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ABSTRACT

The boundary integral method is used to estimate hydraulic and solute
transport properties of unsaturated, fractured rock by solving the
boundary value problem within intersecting fracture planes. Flow
through both impermeable and permeable rock is determined using two and
three dimensional formulations, respectively. Synthetic fracture
networks are created to perform sensitivity studies, results of which
show that: (1) The global hydraulic conductivity is linearly dependent
on the product of fracture transmissivity and density for fractures of
infinite length; (2) The effect of correlation between fracture length
and transmissivity is to Increase the global hydraulic conductivity; and
(3) Simulated flow through a fractured permeable matrix compare
favorably with analytic results.

Flow through variably saturated fractures is modeled using a constant
capillary head within individual fractures. A simulated free surface
compares favorably with an approximate analytic solution and with
laboratory results. Simulations indicate zones of water under both
positive and negative pressure, as well as regions of air-filled voids.
Travel times and breakthrough curves are determined by integrating the
inverse velocity over a streamline, and then summing over all
streamlines. Faster travel times are noted as fracture saturation
decreases for the fracture network examined.
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EXECUTIVE SUMMARY

Introduction

A computer model based on the boundary integral method is formulated to
investigate hydraulic and solute transport properties of unsaturated,
fractured rock, The model is applied to networks of discrete fractures
for the purpose of estimating steady fluid flow rates and breakthrough
curves of entrained solutes., The model formulations idealize fractures
as finite discrete discontinuities within a rock matrix, Flow and
transport through a fractured rock matrix is divided into three compo-
nents: (1) Intra-fracture (e.g., flow within a single fracture);

(2) Inter-fracture (e.g., flow within and between fractures within a
fracture network); and (3) Supra-fracture (e.g., coupled fracture and
matrix flow), each of which is governed by unique parameters.

Fracture Flow Conceptualization

Intre-fracture flow and transport is used to describe the movement of
water and solutes through individual fractures, neglecting inflows and
outflows from other fractures or the rock matrix which bounds the frac-
ture, Intra-fracture processes include the influence of fracture sur-
face roughness, channeling, and tortuosity on fluid flow and solute
transport, Inter-fracture processes are related to the effects of frac-
ture networks, such as the influence of fracture orientations, areal
extent, densities and locations. Supra-fracture processes are used to
describe the effects of coupled matrix-fracture systems, especially
solute retardation and matrix diffusion due to geochemical processes.

The treatment of fractures as finite discrete continuities offers sever-
al advantages and disadvantages over alternate conceptualizations which
idealize the porous medium as an equivalent continuum. While the dis~
crete fracture network (DFN) approach used here requires detailed under-
standing of the physical and hydraulic properties of the fractures at
the site of interest, a formidable task in most situations, the approach
offers the ability to understand in greater detail and to evaluate with
greater precision the processes which govern movement in unsaturated
fractured rock,

DFN Flow Model Parameterization

The DFN approach employed here to simulate fluid flow and solute trans-
port uses a two dimensional flow equation within fracture planes. The
hydraulic parameters of interest within the fracture plane are (1) the
fracture transmissivity and (2) the matric suction at which the fracture
desaturates, termed the capillary suction. The assumption is made that
only two zones are present within a fracture, a desaturated, air-filled
region, and a saturated, water-filled region. In the first region, the
liquid transmissivity and relative saturation are assumed to be zero,
while the transmissivity within the second region assumes a constant
value, An equilibrium eir-water interface is assumed to exist between
the desaturated and saturated regions where the matric suction in the
liquid phase is equal to the capillary suction,



Application of Boundary Integral Method

The boundary integral method is used to to solve the boundary value
problem for the geometric and hydraulic properties expected in fractured
rock. The boundary integral method takes advantage of Gauss' theorem
which reduces the problem of determining unknown head and flow rates
within a flow domain with uniform hydraulic properties to a problem
along only the boundary of the flow domain, For saturated two-
dimensional flow within a single fracture, nodes along the exterior rim
of the fracture are required. For intersecting fractures planes,
additional nodes are required along the finite lines of intersection,
Solution of the flow problem for saturated conditions can be performed
in a single iteration, Solution of the flow problem for unsaturated
flow requires that an iterative scheme be employed for determining the
position of the air-water interface.

Influence of Fracture Network Geometry

Synthetic fracture networks are created using planar fractures of finite
areal extent embedded within a three dimensional rock matrix., Once the
fracture network geometry is created, sensitivity analyses are performed
to determine the effects of variable fracture network geometric proper-
ties on inferred network hydraulic conductivity. The network hydraulic
conductivity of saturated fractures is determined for various geometric
parameters, such as fracture orientation and density. Results of the
sengitivity studies show that: (1) The global saturated hydraulic con-
ductivity for the fracture network is linearly dependent on the product
of fracture transmissivity and density for fractures of which fully
penetrate the rock volume; and (2) The effect of increasing correlation
between fractures of finite variable length and transmissivity is to
increase the global hydraulic conductivity.

Supra-Fracture Analysis

A three-dimensional flow model is used to calculate flow through a per-
meable matrix with embedded permeable fractures, Exterior and interior
surfaces are discretized using boundary elements to account for flow
between fractures and the matrix, and between the matrix and fractures
and the exterior boundaries, Results using the three dimensional
coupled fracture-matrix flow regime compare favorably with analytic
results,

Variably Saturated Fracture Flow

An important part of conceptualizing fluid travel times and paths is the
ability to locate the interface which separates the water and air-filled
regions within a fracture, Flow through variably saturated fracture
networks is modeled by assigning a constant capillary suction to
individual fractures. The air-water interface is found using an
iterative procedure which locates nodal points at the intersection of
constant total head and pressure head contours, The simulated air-water
interface compares favorably with an approximate analytic solution and
with laboratory results. Simulations indicate the presence of zones of
water under both positive and negative potential, as well as regions of
air-filled voids.



The implications of the existence of saturated regions within fractures
(vhich may be under either positive or negative potentisl) are twofold:
(1) Equivelent continuum models which assume uniform potentials within a
variably saturated vertical fracture may provide inaccurate predictions
of flow velocities; and (2) Regions of saturation will be present in
vertical fractures at ambient suctions less than the capillary suction
of the fractures, and also in the lowermost portion of fractures under e
wide range of ambient suctions. Positive fluid potentials in fractures
can lead to the enhanced movement of water from the fracture into the
matrix, and thus attenuate fracture flow,

Travel Times and Breakthrough Curves

Travel times and breakthrough curves are determined for steady flow
conditions by integrating the inverse velocity along a streamline, and
then summing over all streamlines., The boundary integral method is used
to determine the velocity distribution at discrete points along each
streamline. The travel time is determined by dividing the distance
between points along the streamline by the averaged velocity between the
points, The total travel time is the summation of all travel times
between nodes along ean individual streamline, The location of points
used to perform the travel time summation is determined by finding the
intersection of streamlines with contours of constant total head. The
intersection is found by using an iterative scheme in conjunction with
the assumption that streamlines and contours of total head intersect at
right angles., For the fracture network examined, travel times decrease
as the matric suction increases, or, equivalently, as the relative
saturation of the fracture decreases. Most of the decrease in travel
times is through regions of the fracture which are under negative poten-
tial, while the travel times within the positive potential zone are
either unaffected or substantially increased,

Matrix Diffusion and Retardation

The effects of retardation and matrix diffusion due to sorption and
migration into the rock matrix, respectively, are shown to delay and to
attenuate solute breakthrough curves. A method for demonstrating the
appropriateness of using a constant matrix diffusion attenuation coeffi-
cient is introduced which is based upon determining under what condi-
tions the time rate of change of the attenuation coefficient is neglig-
ibly small,

Conclusion

A discrete fracture network (DFN) model is used to investigate the
influence of variable fluid saturation and fracture network geometric
properties on fluid flow rates, travel times and solute breakthrough
curves. In contrast to equivalent porous media models which generally
neglect fracture geometric properties and assume uniform saturation
within individual fractures, the DFN formulation accounts for more
complex flow processes. By focusing on fracture geometries and the
position of an air-water interface within a fracture, more realistic
estimates of flow and transport properties are obtained.



CHAPTER 1

INTRODUCTICN

The ability to characterize the movement of fluids and solutes through
fractured rock media of low hydraulic conductivity is a necessary pre-
condition for identifying sites suitable for the isolation of hazardous
materials. Sites located in wmedia of low hydraulic conductivity are
attractive because potential travel times from the zone of emplacement
may be long compared to the rate at which the hazardous materials,
especially high-~level nuclear waste (HLW) and any by-products, decay.

The estimation of travel times from the containment zone to the acces-
sible eavironment requires that a conceptual-physical model be formu-
lated and solved using either analytical or numerical techniques, or
both. The conceptual-physical model must be rational and subject to
experimental verification. In addition, 1if a numerical technique is
enployed to determine travel times, the algorithm must be accurate aad
efficient. Lacking these properties, the derived information may not
provide reliable estimates of the coantainment capacity of the site.

To provide experimental verification of the coaceptual-physical model,
the Apache Leap Test Site has been developed by the University of
Arizona under contract with the U.S. Nuclear Regulatory Commission. The
site is also used to investigate characteri{zation procedures for fluid
flow and solute transport in unsaturated, fractured rock. Nine bore-
holes have been installed at the site which is located near Superior,
Arizona, in slightly welded volcanic tuff. A series of hydrauliec,
pneunatic, and tracer tests have been and are being performed at three
meter intervals along the boreholes. To help design and interpret these
tests a sampling and modeling strategy must be applied. The purpose of
this document 13 to provide a methodology which can be used to design
and interpret the field testing activities.

l.1 Formulation of Flow Through Fractured Rock

The characterization of ground water flow and the attendant transport of
dissolved solutes in fractured rock is conceptualized as having three
distinct components, termed intra-, inter-, and supra-fracture flow.
Each component is described using different physical-chemical processes
and parameters, the understanding and quantification of each component
being necessary for the complete characterization of a flow system.
Figure 1.1 illustrates the scope of the relative processes.

It is proposed that intra-fracture flow be used to describe the movement
of water through individual fractures, neglecting inflows and outflows
from other fractures or the rock matrix which bounds the fracture. It
1s assumed that the walls of the fracture are impermeable, i.e., there
are no sources ot sinks from other fractures or from the matrix. The
walls of the fracture can be agsumed to be parallel with a finite, non-
zero aperture, or a distribution of fracture apertures can be used to
describe intra-fracture aperture variability. Montazer and Wilson
(1984) and Wang and Narasimhan (1985) present formulations using circu-
lar regions of pendular water to account for aperture variability.
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Unlike intra-fracture flow which oanly incorporates fluid flow and solute
transport through individual fractures, inter-fracture flow incorporates
hydraulic factors associlated with flow through a network of fractures,
neglecting inflows and outflows from the rock matrix. The incorporation
of additional dimensions in the modeling of fracture networks results in
more connections between two polats or surfaces than if flow through a
single fracture is considered. By including alternate flow paths, a
more likely fracture connection between two points or surfaces may
occur.

Supra-fracture flow and transport, refers to the movement of water and
solutes through a fractured rock matrix of non-zero permeability. The
evaluation of the ifmportance of supra-fracture flow requires that the
interactions between the matrix and the embedded fractures be evaluated.
Wang and Narasimhan (1985) have investigated the effects of sorption on
fracture surfaces, as well as the movement through the matrix around
fracture asperities. Other important factors affecting ground-water
travel times and fluxes in the unsaturated zone are the saturated and
relative hydraulic conductivities, the moisture release curve, and the
stratigraphy or variation of these properties over gpace. At any point
in a geologic medium, the saturated hydraulic conductivity generally
remains constant, only changing due to variable stress loading and
temperature changes. Unsaturated hydraulic conductivity, however, can
vary with water content over time at a point, even at constant stress
levels and temperatures. To determine solute travel times through frac-
tures embedded in a porous matrix the effects of sorption and matrix
diffusion must be considered. Other processes, such as chemical precip-
itation and dissolution, chelation, colloid formation and movement,
radioactive decay and the attendant production of decay and/or degrada-
tion products, and volatilization of the solute, may also be important
in controlling solute transport.

1.1.1 Intra-Fracture Flow and Solute Transport

Fluid flow through individual fractures has been studied in the labora-
tory by Sharp (1970), Iwai (1976), Schrauf and Evans (1986), Kilbury et
al. (1986) who demonstrate that a linear relationship exists between the
flow rate and the applied fluid gradient, as long as flow is laminar.
Laboratory and field tests, along with simulation models, have document-
ed the effects of fracture roughness (Schrauf and Evans, 1986), tortu-
osity (Tsang, 1984), and channels (Tsang and Tsang, 1987) within indivi-
dual fractures on the measured fluid flow in response to an applied
fluid gradient.

A description of physical processes affecting solute dispersion is
provided by Neretnieks (1983) and the effect of flow channels within
fractures is described by Tsang and Tsang (1987). Analytical solutions
developed by Tang et al. (1981), Sudicky and Frind (1982, 1984),
Rasnuson (1985), Rasmuson and Neretnieks (1986), and Moreno and Rasmuson
(1986) have yielded important results concerning the physical processes
of dispersion, retardation and diffusion within individual fractures.
Rasmuson et al. (1982) and Neretnieks and Rasmuson (1984) have presented
an integrated finite difference model for simulating the movement of
radionuclides in a stream tube with arbitrary velocity. In addition,



the effect of local permeability perturbations on observed dispersion
within porous media has been described by Neuman et al. (1987). Labora-
tory studies of dispersion in a natural rock fracture conducted by
Moreno et al. (1985) are the only results available for model calibra-
tion.

Fluid flow through variably saturated fractures has received less attean-
tion than single phase fracture flow. Wang and Narasimhan (1985)
proposed a phase constriction factor which accounts for zones of pendu-
lar water around fracture asperities that Increase in size as the fluid
suction decreases. Validation of this model has not been performed to
date using field or laboratory flow studies, elthough fracture surface
napping studies by Myer et al. (1986) to determine the fracture vold
geometry suggest that the phase constriction factor may be a viable
descriptor of fracture hydraulic properties. Evans and Rasmussen (1988)
describe ongoing laboratory and studies which describe the influence of
fluid suction on fluid flux and velocity, as well as solute tramsport
processes.

1.1.2 Inter-Fracture Flow and Solute Transport

A quantitative means for estimating the hydraulic properties of a
discrete fracture network using information about fracture density,
aperture, orientation, and assuming infinite fracture length was pre-
sented by Snow (1965, 1969), which provides an estimate of the equiva-
lent porous medium hydraulic conductivity tensor using data easily
gathered from boreholes or mines. While Snow assumed that fractures are
of infinite length, many networks consist of fractures which are of
finite length, and so other methods must be used to evaluate the hydrau-
1lic properties of a fractured rock mass.

Percolation theory provides a semianalytic means for estimating the
conductivity of a medium. The theory can be used to describe the effect
point interconnection variability has on the interconnections at longer
distances. Recent literature (Castellani et al., 1981; Goldman and
Wolf, 1983; Hughes and Ninham, 1983; Kesten, 1982; Orbach, 1986;
Rodrigues and Tondeur, 1981) investigates the connectiveness of a system
of pores that have & specified probability for intersecting neighboring
pores. Two types of percolation networks have been proposed; site and
bond networks. A site percolation network has been described by
Castellani et al. (1981) as a periodic lattice of sites with each site
being occupied with a probability, p, and empty with probability, (l-p),
independent of the status of its neighbors. A cluster of sites is
defined as a group of neighboring occupied sites. As the percolation
parameter, p, Increases in value, there exists a percolation threshold,
p = p', at which any site within the lattice will be connected with
every other point to form an infinite cluster.

Unlike site percolation models, bond percolation networks have been
described by Hughes and Ninham (1983) as a periodic lattice of points
connected by bonds which are assigned at random, and independently of
each other. The bonds are assigned with a probability, p, of being
occupied and probability (1-p) of being vacant. For an infinite
lattice, this assignment is equivalent to removing a fraction (1l-p) of
all bonds at random. Two sites are called connected if there exists at
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Figure 1.2: Site and bond percolation models for three densities of
site and bond occupancy, p. Note that networks remain
fully connected until the occupancy drops below a critical
threshold density, p'.

least one path between them consisting solely of occupied bonds. In
each realization of the bond problem there will be connected clusters of
sites, linked together by occupled bonds, and bounded by vacant bonds.
Similar to the site problem, there will be a bond percolation threshold
which defines the probability, p', at which an infinite cluster will
develop. Figure 1.2 i1llustrates the difference between site and bond
models for three probabilities.

Investigations of dispersion within randomly connected fractal fracture
networks have also been performed. Ross (1986) showed that small pulses
of contaminant tead to grow as the square root of distance traveled for
networks with few high transmissivity fractures. For networks with
frequent highly transmissive fractures the small pulses of contaminant
tend to grow linearly with distance traveled.

Lacking exact analytic techniques to evaluate the permeability of frac-
tured rocks, a number of researchers have developed computer simulation



models for relating local hydraulic properties to global rock permeabil-
ity. For example, Silliman (1986) used a stochastic approach related to
percolation theory for the purpose of comparing the effective permeabil-
ity of a rock mass with the minimum perweability of flow paths that
across a given volume within the subsurface. His results, using a
three-dimensional, nearest-neighbor, site-problem study, showed that the
minimum permeability of flow paths between any two points is greater
than the permeability calculated using globally-averaged properties.

Long and Witherspoon (1985) have also used simulation techaiques to
evaluate the permeability of a fractured rock mass. Their study showed
that the interconanectfion between given fracture sets is a complex
function of fracture density and fracture extent. Other researchers
(Smith and Schwartz, 1984; Long et al., 1985; Huang and Evans, 1985;
Reeves et al., 1986) have proposed additional one, two, and three dimen-
gional discrete fracture network (DFN) simulation models.

Smith and Schwartz (1984) present a two dimensional DFN model im which
flow and mass transport occurs through two orthogonal fracture sets. In
this formulation, one fracture set is perpendicular to the imposed
potential gradient, while the second set provides conmective routes
between discontinuous fractures of the first set. They found that the
second fracture set allows trausport through pathways which would not
have been available otherwise. If this is true, then as more dimensions
are provided, it may be possible that flow and wmass transport are
increased due to the additional pathways provided. They also report
that the addition of alternate fracture paths in the second dimension
results in an increase in macroscopic dispersfon, an earlier initial
breaskthrough time, and a delay of the final arrival tinme.

Loug et al. (1985) extended a two dimensional DFN model (Long et al.,
1982) to three dimensions by analytically solving for boundary coundi-
tions within civcular disks of unifora aperture. While the formulation
is currently restricted to applications involving a limited number of
circular disks of uniform aperture, the ability to solve for flow and
pressure heads provides a solution for complete three dimensional flow,
allowing for validation with other simulation models.

Huang and Evans (1985) proposed a conceptual and numerical techaique to
simulate a wide range of field conditions. The proposed methodology
uses a three dimensional formulation of the fracture network with a one
dimensional flow tube formulation within the plane of the fracture. The
model is used to provide estimates of global hydraulic conductivity
within a rock mass for specified distributions of fracture orientations,
apertures, and deansities. Boundary conditions are specified by defining
the pressure head along the exterior boundary of the simulated rock
mass. Steady, saturated flow conditions are assumed. The model is also
used to calculate solute travel times and breakthrough curves. Mass
transport of solutes 1s simulated using a piston flow approximation. A
major deficiency of the Huang and Evans model is the simplification of
flow through an individual fracture to a one dimensional formulation
which does not incorporate iunteraction between multiple sources and
sinks within a fracture, or the influence of orientation of the

- fracture-fracture intersections (Rasmussen, 1987).



An early attempt to characterize fluid flow through unsaturated porous
media was proposed by Fatt (1956a,b,c) who used bundles of capillary
tubes. The techaique estimated unsaturated hydraulic properties of
porous media by applying capillary theory to fluid flow through a model
incorporating a network of tubes interconnected at regular intervals.
By combining a distribution of tube sizes (obtained from pore size dis-
tributions) with capillary theory, the unsaturated wetting phase satura-
tion was calculated, along with the associated unsaturated relative
hydraulic and pneumatic conductivities. Also, by using various geo-
metric networks Fatt was able to demonstrate the effect of pore size
irregularities on unsaturated hydraulic properties.

1.1.3 Supra-Fracture Flow and Transport

Fluid flow through unsaturated fractured rock is formulated by defining
physical and hydraulic parameters for the rock matrix and for fractures
embedded within the rock. The physical and hydraulic properties of the
matrix include the pore size distribution, the dependence of the hydrau-
1lic conductivity on water content and fluid potential, the moilsture
characteristic curve, and the pneumatic conductivity. The physical
properties of the fractures include the orientation, areal extent, frac-
ture center location, and shape. The hydraulic property of interest for
fluid flow within fractures is the fracture transmissivity which will
vary due to geochemical processes, such as dissolution and precipita-
tion, and variable saturation.

Because properties of only a few fractures can be identified in field-
scale problems, statistical techniques must be employed to characterize
gets of fractures. Frequency distributions are obtalned for each frac-
ture parameter which best approximate observed characteristics of the
fracture network at the site of interest. A number of approximation
techniques have been developed for the purpose of modeling fluid flow
through both a porous rock matrix and fractures embedded within the
matrix. The techniques are usually solved numerically, but in some
circumstances solutions caan be obtained using analytic techaiques.

A widely used approach for predicting fluid flow and travel times
through low permeability fractured rock is to assume that fluid flow
through such media behaves in a manner similar to flow through porous
media. The equivalent porous medium (EPM) formulation assumes that a
uniformly porous material consists of a large number of microscopic flow
routes which, upon averaging, provides ccnsistent macroscopic parameters
that are used for modeling ground water flow and solute transport (El-
Kadi and Brutsaert, 1985). The EPM formulation is attractive because of
the widespread availability of numerical algorithms to solve problems of
this type. In general, solutions for problems related to flow through
both porous media can be grouped into three broad categories, i.e.,
analog, analytic, and numeric.

Analog solutions can be obtained using sandboxes or electric analog
models (Karplus, 1958). Analytic (or, equivalently, closed form) solu-
tions are available for a number of flow problems (see, for example:
Muskat, 1946; Carslaw and Jaeger, 1959; Churchill, 1974 Philip, 1985;
Waechter and Philip, 1985; Wheatcraft and Winterberg, 1985). In many
circumstances, the analytic expressions are appropriate only for uniform

10



material properties. To account for variable hydraulic parameters,
analytic stochastic models have been developed (see: Gelhar and Axeness,
1983; Mantoglou and Gelhar, 1987a,b,c;, Yeh et al., 1985a,b,c). Gelhar
and Axeness (1983) used stochastic theory to estimate the effective
hydraulic conductivity tensor for conditions of saturated flow in a
statistically anisotropic medium with arbitrary orientation of the major
axes of mean flow. The effective (or large-scale) hydraulic conductiv-
ity tensor is shown to be of second rank and symmetric. Parameters for
the stochastic model include the mean, variaance and covariance function
of the natural logarithm of the local scale saturated hydraulic conduc-
tivity, as well as the orientation of the mean flow direction.

Numeric models include finite difference models (such as by: Travis,
1984; Reeves et al., 1986; Pruess, 1987), finite element models (see,
for example: Davis and Neuman, 1983; Wang and Narasimhan, 1985; Allen
and Murphy, 1986; Huyakorn et al., 1984, 1985, 1986; Noorishad and
Mehran, 1982; Pinder and Gray, 1977; Segerlind, 1984), and boundary
element models (for example those by: Brebbia, 1978, 198la,b, 1984;
Brebbia and Ferrante, 1979; Brebbia and Maler, 1985; Brebbia and Noye,
1985; Brebbia et al., 1984a,b; Cheng, 1984; Elsworth, 1986, 1987; Lafe
end Cheng, 1987; lLafe et al., 1981; Leanon et al., 1979a,b; Liggett and
Tiu, 1979a,b, 1983; Liu et al., 1981; Shapiro and Anderson, 1983;
Andersson and Dverstorp, 1987).

Various applications of the EPM concept to fractured media have been
made. One application shows that the EPM formulation is valid if there
are sufficlent fractures for statistical averaging of flow paths (Neuzil
and Tracy, 1981; Long et al., 1982). The scale of statistical averaging
which is required to obtain a sufficient number may be large, especially
when fracture densities are low (Sagar and Runchal, 1982). In practice
the size of the rock volume for which the hydraulic parameter is esti-
mated is enlarged to & size which will result in consistent hydraulic
parameters (see e.g., Smith and Schwartz, 1984; Witherspoon et al.,
1979).

Dual porosity models have been developed for circumstances when substan-
tial flow through both a rock matrix and rock fractures occur simultan-
eously. Unlike single-porosity EPM models which lump matrix and
fracture properties into a single parameter, dual-porosity models dif-
ferentiate between fracture and matrix flow by solving two sets of flow
equations using a coupling parameter to represent flow between the
matrix and fractures. This technique has been used for saturated condi-
tions (see, for example: Bibby, 1981; Huyakorn et &l., 1983; Moench,
1984), as well as to generate composite unsaturated hydraulic conductiv-
ity curvee of fractured rock (Wang and Narasimhan, 1985, Tsang and
Pruess, 1987).

Simulating flow through unsaturated porous media has been well described
in the literature (see, for example: Andersson and Shapiro, 1983;
Bresler and Dagan, 1982a-b; Cooley, 1983; Dagan and Bresler, 1982;
Huyakorn et al., 1983a,b,c, 1984, 1985, 1986; Nielsen et al., 1986;
Pollock, 1986; Ross, 1984). Flow through saturated, fractured rock has
also received considerable attention (for example: Neuzil and Tracy,
1981; Sagar and Runchal, 1982; Castillo et al., 1972; Chen, 1986; Ross,
1986; Hsieh and Neuman, 1985; Hsieh et al., 1985).
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Attention to flow in variably saturated fractured rocks has received
less attention. Wang and Narasimhan (1985) used a measured fracture
aperture distribution to derive a theoretical relationship between
fracture hydraulic conductivity and pressure head which considers the
influence of asperities. With this theoretical relationship they used a
nunerical model to simulate flow in regularly spaced fractures of
infinite areal extent bounded by matrix blocks. The model provides
estimates of changes in saturation levels, permeabilities, darcian flow
velocities in fractures and at fracture-matrix interfaces, and in effec-
tive fracture-matrix flow areas.

Tsang and Pruess (1987) have also investigated coupled fracture and
matrix flow through unsaturated tuff. Their model employs a fianite
difference mesh to discretize the region surrounding a high level
nuclear repository. Coupled vapor and fluid flow of water is ianvesti-
gated by assigning an effective permeability between nodes which is a
composite of both matrix and fracture permeabilities. Complex fracture
orlentations are not investigated, nor are differential saturation
levels between the rock matrix and embedded fractures.

Stochastic theory has also been used by Yeh et al. (1985a,b,c) to de-
scribe steady unsaturated flow in a heterogeneous medium. It is demon-
strated that the effective hydraulic conductivity of a statistically
anisotropic medium has tensorial properties, and also that the aniso-
tropy of the hydraulic conductivity is dependent upon the moisture con-
tent of the medfium. This results from the variation in pore size dis-
tributions within the soil medium and the correlation structure of the
variation. Extensions of these results to fractured media are possible
1f macroscoplc (i.e., large scale) hydraulic properties of the fractured
rock can be determined.

1.2 Proposed DFN Models

Of immediate concern is the demonstration of an ability to define the
important geometric and physical characteristics of a fractured rock
medium which influence the hydraulic and transport properties of vari-
ably saturated fractured rock. Specific goals include the determination
of critical geonetric properties of fractures with respect to bulk
hydraulic properties, the influence of fluid suctioa on the relative
saturation and hydraulic conductivity of fractures, and the behavior of
fluid and solute travel times and breakthrough curves in variably satur-
ated fractures incorporating sorption and matrix diffusion.

In order to meet these goals, this study is organized ianto three broad
areas of study. The first study, presented in Chapter 2, focuses on
fluid flow through individual and networks of discrete fractures. The
second, presented in Chapter 3, focuses on fluid flow through variably
saturated discrete fractures, while the last study, presented in Chapter
4, investigates the effect of sorption, matrix diffusion and variable
saturation on solute travel times and breakthrough curves resulting from
flow through discrete fractures. Appendix A provides the computer
models used in the simulation studies.

12



l.2.1 Steady Saturated Flow Through Discrete Fracture Networks

The objectives of this study are to 1dentify how geometric properties of
saturated fractures control the bulk hydraulic properties of fractured
rock. In particular, the effects of fracture orientation, density,
length and transmissivity on the global hydraulic conductivity (i.e.,
the effective hydraulic conductivity evaluated at a scale which incor-
porates flow through multiple fractures) are evaluated for both flow
within impermeable rock, as well as for coupled flow through fractured
permeable rock.

In order to achieve the stated objectives, numerical simulation using
the boundary integral method is used to model steady, saturated fluid
flow through networks of discrete fractures. The boundary integral
rethod requires that flow domain boundaries be discretized into fimnite
line segments for two-dimensional flow through a fracture, and into
finite planar elements for three-dimensional flow through a rock matrix.
Simulation results demonstrate that fracture orientation with respect to
the mean direction of the fluid gradient plays an important role in
determining the magnitude of the fluid flow, as does the length of
fractures, and the correlation between fracture lengths and transmis-
sivities. '

As opposed to previous studies, described above, which reduce individual
two-dimensional fractures to one-dimensional line segments, the formula-
tion presented here provides a more complete geometric representation of
individual fractures by maintaining a two-dimensional fracture geometry.
Simulation results derived from the proposed methodology provide addi-
tional evidence for determining the conditions under which equivalent
porous media models are suitable for characterizing steady saturated
flow through discrete fractures.

1l.2.2 Steady Flow Through Variably Saturated Fractures

The objectives of this study are to evaluate the effects of wvariable
fluid suction and fracture orientation on the hydraulic properties of
fractures. Specifically, the behavior of a free surface within a
fracture which delimits the air-water Luterface is investigated under
conditions of variable fracture orientation and fluid suction. Also, an
important objective is the determination of regions of saturation within
individual fractures, along with the regions of positive, negative, and
undefined hydraulic head. (Unsaturated regions will correspond to
regions with an undefined head, while saturated regions will coantain
both positive and negative heads.)

In order to determine the hydraulic head distribution, as well as the
region of saturation, the boundary integral method is used to discretize
the saturated region and to solve the hydraulic head distribution within
the plane of a fracture. To determine the position of the free surface,
a constant capillary head is assigned to each fracture and the location
of nodes along the free surface are adjusted until the calculated
hydraulic pressure head at the asir-water interface 18 equal to the
capillary head. Simulation studies indicate that regions of saturation
are limited to the regions immediately around a source, extending below
the source to a water table. Below the water tsble is a region of
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positive fluid pressure heads. The position of the water table is
defined by the location of the outlet from the fracture.

The methodology proposed here is superior to the existing methods,
presented above, in that counstant or slowly varying fluid suctions with-
in the plane of individual fractures are not assumed. Instead, large
variations ia head will exist, assuming values ranging from large suc-
tions to large positive pressure heads, dependent upon location within
the fracture and the orientation of the fracture. The accurate defini-
tion of fracture head variation, as well as the definition of the satur-
ated regions within a fracture, are important factors in determining the
sulitability of using existing equivalent porous media models for charac-
terizing fluid flow through unsaturated rock.

1.2.3 Solute Traunsport Through Variably Saturated Fractures

The objectives of the third study are to develop methodologies for
calculating travel times and breakthrough curves for water and solutes
in variably saturated fractured rock. Travel times and release rates
are important characterization properties of repository performance
(USNRC, 1987). The developed methodologies must also incorporate trans-
port processes which ameliorate the effects of contaminant release, such
as sorption and matrix diffusion, as well as time dependent inputs.

The proposed methodologies consist of determining the integrated inverse
velocity along streamlines. The effect of flow path variation on the
shape of breakthrough curves is considered by discretizing calculated
fluxes into unique, one-dimensional streamlines orthogonal to potential
lines. Velocity varlation along a streamline is incorporated by discre-
tization along a streamline, and by accumulating travel times between
discretization points. Simulation results show that velocity variations
along and between streamlines result in substantial variability in the
calculated travel time. Decreased travel times are noted as the rela-
tive saturation is decreased.

The boundary integral method provides superior estimates of travel times
because, unlike finite element and finite difference methods which use
plecewlise interpolation functions of various orders over each spatially
discretized interval, the boundary integral method defines smooth
functions of velocity and streamline functions which are continuous in
all derivatives within the discretized flow domain.

1.2.4 Computer Simulation Models of Fracture Flow and Transport

Four computer models, written in FORTRAN-77, are developed to simulate
fluid flow and solute transport through discrete fractures. Presented
in Appendix A, the programs provide the ability to generate fracture
networks using synthetic or field data, as well as to solve for fluid
head and flow rates within fractures by discretizing the fracture boun-
daries and the matrix flow domain using the boundary integral method.

Program BIM provides estimates of steady flow rates, hydraulic head
distributions, travel times and breakthrough curves for discrete frac-
ture networks, incorporating both saturated and variably saturated flow.
Program FRACGEN 13 used to determine the global hydraulic conductivity

14



of a fractured rock mass by generating finite fractures within a speci~
fied rock volume and then solving for the finite lines of intersections
between fractures and between fractures and the rock volume boundary.
The program uses site-specific geometric data, or can generate synthetic
fractures using distribution of fracture parameters including fracture
orientation, length, and density. Once a fracture network has been
generated using program FRACGEN, Program BIM2D is used to discretize the
fracture network and then solve for steady fluid flow and transport
using the boundary integral method. Program BIM2D is limited to appli-
cations involving an impermeable rock matrix. Program BIM3D is used to
investigate coupled flow through a fracture network embedded within a
permeable matrix.
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CHAPTER 2

NUMERICAL SIMULATION OF STEADY FLUID FLOW

A numerical procedure is presented for obtaining estimates of steady
fluid flow through saturated discrete fractures. The procedure uses the
boundary integral method to discretize and solve the boundary value
problem for hydraulic head and fluxes within discrete fractures. Appli-
cations of the method include flow through single and interconnected
fractures which are embedded within an impermeable matrix, as well as
subsequent applications to fractures contained within a permeable
matrix. For fracture flow within an impermeable matrix, the effect of
fracture orientation, density, and fracture transmissivity distributions
are evaluated for their effects on the global three-dimensional hydrau-
1lic conductivity, which i3 a measure on a macroscopic scale of the
hydraulic properties of the fractured rock.

2.1 PFracture Flow Hydraulics

Steady fluid flow through a porous medium is governed by equations which
incorporate a mass balance constraint. For flow through fractures and
the rock matrix, the mass balance equations are, respectively:

(2.1a) Vqe(x) = 0 inQ
and
(2.1b) Vg, (x) = 0 in R
where
v gradient operator, 1/m;
as darcian flux through a planar fracture, mzls;
90 darcian flux through the rock matrix, m/s;
X position vector, m;
Q two dimensional planar fracture flow domain; and
R three dimensional spatial matrix flow domain.

The relationship between fluid flux and the force driving fluid flow is
defined using the tensorial form of Darcy's law, in two and three
dimensions, respectively:

(2.2a) qe(x) = - I(x) Vh(x)
and
(2.2b) 4p(x) = - K(x) Vh(x)
where

hydraulic head, mj

h
K hydraulic conductivity, m/g; and
I fracture transmissivity, m2/s.

Assigned head and flux boundary conditions are, respectively (Figure
2.1):
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Figure 2.1: Flow domain and boundary conditions for two dimensional (A)
and three dimensional (B) porous media. Symbols are
defined in text.
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(2.3a) h(x) = h(x) on I orqQ
or

(2.3b) q(x) = 3(x) n(x) onl orqQ

where
h assigned head bouadary coandition, m;
q assigned flux boundary condition, m/s;
n outwardly directed unit vector normal to boundary; and
€  one dimensional linear domain.

Total fluid flow across a boundary is calculated by integrating the
darcian velocity over the boundary, or:

(2.4a) Q¢ = fge(x) n(x) dr

and

(2.4b)  Q, = [a,(x) n(x) do

where Qg and Q, are fracture and matrix flow rates (m3/s), respectively.
For a rock mass iuncorporating both a porous rock matrix and embedded
fractures orieated parallel to the gradient, the total fluid flow is the
sum of fracture and matrix flow components:

(2.5) Q= fge(x) a(x) dr 4 fg,(x) n(x) do

For constant darcian fluxes over the fracture boundaries and a fracture
boundary lying upon a matrix boundary (Figure 2.2), Equation 2.5 can be
reduced to:

(2-6) Q = qf Wf 4 qm Am

where

q¢ = 4¢(x) n(x)

Qp = 95(X) n(x)
and
wg  exteat of the fracture intersecting the matrix boundary, m;

A, area of the matrix boundary, m.

The mean darcian flux over the cross sectional area, q (m/s), for the
conditions of Equation 2.6 is calculated using:

(2.7) q=Q/ A

where A i3 the total surface area of rock. By noting that the matrix
area, A,, is not appreciably different than the total surface area, A,
and that the extent of fractures can be related to the total area using
a dengity measure, l.e.:

(2.8) df = Wf A

18



Figure 2.2: Fluxes, q¢ and q;, and geometric properties, wg and A, for
a single gracture and rock face intersecting a boundary.

where d. is the fracture extent per unit rock surface (1/m), the follow-
ing relatfonship is obtained:

(2.9) qQ=de qe 4 qy

The intrinsic permeability of a porous medium is related to the
hydraulic conductivity for an isotropic medium with constant viscosity
and fluid specific weight, using:
(2.10a) T =%k¢

and

(2.10b) K =%k Y

where '
ke fracture permeability, m3;
km natrix permeability, m“;
¥ specific weight, Pa/m; and
1] dynamic viscosity, Pa s.

