 

1 0. The only real way to circumvent this problem while still using a conventional method is to refine

the mesh, a most impractical option for the current study. The remaining methods described below

have been used, for the most part, as alternatives to traditional finite element or finite difference

models when convection dominated (large PeG) problems are of interest.

* Deforming finite element or moving mesh/characteristic techniques: The deforming grid

approach [e.g., ONeill, 1981] generally tries to make the computational problem more "diffusive" in

nature. The grid is moved or stretched relative to the fixed physical coordinates in some

predetermined way such that the computational problem is transformed into one with a much smaller

PeG. To our knowledge, such an approach has never been applied in a complicated three-dimensional

problem, and to do so successfully may prove to be extremely difficult in terms of how to move the

mesh in a field of variable velocities. The characteristic or Lagrangian approaches [e.g., Euing and

Russell, 1981, and Baptista, et aL, 19841 involve solving repeated diffusion equations over a
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* Nodes involved in finite difference approximation of flow
equation at node i.

o Additional nodes involved in finite difference approximation
of transport equation at node i, (Also, nodes involved in any
linear finite element approximation of either equation at node i),

Figure 3: Computational cell for flow problem

- 28 -



transformed spatial frame in time (without the advection term), and use velocity information to trace

out characteristics which map the spatial frame into the original, physical frame of reference. This

allows the true motion of the solutes to be mapped out. The bulk of the work is really involved in

solving for the characteristics, which could again be a very difficult problem in three-dimensions or

in large systems.

* Particle tracking/finite element or finite difference methods: These techniques [e.g., Pinder and

Cooper, 1970, Konikow and Bredehoft, 19781 involve the representation of the solute mass as a large

collection of particles each of which is assigned a "value" of concentration. For a given time step, the

solute mass is moved via two steps. The first moves the particles along streamlines computed from a

velocity distribution. The second phase involves translating the concentration values of the particles

to a discrete set of continuum concentrations defined at nodes on a fixed grid and solving a diffusion

problem using a finite element or finite difference approach. When completed, the new node

concentration values are used to reassign concentrations to particles which are again used to move the

mass along streamlines. The procedure is somewhat awkward and suffers from mass conservation

problems. These arise from the translation of particle concentrations to node concentrations and the

use of particles to represent concentrations rather than mass. The method will also be limited by the

number of particles used and the inelegant ways of treating source or sink terms (see next section).

* Pure particle tracking based upon "random walk" approaches: These methods [e.g., AhIstrom,

et al., 1977, Prickett, et al., 1981, Ackerer and Kinzelbach, 1985, Uffink, 19871 are similar to those

above in that the solute mass is again represented by a large collection of particles. In this case,

however, all particles represent identical, unchanging amounts of the mass. Each particle is

displaced in two separate steps for each time step. The first involves a translation along a streamline

or characteristic as above. The second involves a random displacement, the direction and magnitude

of which is chosen so that the overall distribution of a cloud of particles will mimick the desired

solution of (17) or (20). The method suffers from a similar need to use a large number (perhaps on the

order of 1 04) particles to obtain consistent and reliable results. The treatment of source/sink terms is

also complicated and a bit crude. In the absence of these kinds of terms, however, the technique is

completely mass conservative and is not plagued with any large PeG problem. The algorithm is

simple and can easily be applied in large, three-dimensional as well as unsaturated problems. The

computational effort per time step is proportional to the number of particles and not the number of

nodes, an advantage for our problem, and the storage requirements will be drastically reduced from

any finite element or finite difference method.
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Because of its ease of implementation, its mass conservative nature, and its ability to treat large

PeG problems, the "random walk" particle tracking approach has been chosen for use in this study.

Although the distribution of mass is based on particle locations and not on a continuum field of

concentrations, the same kinds of information can be deduced from these results as in traditional

continuum models if a suffucient number of particles are used and careful thought is given to the

interpretation of the results. Extra consideration will also have to be given to the manner in which

velocities are specified and derived from the numerical solution of the head equation.

In the next section, the theory behind this approach will be reviewed in a somewhat general

manner and then discussed in terms of the current application.

- 30-



4. RANDOM WALK MODEL: THEORETICAL HIGHLIGHTS

4.1 Conceptual Aspects and Origin. The theoretical basis of the random walk model that will be

employed here is quite general and has its origin in statistical mechanics literature that dates back

to the early part of the century. The earliest development comes from Einstein's explanation of

Brownian motion [see, for example, Wax, 1954, Van Kampen, 1981, Gardiner, 19851. Much of that work

has laid the foundation for a great deal of progress in what may be broadly classified now as the

theory of stochastic differential equations. Interest in this broad field remains strong today and its

use has seen far reaching applications in such diverse subjects as colloid chemistry and stellar motions

[Chandrasakhar, 19541, quantum mechanics and chemistry, [Van Kampen, 1981, Gardiner, 19851,

electrical signals and noise [Wang and Uhlenbeck, 1954, Jazwinski, 19701 and lasers and optics

[Haken, 1983a]. Such theories have also been applied to the motion of fluids in porous media [e.g.,

Scheidegger, 1954, Bhattacharya, et al., 19761 and are the foundation upon which random walk

solute transport models [i.e., Ahistrom, et al., 1977, Prickett, et al., 1981, Uffink, 1983, 1987, Ackerer

and Kinzelbach, 19851 must rest. In what follows, we will briefly review the lines of thought

contained in the mathematical developments that form the basis of the familiar "random walk"; the

reader is urged to consult the works of Jazwinski, [19701, Van Kampen, [19811,Haken, [1983a, b], and

Gardiner, [19851 for additional details, developments and applications.

We will consider a system described by a state variable X (t) which changes, or more

specifically, evolves probabilistically with time, t. As an example, X may represent the position

in three-dimensional space of a particle. Such a system can be loosely classified as a stochastic

process. Changes of the variable X in time (i.e., the motion of the particle) will be thought to be

governed by both a deterministic, macroscopic set of coherent forces and a set of rapidly and

irregularly fluctuating forces whose mean is zero. This kind of motion has generally been modeled by

a simple equation of the form

dX A(Xt) I (Xt)-,(t) (22)
dt

which is commonly known as a nonlinear Langevin equation [Gardiner, 19851. The vector A(X.t) is a

known function of the state (and perhaps time), and is used to represent the deterministic forces acting

to change X. The second-order tensor C( X, t) is also a known function of the state (and time) and

will indicate directional characteristics of the random forces. In general, if X is an n-element position

vector, l can be most generally an n by m matrix. For our purposes here, it will be sufficient to consider
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it a square, n by n matrix. The vector function A(t) is an idealized representation of the "rapidly"

changing forces, the number of which is now limited to n. It is chosen such that E,(t) and ,(t *) are

statistically independent, or uncorrelated, for recognizably distinct times t t The idealistic

qualities of E,(t) are embodied in the relationshps

<&,(t)&(t)> = IS~t - t) (23)

<E,(t)> 0 (24)

where < > denotes the expected value. As is, the model (22-24) has no strict meaning because of the

infinte variance of &(t). However, equation (22) can be integrated to form an integral equation that

lends itself to a more clear interpretation:

t ~~~~~t
X(t) - X(0) A(X(s).s)'ds (X(s).s) E(s) ds (25)

a a

The quantity

W(t) ft&cs)ds (26)
a

is known as a Wiener process. Because the increments dW(t) = W(t-dt) - W(t) = E,(t) dt will

have sharp jumps over small dt, the Wiener process cannot be differentiated (which confirms the

inappropriate nature of equation 22). Integrals such as that in (26) or the second one in (25), however,

can be viewed as Stieltjes integrals, which will then give meaning to the integrated forms of (22).

The differential form of (25) over a time span of dt takes the form

Jtvdt

X(t + dt) - X(t) A(X(t),t)-dt + (X(s).s) ,(s) ds (27)
0 t

where the smooth nature of A allows its integral to be easily estimated as Adt. Because there can

be "rapid" shifts in f(t) over a time span of dt, no such approximation can be made immediately

with the integral in the second term. It becomes necessary to make a special interpretation regarding

what time to evaluate I ( X (), t) in this expression. The so-called Ito assumption computes this

integral with t3 evaluated explicitly at time t such that the integral is approximated as

M(X(t)t)ftt+dt ,(s)ds I dW. Inthiscontext, and ,dt = dW willremain

uncorrelated. Gardiner [19851 thus refers to I as an unanticipating function. Under the alternatitive
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Stratonovich interpretation, I is evaluated at t dt/2, giving rise to a correlation between I and

d W The integral in this case becomes much more difficult to evaluate.

If we adopt the to interpretation, then the differential change (27) of the state X over an

increment of time dt can thus be written as the stochastic differential equation

dX = AX(t).t)-dt BX(t),t)-dWt) (28)

where the macroscopic, or coherent change (or displacement) is given by A dt. The fluctuation or

random component of change is given by B d W. The tensor ( X t), t) is a square coefficient

matrix used to indicate the degree or magnitude of the random change of X along different

coordinate directions. Although it can be most generally a function of the random state X, it, or more

specifically, its functional form is deterministic. For our particle example, the fluctuation

B X(tt) dW(t) may signify a pure diffusive displacement where I is a diagonal matrix

whose components are proportional to the square root of the diffusion coefficient. The random Wiener

process increments can be shown to have a mean of zero:

<dW> = 0 (29)

a mean square proportional to dt:

<dWdW> = Idt (30)

as well as a number of other properties [Gardiner, 1985]. Recall that it is assumed in (30) that

microscopic fluctuations that manifest themselves as d W (t) over the macroscopic time scale dt occur

over such small individual time scales (<< dt) that the dW (t) are uncorrelated in time. Notice,

then, that dW (t) is approximately 0 (dt 1/2). The Irto interpretation [Haken, 1983b, Gardiner,

19851 discussed above essentially means that the X (t) used to calculate ( X (t)) in (30) are such

that B(Xt),t) and dW(t) are uncorrelated. In a discrete sense, this means that X(tn ) is

independentofAW(tn) = WNtn) - W(tn- ) so that

<(X(t).t)-dW(t)> = <(X(t),t)>-<dW(t)> = 0 (31)

Hence, the mean change in X (for example, the mean partide displacement) using the Ito

assumption is due only to the coherent driving force, or
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d<X(t)> = <A(X(t).t)>dt = A(X(t.t)dt (32)

Consider the probability of finding the state of the system between X and X + dX at time t

given its initial state X 0 at time to, or more specifically, the corresponding density function

f ( X, t X .t 0). We wish to find a descriptive balance equation for this function based upon (28). To

proceed, we consider first an arbitrary test function, u(X), of the state variable X which does not

depend explicitly on time. A stochastic differential equation for u can be found by a change of

variables. The differential du is given by an approximate Taylor's expansion (using the

indicial/summation notation, i,j = 1 .2,3):

du = adXi + 1/2 82U dXidXj (33)axi axax1

Insertion of (28) yields

du a u [Ai(Xt)dt + Bik(X.t)dWk(t) ]

+ 1/2 28 8X [ Bik(")Bjm(Xt) dWk(t)dWM(t)+ (dtdW, dt2)

(34)

The last term in (34) can be disgarded by the differential nature of (34) and the properties of the

Wiener process d W.

Assume now that the state of the system is known at a discrete set of times (t 0, t t 2 t .

tn) where tn is the current time and to is the initial time. The states (the positions of a

particle, for instance) are described by the sequence (X 0 X 1 . X 2 X 3 . . . X n). The

probability of finding this particular sequence given the initial state is described most generally by

the joint conditional probability density function P(Xnt n; X n-1 ,tn- 1 . . . .X 1 ,t1 Xo.t o).

Integration of P over the space X spanned by all possible intermediate positions will yield the

(marginal) conditional density of finding X = X n at t =tn

f(Xn.tnjXo0 to) = f ... P dX1 dX2 dX3 ... dXn- 1 (35)

With the assumption that the dW(t) are uncorrelated, the differential process defined by (28) is

Markovian [azwinski, 1970, Haken, 1983b, Gardiner, 19851, and the integrations in (35) are greatly
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simplified. The mean or expected value of u(Xn) at t=tn given the initial position X0 at to can be

written

<U(Xn)> =f U(Xn) [ f .. f P dX1 dX 2dX 3 ... dXn1 ] dXn

Xn X*

= u(Xn) f(Xn.tn Xo.to) dXn (36)

Xnxn

The time evolution of <u(X n)> will be described by an average of (34). This can be found by

multiplying (28) by f (X n . t n X .t ) and integrating the result over X n In what follows, we

will simply denote Xn by X (or the domain D0) and f(X nt} | X .to) by f(X. t). If the averaging

procedure and time evolution of the system as expressed through du are exchanged, one finds:

d<u> = <Jui Ai(Xt)> dt Ju Bik(Xt)> <dWk>

+ 1/2< d2 U Bik(X.t) Bm(Xt) > < dWk dWm> (37)

Assuming now that both (X(t).t) and u(X(t)) are unanticipating functions (see above), they can

be considered independent of the dW(t) and their averages can be separated as in (37). The second term

on the right vanishes by (29), and the remaining terms on the right can be integrated by parts using (30)

and the assumption that u(X) tends to 0 at X = ±00. For instance, the first term on the right becomes

dx< A1(Xit)> dt = [ in dXAi (Xt) f(Xt)dX | dt (38)

= | { u(X) a [Ai(Xt) f( X,t)IdX ] dt

while the term on the left becomes d [IQ u(X)f(X,t) dX]. The differential quotient of the

resulting equation can be formed with dt, yielding
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JQU [ t ax xif) X /2 BikBjkf) jdx = 0 (39)

Since U is arbitrary, the terms in the brackets must be zero, i.e.,

af + a (Ai 0 - a2 (1/2 Bik0jkf)
at axjAf I axiax1(2j kj' 

This is the desired balance or conservation equation for the probability density f (X t). Equations

conserving these kinds of probability density functions are most generally known as Fokker-Planck

equations.

