## FIGURES

5

J. Same

N. ...

\_\_\_\_\_ \_\_\_\_\_\_

، بي د ي

ل



Figure 1. (Figure 4-2 of the SOWP)Diagram of the Site Conceptual Model.

. . . . . . . .

. .....

7

1

| E 23.010 | M 25,300<br>E 23,000 N 24,536 H5 |             |       |       |        |      |     |                     |       |      |      |            | 1200  | 1 25 CCC 0201 |         |       |            |           |     |    |       |           |                |        | <u>الع</u><br>۲ <u>۳۳۳</u> |             |    |    | Figure |          |  |
|----------|----------------------------------|-------------|-------|-------|--------|------|-----|---------------------|-------|------|------|------------|-------|---------------|---------|-------|------------|-----------|-----|----|-------|-----------|----------------|--------|----------------------------|-------------|----|----|--------|----------|--|
| N 25,000 | -                                |             |       |       | 14     | 1    | 7   | 180                 | 10    |      | •    | . 4        |       | 6             | 07      | 6     | 12         | 2_        | 5   |    |       |           | 7              | 8      | ,<br>1240                  |             |    |    |        | D        |  |
|          | j <sub>n</sub>                   | 14.         | N. A. |       |        | X    | 23  | 24                  | 17    | 18   | 30.  | B          | Y     | 22            | ,13,    | -24:- | 7.#        | 18        | 19  | Ê  | 101   | 1         | - 23           | 27 514 |                            |             |    |    |        | ><br>by  |  |
| Ň        | -1 a                             | 7           | 1ª    | 160   |        |      | 34  | 32                  | 2     | -    | 11   | 20         |       | 30            | 1       | 1     | 21         | 34        | 27  | 39 | 29    | 0         | 31.<br>-<br>39 | 32     |                            |             |    |    |        | Da<br>Si |  |
| 10       |                                  | 42          | 43/1  | F.    | 45     | N/m  | 47  | 48                  | 41    | 42   | 20   | 44         | 10    | - 46          | 47      | 48    | *          | 42        | 2   |    | 15    | 6         | 47             | 48     |                            |             |    |    |        |          |  |
| f.       | 1                                | 21          |       |       | 1 Card | 11 B | 17  | a                   | • 4 • | 2,   | 3    | . 4        | 54    | 6             | 3       | e     |            | 2         | 3   | 4  | 1.).5 |           | 7              | 9      | - N 24.                    | <b>x1</b> 0 |    |    |        |          |  |
| 1 2 000  | -                                | X           |       | 12    | 10.10  |      | 10  | ĸ                   | 3     | 10   |      | 12         | 13    | 14            | 15      | •     | <u>)</u> . | . 10      | -11 | 12 | 13    |           | 15             | 5      |                            |             |    |    |        |          |  |
|          | 25                               | No.         |       |       | DIA    |      |     | 24<br>3V3-444<br>32 | 25    | 24   | 27   | 28         | 29    | 30            | 31      | - Den | 25         | 26        | 27  | 28 | ·#9   | the state | N 23.68        | 4 393  |                            |             |    |    |        |          |  |
| 20       | (u)                              |             | 11    |       | E      |      | -   | Line.               | - at  | 37   | - *  | 36-        | 57.1  |               | 30      | 40    | 3          | 34        |     |    | 1     |           | 39             | 40     |                            |             |    |    |        |          |  |
|          | 41                               | 292         | 43    | 4     | 1      | 45   | 47. | 1.48.7              | 4     | 42   | 43   | 4          | 45    | 45            | 47      | 4.8.0 | 1          | 42        |     |    | 45    |           | 47             | 48     | -N 23.4                    | 620         |    |    |        |          |  |
|          | ·                                | ю           | 1     | E.    |        | 12 m | 1.0 | 12                  | 1.9.  | 10-4 | 1 11 | 12         | 13    | 14            | 1 15    | 18    | )          | 077<br>10 |     |    |       | 4         | - R            | 15     |                            |             |    |    |        |          |  |
| 0000     | F                                | _ <u>18</u> | - 12  | - 20; | 0      | 122  | 23  | 24                  | 17    | 18   | 5    | H          | 2     | 22            | 23      | 24    | 10         | 2         | K   |    | R     | 2         | 23             | 24     |                            |             |    |    |        |          |  |
| 40       | 25                               | 28          | 27    | .3    |        | 4    | 1   | 32-                 | 73    | 26   | H-   |            |       |               | ***     | 12    | 30         | 2         | 1   |    |       | 0         | 3              | 12     |                            |             |    |    |        |          |  |
|          | 41 N                             | 22,346      |       | 10    |        | 52 i | .8  |                     |       |      | 43   | 44.        | 45    | . 45          | . 47    | 48    | 4          |           | 5   | 6  | 5     | 46        | 47             | 49     |                            |             |    |    |        |          |  |
|          | 1                                | 2           | te.   |       |        | M    |     |                     |       | - 2  |      | n <b>4</b> | - 3 - |               |         |       |            |           |     |    |       | 1         | 7 1            | B      | 11                         | 1           | 3  | 4  | 5      | 8        |  |
|          | 14.<br>                          | 10 m        | n t   | N.    | 13     |      |     | 16                  | 9     | 2    | . 11 | 13         | U     | 14<br>N 72    | 360 473 | 15    | 200        | O         | 11  | 2  | 13    | 14        | 0              |        | 3                          | 10          | 14 | 12 | 13     | M        |  |
| 000.55   | 25                               | 25          | 2t    | 20 0  | in a   | 30   | 23  | 32                  | 11    | 10   | 0.2  | 28         | ZI VA | 30            |         |       | 25         | 35        | 7   |    | 2     | 30        | 23             | 32     | 23                         | 26          | 27 | 28 | 23     | 30       |  |
| ; [      | 33                               | 34          | 35    | 36    | 37     | 36   | 39  | 40                  | 33    | 34   | 35   | 30         | 37    | 38            | 2       | 40-   | - in       | 34        | 35  | 36 | 37    | 39        | 35             | 40     | 33                         | 34          | 35 | 36 | 37     | 38       |  |
|          | 41                               | 42          | 43    | 44    | 45     | 46   | 47  | 48                  | #     | 42   | 43   | 44         | 45    | 46            | =       |       | 41         | 42        | 43  | 14 | 45    | - 45      |                | - 10   | 41                         | 42          | 43 | 44 | 45     | 45       |  |