»Substituting Equations 2.2 and 2.10 i{nto Equation 2.9 and assuming a
equivalent hydraulic gradient in both the fracture and the matrix
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yields:
(2.11)  q = -(dg ke 4+ &) Vi Vh = -k Yy Vvh
or

where k i3 the bulk permeability of the fractured rock. The fracture
permeablility can be determined using injection tests such as those
devised by Kilbury et al. (1986). The fracture density can be measured
using exposed rock surfaces and borehole core samples, while the matrix
permeability can be measured using unfractured rock samples or borehole
tests 1in unfractured intervals.

In some circumstances, fluid flow within a fracture can be assumed to
obey Poiseuille's law which relates the intrinsic permeability of a
fracture to the hydraulic aperture of the fracture. This assumption has
been examined in several studies (Iwai, 1976; Schrauf and Evans, 1986;
Kilbury et al., 1986; Witherspoon et al., 1980). The relationship
between the fracture permeability and the fracture aperture, e (m), 1is:

(2.13) ke =e3 /12

Equation 2.13 is appropriate for the case of a planar fracture with
constant cross-sectional area. For a fracture with variable aperture,
Smith et al. (1987) demonstrate that Equation 2.13 does not provide
estimates of fracture aperture which compare with estimates made using
tracers or with a volume balance calculation. Schrauf and Evans (1986)
show that the volume balance calculation provides a larger estimate of
aperture than Equation 2.13 (Figure 2.3). Given these ambiguous rela-
tionships between fracture permeability and aperture as measured by
different methods, the aperture defined by Equation 2.13 is not used in
this study. 1Instead, a fracture transmissivity and permeability are
used to relate the hydraulic gradient to darcian fluxes.

A global hydraulic conductivity, gg (m/s), for an assemblage of
fractures by noting that:

(2.142) K, = Q/ [A Vh(x)]

and

(2.14b) K, =d; L+K

These two relationships provide alternate methods for experimentally
determining the bulk hydraulic properties of a fractured rock medium.
The first method assumes an equivalent porous media exists for the
fractured rock so that macroscopic properties can be determined using
existing porous medium hydraulic testing procedures (Hsieh and Neuman,
1985). The second formulation uses field data about fracture spacing
and transmissivity, in conjunction with laboratory or field estimates of
matrix hydraulic conductivity, to provide an estimate of the macroscopic
hydraulic properties of the fractured rock. Section 2.3 provides simu-
lation studies which compare these formulations.
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Figure 2.3: Measured relationship between hydraulic and mass balance
fracture aperture.

2.2 Boundary Integral Method

The boundary integral method has been widely applied within the field of
fluid hydraulics and subsurface flow modeling (Lafe et al., 1981),
normally for two dimensional applications. A few three dimensional
applications have been reported (Liggett and Liu, 1983; Brebbia et al.,
1984; Huyakorn and Pinder, 1983), as well as applications to flow
through fractured rock (Shapiro and Andersson, 1983; Elsworth, 1986,
1987). Such studies have examined flow through homogenous media, or
through layered media with homogeneous properties within each layer.
Recent advances have also provided the ability to examine two dimension-
al flow through heterogeneous media (Lafe and Cheung, 1987).

In order to determine fluid head within a préscribed flow domain subject
to arbitrary boundary conditions, Gauss's formula can be used to solve
Laplace's equation in two and three dimensions, respectively:

(2.152) Jv?n do = foh/on ar

and

(2.15b) Jv2h dr = [ah/en do

where n is the direction normal to boundary. If, instead of Vh, we use

an arbitrary weighting function £Vg in Equation 2.15, we have Green's
first identity:
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(2.16a) [(£v3g 4 vEvg) do = [ £ ogfon dr

and

(2.16b)  [f(£v2g + vEvg) dr = [ £ og/on da

Due to symmetry in the middle term, interchange of f and g and
substraction of terms yields Green's second ideatity:

(2.17a) (£ v2g - g v2£) da = [(f og/on - g af/on) dr

and

(2.176)  f(£ v3g - g v2£) drR = [(f dg/on - g of/en) dn

Assigning h(x) to g and h*(x,x") to f results in:
(2.183)  [(n*(xz,x*) v3h(x) - h(x) v2h¥(x,x™)) dr =

fn*(x,x*) oh(x)/on - h(x) oh*(x,x")/on) dr
and

(2.18)  f(n*(x,x") v2h(x) - h(x) v2a'(x,x")) R =

Jn*(x,x*) sh(x)/on - h(x) oh*(x,x")/on) dn

where
h (5,5') weighted residual function, m; and
X position vector of weighted residual fumnctioen.

An approximate solution for fluid head and flux which minimizes the
error between the true and estimated head and flux over the flow domain
is obtained by assigning the weighted residual statement (Brebbia et
al., 1984) in both two and three dimensions, respectively:

(2.19a)  f1n*(x,x*) v2n(x)] do = 0

and

(2.19)  fn*ex,x") vin(x)] ar = 0

The weighted residual function is dependent on position within the flow
domain and on the physical and fluid properties within the flow domain.
The first half of the iantegral on the left-hand side of Equation 2.18 is
equal to zero (from Equation 2.19), while the remaining half is calcu-
lated by noting that (Brebbia et al., 1984):

(2.20a)  vZu'(x,x") = - 27 AGxxD)
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and )
(2.200)  vZ*(x,x") = - 4r Ax,x")

in two and three dimensions, respectively, where A(E,gf) is the Difac
delta, with properties:

o 0O £ fx
(2.21) A(x,x) = «
©  x =z

Substituting Equation 2.20 into Equation 2.18 and noting that:
(2.222)  fu(x) AGx,x") do = n(x")
and

(2.226)  [h(x) AGx,x") dR = h(x")

yields:

* * * *
(2.232)  e(x) h(x) + [h(x) ¢'(x,x) dr = fq(x) b (x,x") dr
and
(2.23b)  e(x) h(x) + [h(x) ¢*(x,x*) do = [q(x) v*(x,x") dn
vhere q(x) = dh(x)/on and q*(x,x ) = oh* (x,x )/bn. For positions inter-
nal to the flow domain, c(x ) equals 2¢ in two dimensions and 4x in
three dimensions. For positions along a one-dimensional boundary
(Brebbia et al., 1984; Elsworth, 1986):
(2.24) e(x) =&
where § 1s the interior angle at location X. By discretizing the boun-
daries of the flow domain, a relationship between flow and head can be

used which replaces the integral terms of Equation 2.23 with numerical
summations for nodes along the boundaries (Figure 2.4):

(2.25a) c(x) h(x) 'rzh(g) q (5.5 ) = ?9,(3:_) h (3_:_.5 )

and

(2.256) (@) h(®) 4 EhD g(xx™) = Z9 bz
Equation 2.25 can be written more concisely as (Brebbia, 1978):

(226) Ah=Rg

where
h head on boundary, located at discrete boundary positions, m;
E: flux normal to boundary, located at discrete boundary posi-
tions, m/s; and
A,B boundary integral coefficient matrices, with
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Figure 2.4: Boundary discretization schemes for two dimensional planar
fractures (A) and three dimensfional rock matrix (B).
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where m 1is the number of discretization intervals along the boundary.

For coustant heads and fluxes along discrete boundary segments, the
. elements of A and B can be found for two and three dimensional flow
domains using Equation 2.25:

(2.282) a5y = [u*(x,x") ar
(2.280) byy = fq"(x,x") ar
and |

' * *
(2.28d) byy = f q*(x,x") do

where i and j are indices corresponding to the position in the A and B
matrices, and 2.28a and 2.28c include & when i=j.

Linear interpolation of head and flux along elements will more
accurately account for variations along the boundary than counstant
interpolation functions. Higher order interpolation will also improve
the accuracy of the procedure, at the expense of numerical convenience.
For a linear head and flux variation along an element, the head and flux
- at any point along the element is determined for two and three dimen-
sional flow domains using, respectively (Figure 2.5):

(2.29a) h(e) = [h;(1-e) 4 hy(lie)] / 2
(2.29b) q(e) = [qy(l-e) + q,(1+e)] / 2

and

(2.29¢) h(ep,e;) = hje; + hoe, + hy(l-e;-e,)

(2.29d)” q(el,ez) = qpe; 1 qqpey + q3(1-e1-e2)

where .
h,q head and flux at any position along a boundary line or surface
element;
e linear interpolation coordinate (-1<e<l) along boundary line
element;
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€1,e, linear iaterpolation coordinates (0<e1<1; 0<e2<1) along
boundary surface element;
hy,h, head at endpoints of boundary line element;
q4,4 flux at endpoints of boundary line element;
1 2'§3 head at corners of triangular boundary surface element; and
41,499,949 flux at corners of triangular boundary surface element;

h= [h, (1-e)+ hy(1+e)] /2

-
hadiE
-
-~
-
-
~~

hy -~
h
r 2

l a= =~ |= =| |\\\
NODE/; o=l °=0 ° NODE 2

B

Figure 2.5: Linear interpolation functions for one (A) and two (B)
dimensional boundaries.
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The oaly remiining requirgment*is to determine the weighted residual
functions, h (x,x ) and q (x,x ). For two and three dimensional
homogeneous isotropic flow domains with constant transmissivity and
hydraulic coaductivity, the functions are taken to be the fundamental
solutions, or, respectively:

(2.30a) h*(x,x*) = 1n(1/2/r) / 2r T
(2.30b) q*(x,x*) =or/om / 27 x

and

(2.60c) h*(x,x*) = -1/47 K ¢

(2.30d) q*(x,x*) = s(1/r)/on / 4

where r is the scalar distance between x and Ef' Huyakorn and Pinder
(1983, p. 317) present analytic solutions to the integration of Equation
2.30 for two dimensionszl flow, as required by Equation 2.28. For condi-
tions of three dimensional flow the integrations are performed numeri-
cally using gaussian integration over triangular areas (Cowper, 1973).

For flow between two intersecting fractures, additional internal
boundary elements are introduced to represent the line of intersection
between the fracture planes (Figure 2.6). From mass balance considera-
tions and equivalence of heads along the boundary, a larger matrix can
be formed which is composed of sub-matrices of flow within each fracture
plus the flow across the line of intersection.

Figure 2.6: Multiple flow domain geonetry.
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The pure-fracture flow matrix equation in each fracture 1is:

(2.31a)
and
(2.31b)
where
A1,8
Ag,By
A11sByq
AgssByy
hy,qy

h,,q
2092
hy,qy

A Ayl (9 (B By;] by
U by
A1 4] |-q4 [Bay Byl by
92 by

boundary integral coefficient matrices between elements along
exterior surfaces of fracture 1;

boundary integral coefficient matrices between elements along
exterior surfaces of fracture 2;

boundary integral coefficient matrices between elements along
exterior surfaces of fracture 1 and interfacial elements;
boundary integral coefficient matrices between elements along
exterior surfaces of fracture 2 and interfacial elements;
flow and heads along exterior boundary of fracture 1;

flow and heads along exterlor boundary of fracture 2; and
flow and heads along interfacial boundary between fractures.

Combining Equations 2.3la and 2.31b yields:

A A 9 B, B h
(2.32) [4 41_] &i '[4 412] h

Equation

S‘L:f

Q -4 4] (L 9 By B

2.32 is appropriate for two intersecting fractures. Networks

-2

of intersecting fractures require more interfacial elements, with a
matrix structure composed of blocks of non-zero elements, alternating
with blocks of zero elements corresponding to nodes which do not lie {n

the same

fracture plane. Equation 2.32 1is solved by selecting

appropriate boundary conditions at all non-interfacial nodes (either
prescribed head or flux) and by reducing the resulting global set of
equations to the form:

(2.33)

where

I
i

Isi<|e

Equation
solvers.

Once the
position

(2.34)

Ju=Yv=y'

square matrices of known boundary integral coefficients;
vector of unknown boundary conditions;

vector of known boundary conditions; and

vector of known coefficients and boundary conditions.

2.33 can be solved using gaussian elimination or other direct

unknown head and fluxes are determined, the head at any
internal to the flow domain can be calculated using:

hy = ? (q.1 agy " hj bij)
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The location of streamlines can be determined by noting that streamlines
correspond to constant stream function contours. Within any two
dimensional flow field, the stream function is defined using the Cauchy-
Riemann conditions:

(2.352) 3s/3y = q, = - T dh/dx
and
(2.35b) 09s/dx = - qy = T ah/ady

where
s stream fuaction, m3/s;
x,y orthogonal cartesign coordinates in two dimensions, m;
flux components, m“/s; and
isotropic hydraulic conductivity scalar.

qxl.(qy
For boundary surfaces, a stream function can be calculated as:
(2.36) 8y = 54.1 + fqi dr
=851 %1 (a4 +q4.9)/ 2

where s; is the stream function at position {, and 1; is the length of
the boundary segment between nodes i-1 and 1.

2.3 Applications for Steady Flow Through Discrete Fractures

An examination of the boundary integral method is first performed for a
variety of simplified steady fluid flow examples. Once confidence is
gained in the ability to estimate heads and flow in simple systems,
applications to more complex examples are made. The numerical precision
of the method 1s also evaluated when analytic or other results are
available. The methods are implemented in FORTRAN-77, and are presented
in Appendix A as programs BIM, a general purpose, multidimensional
boundary integral solver, BIM2D, which solves the two-dimensional boun-
dary integral problem, and BIM3D, which solves the three-dimensional
boundary integral problem.

2.3.1 Flow Through a Single Fracture

Steady flow through a single square fracture with a constant unit
fracture transmissivity is estimated for uniform one-dimensional flow in
response to a unit head gradient. Figure 2.7 illustrates the flow field
configuration. Notice that nodes are located along the boundary of the
flow domain, and double nodes are closely spaced at locations where the
boundary conditions change rapidly. The close spacing is also required
to prevent mixed boundary conditions between two nodes.

Unknown head and flow rates along the boundaries are computed using
FORTRAN program BIM which ifancorporates linear variation im head and flow
between nodes. (Documentation for program BIM is presented in Appendix
A). Values of the stream function are calculated using Equation 2.34.
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Figure 2.7: Discretization schemes for boundary integral method
simulation study.
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Table 2.1 presents results for a coarse discretization scheme using
twelve nodes to represent the flow domain. A unit transmissivity value
is used in this example. The errors in estimated unknowan head and flow
values are also presented in the table; the largest error in head being
0.0012 and the largest error in flow being 0.0006. Note that the error
in head is small except near zones where boundary conditions change from
constant flux to constant head.

Table 2.1: Results for simulation experiment using coarse discretiza-
tion interval, twelve nodes total. Fracture transmigsivity
is 1. Bold faced values are assigned boundary conditious.

. @ % e @ @ 9 e e @ e e G @ G W G @6 S G W W W W S W @ @ W % e e @ « @

Node Location Head Flow Stream Head/Flow
b4 y h q S - Error
1.0000 0.0000 0.00121 0.0000 -0.00005 0.0012 (h)
1.0000 0.5000 0.50000 0.0000 -0.00005 0.0000 (h)
1.0000 1.0000 0.99879 0.0000 -0.00005 «0.0012 (h)
0.9999 1.0000 1.00000 1.0003 0.00000 0.0003 (q)
0.5000 1.0000 1.00000 1.0006 0.50011 0.0006 (q)
0.0001 1.0000 1.00000 1.0003 1.00023 0.0003 (q)
0.0000 1.0000 0.99879 0.0000 1.00028 =0.0012 (h)
0.0000 0.5000 0.50000 0.0000 1.00028 0.0000 (h)
0.0000 0.0000 0.00121 0.0000 1.00028 0.0012 (h)

0.0001 0.0000 0.00000 -1.0003 1.00023 -0.0003 (q)
0.5000 0.0000 0.00000 -1.0006 0.50011 -0.0006 (q)
0.9999 0.0000 0.00000 -1.0003 0.00000 -0.0003 (q)

A second simulation using the coarse discretization mesh is performed
with the transmissivity value Increased from one to five. The results,
presented in Table 2.2, show that:

o The total flow increases five-fold;

o The maximum error in estimated heads is equivalent to the errors in
Table 2.1; and

o The maximum error in estimated flows is increased approximately
five-fold, to 0.0030.

The two simulations presented above are repeated using a finer dis-
cretization which doubles the number of nodes along the boundary from
twelve to twenty-four. Table 2.3 presents the results for the finer
discretization problem for a unit transmissivity and Table 2.4 presents
results for a transmissivity of five. The resulting heads and flows are
not appreciably different from those estimated using the coarse discre-
tization interval. The maximum error in estimated head is reduced from
0.0012 to 0.0004, but the maximum error in estimated flux increased from
0.0030 to 0.0045 for the fracture with a transmissivity of five.
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Table 2.2: Results for simulation experiment using coarse discretiza-
tion interval, twelve nodes total. Fracture transmlssivity
is 5. Bold faced values are assigned bouadary conditions.
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Node Location Head Flow Stream Head/Flow
X y h q 8 Error
1.0000 0.0000 0.00121 0.0000 ~0.00025 0.0012 (h)
1.0000 0.5000 0.50000 0.0000 -0.00025 0.0000 (h)
1.0000 1.0000 0.99879 0.0000 -0.00025 =0.0012 (h)
0.9999 1.0000 1.00000 5.0016 0.00000 0.0016 (q)
0.5000 1.0000 1.00000 5.0030 2.50057 0.0030 (q)
0.0001 1.0000 1.00000 5.0016 5.00114 0.0016 (q)
0.0000 1.0000 0.99879 0.0000 5.00139 <0.0012 (h)
0.0000 0.5000 0.50000 0.0000 5.00139 0.0000 (h)
0.0000 0.0000 0.00121 0.0000 5.00139 0.0012 (h)
0.0001 0.0000 0.00000 -5.0016 5.00114% «0.0016 (q)
0.5000 0.0000 0.00000 ~5.0030 2.50057 =-0.0030 (q)
0.9999 0.0000 0.00000 -5.0016 0.00000 -0.0016 (q)
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Table 2.3: Results for simulation experiment using fine discretization
interval, twenty four nodes total. Fracture transmissivity
is 1. Bold faced values are assigned boundary conditions.

. e @ 8 e e W € 8 W @S W W G W W P e W e @ e W@ W @ ® WS @ @ @ @ @ a

Node Location Head Flow Stream Head/Flow
x y h q s Exrror
1.0000 0.0000 = 0.00044 0.0000 =-0.00005 0.0004 (h)
1.0000  0.2000 0.19997 0.0000 -0.00005 0.0000 (h)
1.0000 0.4000 0.39999 0.0000 -0.00005 0.0000 (h)
1.0000 0.6000 0.60001 0.0000 -0.00005 0.0000 (h)
1.0000 0.8000 0.80003 0.0000 =-0.00005 0.0000 (h)
1.0000 1.0000 0.99956 - 0.0000 -0.00005 =0.0004 (h)
0.9999 1.0000 1.00000 1.0009 0.00000 0.0009 (q)
0.8000 1.0000 1.00000 0.9999 0.20003 -0.0001 (q)
0.6000 1.0000 1.00000 1.0000 0.40002 0.0000 (q)
0.4000 1.0000 1.00000 1.0000 0.60002 0.0000 (q)
0.2000 1.0000 1.00000 0.9999 0.80001 -0.0001 (q)
0.0001 1.0000 1.00000 1.0009 1.00004 0.0009 (q)
0.0000 1.0000 0.99956 0.0000 1.00009 «0.0004 (h)
0.0000 0.8000 0.80003 0.0000 1.00009 0.0000 (h)
0.0000 -0.6000 0.60001 0.0000 1.00009 0.0000 (h)
0.0000 0.4000 = 0.39999 0.0000 1.00009 0.0000 (h)
0.0000 0.2000 0.19997 0.0000 1.00009 0.0000 (h)
0.0000 0.0000 0.00044 0.0000 1.00009 0.0004 (h)
0.0001 0.0000 0.00000 =-1.0009 1.00004 «0.0009 (q)
0.2000 0.0000 0.00000 -0.9999 0.80001 0.0001 (q)
0.4000 0.0000 0.00000 -1.0000 0.60002 0.0000 (q)
0.6000 0.0000 0.00000 -1.0000 0.40002 0.0000 (q)
0.8000 0.0000 0.00000 -0.9999 0.20003 0.0001 (q)

0.9999 0.0000 0.00000 -1.0009 0.00000 -0.0009 (q)

. @ @ e @ w @ e 9 @ 6 e @ @ e WS e e @ e % ® &% ® % e % @ @ @ % @ o @ &«
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Table 2.4: Results for simulation experiment using fine discretization
interval, twenty four nodes total. Fracture transmissivity
is 5. Bold faced values are assigned boundary conditions.

Node Location Head Flow Stream Head/Flow
X y h q ] Error
1.0000 0.0000 0.00044 0.0000 -0.00025 0.0004 (h)
1.0000 0.2000 0.19997 0.0000 -0.00025 0.0000 (h)
1.0000 0.4000 0.39999 0.0000 -0,00025 0.0000 (h)
1.0000 0.6000 0.60001 0.0000 -0.00025 0.0000 (h)
1.0000 0.8000 0.80003 0.0000 -0.00025 0.0000 (h)
1.0000 1.0000 0.99956 0.0000 -0.00025 =0.0004 (h)
0.9999 1.0000 1.00000 5.0045 0.00000 0.0045 (q)
0.8000 1.0000 1.00000 4.9999 1.00016 -0.0001 (q)
0.6000 1.0000 1.00000 5.0000 2.00011 0.0000 (q)
0.4000 1.0000 1.00000 5.0000 3.00009 0.0000 (q)
0.2000 1.0000 1.00000 4.9999 4.00004 «0.0001 (q)
0.0001 1.0000 1.00000 5.0045 5.00020 0.0045 (q)
0.0000 1.0000 0.99956 0.0000 5.00045 =0.0004 (h)
0.0000 0.3000 0.80003 0.0000 5.00045 0.0000 (h)
0.0000 0.6000 0.60001 0.0000 5.00045 0.0000 (h)
0.0000 0.4000 0.39999 0.0000 5.00045 0.0000 (h)
0.0000 0.2000 0.19997 0.0000 5.00045 0.0000 (h)
0.0000 0.0000 0.00044 0.0000 5.00045 0.0004 (h)
0.0001 0.0000 0.00000 -5.0045 5.00020 =0.0045 (q)
0.2000 0.0000 0.00000 -4.9999 4.00004 0.0001 (q)
0.4000 0.0000 0.00000 -5.0000 3.00009 0.0000 (q)
0.6000 0.0000 0.00000 -5.0000 2.00011 0.0000 (q)
0.8000 0.0000 0.00000 -4.9999 1.00016 0.0001 (q)
0.9999 0.0000 0.00000 ~5.0045 0.00000 -0.0045 (q)
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2.3.2 Flow Through Serial Fractures

Flow through a series of fractures with constant transmissivity within
individual fractures but with varying transmissivities between fractures
is estimated for steady flow in response to a unit head gradient.

Figure 2.8 illustrates the flow field configuration. The configuration
is also appropriate for two zones within a single fracture having
differing transmissivities.

h=2

1
O
8

Lx o constant head nodes
X X e constant flux nodes

X interface nodes

Figure 2.8: Serial fracture discretization scheme. Coarse discretiza-
tion shown.
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Table 2.5 presents simulation results using FORTRAN program BIM for two
coarsely discretized fractures with equal unit transmissivities. Table
2.6 presents results for the same discretization but with one fracture
having a transmissivity five times that of the other. Tables 2.7 aad
2.8 repeat the simulation experiments using a finer discretization
interval. WNote that the approximation errors are small ia all cases;
the largest single error being 0.0020 associated the calculated head
value for two coarsely discretized fractures with differing
transmissivities. No measurable mass balance errors are present for any
of the simulations.
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Table 2.5: Results for simulation experiment using coarse discretiza-
tioa interval, twelve nodes total. Transmissivity of both
fractures 13 1. Bold faced values are assigned boundary
conditions. Underlined values are shared between fractures.
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Node Location Head Flow Strean Head/Flow

# X y h q s Error
1 1.0000 2.0000 1.99879 0.0000 =0.00005 =0.0012 (h)
1.0000 1.5000 1.50000 0.0000 -0.00005 0.0000 (h)
1.0000 1.0000 1.00121 0.0000 -0.00005 0.0012 (h)
0.9999 1.0000 1.00000 -1.0003 0.00000 -0.0003 (q)
0.5000 1.0000 1.00000 -1.0006 0.50011 -0.0006 (q)
0.0001 1.0000 1.00000 -1.0003 1.00023 -0.0003 (q)
0.0000 1.0000 1.00121 0.0000 1.00028 0.0012 (h)
0.0000 1.5000 1.50000 0.0000 1.00028 0.0000 (h)
0.0000 2.0000 1.99879 0.0000 1.00028 «0.0012 (h)
0.0001 2.0000 2.00000 1.0003 1.00023 0.0003 (q)
0.5000 2.0000 2.00000 1.0006 0.50011 0.0006 (q)
0.9999 2.0000 2.00000 1.0003 0.00000 0.0003 (q)
2 1.0000 0.0000 0.00121 0.0000 -0.00005 0.0012 (h)
1.0000 0.5000 0.50000 0.0000 -0.00005 0.0000 (h)
1.0000 1.0000 0.99879 0.0000 =« 0.00005 «0.0012 (h)
0.9999 1.0000 1.00000 1.0003 0.00000 0.0003 (q)
0.5000 1.0000 1;90000 1.0006 0.50011 0.0006 (q)
0.0001 1.0000 1.00000 1.0003 1.00023 0.0003 (q)
0.0000 1.0000 0.99879 0.0000 1.00028 «0.0012 (h)
0.0000 0.5000 0.50000 0.0000 1.00028 0.0000 (h)
0.0000 0.0000 0.00121 0.0000 1.00028 0.0012 (h)
0.0001 0.0000 0.00000 -1.0003 1.00023 -0.0003 (q)
0.5000 0.0000 0.00000 -1.0006 0.50011 =0.0006 (q)
0.9999 0.0000 0.00000 -1.0003 0.00000 =0.0003 (q)
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Table 2.6: Results for simulation experiment using coarse discretiza-
tion scheme, twelve nodes total. Transmissivity of first
fracture 1s 5; of second 18 1. Bold faced values are
assigned boundary conditions. Underlined values are shared

" between fractures.

Node Location Head Flow Stream Head/Flow
# X y h q s Error
1 1.0000 2.0000 1.99960 0.0000 -0.00008 «0.0004 (h)
1.0000 1.5000 1.83333 0.0000 -0.00008 0.0000 (h)
1.0000 1.0000 1.66707 0.0000 -0.00008 0.0004 (h)

0.9999 1.0000 1.66667 <-1.6672 0.00000 =0.0005 (q)
0.5000 1.0000 1.66667 =-1.6676 0.83352 =0.0009 (q)
0.0001 - 1.0000 1.66667 -1.6672 1.66705 -0.0005 (q)

0.0000 = 1.0000 - 1.66707 0.0000 1.66713 0.0004 (h)
0.0000 1.5000 1.83333 0.0000 1.66713 0.0000 (h)
0.0000 2.0000 1.99960 0.0000 1.66713  -<0.0004 (h)
0.0001 2.0000 2.00000 1.6672 1.66705 0.0005 (q)
0.5000 2.0000 2.00000 1.6676 0.83352 0.0009 (q)
0.9999 2.0000 2.00000 1.6672 0.00000 0.0005 (q)
2 1.0000 0.0000 0.00201 0.0000 <-0.00008 . 0.0020 (h)
1.0000 0.5000 0.83333 0.0000 -0.00008 0.0000 (h)
1.0000 1.0000 1.66465 0.0000 -0.00008 =0.0020 (h)
0.9999 1.0000 1.66667 1.6672 0.00000 0.0005 (q)
0.5000 1.0000 1.66667 1.6676 0.83352 0.0009 (q)
0.0001 1.0000 1.66667 1.6672 1.66705 0.0005 (q)
0.0000 1.0000 1.66465 0.0000 1.66713 =-0.0020 (h)
0.0000 0.5000 0.83333 0.0000 1.66713 0.0000 (h)
0.0000 0.0000 0.00201  0.0000 1.66713 0.0020 (h)
0.0001 0.0000 0.00000 <~1.0009 1.66705 -=0.0009 (q)
0.5000 0.0000 0.00000 -0.9999 0.83352 0.0001 (q)
0.9999 0.0000 0.00000 -1.0009 0.00000 0.0009 (q)
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Table 2.7: Results for simulation experiment using Eine discretization
interval, twenty four nodes total. Transmissivity of both
fractures is 1. Bold faced values are assigned boundary
conditions. Underlined values are shared between fractures.
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Node Location Head Flow Stream Head/Flow
# b4 y h q s Error
1 1.0000 2.0000 1.99956 0.0000 -0.00005 =0.0004 (h)
1.0000 1.8000 1.80003 0.0000 -0.00005 0.0000 (h)
1.0000 1.6000 1.60001 0.0000 -0.00005 0.0000 (h)
1.0000 1.4000 1.39999 0.0000 -0.00005 0.0000 (h)
1.0000 1.2000 1.19997 0.0000 -0.00005 0.0000 (h)

1.0000 1.0000 1.00044 0.0000 -0.00005 40.0004 (h)
0.9999 1.0000 1.00000 =-1.0009 0.00000 =0.0009 (q)

0.8000 1.0000 1.00000 -0.9999 0.20003 0.0001 (q)
0.6000 1.0000 1.00000 -1.0000 0.40002 0.0000 (q)
0.4000 1.0000 1.00000 -1.0000 0.60002 0.0000 (q)
0.2000 1.0000 1.00000 -0.9999 0.80001 0.0001 (q)
0.0001 1.0000 1.00000 -1.0009 1.00004 0.0009 (q)
0.0000 1.0000 1.00044 0.0000 1.00009 0.0004 (h)
0.0000 1.2000 1.19997 0.0000 1.00009 0.0000 (h)
0.0000 1.4000 1.39999 0.0000 1.00009 0.0000 (h)
0.0000 1.6000 1.60001 0.0000 1.00009 0.0000 (h)
0.0000 1.8000 1.80003 0.0000 1.00009 0.0000 (h)
0.0000 2.0000 1.99956 0.0000 1.00009 -0.0004 (h)
0.0001 2.0000 2.00000 1.0009 1.00004 0.0009 (q)
0.2000 2.0000 2.00000 0.9999 0.30001 =0.0001 (q)
0.4000 2.0000 2.00000 1.0000 0.60002 0.0000 (q)
0.6000 2.0000 2.00000 1.0000 0.40002 0.0000 (q)
0.8000 2.0000 2.00000 0.9999 0.20003 -0.0001 (q)
0.9999 2.0000 2.00000 1.0009 0.00000 0.0009 (q)
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.............

Node Location Head Flow Stream Head/Flow
x y h q 8 Error
1.0000 0.0000 0.00044 0.0000 -0.00005 0.0004 (h)
1.0000 0.2000 0.19997 0.0000 ~-0.00005 0.0000 (h)
1.0000 0.4000 0.39999 0.0000 =-0.00005 0.0000 (h)
1.0000 0.6000 0.60001 0.0000 -~0.00005 0.0000 (h)
1.0000 0.8000 0.80003 0.0000 -0.00005 0.0000 (h)
1.0000 1.0000 0.99956 0.0000 =-0.00005 =0.0004 (h)
0.9999 1.0000 1.00000 1.QQQ9 0.00000 0.0009 (q)
0.8000 1.0000 1;90000 0.9999 0.20003 -0.0001 (q)
0.6000 1.0000 1.00000 1.0000 0.40002 0.0000 (q)
0.4000 1.0000 1.00000 1.0000 0.60002 0.0000 (q)
0.2000  1.0000 1.00000 0.9999 0.80001 «<0.0001 (q)
0.0001 1.0000 1.00000 1.0009 1.00004 0.0009 (q)
0.0000 1.0000 0.99956 0.0000 1.00009 =0.0004 (h)
0.0000 0.8000 0.80003 0.0000 1.00009 0.0000 (h)
0.0000 0.6000 0.60001 0.0000 1.00009 0.0000 (h)
0.0000 0.4000 0.39999 0.0000 1.00009 0.0000 (h)
0.0000 0.2000 0.19997 0.0000 1.00009 0.0000 (h)
0.0000 0.0000 0.00044 0.0000 1.00009 0.0004 (h)
0.0001 0.0000 0.00000 -1.0009 1.00004 =0.0009 (q)
0.2000 0.0000 0.00000 -0.9999 0.80001 0.0001 (q)
0.4000 0.0000 0.00000 ~1.0000 0.60002 0.0000 (q)
0.6000 0.0000 0.00000 -1.0000 0.40002 0.0000 (q)
0.8000 0.0000 0.00000 <~0.9999 0.20003 0.0001 (q)

0.9999 0.0000 0.00000 -1.0009 0.00000 =0.0009 (q)
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Table 2.8: Results for simulation experiment using fine discretization
interval, twenty four nodes total. Transmissivity of first
fracture is 5; of second is 1. Bold faced values are
assigned boundary conditions. Underlined values are shared
between fractures.

Node Location Head Flow Streanm Head/Flow

# X y h q s Errov

1 1.0000 2.0000 1.99985 0.0000 -0.00008 =-0.0001 (h)

1.0000 1.8000 1.93334 0.0000 -0.00008 0.0000 (h)
1.0000 1.6000 1.86667 0.0000 -0.00008 0.0000 (h)
1.0000 1.4000 1.80000 0.0000 -0.00008 0.0000 (h)
1.0000 1.2000 1.73332 0.0000 -0.00008 0.0000 (h)
1.0000 1.0000 1.66681 0.0000 ~0.00008 0.0001 (h)
0.9999 1.0000 1.66667 -1.6682 0.00000 -0.0015 (q)
0.8000 1.0000 1.66667 -1.6665 0.33339 0.0002 (q)
0.6000 1.0000 1.66667 <-1.6666 0.66670 0.0001 (q)
0.4000 1.0000 1.66667 -1.6635 1.00003 0.0001 (q)
0.2000 1.0000 1.66667 - -1.6665 1.33335 0.0002 (q)
0.0001 1.0000 1.66667 =-1.6682 1.66673 -0.0015 (q)
0.0000 1.0000 1.66681 0.0000 1.66682 0.0001 (h)
0.0000 1.2000 1.73332 0.0000 1.66682 0.0000 (h)
0.0000 1.4000 1.80000 0.0000 1.66682 0.0000 (h)
0.0000 1.6000 1.86667 0.0000 1.66682 0.0000 (h)
0.0000 1.8000 1.93334 0.0000 1.66682 0.0000 (h)
0.0000 2.0000 1.99985 0.0000 1.66682 -0.0001 (h)
0.0001 2.0000 2.00000 1.6682 1.66673 0.0015 (q)
0.2000 2.0000 2.00000 1.6665 1.33335 -0.0002 (q)
0.4000 2.0000 2.00000 1.6666 1.00003 -0.0001 (q)
0.6000 2.0000 2.00000 1.6666 0.66670 -0.0001 (q)
0.8000 2.0000 2.00000 1.6665 0.33339 -0.0002 (q)
0.9999 2.0000 2.00000 1.6682 0.00000 0.0015 (q)
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Node Location

X

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9999
0.8000
0.6000
0.4000
0.2000

0.0001

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.2000
0.4000
0.6000
0.8000
0.9999

y

0.0000
0.2000
0.4000
0.6000
0.8000

~1.0000

1.0000
1.0000
1.0000
1.0000
1.0000

1.0000

1.0000
0.8000
0.6000
0.4000
0.2000

- 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Table 2.8 (Continued)
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Head Flow Stream
h q 8
0.00073 0.0000 -0.00008
0.33328 0.0000 -0.00008
0.66665 ©0.0000 ~0.00008
1.00002 ©.0000 -0.00008
1.3333¢ 0.0000 -0.00008
1.66594 0.0000 -0.00008
1.66667 1.6682 0.00000
1.66667 1.6665 0.33339
1.66667 1.6666 0.66670
1.66667 1.6666 1.00003
1.66667 1.6665 1.33335
1.66667 1.6682 1.66673
1.66594 ©.0000 1.66682
1.33339 0.0000 1.66682
- 1.00002 0.0000 1.66682
0.66665 0.0000 1.66682
0.33328 0.0000 1.66682
0.00073 0.0000 1.66682
0.00000 -0.9999 1.33335
0.00000 -1.0000 1.00003
0.00000 =-1.0000 0.66670
0.00000 -~0.9999 0.33339
0.00000 -1.0009 0.00000
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Head/Flow
Error

0.0007 (h)
0.0000 (h)
0.0000 (h)
0.0000 (h)
0.0000 (h)
«0.0007 (h)
0.0015 (q)
-0.0002 (q)
-0.0001 (q)
«0.0001 (q)
«0.0002 (q)
0.0015 (q)
=0.0007 (h)
0.0000 (h)
0.0000 (h)
0.0000 (h)
0.0000 (h)
0.0007 (h)
=0.0009 (q)
-0.0001 (q)
0.0000 (q)
0.0000 (q)
-0.0001 (q)
-0.0009 (q)



2.2.3 Flow Through Fractures with Internal Intersections

Flow experiments are performed to investigate the effects of fractures
intersecting along line segments internal to individual fractures. 1In
all, four experiments are performed with three scenarios per experiment.
In the first experiment, two parallel unit length constant head
boundaries are aligned parallel to each at a unit distance apart (Figure
2.9a). A unit difference in potential i{s maintained between the two
boundaries. The three scenarios examlned are:

o An exterior no flow boundary 1s first placed so that both of the
constant head boundaries intersect but do not cross the no flow
boundary;

o A scenario with the length of the no flow boundaries being three
times as long as the constant head boundaries; and

o A scenario with the no flow boundary length beilng five times as
long as the constant head boundaries.

In the second experiment, the three scenarios are again repeated, only
this time the unit length constant head boundaries are now perpendicular
to each other with the midpoints of the boundaries located a unit
distance apart. Figure 2.9b illustrates the geometry of the boundaries.
For the third experiment, fractures of disparate leangths are compared.
Again the boundaries are successively displaced away from the flow
reglon, as shown in Figure 2.9c. The final experiment uses multiple
gources within an individual fracture plane. 1In this case three unit
length sources are aligned parallel to each other. Each source is
assigned a potential of (-1,0,1) respectively. Figure 2.9d presents the
flow geometry.