4.2 Analogy to Solute Transport. The form of the Fokker-Planck equation (40) suggests that the

distribution of particles that move according to an equation such as (28) satisfies a diffusive-type

conservation law similar in form to the physical model equations used for solute transport such as (17)

or (20). Indeed, suppose equation (28) can be used to follow or trace the motion of distinct,

hypothetical "particles" of solute mass in a groundwater flow system. By "particle" we mean an

infiiftesimally small amount of "unbreakable" mass that can be identified at a continuum point X

(§2.1) and able to move via the influence of pore scale velocities. Such particles do not occupy any

identifiable volume and could coexist at the same point in space if need be.

In a discrete sense, (28) can be written using Xn X(tn) as

AXn = Xn - X- = A(Xn-l 1 tn l)At + (Xn- 1 .tn-1 ) W(tn) (41)

where A and have been evaluated at the old time level. This will be consistent with the to

integration rule used earlier.

Let us identify the position of any particle at time tn by X(tn) = Xn. Consider first the

motion of one particle initially located at X 0 at time to. Given the form of the macroscopic force A,

independent, random fluctuation AW, and deterministic scaling tensor D. equation (41) can be used

to move this particle through space over small discrete time steps At up to some fixed time T, whence

the particle is located at a point X (Figure 4a). Each step will consist of a deterministic

displacement AAt and an independent, random Markovian displacement B AW. If this

"experiment" is repeated with the same initial condition, macroscopic force A. and scaling tensor

many times (say, N), the particle will be located at different spatial locations at time T in each

experiment (Figure 4b). The spatial density of these points will simply be the function f (X t)

evaluated at t=T which satisfies equation (40) according to a zero boundary condition f(oo ,t) = 0

- 36-



I -dWAd

',to Adt

2* 2

2t2 t

X3,t3 :..

X,T

4 X1

Figure 4a: One particle moving marysteps to X ,t

tI time T
XO ItO

d...

,'........
#.....

I .
0:.:

f' I NS(X-x 0) = f(xto)

XI

f (xT)

X1

Figure 4b: N simulations of above experiment to a final time, T; or, one simulation of N particles all
initially located at XO.tO up to a final time, T. Particle distribution functions shown
also.

X2

f (x,t 0)

0 

0 

0 
0

f (x,T)

x 1

Figure 4c: Motion of N particles initially distributed over space according to f(Xt 0)
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on the (essentially) infinite domain and a "point source" initial condition of f(X .to) = N(X -X 0 ).

In other words, the probability density for position at time T is just f (X, T). The equivalence of the

particle spread and the "ideal" nature of the function f(X t) will be exact only in the limit as N

o>00 and At->O.

Suppose now that a large number of N particles are all located at the same initial location X 0

and time t and that each is individually moved according to (41) for each time step At up to the

same end time, T. Let these particles represent a fixed amount of total solute mass, M, so that the

individual particle mass changes with the number of particles chosen. Then the spatial distribution

of all these particles will be just the same as in the previous example except that all of the particles

will be present collectively at the end of one experiment instead of individually at the end of many

(Figure 4b). Moreover, the same experiment could be run with the N particles distributed in space

according to some other initial distribution f(X ,to) whence the resultant distribution would be a

solution of (40) with the new initial condition (Figure 4c). Again, the connection between the

theoretical function f (X t) and the specific distribution of N particles will be approximate and

limited by the number of particles (or "individual" experiments) and the time step At (see section 5).

Given these N moving particles, the expected number of particles ,Ne, located in some small

(infinitessimal) volume Vs centered at X at time t is approximately

Ne N*f(Xt)*Vs (42)

If each particle is of mass m = M/N, then the expected mass Me in Vs is roughly mNe = MNe/N

using the particle approach. This quantity can be equated to the mass, Mt. computed in terms of

familiar porous medium continuum quantities and used to form a relationship between the distribution

function f and the mass fraction W or concentration = . The theoretical solute mass Mt in the

infinitessimal volume Vs centered at X at time t is

Mt pG)(X,t)e(Xt) Vs (43)

Using Mt Me. we find

pW(Xt)e(X,t) mNf(Xt) = Mf(Xt) (44)

Equation (44) can be used to form an analogy between the Fokker-Planck equation (40) and the

solute transport balance equations (17) or (20). As the total solute mass M in Q is assumed constant,

equation (40) can be multiplied by M N to express the Fokker-Planck equation in terms of the
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solute mass poeWB. Noting that Bik B j k _ B *T, the chain rule can be used to rearrange the last

term to give

8 (p()e) V A - V-d1/2 I-BTy)pwe - V-[1 /2 -.IT.V(pGoe)] 0 O (45)

It is now only necessary to choose A(X t). B(X t), and A W(t) such that the Fokker-Planck

equation (45), now phrased in terms of pG6, takes the form of the transport equations (17) or (20) that

we wish to solve. In other words, it is desired to find the correct form of A. B, and A W for the step

equation (41) such that if a large number of particles are moved according to it, the resulting mass

distribution will be equivalent to that given by the transport equations (17) or (20). It should be

pointed out that the true physical model adopted for this study is given by equations (17) or (20). The

point of these exercises is to use the step equation (41) to distribute particles in space and mimick the

solution of the model continuum equations. This differs in intent from the work of Bear [19691 who

adopts a step equation of the form (41) as the true physical model in order to derive an as yet unknown

macroscopic law which turns out in the end to be of the form (40).

In the next sections, three sample problems will be examined to illustrate the choices of the step

equation parameters. These will be chiefly concerned with modeling transport in a saturated medium

with a scalar diffusion coefficient, and a spatially dependent dispersion tensor, as well as modeling

transport in an unsaturated medium with a spatially dependent dispersion tensor.

4.3 Simple Diffusion. In this case, the balance law we seek to emulate through (41) derives from (17)

where D a 1 D being a constant coefficient of molecular diffusion:

a ( Cp) + V (pvo) - DV 2 (pW) = 0 (46)

Assuming the moisture content e equals the constant saturated porosity, can be removed from (45)

whence comparison with (46) reveals the desired relationships:

v(Xn.tn) = A(Xn tn) (macroscopic "force") (47a)

D I = / 2 3(Xn.tn) -T(Xn.tn) = 1/2 Bik Bjk (47b)

It is immediately clear that is the constant tensor
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I = V/ r2DI (scaling tensor for random displacement) (470

To use a step equation of the form (41) it will suffice to use (47a and c) along with a normalized

random displacement that is (At 1 /2):

AW(tn) Zn (normalized random displacement) (47d)

where Z n is a vector of three independent random numbers at t n. These should be chosen from a

distribution such that the discrete forms of (29) and (30) are satisfied, i.e.,

<Z> = 0 (48a)

<ZZ> = I (48b)

It is only necessary for Zn to have the statistical qualities given in (48), so many kinds of

distributions might be implemented. One might use a normal N(0. 1 ) distribution [Ahlstrom, et al.,

19771 or a more simple uniform distribution U(± /+) spread over the range / to determine

each Zi component.

The appropriate random walk equations to emulate the solution of (46) are

X(tn) = X(tn- 1 ) v(Xn l tn- 1 )At Zn (49)

4.4 Spatially Dependent Dispersive Transport under Saturated Conditions. In this case, the balance

law we seek to emulate through (41) is simply equation (17):

a (Pc) + V(pvG)) - V-[DV(pw)1 0 (50)

Upon division by the constant porosity G0. the Fokker-Plank equation (45) will be equivalent to (50)

if A and I are chosen according to

V(Xn) = A(Xn.tn) - Vf1/ 2 (Xntn) IT (Xntn)(

I:(Xn.tn) = 1/2 (Xntn)- ET( Xntn)

(51a)

(51b)
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In Appendix A, equation (7) is used in conjunction with (51b) to determine the components of the tensor

5 in terms of those of D. Using this result along with (51a) and the random displacement (47c)

yields the step equation

X(tn) = X(tn-1) + (Xn ltn-1) V-D(Xn I-tn 1)]At

+ (Xn 1tn-)'Znt (52)

Use of the step equation (52) to move particles will result in a distribution of solute mass equivalent to

that predicted by the model equation (17) or (50). Observe that the overall advective step will be

smaller when the gradient of D is negative in the direction of V. This happens when I V I is getting

smaller in the positive V direction (e.g., towards a stagnation point) and it is seen that the dispersion

gradient correction term attempts to keep particles away from these areas.

4.5 Spatially Dependent Dispersive Transport under Unsaturated Conditions. The appropriate

physical model to be emulated by the random walk model in the unsaturated case is given by equation

(20), rewritten here after having applied the chain rule to the third term:

a (pew) + V[pew(v + (1/)D-Ve)] - V D V(p6)] = 0 (53)

Comparison of (53) with the general Fokker-Planck equation (45) indicates that the terms A and l

must be chosen in this situation according to

v(Xn) = A(Xntn) - 1/2 B(Xnstn) T (Xnstn) - (1/e)D(Xntn) e

D(Xn-tn) = 1/2 (Xtn) OT (Xn-t) (54a,b)

Use of the random displacement AW and equation (54a) leads to the following step equation for

unsaturated transport:

X(tn) = X(tn- 1 ) + v(Xn ltn) + V D(Xn-ltn) + (/e)D(Xn-.tn)Ve1At

+ B(Xn- )Zn,/ = (55)
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where the relationship between the components of B and is given in Appendix A. Notice that a

positive velocity component coupled with a negative moisture content gradient (i.e., it is drier in the

direction of V) will tend to counteract one another such that the overall advective term is smaller.

4.6 Other Comments. It should be reemphasized that the analogy used here simulates solute

movements by moving minute, hypothetical particles of solute mass according to some sort of

incremental step equation. The exact properties of these step equations ensure that the resulting

particle (mass) distributions are approximately equivalent to the continuum distributions described

by the model equations of section 2. It is the equivalence in form between these equations and the

Fokker-Planck equation that makes this possible. The same analogy could be used to simulate the

motion of fluid mass in unsaturated regions where a diffusive form of the flow equation is used

[Bhattacharya, et al., 1976]. It is important to recognize that this direct analog will break down if

additional terms representing any kind of loss or gain of solute mass are included in the continuum

balance equations of section 2. The step equations do not naturally add or subtract mass from the

system. They are inherently mass conservative because they are related directly to the

Fokker-Planck equation which theoretically (and necessarily) conserves probability. The only way

to simulate loss or introduction of solute mass using these particle methods is to add a post processor

which selectively adds or removes mass according to the process defined in the continuum equation.

Although Ahlstrom, et al., [19771 discuss these kinds of applications, they are for the most part

inelegant and will not be considered here.

The term in the step equation (52) representing the divergence of the dispersion tensor 0 is one

that has not been incorporated in familiar random walk transport models [Ahlstrom, et al., 1977,

Prickett, et al., 19811, however its inclusion in the case of a spatially variable 0 is necessary to make

the forementioned analogy correct. This has recently been recognized in the hydrological literature

by Ackerer and Kinzelback, [19851 who realized that its absence gives rise to an erroneous

accumulation of mass in "stagnation" or low conductivity zones in the groundwater flow systems. The

effect of this term in most flow regimes, however, is usually quite minimal, owing to small

groundwater velocity gradients, and the consequences of its mistaken exclusion in the above models

are often insignificant. The impact and necessity of the divergence term has also been recognized and

illustrated by Ulffink, [1983, 19871.

The term in the step equation (55) representing the influence of the moisture content has also been

incorrectly neglected in particle tracking models meant to be used in unsaturated problems [Ahlstrom,

et al., 19771. This term can be basically rewritten in terms of the gradient of the logarithm of the

moisture content, D* V I ne. The effect of this term will probably be small in many applications, but
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near steep wetting fronts, it may be important

The next section will deals with the implementation of the random walk algorithm in the large

scale problem to be studied, and various ways of interpreting the results will be discussed.
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5. RANDOM WALK MODEL: COMPUTATIONAL ASPECTS

5.1 Moving One Particle: Interpolated Nodal Quantities. We return now to the discretized domain

shown in Figure 2. The random walk model is meant to propogate particles through this domain using

a step equation of the form (49), (52), or (55) and presumes that continuous velocity and moisture

content fields, V(X,t) and e(X,t) are available at all points X and times t. In this specific

problem, however, the velocities and moisture contents, as well as some of their spatial derivatives,

must be derived from discrete nodal distributions of the pressure head h(Xnt) as given from the

flow computations, an appropriate form of Darcy's law, and the state relationship for the moisture

content (see §2.1, §2.3, §2.4, and §3.2). This will mean that some sort of interpolation scheme must be

adopted. Several possible ways of interpolating functions and their derivatives from the nodal

values of the functions are reviewed in Appendix B; these will be referred to below.

The flow computations give nodal values of the pressure head hX n t) from which nodal

values of the moisture content e(X nt) can be derived using (4). The most general step equation (55)

willrequirevaluesofV, V (i.e., Vv), and (1/9)Ve atarbitrarylocationsX intheflow

field corresponding to the location of any particle. Because these quantities would most generally be

evaluated for each particle at each time step, it will be necessary to compare relative costs and

accuracies involved with their estimation. To estimate the velocity, for example, one may consider

interpolating the head over 8-noded computational cells using tri-linear "basis" functions (Appendix

B; Figure BI) and forming the derivative of this quantity. This would yield a velocity continuously

variable within each "cell" volume Qe yet discontinuous over the cell boundaries and QC If the

nodal head values were differenced to provide nodal head gradients beforehand, the head gradients

could be directly interpolated with the linear functions and manipulated to give a continuous velocity

representation over all of Q. Use of differenced numerical results in this manner, however, may be

ill-advised and will not be considered further.

Interpolation using the simple basis functions would involve evaluating eight weighting function

values and making 8 subsequent additions for each component of the velocity. This could amount to a

significant expense when thousands of particles may be moved over hundreds, or perhaps thousands,

of time steps. Because the ultimate size of this problem will involve upwards of 1 08 or more cells,

the use of cell velocities may be a suitable approximation that will offer considerable savings in

terms of computational expense. Evaluation of each component would only involve 8 additions of

known nodal head values. This would only have to be done once for each cell in steady flow problems.