0

0

## 2. Areas Where Supplemental Standards Were Applied.

From Table J.4: Sites with elevated Th-230 cm below ground surface. Corrections made obbles to fines ratio.

From Table J.5: "Application of Supplimental dards".

REFERENCE DRAWINGS:

RVT-SV-OOD THRU OOR, SOL VERIFICATION OFID SYSTEM

| LEGEND:   |                                                       |
|-----------|-------------------------------------------------------|
|           | APPROXIMATE LIMIT OF CONTAMINATED MATERIAL EXCAVATION |
|           | ROAD AND HIGHWAY                                      |
| 0         | TANK                                                  |
| $\square$ | BUILDONG                                              |
|           | SITE BOUNDARY                                         |





Figure 3. Geologic Cross-Section from Figure 4-3 of the SOWP.

Figure 4-3. Geologic Cross-Section

## UNCONFINED SURFICIAL AQUIFER LEAKY SHALE AQUITARD SEMICONFINED SANDSTONE AQUIFER CONFINING SHALE CONFINED SANDSTONE CEPARIMENT OF ENERGY BRAND JUNCTON OF AL ORAMU JUNCTON, DULORADO finderec-ors GÉOLOGIC CROSS SECTION RAVERTON, WYOVING, SHIF DATE PREPARED AUGUST 14, 1997 FILENAME. UCQ141CO COZ





Figure 5. (Figure 4-5 of the SOWP) Groundwater Elevations in the Surficial Aquifer.



Figure 6. (Figure 4-10 of the SOWP) Sulfate Concentrations in the Surficial Aquifer.



Figure 7. (Figure 4-6 of the SOWP) Groundwater Elevations in the Semiconfined Aquifer.



. (

(

(

(

C

(,

C

(

(

(

(

Figure 8. (Figure 4-4 of the SOWP) Hydrographs of On-Site Wells.



Figure 9. (Figure 4-8 of the SOWP) Trilinear Diagram.

L

L



Figure 10. (Figure 4-15 of the SOWP) Sulfate Concentrations in the Semiconfined Aquifer.



Figure 11. (Figure 4-9 of the SOWP) Molybdenum Concentrations in the Surficial Aquifer.



Figure 12. (Figure 4-11 of the SOWP) Uranium Concentration in the Surficial Aquifer.





Ċ

L



Figure 14. Comparison of DOE and Maxim Fitted Semivariograms

CIO

)



, (

ς

C

Figure 15. Comparison of Gandt Predictions and Site Data for Monitor Well 722.

• ••



Figure 16. Comparison of Gandt Predictions and Site Data for Monitor Well 707.

ι.