Table 2.9 presents the flow test results using program BIM for the
simulation experiments. The table shows that as the outer fracture
boundaries are moved away from the fracture-fracture intersections an
increase in flow rates is observed. Analytic solutions for all of the
experiments are not available. Analytic solutions for some of the
experiments are presented in the table which show that the simulation
results do not substantially deviate from the exact solution.
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Figure 2.9: Four experiments conducted to evaluate the effect of Erac-
ture lengths, orientations and distances of boundaries.
Views are plan showing exterior no flow boundaries and
lines of intersgection with other fractures for two parallel
fractures (A), two perpendicular fractures (B), two paral-
lel fractures of disparate lengths (C), and three parallel
fractures (D).
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Table 2.9: Calculated and exact flow rates for variable geometries
within the plane of a fracture.
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Flow System Computed Exact
Two Parallel Sources:
Fully-bisecting 1.01 1.00
Near-bouadary 2.11 -
Far-boundary 2.42 -
Two Perpendicular Sources:
Fully-bisecting 1.54 -
Near-boundary 2.77 -
Far-bouadary 2.80 -
Two Disparate Length Sources:
(5:5) ratio 1.01 1.00
(5:3) ratio 1.56 -
(5:1) ratio 3.21 -
Three Parallel Sources:
Fully-bisecting 0.33 0.33
Near-boundary 0.50 -
Far-boundary 0.50 -
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2.3.4 Influence of Fracture Density and Spacing

Additional simulation experiments are performed to evaluate the increase
in global hydraulic conductivity as a function of Eracture density and
orientation. (The global or network hydraulic conductivity of a rock
block 13 the equivalent flow rate per unit head gradient per unit rock
area.) Fractures are synthetically generated within a rock matrix by
defining fracture centers, orientations, and areal extent for each
fracture. The fractures are organlzed into sets with coammon orien-
tations within each set. Intersections between generated fractures are
then found. The resulting network of fractures and fracture intersec-
tions are assembled within a gpecified sample volume such that fractures
and intersections exterlor to the sample volume are removed. Exterior
portions of fractures and intersections that lie partly inside and part-
ly outside the sample volume are truncated at the boundary.

Table 2.10 presents simulation results which indicates that the global
hydraulic conductivity increases linearly as a function of fracture
density, dg, and fracture transmissivity, Te» for sets of infinite
fractures which lie parallel to each other.
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_Table 2.10: Effect of fracture deansity and fracture transmissivity omn
global hydraulic conductivity. A unit vertical gradient
was applied across two ends of a (50 x 50 x 50) m” rock
cube. ;racture density is length of fractures (m) per (50
x 50) m“ rock cube face.,

Fracture Fracture Global Hydraulic Conductivity Error
Density Transmissivity Calculated Simulated (Percent)
(1/m) (m?/5) (u/s) (m/s)
0.001 0.01 0.0000100 0.0000104 4.
0.001 0.10 0.0001000 0.0001000 0.0
0.001 1.00 0.0010000 0.0010008 0.08
0.01 0.01 0.0001000 0.0001000 0.0
0.01 0.10 0.0010000 0.0010008 0.08
0.01 1.00 0.0100000 0.0100088 0.088
0.10 0.01 0.0010000 0.0010008 0.08
0.10 0.10 0.0100000 0.0100088 0.088
0.10 1.00 0.1000000 0.1000864 0.0864
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The flow through & network of fractures, Q, can be calculated using:
(2.37) Q= ATpdg [I-ala]t

where

flow area perpendicular to flow direction;
identity matrix;

vector of direction cosines; and
-hydraulic gradient.

He @ = 3>

The inferred global hydraulic conductivity is:
(2.38) K=Q/Adl= T¢dg [I- ala)

For a Qnit hydraulic gradient with a fracture set oriented parallel to
the gradient and also perpendicular to an injection surface, the
estimated global hydraulic conductivity is:

Simulated global hydraulic conductivity values presented in Table 2.10
agree closely with values calculated from Equation 2.37. The greatest
single error is four percent corresponding to the value with the least
number of significant decimal places. The calculated error for the case
with the greatest significance is 0.0864 percent.
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2.3.5 Influence of Fracture Transmissivity and Length Correlations

The influence of fracture transmissivity and length on estimated global
hydraulic conductivities 13 also examined. 1In particular, the potential
for long fractures with high transmissivities to greatly influeance the
estimated hydraullc conductivity is investigated. Program FRACGEN was
used to generate four fracture networks in which the fracture lengths
are both correlated and uncorrelated with fracture transmissivity.

Input parameters consist of:

o A_fracture generating volume (assigned a value of 100 x 100 x 100
w’); and

o Three fractuyre_sets, each with an arbitrary fracture transmissivity
of 10 x 10°8 mzls, and with:

t+ Set one having 48 fractures within the generating volume, a
mean length of 10 m, a vertical orientation, and an east-west
strike;

1 Set two having twelve fractures within the generating volume,
a mean length of 20 m, and a horizontal orientation; and

1 Set three having three fractures within the genrerating volunme,
a mean length of 40 m, a vertical orientation and a north-
south strike.

Progran BIM2D was used to solve for total fluid flow through a (50 x 50
x 50 m”7) sample volume within the global generating volume for a unit
gradient in the vertical direction. Figure 2.10 illustrates in two
dimensions the three dimensiocaal fracture networks. Table 2.11 presents
simulation results using program BIM2D for both uncorrelated and correl-
ated parameters.

The simulation results indicate that an increagse in the estimated global
hydraulic conductivity results from an increase in correlation for both
a configuration where one fracture connects two boundaries, as shown in
the first and second networks, and also when flow must pass through
three fractures between surfaces, as shown in the third and fourth
networks. The dependence of fracture connectivity on fracture length is
evident in these realizations, in that the fractures which provide the
opportunity for flow are always those which are longer than the mean
fracture length. As a result, a high correlation between fracture
length and transmissivity results in increases in network hydraulic
conductivity.
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Figure 2,10: Four realizations of Eracture networks used to evaluate
network hydraulic conductivity.
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Table 2.11: Comparison of global hydraulic conductivity calculated
using the boundary integral model for uncorrelated and
perfectly correlated lengths and transuissivities.
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Network

Nuaber Uncorrelated Correlated Ratlo
1 0.246e-8 0.276e-7 11.2
2 0.318e-8 0.327e-7 10.3
3 0.666e-8 0.278e=7 : 4.2
4 0.52%9e-8 0.230e-6 43.5

mean 0.440e-8 0.795e~7 18.1

47



2.4 Coupled Fracture-Matrix Flow

For many geologic settings the rock matrix can not be assumed to be
inpermeable. A sensitivity analysis is implemented using the boundary
integral method to determine the relative coatribution to total liquid
flow through a rock block by both flow through the rock matrix and by
flow through discrete fractures embedded within the rock matrix. To
develop a methodology for simulating fluid flow through a porous rock
matrix with embedded fractures, a three dimensional boundary integral
method 1is examined for its accuracy. The method allows the discretiza-
tion of the outer surface of a rock volume, along with internal frac-
tures. Simultaneous fluid flow between boundaries on the rock surface
and through fractures is determined by coupling source and sink teras
along the interface between the fracture walls and the rock matrix.
Fracture flow which incorporates flow into and out of the fracture fronm
the matrix across the walls of the fracture is governed by the Poisson
equation:

(2.40)  V°(qg) 4 qy = V°(KVh) 4 q, = O

where q_ 13 the areal source term, m3/s/m2, which accounts for the net
flow into the fracture from the matrix through both walls of the frac-
ture. Flow between the fracture and the matrix {s spatially variable
over the Eracture. The boundary integral method can be employed to
evaluate the magnitude of the flow and the head distribution within the
fracture and surrounding matrix by reforming the weighted residual
statement of Equation 2.19a as:

(2.61)  f(0¥,xY v da = f1n*(z,x") q®)] da

The fracture flow matrix equation thus becomes:

(2.42) E+Ah=3Bgq

where F is the contribution to fluid flow from the rock matrix into the

fracture, integrated over all triangular fracture elements on the sur-
face of the fracture (Figure 2.11). The value of F is calculated from:

(2.43) E =% [ Twy(q h"(x,x));] 4

1 3
where
i index over all fracture area elements;
] counter over all numerical integration polints on the fracture

area element;

vy gaussian integration weighting factor for iategration poiats
(from Cowper, 22); and

A; area of fracture element.

Flow through the matrix is solved using the three dimensional boundary
integral equation:

(2.44) Ay by =b q
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Figure 2.11: Fracture surface discretization geometry showing net flux
term, q , representing flow between the fracture and the
matrix.

where the subscripts denote matrix flow components calculated using
three dimensional formulation. Equations 2.42 and 2.44 are coupled
using mass balances between interface nodes and the equivalence of heads
for fracture and matrix nodes.

2.4.1 Two Dimensional Porous Medium Application

Before proceeding with an analysls of flow through two dimensional
planar fractures embedded within a three dimensional porous matrix, it
is fastructive to examine a simplified example of flow through a one
dimensional linear fracture eubedded within a two dimensional porous
wediun. In this example a square with unit length sides 1s comnstructed
so that two opposing sldes are assigned no flow boundary conditions, the
top surface is assigned a unit hydraulic head, and the bottom surface

is assigned a hydraulic head of zero. The resulting global gradient is
only in the vertical dicection, and the magnitude of this global verti-
cal gradieant, J,, 1s one. The matrix permeability, ks of the interior
flow reglon is assiguned a unit value and the matrix region is assigned a
width, b, , of 0.99. The center of a fracture with an arbitrary aper-
ture, bg, of 0.01 is placed in the center of the unit square and length,
rotation and fracture permeability, kg, parameters are assigned.

Fracture orientation is allowed to vary in such a manner that the frac-
ture is either parallel, perpendicular, or diagonal to the direction of
flow. Also, fracture length 1is allowed to vary from fully tg pattially
dividing the flow domain. Finally, k /k is varied from 10°° to 10°.
Table 2.12 summarizes the flow test parameters.
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Table 2.12: Fracture parameters for flow experiments.
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Simulation: 1 2 3 4 5 6
Length: 1. 1-4 1. 0-5 0-7 0-5
Rotation: 0° 45° 90° 0° 45° 90°

ALL SIMULATIONS:
Fracture center is located at center of flow domain.
Fracture aperture, bg, is 0.0l. Matrix width, b,, is 0.99.
Fracture pegmeability-matrix permeability ratios of
(10°2,10°3,10°1,1,101,103,10%) used for each simulation.
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To discretize the flow domain, nodes are placed around the periphery of
the unit square, as well as around the rim of the linear fracture. The
location of nodes along the perimeter of the matrix domain are selected
go that linear head and flow changes are reproduced. (Errors may be
introduced if the true head and flow are varying in a nonlinear manner
and a linear interpolation function 1s used.) From experience, it has
been determined that nodes must be placed at corners and near where
fractures and matrix boundaries are closest to each other. Figure 2.12
1llustrates the flow domain geometry and nodal discretization schemes.

The number of nodes required to discretize the fracture surface is
determined by comparing calculated flows with flows obtained using an
analytic solution for a known problem. In this case, a flow reglme with
a fracture perpendicular to the direction of the gradient completely
bisects the flow domain. The aspect ratio of the fracture is the pro-
portion between the distance between nodes to the width of the flow
domain (Figure 2.13). For an aspect ratio near one, good accuracy is
expected, with decreasing accuracy as the ratio departs from unity.
Table 2.13 presents simulation results for two dimensional flow error
analysis. It can be observed that the accuracy of the procedure
decreases rapldly when the aspect ratio i3 greater than 10:1. An aspect
ratio less than 10:1 is used in the simulation experiments which follow.
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Table 2.13: Two dimensional precision of boundary iantegral method as a
function of aspect ratio, defined here as the ratio of the
distance between nodes to the width of the flow domain.
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Aspect Ratilo 1:1 5:1 10:1 20:1 25:1

2-D Error (petcent) 0.000 0.003 0.20 5.9 25.4
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h=0

Figure 2.12: Two dimensional flow geometry showing no flow and coanstant
head boundaries for fractures perpeadicular (A), diagonal
{B) and parallel (C) to the direction of the mean head

gradient.
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Figure 2.13: Defiaition of aspect ratio as proportion of distance
- between nodes to width of fracture.
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Once the geometry, boundary conditions, and the number and location of
boundary nodes have been established, simulations can be performed to
determine the global vertical hydraulic conductivity, K , defined as the
measured flux through the domain, Q, divided by the unit area and also
the unit hydraulic gradient imposed across the domain, Jgs

(2.45) K, =Q/ (AJ,)

This measure of the hydraulic conductivity is consisteant with the iater-
pretation of a flow test in which heads and gradients within the inter-
ior region can not be examined. The global hydraulic conductivity can
also be related to k, by noting:

(2.46) K, =k, Y

where 7 is the specific weight of water, and g is the dynamic viscosity
of water.

Figure 2.14 presents two dimensional simulation results between the
global permeability in the vertical direction, k_, to the ratio of frac-
ture versus matrix permeabilities, k /k « It can be concluded that for
flow simulations with a fracture whlch ?ully bisects the flow domain,
(i.e., simulations 1, 2, and 3) that:

o K, is directly related to k, when:

t The fracture fully divides the flow domain perpendicular to
the direction of flow, and k; is high; and

+ The fracture fully divides the flow domain parallel to the
direction of flow, and the kf is low.

kz can be calculated from the harmonic average of k¢ and k_ when
the fracture is perpendicular to the direction of flow. Tﬂe har-
monic average, kh’ is calculated using:

o K, is directly related to k¢ when:

t+ The fracture fully divides the flow domain perpendicular to
the direction of flow, and k. is low; and

t+ The fracture fully divides the flow domaln parallel to the
direction of flow, and kg is high.

k, can be calculated from the arithmetic average of kg and k, when
the fracture is parallel to the direction of flow. The arithmetic
average, k,, 1s calculated using:

(2.47b) k, = (bg kg + by k) / (bg + by)

o is directly related to kg when the fracture fully divides the
flow domain diagonal to the direction of flow. k, can be calculat-
ed from the geometric average of kh and ka when the fracture is
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TWO DIMENSIONAL FLOW SIMULATION RESULTS
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Figure 2.14: Results of simulations performed using the two dimensional
flow geometry for fractures fully (A) and partially (B)
dividing the flow domain,
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diagonal to the direction of flow. The geometric average, k_, is

’
calculated using (Bear, 1979): &

(2.47c) ks =1/ (cosza./kh + sinza/ka)
where a 1s fracture orientation (a = 0 for a perpendicular frac-
ture).

For a fracture with a length one-half of the flow width (i.e., simula-
tions 4, 5, and 6) the effects of fracture orientation are similar to
those for a fully divided flow domain, but the effects are reduced.

2.4.2 Three Dimensional Porous Medium Application

To evaluate the boundary integral procedure for its ability to estimate
three dimensional flow properties of a fractured medium, a simplified
three dimensional flow domain 1is fuvestigated by defining a cube with
unit length sides, four of which are no flow boundaries and the top and
bottom are assigned a constant head of one and zero, respectively
{Figure 2.15). Again, the matrix permeability is assigned a value of
unity and the center of a fracture is located at the center of the Elow
domain and the fracture is allowed to vary in length and orientation, as
described in Table 2.12.

An analysis of the effect of nodal density on simulation error is
performed in a manner similar to that performed for two dimensional
flow. The aspect ratio is again defined as the distance between nodes
divided by the thickness of the flow domain. Results for three dimen-
slonal aspect ratio error analyses are preseanted in Table 2.14. An
agpect ratio less than 10:1 (corresponding to an error of less than five
percent) 1s used in the simulation experiments described below.

Results for experiments counducted using the same conditions (i.e., simu-
lations 1 through 6; presented previously in Table 2.12) as for the two
dimensional experiments are presented in Figure 2.16. Table 2.15
compares simulation and analytic results using Equation 2.47. Note that
the simulation results compare favorably except for the case when the
fractures are placed diagonally across the flow domain and a large frac-
ture/matrix permeability ratio is used. In this case, the ervor is
attributed to the positioning of one end of the fracture directly upon
the upper flow surface, with no intervening matrix. By providing a
direct connection between the upper flow boundary and the fracture, an
estimated global permeability higher than the theoretical value is to be
expected.
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geometry showing fracture (A) and

Figure 2.15: Three dimensional flow
trategles.

matrix (B) boundary surface discretization s
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Table 2.14: Three dimeasional precision of boundary integral method as
a function of aspect ratio, defined here as the ratio of
the distance between nodes to the width of the flow domain.
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Aspect Ratilo 1:1 5:1 10:1 20:1 25:1

3-D Error (Percent) 0.000 0.484 4.70 7.2 17.8
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Table 2.15: Analytic and simulation results for variable fracture-
matrix permeability ratlios using three dimensional boundary
integral method. Fully bisecting fractures.
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Perpendicular Parallel Diagonal
kel Ky, k, k, k, kg k,
1073 0.001 0.0018 0.99 0.98 0.002  0.003
10°3 0.091 0.023 0.99 0.99 0.17 0.07
10°1 0.92  0.90 0.99 0.99 0.95 0.96
10°9 1. 1. 1. 1. 1. 0.99
10t1 1.01  1.02 1.09 1.20 1.05 1.07
1013 1.01  1.02 10.1  9.79 1.84 6.23
10%3 1.01  1.02  1000. 1013. 2.02  12.40
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THREE-DIMENSIONAL FLOW SIMULATION RESULTS

if

1 A "
1024
- X }
k I+ X x—;n-{g—- - e + == O @
o
z ./
024 /o/
b~
IO4 T T 3 T T T T T ﬁs
S ©3 o' 10
kf/km

)
1.5 KoK @

4
1.Ogx% X x—/—u'o-zo—-—o—--—-o @

k, e
Q‘f’
05— |
Qo0 T T | p— | N — 1 T T 1
> 1% o 1 10 103 I0°
ke /K

Figure 2.16: Results of simulations performed using the three dimension-

al flow geometry for fractures fully (A) and partially (B)
dividing the flow domain.
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2.4.3 Summary of Three Dimensional Coupled Fracture-Matrix Flow

Hydraulic flow properties of a combined fracture-matrix system are char-
acterized using a proposed three dimensional boundary integral pro-
cedure. The procedure accounts for flow through fractures embedded
within a porous matrix. The only discretization required is along the
boundaries of the fractures and the exterior surface of the matrix block
being examined. An average unit vertical head gradient is induced
across the block and the resultant flow i3 used to estimate the global
vertical hydraulic conductivity, K,.

The effect of varlations in fracture permeability og K, arg simulated by
allowing the fracture permeability to vary from 10 ° to 107 relative to
the matrix permeability. The variations in fracture permeability can
result from geochemical processes such as dissolution and precipitation
of minerals, or the result of variable water saturation levels within
the fracture. It is shown for both two and three dimensional flow that
the vertical global hydraulic conductivity is a functlion of the length
of intervening fractures and their orientation.

When fractures are of infinite areal extent and the permeability/matrix
permeability ratio, kf/k » 1s large, K  1is directly related to k. when
all the fractures are orTented verticaily, but is unaffected by the
fractures if they are all oriented horizontally. For small kf/km
ratios, the roles of vertical and horizontal fractures reverse, with
horizontal fractures controlling the magnitude of X,, and vertical frac-
tures having no effect.
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CHAPTER 3
NUMERICAL SIMULATION OF STEADY FLOW THROUGH VARIABLY SATURATED FRACTURES

Conceptual models for liquid flow through discrete fractures under
counditions of variable fluid saturation have been proposed by Montazer
and Wilson (1984), Wang and Narasimhan (1985), Tsang and Pruess (1987)
and Peters and Klavetter (1988). Thelr models quantify the variation in
fracture permeability as a function of variable fracture water content.
The resultant functions are then used to assign macroscoplc parameters
in reglonal models of flow through a fractured rock medium by assuming a
uniform permeability over discretization intervals which may be larger
than the size of individual fractures (Figure 3.1).

The purpose of the studies presented in this chapter is to present a
formulation which provides for variable fluid potential within indivi-
dual fractures at a scale which allows for a finer resolution than
previous models. The methodology accounts for large variations in water
contents within vertical fractures, as well as demonstrates that regions
within an individual fracture may be under positive pressure while other
reglons are under negative pressure. The macro-variability of water
content within fractures is investigated by using a free surface to
represent a discrete air-water interface. Applications using this
representation have been presented by Bear and Dagan (1964), Neuman and
Witherspoon (1970), Pinder and Gray (1977), Liu et al. (1981), Huyakorn
and Pinder (1983), and Liggett and Liu (1983).

This chapter first presents the theory used to generate synthetic
moisture characteristic and unsaturated transmissivity functions for
fractures. The synthetic functions are required due to the lack of
available data which can be used to specify actual functions. A subse-
quent section presents the free surface formulation and the boundary
method procedure developed here to solve for the air-water interface in
fractures. A final section presents simulation results for flow through
fractures of arbitrary orientation and fluid saturation.

3.1 Generation of Synthetic Moisture Characteristic and Unsaturated
Transmissivity Functions for Discrete Fractures

The influence of fluid saturation and potential on fracture trans-
missivity has not been quantified using laboratory or field testing
methods. Tsang and Pruess (1987) present a hypothetical relationship
between fracture permeability and relative saturation, which is closely
related to a form proposed for soils (Van Genuchten, 1978, 1980). While
this parametric form has the advantage of application to a wide range of
curves, the parameters in the model are not amenable to field testing
techniques. Existing research activities (Evans and Rasmusseun, 1988)
are directed toward generating representative molsture characteristic
and unsaturated transmissivity functions for discrete fractures using
laboratory methods. Until such time as realistic functions become
available, synthetic functions must be generated based on relevant
physical theories and observed statistical properties of fractures.
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Figure 3.1: Macroscopic and microscopic formulations of unsaturated
flow through fractured rock.
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The following sections first present an overview of capillary theory,
which is a fundamental description of the forces acting upon fluids
contained within small cavities. Subsequent sections describe how
synthetic hydraulic properties of discrete fractures are generated.

3.1.1 Theory of Flow Through Capillaries

Capillary theory relates the height of rise of a liquid in a tube to the
diameter of the tube. The relationship is derived from the free energy
states of the liquid-solid, liquid-gas and solid-gas interfaces
(Richards, 1931). The force acting upon the interfacial junction is the
free energy difference per unit length perpendicular to the junction
(Figure 3.2). Equivaleantly, the force is is the free energy difference
per unit area multiplied by the length of the junction. The force is
acting to winimize the sum of the free energies of the system. The
junction will ad just until the sum of the energies are minimized or
until an equal and opposing force is encountered. Because the solid may
not deform, the location of the junction will move along the two-dimen-
sional surface of the solid, normal to the fluid interface junction.

LIQUID

Figure 3.2: Surface tension forces acting upon a gas-liquid-solid
: faterface.
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When the junction i3 a ring in a hollow tube, the force is directed
toward the drained end of the tube. In this case, the magnitude of the
force can be computed as the product of the fred energy surface density
difference and the length of the junctiom,“or:

(3.1) F= 7L o

where .
F force acting upon the junction, N;
free energy surface density difference, J/m ; and

T
L length of the junction, m.

The free energy surface density difference is obtained by noting that
the force acting upon the junction of the interfaces i3 the sum of the
individual forces acting at the junction (Hillel, 1971, p. 41):

(3.2) F = (-rlg cosa + 75y - 'sg) L

where
Tig liquid-gas interface free energy surface density, J/m
rg] Solid-liquid interface free energy surface density, i
Tgg gas-solid interface free energy surface density, J/m“;
a meniscus angle, °, with the solid.

: and

The free energy surface density differeunce can be set equal to:

(3.3) T= 718 cosa + 74y - Tag

By also noting that the length of the junction i3 the circumference of a
circle, Equation 3.1 can be expressed as:
(3.4) F=7T(27rx)

where r 1s the radius of the capillary tube, m. If the capillary tube
13 suspended vertically with the bottom of the capillary immersed in
water, then a gravitational force is directed dowaward. The magnitude
of the gravitational force is the mass of the fluid multiplied by the
gravitational constant, or:

(305) F = V?

where V 1s the volume of liquid within the capillary tube, m3, and 7 is
the specific weight of the liquid, Pa/m. By noting that the vulume of
the liquid within the capillary tube can be approximated by a cylinder,
Equation 3.5 is replaced with:

(3.6) F=(xh, r?)

where h, is the height of rise of liquid within the capillary tube, m.
The opposing forces must balance at equilibrium, allowing Equations 3.4
and 3.6 to be set equal. Solving for the height of rise ylelds:

(3.7) h, =2 7/ Y

Incorporating Equation 3.3 in 3.7 ylelds:
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(3.8) hc = 2 (Tlg cosa < Tsl - fsg) /r

Many authors (e.g., Richards, 1931; Hillel, 1971; Marshall and Holmes,
1979) neglect the solid-liquid and solid-gas Interface terms:

(3.9)  1g = Tgg =0
which allows Equation 3.8 to be reduced to:

(3.10) hc = 2 718 cosa / ¢

It is further assumed that the contact angle is zero, appropriate for
surfaces such as clean glass, resulting in the expression:

(3.11)  h =27, /Y

For most applications (i.e., temperatures near 20°C), the constants in
Equation 3.11 can be assigned the values of:

(3.12) 7, = 0.07275 Pa m
and |

(3.13) 7= 9806 Pa/m
yilelding:

(3.14) b, =0.1484 x 1074 / r

Equation 3.14 can be generalized for the case where amn arbitrary fluid
potential is imposed at the bottom of the capillary tube. The height of
rise from the bottom of the capillary tube, h (m) is calculated as the
sun of the capillary head calculated using Equation 3.14 and the
pressure head at the bottom of the capillary tube, hp (m), outside of
the capillary tube:

(3.15)  h=hg+h,

When the pressure head imposed at the bottom of the capillary tube is
negative (i.e., a suction is imposed), the height of rise will be less
than the height calculated using capillary theory. When the suction
exceeds the capillary head, the capillary tube will be completely
drained. To determine the suction required to drain the capillary, the
height of rise in Equation 3.15 is set equal to zero, yielding:

(3016) hc = - hp

For capillary tubes inclined at an angle, f, from the vertical the
height of rise within the tube can be calculated by first noting that
the volume within the tube is approximately:

(3.17) V= h,r?/ cosg.

The gravitational force opposing the capillary force is calculated as:
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2
(3.18) F= @h, r°Y / cos§

At equilibrium, the gravitational force equals the capillary force
directed up the tuba. Setting the forces equal and solving for the
height of vrise results in:

(3.19) h, =2 Mg cosf / 7

It should be noted that Equations 3.10 and 3.19 are equivalent except
for the addition of the cosine coefficient which accounts for gravita-
tional forces which are exerted as a function of the orientation of the
tube.

Similar equations for a geometry characterized by parallel plates offset
by a constant aperture are next derived. 1In this case, it will be shown
that the aperture is used to determine the height of rise ian place of
the radius in the capillary tube geometry. Like a capillary tube, a
fracture will not fill unless the ambient pressure head is less negative
than the capillary height of rise. The force acting to draw water up
the fracture 1s equal to the length of the fracture, multiplied by two
to indicate that both walls are acting upon the water, and further
multiplied by the free energy surface density difference:

where L is the length of the fracture, m. If the fracture is set in
water at an arbitrary angle with respect to the vertical, then the grav-
itational force is the mass of the fluid multiplied by the gravitational
constant and the cosine of the angle from horizontal, or:

(3.21) F=VY / cosf

where V is now the volume of liquid within the fracture, n3. By noting
that the volume of the liquid within the fracture can be approximated by
a square prism, Equation 3.21 is veplaced by:

(3;22) F=h,eL?Y/ cosp

Solving for the vertical height of rise in a fracture and substituting
known constants yields:

(3.23)  h, = 0.1484 x 107% / e

Equation 3.23 1is valid for all fracture inclinations. The total head at
any point within the fracture is the sum of the gravitational and
pressure forces (exclusive of osmotic, thermal and other forces),
expressed in terms of hydraulic head: '

(3.24) hy = hg +4 hp
where
h,  total head, m;
hg elevation head, m; and
hp fluid pressure head, m, from:
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(3.25) hy=h-h,

where h is the pressure head exclusive of capillary head, a, and h, is
the capillary head, a.

3.1.2 Fracture Moisture Characteristic Function

The relationship between the water content of a fracture and the fluid
potential is the molsture characteristic curve. For a horizontal

fracture with a uniform aperture and one end immersed fn a fluid reser-
volr maintained at coastant total head, h_, the relationship is a step
function; the fracture will be entirely fflled at for positive pressure

plus capillary heads (i.e., h = h_ + h, > 0), and the fracture will be

coupletely drained otherwise: P
0 h <-h
(3.26) o/e, = P ¢
1 hp 2= h

where €_ 1s the saturated water content, dimensionless. The relation-
ship between water conteat and fluid potential for a vertical fracture
with the lower edge of the fracture immersed in a reservoir maintained
at a constant head is a ramp fuaction:
o The fracture will be entirely filled when the total pressure head
equals the height of the fracture, H; and
o The fracture will be drained when the total pressure plus capillary
heads are negative.
The remp function can be expressed as a function of the total head
applied at the lower end of the fracture, ht:

. 0 he < -h,
(3.27)  o/o, = h,/(H-h_) -h, < h, < B-hg
1 Bh, <h

where H is the height of the fracture. TFor inclined fractures, Equation
~ 3.27 1s rewritten as:

0 h, < =h,
(3.28) e/e, = h,/(H'-h.) “h, & b, <H'=h,
1 H'-h_ < b,

where H' = H sinf and § is the dip of the fracture from the horizontal,
degrees (Figure 3.3). Figure 3.4 illustrates a hypothetical
characteristic curve for horizontal, vertical and inclined fractures.
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Figure 3.3: Geometric properties of an inclined fracture in contact
with a liquid surface at its base.
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Figure 3.4: Moisture characteristic curves for planar fractures with
constant capillary head at various arientatious.
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3.1.3 Fracture Unsaturated Transmissivity Function

For conditions of variable fracture saturation, the assumption 1s made
that an alr-water interface exists within the fracture, such that two
flow fields can be defined within an individual fracture (Figure 3.5),
which is exact for fractures with a constant aperture. When the
fracture aperture is not constant, it ie further assumed that large
apertures which lie on the wetted side of the interface remain saturated
even if the pressure head within the fracture is more negative than the
capillary head. 1In addition, isolated swmall apertures which lie on the
opposite side of the interface are assumed to remain unsaturated. The
pressure head at the interface 18 equal to a capillary head which is
assumed constant for the entire fracture. From Equations 3.24 and 3.25,
the pressure head exclusive of the capillary head, h, on either side of
an alr-water interface is equal to zero, or:

(3.29) h=hg-hg+h, =0

and the residual pressure head within the saturated domain interior is:

(3.30) h=h - hg +h, >0

The capillary head, h,, is determined using Equation 3.23 while the
gravitational head, h_, is the elevation difference between the point
under consideration, g (m) and an arbitrary reference elevation, z, {(m):

(3031) hg =2z - zo

If z 18 used as a local coordinate within the plane of the [Eracture,
Equation 3.31 must be adjusted by the dip of the fracture, §, or:

(3.32) h8 = (z ~ z,) sinf

AIR-FILLED

WATER-FILLED

AIR-WATER INTERFACE

Figure 3.5: Conceptual model of zone of saturatlion within an unsatur-
ated fracture.
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3.2 Boundary Integral Solution of Free Surface Problem

The position of the equilibrium alr-water interface is found by first
locating temporary nodes which move the interface incrementally toward
the equilibrium interface. The interface is moved lacrementally because
the fluid pressure distribution within the flow region will change as
the boundary conditions change. The methodology for determining the
temporary interface consists of (Figure 3.6):

o Determining the fluld pressure at every boundary node using:

(3.33) =h-h, =h- (z-2,) siag

hP
o Deteruining which nodes are beyond the alr-water interface by test-

ing whether the fluid pressure is less than the sum of the capil-
lary and air pressure heads, or:

(3.34)  hy < (hg + hy)

o For those nodes which satisfy Equation 3.34, a new temporary posi-
tion is calculated such that:

t+ The total head at the temporary location, h', is equal to the
total head at the previous location, h®:

(3.35) h' = h°

+ The pressure head at the temporary location, hp', i3 equal to
the interfaclal pressure head, hp, or:

t =
(3.36) hp hp

BOUNDARY (K=I)

.
—~ NEW BOUNDARY
~ < _ (K=2)

~ TEMPORARY

h=constant—
an BOUNDARY

Figure 3.6: Procedure for locating nodal positions: (1) Determine
which nodes satisfy h_ < h,, solid circles; (2) For these
nodes, locate new temporary boundary nodes on the same
isohead contour and the contour of h, = h,, open circles;
(3) Update nodal position by finding midpoiant between ini-
tial and temporary nodal positions, crosses.
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' The position of the temporary location is calculated by using a

- Newton~Raphson Lteration scheme to incrementally arrive at the new
position. The {iterative scheme calculates displacements in the z
direction, dz, by using the chain rule:

oh/dx dhp - ahp/ax dh
(3.37) dz =

ah/ox ahplaz - dh/dz ahp/ax
where
(3.383) dh =h' - 1° =0
and
(3.38b) dh, = h,' - hp° = (hp° 4 hp)/2 - hp° = (h, - hp°)/2
The displacement in the x direction, dx, is calculated using:

(3.39) dx = (dh -~ 9h/dz dz) / oh/ax

The values of the changes in (h,hp) with respect to (x,z) are
determined using:

(3.40a) 3h/dz = [h(x,z4dz) - h(x,z)]} / dz

(3.40b) 3h/3x = [h(x+dx,z) - h(x,z)] / dx

(3.40c) ahp/az = [hy(x,24dz) - b (x,2)] / dz

and

(3.40d) ahp/ax = [hy(x4dx,2) - hp(k,z)) / dx

where dx and dz are small relative to the offset desired.

o The updated position of node 1 after iteratlion k is calculated
using half of the calculated displacement:

(3.418)  x(1,k) = x(1,k=1) + dx(i,k)/2
and
(3.41b)  z(i,k) = z(i,k-1) + dz(4i,k)/2

where dx(i,k) and dz(i,k) are the calculated horizontal and verti-
cal displacements for node 1 during iteration k, respectively.

Once the temporary positions for all nodes has been determined, the
boundary value problem is recomputed for the new geometry. Because the
original boundary conditions are still used, only the position of some
of the nodes must be changed. If, after updating the pressure head at
all boundary nodes, the pressure head at any of the nodes are less than
the sum of the capillary plus atmospheric pressure heads (i.e., Equation
3.34), the methodology presented above is repeated. Iteratlon is
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stopped when the change in pressure head, dh_, from Equatlon 3.38b, is
less than a desired stopping criterion. Appgndix A preseants the source
code and users manual for the FORTRAN program BIM which implements the
procedure.

3.2.1 Comparison of Boundary Integral Results with Analytic and
Laboratory Results

In order to validate the application of the boundary integral method to
unsaturated flow problems, a simplified flow example is constructed such
that a small circular ring is maintained at a constant total head within
a vertical fracture (Figure 3.7).
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Figure 3.7: Circular constant head source in a planar fracture.
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An approximate analytic solution to this problem consists of super-
imposing two driving forces, & uniform gravitational field directed in
the (-z) direction, and a radial flow field directed in a radial (4r)
direction, where:

(3.42) r2 = x2 4 22

and x 1s orthogonal to z. A pressure head, h. is imposed along the
outer rim of a circular opening within the flow domain:

(3.43) hp = h, : at r =,
where r, is the radius of the opening. The velocity of water resulting
from gravitational forces is:

(3.44a) v =<K oh/ x = - K3(h, + h
= - K3[(z-2,) stnf ¥ h))fox
==~ K ah /ox

1/9x

and

(3.44b) v

Kdh/dz = - Kafh, + h
= - K9 [(z-2,) sinf + 9
K [sing °} ah /az]

1/0z

where z_ 1s an arbitrary reference elevation, located at the center of
the radgal source in this example, and K 18 the hydraulic conductivity
of the flow domain, assumed constant. The fluid pressure is constant
for steady gravitational flow within a fracture of uniform hydraulic
properties and with no sources or sinks. Equation 3.44 becomes:

(3.45a) Ve = 0
and
(3.45b) v, =~ K sinf

The velocity of water resulting from the radial flow field is:

(3.46) ve. = Q /! A=Q/ 2% re

where
Q injected flow rate through the circular source;
A cross~-sectional area through which radial flow occurs; and
e thickness of the flow domain, i.e., the fracture aperture.