The flux component q 1 e for the cell pictured in Figure BI could be evaluated in terms of the eight

surrounding nodal values Hn and some elemental conductivity K e:
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qx1 le -K e 4X1 [(H2-Hl) + (H3-H 4) (Hs-H 5) (H 7-H8) ] (56a)

The nodal head values are piezometric heads based upon the nodal pressure heads and elevations, H n
= hn + Zn Another approach would involve evaluating each flux component in terms of mid-node

conductivities. That is,

qx1 e K ~4tX1 L 12*(H 2-H1 ) + K34w(H3 -H4)

Kss*(H6-Hs) + K78*(H7 -Hg) ] (56b)

where K i j * is a mid node conductivity computed in terms of the geometric mean of the conductivities

at nodes i and j. The latter approach is more consistent with the numerical solution for the pressure

heads in terms of mass conservation [Ababou, 19871 and is used in the current model.

As the moisture content can be defined nodally in terms of the pressure heads h n it could easily

be interpolated continuously over all of Qc, However, to minimize the computational costs and to be

consistent with the level of interpolation used above, e will also be estimated as a cell constant from

the expression:

8
ele l/a Z en (57)

n=1

where n is related to hn through (4). Thus the first component of the cell velocity would be given

from (56) and (57) as

Vxj I e qx1 e / e (58)

All components of the cell velocity v e can then be used to evaluate a cell dispersion tensor D (v I e)

Notice that the porosity eg can be used in place of e I e in saturated problems.

The gradient of the moisture content would also be best evaluated as a cell constant. The first

component, for example, can be estimated using the eight surrounding nodal values en (Figure BI),

similar to (56a)

e 4AX1 [ (e 2 -e 1 ) + (e 3-94) (-9 5) + ( 7-eS) ](9)
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Recall that the nodal values en can be determined from the pressure head values hn through (4).

Along with the other components, this can be combined with the cell values e I e and O(v e) to

form the appropriate term required in the step equation (55).

Components of the dispersion tensor gradient are proportional to velocity derivatives (or second

derivatives of the pressure head). As alluded to in the previous paragraph, cell-wise constant

dispersion components can be defined in terms of neighboring cell velocities, and these could be

subsequently used to form dispersion component gradients by differencing cell values. Refering to

Figure B1, for example, the component 8 D 11/ X 1 for one element would be approximated by

'x1 e 1 [DjI(Vj 5 ) - D(vj.3) ] (60)

This is a simple difference between the cell dispersion components D 1 in cells 5 and 3 as indicated in

Figure B1.

In short, the velocities, moisture contents and related derivatives that appear in the various step

equations will all be estimated as cell constants to simplify the computations. The errors incurred by

these approximations are thought to be small if a large number of cells are used and an adequate time

stepping procedure is adopted (§5.3). The evaluation of these terms is reviewed again here:

* Cell velocities: Estimate each flux component via cell-averaged head differences, such as in

(56), and multiply the result by some local cell conductivity. This, in turn, can be divided by a mean

porosity or cell moisture content to obtain (58).

* Cell moisture contents: Estimate by a simple 8-noded average as in (57). These can be used for

the velocities and the moisture gradient terms.

* Cell tensors: D_. and AR: Each of these quantities is a function of the local velocity

components and dispersivities and can thus be approximated in terms of the local cell velocity (58)

and a suitable choice of the local dispersivities.

* Cell moisture gradient term: The gradient itself can easily be evaluated using cell-averaged

moisture differences, such as in (59). The result can then be divided by the cell moisture found in (57)

to find the desired term. It could be equivalently approximated by a cell-averaged difference of nodal

I n(e) values by replacing on by n n in equation (59).
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* Cell dispersion gradient: This is roughly approximated by a difference of cell values as

illustrated in (60). Recall that the magnitude of this term as well as that of the moisture gradient is

not likely to be large in comparison with the other terms, so the nature of their approximation may

not be too important.

5.2 Moving One Particle: Choice of Time Step. In a problem characterized by spatially and

temporally variable velocities, the choice of the time step will be a very important task in the

overall simulation process. The general step equations required for this situation may be any of those

presented earlier. (49), (52) or (55). Particles are moved through space according to a macroscopic force

and a random force, one or both being functions of velocity, and hence, position. If too large a time step

is used in these applications, errors could be made that could become significant and distort the

results. These effects can be illustrated more dearly by first considering displacement segments

produced by spatially variable (yet steady) flows and then by temporally variable flows.

* Advective Displacements in a Steady Flow Field: Ideally, a solute particle would follow a

streamline in a pure advection problem. If finite time steps are used with a known, steady velocity

field defined at all points (analytically or numerically), then small spatial overshoot errors will

occur due entirely to the incremental nature of the time step (Figure 5a). The magnitude of this

problem could be reduced by using infinitely small time steps or adopting an improved integration

scheme, such as a Runge-Kutta method. A stream function-vorticity approach could also be

developed to move particles along streamlines [e.g., van den Akker, 1983; Cole, et al., 19851.

In the current problem, the velocities will be numerically evaluated in a discrete fashion over a

grid of cells. As similar kinds of overshoot errors can arise in this situation (Figure 5b), similar types

of remedies could be suggested. Use of smaller and smaller time steps will be advantageous up to a

certain point, after which no improvements can be made. The cell Courant numberCc = VAt/Ax

indicates the ratio of a typical advective displacement over a time step to a typical grid dimension

(over which velocities are constant). Use of time steps that force Cc to be greater than one in any cell

will imply that discrete "overshoot" problems will arise as illustrated in Figure 5b. Use of time steps

that force Cc to be less than one will lessen the chances of these problems occurring. It is important to

notice that "overshoot" as shown in Figure 5a can still happen inside of a cell, but there is no way of

improving upon this situation as there is no resolution of the velocities finer than the scale of the cell.

This is an unavoidable approximation that must be accepted as a consequence of choosing a discretized

model with cell-constant velocities. On the other hand, higher order integration schemes could be

introduced that may allow use of larger time steps. These would require several velocity derivatives

to be estimated from the discrete field. Since the velocities are themselves obtained from derivatives
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of numerical solutions, taking derivatives of the velocities may lead to additional complicated

errors. Higher order schemes of this sort will, therefore, be avoided in the current simulations.

Attention will be focused on the former method involving the use of small time steps.

Hence, the optimal choice of time step to advect one particle through space will either be one

that is fixed and independent of particle position, or one that is adjustable so that the particle moves

from one cell boundary to another. Since a particle could be located anywhere inside of a cell, the

choice a time step so that Cc is less than or equal to 1 may not be adequate to avoid overshoot into

another cell. Picking At small so that Cc is always less than, say, 0.1 in all cells will ensure the

maximum overshoot is no more than 0.1 Ax (as the particle could be located initially just upstream

of a cell boundary). This approach could lead to many computations to move the particle across the

cell (in which the velocity is constant). Another approach would be to simply compute the time

needed for a particle to reach the boundary (in the direction of the velocity vector) and move the

particle to the boundary or just inside of the next cell (Figure 5). Then, the process could be repeated

using the velocity of the neighboring cell. This would minimize errors and computational costs for the

advective problem, but makes the time step dependent on the particle's location. Notice that in both

of these approaches, the cell Courant number Cc will always be approximately one or less.

Observe that in the special case of a constant velocity field over all no time step restrictions

would be needed for the advective problem. However, if the field is spatially constant yet changing

in time, a sort of temporal overshoot similar to that described above could occur. This will be

examined under a separate heading below.

* Random Dispersive Displacements in a Steady Flow Field: In cases where the dispersion

tensor D or scaling tensor I are dependent on the velocity field, similar considerations must be made

as above. Over the length of one displacement, the velocity can change and consequently affect the

size of the random displacement. It will be useful here to study the expected (root-mean squared)

magnitude of this displacement di at a given point in the flow field. As used in equations (49), (52) or

(55), di = Bij(Xn- 1 )Zj jn/t and its mean squared magnitude can be gauged most generally

from the matrix di d j >
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<didj> = BikZkBjmZmAt> (61)

= BikBjmAt <ZkZm>

= BikBjk At

= 2DijAt

where (48b) and (51b) have been used. Using its diagonalized form (Appendix A), a typical component

of this matrix is 2 L VAt, so the magnitude of the typical random displacement is a d =

v2oiVAE. Clearly this displacement will be affected by the same kinds of factors discussed

above. Normalizing the random step cyd with the typical avdective displacement VAt (ignoring

the correction terms related to dispersion or moisture gradients) gives /2°L/( V A t ) ,.

where Co( is the dispersive Courant number. If Cc is chosen near 0. 1 as discussed above, then this

ratio becomes /2 °L/-Ax = 20IPeG, where PeG is the grid Peclet number. Since PeG will

range anywhere from 0 to 1 00 (§ 3.3), this ratio will be on the order of one at most, but probably

much smaller. This means that overshoot problems in the dispersive step would be dominated by

those of the advective step, and that the optimal approaches suggested previously would be best

here also.

In the special case when the velocity field is spatially constant, there should be no restrictions

on the size of A t. Consider a one-dimensional problem where simulations will be carried out for a

period of n equal time steps up to a maximum time of n At = T. The expected value of the entire

displacement of one particle (after many small steps) is simply the average of the sum of the small

displacements. Since V is spatially constant, and assuming D is also, this can easily be computed:

<ZAXi> = <(VAt + Z 2 > = VnAt = VT (62)

The root mean displacement away from the mean is

a1d = <(EZV2i&t)2>1/2 (63)

= <~ ~ <F.(zi2)> /2

-V2 i-= V'-T
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If, on the other hand, a single time step of T is used, the mean or expected displacement of the

particle is still VT. and the root mean displacement from it is d = < (Z 4 /-T)2 >1 /2 2

V/2DT Thus, in the case of constant velocities, the first two moments of the particle distributions

are unaffected by the size of At.

Correction Terms In the more general step equations (52) and (55), two "correction" terms

appear which modify the advective step according to local velocity or moisture content gradients. As

an example, consider the injection of water into a confined aquifer of constant thickness H. The flux in

the radial direction at a point located a distance r from the well is

qr = /(2TtHr) (64)

where 0 is the constant input flow and qr is the radial Darcy flux. As long as conditions are steady,

this relationship will be valid under both saturated and unsaturated conditions. In this situation,

the spatially variable radial velocity Vr(r) is just q (r)/ e(r) and a typical radial dispersion

coefficient is Dr(r) = ofLVrr). To understand the contributions of each of the correction terms to

the entire deterministic displacement (denoted here by a), consider the radial component ar from

equation (55) normalized by the pure advection step length VrAt:

ar- 1 + + D 1d6 (65a)
VrAt Vrar vrar

= 1 + 2L0 r + k do
Vr r 6 r

For the steady profile given by (64), this reduces to

v r- 1 r 1L (65b)VrAt r

The total contribution of the correction terms in this case would only be significant within a distance

of L of the well source. The injection problem represents an extreme case in terms of large velocity

gradients. Most situations to be encountered are expected to be much less severe. Uffink 19871 presents

some other examples of the effect of the dispersion gradient correction term in saturated problems.

In more general (unsteady, unsaturated) situations, the last term in the first or second line of (65a)

may be interpreted as a normalized moisture gradient displacement. It may be approximated as

O°LA( I ne)/Ar, where Ar might be thought of as a typical grid size Ax used earlier. This term is
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roughly equal to A( I nE)/PeG where the grid Peclet number is of the order of 10 to 100 (§3.3). For

this term to be significant with respect to 1, the change in ne over one grid spacing would have to

be on the order of 1 0 or more. As 0 < G < 1. this situation may exist near an extremely sharp

wetting front in which case a very small time step would be in order. Practically speaking, however,

this may be an unlikely prospect in most of our applications.

* Temporally Variable Flows: The examples used above considered overshoot errors that can

be introduced by not properly tracking spatially variable streamlines when moving a particle. It is

important to recognize that the same kind of error can happen in a temporal sense if the velocities

change considerably over a time step At. The key point to understand here is how the time scale of

the time-variable velocity relates to the time step for the particle movements.

Suppose fluctuations in the flow and moisture fields occur over a characteristic time scale AT f,

i.e., updated values are found over time intervals of AT f. For a given snapshot of a flow field, an

optimal time step At o pt for moving a particle may be identified in some manner (see above) by

restricting some typical cell Courant number Cc to be smaller than one. If Atopt << ATf. then

there is no chance of any temporal overshoot errors as the flow field appears steady over time scales

of At. If A topt = ATf. then the flow dynamics may be shifting over time scales close to At, but

since no finer resolution of the flow in time is available, any overshoot errors accumulated by using a

At less than or equal to Atopt must be accepted as an approximation (as in the spatial case above).

If Atopt > AT f, then a temporal overshoot will occur that can be improved upon by lowering

Atopt to a value of ATf or less.

5.3 Moving Many Particles: Time Stepping Procedures. The discussions in the previous section were

concerned with the choice of the time step and the resulting magnitudes of the various component

displacements involved with moving one particle using (49), (52) or (55). The main issue was to keep

the various step motions small enough to minimize overshoot errors when spatially or temporally

variable velocity fields are present. Under most conditions it was found that the largest contribution

to the particle motion over one time step comes from the purely advective displacement VAt.

Controlling the magnitude of this step through a judicious choice of At would effectively control all

other component displacements to a similar degree. One can choose a very small, fixed value of At for

all displacements in all cells, or one can choose a variable At based upon a particular particle's

position such that it consistently moves from one cell boundary to the next. Although the latter

method is the more efficient for a one-particle system, it may not be ideal for a system with many

particles. Our applications will focus on problems that involve moving large numbers of particles

through the flow domain QC (§4.2, Figure 4c). Below, we briefly consider two possible time stepping
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schemes for our simulations.

* Time Stepping Method 1: Given N particles distributed in the flow domain C at some

arbitrary time to, this approach simply involves choosing a fixed time step At and moving all N

particles sequentially to new positions using an appropriate step equation (49), (52) or (55). The same

time step is meant to be used for the displacement of all partides at once so the distribution of solute

mass is known at each time level (Figure 6a). To avoid overshoot problems, At must be chosen with

respect to the largest cell velocity in QC whose magnitude Vmax gives a maximum cell Courant

number Cc max Ensuring that Cc max is less than, say, 0.1 will mean that overshoot will be quite

small for all particles. Of course, this is a very conservative procedure which might be modified if

necessary to lessen computational costs. If the velocity field is unsteady, the value of At would, in a

strict sense, have to be modified at each time level as well as adjusted downward if large in

comparison with the flow update interval AT f.