The velocity at any polnt is the superposition of the gravitational and
radial flow solutions, or:

(3.478) v, =04Q/ 27 re=0q/ 27 (x2+42)1/2¢
and
(3.47b) v_=-Ksinf 4 Q/ 27 ¢

“a-kx sinf +Q / 2% (xg + 212 ¢

71



Figure 3.8 presents the configuration of the flow field resulting from
this formulation. Of interest to this analysis is the height of rise of
the fluid above the internal source, as well as the width of the flow
emanating from the internal source at large distances below the source.
The height of rise is calculated by noting that the position of the
gource is directly above the internal source (1.e., x = Q) and that the
radial and gravitational velocities in the z-direction at this polat are
equal and opposite in magnitude, or:

(3.483) v, ==~ v,

or
(3.49b) K siaf =Q/ 27 z' e

and

(3.49) 2' =Q/ 2reKsinf =Q / 27T sinf -

where z' is the height above the center of the radial source where the
stagnation point occurs, and T is the domain transmissivity. The width
of the flow domain emanating from the radial source is calculated at
long distances by noting that the pressure gradient resulting from the
radial source approaches zero at large distances. Thus, the velocity
resulting from the radial source is zero, leaving only the gravitational
driving force, or:

(3.50) v, == Ksinf =Q/A=Q/ x"e

and
(3.51) x' == Q/ T sinf

where x' is the width of the flow domain emanating from the radial
source. It is interesting to note that the ratlo of x' to z' is:

(3.52) x'/z' = [-Q/ Tsinf ]/ [Q/ 27T sinf ] = - 2%

The location of the dividing streamline between the saturated and unsat-
urated zones is (Kovacs, 1981):

(3.53) z = x cotan(x/z')

To evaluate the accuracy of the numerical and analytic formulations
presented above, a flow visualization experiment was performed using two
glass panels separated by metal shims. The dimensions of the glass
panels are (0.240 x 1.200 x 0.006 m). Two metal shim strips (1.200 x
0.010 x 0.0001 m) were placed between the glass panels along the sides
of the longest dimension, and then clamped using six clamps along each
side. Twenty seven metal shiam pieces (0.010 x 0.010 x 0.0001 m) were
placed regularly within the space between the two glass panels for the
purpose of providing a uniform aperture between the two panels. Figure
3.9 1llustrates the geometry of the flow visualization experiment.
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Figure 3.8: Graphical representation of superimposed flow fields
resulting from & circular source and a gravitational field.
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Figure 3.9: Laboratory flow visualization experiment.
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To provide a constant head of water at a point between the panels, a
mariotte bottle was connected with tubing and a stopper to the interior
of a 0.010 m diameter hole drilled through one of the glass panels. The
flow rate was monitored by measuring the time required to drain 100 ml
from the mariotte bottle. Pressure at the flow fnlet of the glass panel
was obtained using a water manometer connected to the same stopper. The
flow rate was controlled by ralsing or lowering the mariotte bottle.
During each flow experiment, the flow rate, inlet pressure, height of
rise above the inlet, and the asymptotic width of the flow field below
the inlet were measured.

Table 3.1 reports the test results and Figure 3.10 demonstrates the
results for two input pressure head boundary conditions. The experi-
mental results indicate that to within a maximum fifteen perceant error
the expected ratio of flow height to flow width is accurate. Variabil-
ity in results are due to aperture irregularities and the inclusion of
small air pockets within the flow domain. The effect of air pockets is
to lncrease the flow width. Assuming that the alr pockets do not con-
duct flow, and that the transmigsivity of the saturated fracture remains
constant, the flow width is:

(3.54) x'=(-Q/ Tsinf) / w,

where w_ is the relative proportion of the air pockets width per unit
flow wigth. Neither the effects of air pockets on the flow height, nor
the effects of aperture irregularity on both the flow height and width
are easily quantified. Simulation studies are required to evaluate
these effects, but are beyond the scope of this study.

Table 3.1: Results of flow visualization experiments.

Flow Rate Height width Errorl
(nl/s) (mm) (mm) (%)
1.101 25 146 7
0.980 12 79 -5
0.927 10 71 -13
0.899 15 80 15
0.700 10 56 11
0.640 7 47 -7

1 Error calculated using 100(1 - Width/Height/2 pi)
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ho= 20cm

Figure 3.10: Flow visualization experiment for two input pressure head
boundary conditions.
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A comparison of the simulation model with the analytic and laboratory
model results was performed using four input pressures, 10, 25, 40 and
50 mm. Figure 3.11 1illustrates the geometry and nodal configuration of
the flow domain. A (100 x 100 mm) square flow domain was constructed
using 24 nodes around the perimeter. The top and two sides were
.assigned no flow boundary conditions (i.e., q = 0) and the bottom was
assigned a zero total head ({.e., h = 0). A small (2 mm diameter) cir-
cular source region with a constant head was placed at a point 80 mm
above the bottom of the Elow dowmain. Eight nodes were used_to coastruct
the circular source. A unit transmissivity (i.e., T = 1 mm“/s) was
assigned to the flow domain. Figure 3.12 illustrates the final air-
water Interface for the three input pressure head boundery conditions.
"Simulation results are summarized in Table 3.2.

q=0
roll 9 @ &
T I H=h
: .
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q=0 | ¢ q=0
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b 100 .

Figure 3.11: Unsaturated flow domain geometry for circular source.
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Figure 3.12: Simulated free surface positioan for three input pressure
head boundary conditions.
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Table 3.2: Results of computer simulation experiments. Flow geometry
is presented as Figure 3.11. A unit fracture trensmissivity

is used.

Flow3Rate Pressure Height Width Error}
(mm>/s) (mm) (zm) (mm)
62.844 50 > 20 > 100 -
62.531 40 > 20 > 100 -
57.344 25 15.7 > 100 -
40.576 10 9.9 42.1 322

1 grror calculated using 100(1 - Width/Height/2 pi)

The simulation results can be compared to analytic and laboratory
results in two ways:

o The observed flow rate divided by the unit transmissivity (i.e.,
40.576 / 1 = 40.6) is approximately equal to the calculated flow
width (1.e., 42.1). One explanation for the small discrepaacy may
be that a unit gradient may not have been achieved at the location
where the flow width was measured.

o The ratio of the flow width to the flow height is smaller by 32
percent of the analytic results. This result can be attributed to
the difficulty in numerically locating the node which lies imme-
diately above the source. The numerical difficulty stems from the
fact that the node lies at a stagnation point within the flow
domain and a unique fluid gradient does not exist at that point.

3.2.2 Applications to Fracture Networks

To demonstrate the application of the boundary integral method to
unsaturated media, a flow example is created using a single square frac-
ture with dimensions of (100 x 100 m). The fracture is intersected by
two other fractures forming linear slite of length 20 m. External nodes
are placed along the rim of the fracture and internal nodes are placed
along the lines of intersection between the fractures. External nodes
are maintained as zero flow boundaries, and internal nodes are maintain-
ed at coanstant heads of 80 mm for the fracture intersecting at (x,z)
coordinates between (60,80) and (80,80) and at 20 mm for the fracture
intersecting between (20,20) and (20,40). The geometry of the flow
example is indicated in Figure 3.13. Figure 3.14 presents the total and
pressure heads for a flow example which assumes flow through a horizon-
tal fracture. The fluid flux in this example amounts to 27.7 mmzls.
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Figure 3.13: Flow geometry and boundary conditions for fracture inter-
secting two other fractures.
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Figure 3.14: Contours of total head within the plane of a horizontal
fracture.
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Figure 3.15 presents the results of a simulation for flow through a
vertical fracture with no capillary forces and no air entry. Also indi-
cated is the region under negative pressure which would drain if an air
entry route were available. 1If alr is allowed to enter the fracture,
then the equilibrium interface position can be calculated. The location
of this interface after each iteration i3 shown in Figure 3.16 along
with the final position. Compared to the previous example, the fluid
flux has been reduced by 38 percent, to 17.21 mm“/s.

Flow through a vertical fracture with a capillary pressure head of 10 m
is presented in Figure 3.17. Because of the increased flow area, an
1n5rease of 25 perceant is observed over the previous example, to 21.46
mm“/3. Table 3.3 summarizes simulation parameters and flow results.

Table 3.3: Simulation results for (1) horizontal flow, (2) vertical
flow with no capillary head, and (3) vertical flow with capillary head.

- . @ W B W W W e @ W € @R W W @ e W W W B S W W e w W@ W e W W @ A W @

Simulation: 1 2 3
Orientation: Horizontal Vertical Vertical
Capillary Head (mm): 0.0 0.0 10.0
BIM Flux (mm?/s): 27.7 17.2 21.4
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Figure 3.15: Contours of total head and zone where pressure heads are
negative within the plane of a vertical fracture allowing
no alir entry.
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Figure 3.16: Contours of total head and free surface position after
successive iterations and after the final iteration within

the plane of a vertical fracture allowing air eutry.
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Figure 3.17: Contours of total head and interface position after the
final fteration within the plane of a vertical fracture
allowing air entry. A capillary head of 10 m was used.
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CHAPTER 4

SOLUTE TRANSPORT THROUGH UNSATURATED FRACTURED ROCK

The ability to calculate travel times and breakthrough curves for flow
through unsaturated discrete fracture networks is lmportant for
predicting the confinement capability of materials stored in such a
medium. In addition, solute interactions with fracture surfaces and with
the matrix which surrounds the fracture may be important sources of
solute attenuation. In this chapter, the boundary integral method is
extended to provide estimates of travel times and breakthrough curves
within unsaturated fractured rock. The method incorporates variable
velocities by integrating the inverse fluid velocity along flow paths
between two boundaries, and by integrating the resultant travel time for
individual flow paths over all flow paths intersecting the downstream
boundary. While the method neglects molecular diffusion within the flow
domain, hydrodynamic dispersion i3 incorporated by accounting for vari-
able velocity profiles within individual fractures.

It i3 advantageous to use the boundary integral method over other
methods because the boundary integral method provides the ability to
calculate smoothly varying hydraulic heads and velocities at points
iaternal to the flow domain. 1In other methods, interpolation functioas
must be used which may limit the accuracy of calculated heads and velo-
cities, especially at boundaries between elements which discretize the
interior of the flow domain (Figure 4.1).

4.1 Travel Time and Breakthrough Curve Calculation

Estimates of fluid travel times are obtained by first determining the
fluid velocity within a fracture and then relating fluid velocity to
travel times. Equation 2.1 presented an expression which relates the
darcian velocity vector to a hydraulic conductivity tensor and the
hydraulic head gradieant. Equation 2.1 is repeated here as:

(4.1) q(x) = - K Vh(x)

where
q darcian flow velocity, m/s;
X position, m;
X  hydraulic coanductivity, m/s;
v gradient operator, 1/m; and
h hydraulic head, m.

Equation 4.1 is valid for one, two, and three dimensional flow, but is
used in this chapter for two dimensional flow fields. The estimation of
travel time between two points along a flow path requires that the Llnte-
gral of invergse fluid velocity over the one-dimensional flow path (with-
in a two dimensional flow domain) be evaluated (Figure 4.2):

X

(4.2) t, 'f-i/"(i) dx s = constant
x
=1
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Figure 4.1: Finite element and bouandary integral approximations of
fluid streamlines. Note sharp change in direction at edge
of element in finite element approximation.
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Figure 4.2: Streanline showing two endpoints and velocity at a poiat
along the streamline.

where
t. travel time between two polats, s;
X, position of initial point, m;
Xy position of final point, m;
v fluid velocity, m/§ and
s strean function, m“/s.

In a porous medium the porosity is used to relate the darcian to the
fluid velocity. Within a fracture, however, the porosity is equal to
unity and the darcian and fluid velocities are equal. Equation 4.2
incorporates spatially variable velocity and hydraulic conductivity
fields and agsumes no diffusion or dispersion and that the {nitial and
final points lie on the same flow path. Within any two dimensional flow
field, the stream function 1s defined using the Cauchy-Riemann
conditions:

(4.33) 9s/dy = v, = - T dh/0x
(4.3b) 0s/0x = - vy =T on/dy

where x and y are orthogonal cartesian coordinates in two dimensions and
T is the isotropic transmissivity. For aanisotropic flow, lines of cone
stant stream functions are no longer orthogonal to the lines of constant
hydraulic head. 1In this case, Equation 4.3 can be either expaunded to
include a transmissivity tensor, i.e.:

(4.4a)  3sfdy = v, = - (T,,30/dx 4 T, 3h/dy)
(4.4b) 90s/0x = - vy = (Tyy Oh/0x + Tyy 9h/3y)

where T ., T, and T,, are the elements of T with Ty x» OF a
pseudopotential function zan be defined such that the pseudopo%ential
function i3 orthogonal to the stream function (Matanga, 1988). While
the latter formulation aids graphical coanstruction of flow nets,
Equation 4.4 is used in this analysis because the graphical coastruction
of flow nets is unnecessary. The stream function formulation (also
called the dual formulation) has been used by Frind and Matanga (1985),
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Frind et al. (1985) to model contaminant transport from landfills. In
addition, Hull and Koslow (1986) and Philip (1988) have used the stream-
line forumulation to route solutes through fracture junctions.

A breakthrough curve is generated for conditions of steady flow and
arbitrary iaput concentrations of a conservative tracer (i.e., & tracer
vhich travels at the same velocity as the water) by noting that along a
flow path the concentration of the tracer will be equal to the inflow
concentration delayed by the travel time, or (Figure 4.3):

(4.5) Cy(s,t) = Cy(s,t=t,.)

where
t time, 8
c downstream concentration, kg/m3; and
C, 1input concentration, kg/m”.

C,(s,1) C, (s,t)

Figure 4.3: Translation in time of solute concentration curve ignoring
molecular diffusion.
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In general, the breakthrough curve at a line boundary resulting from an
arbitrary input from a second line boundary is the sum of breakthrough
curves averaged over all flow paths (i.e., over all stream functions)
intersecting the downstream boundary (Figure 4.4):

S
(4.6) T(e) 'J/ﬁ éz(s.t) ds /(32'31)
1
]
’f él(s’t-tt(s)) ds /(32'81)
%1

s x
sf (z.l(s,t‘-[_f/v(i) dx) ds /(32'31)
$1 3]

where 8, and 3, are the bounding flow paths, m/s, on the downstream
boundary.

Geometry of flow between two boundaries. Also indicated

Figure 4.4:
are limiting streamlines.
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4.1.1 Travel Time and Breakthrough Curve Calculations Using Boundary
Integral Method

The boundary integral method is used to calculate travel times and
breakthrough curves by assuming the existence of a counstant aperture
within the plane of the fracture. The stream function is solved using
the Laplace equation:

(4.7) v2s = 0

Equation (4.7) can be solved for specific boundary conditions using the
boundary integral method (Figure 4.5):

(4.8) As=Rs'
where
A,B boundary integral coefficient matrices; and
s' derivative of stream function w.r.t. the outward directed
boundary normal, computed using the Cauchy-Riemann condition.
The A and B matrices are identical to those used for solving the head

and flux boundary integral problem, avoiding the need for recomputing

these matrices.

The boundary conditions are fmposed by equating the

stream function with cumulative discharge:

(4093) si = 81-1 4 fqi dar
or
(4.9)b) sy = 84,1+ 1y (a4 + q4.1)/2
where
r one dimensional flow domain boundary;
8; stream fuunction value at node i;
1; 1length of boundary segment between nodes i-1 and 1; and
qq discharge at node {.

Figure 4.5:

Boundary conditions for siream functions.
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4.1.2 Specification of Potential and Stream Intersections

The determination of the location of streamlines using Equation 4.6 is a
necessary first step prior to performing the integration of Equation
4.2. 1In order to provide a continuous representation of the velocity
field, the velocity along the streamline must be evaluated. 1Instead of
the continuous representation, however, an approximation i3 made by
discretizing the streamlines into segments so that equal potential
differences are found along each segment. The location of the segment
endpoints are determined by finding the iutersection of the streamlines
with potential contours. The range of gtream functions is divided into
ten equal intervals, as is the range of potential functions, as shown in
Figure 4.6. The (x,2z) locations of the intersections of the stream
contours with the potential functlions are found using a Newton-Raphson
procedure. The method is similar to that developed in the previous
chapter for unsaturated flow. In this case, however, rather than solv-
ing for the Intersection of the isohead coatour with a desired pressure
contour, the goal is to find the location of the intersections of the
desired stream and isohead contours. The iterative procedure increment-
ally approaches the Llatersection using:

(4.10a) x(1,k) = x(1,k-1) + dx({i,k)/2
and
(4.10b) z(i,k) = z(i,k-1) 4+ dz(i,k)/2

where dx(i,k) and dz(i,k) are the horizontal and vertical displacements
for node 1 during iteration k, respectively.

Figure 4.6: Streamline and head contour discretization scheme.
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The displacements are found using:
oh/0x ds -~ 0s/3x dh

(4.11a) dz = .
oh/dx 0s/0z - 0h/0z 0s/0x

and
dh - gh/dz 4z

oh/dx

(4.11b) dx =

where 3 is the stream function value and h i{s the poteatial fuaction
value. The values of the changes in (h,s) with respect to (x,z) are
determined using:

(4.12a) On/dz = [h(x,ztdz) - h(x,z)] / dz

(4.12b) Oh/0x

[h(x+dx,z) - h(x,2)] / dx

(4.12c) 0s/0z = [s(x,z+dz) - s(x,z)) / dz

and

(4.12d) 0s/0x = [s(x4dx,z) - s(x,z)] / dx

where dx and dz are small relative to the offsget desired. Once the
location corresponding to the total head and stream of interest is
found, the next intersection along the stream line is identified. The
velocity between the two intersections is obtained by finding the mean
velocity between the two intersections. A harmonic average velocity, v,
is used:

(4.13) v = [v(1) v(i-1)] / [v(1) 4 v(i~1)]
§.1.3 Applicatidn to Saturated and Variably Saturated Flow

The firet application is made to a single square planar fracture with
constant unit transmissivity and a unit aperture. Two opposing boundar-
les are imposed no flow boundaries. The other two opposing boundaries
are held at constant heads with a difference in total head equal to the
distance between the two boundaries. Because the velocity field is
uniform, the expected breakthrough curve for a step injection of a
conservative solute assuming no dispersion due to diffusion should be a
step function. Figure 4.7 illustrates the flow geometry, boundary
conditions, computed potential and stream contours, and the resultant
breakthrough curve. Note that the computed and expected breakthrough
agree to within one percent except for streamtubes which lie along the
boundary of the sample. Due to the approximation function used by the
boundary integral method, the largest errors are to be expected in this
region. If instead of computing velocities aloung boundaries using the
Newton-Raphson method, the velocities are computed using head differ-
ences between nodes, a superior estimate of the breakthrough curve is
obtained, the error being reduced to less than three percent.
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Figure 4.7: Flow geometry, boundary conditions, calculated total
head contours, and calculated stream function contours for
a square flow domain and calculated breakthrough curves at
the outflow boundary for a step injection at the inflow
boundary.
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Three additional applications are made to a saturated, horizontal
fracture, and two vertical, varlably saturated fractures. One of the
vertical fractures is assigned no capillary head, while the other is
assigned a caplllary head of 10 m. These applications are identical to
those examined in Section 4.3 of the previous chapter. Figures 4.8
through 4.10 1llustrate the flow geometries, boundary conditions, com-
puted potential and stream contours, and resultant breakthrough curves
for the three applications. Table 4.1 presents the breakthrough curves
in tabular form. It 1s to be noted that substantial tailing of the step
injection of a conservative tracer occurs. The tailing results from the
two stagnation points located at opposing corners behind the constant
head boundaries. Velocities at the stagnation polnts will be zero and
any stream line passing nearby will be affected by a reduction in velo-
city and & concomitant increase in the travel time. This effect is not
noticeable in the simulated problem due to the coarse discretization
intervals used.

Table 4.1: Calculated breakthrough times for streamlines in horizontal
and vertical fractures.,

Streamline Horizontal Vertical
1 274.5 349.2
3 126.5 144.8
4 99.3 101.0
5 8l1.6 83.9
6 81.9 80.8
7 90.3 85.7
8 100.5 81.5
9 131.1 87.1

10 248.7 89.3
11 275.1 121.8
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Figure 4.8:
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Flow geometry, boundary conditions, calculated total head
contours, and calculated stream function contours for a
horizontal fracture with two intersecting fractures and
calculated breakthrough curves at the outflow boundary for
a step Injection at the inflow boundary.
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Figure 4.9:
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Flow geometry, boundary conditions, calculated total head
contours, and calculated stream function contours for a
vertical fracture with two intersecting fractures and
calculated breakthrough curves at the outflow boundary for
a step injection at the inflow boundary.
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Figure 4.10: Flow geometry, bouadary conditions, calculated total head
contours, and calculated stream function coantours for a
vertical fracture with two intersectiang fractures and a
capillary head of 10 m and calculated breakthrough curves
at the outflow boundary for a step injection at the inflow
boundary.
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4.2 Effects of Sorption and Solute Retardation

Sorption of solutes to fracture surfaces will result in the retardation
of the breakthrough curve. At any point the solute velocity can be
modeled by assuming that the solute velocity can be linearly related to
the fluid velocity using a retardation coefficlent:

(4.14) vg=v/R

where
ve mean solute velocity, n/s;
v mean fluid velocity, m/s; and
R retardation factor, dimensionless.

The use of a retardation coefficient to model sorption onto fracture
surfaces is appropriate when fast reversible adsorption is present with
a2 linear isotherm (Jennings, 1987). It 1s interesting to note the
behavior of the retardation coefficient: '
o If the solute is conservative (i.e., no sorption) the coefficient
is set to one; ‘
o If the solute is subject to instantaneous, reversible sorption, the
coefficlent is set a number greater than one;
o If the solute is excluded from boundary layers where the fluid
velocity is less than the mean velocity (such as due to anion
exclusion), the coefficient may be less than one.

For slow reversible adsorption with a linear isotherm, a first-order
sorption rate constant can be used to model the process (Valocchi,
1986):

(4.15) M, =K (C; = Cp)

where
M mass of solute sorbed per unit time, kg/s;
K sorption rate comstant, kg/s;
Cf. concentration of the solute in the fracture fluid, dimension-
less; and
c concentration of the solute sorbed onto the matrix, dimension-
less.

When sorption and desorption occur at different rates, such as for
irreversible reactions, two rate parameters are required:

(4.16a) M =K' (C; - C,)

and

(4.16b) M = K (Ce = Cy)

where k! and K~ are sorption and desorption rate constants, kg/s,
respectively. The process of linear instantaneous sorption can be
modeled using the retardation coefficieat which results from a

Freundlich isotherm:

(4.17) s =K, C°
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where

S mass of solute species adsorbed or precipitated on the solids
per unit fracture area, kg/m“;

K4 distribution coefficient, or the mass of solute on the solid
phase per unit fracture area divided by the concentration of
solute in solution, m; ’

C solute conceantration, kg/m3; and

n exponent, equal to one for a linear isotherm, dimensionless.

The retardation coefficlent is applied in the computer simulation model
by assuming that the retardation coefficient is everywhere constant
within the medium and that the arrival of a concentration change at the
point of observation can be shifted by dividing the travel time by the
retardation factor. In this case, Equation (4.14) is modified to yield:

(4.18) vy =v/R=q/ (eR)

where
vy solute velocity, m/s;
v fluid velocity, m/s; and
R retardation coefficient, dimensionless, equal to:

where A is the surface area to volume ratio for the Eracture, 1/m. For
a planar fracture:

(4.20) A=1/e

so that Equation 4.19 becomes:

(4.21) R =14 Ky /e

This foraulation results in a delay of the breakthrough curve. Figures
4.]11 through 4.13 present simulated breakthrough curves for the
horizontal and vertical fractures described in Section 3.2.2 using a

retardation coefficient of 2. WNote that the solution is a trivial case
of doubling the travel time between the influent and effluent nodes.
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Figure 4.11: Calculated breakthrough curves at the outflow bouadary for
the flow domain of Flgure 4.8 with a retardatlon coeffi-
client of 2.
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Figure 4.12: Calculated breakthrough curves at the outflow bouadary for
the flow domain of Figure 4.9 with a retardation coeffi-
clent of 2.
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Figure 4.13: Calculated breakthrough curves at the outflow boundary for
the flow domain of Figure 4.10 with a retardation coeffi-
clent of 2.
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4.3 Effects of Matrix Diffusion

Matrix diffusion 1is the movement of a solute into & rock matrix from a
fracture which can be described using Fick's first law (Grisak and
Pickens, 198l1). Loss of solute iato the matrix can not be modeled using
the retardation coefficient because the assumption of ilnstantaneous
equilibration is violated. 1Instead, a decaylng rate of loss is
generally observed. By assuming a flow system, illustrated ia Figure
4.14, in which a step injection of solute is made into a fracture, an
analytic relationship between solute concentrations as a functioun of
time and distance along the fracture and matrix porosity and diffusivity
can be established (Grisak and Pickens, 1981):

(4.22) a(x,y,t) = C(x,y,t) / Co
= etfc[((eD*/ve)x + y/2) / (D*(t-x/V))llzl

where
a(x,y,t) attenuation coefficient, dimensionless;
C(x,y,t) solute concentration at any point (x,y) within the matrix or
fracture at time (t > x/v), dimensionless; '
C initial solute concentration, C(0,0,t) for Vt, dimensionless;
erfc?x) complementary error function, 1 - erf(x), dimensionless;

0 effective matrix porosity, dimensionless;

p* effective molecular diffusion coefficient of the solute, mzls;
v mean fluid velocity in the fracture, m/s;

X distance from source, parallel to fracture, m;

y distance from source, perpendicular to fracture, m; and

t time from beginning of injection, s.

Figure 4.14: Conceptual model of flow through an individual fracture of
semi-infinite areal extent.
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Of interest to this analysis is the behavior of the solute concentration
at a point within a fracture as a function of time. 1If the rate of
change of the solute concentration is low, then a coustant solute
concentration can be modeled using the attenuation coefficient. This
will only occur if the atteauation is very nearly a coanstant, i.e.:

(4.23) da(x,y,t) / 9t = 0

To determine under what conditions Equation 4.23 is valid, an analytic
expression is derived. Combining Equations 4.22 and 4.23 yields:

(4.26)  derfc[((eD*/ve)x 4 y/2) / (*(t-x/v))}/2] / 3 = 0

This derivative can be calculated by noting that (Abramowitz and Stegun,
1972, qu 7-2-8):

(4.25) A1 erfe(z)) / 9z = -1(0°1) erfe(2) (n =0, 1, «.)

where 1 is the gquare root of minus one. 1Iun our case, n = 0. Using op.
cit. (Eq. 7.2.1):

(4.25)  d(erfe(z))/dz = -1/1 erfe(z) = - 2 exp(-z2) / zt/2

By also noting that:

(4.26)  9a/dt = d(erfc(z))/0z dz/dt

We caa substitute Equation 4.25 into Equation 4.26 to obtain:

(4.27) da/ot = [~ 2 exp(~z2) / 11/2] dz/ot

We can find the derivative of z with respect to time by noting that:
(4.28)  z = ((8D*/ve)x + y/2) / (D*(t-x/v))1/2

Taking the derivative yields:

(6.29) 0z/0t = - z / 2 (t - x/v)

Substituting Equation 4.29 into Equation 4.27 results in:

(4.30) 0Jda/dt =z exp(-zz) / [31/2 (t - x/v)]

where z i3 given by Equation 4.28. Equation 4.30 relates the rate of
change of the attenuation coefficient at any point within the fracture
or matrilx to physical properties.

Sensitivity analyses can be used to determine under what conditions the
attenuation coefficient i{s constant with respect to time. Such a
sensitivity analysis is presented in Figures 4.15 through 4.22. For all
the analyses an effective solute diffusion coefficient of 0.003 n“/yr
and an aperture of 100 um was used. The relative coacentration and the

time rate of change of the relative concentration are plotted as func-
tions of both distance and time.

104



Figure 4.15 shows the movement of a solute pulse contained in a solvent
moving at a rate of 10 m/yr through a fracture bounded by an lmpervious
matrix. Note that the fluid pulse is a step function for all distances
and times. Figures 4.16 and 4.17 show the movement in both space and
time for a solvent moving at a rate of 10 m/yr through a fracture
bounded by & watrix with an effective porosity of 0.00l. Note here that
the sharp front of the solute has been attenuated. Note also that the
time rate of change of the relative concentration is highest near the
leading edge of the solute step function, and becomes minor once the
leading edge of the step function moves past the observation point.
Figures 4.18 and 4.19 are for identical parametersg as for the previous
figures, except that the matrix porosity is increased to 0.0l. Again,
the time rate of change of the relative concentration is small except in
the proximity of the leading edge of the solute step function. Filgures
4.20 and 4.2]1 preseant results for a matrix porosity of 0.l. Figure 4.22
presents results for a flow velocity increased to 100 m/yr for through a
matrix with an effective porosity of 0.1. Of interest is the
observation that the time rate of change of the relative concentration
is very high at early time, but is diminishing at later times. From
these limited scenarios, it is demonstrated that under specific
conditions the mass flux into the rock matrix is very nearly a constant
for short time intervals, allowing the use of a attenuation factor which
is variable in space dbut constant in time.

Once the limitations of the use of the solute attenuation coefficient

" have been determined, the effect of matrix diffusion can be investigated
by assuming slow diffusion into an immobile liquid phase in the rock
matrix (Rasmussen, 1982). Matrix diffusion is modeled assuming that a
constant solute flux into the rock matrix exists for short time
intervals. A reduction of the solute concentration is calculsated by
using a convolution summation to calculate the attenuation coefficient
at each time step. The convolution is:

t
(4.31) a(x,t) = ¥ a(x,1) C(x,,t-1)
i=0

where a 1s the time and spatially dependent solute attenuation coeffi-
client which accounts for diffusion into the rock matrix, dimensionless,
obtalned from Equation 4.22. As demonstrated in the sensitivity
studies, above, Equation 4.31 will not accurately calculate the break-
through curve when the attenuation coefficient changes quickly over
time. To evaluate whether the coefficlent is constant, the value of the
derivative of the constant with respect to time should be small. The
derivative is calculated using Equation 4.30. As long as the derivative
is small, there is no need to update the matrix diffusion atteauation
coefficlent within each time step.

Figure 4.23 pyes nts simulation results for three values of the
parameter 6(D )1 2, The figures were generated using the square flow
domain of Figure 4.7 at two velocities, 0.08 m/s, and 0.16 m/s over a
distance of 100 m in response to a step injection of solute at the

inflow boundary. :
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CHAPTER 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5¢1 Summary

Flow and traunsport through fractured media has been variously simulated
in other studies by using equivalent porous media models, dual (or
double) porosity models, and discrete fracture network models. The
modeling of discrete fracture networks has progressed from one~
dimensional bundle of tubes models, to two-dimensional fracture net-
works, and recently to fully three-dimensional simulation models. The
rodel presented in this work uses the discrete fracture network foraula-
tion to generate fractures within a three dimensional space, and to
solve both a& two-dimensional flow field within a fracture network embed-
ded in an impermeable matrix, as well as a three-dimensional flow field
using fractures embedded in a permeable matrix. Extensions to unsatur-
ated flow and solute transport are made assuming an impermeable, porous
matrix,.

Flow and transport processes through the fracture network are subdivided
into three components, termed intra-fracture, inter-fracture, and supra-
fracture processes. Intra-fracture processes occur within individual
fractures, while inter-fracture processes result from flow and transport
through networks of discrete fractures. Supra-fracture processes occur
as the result of interactions with the rock matrix. Such interactions
include matrix diffusion and retardation, and flow through the matrix.
The quantification of the components proceeds from the demonstrated
abillity to solve a flow problem within an individual fracture
incorporating unsaturated conditions and solute breakthrough curves, to
the ability to solve a flow problem through a network of intersecting
fractures, and finally to a problem incorporating flow through both a
fracture network and the matrix surrounding the fractures.

The simulation of flow and transport is based on the boundary integral
method which provides a methodology for discretizing the boundary of
each fracture and to solve for fluid flow within the two dimensional
fracture flow domain. Extensions to combined matrix and fracture flow
are made. Fracture network hydraulic conductivity is calculated by
stochastically generating a network of Eractures. Each fracture within
the network 1s defined by its center, orfeatation, lengths in two direc-
tions, and transmissivity. The intersections between fractures are
found numerically, and mass balance equations are used to determine the
flow between intersections. The mass balance equations are solved for
specified boundary conditions. The proposed models employ Darcy's law
to relate fluld flow to a potential field, capillary theory to relate
fracture saturation to a potential, and the concept of stream lines to
calculate travel times. The models are implemented using computer code
which 1s executable on a2 PC-compatible micro-computer.
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5.2

Conclusions

Sensitivity studies have been performed to evaluate the influence of
specific fracture parameters on network hydraulic conductivity, as well
as on solute breakthrough curves. From these studies the following
conclusions are made:

o

Steady fluid flow through individual fractures can be calculated
using the boundary integral method for various boundary geometries.
Calculated errors vary from 0.06 to 0.30 percent for fine and
coarse discretization schemes, respectively.

Steady flow through serial fractures can be calculated with a maxi-
aun error of 0.20 percent for a coarse discretization scheme.

Steady flow through a fracture with internally intersecting frac-
tures is demonstrated. A maximum 1.0 percent error was present for
simulations where an analytic solution was available.

Flow through fracture networks containing fractures of infinite
length is linearly dependent on fracture density (i.e., fracture
length per unit area normal to the hydraulic gradient) and fracture
transmissivity.

The effect of correlation between fracture length and fracture
transmissivity on estimated network hydraulic conductivity indi-
cates that increasing the correlation between fracture length and
fracture transmissivity results in an increased network conductive
ity for all four realizations examined.

A three dimensional boundary integral equation is shown to accur-
ately represent combined flow through both a permeable matrix and
an embedded fracture. Estimated global hydraulic conductivities
are calculated for variable fracture to matrix permeability ratios.
It 1is shown that estimated errors increase as the aspect ratio
increases.

Extension of the boundary integral method to unsaturated fracture
flow is performed by assuming a constant capillary potential within
individual fractures. A mobile (or moving) interface formulation
is used to position the air-water interface along the zero pressure
head surface. A Newton-Raphson gscheme 13 used to locate nodal
positions. Comparison of simulation results is made with an analy-
tic solution, along with laboratory results obtained from a flow
visualization experiment.

Simulations of unsaturated flow through a fracture network demon-
strates the presence of zones of water under large positive pres-
sures, along with zones of air-filled volids.

Retardation and matrix diffusion are shown to delay and to atten-
uate, respectively, solute breakthrough curves. The retardation
coefficient i3 used to model instantaneous sorption, while matrix
diffusion 1s used to model slow diffusion into a porous rock
matrix.
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5.3 Recommendations

Based upon demonstrated modeling capabllities and the sensitivity
studies which have been performed, the following recommendations are
made: :

o0 It is recommended that calibration of the model be performed using
field tests and comparison with porous media and analytic stochas-
tic models. Once calibration has been performed, the computer
simulation model can used to provide parameter sensitivity esti-
nates for flow through a fractured rock mass of arbitrary matrix
permeability.

0 Additional needs for model calibration include the determination of
the relation between pressure heads in fractures and the unsatur-
ated fracture hydraulic conductivity. Such tests are required to
validate the hypothesized relationship between hydraulic conduce
tivity and pressure head. The testing of travel times and break-
through curves within fracture networks at various pressure heads
need to be performed for model validation. Observations for frac-
ture length estimation also need to be performed to determine
field-scale values of this parameter.

o It is recommended that several features be included in the methodo-
logy to more completely characterize fluid flow and solute trans-
port through variably-saturated fractured rock. In particular, a
two-dimensional representation of fracture transmissivity variation
within the plane of the fracture should be included. The formula-
tion of the two-dimensional representation of an fracture transmis-
sivity would more completing account for head distributions within
the plane of the fracture, as well as tortuosity, streamlines and
dispersivity coefficlents.

o An additional feature which should be iancorporated within the meth-
odology is the computation of breakthrough curves resulting from
flow between the rock matrix and the fractures. For networks of
fractures within a rock mass at large negative pressure heads, flow
will predominantly occur through the matrix, drained fractures
serving to inhibit the flow of water from one block to another.

o The inclusion of traasleant fluid flow should also be examined. The
effects of pulsed, step, and cyclic boundary conditions should be
evaluated to determine the effect of fractured rock on peak flow
rates, especially with respect to depth below a source.
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APPENDIX A

COMPUTER SIMULATION MODELS

This appendix presents four coamputer simulation models used in this
study for investigating the effects of geometric properties of fractures
on fluid flow and solute transport through variably saturated fractured
rock. Simulation inputs and outputs are presented, along with source
code listings of the programs. It should be noted that the programs are
being continually updated as improved algorithms are implemented.
Updated versions of the programs, as well as source code on PC-compati-
ble floppy disks are avallable from the author. The programs are
written in FORTRAN-77 for implementation on a Definficon DSI-32 68000
processing board, but can be used in any environment supporting FORTRAN-
77 with minor modifications.

The programs presented here were prepared in support of research
activities and are not intended for other uses. Neither the United
Sates Governament, the University of Arizona nor any of their employees,
makes any warranty, expressed or implied, or assumes any legal liability
or responsibility for any third party's use, or the results of such use,
of any portion of these programs or represents that its use by such
third party would not infringe privately owned rights.
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A.1 BIM: Fluid Flow Solver Using the Boundary Integral Method

This section presents the data entry requirements, sample datas output,
and the program listing for a computer simulation model used to model
saturated and unsaturated flow through networks of discrete fractures.
Table A.l presents the opening wmenu, indicating the various options
availeble. Option 1 requires an input data file, an example of which 1is
provided in Table A.2. Options 3 through 6 provide output data files,
an example of which is presented as Table A.3 for the sample input of
Table A.2. Options 7 and 8 store and retrieve intermediate output, and
should be executed after or instead of data entry, respectively. Option
9 is implemented in order to return to the operating system. A listing
of the program is presented following Table A.3.

Table A.1: Opening menu for program BIM

BOUNDARY INTEGRAL METHOD

Implemented by Todd C. Rasmussen
Department of Hydrology, Univ. of AZ

1 -« Input from Data File

2 - Display Boundary Equation Matrix

3 - Find Potentials and Streamlines at Boundary Points
4 < Find Potentials and Streamlines at Interior Points
5 - Find Free Surface

6 = Calculate Breakthrough Curves

7 - Write Backup File

8 <« Read Backup File

9 -« Exit to DOS

Enter Selection:
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Table A.2:

5.
100.
100.
100.
100.
100.
100.
99.99
80.
60.
40.
20.
0.01
0.
0.
0.
0.
0.
0.
0.01
20.
40.
60.
80.
99.99

24

Sample input data for program BIM.

0.
20.
40.
60.
80.

100.
100.
100.
100.
100.
100.
100.
100.
80.
60.
40.
20.

0.

0.

0.

0.

0.

0.

0.

Pt e

el

100.
100.
100.
100.
100.
100.

0.
0.
0.
0.
0.
0.

120



Table A.3: Sample data output from Option 3 from program BIM using
input data from Table A.2.

i n x y u q d ’ t
1 100.000 »000 <044 .000 -.006 -.025
2 100.000 20.000 19.997 .000 «000 -.025
3 100.000 40.000 39.999 .000 .000 =.025
4 100.000 60.000 60.001 .000 000 =-.025
5 100.000 80.000 80.003 .000 .000 -.025
6 100.000 100.000 99.956 .000 .006 =.025
7 99.950 100.000 100.000 5.007 50.045 «000
8 80.000 100.000 100.000 5.000 99.986 100.016
9 60.000 100.000 100.000 5.000 99.997 200.011

10 40.000 100.000 100.000 5.000 99.997 300.009
11 20.000 100.000 100.000 5.000 99.986 400.004
.010 100.000 100.000 5.007 50.045 500.020
13 .000 100.000 99.956 .000 .006 500.045
14 .000 80.000 80.003 .000 000 500.045
15 .000 60.000 60.001 .000 .000 500.045
16 .000 40.000 39.999 .000 000 500.045
17 .000 20.000 19.997 .000 000 500.045
19 .010 .000 .000 -5.007 -50.045 500.020
20 20.000 .000 .000 -5.000 -99.986 400.004
22 60.000 .000 .000 -5.000 <-99.997 200.011
23 £§0.000 .000 .000 -5.000 -99.986 100.016
24 99.990 «000 .000 -5.007 -50.045 «000

o e e et e e b e et et e et e S e e et e e e s e
-
»

Mass balance: 0000
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L2 2N BN BN B N BN BN BN BN R BN BN 25 BN BN AR BN Bk BE BK BE B BN BN BN B BE B B BN

*

- Boundary Integral Program .
» Solves system of equations of the form (A h = B q) .
L ]

3 ochae
PROGRAM Dim Covatsment, cie Wdveveticy of ariasss
SINCLUDE J:CORMON 4y softion of this prugtas o supressdts ThoC (65 was 37 sush chird

OPEN(8, files'flow,0ut’,statuss'nev’)
OPEN(9,file='flow.res’ ,status='nevw')

10 CALL cls(2)

WRITE(*,101)
READ (*,*,err=10) i

P (i .BQ. 1) THEN
cls(2)
input
build

pack

(1 .EQ. 2) TuEN
cls(2)
plot

BEE peee

8
L

(L .EQ. 3) THEN
cls(2)
gauss
unpack
show
els(2)
strean
pack
gauss
unpack
show

EERRREREER

8
-

{1 .EQ. 4) THEN
cls(2)

points
pointers

EEE

B
8

(L .EQ. 5) THEN
cls(2)
contract
cls(2)

build

pack

EEERE

£
8
e

(1 .EQ. 6) THEN
cls(2)
tracer

EE

ELSEIP (i .EQ. 7) THEN
OPEN(7,file=’'flow.dat’,forms='binary’)
WRITE(7) nn,nd,n,n),nm,nc,t,total,x,y,a,v,q,c,kode, g, h,ikade
CLOSE(7)

ELSEIF (i .EQ. 8) THRN
OPEN(7,file='flow.dat’,forms="binary’)
READ (7) nn,nd,n.nj,nm,nc,t,total,x,y,u,v,q,r,kode,q,h, ikode
CLOSE(7)

ELSEIPF ({4 .2Q., 9) THEN

CALL cls(2)
CLOSE(8)
CLOSE(9)
STOP
ENDIF
Q010 10
101 PORMAT (
o //15%,' 1 = Input from Data Pile',
« /152, 2 = Display Boundary Equation Matrix',
« /15x,' 3 = Pind Potentials and Streaslines at Boundary Points',
. /15%,' 4 = prind Potentials and Streamlines at Interior Points’,
« /15%,' 5 = Find Free Surface',
« /¥5%,' 6 = Calculate Breakthrough Curves',
« /15%,' 7 = write Backup Pile’,
o /15%,' 8 = Read Backup rile',
. //15%,' 9 - Exit to DOS',
«/7715%,"* nter Selecticas '$)
XD




XA

[ N BN BN BN B BN BN BN Bk BN BN B B B R BN NN BN BE BN BN BE BE BE BE BE BN BN BN B BN 3N ]
b Read Data and Build Global Arrays L4
[ K BN BE BN BE B BE BN BE BN BN NN BE BN BN BE BE BN BE BE R BN BE X BN BE BE BE B BN BN BN J
LA BN BN BN BN BN BE 2R BE BN BN BK BN IR BN B AR R BX B ER BN AR BE BN B BE X B 3N N NN
. Pause ocutput and clear screen . SUBROUTINE input
[ 2N B BN 2N AR B BE BN X BN BN BE BR BN X BN NE NN R Y BN B BN BN BN BE B BN B B B BN ]
$INCLUDE J:common
SUBROUTINE cls(n)
CEARACTER*10 readfile, chri, chr2

CHARACTER wait CHARACTER*80 chx
IF (n .PQ. 1) THEN * patarmine input file nswe

WRITR(*,101) CHAR(27) WRITE(*,101)

READ (*,102) wait - READ (#,102) readfile
oI OPPN {1, filewreadtfile)
WRITE(*,103) CHAR(27) * BEcho input data?

WRITE(*,103)

IF (n .EQ. 2) WRITE(*,104) READ (*,104) list

RAETURN * Rpead numbar of dowmains
107 PORMAT(AL, "' (25;25R’, 'Prees <RETURN> key to continue .,.°'$) RPAD (1,103) nd
102 PORMAT(A1) P (nd .GT. mx2) THEN
103 FORMAT(AY, ' [27°) WRITE(*,108)
104 FORMAT(//15x,* BOUMDARY INTEGRAL METHOD®, CALL cls(1)

. //18x,' Imsplemented by Todd C, Raswussen', sTOP

/15, "Departnent of Hydrology, Univ. of A3') BoLr
=00

* Input data for all domains
DO W4iw1, nd
READ (1,105) mm(i), (nec(3,1),3=1,m(1))
Ir {list.2Q.1) WRITE(*,105) mm(i),(nc(],1),i=1,am(1))

n(i) = nc(na(i),i)

IFr (nf{i) .GT. mx3) THEN
WRITR(*,108)
CALL cls(1)
ST0P

7OIF

READ (1,109) €(4)
IPF (lisc,.EQ.1) WRITE(*,109) t(i)

00 10 § = 1, n(i)
READ (1,107) 4,3,x(3,4),y(3,1) xodel(),1),u(j,i)
10 IP (list.PQ.1) WRITE(*,107) 4,3,x(j,1),y(),1),kode(j,L),a(l,i)

IP (list.EQ.1) CALL cls(1)

¢ Pind total number of nodes.
IP (L ,EQ. 1) nj(i) = O
20 1P (i .¥m. 1) nj(di) @ n(i=1) + nj(i=1)




* Done with data file, close it.

10t
102
103
104
108

107
108
109

LA

CIOSE(1)

an » aj{nd) + a(nd)
IP (an .GT. mx!) THMEN
WRITE(*,108)
CALL cls(1)
80P
BDIP

PORMAT (//10x,' Enter name of input data file: '$)

PORMAT (A10)

LN BN B BN B BN BE EE NN B BE EE BE BN BE BE BN BN BN B BN B BN B BN BN BN

Computs Quadrature weighting Punctions .

[ B BE B BN BF BN BE B BE BN BN BN BE SN BN BN SR BN BN BE AR BE R B BN BN J

SUBROUTINE build

PORMAT (/10x,' Echo of input data?: 'S$) * Clear G

PORMAT (I1)
PORMAT (161S)
FORMAT (2£10.2,15,£10.2)

FORMAT (215,2£10.2,15,£10,2)

$INCLUDE J:common

and R

DO 104ise1, nd

DO 10 j = 1, nl(i)

DO 10 k = 1, a(t)
h(j,x.i) = 0,

FORMAT (//10x,' Problem d Y capacity') 10 g(i,k,i) = 0.
PORMAT (8£10,2)
BD.. * Compute G and H

DO 30 Li=1, nd
IF (t(i) ,NE. O) THEN
DO 20 § = 1, a(i)
DO 20k = 1, n(l)

1
]

= naxt(k,nc(1,i),nm(L))
= last(k,nc(1,1),nm(i))

P ((J .NB. k) AND. (j .NE. 1)) THEM

CALL integral (t(i),x(3,1i),¥(3.4),x(k,i),y(k,4),x(1,1),y(1,1),
a1,a2,b1,b2)

h{j,x,i) = h(j,k.i) + a1
g(y,k,i) = g(j,k,1) + bt
h(§,1,4) = h(j,1,4) + a2
g(3,1,1) = g(3,1,1) + b2
h{3,3,4) = b(),3,i) - at - a2

ax » x(1,4) = x(k,4)
ay = y(1,1) - y(k,1)
sr = DEQRT(ax*ax + ay*ay)
bl = sr * (1.5 - DLOG{ax/DSQRT(t(1)))) / 2, / (1)
b2 = sr * (0.5 = DLOG(sx/DSQRT(t(1)))) / 2. / (i)
IP (k NE., j) THEM
gliek,1) » g(3,%,4) + b2
g3, 1,i) =» g(3,1,4) + b1
ELSR
g(3,k,4) = g3,k i) + b1
g(3.1,i) = g{3,1,4) + b2
RNDIP

ENDIF
20 CONTINUE
ENDIP
30 CONTINUE
RETURN




174!

LN B BN BN BF BE B BE BN BE BN B R BN BN B BN BE B NN NN BE B BE BN BE BN BN BR IR BR BN

rind influence function batween two lins segwents . .

E2R BN AR BN BN BN R R BN BN BN BE BE BN BN BN BN BN BE BE BN IR BN BN BN IR BN IR BE BN BN B 2 L 2R 2 ]

SUBROUTINE intsgral (t,x,y,.xt,y1,x2,Y2,a1,a2,b1,b2)
IMPLICIT REAL*8(A-N,0-Z)
DIMENSION £(6), w(6)

DATA £ /0.125233406511469, 0.367831498998180, 0.5873179%54286617,
. 0.76990267419430S, 0.904117256370475, 0,981560534246719/

DATR w /0,249147043813403, 0.2334925365383%%, 0.203167426723066, 10
. 0.160078328543346, 0.106939325995318, 0,047175336186512/

ax » (22 = x1) / 2.
ay = (y2-y1) / 2.
bx = (x2 + x1) / 2.
by = (y2 + 1) / 2. LA

IP (ax .NE. 0) THEN LA
ta = ay / ax
dist = ABS ((ta®x - y + y1 - ta®x1) / DSQRTI{ta*ta + 1))

ELSE
dist = ABS (x - x1)

ENDIP

IP ( (X1=%)9(y2=y) LT. (xX2-x)*(yl=y) ) diat = -dist

al = 0,

a2 = 0,

bt = 0. 10
b2 = 0, .

DO 104 e, 6
gl = £(1)
D010 =1, 2
IP (3 PQ. 2) gi » —gi
xx = x = (ax * gi + bx)
yy=y -~ (ay * gl + by)
ra « DEORT (xx*xx + yYy*yy)
ar = DSQRT (ax*ax + ay*ay)
g = ar * w(i) * DLOG(xa/DSQRT(E)) / 2. / t
h=ar * wil) * dist / (a*ra) / 2.
al mat +h * (gL - 1,)
a2 w a2« h* (gi + 1.)
bl ebl + g * (gl - 1,)
b2 =b2 =g * (gl +1,.)
RETURN

L2 BN BN BE B BN BN BN BN R BE BE BN DK BN BN BN IR BN BN BN BN BN BN BE B AN BE BF BY B Y

Pind subsequent node *

LR BN 20 BN BN BN BE BN BN R BE BN 2R AR BE 2R BN BN BE B BN BN AR BN AR BE BN BN B
INTEGER function next (3,nc,m)
DIMEMSION nc(®*)

next = J + 1

IF (3 .20, ne(1)) THENW
next = 1
FLSEIF (m .GT. 1) TWEM
DO10kew2, m

IF {3 .PQ. nc(k)) next = ac(k-t) + 1
PeDLPF
RETURN
o
LR BN BN BE BE BN BE BN BN BE 2R B BN BN BN BN BN AR BN BE BN R BN BN B BN BE B BN ]

ind pravious node .
LR B BN BN BN BN BE BN BN BE BE BN BN BN BE BN Bk BE BX BE BN 3N 3R BK BN BE BN IR I ]

INTEGER function last (},ne,nm)
DIMENSION no(*)

last = § =
IP () .2Q. 1) THEN
last = nc(1)
FISEIF (m .GT. 1) THEW
D10k=2,n
IP (§ .2Q. na{k<1)+1) lant = ne(k)
nnIr
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L2 2K R BE BL BN AR BN BE BE BE K B BK B BN BE BE NE BN BN BN R IR R

Create Global Matrix

LI B BN R BN BE BN BN R IR 2 K BN BN BN BN B BN BN BN B BRI I IR R

SUBROUTINE pack

$INCLUDE j:common

* Combine H with Q to form vector of knowns
* and transfer from Q o QQ and G to GG

H)

10

20

0

40

50

DO S 41w, mxt
qq(t)-o.
DO S J =1, mxt

99(i,3) = 0,

DO SO L=, nd

1 = nj(4)

DO 50 k = 1, n(4)
n = kode(k,1)
uj = HOD(-m,128)
nk » -u/128
ul = nj(mk)+nj

Ir (m .GT. 0) THEN
DO 10 § = 1, n(i)
®(1+]) = qq(1+)) = g() k,4i) * u(kx,i)
9g(i+j,1¢k) & = h(j,k,i)

ELSEIF (m .EQ. 0) THEN
DO 20 3 = 1, n(d)
qq(1+3) = qq(1+3) + h(j,x,4) * u(k,i)
9g{1+3,1ek) = g(9,k,1)

ELSEIP (1 .LT. mk) THEN
D0 30 § = 1, n(i)
99(1+g,ml) = =n(j,k,i)
gg(1ed,1+k) = g(j,k,1)

ELSE
0O 40 3 = 1, n(i)
99(lej,ml) = -g(j,k,4)
q9(1+j,1+k) = =h($,k,41)
ENOXF
CONTINUE

RETURN
END

LR IR B Bk B BN BN B BN B BN B BN BE N BN BE B BN B BE BE SR AR R BN BN R AN 2 BN BE

. Plot matrix

»

LI B BN B BN BN BN BN BN B BN B BN BN BN B R BN BN B BN BN BN R BN BN BE R BN BN BN AN 1

SUBROUTINE plot
$INCLUDE j:coamon
CHARACTER c(200),d,s,b

DATA s,b / * *, 'q* /
OATA kK / 1/
CALL cls(0)
DO 20 i = 1, on
DO 10 J = 1, nn
IF (gg(i,j) .GPs O,) THEN
c())mre
ELSEIF (gg(i,j) .LT. 0.) THEN
e{j)mt=*
ELSE
a(f)=,*
e
10 CONTINUR

IP (qq(i) .ME. 0) THEN
4w 'x!

ELSE
d= ‘o

BDIP

WRITE (*,100) (c{j},j=1,nn),s,b,s,d

P (L .BQ. (nj(k) + n(k))) THEN
CALL cls(1)
K=k +1
NDIF
20 CONTINUE

RETURN
100 FORMAT(1x,200A1)
D




Lzt

C K IR BE BE B BN 2R B BE BN BE BN BN BE BE BN BN R B AK B BE K BN BN BN 3R BE N BN N B ]

. Gaussian elimination L
R R E R EEEE N E I I I I IR IR NN W * pack substituts
PO 60 § = 1, nnel
SUBROUTINE gauss : 1 = =}
DO 60 k » 1+, mn
SINCLUDE jicommon 60 aq(l) = aq(l) = ag{l,k) * aqik)
DATA error / 1.D=-6 / RETURN
0

DO 50 1 = 1, nn=1

» Pxchange rows if gero in diagonal
IP (aBS{gg(l,1l)) .LT. error) TWEN
00 20 k = 1+1, nn

IF (APS(gg(k,1)} .GT. error) THEN
D010 J =l an
e = gg(1,3)
g9(1,3) = g9g(k,3)
10 99(X,j) = ¢

¢ = gq(1)
qq(l) = aq(k)
qq(k) = ¢
GOT0 30
ENDIP
20 CONTINUE

* Can't £ind non-zero to exchanga with, singular satrix
WRITE (*,®) ' * * Sinqularity * * Inrow', 1

STOP

=oIr

* pivide row by diagonal coefficient
30 o = gg(l,l)
qq(l) = qq(1) / e
DO 40 kX = 1+, nn
L 99(1,k) = gg(l,k) / ¢

* gliminats unknown Q(L) from row J
00 S0 § = 1¢t, m
¢ = g99(j,1)
Qq(3) = aq(3) = e * qq(1)
DO 50 k = 1+7, AN
S0 qgf{j k) = gg(j,k) -~ ¢ * gg(1,k)

* Computs last unknown
IF (ABS(gg(nn,nn)) .LE. error)} THEN
WRITE (#,*) * * # Sinqularity * * In row’, nn
STOP i
iSE
qq(nn) « qq{nn) / gg(nn,m)
ENDIP
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'FEEREREERENEERREI I IS S B B A AR I N EE BRI B L N SRR R R AR R A BB AN

. Reduce Global Equation . . Display Solution .
TR EE R E R R E R R E N E N EE N I I B R A A [ 20K BN B BN INE IR B JNN JNE B B BN B K BN B B B BN NI JE B BN TECC RN NN I B B AR IR ]
SUBROUTINE unpack
pac SUBROUTINE show

$SINCLUDE j:common $INCLUDE J:comaon
DO 104 @1, nd ki =1
00 10 § =1, n(i) yun-o.
a = kode(§,4i) WRITE(S,601)
uj = HOD(-m,128)
nk = -u/128 DO 204i =1, nd
Xk = nj(mk)+un) DO 10 § = 1, n(i)
1= nj(d) + 3
* Pix page break
IF (m .GT. 0) THEN IF (MOD(j=1,20) .EQ. 0) TMEMN
q(3,i) = u(j,i) IP (3 .NE, 1) CALL cls(1)
u(i.i) = gq(l) 1F (J .EQ. 1) CALL cls(0)
WRITE (*,601)
ELSEIP (m .5Q. 0) THEN RNDIF

3ed) = i) * Adjust discharges by length

ELSEIP (i .LT. mk) THEN 1 = next (j,nc(1,1),nm(i))
q{3,1) = qqfl} X = last (j,n0(1,i),mm{i))
u(y,i) « qqlk) dl = DSQRT(DABS(X(3,4)=x(1,1))**2+DABS(y(],1)=y(1,1))**2)/2.
dk = DSQRT(DABS(x(j,i)=x(k,1))**2+DABS(y(],1)=y(k,1))**2) /2,
ELSE d = dl*(3.2q(j,1)+q(l,i))/4.+dk*(3.°q(],L4)+q(k,.1))/4.
q(j,i) = -qq(k) IP () +EQ. 1) THEN
u{j,l) = qqil) total{j,i) = dk * (q(j.ileq(k,i))
ENDIP ELSE
total(j,i) = total(j=1,1i) + dk * (q(j,i)+qik,1i))
10 CONTINUE ENDLP
RETURM sum = sus + d
2D

* Display locations, potentials, discharges, and mass balance
WRITE (*,603) i,j,x(3,i),y(3,4),u(),4),q(3,1),d,cotar(},t)
WRITE (8,603) 4,),%(3,i),¥(3,4),u(3,1),q(3,1).d,total(],i)

IF (3 .EQ. no(ki,i)) THEM
total(},i) = 0,
ki = ki +

ENDIF

10 CONTINIE

WRITE (*,604) sum
WRITE (8,604) sum

20 CALL cls(1)

RETURN
601 FORMAT (4x,'l',4x,'n',7x,'x',9x,'y',9%,'u',9x,'q"*,9%,'d*,9%,'¢"/)
603 FORMAT (245,7£10.3)
604 FPORMAT (/' Mass balance: ',£10.4)

END
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L0 B B BN R BN B BN BE BE B BE B AR BN BN BN BN BN BE I R 2R N BN BN ER N BRI )

. Porm Streas Punctions
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m stream
SINCLUDE j3common

DO 104 =1, nd
D010 3 = 1, n(s)
ikode({),i) = kode(j,i)
koda(y,i) = 0,
v(3,1) = u(j,di)
v(3,1) = q(3,1)
10 u(j,i) = total(),i)

RETURN
™D
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SUBROUTINE pointa

SINCLUDE j;common

CHARACTER*10 readfile

DATA error / 1.D-3 /
gl = DACOS(~1.D0)

WAITE(*,201)
OPEN(1,filew=’flow.in’)

WRITE(9,201)
READ (1,101) num

DO SO 3 e, num
READ {1,101) i, hi, si
delta = 0.1
iter » 1
del = 1,
x0 = S0,
yo = SO, .

* pind head and stream in center of

10

20

xi = 20
" =y0
h = 0,
s =0,

DO 20 X = 1, n{i)
1 = next (k,nc{1,i},mm(1))
CALL integral(t(i),xi,yi,x(X,1),y(X,1),x(1,1),¥(1,1),
. al,a2,b1,b2)

hishi+((bi%z(k,1)+b2%r(1,1) )~(at*vik,i)+a2*v(1,1)))/(2.%pi)
stegle((bioqik,1)+b2*q(1,.1))=(a)*u(k, 1)+a2%0(1,1)))/(2.4p1)

* Find head ard stream in two other directions

2l ® x0 ¢+ delta
h2 = 0,
$2 @ 0,

DO 30 k = t, a(i)
1 = next (k,nc(t,i),am(i))
CALL integral{(t(i),xi,yi,x(k,i),y(k,1},x(1,4),y(1,4),
. al,a2,bt,b2)

h2=h2e((Di*e(k,1)+b202(1,5) )=(at*v(k,1)+a2*v(1,1}})/(2.%pd)
8282+ ((b1%q(Kk,1)+b22q(1,i}))={at*ulk,1)+a2%a(1,1)))/(2.%p4)

dhix = (h2-ht)/delta
dedx = (52-s1)/delta
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x4 = x0

yi = y0 + delta

h2 = 0. SUBROUTINE pointers
82 = 0,

$INCLUDE j:common
DO 40 kx = 1, nli)

1 = naxt (k,nc(1,i),n0m(i)) CHARACTER*10 readfile
CALL integral(t(i),xi,yi,x(k,4),y(k,i),x(2,1),y(1.1), pi = DACOS(~1.D0)
. at,a2,bt,b2)
h2sh2+( (b1*r(k,i)+b2*r(l,1))=(at*v(k,i)+a2*v(1,4)})/(2.°pi) OPEN(?,file="flow.in2*)
40 s2ws2+({b1*q(k,1)+b2*q{1,1) )=(ar1%u(k,i)+a2%u(l,1)))/(2.*pi)
WRITE(*,201)
dhdy = (h2-h1)/delta WRITE(9,201)

dsdy = (s2-s1)/delta
READ (1,101) nuam

* Calculata Juap using Newton-Raphson DO 20 3 » 1, num
dh = hi ~ ht READ (1,101) &, ox, ey
4s = 3i - 9 ht =« 0,
sl = 0,
dy = (dhix*ds - dsdx*dh) / (dhdx*dsdy - dhdy*dsdx) 50 10 k = 1, n(i)
dx = (dh = dhd: ) / dhdz =1, a
¢ yan / 1 = next (k,nc(1,i),om(i))
%0 = x0 + Ax/del CALL integral(t(i),cx,cy,x(k,i),y(k.1),x(1,4),y(1,1),
YO = y0 + dy/del » at,az,bt,h2)
himhi+{(bi*r(k,i)+b2%(1,1))=(at*v(k,1i)+a2%v(1,1)))/(2.%pk)
IF (X0 .GT. 200. (OR. X0 .LT. =100, .OR. 10 si=s1+((b17q(k,i)+b2*q(1,1))~(a1*ulk,i)+a2%u(l,1)))/(2,%pi)
. +GT. 200, .OR. LT. ~100) THEN
40{0- 2. ¥ del ¥ WRITE (*,102) i,cx,c¥,h1,81
GO0 S 20 WRITZ (9,102) i,cx,cy,ht,s!
RoIP
CLOSE(1)
* stopping Criteria CALL cls(1)
IF ((DABg{dh) .GT., exrror .OR.
. DABS(ds) .GT. error) .AND. iter .NE. 50) THEN RETURN
iter = iter + 1 101 PORMAT (i5,2£10,))
GOTO 10 102 PORMAT {10%,15,4£10.3)
noIr 201 PORMAYT (//10x,' Domain = x - -y~ -y - -w =)
WRITE (*,102) 3,itar,hi,si,x0,y0 0
50 WRITE (9,102) j,iter,hi,si,x0,y0
CIR8E(1)
CALL ols(1)
WETURM

101 FORMAT (i5,2£10.3)

102 FORMAT (10x,215,4£10.3)

207 PORMAT (//14x,'# Iter -u - -9 - -% = -y =)
BiD
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SUPROUTINE contract
SINCLUDE jsoommon

DATA erzor / 1.0~V /
DATA eps / 1.D=9 /
pi = DACOS(~1.D0)

D0 341 =1, n(1)
3 WRITE(*,113) 4, x(i,1), y(i,1), v(i, 1), z(i,0), v(i,1)ey(i,1)
113  format(110,6£10.3) '
CALL cls(1t)

WRITE(*,201)
READ (*,*) angl, head

angl = DSIN(angl * pi / 180.)

CALL cls(0}
WRITE(®,202)
WRITR(9,202)

DO SO 4w, nd
DO 50 § = 1, n(i)

IF (ikode(j,i) .PQ. 1 .AND, DARS(r(j,i)) .LE. eps) THEN

hi = v(),i) - angl®y(},1) + head

IP (hi .LT. 0) THEW
hi = 0,
sl = v(j,1)
delta = 0.25
dsl = 1,
itar = 1

] x0 » (4.*x(3,1) + 50.) / S.

y0 = {4.*y(j,1) + 50,) / S.

* PFind head and stresm in center of domain

10 xi = x0
yiL = y0
Rt = - angltyi + head
sl » 0.
DO 20 k = 1, n(l)
1 = next (k,nc{1,i),nm(i}))
CALL integral(t(i),xi,yi,x(X,4),y(%,1),%x(1,i),y(1.4),

. al,az,bi,b2)
tmp = ((b1*r(k,i)+b2*r(1,1))=~

. (atre(k,i)+a2°v(1,1}))/(2,%p1)
h1 = hl &+ twp

20 sl = g\ & tAp

# pind head snd stresm in two other directions
xi = x0 + delta
yi = y0
h2 = ~ angl®*yi + head
52 = 0,

PO 30 k = 1, n(i)
1 = next (X,nc{1,i),m(i))
CALL integral(t{i),xi,yi,x(k,i),y(k,1),x(2,i),¥(1,1),

. a1,a2,b1,b2)
mp = ((b1*r(k,i)+b2*r(1,i))=
. (at*w(k,i)+a2°v(1,1)))/(2.%p1)
h2 = h2 + tmp
30 s2 » 32 + twp

dhax = (h2=h1)/delta
dedx = (s2-91)/delta

xi » %0

vi = y0 + delta

A2 = = angl*yi + head
s2 =0,

DO 40 k = 1, n(i)
1 = next (k,nc{1,i),om(1))
CALL integral(e(i),xi,yi,x(k,i),y(k.1),%(1,1),y(1,4i),
- at,a2,bt,b2)
tap = ((b1*r(K,i1)+b2*r(1,1))~-
. (at*v(k,1)+a2*v(1,1}))/(2.*P1)
h2 = h2 + tmp
40 82 = 82 + P

dhdy = (h2-h1)/delta
dsdy = (82-81)/delta

* Calculate Jusp using Newton-Raphwon
dir = hi = ht
de = si - 31

dy = (dhdx*ds - dsax+ah) / (dndx*dedy - dhdysdsdx)
ax o (dh ~ dhdy*dy) / dhMdx

x0 = x0 + dx/del
y0 = yO + dy/del

TP (x0 .GT. 200. .OR, X0 .LT. =100, .OR.

. ¥y0 .GT. 200. .OR. YO .LT, =100) THEN
del = 2, * del
GOTO $
oY
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* gtopping Criteria
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-

IF ((DABS(dh) .GT. error .OR.
DABS(ds) .GT. erxor) .AND, iter .NB. 50) THEN
iter = iter + 1
GOTO 10
ENDIFP

WRITE (*,102) j,iter,dh,ds,x0,y0
WRITE (9,102) j,iter,dh,ds,x0,y0

x(1,4) = (x(3,4) « x0) /7 2,
y(3,4) = (y(3,i) + y0) / 2.
ENDIP
ENDIPF

SO CONTINUE

DO 60 i =1, nd

DO 60 3 = 1, n(4)
kode(3,1) = ikoda(j,i)
u(3,4) = v(3j,4)

60 IP (kode(3,i) .BQ. 1) u(j,i) = r(j,i)

CALL cls(1)
RETURN

102 FORMAT (10x,245,6£10,3)
201 PORMAT (///10x,' Enter dip and head: ',§)

202 FORMAT (//i4x,'$ 1Itar

-h - -pP = - -

-y ="
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Calculate Breakthrough Curves

SUBROUTINE tracer

$INCLUDE J:common

CHARACTER*10 readfile
REAL'S tt(11)

DATA arror, delta, ddelta / 1.D=3, 1.D=1, 1, /
pi = DACOS(=1.D0)

* pind saxisus/minimum flow/head

flowmax = 0,
flowmim » 1,D12

headmax » O.
headmin = 1,012

DO60i=1, nd

WRITE (*,301)
WRITE (9,301)

30% PORMAT(' flow head iter %0 yo distance’,
« ' velocity time')

DO S j =i, ald)
IF (flowmax .LT. u(j,i)) flowmax = u(j,i)
IF (flowmin .GT. u{j,i)) flowmin e u(j,i)
IF (headmax .LT. v(3,1)) beadmax = v(j,i)
IF (hsadmin .GT. v(3,1i)) headmin = v(j,i)

istep = 10

headine = {(headmax-headain) / DBLE(istep)
flowinc = (flowmax-~flowmin) / DBLE(istep)

hdelta = headinc/10.
fdelta = flowine/10,

si = flowain + fdelta
0O 40 § = 1, isteps!
IP (3 .EQ. 2) THEN
si = flowmin + flowine
ELSEIP () .EQ. istep+t) THEN
8i = flowaax - fdelta
=NDIP

hi = headmin + hdelta
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time = 0, dhdy = (h2<ht)/delta
DO 3% jk = 1, istep+! dsdy = (s2-s1)/delta

eel

10

15

25

IP (3k .EQ. 2) THEW
hi e beadmin + headinc
PLSEIP (§k .PQ. isteps1) THEW
hi = beadmax - hdelta
2enIP

iter = 1
del = 1,

x0 = 50.
yO = 30,

xi = x0

¥4 = yo

ht = 0.

‘81 & 0,

DO 20 k = 1, n(i)
1 = pext (k,nc(1,1),mm(i))
CALL integral(t(i),xi,yi,x(k,i),y(k,1),x(1,1),y(1,1),
al,a2,b1,b2)
hishi+({DI*r(k,1)+b2*r(1l,i))=(at*v(k,i)+a2*v(1,1)))/(2.%pi)
st=s1+({(b1*q(k,1)+b2*q(1,1) )=(a1*u(k,1)+az2*u(l,i}))/(2.*pi)

21 = x0 + delta

h2 = 0.
&2 = 0.

DO 2% k = 1, n(i)
1 = next (X,nc(1,i),m(i))
CALL integral(e(i),xi,yl,x(Xx,i),y(X,1),x(1,4),y(1,1),
a1,a2,b1,b2)
h2eh2+( (b1 *r(k,1)+b2%(1,1))=(at*w(k,1)+a2*v(1,i)}) /(2.%pi)
22=e2+( (b12q(k,1)+b2%q(1,1) Ye(at®u(k,i)+a2*u(l,1i)))/(2.*pi)

dhdx e (h2-h1)/delta
dedx = (s2-s1)/dalta

dh = hi = h1
ds = si - st

dy = (dhix*ds + dsdx*dh) / (dhdx*dedy - dhdy*dsdx)
dx = (dh - dhdy=dy) / dhix

%0 = x0 + dx/del
Y0 = yO + dy/del

IP (x0 .GT. 200. ,OR. %0 LT, -100. .OR.
y0 .GT. 200. .OR. YO ,LT. -100) THEN
del = 2, * del
GOTO 10
o1y

IF ((DABS(dh) .GT. error .0OR.
DAPS{ds) .GT. error) .AND, iter .NE. 50) TREM
iter = iter + 3
GOTO 15
PeDIP

vt = DSORT(dhdy**2 + dhdxe+?)
dist = DSQRT{(x0-x0)**2 + (yO-yo)**2)

IPF (jk .PQ. 2) THEW

tise = time + dist / v1 * headinc / (headinc - hielta)
ELSEIP (jk .EQ. istep+1) THEW

time = time + dist / vo * headine / (headinc = hielta)
ELSEIP (jk N2, 1) THEW

tine = time + dist * (Vi+wvo) / (2.%vo*vi)
noIr

vo = v

x0 = %0
yo = yo

WRITE (*,102) Jj,jk,iter,x0,y0,dist,v1,tine
WRITE (9,102) j,jk,iter,x0,y0,dist,vt,tire

xi = x0 .
yi = y0 + delta 3$ hi = M4 + headine
h2 e 0. te()) = time
a2 = 0. 40 si = si + flowinc
DO 30 kX = 1, a(1) CALL cls{1)

1 = naxt (k,ne{1,i),nn(1))

CALL integral(e(i),xi,yi,x(X,1),y(X,1),x(1,4),¥(1,1), 45 WRITE (*,100)

at,a2,b1,b2) .
h2=h2+( (b1*r{k,1)+b2*r(1,i))=(at*v(k,1)+a2*v(1,1)))/(2.7pL)
s2es2+((b1*q(k,i)+b2%q(1,1))=(a1*u(k,i)+a2*u(1,4)))/(2.*pi)

READ (*,?) retard

IP (retard .LT. 0.) GOTO 60



el

55

60

100
109
110
m
12
101
102
201

WRITE (*,109)
READ (*,*) atten

WRITE (*,110)
READ (*,*) to, delta

WRITE (9,112) retard, atten
time = to
DO S5 jt = 1, 100
time = time + delta
sumatt = 0,

DO SO § =1, istep + 1
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¢ to, delta

IF (retard*tt(j) .GE., time) THEN

att = 0,
ELSE
att = erfc(atten * re
/ DSQRT(time - re
SURAtt = sumidtt + att
ENDIPF
CONTINUE

tard * te(j)
tard * t&(j)))

REAL*8 PUNCTION erfc{x)

IMPLICIT REAL*8 (A~H,0~Z)

DATA p,a,b,c.d,8 / 0.327591100, 0.254829592, -0,284496736,

. 1.421413741, =1.453152027, 1.061405429 /
t = 1/(1+p*x)

arfc = (a*t + t*(b*t + t*(c?t + t*(d*t + tve*t)))) / DEXP(x*x)

RETURN
]
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COMMON BLOCK DECLARATIONS
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WRITE (*,111) jt, time, sumatt/DBLE(istap+l)

WRITE (9,111) jt, time, s
CALL cls(1)
GOTO 45
CONTINUE

uma tt/DBLE(istep+!)

PORMAT (//° Entar retardation coefficieat: ',$)
FORMAT (//' Enter matrix diff. coefficient (negative to end):‘',$)
FORMAT (//' Enter intial time and time step: ',$)

PORMAT (110,2£12,6)

PORMAT (5x,' Ratard, Atten Coef, To, Delta = ',4G12.3)

PORMAT (15,2£10.3)
PORMAT (345,6£10.3)
FPORMAT (//14x,'# Iter

-age P -Xx = -y ')

IMPLICIT REAL*8(A-H,0-%)

PARAMETERS :
ax! = maximum size of solver matrix
ax2 = maximum nusber of domains
ax) = maximum number of nodes per domain

PARAMETER (mx1=100,ax2e5,nx3=60)

COMMON nn, nd, n(mx2), nj(mx2), nm(mx2), nc(mx2,mx2), t({mx2),

. total{mxl,mx2),x(mx3,mx2),y(mx3,nx2),u(mx3,nx2),v(nx3,nx2),

. qi{me3, me2), r(mx3,ax2), kode(mxl,mx2), g(mx3,mx3,mx2),
himx3, mx3,ux2), gg(mel, mxt), qq(mx?), ikode(mx3,mx2)




A.2 FRACGEN: Discrete Fracture Network Generator

This section presents a computer simulation model, FRACGEN, used to
generate networks of discrete fractures. The simulation model was writ-
ten for the purpose of providing analysis and iaterpretations of the
hydraulic properties of fractured rock masses. FRACGEN represents frac-
tures as two dimensional finite planes with a fixed thickness. The
simulated fracture network is a collection of a number of individual
finite planes within a three dimensional global volume. The global
volume is composed of six exterior surfaces which are defined by the
user. Internal surfaces can also be specified to represent boreholes or
mine shafts, adits and drifts.

The simulation model is used to generate the planar fractures within the
three~-dimensional global volume using physically-based parameters. A
smaller sample volume {8 then extracted from within the global volume to
remove effects of undersampling near boundaries. Isolated and dead-end
fractures are also removed. The computer model is able to generate
synthetic fractures using descriptive statisitcal data inputs on the
size of the generating volume, number of fracture sets, fracture
density, areal extent, orientation, and transmissivity. The model also
allows the user to input observed fractures from a fileld site as an
option. The model then solves for intersections between fractures, and
between fractures and surfaces. -

FRACGEN 1s based on code originally developed by Huang and Evans (1985).
The original code generated three-dimensional networks of discrete
fractures for only a single fracture set. The fracture network was then
reduced to a set of nodes with no account taken for the physical
geometry of individual fractures. The newly revised code allows for the
incorporation of multiple fracture sets, as well as for discretization
of fractures and surfaces. The discretization of boundaries is required
vhen the boundary integral method is used to solve two and three
dimensionsal flow problems.