* Time Stepping Method 2: The first procedure described above is a more traditional approach

in that the entire ensemble of particles are moved together with the same time step giving a complete

picture or snapshot of the solute mass at every computational instant. The method presented here is

somewhat different and takes advantage of the intrinsic nature of the particle tracking approach. It

is best used when approximately steady velocity fields are available (when Atopt << ATf).

Given the same N particles distributed in QC at to, this technique involves choosing single particles

and moving them individually over many time steps up to some fixed rendezvous time T1 . In other

words, particle 1 is moved from its postion X 01 at time to over many time steps to its postion X 1 1 at

time T1. Then particle 2 is moved over many steps from (X0
2,t 0 ) to (X 2, T1), and so forth (Figure

6b). Once all the particles have progressed to time T 1, they can be moved again in the same manner to

another fixed rendezvous time T2. The difference here is that complete snapshots of the particles can

only be obtained at the preselected times T1 , T2, etc. The advantage of this method is that time

steps used for each particle will differ and must repeatedly be chosen and adjusted according to the

local flow conditions. For example, the time step for a given particle i in cell L at time t can be

fixed such that the particle is moved just inside the next cell via pure advection (§5.2) and then

displaced via the other (presumably smaller) mechanisms. Thus, a particle would not have to be

moved incrementally through a cell of constant velocity; it can be moved to the next cell quickly with

minimal spatial overshoot error. This approach would ostensibly save computational time in a global

sense, however it necessitates careful thought in terms of applying boundary conditions (§5.4) and its

use in unsteady problems. If the characteristic update interval for the unsteady flow field AT is

much greater than a typical At used in the step equations, then the simulation periods T1, T2, etc.,
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X1 (T)

-X (to)X _T'

0t~-0*0->_ X2(T)

Figure 6a: Movement of two particles in a two-dimensional domain using the first time-stepping
method. Bold segments indicate 'advective' displacements; lighter segments, random,
dispersive displacements. The time step is fixed and the cell velocities are indicated.

X 1 (T)

X 2 (T)

Figure 6b: Movement of two particles in a two-dimensional domain using the second time-stepping
method. Particle I is moved from (X 0' .to) to (X1 1 t 1 ) first; then particle 2 is moved
from (Xa 2 ,to) to (X1

2 .t )
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may be just chosen as times of flow updates, nATf. Otherwise, if AT < At, the advantage in

moving particles completely across cells would be lost to accumulating temporal overshoot errors.

* Number of Particles: The idea of simulating the motions of a large number of particles at

once comes from the desire to see a developing plume of solute move throughout the flow domain in

time. The solute mass is divided among a hypothetical group of N particles free to move

independently in time through QC according to the step equations (49), (52) or (55). How many

particles should be used? The more particles used for a given amount of solute, the smaller the mass

each particle has and the more "fluid" the body of particles becomes. A better idea of the potential

spread can be had. It would be much easier to identify smaller fractions of the solute mass in remote

parts of Qc, Although AhIstrom, et al. [19771 recommend the use of 1 0 4 to 1 0 5 particles in large

problems, it should not be forgotten that the results of two or more identical simulations can be

superposed since the motions of the individual particals are independent. This is why the

simultaneous motion of N particles is equivalent to N combined one-particle experiments. The

interpretation of the spread of a given number particles is addressed further in §5.5 and §5.6 and will

shed additional light on the choice of N.

5.4 Auxiliary Conditions. The kinds of auxiliary conditions usually applied in transport simulations

were briefly examined in §2.6. Our simulations are meant to take place in a computational domain QC

which may be though of as a subset of a larger domain n in which the random walk equations were

developed and where the total solute mass M remains constant (thus conserving the probability, f:

Figure 2). The total mass in could thus be allowed to vary, if need be, by allowing it to flow in or

out through some boundary freely or in some controlled manner. Notice, however, that the mass is

conserved on the larger scale of Q even though its distribution external to is not modeled. The

boundaries of QC may be hypothetical or represent some actual physical structure.

Initial conditions for the concentration c(X.t 0) or mass fraction ((X.t 0 ) for X in C must be

translated or thought of in terms of initial distributions of particles (§4.2) inside QcI This can be done

in the current model configuration in a number of ways. As the cell volumes Qe are relatively small

in comparison with the entire domain volume QC, groups of particles can be assigned to distinct cells

and distributed within them in a random, uniform fashion (Figure 7a). The use of the small volumes

allows the distribution of particles within each to be construed as a concentration or a mass fraction

associated with that cell. Using the volume of the cell, initial moisture content, mass of each

particle, or some other normalization procedure (§5.5), an initial concentration c(X to) or mass

fraction c(Xto) can be converted into an approximate number of particles according to some adopted

convention (§4.2). Particles can also be assigned to simulate "exact" sorts of conditions such as a point

- 55 -



Figure 7a: Distribution of 10 particles randomly in cell

L1 and L3; 20 in cell L2

K
-. :I c il 1 _

-+ -:3'. Cell L2I- - - : Cell L-

- 3 -' C C I -

- - - - - - - -I

_ ____- I-_

1/11~~

anc

I I I I I
W I I I Is

I I I' I I I I
Lo I I II I_

I I I I T-

Figure 7b: Line source of particles
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source (assign all particles to one position X a at t 0 ), a line or plane source (done similarly), or any

other spatial distribution (Figure 7b). Also, it is not really necessary to think of converting

concentrations to particles if the distribution of particles itself will serve the purpose of the

simulation. It all depends on the manner of interpretation of the results (§ 5.5).

Boundary conditions would normally include specification of cCX ,t) or W (X. ) or the normal

mass flux F = n(pvw + J) for points X on the boundary IQc of Qc. This mass flux is usually

specified to be zero (representing a no-flux boundary) or some positive inflow quantity. For

convenience in applying these conditions in terms of particle distributions, the outermost shell of cells

of QC will be considered as the boundary, or, more precisely, a boundary layer, in which particles

will be distributed to mimick fixed concentrations or flux conditions (Figure 8a). Dynamic variables

such as velocities and moisture contents will still be associated with these cells. Let us denote by d Q,

the cells on the boundary (layer) associated with a constant C, ), or particle count (Dirichlet

condition); by a 2 those boundary cells used to specify a nonzero mass influx condition; by aQ3 the

boundary cells where a zero-mass flux condition is enforced; and by aQ4 the remainder of the

boundary cells where mass is essentially allowed to flow out of the domain into . Clearly, 8 QC

E aDi. Application of conditions on these boundaries will be explained in turn:

* Dirichlet Boundary dQ1: Consider the case using the first time stepping method described

in §5.3. To each cell in a 1 assign a number of particles that represent the specified particle count or

a translated concentration or mass fraction value based upon the volume of the cell as discussed above.

These should be distributed uniformly and randomly inside the cells. During the next time step, these

particles along with all others inside QC are moved according to the time stepping procedure. Some

of the particles put into aC2 1 will move into the core of QC (that part of QC excluding the boundary

layer), some will remain inside a Q1 , and some may actually move out of d into other parts of the

boundary or outside of Qc completely (Figure 8b). At the end of this time step and before the next, all

particles outside of the core of QC are removed and all active boundary conditions are reinstated. In

other words, all remaining particles outside of QC and ac2C are removed. In the case of 80 , the

remaining particles are taken out and a "fresh" batch is put in again as described above. This serves to

maintain the average number of particles or concentration in a Q1 over the discrete time steps at the

same, prescribed level.

In this time stepping approach, the time increments At will be small in comparison with total

simulation time, so the decrease in the boundary concentration between the start of successive steps

and its affect on the solution is minimal. The only way to apply this condition in the second time

stepping method would be to reinstate the particles after each rendezvous time Ti. As the time span

between these points can conceivably be quite large, the change in the boundary concentration between
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these increments could influence the solution significantly. As there is no other easy way of

implementing this kind of boundary condition for this time marching method, it is recommended to use

conditions on Q1 with the first time stepping scheme only.

* Mass Influx Boundary aQ2: The treatment of this boundary condition can be done in a

fashion similar to that above. It is important to see that the physical boundary statement involves

specifying a certain amount of mass (i.e., number of particles) that must flow into the system through

a certain area over some span of time. It is assumed that the velocity at this boundary flows into C

and is consistent with the concept of inflowing solute mass. Suppose that the influx rate is F

[mass/area-time]. Then, consider an individual cell L that is part of Q2 (Figure 8c). If the area of

the side of this cell facing inside toward QC is denoted by A, then the mass expected to flow into Qc

in a direction normal to the surface A over some time interval At is M = FAAt. This corresponds

to N = FA At/m particles that must come through A into Q over At, where m is the mass of

one particle. The best way to introduce these particles into the domain is to place them uniformly and

randomly into cell L and let the velocity component normal to A advect them in over a given period of

time At (and ignore other velocity components, dispersion and the gradient correction terms). It is, in

fact, best to specify this normal velocity component Vn (and ignore the real value) to be Ax/At

where Ax is the depth of cell L or the boundary layer (Figure &). This will guarantee that all the

particles come out of L uniformly over At into QC at the desired rate F. This procedure should be

applied in all cells that belong to 802. It can be used in either time stepping method; it should be

based upon the optimal time step Atopt in method one, and on the interval between rendezvous

times in the second method. The cells would be refilled during each interval.

* Zero-Flux Boundary 8Q3: By definition, this is a boundary across which no mass can cross.

Such a boundary will likely be one where the normal velocity is zero. Particles in the vicinity of such

a boundary may be "urged" to move across the boundary as part of a diffusive displacement. Any

particles moving into a zero-flux boundary cell will be reflected back into the domain in the manner

illustrated in Figure 8d, a sort of "billiard ball" bounce. Boundaries such as this are often called

reflective [Gardiner, 19851.

* Outflow Boundary 8 0: The remaining cells comprising the boundary layer a C are

loosely classified as free-flow or outflow boundary cells. Particles that enter these cells (or cross

through to outside of QC) during a time step will be removed from consideration. They simply exit the

system or region of interest. If the boundary of Qc is thought of simply as an imaginary line without

physical influence through a much larger flow system in 0, then it is conceivable that a particle
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that crossed over this line could find its way back through winding velocities and dispersive motions.

This possibility, albeit slight, is excluded from consideration in this model. In other applications,

when a theoretical boundary such as this has a physical meaning, it is often labeled as absorbing

[Gardiner, 19851 because of its properties of removing the particles from the flow. This would

correspond to aQ being a part of the boundary of Q, where specification of the probability f to be

zero indicates no chance for a particle to be situated there.

A summary of these auxiliary conditions is presented in Table 1.

Table 1
Review of Bormdary Types

Usage
Boundary Type Characteristics Time Step 1 Time Step 2

dQ1 Dirichlet Specified # particles in or on OK Difficult
boundary for some time period.
(Figure 8b)

aQ2 Specified flux Specified # particles enter.Qc CK OK
from a Qi per unit time and unit
area facing QC
(Figure 8c)

aQ3 No-flux Particles crossing into dQ3 or OK OK
beyond (out of QC) reflected back
via "billiard ball" bounce.
(Figure 8d)

dno Outflow Particles crossing into dQ4 or OK OK
beyond are extracted from system.
(Figures 8bc.d)

aQc General a*c = l + Q2 Q3 + ad

5.5 Solution Refinement and Sensitivity. In many kinds of applications, it may be desirable to

convert particle distributions to concentrations or mass fractions. Suppose we are studying a problem

where a fixed amount of solute mass M is represented by some N particles within a large flow domain

Q. Some or all of this mass may be passing through the computational domain of interest DC. but it is

only important to realize that M is thought of as being fixed and N is chosen as the number of

particles to represent it. The mass of an individual particle will be m = M/N and will depend on the

choice of N. Consider some arbitrary sampling region Qs of fixed shape, volume Vs. and orientation

centered at some point X in Q (Figure 9a). The following will serve as approximate measures of the

local solute mass in Qs centered at X at time t:
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Ns(X.t) = total number of particles in Qs. (66)

MNs(Xt)/N = mNs(X.t) = totalmassinside Qs,

c(Xt) = MNS(X,t)/Ne(X.t)V = mNS/e(X,t)Vs = averagemass

concentration of solute at (Xt).

G1(X t) = c(X.t)/p = average mass fraction at (Xt).

n(X,t) = Ns(X.t)/N the fraction of the N particles in Qs at

time t.

Recall, the analogy used with the random walk approach is to represent some known solute mass

M with a finite number of N particles, N being selected by the user. In this sense, the individual

mass of each particle m will be smaller if N is larger. As pointed out before, the larger N is, the

easier it is to (1) represent the distribution of the solute mass through the flow domain, and (2)

identify smaller fractions of mass in specific local areas.

The sampling volume Qs used to define average concentrations or mass fractions can be of any

size or shape, as long as it is used and oriented the same way for all evaluations. Theoretically, it can

be moved about the computational domain to obtain concentration or mass fraction measurements

over a continuum of points (Figure 9b) for a given "snapshot" of the mass at some time t.

Qualitatively speaking, the larger Qs is, the larger the number of particles found within it will be,

and the more smoothly varying the concentration will be. If s is too large, all of the mass will be

found within it and little sense of its spatial distribution will be discerned. On the other hand, if Qs

is too small, its utility in extracting smooth distributions of mass from numbers of particles will be

lost. The whole idea of the volume Qs it to provide some sort of continuum measure of the solute

distribution. A particularly useful choice of Q will simply be the cell volume Qe, whose natural

scale is derived from the finite difference flow mesh size. This volume will be representative of the

local (REV) scale used in this investigation and is essentially that used to define local hydraulic

parameter values and velocities. It is attractive because it can be used to define a local concentration

field on a scale corresponding to the local velocities and parameters. Use of non-overlapping cells

(Figure 9b) is certainly allowed and provides a convenient framework for estimation of these

continuum measures over a regularly spaced set of points.