A.2.1 Creation of Individual Fractures

Fracturegs are defined as finite planar features within a three-
dimensional volume. The fractures can either be defined using input
data obtained from field observations, or synthetic fractures can be
generated using statistical methods. Estimation techniques for obtain-
ing the relevant physical parameters are presented in Appendix A. If
the computer simulation model 1s used to generate individual fractures,
a pseudo-random number generator is used in conjunction with specified
frequency distributions (i.e., normal, log-normal, uniform and exponen-
tial) for fracture parameters. Pseudo-random numbers are generated
using a linear congruential generator (LCG) of the form:

(A.1) s(141) = (a (1) + ¢c) MOD m
vhere
s(1) pseudo-random variable for random number 1i;
a,c multiplier and increment;
MOD modulus operator; and
m modulus.
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For a full-period LCG (i.e., the number of generated random numbers is
equal to the modulus), the value of the multiplier and the increment are
limited to:

(A.2a) a=4n - 1 n=1,2, ... m/4
and
(A.2b) c=2p -1 p=1,2, ... m/2

The value of the modulus is normally limited by the nuaber of bits in
the largest unsigned integer declaration. For a language which accepts
ungigned integers and allows register overflow, the largest value of the
modulus 1is:

(A.3a) m = 23

where j is the number of bits of the largest unsigned integer declara-
tion. TFor a computer language which does not allow implicit overflow,
the modulus operator is required and the value of j must be halved. In
addition, if unsigned integers are not allowed, the value of j must be
decremented by one. For standard FORTRAN the largest value of the modu-
lus 1is computed by:

(A.3b) o =203/2-1)

For languages with integer declarations limited to four bytes, (i.e., j
equal to 32 bits) the largest wodulus is 32768. By specifying different
seed numbers, multipliers or increments, a large number of unique frac-
ture networks can be generated.

A.2.2 Definition of Global and Sample Volumes, and Interior Surfaces

The global volume i{s the region within fractures are defined. The
global coordinate system is a three dimensional Cartesian coordinate
gsystem used to locate polnts within the global volume. The coordinate
gystem is defined by specifying a center locatiomn, R (x,y,z), and the
dimensions of the global volume, (L »L,L ) Once the global coordinate
system has been defined and the initia{ fracture network has been gener-
ated, a sample volume within the global volume is specified. The sample
volume i3 defined as a sub-region within the global volume. The ability
to specify a sample volume {3 necessary in order to remove the effects
of undersampling near boundaries, to provide the capability for investi-
gating scale effects, and to evaluate the spatial aund directional varia-
bllity of network properties.

The sample coordinate system is also a three dimensional Cartesian
coordinate system used to describe the intersections (or nodal points)
contained inside a rectangular block of sample. The coordinate system
is defined by an origia at the center of the bottom of the rectangular
block, r, (x,y¥,z). The sample coordinate system need not be oriented in
the same directlon as the global coordinate system, allowlng the axes to
be rotated (a,b) degrees with respect to the original coordinate system.

The dimensions of the sample volume, (lx'ly'lz)’ should be smaller than
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the global volume so that undersampling near boundaries can be avoided.
The undersampling occurs because ounly fractures whose centers lie within
the global volume are generated. Fractures whose centers are located
outside of the global volume but which would have extended into the
global volume are not sampled. Near the global volume boundary the
density of fractures will fall to one-half of the density near the
center. o

The transformation from the global coordinate system to the sample
coordinate system is given by:

x { cosa cosf sina cosf sinﬁ} {x - X,
{A.4) y = (-sina - cos@ 0, (Y - Y,
z -cosa sinf =sina sinf cosf Z2-12,
where
X,¥,2 axes of the sample carteslan coordinate system, m;
X,Y,Z axes of the global cartesian coordinate system, m; and

X,:Y,,%, origin of the axes of the global coordinate systeam, m.
Interior surfaces, such as boreholes, wmines, etc. are defined by
similarly specifying a center position, three volume dimensiouns, and two
rotation dimensions. The interior surfaces are allowed to intersect
each other, as well as the external sample volume surfaces. Currently,
up to three interior volumes, composed of eighteen interior surfaces,
are possible. Figure A.l1 illustrates the geometric properties of the
global and sample volumes, and interfior surfaces.

R

VOLumE ™ |~

INTERIOR

¢

SAMPLE VOLUME

GLOBAL VOLUME

Figure A.1: Relative positions of global, sample and interior volumes.
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A.2.3 Number of Fracture Sets and Fracture Density

Fractures are usually observed to form sets, with unique orientations,
densities, and transmissivities for each set. To allow for the
stratification of observed fractures into distinct sets, the simulation
program allows the generation of families of fractures with user sgpeci-
fied parameters for each set. If fractures are not synthetically gener-
ated, known fractures are ifaput without regard to set meambership. Cur-
rently, up to six fracture sets are possible. For each fracture set,
the number of fractures within the global volume must be specified.

This number can be computed as the global volume divided by the fracture
density. Only integer values are permitted. For all fracture sets the
total number of synthetic or observed fractures is currently limited to
one hundred.

A.2.4 Practure Location

Fracture centers for individual fractures are found by designating a
point (Ro) having a global coordinate of (XO,YO,ZO), as denoted on
Figure A.2. The location of fracture centers within the global volume
are found by assuming that they occur according to a Poisson process.
This process results in a uniform probability of fracture ceanters for
any location within the global volume and an exponential distribution of
distances between fracture centers.

A.2.5 Fracture Orientation

The orientation of the fracture plane is defined by two angles of
rotation (A and B) which are used to specify a vector normal to the
fracture plane with the tail of the vector located at R,. The first
angle is the horizontal angle measured counter-clockwise from the +X
axis. The second angle is the elevation angle in the plane of R, T and
measured from the XY plane (Figure A.2). The equatfion of an 1nf?nite
plane encompassing the finite fracture 1is:

(A.5) a (x - xo) 4+ b (y - yo) 4+ c (z - zo) = 0
where a = cos(a)cos(B)

b = cos(a)sin(g)

c = sin(a)

The two rotation angles can be related to the strike and dip of a frac-
ture set using an appropriate transformation. Deviations from the mean
value of the orientation parameters are used to provide perturbations
distributed about the central tendency.

A.2.6 TFracture Areal Extent

The areal extent of each fracture requires that information about the
shape and length be provided. Currently, a circle, square, rectangle or
ellipse may be selected. The areal exteat of the fracture is defined
using characteristic lengths appropriate for the shape. Both an ellipse
and a rectangle require two characteristic lengths, i.e., the major and
minor axis lengths. 1In addition, the direction of the major axis, C, is
also needed to specify the orientation of each shape.
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The bounding reglons of regular fractures are defined by converting the
global coordinates into a local coordinate system. The fracture
coordinate system is a two dimensional Cartesian coordinate systen
defined at the center of each fracture or boundary surface, and is used
to find the intersections among fractures and boundary surfaces. For
every surface, there is one such coordinate system defined. Within the
local coordinate system Equation (A.6a) defines the reglon of an ellipse
and Equation (A.6b) defines the region of a rectangle:

(A.6a) x2 / rlz 4y / t12 = 1

vhere

(A.6D) x £ rl and y £ r,

Figure A.2 1i1ustrates the geometric properties of individual fractures.
While a circle and square are speclal cases of an ellipse and rectangle,

respectively, FRACGEN can be extended to generate other shapes as long
as the boundaries can be expressed by analytic functions.

Figure A.2: Position and orientation parameters for discrete fractures.
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A.2.7 TFracture Transmigsivity

The intrinsic fracture transmissivity can be defined for each fracture,
or the transmissivity can be generated using statistical distributions.
The model treats the intrinsic fracture transmissivity as a constaat,
but allows the relative transmissivity to vary as a function of fluid
potential. The relationship between the relative transmissivity and
fluid potential is dependent upon the intra-fracture transmissivity
distribution, which may or may not be the same as the inter-fracture
transmissivity distribution. To account for this difference, a func-
tional relationship between the relative transmissivity and fluid poten~
tial is specified using Lnput parameters.

A.2.8 Determination of Fracture Intersections

Once the individual fractures have been generated, the fractures are
further manipulated so that intersections between fractures and between
fractures and surfaces can be found. Also, isolated and dead end
fractures are eliminated. Intersections between fractures are called
internal intersects, while intersections between fracture planes and
boundary surfaces are called external intersects. The lines of
intersection are obtained by first finding the intersecting line between
two infinite planes containing the two finite fractures, or the finite
fracture and a finite surface. The infinite line of intersection is
next truncated to a finite segment such that {t is common to both finite
surfaces. The equation of an infinite plane containing the first finite
fracture 1is:

(A.93) a; x+by yte z=d

Similarily, the equation for a second plane containing the second frac-
ture is:

(A.9b) a; x 4 b2 ytecyz= d2

The equation of a line common to both planes i3 glven as:

X X X,
a.10) vy = {vjtu 4+ (¥,
z 2 z,

where u is a scalar. As long as:

(A-ll) E = Czbl - clbz # 0

then:
X, 1
(A.lZa) Yl = (azcl - 81C2) / E
Z (b281 - blaz) / E
and

X, 0
(Aole) Yz} = (02d1 - Cldz) / B
Z, (dgby = dyby) / E
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If the value of € in Equation (A.ll) is equal to zero, then Equations
(A.12) may be estimated using the other two cofactors as the basis func-

tion.

‘Once the two vectors have been found, the line of intersection of

the two planes can be represented by two distinct points on the line.

This

is accomplished by choosing two differeant values of t. Assume that

polants Ty and T, are two distinct points on the line of intersection.
The procedure for truancating this line to a fianite line segment common
to both fractures is:

(L)

€2)

(3

Transform T; and Ty to local coordinates defined on Fracture 1 and
find the two boundary point intersects, Py, and P;,, between the
line and the boundary of Fracture 1, 1f they exist.

Similar to step 1, find the two boundary points, P,; and P,
representing the intersection between the line of lntetsect%on and
Fracture 2. If the line does not intersect either one of the two
fracture boundaries, then the two fractures do not share a coamon
line (Figures A.3A and B).

If the line intersects both fractures, then Points P11 and P12 are
checked to see if they are contained within the bounéary of

Fracture 2. Similarily, Points Py, and P,, are checked on Fracture

1. 1If the two fractures share a common line segment, then two of
the four points should be common to both fracture reglons (Figures
A.3C and D). These two polnts are two end points of the finite
line segment.

FRACTURE |

FRACTURE 2

Figure A.3: Four possible outcomes of non-parallel fractures: Fracture

planes intersect but neither discrete fracture intersects
the line of intersection (A); Only one fracture intersects
the line of intersection (B); Both fractures 1lntersect the
1line of intersection, but not each other (C); and Both
fractures intersect line of intersection and each other.
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A.2.9 Truncation of Fractures

Within an isolated sample, the finite line segments between fractures
are truncated to lie within the boundary of the sample. To accomplish
the truncation, internal and external intersects are expressed in sample
coordinates and the segments of the intersects which lie outside of the
sample volume are truncated. If the iatersect lies entirely outside of
the sample volume, then that intersect is eliminated.

A.2.10 Removal of Isolated and Dead-End Fractures

Once the fracture network is assembled, isolated and dead-end fractures
are removed to eliminate non-contributing flow routes. Isolated
fractures are fractures which do not intersect any boundary surfaces or
other fractures. Dead-end fractures are fractures which only intersect
one boundary surface or one other fracture. While the removal of dead-
end fractures will cause a decrease in the computed macroscopic disper-
sion coefficient, the effect will be in a conservative direction. That
is, the exclusion of dead-end fractures will cause a decrease in the
travel time from an injection point to an observation point. In
addition, chemical interactions with the host rock will result in a
higher total mass flux than when the dead~end fractures are included.

A.2.11 Examples of Program Inputs and Outputs

Table A.4 presents a description of input data for FRACGEN when data
about individual fractures are available. Table A.5 describes the input
data requirements when statistical data about fracture sets 1s
available. Table A.6 provides sample input data for the option requir-
ing statistical data. Also included is information about the sample
volume and the boundary conditions imposed upon the boundaries of the
sanple volume. Table A.7 displays sample program output for the input
data of Table A.6. Information about generated fractures as well as the
location of the endpoints of fracture-fracture and fracture-boundary
intersections are displayed.
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Table A.4:

Fracture Network Parameters:

Specified for interior volumes

m greater than 1, fractures one through j and boundary sur-
faces 1 through k.

Input Variable:

Sample Volume

Interior Volume

Fracture

Boundary Conditions

Attribute

Center
Dimension
Orientation
Center
Dimension
Orientation
Center
Orientation
Areal Extent
Transuissivity
Shape

Type

Value

Variable Name

CORO(1,1)
c0sz(1,1)
COAL(1,1)
CORO(1 ,m)
cosz(1i,m)
COAL(1,m)
XINP(1,1)
XINP(1,3)
XINE(1,J)
XINP(9, 1)
XINP(10,3)
NBTYPE(k)
BVALUE(k)

Fo e b e ke s e e b

v w
ww ww

NP e et e gt e
OBV PDRONNDN W
- » . w
W

. W W Y v v v v @

Table A.5:

Fracture Network Parameters:

Specified for interior volumes

m greater than 1, generated for fractures one through j and
specified for boundary surfaces 1 through k.

® @ @ W @ @ W W @ @ S e W W GG W = W e e W e e W e @9 e & @ W 6 ® c a =

Input Variable:
Global Volume
Sample Volume

Interior Volume

Fcacture

Boundary Conditions

Attribute
Dimension
Center
Dimension
Orientation
Center
Dimension
Orientation
Number of sets
Number in set
Orientation
Areal extent
Transmissivity
Shape

Type

Value

Variasble Name
FRX,FRY,FRZ
CORO(1,1)
C0SZ(1i,1)
COAL(%,1)
CORO({,m)
COSZ(1i,m)
COAL(1i ,m)
NSET

1

e e b e ke e

FRstrk,FRdip,SDstrk,SDdip

FR1th,SD1lth
FRtran,SDtran
FRshp

NBTYPE (k)
BVALUE(k)
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Table A.6: Sample program input.

- e @ W @ @ w @ e e W W W @ W W e @ @ @ @ W e @ W e e @G @ G @ e e w =

Fracture Set: 1

Number of Fractures: 20

Size of Prism (x,y,z): 100.000 100.000 100.000
{X-Y) Rotation: .000 Deviation: 000

(X-Z) Rotation: .000 Deviation: .000

Fracture Length: 10.000 Deviation: .000

Transmisivity: 10.000 Deviation: .000

Fracture Set: 2

Number of Fractures: 20

Size of Prism (x,y,z): 100.000 100.000 100.000
(X-Y) Rotation: 90.000 Deviation: .000

{(X-2) Rotation: 000 Deviation: .000

Fracture Length: 10.000 Deviation: .000

Transmisivity: 10.000 Deviation: .000

- @ @ e e e @ e e @ % e @ % @€ @ ® e @ e e = - @ e ® e &4 @ @ % @ ® e e =

Boundary Surface Number: 1

Boundary size (meters): 100.00 100.00 100.00
Boundary center (meters): 50.00 50.00 50.00
Boundary orientation (degrees): .00 .00

# Side Type Value

1 1 1 1.000

1 2 1 1.000

1 3 1 1.000

1 4 1 1.000

1 5 1 1.000

1 6 1 1.000

- @ @ W e W W e e @ @ 4 @ @ e e @ W e W @ A W e W @ w @ A w e = - @ @ e

144



Table A.7: Sample program output for data set presented in Table A.6.

FRACTURE ATTRIBUTES

¥ = Location (x,y,z) - - Orieatation -
1 73.575 52.112 12.161 .000 .000 .000
2 46.707 47.388 31.094 .000 .000 +000
3 69.925 3.174 92.789 .000 .000 .000
4 86.038 85.107 70.621 .000 .000 +000
5 80.740 33.472 19.424 .000 .000 .000
6 16.153 89.221 76.614 000 .000 .000
7 82.535 54.187 67.410 .000 .000 .000
8 97.342 75.464 84.464 .000 .000 .000
9 65.689 82.166 8.768 .000 .000 .000
10 90.262 4.614 69.962 +000 .000 +000
11 24.503 16.223 97.855 .000 «000 .000
12 . 41.068 53.711 8.853 .000 .000 .000
13 31.363 60,046 88.113 .000 .000 .000
14 55.545 34.448 39.542 .000 .000 .000
15 27.017 25.525 41.971 .000 .000 .000
16 36.282 65.137 14.224 .000 000 000
17 14.859 30.066 516 .000 .000 .000
18 28.421 98.193 80.191 .000 .000 .000
19 13.748 93.433 94.620 .000 .000 .000
20 75.174 48.804 5.264 .000 .000 .000
21 25.735 67.871 50.552 90.000 .000 .000
22 43,887 «549 69.974 90.000 «000 .000
23 29.019 71.765 29.520 90.000 .000 .000
24 49.698 15.247 77.737 90.000 .000 .000
25 64.700 60.547 49.673 90.000 .000 .000
26 2.371 94.067 72.696 90.000 .000 .000
27 39.737 90.051 78.714 90.000 000 .000
28 87.479 62.280 62.881 90.000 «000 .000
29 18.985 37.561 22.415 90.000 000 .000
30 11.929 69.714 77.274 90.000 «000 .000
31 41.580 16.772 65.421 90.000 +000 .000
32 40.274 56.116 4.642 $0.000 .000 000
33 5.667 99.463 36.343 90.000 .000 .000
34 70.682 96.265 42.960 90.000 «000 .000
35 36.563 99,670 61.868 90.000 .000 .000
36 . 35.757 574 72.977 90.000 .000 .000
37 97.757 26.514 63.589 90.000 .000 .000
38 29.959% 87.378 49.893 90.000 .000 .000
39 63.333 92.383 65.494 90.000 .000 .000
40 75.504 89.343 91.629 90.000 000 000
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Table A.7:

(Continued)

- 8 e W @ ® @ @ e ® @ @ % @ @ ° @ e o

FRACTURE ATTRIBUTES (Continued)

# - Length -
1 2.550 2.550
2 18.031 18.031
3 9.466 9.466
4 5.164 5.164
5 3.806 3.806
6 9.573 9.573
7 7.229 7.229
8 7.705 7.705
9 2.831 2.831
10 1.788 1.788
11 8.128 8.128
12 1.278 1.278
13 43.665 43.665
14 2.596 2.596
15 4.220 5.220
16 8.957 8.957
17 1.660 1.660
18 6.161 6.161
19 1.886 1.886
20 5.738 5.738
21 3.711 3.711
22 1.367 1.367
23 8.668 8.668
24 10.336 10.336
25 7.756 7.756
26 1.198 1.198
27 9.966 9.966
28 2.533 2.533
29 21.714 21.714
30 9.602 9.602
31 3.849 3.849
32 2.434 2.434
33 2.908 2.908
34 1.805 1.805
35 4.390 4.390
36 18.316 18.316
37 2.735 2.735
38 6.581 6.581
39 10.203 10.203
40 <294 <294

Trans.

10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
10.000
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Shape (l=elliptic)

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000



100.000
.000
50.000
50.000
50.000
50.000

(Continued)

- ® @ ® @ © @ © @ @ 9 6 o @« @ 8 @ o =

Location
50.000 50.000
50.000 50.000 180.000
100.000 50.000 90.000
«000 50.000 270.000
50.000 100.000
50.000

Table A.7:

.000

BOUNDARY SURFACES

Endpoints of Fracture-~Fracture Intersections

N

WN -

- @ @ @ @ @ @ @O W e @ W @ W @O W W @ @ @ B @ W O G W@ e W e N w w = e

31.363
31.363
36.282

Location

90.051
87.378
71.765

Orientation
.000 .000 .000 50.000
. 000 .000 50.000
.000 .000 50.000
.000 .000 50.000
.000 90.000 .000 50.000
.000 270.000 .000 50.000
o o « = « TLocation =~ -
68.748 31.363 90.051
44.448 31.363 87.378
20.852 36.282 71.765

Fracture-Fracture Intersectlons by Fracture Number

F

13
16
23
27
38

#

el e

F

27
23
16
13
13

Nodal Number by

F

13
16
23
27
38

#

N

N

N MWW=

F

38

F

F

F

Size
50.000
50.000
50. 000
50.000
50.000
50.000

88.680
56.474
23.181

.000
.000
.000
.000
.000
.000

Fracture Number

N

2

N

N
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Table A.7: (Continued)
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EXTERNAL NODES

B « « =« Location =~ - -~ < =« - Location =« -~ -

1 100.000 26.514 60.855 100.000 26.514 66.324
2 .000 37.561 .701 000 37.561 44.130
3 31.363 100.000 44.448 31.363 100.000 100.000
4 28.421 100.000 74.030 28.421 100.000 86.352
5 69.925 000 83.323 69.925 .000 100.000
6 69.925 12.640 100.000 69.925 .000 100.000
7 24.503 24.351 100.000 24.503 8.095 100.000
8 31.363 100.000 100.000 31.363 16.381 100.000
9 14.859 31.726 .000 14.859 28.406 .000
10 75.174 54.542 .000 75.174 43.065 .000

Fracture Number by Boundary Surface Number

S # F F F F F ...

1 1 37

2 1 29

3 2 13 18

4 1 3

5 3 3 11 13
6 2 17 20

. % ® & ¢ e @ ® e e e - @ @ @ W @ W w @ e e O 8 e @ @ e @ @ @ @ ® & O =

Node Number by Boundary Surface Number

S it B B B B B ...
1 1 1

2 1 2

3 2 3 4

4 1 5

5 3 6 7 8

6 2 9 10

- @ ® 4 @ W e A & & «@ W W e @ W W W R W W W @ G W W W e W W W W W e @
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Table A.7: (Continued)
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Boundary Surface Number by Fracture Number

F # S S S S «es
3
11
13
17
18
20
29
37

5.

5

P e D N
=N WRRWUL S [, ]

Boundary Node Number by Fracture Nuwber
F # B [} B B B ...

3
11
13
17
18
20
29
37

6

e )
—
RNOSOVOWSNN
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. -
* PRACGEM: FRACture GENerating Model *
. (Last Modification = March 18, 1987) .
L] *

[ 2R BN B R B B BN B BN N K BN BN B BN BN BN BN BN BN BN AR BN BE BE BN BE B BN

PROGRAM FRACGEN
SINCLUDE 3j:commwon.a
CHARACTER*10 readfile

* write initial screen.
CALL cls(0)
PRINT 202, CHAR(27)
CALL cls(t)

10 CALL cls(2)
WRITE(*,200)
READ (*,100) itype

IF (itype .EQ. 1) THEN
CALL cls(2)
WRITE(*,201)
READ (*,101) readfile
OPEN (1,FILEwreadfile,statusw’old’,err=10)
RKREAD (1,100) afrct
READ (1,102) ((xinp(j,i),3=1,10),i=1,afrct)
CLOSE(1)
CALL showfractures

BLSEIF (itype .EQ. 2) THEMN
CALL generata
CALL showfractures

ELSEXF (itype .BEQ. 3) THEN
CALL size

ELSEIP (itype .BQ. 4) THEN

CALL buildfractures

CALL findfractures

CALL listfracturss

OPEN(9,file='gavefile’, forme'binary’,status='navw’}

WRITE(9) cosZ,cor0,coal,corA,nfrot,nnode,nfr,nct,xinp,netn,ndet,
» nfrn,ndfr,xx1,xx2,xi1,x1i2,index,jtotal,ncut,xcut, nhond, not,nctn,
. ndet,nd

CLOSE(9)

ELSEIF (itype .EQ. 9) THEN
CALL cls(2)
STOP

ENDIF

GOTO 10
100 PORMAT (8i10)
101 FORMAT (a10)
102 PORMAT (10€£10.3)

200 PORMAT (//15x,°* MAIN MEWU®
. //15%,* 1« Input Known Practures’,
. /15%,' 2 -~ Geanerate Random Fractures®,
. /15%,' 3 =~ Define Boundary Sizes’,
. /15%x,' 4 ~ Generate Practures and Combine Network’,
. //15%,* 9 - Exit to DO8*,
. 1//15%," Enter Selection: ‘§)

20t FORMAT (//10x,' Enter name of data file: 'S§)
202 FORMAT(MY,'(23%,/////

o //1710%," PRACGEN'
. /0%,  Progras to G te Di te Pr: ks'
. ///10%," Originally developed by Chi~Bua Huang (6/84)°

. /10x,* Substantially sodified by Todd C, Rasmussen (6/86)'
. /10x,t Department of Hydrology & watsr Resources’
AL University of Arizona, Tucson 85721')

20

.'..'l'l..l'..tt"'l.
-

[ B0 IR A BN 2

ttt.tttltl'.
Pause output and clear screen

tttttt..t'ttt'ﬂt..tlt".

SUBROUTINE cls(n)

1P (n JEQ. 1) THREN

PRINT 101, CHAR(27)

READ (*,102)

ENDLP

PRINT 103, CHAR(27)

IF {n .EQ. 2) PRINT 104

RETURN
101 PORMAT(AY, ' [25;25H', 'Press <RETURN> kay to continue ..e'$)

102 PORMAT(A1) (23)

103 FORMAT(A1,*{2J*

104 FORMAT(/15%,' DISCRETE PRACTURE NETWORK H’.)Dﬂ.':
. /15x,' Implemented by Todd C. Rasmussen 3
. /15x, ' Dapartment of Hydrology, Univ, of AZ‘)
END
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SUBROUTINE generate
SINCLUDE §icommon.a
CHARACTER*10 readfils
common /priee/ salt, incr
DATA mult,iseed,incr / 123,456,789 /

CALL cls(2)
WRITE(*,200)
READ (*,100) readfile
OPEN (1,file=readfile)

* Dataraine number of fracture sets
READ (1,107) nsets
* Read in fractura network parametars for each fracture set
afrct » O’
CALL cls{0)
DO 20 nset = 1, nsets
READ (1,101) 4
READ (1,102) PRX, FRY, FRZ
READ (1,102) FPRatrk, FRdip, PR1th, FRtvan
READ (1,102) SDatrk, 5D4ip, SDlth, SDrran
* Pcho input paramters
WRITE (*,204) nsat,i,frx,fry,frs,frstrk,sdstrk,
. £rdip,sddip, frith, sddlth, frtran, sdtran
CALL cls(1)

* Ganerate fractures
DO 20 j = nfrutel, nfretefi
* Poisson locations
zinp{1,]) = FRX * RANDufm{izeed)
xinp(2,3) = PRY * RAWDufm(iseed)
xinp(3,j) = FRZ * RANDufn(iseed)
* Spherical~-normal orientations
xinp(4,3) = PRatrk + SDstrk * RANDATm(iveed)
xinp(S,j) = PMip + SDAip * RANDnra(iseed)
xinp(6,j) = 0,0
DO1S k=4, 6

IP (xinp(k,j) .LT. O0.) xinp(k,j) = xinp(k,j) + 360,
13 IF (xinp{k,j) .GB. 360.) xinp(k,j) = xinp(k,)) - 360.

* Exponential lengths
xinp(7,j) = = FRIth * DLOG(RANDuf=(iseed))
xinp(8,3) = xinp(7,5)
* Log-normal transmissivities
©  SQtran = FRtran * FRtran
CVtran = SDtran * SDtran / SQtran
Avtran = DLOG(SQtran/(1+CVtran)) /2.
VRtran = DLOG{1+CVtran)

xinp(9,)) = EXP(AVEran+SQRT(VRtran) * RANDnrm(iseed))

* shapa is square.
20 xinp{10,3) = 0,
30 nfret = afret + 4
CIOSE(1) ’

0PEN (9, £1le='data, ot , atatues'new’)
WRITE(9,102) xinp
CLOSE(9)

99 RETURN

100 PORMAT (a10)

10t PORMAT (8110)

102 FORMAT {10£10.4)

200 PORMAT (//10x,’ Enter name of input file: '$)
204 FORMAT(/' Practure Set: °,I3

Y//4 Noaber of Practures: ',I8

« /] Size of Prism (x,¥,2): *,370,3

7 (X~Y) Rotation: ',P0,3," Deviation: ',F0.3

« I/ (X~Z) Rotations *,10.3,' Daviation: °,210.3
/A Practure Lengths ', 210.3," Daviation: *,P10.3
.a/é' Transaisivicy: *,10.3,' Daviation: *',10.3//)

LB B BN BN BN BN B BE BN BN BN BN 2N BK BE BN BE BE BE BX B B BE BN BE BE BN B 3R

Generats wniform (0,1) p - dom numb
An exponentially disetributed r,v. is generated by:
RAMDEYP = « mean * ALOG(RANDufm({issed))
LN R B BN BN B BE B BE K BN BE BN R BN R BX B BN BE RN R BN K R BRI
PUNCTION RANDufm(ineed)
IMPLICIT? REAL*S8(A-H,0-Z), INTEGER*4(I-N)
common /prime/ pult, incr
iseed « MOD(mult*iseed + incr,32768)
FANDufm = PLOAT(iseed)/32768,
RETURN
B

LR BN BN
* 9 ¢ 0w

L B SR B BE R BE B BN BN BE BN BN BK BN BN BE BN B EE BE EE BE B R B BE B B NN )
1 (0,1 = esing the Polar method
A log lly distributed r.v. is ¢ a by:
RAMDIgn = EXP(mean + stdev * RANDNrm{iseed))
[0 BN BN BE BN BE BN BE 2N BN 2R BE 3R IR BN BF BE SR BN BF B B BN B R B B N N
PUNCTION RANDRYm (iseed)
IMPLICIT REAL*S(A-N,0-Z), INTEGER*4(I-N)
o e 2, * RADufR(iveed) - 1,
v =2, * RANDutR(i%0ed) - 1,
smewutusvery
IP (sum .GE. 1,) GOTO 1
RANDAT®M & u * SORT(-2, * DLOG(sum}/sum)
RETURN
=D

-
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LR AN B AL SR A R 2R K BN R N BN B BN BN BN B A AN R N B A S A R N I

. Display fractures

»

LR N N N N N R R E R

SUBROUTINE showfractures
SINCLUDE jicomsaon.a

0O 10 4 = 1, nfret

IP (L .EQ. 1) THEN
CALL cls(0)
WRITE (*,201)

ELSEIP (MOD(i~1,20) ,EQ. 0) THEN
CALL cls(1)
WRITE (*,201)

ENDIP

10 WRITE (*,101) 4,(xinp(j,i),3=1,6)

CALL cls(1)

D0 20 { = 1, afrect

IF (L .BQ. 1) THEN
CALL <18(0)
WRITE (*,202)

ELSEXF (MOD(i~1,20) ,EQ. 0) THEN
CALL cls(1)
WRITE (*,202)

<2024 4

20 WRITE (*,101) 4, (xinp(3},i),3=7,10)

CALL cls{y)

RETURM
101 PORMAT (43,5x,6£10,3)
201 FORMAT(30x, ' PRACTURE ATTRIBUTES '
. /. 0
L}

. VAR ) - Langth -
. 4 Shape (leelliptic)')
D

- Location (x,¥.3) ='
. ~ orientation »')
202 PORMAT(25x, 'PRACTURE ATTRIBUTES (Continued) *

L0 BN BN BN BN BN BN I I N BN BN BN BN BN BN K B TR RNE BN B BN R B R BN BN BN AR BR NN J

Detarsine boundaries of sample volume .

[ BE K BN B B B R B BN BN BN BE BN BE BN BN BN B K I BN B BN N BN BN BN BN BN BN A 1

SUBROUTIMNE size

$INCLUDE j:common.a

10

CHARACTER*10 readfile

DIMENSION alpha(12), beta(12), wk{18), Nalpha(6), Nbeta(6)
DATA alpha / 1., Ou, 10,1804, 1.,90,, 14,270, 1., O0.,1., 0./

DATA beta / 1., 0.,=1,, 0., 0., 0., 0.,

DATA Nalpha/ 3, 3, 3, 3, V, 1 /
DATA Nbeta / 2, 2,1, 1, 2, 2/

Oer 14,90.,1.,270,/

DATA Wk / 1., Oup 0y =V4y 0., 0., 0, V., Oy
. 0.,-1., Qes ooc °o' l., o., OQI-" /

CALL cls(2)
WRITE(*,200)

READ (*,100) readfile
OPEN (2,filemreadfile)
READ (2,101) jtotal
DO 10 k = 1, jtotal

READ (2,102) cosz(1,k),cossz(2,k),cosz(3,k),

CLos8(2)

* Comvert angles to radian measurs

DO 40 k = 1, jtotal
alpha = coal(1,k) * 0,0174532925199413
beta = coal(2,k) * 0,0174532925199433
corA(1,1,k) = Cos(alpha) * COS(beta)
corAl2,1,k} = SIN(alpha) * COS(beta)
corA(3,1,k) = SIN(beta)
cori{1,2,k) = =3IN(alpba)
cora(2,2,k) = Cog(alpha)
cora(3,3,k} = O,
eorA(1,3,k) = -Q0S(alpha) * SXN(beta)
corAl2,3,k) = =3IN(alpha) * SIN(beta)
corA(3,3,k) = CO8(beta)

ncut=6

* Build XCUT arzay (asaumes prismatic shape)

30

DO 40 3 = 1, ncut
n=3 + (kel)*ncut
DO 30 31 = 1,3

v =0,
DO 20 j2 = 4,3

cor0(1,k),cor0(2,k),cord(3,k) ,conl(1,k) ,coal(2,k)

w e w + corA(jl1,j2,k) * coaz(j2,k) * wk(3*j=-3+j2)/2,

xcut(ii,m) = w + corO(jt, k)

xcut(4,m) = coal(?,k) * alpha(2%3=1) + alpha(2*§)

xcut($,m) = coal(2,k) * beta(2*j~1}
xcut(6,m) = 0.0 .

xcut(7,m) = 0.5 * coss(Nalpha()),k)
xcut(8,m) ®» 0.5 * coss(Nbetal(j), k)

40 xcut(9,n) = Q.0

+ bata(2+*4)




€s1

CALL cls(0)
IF (jtotal ,EQ. 0) then
"~ PRIWP *, ' ERROR: JTOTAL s ',jtocal
nse
DO %0 X = 1, jtotal
s0 WRITE(*,201) k,coes(1,k),cous(2,k),coes{3,X),
cor0(1,k),cor0(2,X) ,cor0(3,Xk),conl{1,k),conll2,k)
CALL cls{1)
WRITE(*,202)
DO 60 k = 1, jtotal®ncut
60 WRITR(*,102) (xcut(),k),j=1,9)
zeOIP
CALL cls(1)
99 RETURM
100 PORMAT (a10)
101 FORMAT (1015)
102 PORMAT (9£8.3)

200 FORMAT (//10x,' Pnter name of data £ile: °$)
201 PORMAT (//° Poundary Surface Mumbaer: *,413
. //' Boundary size (meters): *,3210.2
* daxy (matars): ',3€10.2
- /' Boundary orientation (degreen): °,2£10.2)
PORMA' /30x,* BOUNDARY SURPACYS',
2 " (lllix:'ueluon',‘ls:,'orhundon',lS:.'slu')

LR BE B0 BE BN BN BN BN BN BE BN BN BN BN BN B BE BE BE BN BN B B BN BN B BN BN IR BE IR BN BE 3R BR')

. Build Practure Intersection Matrices

LR BN BN BN BN R BE BN BE BN BN BN AR BN BN BE SN BE AR BN AR BN BR B IR BN BN B AR BN B B R B AN

SUBROUTINE buildfractures . '
SINCLUDE jicommon.a

DIMENSION €1(3,2), t2(3)

CALL cls(2)

aNeNNN

* Pind intersections among fractures inside sample voM
* and b fea and 1ot surfaces

abond = O
mode = 0
DO S § =1, nfret
ocf{j) = 0
afr(j) = o

s
* Compare all fracture-fracture comhinations
D0 25 §1 = 1,nfrot-1
DO 23 32 = 1141 ,nfret

* Do they intersect?
11 = I*M(xinp(10,31))
12 = INT(xinp(10,32))
CALL intarsect (i1,xinp(1,31),12,xinp(1,j2),icheck,tt)
IF (icheck .PQ. 2) THEW

* Are fracturss inside sample volume?
CALL truncate (t1,ichk)
IF (ichk .EQ. 0) THEW

* gave fracture intersactions
nnode = nnode + 1
IP (nnode .GT. mx1) THEN
PRINT *, * Wumber of Allowed I 1 Fodes P ded*
CALL cls(1)
RETURN
ENDIP

* Convert from global to sample volume,
PO 1Sie, 2
D010 =1, 3
t2(3) = e1(3,1)
10 t1(j,4) = o,
DD1S j=1,3
pOI1Ske1, 3 .
15 t1(j,i) = €1(j,i) + corAlk,j,1)
. * (t2(k) = corO(k,3) + cosx(k,1}/2.)
v =0,
DO 20 § = 1,3
xi1(nnods,j) = £1(3,1)
20 xi2(mnode,j) = t1(1,2)
nfr(i1) = afr(Ji1) + 1
afrnl{jt,nfr(j1)) = j2




a1

ndfr(31,nfr(j1)) = nnode
nfr{j2) = nfr(32) + 1
afrn(j2,nfr(j2)) = ji
ndfr(j2,nfr{j2)) = nnode
ENDIF
ENDIP
25 CONTINUE

L2213 321]
* Switch to boundaries
NERERAW
DO 45 j1 = 1,ncut*jtotal
net(j1) = 0
DO 45 j2 = 1,afrct
42 = INT(xinp(10,j2))
CALL intersect (4,xcut(1,j1),12,xinp(1,3j2),icheck,t1)
IP (icheck .BQ. 2) THEN
nbond = nbond + 1
IF (nbond .GT, mx1) THEN
PRINT *, ' Number of Allowed Boundary Nodes Exceeded®
CALL cls(1)
RETURN
ENDIF
* Convert from global to sample volume.
DO 35 4 =1, 2
DO 30 § =1, 3
t2(3) = t1(j,4)
30 t‘(j,*) =0,
DO 35 j=1,3
00 3S k=1, 3
as t1(j,4) = £1(3,1) + corA(k,j,?)
. * (£2{k) ~ corO(Xx,1) + cosz(k,1)/2.)
w =0,
DO 40 j = 1,3
xx1(abond,j) = £1(3,1)
40 xx2(nbond,$} = t1(§,2)
nct(j1) = nce(jt1) + 1
nctn(j1,nee(it)) = 32
ndet(31,nct(j1)) « nbond
nof£(j2) = ncf(j2) + 1
nctn({j2,ncf(j2)) = 11
ndcf(32,nc£(32)) = nbond
ENOIPFP
45 CONTINUE
RETURN
END

* " % »

LN B BN B BN BN NN BN BN BE BN NN BN BN BE NN AN R AR R BN BN BN R BN BN AN BN BX BE BN J

rind line of intersection between two planar fractures., *

The line segment is represented by its two end points, *
CE B 2N BN B BE BN BE BN BN BN B NN BN K BN B BN BN BN B BN SR B BN BN BN BN BK BN BN J

SUBROUTINE intsrsect (ni,x?,n2,x2,icheck,p)

IMPLICIT REAL*8(A=H,0-Z), INTEGER*4(I-N)

DIMENSION x1(9),x2(9),p(3,2),t91(3,2),t92(3,2),t11(2,2),

. t12(2,2),tx(3,2),tp1(2,2),tp2(2,2),tout(3,4)

DATA erzor /1,E-9/

icheck = Q

Do they intersect?
CALL supint (x1,x2,ic,tx)

1P (ic .EQ. O) RETURM

Convert to local coordinates
CALL supgtl(2,tx,tll,x1)
CALL wpqtl(z.tx.tu.ﬂ)

Fracture 1
IF (N1 ,EQ. 1) THEN
CALL supeir(tll,x1(7),x1(8),ic1,tp1)
ELSE
CALL supret(tll,x1(7),x1(8),ict,tp1)
BDIF

Fracture 2
1P (N2 .EQ. 1) THEN
CALL supeir(tl2,x2(7),x2(8),ic2,tp2)
K.SE
CALL supret(tl2,x2(7),x2(8),ic2,tp2)
ENDIP

IP ((ici*ic2) .EQ. 0) RETURN
Convert to global

CALL supltg (2,tp1,tgl,x1)
CALL supltg (2,tp2, t92,x2)

* Convert to local

CALL supgtl (2,tg1,tpl,x2)
CALL supgtl (2,tg2,tp2,x1)

DO 30§ =1, 2
iic =0
zx = tpi{1,3)
Yy = tp1(2,3)
r1 = x2(7)
r2 = x2(8)
IF (M2 .EQ. 1) THEM
IF (({(xx*xx)/(z1*21) + (yy*yy)/(r2*r2)) .LB. 1.) iic =
ELSE
IF ((DABS(xx) .LE. r1) AND. (DABS(yy) .LE. r2)) iic = 1




moIr
IP (ite .FQ. 1) THER
icheck = icheck + 1
DO 10 ke, 3
10 tout(k,ichack) = tgi(k,j)
2oLr
ile=s0
AKX = Qz('.j)
yY = tp2(2.))
! = 21(7)
£2 = x1(8)
IP (NV .EQ. 1) THEN
IP (((xx*xx)/(x1*r1) + (yy*yy)/(x2°x2)) .ILR. 1.) iic =}
ELSE
TP ((DABS(xx) ,LE. r?) .AND. (DARS(yy) .LE, r2)) iic = 1
ENDIP
IF (iic .2Q. 1) THEN
ichack = icheck + 1
PO20k=1,3
20 tout(k,ichack) = tg2(k,3)
BNDIP
30 CONTINUR

e = 2
IP (icheck .GT. 2) THEN
e =1
DO 40 J » 2, icheck
I?P ((DABS(tout(1,j) = tout(1,1)) .GT. errer) .OR.
. (DABS{tout(2,3) = tout(2,1)) .GT. error) .OR.
(DABS(tout(3,)) =~ tout(3,1)) .GT, error)) THEN
iic = fic + 1
je =13
™oIr
40 CONTINUE
IP (iic .N®. 1) THEN
icheck = 2
ELSE
icheck = O
ENDIP
oIr

119 §

pOSO § =1,
p(3.1) = tout(l,1)
50 p(j,2) = toue(j,jc)

LN B BE BN BN BN BN BE BN N B BN B BN BN AR B BN R BE BN B BE BE R BE BE BN BN B

Truncates a finite line segquent at the boundary of the sampls
voluse, Only the part of the line segwent within tha
sanple voluse is returned.