If the cell volumes Qe are adopted to be the sampling volume QS' then control of defining

smoothly varying continuum measures of the solute distribution will rest in the choice of N. Because of

the finite nature of N, "noisy" solutions such as that pictured in Figure 10 can be obtained. To quantify

this noise, we refer to AhIstrom, et al., [1977] who define a standard normal error E to represent the

degree of this problem. Consider the motions of one particle and a random variable Z which takes on

the value of 1.0 if the particle lies in a small sampling region Qs of volume Vs centered around X
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at time t and zero otherwise. For simplicity, suppose Os is, in fact, a small, general sample volume

Q5 of volume Vs as discussed above. If Vs is much smaller than the volume of the region QC, the

expected valueofZ at Xt)issimply E[Z] = f(Xt)V. anditsvariance 2 is

f(X.t)Vs (1 - f(Xt)Vs). If N particles are in DC, theexpected number EENS] of particles to be

found within Vs at any point X and time t is given from (42):

E[NS = Nf(Xt)Vs (67)

with variance 2 Ns 

0S2Ns = Nf(X.t)Vs(1 - f(Xt)Vs) (68)

If VS is small, then f Vs small and its square can be removed from (68) to give

C2 Ns - Nf(Xt)Vs (69)

With a fixed total mass M, a cell concentration C. can be defined using (66) whose mean and variance

at (X.t) become

E[cs] E[MNS/NeVs] = (M/NeVS) E[NS] = Mf(Xt)/e(X,t) (70)

C2 C= Var[MNS/NeVS] = (M/NeVS) 2 2NS N (M/e(X.t)) 2 f(X.t)/NVS

Etcs] (M/NVs8(Xt)) (71)

where (67) and (69) were used. Notice that the expected concentration at X and t is independent of

the number (N) of particles and the size Vs of the volume used to formulate it, as long as it is small.

The variance, on the other hand, is dependent on the mean. Integration of e(X ,t) E[csI over n
yields the total mass:

e(X,t) E(cS] dX = M {f(Xt) dX = M-1 (72)
Q n

The variance 5 2c does, however, depend on N and VS. as well as X and t. A more useful measure

of the variability is the global squared error 2 found from integrating e(X't) 2C2C(X .t) over X:
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e2 NM2 4 f(Xt) dX = 'I (73)
NVS J0 NVS

whence the standard normal error is = M/N . This result is essentially a global measure

of all random noise illustrated in Figure 10 and shows that it is reduced by a factor of two for a

four-fold increase in the number of particles N or a four-fold increase of the volume of the sampling

region Qs from which concentrations are estimated.

As mentioned above, the local cell volume e was chosen to be Q for these investigations to

maintain the scale of the concentration estimates. Improvement of any random noise error in this

model will thus be limited to increasing the number of particles used to represent the solute mass, or

using some post-process filtering algorithm to find a smooth measure of the resulting particle

distributions. The concentration estimates associated with the cell centers can be considered to be

corrupted by this random noise and written as

z(Xt) = (Xt) + s(Xt) (74)

where z(X,t) is the raw concentration estimate, or measured value, C(Xt). the true, expected, or

sought-after value, and s(X.t) is the noisy component with zero mean and variance is given by (71).

The random nature of can be considered a spatial process, dependent on the mean signal c(X, t),

yet independent at different times. The measurements, z, are therefore random in this way also. In

most situations, the signal would be considered deterministic or coherent in space. AhIstrom, et al.,

[1977] discuss a method of filtering the Z measurements in the spectral domain to remove what they

consider to be the contaminating high frequency spectral components. Their approach consider a very

simple problem where CX Xt) is known a priori so that it is clear what the corrupting components

are. In a general situation, the form of C(X.t) is not know ahead of time, and it is not clear what sort

of cutoff frequency to use in their low frequency bypass. This approach is a specific case of a more

general smoothing situation where Z. S, as well as C are considered to be random in space, and a

filter to estimate c(X ,t) can be constructed by convoluting the measured signal z with a transfer

function based upon the spectra of C and s [Papoulis, 1984; Pratt, 19781. This method can be

problematic because of the dependence of the noise, 2, on the signal strength, E [c s].

On the other hand, simpler smoothing algorithms to find c(X,t) may also work just as well.

Some methods exist that are not plagued by a dependence of the magnitude of the noise to the signal

magnitude. A familiar least-squares fit can also be used. Furthermore, alternative approaches for

defining the concentration can be pursued. A technique based on the concept of smoothing windows used

in spectral estimation [Press, et al., 19861 can be used, where the contribution of a particle at Xi to
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the concentration c(X .t) at X is controlled by a more smoothly varying "window" or weighting

function. This is a generalization of the simple volumetric concept discussed above and illustrated in

Figure 9. Although these filtering schemes are intellectually elegant and very interesting from a

theoretical point of view, their only potential value here would be to filter the solution to a given

degree (measured by a reduction of E) at a cost less than that associated with using a larger number of

particles to achieve a comparable improvement.

The effects of the number of particles can also be illustrated in simple, constant velocity problems

by evaluating the second moments of a spreading particle distribution about the mean displacement of

its center of mass and comparing this with an exact result. This will be discussed further in the next

section in a broader context of measuring the spreading characteristics of a solute plume in a spatially

variable velocity field. Examination of the nature the heterogeneous particle distributions in this

way is meant to help us understand larger scale behavior of spreading solute as induced by spatially

variable velocity, moisture, and hydraulic parameter fields. It will also allow for comparisons to be

made with predictions of larger scale stochastic models.

5.6 Detection of Larger Scale Behavior. One approach for comparison of the numerical results found

here with stochastic theories (e.g., model equations 10 and 14) will involve analysis of our solutions

to detect mean or larger scale Fickian dispersive behavior as evidenced by constant, asymptotic

macrodispersivity components (see §2.2). Apparent large scale dispersivities of a heterogeneous

medium can be measured in many cases by calculating the second-order spatial moments of a spreading

solute mass about its moving center of mass. These measured quantities and their behavior can be

compared with their theoretical counterparts derivable from the model mean equations such as (10).

Agreement between the measured behavior found from the local particle tracking experiments and its

theoretical counterpart will tend to corroborate the predictions of stochastic models.

Given a distribution of solute mass pWE in a large three-dimensional domain ) at some time,

its general p-th order spatial cross moment is defined by [Freyberg et al., 1983]

Mlmn = I pwi XlymZn dC) (75)

where p = l m n. Notice that the solute mass is simply M M. The center of mass of the

solute plume is simply the normalized set of first moments X (M1 00 /M) i + (Ma1 0/M) +

(M 001 / M ) k. This can be written in a more compact form as

Ppcoe X d (76)
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One measure of the general three-dimensional spread of solute about the center of mass X is the

normalized second order moment matrix, corrected for the center of mass:

VJ2 M 9{P E) (X - X) (X X)T dQ (77)

1 pe X XTdn -M dQ X 

The three components of the first row of 2 are, for instance,

6 21 1 = M200/M - (M 100/M) 2

c2 12 = C5221 M110/M - M 00M01 0/M2 (78)

d2
1 3 = 231 M101/M - MoMaai/M2

As a simple application, consider transport in a saturated domain with a spatially constant

velocity V and scalar dispersion coefficient. In this case, the solute balance equation is given by (46)

where the porosity 0 has been factored out. If a fixed amount of solute mass M remains completely

inside QC. then multiplication of (46) by e0X XT and integration over all of Qc (or Q) yields the

relationship between V 2 and the dispersion components [Gelhar et al., 19791:

dV 2 = 2D I (79a)

A similar procedure using e 0X to multiply (46) yields

dX = V (79b)
dt

If a problem is conceived where a plug of N particles is introduced into a small region in and

allowed to move such that all mass remains inside DC' then the overall spatial characteristics of

the resulting solute plume can be measured in the same way as perceived above. In this case, the

spatial distribution of solute "particle" mass can be approximated by

N
pGe m (X - XI(t)) (80)

1=1
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where m = M/N is the mass of one particle and X i(t) is the position of the i-th particle at time t.

The mass, M *, center of mass, X*, and second-order moment matrix 6 2 * of this particle

distribution can be evaluated using (80) in (75), (76), and (77):

N
M*= JP e p dMc m mN (81)

r ~~ ~ ~ ~~N N.
X*: = J| p~eXdDC I 1 ZE mX = 1 Xi (82)

M* Q M* i=l N i=l

N

*: M* pe XXTdQC -XT = 1 -iXiT X. XMT (83)
Mw C N i1

The star subscripts signify statistical measurements based upon an experimental particle distribution.

As long as all particles remain in Dc. repeated measurements of components of 6 2 * can be plotted

against time and the resulting slopes compared with the theoretical values, such as (79a). Deviations

from the exact slope will be indicative of the finite number of particles used in the simulation. The

same can be done with values of X * to estimate the velocity components.

In the same manner as above, the large scale, mean solute balance equation (10) can be

manipulated to form theoretical relationships between moments based upon the mean solute mass

distribution pa) 6 and the dispersivity components of A as well as the the local dispersion

coefficients. Consider a saturated flow problem where a becomes the constant porosity e0 or a

steady unsaturated flow problem where 4 and C are zero and q can be approximated by V eu Gu

being an approximate saturation level. Equation (10) can be written as

a8 (Pep) + V(p8V A) - V-[P(Elocal + eVA(t))VI = 0 (84)

where 0 is e0 or eU, and V is I-. Let us assume further that conditions are such that the mean

velocity V (and hence At) and EloCal) as well as E can be considered constant over space. If a

fixed amount of solute mass M remains completely inside QC' then multiplication of (84) by X X T

and integration over Q. (or Q) yields the relationship between 2 and the large scale dispersion

components [Gelhar et al., 19791:

d t 2(V () Elocal) (85a)

Similarly, multiplication of (84) by X yields
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dX = V (85b)
dt

Suppose a corresponding local problem is conceived where a plug of N particles is introduced into

a small "upstream" region of Qc and allowed to move such that all mass remains inside QC Since the

spatial distribution of solute "particle" mass can be still approximated by (80), the overall spatial

characteristics of the resulting solute plume can be measured in the same way as above using equations

(81) - (83). Because the local velocity field is heterogeneous, the spreading as measured by (83) will

be more marked. This will be true especially at larger times when the initially small plug has moved

through a significant portion of the variable environment. Initially, the statistical measurements

(81) - (83) will vary with time and may not necessarily reflect the mean velocity and dispersive

characteristics in (84). Some period of development time will be required for this to occur, and this

may be dependent on the variability of the flow field as well as the magnitude of local dispersion

effects. Nevertheless, measurements of . t) and 2 * t) can be made, plotted, and analyzed over

time to see if mean or asymptotic effects can be identified, quantified, and compared with theoretical

predictions.

If the simulated small scale velocities correspond to a spatially constant mean velocity , then

the time derivative of the measured displacement X Ct) can be used to compute an apparent plume

velocity v.(t) using (85b). The magnitude and direction of v* may initially vary in time until the

plume is spread out sufficiently to sample all velocities; v* would ultimately be expected to

approach 7. Similarly, repeated measurements of components of a 2 *(t) can be used to compute an

experimental value of A * (t) using (85a). In this case, it would be most appropriate to use a measured

velocity magnitude V*(t) 7*(t) and not an overall field average (even though v* -> vin

time). The primary axis and components of A *(t) can be computed as time varying quantities and can

be analyzed for asymptotic behavior in the form of macrodispersivity components. These can then be

compared with theoretically derived values [e.g., Gelhar and Axness, 1983, Dagan, 19841

corresponding to this problem.

When V in (85a) is interpreted as V* dX */dt |, then (85a) can be rewritten in the form

[Gelhar and Collins, 1971]

ds _ 2[A (t) + Elocal/V] (86)

where the incremental path length d dw . This suggests an alternative way to measure the

components and primary directions of spreading variance and dispersivity tensor, i.e., in a curvilinear
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coordinate system aligned with the measured, traced-out path of the plume.

In the context of this problem, comparison of the measured dispersivity tensor or velocity using

(85) or (86) with their theoretical counterparts can only be made in an asymptotic sense, after a

sufficient amount of local particle mixing has taken place. Since the mean, theoretical results are

ensemble averages, they can only be compared, in a strict sense, with ensemble measurements, made

over many realizations of an experiment. Early measurements of apparent dispersivities or velocities

based upon (85) or (86) would be essentially different for repeated realizations of the same problem

with the same sort of variability structure and cannot be individually compared with the theoretical

values. However, after some amount of travel time in a heterogeneous (yet stationary) medium,

measurements from different replicate problems would become similar; results from one experiment

could then be safely used in comparisons. The spreading of the solute mass would then have taken

place over regions whose dimensions are representative of the larger scale in this investigation. One

would expect that the measured dispersivities eventually reach the predicted asymptotic values.

Other comparisons between the local transport simulations and their mean characteristics could

be made and are mentioned here for completeness. They include: (1) investigating the effects of

locally variable dispersion coefficients on the observed macrodispersion coefficients; (2) examining

what sort of influence the underlying parameter correlation structure has on the mean simulation

results; or (3) developing methods to estimate a mean concentration field from the simulations such

that corresponding perturbation fields can be studied and compared in the spectral domain with the

results of Gelhar and Axness, [1983], Mantoglou and Gelhar, [1987a,b,c], and Vomvoris, [19861.

5.7 Summary of Approximations. For completeness, the primary approximations built into the model

and discussed above will be reviewed below:

* Conservative Mass Transport The random walk analogy does not naturally allow for sources

and sinks of solute mass to be conveniently included in the step equations. The conservation of

probability embedded within the Fokker Planck equation translates directly into a necessary

conservation of solute mass. Sources or sinks of mass can be included via post-processing algorithms,

which is essentially equivalent in concept to the application of nonzero flux or Dirichlet boundary

conditions on the surface of a closed computational region QC, itself a subset of a larger region Q over

which the equations were developed and the mass M is constant. [§4.6 and §5.41

* Number of Particles: The random walk equations were based on the independent motions of

one particle. The simulation of many particles at once is equivalent to an ensemble of single

simulations. By representing a given amount of solute mass M by a distributed number of N particles,
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the spread of mass at a later time can be simulated. The larger N is, the more representative the

actual distribution is and the less noisy resulting concentration estimates will be. [§ 4.2, §5.3, and §5.51

* Evaluation of Continuum Forces: By these, quantities such as moisture contents and velocities

are meant. These are typically required anywhere a particle exists. Because of the discrete nature of

the corresponding flow problem, these quantities as well as the gradient correction terms are

evaluated as cell constants. [§5.1]

* Discrete Time Step: If forcing quantities such as the velocities are spatially variable and.

available at a continuum of points, the necessity of using a finite time step implies overshoot errors

will accumulate. These are minimized, in some part, by reducing the size of the time step. If a particle

moves within a cell, however, an overshoot will occur than cannot be corrected because velocities and

moisture contents within cells are assumed to be spatially constant. If a particle moves through

several cells within one time step, additional errors will occur if the velocities vary between the

cells. This can be controlled by minimizing particle overshoot across cell boundaries. [§5.2, §5.3, and

§5.4]
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6. APPLICATIONS OF THE MODEL

6.1 Scope. In this section, the transport model developed in the previous sections will be applied to

several test problems. The first example considers a one-dimensional "saturated" problem and is

presented to illustrate the effects of the time step and number of particles on concentration estimates.