LN BN BN BN BN NN BN BN BN BN BN BN IR B BN BE BN BE BN BN B BN BN BN BN BN BN BN BN BN
SUBROUTINE truncate (tq,icheek)

$INCLUDE j:common.a

DIMENSION 3(6),tp(3,2),tq(3,2),tt(3)

* % ¢ 8
L B BN BN 3

DO104L =1, 3
8{2%4<+1) = - coex(i,1) / 2.
10 s(20i) = cosz(i,1) / 2.

DO 20 1 = 1,2
DO 20 {1 = 1,3
v =0,
00 15 12 = 3,3
15 w = w + corA{12,11,1) * (tq(12,1) - cor0(i2,1)})
20 tpl(i1,i) a w

icheck = 0
DO 304 =1,3
11 » 204
i2=11 -1
30 IF (((epl{i,1) .GT. s(11)) .AMD. (tp(i,2) .GT. s(11))) .OR,
- {(tp(i,1) .LT. 8(12)) .AMD. (tp(1,2) .LT. 8(i2)))) icheck = 1

IF (icheck .FQ, 0) THER
DO 50 4 = 1,3
ij =0
11 = 1%2
12 = 102=1
ipt = i+t
ip2 = 142
IF(ipt .GT. 3) ip1 = ip1-3
IP(ip2 .GT. 3) ip2 = ip2-3
IP((tp(4,1) GT, s(i1)) OR, (tp(i,2) .GT. s(i1))) THEN
IP((tp(i,1) .GT. tp(1,2)) .AWD. (tp(i,1) .GT. =(11))) THER
tt(i) = s(i1)
i3 =1
PNDIP
IP((tp(i,2) .GT. tp(i,1)) .amD. (tp(i,2) .GT. s(i1))) THEN
te(i) = s(i1)

ij = 2
ENDIPF
te(ip1) = tp(ipt,1)+(ct(l)=tp(i,1))*(tp(ipt,2)~-tp(ipt,?))
. /tep(i,2)=tp(i,1))}
tel(ip2) = tp(ip2,1)+lct(l)-cpli,1))*(tp(ip2,2)-tp(ip2,1))
. Jitp(L,2)=-tp(i,1))
IP(  (tt(ip1) .GT. s(ip1*2))
. «OR. (tt(ip1) LT, s{ipi®2-y))
. «OR, (tt(ip2) .GT. s{ip2*2))
. JOR, (tt(ip2) .LT. s{ip2*2-1))) THEN
icheck = 1
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icheck = Q
0o 35 ik = 1,3
35 tplik,iy) = cz{ik)
ENDIP
ENDIP
IP((tp(di,1) LB, 8(i2)) .OR. (tp(i,2) .LE. s(i2))) THEN
IP((tp(i,2) .GT. tp(i,1)) .AND. (tp(i,1) .LE, 8{12))) THEN
te(i) = o(32)
ij =
ENDIP
IP((ep(i,1) .GT. tp(i,2)) .AND. (tp(i,2) .LE. s(i2))) THEN
ct(i) = g(i2)

i) =2
oY
ee(ipl) = tplip1,1)+(tt(i)=-tp(i,1))*(ep(ip1,2)=cplipt,1))
. /(tpli, 2)=tp(i, 1))
et(ip2) = tp(ip2,1)+(et(i)=tp(i,1))*(tp(ip2,2)=-tp(ip2,1))
. /(tp(i,2)=tp(i,1))

IF  ((ee(ip1) .GT. s(ipt®2)) .OR. (te(ip1) L. s(ipi*2-1))
» «OR. (te(ip2) .GT. 3(ip2*2)) .OR. (tt(ip2) ,LT. s(ip2%2-1))) THEM
icheck = 1
ELSE
icheck = 0
DO 40 ik = 1,3
40 tplik,1j) » te(ix)
ENDIP
EnDIF
50 CONTINUR
]Iy

DO 60 i e1,2
DO 60 i1 = 1,3
v =0,
DO 85 12 = 1,3
55 v = w + corA(i2,i1,1) * tp(i2,3)
60 tq(i1,1) = w + corQ(it,1)

RETURN
END

LR SR R A L N BN L IR BN BN B BN BN B BN 2R BE B B R AR R N 2 N B A )

. Pind line of intersection between two planar fractures. .
LA 2 B BN BN BN BN BE B B NE 2R B AR BE BN R BN B EE B BN AN B R R R
SUBROUTINE supint(xan,xbn,ick,p)
IMPLICIT REAL*8(A-H,0-2), INTEGER*4(I-N)
DIMENSION xa(4),xb(4),z1(3),r2(3),p(3,2),xan(9),xtm(9)

DATA error / 1,E=9/
DATA radian / 0,0174532925199433/

xand4 = xan{4) * radian
xan5 = xan(5) * radian

xa(1) » COS(xanS) * COS(xand)
xa(2) = COS(xan5) * SIN(xand)
xa(3) = SIn(xanS)

xbn4 = xbn(4) * radian
xbn$ = xbn(S) * radian

xb(1) = COS(xbnS) * COS(xbnd)
xb(2) » CO3(xbn5) * SIN(xbn4)
x0(3) = SIN(xbnS)

IF ((DABS(xa(1)*xb(2)=xb(1)*xa(2)) .LT. error) .AND.
. (DARS(xa({2)*xb(3)-xb(2)*xa(3)) .LT. srror) .AWD.
(DABS (xa(3)*xb(1)=xb(3)*xa(1)) ,LT. error)) THEN
ick = 0
ELSE
ick = 1

xa(4) = xa(t)*xan{1) + xa(2)*xan(2) + xa(3)*zan(3)
xb(4) = xb(1)*xba(1) + xb(2)*xbn(2) + xb(3)*xbn(3)

00 = xa(1)*xb{2)=xb(1)*xa(2)

IF (DARS(r00) .GT. exror) THEM
r1(1) = (xb(3)*xa(2)~xa(3)*xb(2))/r00
?1(2) = (xb(1)*xa(3)=-xa(1)*xh(3})/r00
rt{3) = 1,

72(1) w» (xb(2)*xa(4)=xa(2)*xb(4))/r00
v2(2) » (xb(4)*xa(1)-xa(4)*xb(1))/x00
r2{3) = 0,
ELSE
700 » xa(2)*xb(3)exb(2)*xa(3)
IF (DABS(r00) .GT. erxor) THEN
z1(t1) = 1,
£1(2) = (xb(1)*xa(3)=xa(1)*xb(3)})/r00
£1(3) = (xb{1)*xa(2)=xa(1)*xb(2))/r00

t2(1) = 0,

£2(2) = (xb(3)*xa(4)-xa(3)*xb(4))/r00

r2(3) o (xb(4)*xa(2)-xa(4)*xb(2))/x00
BLSE
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r00 = xa(3)*xb(1)~xb(3)*xa(1)

r1(1) = (xb(3)*xa(2)=xa(3)*xb(2})/ro0
£1(2) = 1,
21(3) = (xb(2)"xa(1)=xa{2)*xb(1))/r00

r2(1) = (xb(4)*xa(3)-xa(4)*xh(3))/r00
r2(2) = 0,
r2(3) = (xb{1)*xal4)=xa(1)*xb{4))/r00
ENOIP
ENDIP
DO 10 § = 1,3
pl3, 1) = x2(3) + r1(3)
p(3,2) = £2(3j) « r1{j)
ENDIP ’

RETURN
mo

LR BE BE BN BN BN BN BN SR R BE AR SR BN BN NN BN BN BN BE N BE BE BN AR B B BN B BE BN AR BN BN J

Used to parform coordinate transformation from local 2-D region

{defined for each fractura) to the global 3-D region
(detined using tha center of tha sample region).

LR BE B BN B BN BN IR BE BN BN BE BN B R BE B BN BE BR B BN BN BE BN BN 2R BN BN B BN BN N J

SUPROUTINE supltg(ni,xyl,xysq,xinp)

IMPLICIT REAL*S8(A=N,0=2), INTEGER*4(I-N)

DIMZNSION xyl(2,ai),xywg(3,ni),xa2(3),%a3(3),xinp(9)
DATA radian / 0.0174532925199433/

alpha = xinp(4) * radian
beta = xiap($) * radian
thata = xinp(6) * radian

xa2(1) = SIN(bata)*COS(alpha)
xa2(2) = gIN(beta)*SIN(alpha)
xa2(3) = «COS(beta)

x3(1) = =8IN(alpha)
x23(2) = CoS{alpha)
xa3(3) = 0.0

10 a= t,nl
xb » xyl(1,n)*CoS(thata) « xyl(2,n)*SIN(theta)
> = xyl(1,n)*SIN(theta) + xyl(2,n)*COS({theta)
D010 w1, 3
10 xyzg(3,n) = xinp(j) + xb*xa2(j) + yb*xa3(j)

RETURN
END

-
L4
L]
L ]

L2 BB BN BN BN K BN NN BN BE B BN BN BN BN BN BN BN BE R BN NE BE B 2R BN BN BE BX BN B B BN AR AN J

¢ Used to parform coordinacs transformation from global 3-D region

L OE 2N B BN BN BN BN BN B BE BN BN BE AR BE BE BE BE BN BN BE BN BE R BN SR BE AR BE X BN BN B AN

(defined using the sample region) to the local 2-D region
{defined for each individual fracture plana).

SUBROUTINE supgtl(ni,tp,xyl,xcn)

IMPLICIT REAL®S(A=H,0-3), INTEGER®4(I-N)
DIMENSION xyl(2,ni),tp(3,ni),xen(9),x02(3),2ec3(3)
DATA error / t.D-6/

DATA radian / 0.0174532925199433/

alpha « xcn(4) * radian
beta = xen(5) * radian
theta = xen(6) ¢ radian

xc2(1) = SIN(bata)*COS(alpha)
%02(2) = SIN(beta)*SIN(alpha)
xc2(3) = =CoS(bata)

203(1) = =SIN(alpha)
xe3(2) = COS({alpha)
x%03(3) = 0.0

DO 1On =1, ni
IP (DAPS(xc2(3)) .GT. error) THEN
xb » {tp(3,n)=xcn(3))/xc2(3)
ELSE
xb = (xc3(2)*(tp(1,n)=xcn(1))exc3(1)*(tp(2,n)=xen{2)))
. / (2e3(2)*x02(1)=xc3(1)*2e2(2))
noIr
IP (DABS(xc3(1)) .GT. error} THEN
yb = {(tp{1,a)exen(l)=xb*xc2(1))/xc3(1)
SR
h = (tp{2,n)=xcn(2)=xbxc2(2) } /n03(2)
neore

xyl{1,n} = xb*COS(theta) + yb*SIN(theta)

10  xyl(2,n) = -xb*SIN(theta) + yb*COS(thata)

RETURN
END
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L]
. rind point of intersection between a line and the "
. boundary of a rectangle .
LN B B BN B BN B K I BN BN BN BN BN AR BN EE BX R K TN N B R R N N
SUBROUTINE supret(p,z1,ri,ic.cx)
IMPLICIT REAL*8(A~H,0-Z), INTEGER*4(I-N)
DIMEMSION p(2,2), cx(2,2), ct(2,4), xx(4), yy(4)

exrror = 1.2-9

IF((DABS{T1) .LT. error) .OR. (DABS{r2) .LT. ervor)) THEN
ic=0
RETURN

BNDIr

a s p(2,2) - p(2,1)
b e p(1,1) = p(1,2)
c = p(2,1)*p(1,2) = p(1,1)*p(2,2)

ie=o0

IF (DABS{a) .LT. error) THuRN
ys-c¢/b
IP (DABS(y) .LE. r2) THEN
ie =
ex(1,1)
ﬂ(‘.z,
a(z:')
KISE

4]
-zl
b 4

Y

g8s1

IF (DABS(b) ,LT. error) THEN
xmw<c/a
IF (DABS(x) ,LEB, r)) THEN
ic =1
ex({t1,1) = x
(112) - X

cx{2,1) » r2
cx(2,2) = =-r2
ELSE
ie=0
ENDIF
ELSE
xx(1) = £t
yy(1) = (=atri=gc)/b
%%(2) = -1
yy(2) = (a*ri~c)/b
yy(3) = 2
xx(3) = (~b*r2-c)/a
yy(4) » =£2
xx{4) » (ber2-c)/a
icct = 0

DO 10 ic = 1,4

IF((DABS(xx(ic)).LE. r1) ,AND. (DABS(yy(ic)).LE. r2)) THEM
icct = icet + 1
et(1,icet) = xx(ic)
et(2,icct) = yy(ic)
ENDIP
10 CONTINUB
IF {icct .BQ. O) THEM
ic=0
ELSE
exi1,3) = ot(1,1)
cx(2,1) = ce{2,%)
et = 1
DO 15 j = 2,icee
If (ct(1,)) .nB. ct(1,1)) THEN
ex(1,2) = ct(1,§)
cx(2,2) = ot(2,3)
jct = 2
ENDIY
15 CONTINUB
ic =
IP {(jct .EQ. 1) THEN
ie= 0
ENDIP
ENDIP
ENOIP
aoIr

RETURN
END
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L I A R N R NN NN RN NN NN SRR R

Pind point of intsrsection bstween a line and the
boundary of an ellipse
[ RN RN EEEEENE NN NN N RN NN R EER R}
SUBROUTINE supcir(p,r?,r2,ic,ct)
IMPLICIT REAL*G(A-H,0-Z), IMTEGER*4(I=-N)
DIMENSION p(2,2), ct(2,2)

erTor = t.B=9

IP((DABS(r1) ,LT, error) ,OR. (DABS(r2) .LT. error)) THEN
ic= 0
RETURN

ENDIPF

a = p(2,2) ~ p(2,1)
b= p(1,1) = p(1,2)
¢ = p(2,1)*p(1,2) = p(1,1)*p(2,2)
IF (DABS(D) .GT. error) THEN
r2b = p2%r2vheh
ax = 1,/(r1*r1) + a*a / r2h
bx = 2,%¢*%c / b
cxwetc /22D -1
bac = bx*ix - 4,*ax*cx
IF (bac .GT. 0) THEN
ic a9
ct(1,1) = (-bx + DSQRT(bac))/ {(2,%ax)
ct(2,1) = (= a%et(1,1) =) / b
ct(1,2) = (=bx = DSQRT(bac))/ (2.*ax)
ct(2,2) » (= a*ct(1,2) =¢) / b
ELSE
ie =0
soIr
PLSE
ria = rivrirasy
ax = 1,/(r2°r2) + b*b / rla
bt = 2,%b*c / ria
CXwmgta /ria = 1§
bac = bx*bx - 4,*ax*ox
IP (bac ,GT. 0) THEN
ie =1
ct{2,1) » («bx + DSQRT(bac))/ (2.%ax)
ct(1,1) » (= bect(2,1) = ¢) / a
ct(2,2) = (=bx = DSQRT(bac))/ (2.%ax)
ct(1,2) = (= brct(2,2) ~¢) / a
ELSE
ic=0
ENDIP
ENDIP
RETURM
ENO

LR B R BN BN SR BF K BN BE NL BN BE B BN NE BR BN BE BN BE BN NE BE AR BE IR BE BN BN BN BN B IR BN J

* Find contributing fractures

[IE IR BN B BN AR BE BN BE B 2 BE BN NN BN BN R BE K BE BK BK AR R BE N BN BE BE B BE B A R BN J

SUBROUTINE findfractures
$INCLUDE 3j:common.a
DIMENSION itewp{mx))

DO S i = 1, nfroet
index(i) = 0
S itemp(i) = O

* Find f£r ted to b dary surfaces
DO 15 4 = 1, nout*jtotal
IF (nct(i) .NE. 0) THEN
DO 10 § = 1, nctl(i)
k = nctn(i,))
IF (itemp(k) .EQ. 0) THEN

index(k) = {4
iteap(k) = 1
FISEIP (index(k) .NE. i) THEN
itemp(k) = 2
ENDIP
10 CONTINUE
ENDIP
15 cowrINue
* Find fractures connectad to fractures cted to les
20 itest = 0

DO 40 1 » 1, nfret

IF (icewp(i) .EQ. 0) THEN
DO 25 § = 1, nfr(i)
k = nfra(i,))
I¥ (itesp(k) .EQ. 1) THENM
iteat = 1
index(i) = index(k)
ELSEIP (itewp(k) .EQ. 2) THEN

25 CONTINUE

ELSEIP (itesp(i) .EQ. 1) THEN
DO 30 § = 1, nfr(i)
k =« nfrali,3j)
IF (itemp(kx) .EQ. 0) THEN
itest = 1
itemp(k) = 1
index(k) = index(i)

BLSEIP (iteap(k) .EQ. 1 .AND. index(i) .NE. index(k)) THEN

itest = 1
itemp(k) = 2
itemp(i} = 2
FLSEIP (iteep(X) .EQ. 2) THEN




itest = 1\
stempi(i) = 2 P E R R R R R N N E N RN

ENDIP . Print out nodal reprassentation *
30 CONTINUE P T E R E E R E RN I I I A A R B I
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ELSEIP (itemp(i) .EQ. 2) THEN
D0 3% 3 = 1, afr(i)
x » nfra(i,3)
P (itemp(k) .NE. 2) THEN
itest = 1
itenp(k) = 2
ENDIF
s CONTINUE

ENDIF
40 CONTINUE

IF (itest .EQ. 1) GOTO 20

213 13344
o pind fractures in a network vith wmore thaa one outlet
: ]
nd =0 10
DO 45 i = 1, ufrct
IP (itemp(i) .EQ. 2) THEM

SUBROUTINE listfractures

$INCLUDE j:common.a

CHARACTER ¢(200),d,s,b
DATA s,b /' ', ' /
DATA epsilon / 1.B=6 /

CALL cls(0)
IF (nnode .NE. O) THEN

* Display PRACTURE-FRACTURE table by NNODE #

icount = 0
0O 10 k = 1, nnode
IF (icount ,EQ. 0) WRITE(*,201)
WRITE(*,101) k,(xi1(k,4),1i=1,3),{xi2(k,1),4=1,3)
icount = icount + 1
IF (icount .GB., 20) THEN
CALL cls{1)
icount » 0
ENDIF
COMTINUE
IP (icount .KE, 0) CALL cls(1)

ENDIP
nd=nd +1
index(nd) = § IF (nfrect .NE. 0) THEN
ENDIF *» Display FRACTURE-FRACTURE table by NFRCT #
45 CONTINUE icount « 0
RETURN DO 20 k = 1, nfret

L BN B B BN BN B BN N BN BN AR BN AN BN BN BN BN B BN BN BN BN BN BE BN BN B B B BN IR B R AN

b Common file for FRACGEN program *

[ 20 B NN B BN DR B BE R BN IR R B B BE BN BE BN AR BN B BCEE 2 N BN B BN BF BN R BN BN BN BN ]

IMPLICIT REAL*8(A~H,0~Z) 20
PARAMETER (mx0=200,nx1=100,nx2=12,ax3=2,nx4=2100,mx5=20)

ux0: maximum number of boundary nodes in global network

ux?: saxisum number of fractures

ux2: waximus aumber of boundary surfaces (6*ux3)

nx3: maximus nuaber of boundaries

ux4s Baximum number of boundary nodes in local networks

nx5: maximum nuasber of intersections

LAE B BN BN 2N J

COMMON /a/ cosZ{3,ux3),cor0{3,axl),coal({2,mx3),cora(3,3,mx3),
nfret,nnode, nfr(mx1) act{nx1)  xinp(10,mx1),
nefn{mx1,mxS),ndef(mxt ,mx5) , nfrn{mx) , ux5), nd2x(mx1 , mx5),
xxt (mx1,3),xx2(mx1,3),xi1(mx1,3),xi2(mx1,3),index(mx1),
jtotal,ncut, xcut(9,ax2),nbond,nct{mx2) ,neta{mel ,mxs),
ndot(mx3,mxS),nd

30

IP (nfr(k) .GT. 0) THEN
IF (icount .EQ. O) WRITE(*,202)
WRITE(*,102) k,nfr(k),(nfra(k,i),i=1,nfx(k))
icount = icount + 1
IF (icount .GE, 21) THEM
CALL cls(1)
icount = O
ENDIP
ENDIF
CONTINUE
1P {icount .NE. O) CALL cls(})

* pisplay FRACTURE=NNODE table by HFRCT #

icount =« 0
DO 30 k = 1, afret
IF (nfr(k) .GT. 0) THEW
IP (icount .BQ. Q) WRITE(*,203)
WRITE(*,102) k,nfr(k),(ndfr(k,i),i=1,nfr(k)})
icount = jicount + 1
IP (icount .GE, 21) TMEN
CALL cls(1)
jcount = 0
ENDIP
ENOIF
CONTINUE
IP (icount .NE. O) CALL cls(t)
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noIr WRITE(*,102) k,ncf(k),(ncofnlx,4),i=1,nc(k))
icount = fcount + 1

1P (nbond .NE, 0) THEM tP (fcount .GR. 21) THEN
* Display FRACTURE-BOUNDARY table by NsOWD § CALL cls{1)
iocount » 0 icount = 0
DO 40 k = 1, nbond ENDIP
IP (icount .EQ. 0) WRITE(*,204) OIF
WRITE(*,101) Kk, (xx?(X,i),i=1,3), (xx2(k,1),1i=1,3) 70 CONTINUE
icount = jcomnt + 1§ I? (icount .NE. 0) CALL cls(1)
IP (icount .GE. 20} THEW
CALL cls(1) * Display FRACTURE-NBOWD table by WFRCT §
icount = O icount = ¢
morr DO 80 k = 1, nfrct
40 COMTINUE IF (ncf(k) .GT. 0) THENW
IP (icount ,NX, 0) CALL cls(1) IF (icount .EQ. 0) WRITE(®,208)
BmIr . WRITR(*,102) k,ncf(k),(ndef(k,i),i=t,nctik})
) icount » icomnt + 1
¢ Display BOUNDARY-PRACTURE table by KCU?T § IF (icomnt .GE. 21) THER
IF (jtotal .WS. 0) THEW CALL cls(1) -
icount = 0 icomnt = 0
D0 50 k = 1, nout®jtotal 1Y
r (net(x) .GT. 0) THEN ENDIF
IP (icount .2Q, O) WRITR(*,205) 80 CONYINUR
WRITE(*,102) Kk,nct(k),(nctnlk,i},ie,n0t(k)) IP (icount .NE. 0) CALL cls(1)
icommt = icomnt + 1 DIF
IF (icount ,GE, 21) THEN , RETORN
CALL cls(1) 100 PORMAY( 1x,200A1)
icount = 0 101 FORMAT(IS,EP10,3)
b g 102 PORMAT(1615)
ENDIP
50 CONTINUR : 201 FORMAT(27x, ' INTPRNAL NODES *
IP (iocount .NE, 0) CALL cla(1) . /1/4%,'%*,
. . - o= IocAation = = - - == LoCAtion = « =t
* Display BOUNDARY-NBOND table by NCUT # « /I (x) (y) (g) (x) ty) (z)*)
icount = 0 202 PORMAT(27x,* INTERINAL NODES *
DO 60 k = 1, ncut*jtotal . 1/4x,'¢ - # r r r 4 | S yi]
IF (nct{k) .GT, 0) THEN 203 FORMAT(27x, ' INTERNAL NODES '
IPF (icount .EQ. 0) WRITE(®,206) . J/4x,'? & W N N R N LD
WRITE(*,102) k,not(k),(ndet(X,i),i=1,0ct(k)) ’
icoumnt = icount + 1 204 FORMAT(27x,'EXTERNAL WODES *
IF (icount .GE, 21) THEN 7l Y -e e LOGACION = = = - o= Iooation e e o'
CALL cls(1) . N10x%,'(x) (y) (=) (x) n (z)*)
icomt = 0 : 205 FORMAT(27x,'EXTERMAL WODES *
oI - //4x,'S [] | 4 P r } 4 P wee'/)
oIY : 206 PORMAT(27x,'EXTERNAL WODES *
€0 CONTINUE . //4%,'S ¢ B B B B B ../
IF {icount WE, 0) CALL cls(i) 107 PORMAT(27x, 'EXTERNAL NODES *
BOIr . /4%, P ] s s s s 8 see'/)
208 PORMAT(27x,'EXTERNAL NODES °
IF (nfrct NE, 0) TREN . //4x,'? ] L} ] B B B eee'/)
* Display FPRACTURE-BOUNDARY table by NFRCT ¢ =

{count = 0
DO 70 k = 1, afret
IP (ncf(k) .GT. O) THEN
IF (icount .PQ. 0) WRITE(*,207)



A.3 BIM2D: Boundary Integral Method for Two Dimensional Fracture Flow

This section presents the source code for the bouandary integral method
applied to two dimensional fracture flow through a discrete fracture
network (BIM2D). Chapter 2 describes how the program calculates steady
fluid flow for saturated fractures. Chapter 3 describesgs the technique
used to solve for steady unsaturated flow. Chapter 4 presents the
methodology used for calculating tracer breakthrough curves. Inputs to
the program were described in Section A.2.

'EEEEEREEEREN NI IE I I BN BN AL B S BN SE B BN AL BN 20 B BN AN J

«
L4 2-D BIM Discrete Practure Network Model L4
» {Last Modification <« August 23, 1987) .
..'...ll..'tt..'."'.l..'...'.l.t
PROGRAM BIM2D
$INCLUDE jicommon.a
SINCLUDE j:common.b
CHARACTER®10 readfils

* Write initial screaen,
PRINT 202, CHAR(27)
OPEN(9, files’savefila’,form='binary’}
READ(9) cos$,cor0,coal,corA,nfret, nnode,nfr,nct,xinp,nctn,
. ndct,nfrn,ndfr, xx1,xx2,x11,x12, index, jtotal ,ncue,
. xcut, nbond, nct,nctan,ndct, nd
CLOSE(9)
CALL cls(1)
10 CALL cls(2)
WRITE(®,200)
READ (*,100) itype
IF (itype .EQ. 1) THEM
CALL boundary
zSEIr {(itype .EQ. 2) THEW
CALL buildmatrices
CALL global
CALL gauss
CALL aisplay
BLSEXP (itype .EQ. 3) THEN
CALL points
ELSEIP (itype .EQ. 9) THEN
CALL cls{2)
sT0R
ENDIP
<oTO 10
100 PORMAT (8410)
101 PORMAT (a10)
102 FORMAT (10£10,3)
200 PORMAT (//15x,° MAIN MENU®

. //V5x,' 1 =~ Assign Boundary Conditions’,

. /15%,' 2 = Generate and Solve BEIM Matrix’,
. /15%,' 3 = Solve at Intesrior Points’,

. /7/15%,* 9 - Exit to DOS',

J1/15%," Enter Selection: '$)
201 FORMAT (//10x,’ Enter name of data file: '$)

202 PORMAT(AY,*123%./////

o 117102, PROGRAM 70 ESTIMATE HYDRAULIC PROPERTIES®
. /10x,"° OF DISCRETE PRACTURE NETWORKS'

. fi0%,° Daveloped by Todd C. Rasmussen (6/86)'

. fV0x,’ Despartnent of Hydrology & ¥ater Resources'
. J10x,’ University of Arizona, Tucson 85721')
oD

162
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'PEEEEEEEEENEEII NI N I B B I I B B N A B I B

. Pause output and clsar screen .
SN REEEREREREIEI NI I I I B B B R B I B A B A A

SUBROUTINE cla(n)
IF (n ,PQ. 1) THEN
WRITE(",101) CHAR(27)
READ (*,102)
BoIr
WRITE(*,103) CMAR{27)
IP (n .PQ. 2) WRITE(*,104)
RETURN
101 PORMAT(A%Y,'(2%5:25R°,*Preas <RETURN> key to continue ...'$)
102 PORMAT(AY)
103 FORMAT(AL,"[27°)
104 FPORMAT(/1Sx,' DISCRETE FRACTURE NETWORK MODEL',
. /18x,' 1Implewented by Todd C. Rasmussen’,
/15x,'Department of Mydrology, Univ. of AZ‘)
BEND

FEEEEEREERENEIEE I I B BN B I I A I B *® & & NS

b4 Assign boundary conditions .

'PEEEEREAXNIEER I I 3 I B I I N B I I I A e R ST NN
SUBROUTINE boundary

$INCLUDE j:common.A

SINCLUDE j:common.b

CALL cls(0)
as=s0
WRITE(®,200)
00 10 3 = 1, jtotal
DO 10 Xk » 1, ncut
nem+1
WRITE(*,201) 3, Xk
10 READ (*,*) nbtype(s), bvalue(m)

RETURN

200 PORMAT (//10x,' Enter boundary type and value',
. /10%,° ¢ 0 = prescribed flux',
. /ox,* * 1 = prescribed total head',

/10x,’ * 2 = constant pressure head'//)
201 PoRAT (215,10x,'(1,x):  *$)
o

LN K BE BN BN BN BE BN BN B R BE BE BE AR BN BE 3K BE BE BE B BN BY B BN B BE BE BN BE L BE B BN J

. Build Boundary Element Matrix

L 2R Sk IR BN B BN BN BN BN BN BN BN BE BE B BE BE NN R IR AR BN R AR B L B B BN BN IR AR AR A A J

SUPROUTINE buildmatrices

DIMENSION t1(2), t2(3)

DIMENSION zsign(8), ysign(8)

DATA xsign / 1, 1, 0,~%,=-1,=1, 0, V/
DATA ysign / 0, 1, 1, 1, 0,=1,=1,~1/
DATA iseed / 12348 /

an =0
anasen

* foop through all contributing fractures
.

IF (nd .NE. 0) THEN
PO60i =1, nd
11 = index(i)
rl = xinp(7,14)
x2 » xinp(8,1i)
* Elliptic vs. rsctangular fractures
IP (xinp(10,11) .PQ. 1.) THEN
nc(1,i) = 8
£12 = DSQRT(1/(1/(r1*r1) + 1/{xr2*r2)))
DO S ) = 1,8,2
x(j,1) = xsign{j} = zrt
y(3,4) = ysigm({j) * r2
x(j+1,1) = xaign(j+1) ¢ r12
] y{j#1,1) = ysign(i+1) * n12
FLSE
ne{1,l) = 8
pPO1W3=1,8
x(J,1) = xaign(j) * 1

10 y(3,i) = yeigm(}) * r2
ENDIP
om(i) = 1
pill 111

* ILoop through all intsrsecting fractures
L]

IP (nfr(ii) .NR. 0) TMEN
DO 37 § = 1, nfr(ii)
om(i) = oa(4) + 1
ne(nm(i),i) = nc(nm(i)=1,4) + 2
DO 20me 1, 2
33 = nc({nm(i)=1,1) ¢ n
IF (m .EQ. 1) THEN
DOISk=1,3

135 t2(k) = xi1(ndfr(ii,)),k)
ELSE
DO 17T k=1, 3
17 t2(k) = xi2(ndfr(ii,)).k)
ENDIF

CALL supqgtl(1,t2,%1,xinp(1,i1))
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2(33,4) = t1(1)
y(33.4) = £1(2)
TP (INP(xinp(10,i1)) .BQ. 1) THEM
I (et () ver (1)) /(e de(e1(2) *1(2) ) /(x2*22) ) . EQ. V)
. CALL insertnode(ti1(1),t1(2),i)
ELSK
¢ ((DABE(t1(1)) (EQ. r1) .OR. (DASS(t1(2)} .BEQ. r2))
N CALL insertnode(ti{1),t1{2),i)
BDIF
30 CONTINUR

* Pind ends of fractures
IF (L HB. V) THEN
DO 35 k= 1, 11
1P (index(k) .EQ. afyn(ii,j)) THRN
00 30 1 = 1, afr{index(k))
IP (nfra(index(k),l) .EQ. ii) THEN
pO 25 as=y, 2
33 =» na{nm{i)=1,i) + m
Xk = ne{l.Xk) + =
u(ij.i) = 0.

u(kk,k) = 0,
kode(3j 1) & =(128°K + kk)
25 kode(kk,k) = =(128% + 33)
BOLF
30 CORTINGE
BpIr
s CONTLWUE
noIP
37 COMTIMUE

ENDIF

anhRAe®

* toop through all intersecting boundaries
*

IP (ncf(ii) .NB. 0) THEN
DO 45 j = 1, nef(il)
ns(i) = nm(i) + 1
nc(nm(i),s) = nc(am(i)=1,1) + 2
DO S m=»1, 2
35 = nol(nm(d)=1,1) + m
IP (= «5Qe 1) THEN
DO k=13

40 t2(k) = xx\(ndcf(ii,}). k)
ELSE
DO 42 k = 1, 3
2 (k) = xx2{ndof(ii, i), k)
oIr

CALL supgtl{1,t?, tt.xinp{1,41))
2(33,4) = €11}
yi33.4) = €1(2)

* aApply boundary conditions
IF {nbtype({ncfn(ii,j)) .EQ. O) THEM
kode(jj,i) =

u;(ﬁ.i(.) = bvalue(nofniil,)))

BLF (nbtypei(nctniii,i)) .EQ.
koda(33,4) = 0 $ R 1) e
u(33,1) = bvalueinctn(ii,j))

RLSR
kode(3j,1) = o
u(33,i) = bvalue(ncfn(ii,§)) « x(33,4)
45 CALL insertnode (61(1),£1(2),1)
ENDIP

00 $0 J = 1, no(1,4)
kode(j,1) = 1
50 u(j,i) = 0,

roegesw

: rind total number of nodes,

83(1) = an

B{1) = nc(nm(i),1)
B8 = nn + a(i)

IP (nn .GT. ux0) TUEM

’m'.'hﬂliﬂmw ’
CALL als(1) tema
KETURM

ridxy
60 CowTINUE
Raor
RETURN
w0
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'...'.'.'.....'..-....Q'...I"...