The second example involves a three-dimensional saturated system with a constant velocity. The

results will be presented in terms of moment estimates and will also contrast the effects of different

time steps and numbers of particles. The third example will involve a preliminary set of local

simulations in a three-dimensional, saturated system characterized by a spatially variable velocity

distribution. The problem is designed so that the developing dispersive behavior can be easily

analyzed and compared with theoretical predictions of stochastic models.

6.2 Example 1: One-Dimensional Simulations. This is a simple problem designed to implement a

saturated form of the model in one dimension. The computational flow domain QC consisted of a

one-dimensional array of 300 cubic cells of side length AX i = 0.5 placed along the X1 axis. A

constant uniform velocity of V1 = .0 was used in a one-dimensional form of (49) to move N particles

initially distributed uniformly in the 10th cell located at 4.5 < X 1 < 5 .0. Each end of this

domain was treated as a "free" type boundary, and. A dispersivity CCL = 1 .0 was chosen so that

the dispersion/diffusion constant D takes on a constant value of .0. Five different cases were

considered to a maximum time of TmaX = 40.0 with varying time steps and numbers of particles.

The specifics of each simulation can be found in Table 2. Normalized concentration distributions at

Tma = 40.0 are plotted in Figure 11 against the one-dimensional analytic solution. The

concentrations are simply the number of particles found in each cell divided by the total number N

used in the simulation; i.e. c(X t)6VS/M of (66). In Table 2, the standard normal error E as

introduced in (73) is given, where it has been assumed that the total mass M of all N particles is

always 1 .0 and the sampling volume V is A X i3 = 0. 1 2 5.

Examples 1.1 to 1.3 were all run with N = 2 0 0 0 particles and various time step sizes. Clearly,

the choce of time step did not seem to affect the results in Figures 11a-c. The essential shape of each

curve is the same as well as the degree of random "noise". When 20000 particles are used, however,

the noise is reduced as illustrated in Figures 11d,e. The improvement is roughly three-fold as

indicated by the smaller standard errors associated withe these runs (Table 2).
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Table 2
Simulations for Example 1

* One-Dimensional Domain:

* Initial Condition:

* Boundary Condition:

* Velocities:

* Dispersivities:

* Time limits

L = 150
L2 = L3 = 0.5
AXi = 0.5

Release N particles in uniformly distributed pulse located
in 4.5 < X1 < 5.0

The two boundaries at each end of the domain are of the free
type, aQ4

V = 1.0
V2 = 3 = 0.

tL = 1.0 ==> D11 1.0

T ax = 40.0
Af varies

Run N At cc E (M=1, VS=o.1 25) Figure

1.1 2000 0.5 1. 0.0632 l1a
1.2 2000 0.05 0.1 0.0632 11b
1.3 2000 0.005 0.01 0.0632 lic
1.4 20000 0.05 0.1 0.0200 lid
1.5 20000 0.5 1. 0.0200 lie
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6.3 Example 2: Three-Dimensional Uniform Velocity Simulations. In this example, a

three-dimensional, cubic domain composed of a regular grid of 125000 cells was considered (Figure 12).

There are 50 cells or 51 nodes along each coordinate direction, and the dimension of each cell in each

direction is AXi = 0.5. A constant, uniform velocity field (V = 1 0 V2 = 0, V3 = 0) was

selected for the entire computational region QC, The dispersivities CCL = T = = 0.1 were

chosen so that the dispersion tensor could be reduced to a scalar of magnitude D = 0.1 . For this

simple case, the extra gradient terms in the step equations vanish. The appropriate random walk step

equation is again given by (49).

As an initial condition, a number of particles were located in the small cubic region consisting of

eight cells as shown in Figure 12. All boundaries were considered to be of the fourth or "free" type,

d 4 The first three simulations used 1000 particles distributed randomly and uniformly in these

eight cells (125 each). Each problem was simulated up to a maximum time of T = 1 2.5. It was

intended that very few, if any, of the particles would exit the system during this time period; a few

may also exit at the start be dispersing upstream through the negative X1 face of QC. The only

difference in each problem was the choice of time step. Three different values ranging from At

0.1 to At = 1 .5 were selected giving a range of cell Courant numbers Cc ranging from . to 1 .5

(§5.2). The second set of three problems was identical to the first group except that 2000 particles

were used (250 per cell). A seventh problem involved a choice of 10000 particles (1250 per cell) with

At = 0. 1 . The specifics on all of these examples are summarized in Table 3.

Figure 13 shows the components 21 1 *, d 2
2 2 *, and C233* of the measured second order

moment tensor (W2* plotted against time for each run. The theoretical behavior is given by equation

(79a) and the slope of each experimental line is quite close to the predicted value of 2D = 0.2. The

initial moment distribution at t = 0 is easily calculated to be 2(t=0) = 1 / 2 . so the exact

relationship (79a) can be integrated to give

6 2 (t) = (1/12 0.2t) (87)

Figures 14a and 14c show a vertical projection of the particles onto the X1 -x 2 plane at T max =

1 2.5 for runs 2.3 and 2.7. Figures 14b and 14d show contours of vertically averaged particle counts

normalized by the total number N of particles for runs 2.3 and 2.7. These can be considered as

normalized concentrations as in example 1. Notice how noisy the concentration contours for run 2.3

(1000 particles, Figure 14b) are in comparison with those of run 2.7 (10000 particles, Figure 14d). This

can be quantified by contrasting the standard normal errors (73) for each case. This error is reduced by

greater than a factor of three in going from run 2.3 to 2.7. Although the noise in the concentration

contours is significantly affected by the number of particles used, the second moment estimates (Figure
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13) do not seem to be as strongly affected. Moment analyses apparently provide a more robust measure

of the solute distribution, less susceptible to the effects of small particle counts.

Table 3
Simulations for Example 2

* Three-Dimensional Domain:

* Initial Condition:

* Boundary Condition:

* Velocities:

* Dispersivities:

L = 50
AXi = 0.5

Release N particles from a uniformly distributed pulse
located in a cubic group of 8 cells as shown in Figure 12.

All boundaries of the domain are of the free type, do

= 1.0i

d(L = 0.1
O(T = 0.1 ==> = 0.1 

* Time limits Tmax = 12.5
At varies

Run N At Cc Figures

2.1 1000 1.5 1.5 13a
2.2 1000 1.0 1.0 13b
2.3 1000 0.1 0.1 13c, 14a.b
2.4 2000 1.5 1.5 13d
2.5 2000 1.0 1.0 13e
2.6 2000 0.5 0.1 13f
2.7 10000 0.1 0.1 13g, 14c,d
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Figure 12: Flow domain for example 2. Initial condition involves N particles released from a 2Ax 1by 2A x2 by 2Ax3 (Ax i = 1 . 0) region of 8 cells as indicated (table 3)
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Figure 14: (a) vertical projection of particle locations on the x1 - X2 plane from run 2.3; (b) Contours
of vertically averaged particle counts ( normalized concentrations) on this plane
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Figure 14: (c) vertical projection of particle locations on the xi - x2 plane from run 2.7; (d) Contours
of vertically averaged particle counts ( normalized concentrations) on this plane.
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6.4 Example 3: Three-Dimensional Variable Velocity Simulations. These simulations use the same

cubic domain as used in Example 2. Spatially variable flow systems corresponding to synthetic

heterogeneous conductivity fields were used to move the solute mass under saturated conditions. The

spatial distribution of conductivities was generated as a realization of a stationary random field as

described in §3.1. This representation of our model heterogeneous system is characterized by the

mean, F, of the log-conductivity function n K and the associated spatial correlation structure of

the perturbation, f X). Two flow examples have been considered that involve an isotropic,

exponential decay correlation model for the fluctuation f X), with aspecified correlation scale, X,

variance, a 2 f, and mean conductivity eF =_K G Within each flow field, several transport

simulations were carried out with different values of local dispersivities. The simulated spreading of

particle mass is compared with the generic theoretical macrodispersivity results as discussed in §5.6.

We emphasize here that these initial simulations and their subsequent analysis should be considered

as preliminary in nature.

6.3.1 Flow Domain and Boundary Conditions. Each of the problems was developed from a synthetic,

spatially variable n K field on a grid of 51 x 51 x 51 points (§3.1). In both problems, the spatial

discretization AX i was chosen to be 0.5 in all directions, while the isotropic correlation scale X

was set to 1 .0 = 2A X i. Hence, the computational region QC has a length L i = 2 5. 0 = 2 5 X in

any direction (Figure 15) and a total of 125000 cells. A total 25 correletion lengths will fit along

length of the domain in any direction. The geometric mean of the conductivity fields eF KG has

been set to .0 for both problems. The only difference between the flow fields is the degree of

heterogeneity of the conductivity distributions as described by the standard deviation, a r:

*FlowProbleml: af = 2.3 X = 1.0 KG = 1-0

*FlowProblem2: Of= 1.0 X = 1.0 KG = 1.0

Note that the two random conductivity fields used were not generated independently. The first field

was created as a scalar multiple of the second (i.e., f (X) = 2.3 f2 ( X)). More thorough

investigations would use independent conductivity distributions generated with different random

"seeds".

In both flow problems, a steady saturated flow is developed (§2.4, §3.2) from specification of an

0. drop in the mean head h between the the two side faces (1 and 3) intersecting the XI axis, as

shown in Figure 15. The local head on these faces is maintained at ± 0.05 which corresponds to a

mean gradient J 1 - (h +z) /d X = - .00 4. This results in a mean flow in the positive x1

direction. All other boundaries are treated as no-flow boundaries. Some characteristics of both
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X2 xi
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Axi~~~~~~~~~.26e6x1

Figure 15: Cubic domain QC for example 3 where Axi 0.5 and X = 1 .0. Initial pulse location
is shown. Circled numbers indicate face number of QC* Dashed xl - X2 plane at X3 =
26Ax3 indicates where results in figure 16 are taken from. A mean head difference Ah
= 0.1 is maintained between faces 1 and 3 to develop a steady flow solution. Other faces
are no-flow boundaries.
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velocity fields are given in Table 4. Velocities are derived from the flux components q(X) =

e 0vi(X) where the porosity 0 has been assigned a constant value of 0.30. For flow problem 1,

contours of the head values on an X1 -X2 plane located at X3 = 26AX3 (Figure 15) are

superimposed on contour maps of the conductivity distribution in Figure 16a.

Table 4
Computed MeanVelocitly Components, Example 3

Flow problem 1: f 2.3 Flowproblem 1: f .0

t 0.0523 0.0174
0.0080 0.00080

V3 0.00056 -0.000095

Vlimax 10.73 0.21 4
V2 max 3.90 0.0839
V3jmax 5.30 0.0699

v miin -0.96
V2Min -1.56
V2,min -1.76

t vi are arithmetic averages of all computed velocity components within Q.

6.4.2 Transport Problems and Auxiliary Conditions. Eight distinct transport problems were run, four in

the first flow field ( = 2.3), and four in the second (5f= .0). All problems involved an initial

distribution of 8000 particles within a 4 x 4 x4 cube of 64 cells centered near face of QC (Figure 15).

The center of this cube is located at ( .5, 1 2.5, 1 2.5) = (3AX1 , 25AX2 , 25AX3 ). The

particles in each problem were displaced in time according to (52) to simulate development of a solute

cloud in the heterogeneous velocity field. Each boundary was treated as a "free" type (mQy) so that

particles could freely cross any external boundary face of the domain. When this occurred, they were

removed from consideration and the total mass in the domain was reduced accordingly. Generally,

particles exited the domain for one of two reasons:

* Upstream dispersion near t 0: Because the initial solute distribution was so near face 1

(Figure 15), a small amount of mass may disperse upstream out of the computational domain Q.

according to the assumed local Fickian dispersion mechanism. Because these particles are removed,

they cannot reenter the flow domain as might be expected. Also, because of the extreme heterogeneity

of the medium, it is possible that local velocities in the negative X1 direction could also arise (table
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4) and enhance early particle loss through the upstream face. In most cases, however, the initial loss

of mass (if any) will occur for small periods of time near t = 0. Afterwards, the mass in the domain

remains constant for longer periods of time, allowing measurements of a constant mass distribution to

be made.

* Outflow at downstream boundaries: As the particle plume moves through the domain, it will

widen and disperse. Because the mean flow direction is in the positive x1 direction, most particles

will eventually exit through the positive X1 face (face 3, Figure 15). If the plume is wide enough,

some particles may exit through the sides of the domain (faces 2,4,5, and 6, Figure 15) via the

dispersion mechanism, even though these faces are treated as no-flow boundaries. When either

process begins to occur, the total mass in the domain QC will decrease with time. In this case,

statistical measurements of the particle distribution inside the domain Qc will no longer reflect the

same amount mass over time, and cannot be used in measuring statistical characteristics of the overall

plume (§5.6). Breakthrough curves, on the other hand, can be constructed and used to illustrated the

solute distribution.

In order to minimize overshoot errors (§5.2), the computational time step At in these problems

was selected to meet the Courant number condition Cc = VAt/AX < 1 so as. Based upon the

magnitude of the largest positive velocity component in each flow domain (Table 4), the following

values were used in the simulations:

*FlowProbleml. f = 2.3: At = 0.10

*FlowProblem2. f = 1.0: At 1.0

Most simulations were run for a long enough period of time such that a relatively complete

breakthrough curve through the downstream boundary could be constructed.

The four problems considered in each flow differed only in the choice of the local dispersivities

and T In each flow domain, one problem used L = (T= 0, while the remaining three used

°(L/O'T = 1 O, with O°L = 0.005. 0.05. and 0.5. All problem characteristics are summarized in

Table 5. In Figure 16b, the projected X1 -X2 positions of the 8000 particles used in run 3.2 illustrates the

method and the extreme heterogeneity of the first flow field.
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I log1 0K(x)
2 tog10K(x)
3 1og 10K(x)
4 log1OK(x)

z- 2
- 1.5
- I

- 0.5
-:1

1.5

= 2

x1

X2

Figure 16a: Low and high in KS(X) contours and head contours for flow problem 1 as outlined in table X1
4. These values correspond to the X1 - X2 plane located at X3 26Ax3 in figure 15.
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Figure 16b: Superposition of the head and high conductivity fields at X3 = 26AX3 from flow field
1, Table 4, along with projected particle positions in the x 1 - x2 plane from run 3.2 at T
= 250.
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Table 5
Simulations for Example 3

* Three-Dimensional Domain:

* Initial Condition:

* Boundary Condition:

* Conductivities:

L = 50
AXi = 0.5

Release 8000 particles from a uniformly distributed pulse
located in a cubic group of 64 cells as shown in Figure 15.

All boundaries of the domain are of the free type, 8Q 4

As derived from a realization of an isotropic, exponentially
correlated random field; e.g..

InKs(X) = F + f(X)

whereX i = 1 .. F = 0., and variance of f =X) _ 2f

flow )rob]m_1: f = 2.3
flow roblem 2: f = 1 .0

* Velocities: As derived from an applied head gradient J = -0.004i
(Figure 15) across each conductivity field with e0 = 0.30.

* Dispersivities

* Time limits

o(L. °oT vary (see below)

T ax (see Table 6)
J varies (see below)

Run A f L OCT t Figures

3.1 2.3 0. 0. 0.10 16a; 17, row 1
3.2 2.3 0.005 0.0005 0.1 0 16a.b; 17, row 2
3.3 2.3 0.05 0.005 0.10 16a; 17. row3
3.4 2.3 0.5 0.05 0.10 16a; 17, row 4

3.5 1.0 0. 0. 1.0 18.row 1
3.6 1.0 0.005 0.0005 1.0 18, row 2
3.7 1.0 0.05 0.005 1.0 18. row 3
3.8 1.0 0.5 0.05 1.0 18, row 4
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6.4.3 Statistical Computations. For each problem, the following statistics of the mass distribution

were computed (§5.6) at a time increment AT, where AT = 1 0 for flow field 1 andAT = 5 for flow

field 2:

* Center of mass in the Xicoordinate direction: X t)

* Spreading variance about center of mass: 62*(t)

*Mass exiting face i of the flow domain between t and t - AT: miCt)

The center of mass data can be used to compute the trajectory of the plume. The average velocity

of the plume can be computed by estimating time derivatives of X w(t). The variance data can be used

to calculate the rate of spreading of the plume about its center of mass (§5.6). Breakthrough data

(especially m2 t)) can be used, alternatively, to reflect the mixing in the plume. The first and

second moments will be useful only if the mass within the domain remains constant during the time

period considered. This will occur for t, < t < t2 , where t, is the time when upstream mass loss

ceases and t 2 is the time when the first particle leaves a downstream boundary (§6.4.2). The

particular values for t 1 and t2 in each problem are listed in Table 6.

Table 6
Estimated Plume Velocities, Eample 3

Run dXZ"/dt tV t2 71 (Table 4)

3.1 0.00930 0. 290. 0.0523
3.2 0.0100 10. 270. 0.0523
3.3 0.0206 10. 150. 0.0523
3.4 t 70. 80. 0.0523

3.5 0.0128 0. 780. 0.0174
3.6 0.0125 0. 640. 0.0174
3.7 0.0131 15. 575. 0.0174
3.8 0.0143 320. 450. 0.0174

t = time when upstream mass loss ceases
t2 = time when first particle exits any downstream boundary
t t 2 -t1 = the period when mass within Qc remains constant and statistical measurements

can be made (not possible in run 3.4)
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6.4.4 Plume Trajectory and Longitudinal Macrodispersivities A 1 1. The computed values of the mean

displacement X (t) and spreading variance 6 2 .(t) can be used to estimate a mean velocity 7. (t)

and dispersivity tensor A * (t) of the plume using (85) and (86). In turn, these quantities can be

compared with theoretically derived counterparts [e.g., GeLhar and Axness, 1983; Gelhar, 19871.

Because this problem involves only one simulation on a large domain, comparisons between numerical

measurements and (ensemble) theory cannot be made at early times (§5.6). Instead, theoretically

derived asymptotic values will be compared with perceived asymptotic behavior in the model

results. For the isotropic, exponentially correlated conductivity fields are used in these simulations,

the following limiting behavior is predicted from the asymptotic theory of Gelhar and Axness [19831:

* dX/dt -> V as t -> 

A(t) -> 6(o) as t -> 

In addition, the primary axis of A(oo) is predicted to be parallel with that of EiocaI, or, in other

words, colinear with with v. Hence, 2 should take on an asymptotic value and also have a

primary axis colinear with V.

For the example problems, measured components of X.* are plotted against t in the first column

in of Figures 17 and 18, where t is always less that t2 . Run 3.4 has been been omitted because there

was only a very small time period t 2 - t 1 in which the mass in QC remained fixed. It appears in all

cases that the center of mass comes to move in a direction parallel to the x1 axis after an initial small

negative X3 displacement. In runs 3.5 to 3.8 there appears to be a slight continual negative X3

component to this motion. In most cases, it seems that the speed of the center of mass has achieved an

approximate asymptotic value (Table 6, Figures 17,18). The average measured plume velocities

dX.* /dt * = V in the second flow field ( = 1) match the field average V (Table 4)

much more closely than do those of the more-heterogeneous flow field ('5 f = 2.3) in the first

problem. The size of the domain may be, in fact, too small in the first problem to allow for the plume

to develop sufficiently to reflect the overall average field velocity.

Because V.* always appears to be parallel (in the developmental limit) to the x 1 axis, we will

simplify our macrodispersivity calculations by assuming a-priori that 2, A, and E1loca l achieve

asymptotic limits that are diagonal in form (in this coordinate system). In other words, we assume

their primary axes come to be aligned with Xl so that estimates of the longitudinal

macrodispersivity A1 1 *(oo) need only be based on measurements of 211 (t) and X1l (t) through

simplified forms of (85a) or (86):

dC2n 1* = 2 dt1*(A1 1 * '(0 (88a)
dt dt
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d02
11w = 2(A1 1 * + o(L) (88b)

Notice in (88a) that the measured plume velocityV = dX1 /d t is used in place of the overall

field velocities as listed inTable4 Plots of d21 1 *(t), 2
2 2 *(t), and 0 2

3 3 w(t) for t < t2 are

shown for all problems in column 2 of Figures 17 and 18, while plots of 021 (XC * (t)) for t < t2

are shown in column 3 of the same Figures. Data for run 3A were neglected again because there was

very little time in which the mass remained constant within the flow domain. In all cases, the

0211 * curves appear to take on constant asymptotic slopes, dO2
1 /dt and da 2

1 1 w/dX 1 w.

Calculations of the longitudinal macrodispersivity A 1 o (oo) were made using both (88a) and (88b)

and approximate measurements of the constant slopes. These values are summarized in Table 7.

The data for 0222* and d 233* in column 2 of Figures 17 and 18 could also be analyzed to obtain

estimates of A22 (0o) and A33(oo) using relationships similar to (88a). However, because the slopes

are so much smaller, it was thought that measurement errors may lead to large relative errors in their

estimation. In addition, slight irregularities in the 021 1 * curves were observed in runs 35 - 3.8.

These seem to be associated with decreasing <222w and 0233* values as well as the slight

negative x3 drift in the center of mass estimate X *. It is thought that these perturbations are all

manifestations of a slight shift of the principal direction of 6 2 Ct) away from the X1 axis. This

"shift" is not believed to be a permanent asymptotic result, but rather a remnant of the development

process. Only inspection of the cross components of 6 2 "(t) as well as analysis of experiments carried

out in larger domains can clarify the issue. For this investigation, it will be assumed that the shift is

small and that the representative slopes in Figures 18 and 19 can lead to approximate values of

Al 1 (oo).
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Figure 18: F.0W PROBLEM 2 (5 = 1.0
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6 - ?f (62 1 )

e.g., Neuman, et al. (19871
5 -

4

A1 1 3 - Simulations

2-

1 ,y :2f >s/ff2 (I = exp (r2f /6))
e.,g, Gelhar and Axness 1 9831

0 I
0 1 2 3

Figure 19: Summary of macrodispersivity results, A1 1 (oo). Estimates of A1 1 (oo) based on
example 3 are located within distribution bars at f = 1 and 2.3. Two theoretical
curves for A1 1 (x0; d f ) are also shown.
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6.4.5 Comparisons with Theory. The measured macrodispersivities can be compared with some

theoretical results. For a steady saturated flow system in a heterogeneous domain characterized by an

isotropic, exponentially correlated n K s distribution, Gelhar and Axness, [19831 predict the

following constant, asymptotic components of A:

Al 1 (oo) = '3 2
1 X/6 2 (89a)

A22(oo) = A3 = d2 foL(1 + 4T/OL)/15V2 (89b)

Aij(oo) = 0. i (89c)

where V exp(a2f/6). It is important to realize that these results were developed for systems

with small variances ( 2 < 1) and small dispersivities (L. CCT << X). In addition, they

were generated from local equations based upon constant local dispersion coefficients (§2.2) and are

valid when the X1 axis is aligned with the mean flow direction (as it approximately is here). Notice

that A11 is independent of the local dispersivities in this case and that the ratio A22 /A1 1 is very

small, perhaps in an unrealistic fashion because of the forced isotropy [Gelhar, 19871. When oL

dT = 0. these results agree with those Dagan, [1984] whose Lagrangian approach neglects the

influence of the local dispersivities altogether [Gelhar, 1986b]. Theoretical values of A11 based upon

(89a) are included in Table 7. Theoretical values of A11 based upon an alternative theory of Neuman,

et al. [1987] are also shown in Table 7. These results were developed using a set of assumptions

slightly different from those of Gelhar and Axness [1983], and amount to evaluation of (89a) with

V1.
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Table 7
Estimated Longitudinal Macrodlspersivities All, Example 3

-Measured A1 l *(oo) Theoretical A11 (oo) = y 2 fx/62

Run Eq.(88a) Eq.(88b) Gelhar and Axness 119831 Neuman, et al. [1987]

3.1 1.68 1.67 0.91 5.3
3.2 1.90 1.90 0.91 5.3
3.3 1.77 1.86 0.91 5.3
3.4 ft 0.91 5.3

3.5 0.71 0.67 0.72 1.0
3.6 0.73 0.66 0.72 1 .0
3.7 0.79 0.52 0.72 1.0
3.8 0.77 0.77 0.72 1.0

.a exp(C 2f/6) m a 1.0

t not calculated because mass in C never remained constant long enough
to make suitable statistical measurements.

The experimental and theoretical results of Table 7 can also be compared as shown in Figure 19.

Here, the experimental values of A1 . (o) at f = 1 and 2.3 are superposed on top of the two

theoretical curves for A1 (oo) vs. f . The agreement of the experiments at f = 1 with the work

of Gelhar and Axness [1983] is surprisingly good. They are very close to the predicted values and

clearly illustrate an insensitivity to the values of the local dispersivities used. The simulations for

f = 2.3 show results differing significantly from both theories, but the Gelhar and Axness [1983]

expression is much closer. This result is still regarded as a positive one, given the approximate nature

of the theory in such a severely heterogeneous system as well the limited size of the experimental

flow domain.

6.4.6 Breakthrough Curoes. In column 4 of Figures 17 and 18, the breakthrough behavior at the

downstream face (face 2, Figure 15) is shown for all runs for 0 < t < Tmax. In some cases (runs 3.1 -

3.4), some particle mass remained in the domain at t = Tmax, Each point is separated by a time

interval AT (AT = 0 for flow field 1, AT = 5 for flow field 2) and represents the number of

particles that exited that face during that time. The mass flow through this face accounts for more

than 99% of all the mass that leaves the system QC, except in the large dispersion cases (runs 3.4 and

3.8) when a large amount will disperse upstream near t = 0. Observe the very scattered nature of the

breakthroughs when f is large and/or o'L and O'T are small (runs 3.1, 3.2, 3.5, and 3.6). Increased

values of the local dispersivities for a fixed f tend to increase the diffusive nature of the plume as
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seen in the smoother breakthroughs. For the largest dispersivities, a skewed curve is obtained,

indicative of the growth of the plume between the first and last breakthroughs. Although this

"smoothing "effect becomes more pronounced when the larger dispersivities are used, it seems to have

little or no connection with the measured values of A1 1 * (o) which proved to be insensitive to the

dispersivity values used.

The curves in column 4 of Figures 17 and 18 can be integrated to give the cumulative breakthrough

behavior past face 3, as shown in column 5 of the same figures. Many of the points mentioned above

can be seen again in these curves, such as their smoother nature when f is small and/or when the

dispersivities are large. It is very easy to see the upstream dispersion effect that occurs in runs 3.4 and

3.8 in these curves.
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7. SUMMARY AND RECOMMENDATIONS

In this closing section, we will briefly review some of the major points and findings of the report

and will conclude by suggesting some additional avenues for future research. The primary goal of this

study was to develop and initially apply a transport model for the study of conservative solute

migration through large, three-dimensional, heterogeneous flow systems in porous media under both

saturated and unsaturated conditions. These simulations were to be used to examine the temporal and

spatial effects of the variable flow field on developing solute plumes, and in particular, to

investigate the nature of their large scale dispersive behavior. This could, in turn, be compared with

theoretical predictions of such phenomena, such as those induded in several recent analyses based

upon stochastic methods.

To be consistent with the fundamental hypotheses of the stochastic theories, flow fields would

be developed in large, three-dimensional domains characterized by hydraulic parameter

distributions that are realizations of spatially correlated random fields. They would then be used as

input for the transport model. Both the flow and transport studies would be carried out in one

realization of the hydraulic parameter field(s) and would not be part of any Monte Carlo analysis.

Variabilities in the local solutions would thus be measured in a spatial sense, much as they are in

real field situations. From a computational point of view, this effort would require a grid resolution

smaller than a typical fluctuation scale of the input parameter field(s) yet a domain much larger

than a typical fluctuation scale of any of the output hydraulic fields. In three dimensions, problems

with as many as 1 0 6 to 1 0 7 nodes could be envisioned, which would make it imperative to build a

transport model as computationally efficient as possible.

A particle tracking, or "random walk" method was chosen as the basis of the transport model.

These methods typically represent the solute mass as a large collection of particles, each of which is

moved via individual deterministic and random displacements over discrete increments of time. The

magnitudes of each displacement depend directly on the velocity and dispersion tensor. At the heart

of the method lies an analogy between the familiar solute transport balance equation, a continuum

representation, and a certain Fokker-Planck equation which conserves the density of the particles as

they are moved in space and time with the discrete "step" equation. In their original form, particle

methods are meant to be applied to conservative problems, and as such, conserve mass exactly. They

do not suffer from familiar oscillatory problems associated with large grid Peclet numbers. In

addition, they can be very cost effective in large, multidimensional, densely-gridded problems. On

the other hand, they require the user to think of the application problem in terms of particle

distributions and not point concentrations (this can be, in fact, advantageous in many circumstances).

This gives rise to issues regarding initial and boundary conditions, interpolation of particle
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velocities, choice of time step, and conversion of solutions to meaningful units, such as concentration.

A prototype particle tracking code was developed and tested on several one- and

three-dimensional problems. It was then applied to two three-dimensional, saturated heterogeneous

flow systems. Both cubically shaped flow domains consisted of roughly 503 = 125,000 cells. The two

flow systems were developed from specification of a simple head gradient across the domain. The

hydraulic conductivity distribution in the first problem was chosen as a realization of an isotropic,

exponentially correlated random field with KG 1 and * n 2.3. The distribution in the second

problem was merely obtained as a multiple of the first such that d f 1 .0. Eight problems

involving the release of 8000 particles were run (four in each flow system) and the results were

analyzed statistically using moment estimates of the resulting particle distributions. Analysis of the

first-order moments indicated mean plume trajectories were roughly parallel with the applied

gradient in all problems. Additional analyses based upon measurements of the second ooments of the

particle distributions allowed for approximate estimates the longitudinal macrodispersivity

component Al1 (oo) to be made. Although they can only be considered preliminary in nature, these

results compared quite well with their theoretical counterparts, given the various levels of

approximation used in the theory, model implementation, and analysis of results.

It should be stressed once again that the model applications in heterogeneous flow systems

presented here are provisional, and should be used as a framework to plan more comprehensive

simulations. Several particular avenues for additional work include:

* Larger Domains: Simulations in larger domains may shed additional light on the

developmental aspects of extremely variable problems, such as those in runs 3.1 to 3.4. They

may also tend to minimize effects of the boundary on the internal flow and transport solutions.

* Improved Analyses and Anisotropic Media: Although a number of important data analysis

issues were sidestepped in the initial simulations conducted here, a number of more careful,

generalized procedures must be adopted in future applications. In particular, examination of

the second-order spreading variance must include identification of its principal directions and

components as a function of time. These can be compared with estimates of the trajectory (as a

function of time) to gauge the orientation difference between the primary direction of the

macrodispersivity tensor and mean flux (or trajectory) vector. These differences are predicted

by stochastic models, particularly when the underlying conductivity distribution is

anisotropic. Anisotropic simulations will also prove to be more realistic in nature.
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* Unsaturated Flow Systems: Application of this model to transport in heterogeneous,

unsaturated flow systems is also possible under the framework of this investigation, although

the comparable theoretical results are much less well developed.

In addition, we should also emphasize that since the particle tracking model has worked very

well in the simulations to date, it should be regarded as a viable alternative to conventional models

in many kinds of applications (especially in larger problems). Some particular topics for future

research may include:

* Multispecies Simulations: This particular model is well suited for simulation the motions of

many species at one time. These kinds of simulations are usually of interest when interaction

or reaction effects are taking place (see next point).

* Inclusion of Nonconservative Effects: These include any kind of source or sink term due to

adsorption or reaction effects and must usually be treated in a post-processing environment.

* Improvement of Concentration Estimation Methods: There is need for improvement in the way

particle distributions can be converted to more useful units, such as concentration. As discussed

earlier, the simple approach used here gives rise to a "noisy" component of the solution which

can be eliminated by using more particles. There may be some type of spatial or spectral

filtering mechanism which may be much less expensive to use.
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APPENDix A: EVALUATION OF THE TENSOR 

The purpose of this section is to determine a relationship between the components of the tensor

and those of the dispersion tensor D for use in the random walk step equations (52) and (55). Recall

from equation (7) that Di j(X) is given by

Dij = C(TV + D )ij + (L - o(T)vivj/V (Al)

where vi(X) is the local groundwater velocity vector of magnitude V(X), D (X) is a molecular

diffusion coefficient, and &L(X) and dT(X) are local dispersivities. D i j (X) is related to B i j (X)

through the expression

Dij = /2 BikBjk = 1/2 gT (A2)

given earlier as equations (51b) or (54b).

As Di j is a symmetric, real valued tensor, it can be represented in terms of its diagonalized form

D [Hildebrand, 19651:

0 = BeRT (A3)

The diagonal matrix 0 simply contains the eigenvalues of 0 and R is a matrix of its corresponding

orthogonal, normalized eigenvectors (as columns). The eigenvalues of 0 are

>l= O(L V + 0 (A4)

2*3= O(T V + 

The normalized eigenvector corresponding to X1 is

el = (/V, 2/V, v 3/V ) = (, ml, n) (A5)

which corresponds to the direction of the velocity vector V. The remaining two normalized

eigenvectors must be mutually orthogonal and lie in the plane perpendicular to V. Their orientation

in this plane is arbitrary, however, which corresponds to the equivalent dispersivities in any of

these directions. The eigenvectors correspond physically to direction cosines ( i. m i, n ) of a
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coordinate transformation that maps the X coordinate system into the X system where the X 1

direction is aligned with the velocity vector V (figure Al). In this sense, the matrix R is a rotation

matrix of direction cosines in the columns:

A=

1 12 t 3

ml m2 m3

ni n2 na ] or Ri. a cos(Xi, Xj*) (A6)

(A7)

Equation (A3) can be rewritten as

D RA ATAT

where

' AILV:>

A = 0T

0o

0 0 1
+0 0

o VI-TV+D J
= I)'1/2 (A8)

Thus (A7) can be written as

D = RA (R )T

whence from (A2),

= V2RA = D*

(A9)

(AlO)

where

B 2(oCLV )

D* = 

0

f2(a(TV

0 01

+0 ) 0

0 I2(T-V+D ) .1 = S-A = 20* /2

(All)

is the diagonal representation of the matrix or the rotated form in the X coordinate system.

To completely define B through (AlO) it is only necessary to find two other normal, orthogonal
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Figure Al: Relationship of eigenvectors to rotated coordinate system X *. Note the degree of
freedom in the orientation of the X 2 * and X 3 ' axes (corresponding to the double
eigenvalue X2. X3).
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eigenvectors e2 and e3 for the rotation matrix A (as el is given by A5). There are many

possibilities for these vectors (Figure Al) as these will correspond to the direction cosines of the

rotated axes X2 and X3 . One choice of a perpendicular direction n to the first eigenvector el is

n = (-v 2 /V, ( +V3 )/V, - 2/V) (A12)

which, when normalized, gives e2 n n I . The third normalized eigenvector is then given by

the cross product e3 a el x e2. The resulting rotation matrix R = R i j is given by:

v1 /V -V24 - V22 + V32 + V1 V31/~V

13 = v2/V (vI + v3)/ [v2 (v1 - 3 )J/V (Al3a)

V3/V -V2/A v1
2 + v2

2 + VjV3]/V

where

* fV Z + 2v V3 + V2 z > 0 for V > 0 (Al3b)

Notice that A will most generally be a function of position (as the direction of V may change in

space). The choice of e2 and ea used above eliminate the possibility of any computational

singularities when evaluating the components Ri j as long as the velocity magnitude V > 0. This

makes computer implementation of the random walk algorithms more simple.

The generalized dispersive displacement d used in equations (52) and (55) will be given by

di Bij(Xn. )Zjn/At RikBkj ZjnVr (A14)

where R i k is given above in (A14) and B k j is the diagonalized form of B k j given by (Al1). This

expression reduces to the same one used in the two-dimensional model of Ackerer and Kinzelbach,

[1985].

Notice that the case oL dT = 0, the tensor D i j - D i j (which is equivalent to the

simple diffusion case, equation 47b). Following the development above, it is found that B i j =

Ri k Bkj where B k j is simply given by r'SDS k j. and the generalized dispersive

displacement d is given by

di = Bij(Xn I)Zjn = Rik V/2Skj Zj 1 ,~n (A15)

= Rik Zknv/-tT

- 109 -



where Ri k is given as above. This expression is perfectly correct, except that if one notices that the

eigenvectors of the reduced form of D i j possess two degrees of freedom (as opposed to one earlier),

then the rotation matrix could also have an arbitrarily oriented e vector. In other words, the

absence of the L ° T dependence means that el does not have to necessarily be aligned with V.

This implies a greater freedom in finding an R ik. the most obvious choice now being R i k = i k Use

of this rotation above reduces (A15) to

di = ik ZknV/2rAt = ZinV/2Dt (A16)

which is exactly what is used in equation (52).
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APPENDix B: INTERPOLATION FROM NODAL VALUES

Consider a general function 4(X) for which discrete nodal values on the large regular,

three-dimensional prismatic grid of Figure 2 are known, as illustrated in detail in Figure B1. These

values may have come, for example, from some finite difference or finite element numerical

simulation. The question is: how can approximations be developed for *. VJ, and, perhaps,

VV41 at points between the nodes?

Let the flow domain Qc be broken up into a number of connecting volumes De each defined by 8

noded rectangular blocks (or cubes) as shown in Figure B1. In a finite element sense, these will simply

be elements; in a finite difference sense, they might be called cells. In any case, none of the cell

volumes De overlap and their union form the complete computational domain Qc (Figure 2). For the

time being, we will consider one cell and the 8 values of * (= An. n = 1, 2 ... 8) at its corners

and be concerned with defining 4i and its derivatives inside of it. Let X n denote the coordinate of

the n-th node, X C. the center of the cell (easy to define since the cells are rectangular), and X i, any

arbitrary point within Qe.

Interpolation of : One way to interpolate 9(X i) inside a cell is to define

8
(Xd)= Z *n n(X1) (Bl)

n=1

where n(X) is the trilinear, Lagrangian polynomial basis or interpolation function associated

with node n [Lapidus and Pinder, 19821. The functions An are C°° continuous within De, yet CO

continuous over all of QC, The approximation (BI) will thus be CO" in e but only CO throughout

QC In some cases, a simpler representation of 9 within e may be desired. The constant

approximation 4 e given by

8

' e = /8 E 41n - '(Xc) (B2)
n=1

is constant within cells and discontinuous across cell boundaries Qe. Notice that 9 e is just f

evaluated at the center point Xc. Such an approximation may make sense in situations where large
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Figure B1: Cell with 8 nodes (above) and same cell with its six, numbered neighbors.
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numbers of cells are considered and / or when computational costs must be minimized.

* Interpolation of V2k: The same interpolation functions 9n can be used to estimate the

gradient Vi X i using the nodal values of AU:

VI Xi = i *nV~n(Xd) (B3)
i=1

Because the n functions are C0 continuous, this approximation will vary continuously within the

cell volume e but it will be discontinuous across the cell boundaries dQe and in c as a whole. A

cell-wise constant value of the gradient Vi e based upon the 8 nodal values n can be

approximated (Figure B1) by

v4l 4I X1 [(Y*241) (*3-44) (*'-JS) ( -'7'e) +

4X [(94441) (43-92) + (48-4S + C746) ] i

4A\X 3 [(*S-Wil) (4'-4 2) + (47-P3) + (8P-4) 1k (B4)

=Vf I XC

which is equivalent to (B3) evaluated at Xc. This is, of course, constant over each cell volume Qe

and discontinuous over all of Qc, Another cell approximation with the same continuity properties

Vi I ee can be based upon differences of the approximate neighboring cell values 4 | e defined by

(B2). Referring to Figure B1, one way of doing this is

V*PIee = 5 -1 (I 13) + 4(4 ' | - 9112) + 1 | 7 _ I 8) (5)
Oe 2D 2AX2 2AX 3

To find continuous estimates of Vet over it would be necessary to either use higher order

interpolation functions n in (B3) (perhaps defined over cells with 27 nodes) or to have nodal

estimates of V I X n Use of the higher order basis functions will be avoided here because of the

increased complexity. Although nodal values of the derivatives are not assumed to be available
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a-prioi from a numerical solution procedure, estimfates could be made on the regular grid based upon

simple differences of the nodal 4'n values. Although some degree of additional error from

differencing numerical solutions for Sli would arise, the differenced values could be considered a new

function to (most generally a vector) and interpolated as done above with the function 4 in (B) or

(B2). If n is obtained from centered differences of n then use of (I) will give a continuous

representation C(X i) over C. In this case, the constant representation (85) will be equivalent to

CCXC). The approximations (B3 - B4) will be based on 8 nodal values of '; (5) as well as (B1 - B2)

using C will involve 32 values of 9.

* Interpolation of VV_: In this case, no suitable approximation can be found based upon the

8 nodal values of 9 and the linear interpolation functions n. Given the nodal values of Vi'

mentioned above, continuous approximations over the cell volume e similar to (B3) can be

developed. Nodal values of VV9 (or some of its components) might be developed by differencing of

9 values (as above) and used to develop representations of second derivatives of 9 over or Qe

similar to 1) or (B2). A more practical possibility may be the simple differencing of cell values of

V9p similar to what is done in (85).
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