. Insert nodes along circumf of fracture

'.....'.'."."."'."'..'."Q...

SUBROUTINE insertnode (xx,yY,1i)
SINCLUDE j:common.a
SINCLUDE jicommon.b

tP (yy .NX. 0) thataB e xx/yy
IP (yy .2Q. 0) thetas = 1,D10

IF (XX .GE. O ,AND. Yy .G?7 0) jcase =1
IF (xx LT, O ,AND, YY .GE, 0) jcase = 2
IP (¥x LE, 0 ,AND, Yy .LT. 0) jcase = 3
IP (xx ,GT. O .AWD. YY .LE. 0) jcase = 4

D0 20 k= 1, ne(1,i)
TP (y(k,i) .NE. 0) thetaPf = x(k,1i)/y(k,i)
P (y(x,i) .EQ. 0) thetaP = 1,010

P (x(X,i) .GE. O .AMD. y(k,1) .GT. 0) icasa =1
IP (x(X,i) .LT. O AW, y(k,i) .GE. 0) icase = 2
¥ (x(k,i) .LE. O .AND, y(k,i} .LT. 0) icase = 3
™ (x(k,i) .GT. 0 .AMD, y(k,i) .LE, 0) icass = 4

IP (icase .P). jcase AND, thetaB ,GT. thetar) THEN

DO 10 § = nc(am(i), 1), k, =1
xode(j+1,1) = kode(j,1)
IF (kode(j,i) .LT. 0) THEW
»k = ~kode(),i) / 128
aj = MoD(~kode(j,1),128)
xode(mj,nk) = kode(mj,mk) = 1
moLe
u({3+1,1) = u(j,i)
q(3+1,1i) = q(l,1)
x{3+1,1) = x(j,1)
10 y(3+1,1) = y(j,4)
DO 15 § = 1, om(d)
15 nc(j,i) = ne(j,i) + 1
x{k,i) = xx
yix,i) = vy
RETURN

20 CONTINUE
RETURN

LI 20 2R B B B BE BN BN BN BE B BN R BN BN 2R BE BN SR BN K BN BE BN BE BE BN BN BE BE K BN K J

Used to parform coordinats transformation from global 3-D region
(dafined using the sasple region) to the local 2-D region

(defined for each individual fracture plane).

[ IR B BN BE K R BN SR NE BE BN BE R BN BN BN R NN BN BN BN BE BN BN BN BE BE B BN B BN B AN J

SUBROUTINE supgtl(ni,tp,xyl,xcn)
IMPLICIT REALS(A=N,0=2), INTEGERY4(I-N)

DIMEWSION xyl(2,ni),tp(3,ni),xen(9),xc2(3),xc3(3)

DATA error / 1.D=-6/
DATA radian / 0.0174532925199433/

alpha = xcn(4) * radian
beta = xen(5) * radisn
theta @ xcn(6) * radian

%02(1) = SIN(beta)*COS(alpha)
%c2(2) = SIN(beta)*SIN(alpha)
%02(3) » -COS(bata)

xc3(1) = -SIN(alpha)
xc3(2) ® cCoS(alpha)
xc3(3) = 0.0

PO 10n =1, ni
IP (DABS(xc2(3)) .GT. error) THEN
xh = (tp(3,n)-xcn(3))/xc2(3)
FLSE

xb = (xc3(2)*(tp{1,n)-xcn(1))=xc3(1)*(tp(2,n)=xcn(2)))

. / (xc3(2)*xc2(1)=xe3(1)*xc2(2))
noIr
Ir (DABS(xc3(1)) .GT. error) THEN
yb = (tp(1,n)=xcn(1)=xb*xc2(1))/xe3(1)
ELSE
yb = (tp(2,n)=xcn(2)=xb*xc2(2))/203(2)
ENDIP
xyl{1,n) = xb*COS(theta) + yb*SIN{thata)
10 xyl(2,n) = =xb*SIN(theta) + yb*COS(theta)

L 4
E
L
-
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[ N B BN BN BN BN BE BE R BN BN BE BN BN B BN IR BN BN EE NN K BN B R BN BE B 3R B R B BE BN

. Boundary El t program adapted from bbia (1978) .

* Solves system of equations of the form # U = G Q hd

L 2 BN B BN NN K BN BN BN BN BN BE Bk BN BN BN BN BN BN BN BN BN NN NN B NN BN BN BN BN BE BN BN B BN ]
SUBROUTIME global

SINCLUDE j:coamon.a

$INCLUDE j:common.b

* Clear QQ and GG
DO 25 { = 1, mx0
qqii) = 0.
DO 25 i =1, mx0
28 ggli,j) = 0.

* Loop through all domains
D0 SO i =1, nd
t = xinp(9,index(i))

* Clear G and H
DO 10 3 = 1, n(i)
DO 10 k = 1, n(4)
h(j,k) = 0.
10 gli.kx} = 0,

DO 20 § = 1, n(i)
DO 20 k = 1, n(i)
1 = next(k,nc(1,i),nm(i))
n = last(k,nc(1,i),nm(i))
IP ((3 .M, k) AND, (J .NE, 1)) THEN
CALL integral (t,x(3),i),y(3,i),x(k,1),y(k,i),x(2,4),¥(1,1),
. al,a2,b1,b2)
(3, k) = h(j,k) + at
gii,x) = g(3,k) + bt
n(3,1) = hij,1) + a2
g(3,1) = g(3,1) + b2
h{3,3) = h(3,j) = at =~ a2
ELSB
ax = x(1,1) = x(k,i)
ay = y(1,1) -~ y(k,i)
sr = DSQRT(ax®ax + ay*ay)
bt = sr * (1.5 ~ DLOG(sx/DSQRT(t))) / 2. / ¢t
b2 = sx * (0.5 - DLOG(sr/DSQRT(t))) / 2. / ¢t
IP (k .NE. }) THEW
gli,k) = g(j,k) + b2
g(3,1) = g(3,1) + b1
ELSE
g(3,x) = g(j,k) + b1
g(i,1) = g(j,1) + b2
BNDIFP
ENDIP
20  CONTINUR

1 = nj{i)
DO 50 k = 1, n(i)
m = kode(k,i)

45

®) = HOD(-m,128)
sk = ~n/128
sl = nj(mk)emi
IF (m .GT. 0) THEN
DO 30 J =1, n(4)
qa(l+3) = qq(l+j) - g(3,k) * u(x,i)
gg{led,1¢k) = = h(3,k)
ELSEIP (m .EQ. O) THEN
DO 35 3 =1, a(i)
qa(1+3) = g{l+3) + b3, k) * ulk,i)
gg{lel,l+k) = g(j, k)
ELSEIP (i .LT. mk) THEN
DO 40 3§ = 1, n(4)
gg(1l+j,ml) = <-h(j,k)
gg(1+3,14k) = g{j.k)
ELSE
Do 45 § = 1, n(4)
gg(1+j,ml) = —g(j,k)
gg(lej,1ek) = <h(}, k)
ENDIP
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L2

LN

10

....Q..'ﬁ.".."..."'.l...'.

*
Compute off-diagonal elements of G and H by L4
numerical integration along boundary elements. .

.tl..t'l"l.....i."ttl....t..

SUBROUTINE integral (t,x,¥,x1,y1,%x2,¥2,41,42,b1,b2)

IMPLICIT REAL*S (A=H,0+%) -

DIMENSION £(6), w(6)

DATA £ /0.125233408511469, 0.367831498998180, 0,587317954296817,
0.769902674194305, 0.904117256370475, 0,981 560634246719/

DATA ¥ /0.249147045813403, 0.2334925365383%5, 0.203167426722068,
0.160078328543346, 0,106939325995318, 0,047 75336396512/

ax = (x3 -~ xt) / 2.
ay = {(y2 - y1) / 2.
e = (x2 +x1) / 2
by = (y2 + yt) / 2.
IF (ax .NE. 0) THEW
ta = ay / ax
dist = DABS{(ta®z = y 4 y1 = ta®x)) / DEQRT(ta*ta + 1))

dist = DABS({x ~ x1)

"I

P ( (xtex)®(y2-y) LT. (x2=x}*(yil-y) ) dist = -dist
al = 0,

a2 = 0,

bt = 0,

b2 = 0,

DO10 i =1, 6

gi = £(1)

pO10 3=, 2
IF (J J2Q. 2) gi = =gl
Xt =X~ (ax ¢ gi + bx)
yyey - (ay * gi + by)
ra = DSQRT(xx*xx + yy*yy)
ar = DSQRT(ax*ax + ay"ay)

g = ar * w(i) * DLWOG(ra/DSQRT(t}) / 2. / ¢
h war * wil) * dist / (ra*ra) / 2.

at s at +h* (gl ~-1,)
a2=az=-h* (qi +1.)
bt e bt +.¢g * (gi = 1.)
b2 = b2 ~g * (gt +1.)

RETURN

10

LR 2K BN BN BE BN BE B BN BX NE BN BN IR BN BN B AR A AE BN BE BN BE BN BN BN BY )
PFind subsequent node .

L B 2N BE BN BN BN 2R BN BN BN BE B B BN BN 2R BN BN BE BE BE BN BE BE B BN BE AR BN J

INTEGER function next (},ne,m)

DINENSION nc(*)

next @ j ¢ 1

IF (J PQ. nc(1)) THEN

next = 3

ELSEIF (m .GT. 1) THEN

D010 k=2, m

IP (5 .PQ. nc{k)) pext = ne(k=1) +

ENDIP

RETURN

D

L IR 3R BN BN BN BE BE B BN BN BE B BN BN BE B SR B BX 2 BN BK BN IR BN BE B BN AN

rind previous pode »

LK 25 20 IR BN BN BN R BN BN BN 25 BN BN BN BE B BE B 2R BN B AR BN BN BN BN BN BN J
INTEGER function last (j,nc,m)
DIMENSION nc(*)

last = J = 1
IP (3 M. 1) THEN

last = nc(1)
ELSEIF (n .GT. 1) THEN

DO10k= 2, m

IP (J +PQ. nc(k=1)41) last = ne(k)
ENDIF
RETURN
o0
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. Gaussisn elimination b . Reduce and Display Global Equation .

C N K 2R BN BE BE BE B BE BN AN BN BN BE BN B BN BN X SR BE NN BE BN BN BN BN BE B BE BRI J L0 IR B BN BN B BN AN IR BN BN BN BN R BN BE BN BL BN BE BN BN BE BE B B AR BN R AR BF A J
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SUBROUTINE gauss
SINCLUDE J scommon .a
$INCLUDE j:comson.b

DATA epsilon / 1,0-10/

iezzor = 0
DOSO1ls=1, a1
* Exchange rows if zero in diagonal
IF (DABS(gg(l,1)) LY. epsilon) THEM

SUSROUTINE display
$INCLIDE jscomaon.s
$1NCLUDE 3 scommon,b

sum = 0,
0O W4Limy, nd
00 10 § = 1, n(i)

u = kode(3,1)
DO 20 kK = 1+1, ma o} = 10(-m,118)
IF (DABS{g9(k,1)) .CT. epeilom) THRN nk = -un/128
P1Wisl, X = nj{mk)sn)
c = ggl(l1,3) 1lwnj(i) 3
ggil,3) = gg9(k,3)
10 ga(k,3) = IP (m .GY. 0) THEN
c » g3(l) qé3,i) = ulj,i)
Qq{l) = qqik) ulj,i) = qa(1)
qi(k) = ¢ ELEEIF (m .EQ. O) THEM
Go70 30 a(3,i) = gq(l)
oLy ELSEIr (1 LY. nk) THEW

20 CONTINGR
* Can't find non-zero to exchange with, singular matrix
PRIN? *, ' * * Gingularity * * 1In zow', 1

ql3.4) = gqll)
ulj,i) = qq(k)
ELER

CALL cls{1) qi3 1) = -qg(k)
RETURM wi,A) = gqld)
- ive g

® Divide row by diagoasl cosfficient
0 e =ggll,l)
ogil) = gq(l) / ¢

- e
10 CONTINUE
* Display zesults

DO 40k w 141, mn =1
0 99(l,k) = 99(l,k) / ¢ ssum & O,
* Rliainate unknowa Q{L) from rov J GPEN{1,L2ile=’0atput’)

VO SO 3= 1le, na
¢ = gg(l,1)
«lI) = gill) - c * gq(1)
00 SO k = 1+, s
50 99(3 k) = gg(3),k) - ¢ * ggl(l.,k)
* Compute last unkmowa
IF (DABS(gglnm,nn)) 1B. epsilon) THEN

WRITE (1,601) index(i)
00 20§ =1, nil)
* rix page break
Ir (00{3-1,20) .EQ. 0) TERM
1 () .ME, 1) CALL als(V)
17 (J .EQ. 1) CALL cls(0)
WRITE (*,601) index(1)

PRINY ®, * * ¢ Singularity ®* * Ia xow’, na, 9g(mm,an) aoLr
CALL cls(l)
RETURS * Adjust discharges by leagth
ELSR 1 = next(§,nc(1,i),nali))
qginn) = qqina) / ggina,na) k = last(),nc(1,1),am{1))
- i g dl = DGQRT{DABS(x(] ,1)=x(1,4))**2 + DABS(y(),4)~y(1,i))*=2)
* Back substituts dk = DEQRT{OABS(x(),i)-x(k,5))**2 + DABS(Y(},i)=y(k,1))**2)
DO 6D ) =1, na=-t a4 = (3.8q(),5i)*(dledk) + dlrq(l.i) + dkeq(k,i}}/8.
1 » oo~} sun = sus + d
DO 60 k » 141, nm 1P (3 .EQ. nelij, L)1) THEN
(] qaf(l) = qai{l) - gg{1,k) * qg(k) ssum = 0,

RETURMN 3 =33 +1
B - e g
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ssum = geum + 4

pisplay locations, potentials, discharges, and mass balance
WRITR (*,602) 1,3,33,%(3,4),7(4,4),u(d,4),q(3,1),4,00u
20 WRITE (1,602) 1,3,33.%(3,4),¥(3,4),0(3.4),a()4),4,00um
WRITE (.'”3’ sun
WRITE (1,603) sum
30 CALL elsl(1)
CLOSE(1)

RETURN
60t PORMAT (° Practures *,15, .
. /4:,'1',4:.'n',4x.'-'.7:,'3',91:.'7',9:.':'.n.'q'.n.'d'.h.'l'l)
602 FORMAT (3183,6£10.3)
603 FORMAT (/' mass balance: *,£10.4)
)

ta potential at interior points .

....'....'.'..'.............‘...

SUBROUTING points

SINCLUDE §icommon.a
SINCLUDE jscommon.b

pL = DACOS(=~1.D0)

Input domain and location
1 CALL cls(0)
WRITE(®,201)
READ (°,%) 3
Ir (4 .GT, M) GOTO 1
IF (1 .PQ. O) RETURN
¢t @ xinp(9,index(1))
2 WRITE(*,202)
READ (*,*) ox, oY
IP (cxt 2Q. ~99,) QOTO 1
som = 0,
00 10 k = 1, n(s)
1 = pexei(X,nc(1,4),m{i))
CALL integral(t,cx,ay,x(k,i),y(k,4),x(1,4),7{1,4),a1,a2,01,b2)
10 sumeeum+((b19q(k,1)+b29q(1,4) )=(at*a(k,1)+a2%4(1,1)))/(2.%pL)
WRLITE (*,203) nd, ox, oY, sum
©oT0 2
201 PORMAT (/° Entsr Domain Mambar ("0" to end)s '$)
202 FORMAT (/' Enter (x,y) coordinates ("-99,,-89.° to end)s '$)
203 PORMAT (/° Domains *,13,' (x,y}s (*,2£10.3,') FPotencials ',£10.3)
N0

[ 2R BN BN BN BN N BB B BN BE BN BN BU B BN BN BE BX B BE BN BE BN BN BN BN BN BE AR BE BE BE B AN J

ComMMON file for BIMZD N
IR 2K BN BN BN BN BE BN BE BN BN BE BE BE B BE BN B RN BN BN U BN BE BN BE BN BX BN IR BN BE BN AN J

COMMON /b/ nbtype(mx2) ,bvaluve(mx2),

B nn,n({mx4),nd (med), nu(nxd) ,na{ond , axd) , x(mxd,nxd),
. y(mx4,mxd), u(nxd,mxs), q(mx4,nx4) , kode(mnd, axd),

. : ’(-‘om"h(ﬂ,u‘,'“(m)'”(m.m’




A.4 BIM3ID: Boundary Integral Method for Three Dimensional Coupled
Fracture-Matrix Flow

This section preseats the source code for the boundary integral uethod
applied to three dimensional flow through a discrete fracture aetwork
embedded within a porous matrix (BIM3D). Chapter 2 describes how the
program calculates steady fluid flow for saturated fractures. Ianputs to
the program are presented as Table A.8.

Table A.8: Sample Input Data for Program BIM3D.

® @ ® @ @ ® 8 @ W O @ @®@ G W@ W @O WS W WSS WS W e W WSO =

1

35

0. 0. 0. 1 0.
0.5 0. 0. 1 0.
0.5 1. 0. 1 o.
0. 1. 0. 1 o.
0.25 0.5 0. 1 0.
0. 0. 1. 1 0.
0.5 0. 1. 1 0.
0.5 1. 1. 1 o0
0. 1. 1. 1 0.
0.25 0.5 1. 1 0.
0. 0. 0. 1 0.
0.5 0. 0. 1 0.
0.5 0. 1. 1 o.
0. 0. 1. 1 0.
0.25 0. 0.5 1 0.
0. 1. 0. 1 o.
0.5 1. 0. 1 0.
0.5 1. 1. 1 0.
0. 1. 1. 1 0©.
0.25 1. 0.5 1 oO.
0. 0. 0. 0.
0. 0. 1. g.
0. 1. 1. 0.
0. 1. 0. 0.
0. 0.5 0.5 0.
0.5 0. 0. 5.
0.5 0. 1. 5.
0.5 1. 1. 5.
0.5 1. 0. 5.
0.5 0.75 0.5 S.
0.5 0.50 1. 5.
0.5 0.50 0. 5.
0.5 0.25 0.5 5.
0.5 0.50 0. 1 0.
0.5 0.50 1. 1 0.
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5

5
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5

5
10
10
10
10
10
15
15
15
15
20
20
20
20
25
25
25
25
30
30
30
30
33
33
33
33

Table A.8 (Continued):
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Table A.8 (Continued):

- ® e e e W e e e % e e ® = @ ® @ ¢ @ @ 9 o

g. 0. 1 0.
00 0. 1 0.
0.5 0. 1 0.
0.5 0. 1 0.
0.25 0. 1 0.
0. 1. 1 0.
0. 1. 1 0.
0.5 1. 1 0.
0.5 l. 1 0.
0.25 1. 1 0.
0. 0. 1 0.
0. 0. 1 0.
0. 1. 1 0.
0. 1. 1 o.
0. 0.5 1 0.
0.5 0. 1 0.
0.5 0. 1 o.
0.5 1. 1 0.
0.5 1. 1 0.
0.5 0.5 1 0.
0. 0. 5.
0. 1. 5.
0.5 1. 5.
0.5 0. 5.
0.25 0.5 5.
0. 0. -154 0.
0. 1. =155 0.
0.5 1. -159 0.
0.5 0. -160 0.
0.25 0.5 -161 0.
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100.
24

1 4 5
2 1 5
3 2 5
& 3 5
6 7 10
7 8 10
8 9 10
9 6 10
11 12 15
12 13 15
13 14 15
14 11 15
16 19 20
17 16 20
18 17 20
19 18 20
21 22 25
22 23 25
23 24 25
26 21 25
27 26 30
26 29 30
29 28 30
28 27 30
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*

* 3D Boundary Eleaent program adapted from Brebbia (1978)

b Solves system of equations of the form H U = G Q

2K BN B BN BE BE BN BE BN BN BE B B BE BN BN BE BE BN B BE BE R BE BE BN BN B BN BE BN 4
PROGRAM BIM3D

S$INCLUDE j:common
CHARACTER*10 readfile
CHARACTER*80 chr

* Read Data and Build Global Arrays

1 CALL cls(2)
* petermine input file name
WRITE(*,101)
READ (*,102) readfile
OPEN (1,fila=ceadfile, BRR=99)

* Echo input data?
WRITE(*,103)
READ (*,104) list

* Read nusber of domains
READ (1,108) nd
IP {list.EQ.1) WRITE(*,105) nd

IF (nd ,GT. mx2) THEN
WRITE(*,108)
CALL cls(1)
GoTO 1

ENDIF

* Inpyt data for all domains
DO 0 i=1, nd
REBAD (1,105) n(i)
¥ (list.EQ.1) WRITE(*,105) n(i)

IF (n(i) .GT. mx3) THEN
WRITE(*,108)
CALL cls(1)
GOTO 1

DIy

DO 10 ) = 1, n(i)
READ (1,106) x{3,4),y(3,1),2(),1),kode(3,4),u(1,1)
10 IPF (list.EQ.1) WRITE(*,107) 4i,3.x(3,i).y(§.1).2(3,1),
. kode(),i),u(i. L)

READ (1,109) t(i)
IF (list.EQ.1) WRITE(*,109) t(i)
Ir (list.EQ.1) CALL cls(1)

READ (1,105) mO(4)
IF (1ist.EQ.1) WRITE(*,105) mO(i)

2 % & &

20

IF (w0(1) .GT. mx3) THEN
WRITE(*,108)
CALL cls(1)
G070 1

oY

DO 20 3 = 1, m0(4)
READ (1,105) mt1({3,i), (mm(k,3,i), kwi,m1{3,i))
IF (list.BQ.1) WRITE(*,105) mi(j,i), (ma(k,j,i), ker,m1(j,1))

* rind total nuaber of nodes.

30

IP (L «EQ. 1) nj(i) = O
IF (4 B. 1) nj(8) = n{i-1) + nI(i=1)
IF (1ist.BEQ.1) CALL cls(1)

* Done with data file, close it,

101
102
103
104
105

107
108
109

CLOSE{1)
an = nj(nd) + n(nd)

IF (nn .GT. mx!) THEN
WRITE(*,108)
CALL cls(1)
GOTO 1

RpIP

CALL cls(2)

CALL build

CALL psck

TP (list.EQ.1) CALL plot

CALL gauss

CALL unpack

CALL sbhow

GOTO 1

sTOP

FORMAT (//10x,' Enter name of input data file: °$)
FORMAT (A10)

PORMAT { /10x,' Echo of input data? (1 = yes): '$)
FORMAT (I1)

PORMAT (1615)

PORMAT (3£10,2,1i5,2£10,2)

FORMAT (2i$,3£10.2,i5,2£10.2)

PORMAT (//10x,' Problem d Y capecity’)
FORMAT (8£10.2)




LR BN BN 2R B BE BN BE BE BN BN R BN BN NN BN B BN B IR R R BN BE B BN BN BN BN J

Pause output and clear screen *
[ BN BN BN B BN BN BN BE L BN BB NK SR BX BN BN R BE BN BN BE BN BE BE BE BN B BRI 1

- SUBROUTINE cla(n)

CHARACTER wait

LN K AR BE BN BN B BE BE BN BN BN BE BE BE BN BE IR X BN BE BN BN BE AR BN BE BF BX BE BE AN )
ta Quadrature Weighting Functions
,Q....'I‘.....l."l'.'..l."'l"..
SUBROUTINE build
$INCLUDE §:common

DIMENSION £(3,13), w(13)

.

DATA £ / 0,333333333333333, 0.333333333333333, 0,333333333333333,
I";‘I‘,;:’?";‘ ;m(;%" 3) TN . 0.479308067841923, 0.260345966079038, 0,260345966079038,
e 1oa) e . 0.260345966079038, 0,479308067841923, 0.260345966079038,
o . 0.260345966079038, 0.260345966079038, 0,479308067841923,
L« 103} CRARCZT) . 0.869739794195568, 0.065130102902216, 0.065130102902216,
(e s 104) . 0.065130102902216, 0.869739794195568, 0,065110102902216,

. ' . 0.065130102902216, 0,065130102902216, 0.869739794195568,

RETURN . . . 0.638444198569809, 0,31286549600487S, 0,048630315425316,
::; m::::; [25;25R°,"Press CRETURIO ey to contimue ...'$) . 0.312865496004875, 0,630444188560809, 0,048690315425316,
103 FORAT(AY 1+ (23°) : O eIaeea10859005, 0.04865031541NE, O, 11290246004875,
. . . o Fe Go s Do - .

104 m’(;ﬁ::'. ;;m'mw NETHOO" , . 0.048690315425316, 0.638444188569809, 0,31286549€004875,
»? Implemen « Pasmussen’, . 0.048690315425316, 0.31286549600487S, 0,630444188569609/

/15%, *‘Departeent of Hydrology, Univ, of AZ')
) ) .

DATA w / =0,149570044467670,

SLtT

. 0.175615257433204, 0.173615257433204, 0.175615257433204,
. 0.053347235608839, 0.0533472356008839, 0.053347235608829,
. 0.077113760890257, 0.077113760890257, 0,077113760890257,
. 0.,077113760890257, 0.077113760890257, 0.077113760890257/

00104 =1, nd

D0 10 § = 1, n{i)

DO 10 X = 1, n(i)
(3, k,1) = 0O,

10 alj k1) = 0,
* Compute G and B

P0D201i =1, nd

DO 20 § = 1, nli)

PO 20 Xk = 1, m0(i)

DO 20 1 = 1, wmilk,L1)=1
Ir (1 w2, mtik,i)=-1) THEN

11 = en(1+41,k,1)

ELSE

11 @ pm(1,k,1)
noIPr
12 = pm(1,k.1)
13 = mm(mi(k,i),%x,1)
CALL integral (x(3,1),y(5,4),2(5,4),x(19,4),v(11,4),2(21,1),
. x(u.l).1(12,1),:(12.1).x(u.l).y(u.i),:(u.i).
. al,a2,a3,b1,b2,b3,aveall, k,i),2,w)
g(3,11,1) =» g{),11,1) + bi/e()
g{3,12,1) = g(3,12,4) + b2/e(i)
g(3,13,4) = g(3,13,1) + b3/¢(})
h(j,11,4i) = h(j,11,1) + a1
h(3j,12,4) = h(3,12,1) + a2
n(j,13,1) = h(j,13,1) + a3
20 h{3,3,4) = h(§,5,4) wat-a2-a3
RETORN
..
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.t..l.t..t..0;"'.'..‘.'.0'......
. rind influence function between two line segments .

FEE X JE B BE BN IR B BE K BN R R BN BN BN B BE 2N BN B B 2N BN AR BE BN BN BN BN BN BN
SUBROUTINE integral (x,y,s,x1,y!,31,x2,Y2,22,x3,v3,z23,a1,42,43,
« Db1,b2,b3,area,q,v)
IMPLICIT REAL*8 (a=h,o~%)
DIMENSION ¢(3,13), w(13)

pi = DACOS(=1.D0)
twopt = 2, * pi
al =0,

a2 =0,

a3 =0,

bl = 0,
b2 = 0.
b3 = 0,

* Calculate area of integration:
area = DEQRT(({Y1*22 + y2°x3 + y3*z) = y1*23 = y2°3] = yi*sl)**2
- + (x1%y2 + x2%y3 + x3%71 = X1°yY3 = x2*yl - x3*y2)we2
+ (z19x2 + 23%%3 + 23°x1 - 21°2) - 22°x1 - 23*x2)**2) / 2,

* Calculate volume betwesn point and surface:
volums = ((x1=x)*(y2-y)*(23=z) = (X1=x)*{y3~y)®(22-2)
. +  (%2-x)*(ylay)*(z1e=g) = (x2-x)%(yi-y)*(z3-z)
+ (x3-x)*(y1-y)*(52-2) = (x3=x)*(y2-y)*(zi-x))

* Pind Gaussian Integrals:
DO 10 4 = 1, 33

rx = (g(1,4)*%) + g(2,4)*%x2 + g(3,1)%x3) -~ x
ry = (g(1,1)*y) + g(2,i)*y2 + g(3,i)*y3) - ¥
rz = (g(1,1)*8) + g(2,i)*52 + g(3,i)%33) - 3
T = DSQRT(rx*cx 4 ry*ry + rx*rs)
a =wii) * volume / r**3 / twopi
bewi) *area /r / pt
al = al + g{1,i)
a2 = a2 + g(2,4)
a3 = a3 + g(3,4)
bl = b1 + g(1,1)
b2 = b2 + g(2,1)

10 b3 = b3 + g{3,1)

LI A N
L 2R I

¢ Check for diagonal elements
IF (volume «EQs 0.) THEM
IF (x1 .BQ., X +AND. Yyl .EQ. ¥y +AND. z1 .EQ. z) THEN
bl = SFUNC(x1,y1,21,%2,¥2,32,%3,y3,23) / twopl
ELSEIP (x2 .EQ. X AND. y2 .EQ. ¥y .AND, %2 .EQ. =) THEN
b2 = SPUNC(x2,¥2,22,%3,¥3,23,x1,¥1,21) / twopi
ELSKIP (x3 .EQe. X .AND. y3 .EQ. ¥ .AND. 23 .EQ. 3) THEN
b3 = SPUNC(X3,y3,23,X1,¥1,31,x2,¥2,52) / twopl
ENODIP
BIr
RETURN
B
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. Calculate Diagonal Coefficients -
LK B IE BN BN BE BN BN BN BN BN BE BN R BN NN B BN BN BE NN K BN R BN R BN BN BN BN BN BN
REAL®S PIWCTION SPUNC(x1,y?,s31,x2,¥2,82,X3,73,33)
IMPLICIT RRAL*S8 (a~h,0-3)

X ® x3 ~ %2
ry = y3 - y2
rs = 33 = 22
r1 = DEQRYT(ZX*TX + ry*ry + rz*rx)

TX = x3 - x1
ryesyl-mn
T2 = 33 - 21
r2 = DEQRT(rX*rx + ry*ry + ri*riz)

re = x3 - x1
Tty = y2 - yh
e = 32 - 31
£3 = DEQRT(IX®TX + ry*ry + rz*rx)

alpha) = DACOS((r3*rd + r2°r2 = ri*rl) / (2.%r2*r3))
alpha2 = DACOR{(r3i*r3 + ri*cl = r2er2) / (2.°c1*r3))
alphal = DACOS((r1*z1 + r2*r2 - r3*r3) / (2.'r2*r1))

SPRC = ~r2*DSIN(alpha3)*nLoG(DTAN(alphal/2.)*DTAN(alpba2/2.))
RETURN
BD
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* Create Global Matrix .

LR IR R BN BE AR BN BE R R Bk BE BN BE BE BE B BE BE B B BE BE BR OBE BB B BE BN BN B BN 1
- SUBROUTINE pack

SINCLUDE j:commocn

* Combine H with Q to form vector of knowms
* and transfer from Q to 0Q and G to GG

DO 5 4i=1, ax1
ql{i) = 0.
DOS 3§ =1, wxt

S q99(i,3) = o,

DO SO i =1, nd
1 = nj(s)

DO 50 k = 1, n(l)

A » kode(X,1)

nj = pOD(-m,128)
X = -n/128

ul = aj(mk)en)

IF (m .GT. O).THEN
DO 10 § = 1, n(i)
q(1+)) =~ aq(l+)) - gii,Xx,i) * u(k,i)
10 gg{l+j,lek) = = hij,k,i)
ELSEIF (m .EQ. O) THEX
Do 20 § = 1, n(i)
qq(1+43) = qq{l+)) + hij kx,4) * ulk,i)
20 ag(1+j,14k) = g(9,k,1)
ELSEIF (1 .LT. mk) THEN
DO 30 3 = 1, n{i)
g99(1+3,ml) = -h(j,k,1i)
30 qg(lei,lek) » gi{j.k,1i)
ELSE
DO 40 § = 1, n(})
9g{l+j,nl) = =g(j,k,i)
40 gg(1+3,1ek) = <n(j,k,i)
ENDIP
50 COWTINUE
RETURN
o0

..'.'....-............'.'..t'....

L Plot matrix .
..t'I....t-l'.t'..'.l'i’it'tlt..t

SUBROUTINE plot
$SINCLUDE j:common

CHARACTER ¢(200),4,s,b
PATA s,b / ' ', ‘¢ ¢
DATA X /Y /

CALL cls(0)}
DO 20 4i=1t,m
DO 10 J = 1, on
IP {(g9{i,3j) .cr. 0,) THEN
e(j)ntye
ELSEIP (9g9(i,j) .LT. 0.) T™HEN
e(”-l-!
ELSE
CIs RE
ENDIP
10  CONTINUE
IF (qq{i) .NE. 0) THEM
4= 'y
ELSE
d = ‘ot
EnIFr
WRITR (*,100) (c(}),)=1,nn),s,b,s,d
IP (4 .2, (njl{k) + n(k))) =N
CALL cis(1)
k=ke+

ENDIP
20 CONTINUR
RETURN
100 PORMAT( 1x,200A1)
- ]
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SUBROUTINE Gauss

Gaussian elimination

$INCLUDE J:comamon

20
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" . Reduce Global Equation .

[ K B B BN K BN BN BN NN K BE BE NS K R BN BN BN B BN BN BN EE BN BN BN B B B BN B B ]
SUBROUTINE unpack

$INCLUDE j3cosmon

DATA epeilon / 1,B=6 /

DO 201 = 1, an=1
c = gg(l,1)
IP (¢ .LB. epeilon) THEN

WRITE (*,*) ' Singularity in row *

sTOP
ENDIF
q(l) = qq(1) / ¢
DO 10 k = 141, nn

99(1,%) = gg{l.x) / ¢
DO 20 3 = 141, nn

¢ = ggij,1)

qa(j) = qq(j) = ¢ * qqll)

DO 20 k = 141, nn

g99(j k) = gg(3, k) - c * gg(1,k)

* Compute last uaknown

* Back

30

IP (ABS(gg(nn,nn)) LB, epeilon) THEN
WRITE (*,*) ' * * gingularity * *
STOP

ELSE
q3{on) = qz(nn) / g9ginn,m)

ENDIF

subatitute
DO 30 J = 1, an~!
1= an~-j
DO 30 X = 141, mn
qq(1) = qq(l) - gg(1,k) * qq(k)
RETURM
D

' 3

In row’, nn

DO 104 =1, nd
D0 10 j = 1, n(i)

u » kode(j,1)

nj = HOD(-m,128)
nK = -n/128

X = nj(mik)+m)

1 =nj(4) +3

IPF (m .GT. 0) THEN
qi{i.i) = ulj,i)
u(j,i) = gq(1)

ELSEIF (m ,BQ. 0) THEN
q(j.i) = qq(d)

ELSEIF (i .LT. mk) THON
u(j,i) = ga(k)

BLSE
ql3,i) = =qq(k)
w{j,i) = qq(l)

o

10 CONTINUE
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. Display Solution -

"...."'.i.........'.".".'Qt.."

SUBROUTINE show
SINCLUDE §:common

OPEN (6,FILE='cutput’,STATUS= "new’)
WRITE(S,601)

sum = 0,
DO 40 { »w 1, nd

* pind flow scross each face:
DO 20 § = 1, wo(i)
* pix page break
IP (MOD(j=1,20) .BQ. O) THEN
IF (3 .NE, 1) CALL cls(1)
IP (§ EQ. 1) CALL ols(0)
WRITE (*,603)
nolr
disch = 0,
DO 10 k = 1, mi(3,1)
11 » mm(k,3,4)
IP (k NE. mi(j,1)=1) THEW
12 = ma(k+t,3,1)
ZISE
12 = mm(1,3,1)
ENDIF
13 = ra(n1(3,1),3,1)
10 disch = disch + area(k.3,1)*(q(11,1)+q(12,1)+q(13,1))/3.
20 WRITE(*,504) &, j, disch
CALL cls(1)
* pisplay locations, potentials, discharges, and mass balance
DO 30 § = 1, n(i) .
* Pix page break
IF (MmoD(j=1,20) .FQ. 0) THEN
IF (J .NE. 3) CALL cls(1)
IPF (3 .EQ. 1) CALL cls(0)
WRITE (*,601)
ENDIF .
WRITE (*,602) 4,),x(3,4),¥(3.1),3(3,4),u(3,4),q(3,1) .
30 WRITE (6,602) i,3,x(j,1).y(3.4),5(3,4),ulj,1),q(),4)
40 CALL cls(1)
RETURNM
601 PORMAT (* Poundary Nodes:' )
. //4x,°4" ,4x,'n’, 7x, %’ , 9%, 7', 9%, 's°, 9%, 'u’ ,9%,'q’ /)
602 PORMAT (2145,6£10.3)
603 FORMAT (' Boundary Faces:',Bx,'i’',4x,’s',8x,'discharge’/)
604 FORMAT (20x,2i8,5x,£10,3)
O
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Common Block File COMMON -
R R R E R E N RN A AN A A R )

IMPLICIT REAL®*8({A-H,0-2)
PARAMETEZR (mx12100,px2a3,ax3=100)

coMvoN nn,nd,n(3),n3(3),£(3),m0(3) ,8n(20,10,3),
n1(100,3),82(100,3),m3(100,3) ,avea(20,10,3),
2(100,3),¥(100,3),2(100,3),
(100,3),q(100,3) ,Xode(100,3) ,9(100,100,3) ,1(100,100,3)

COMMON /a/ ag(ext,mx1), qytaxt)




GLOSSARY

adsorption - adherence of gas molecules, ifons, or molecules in solution
to the surface of solids.

advection ~ the process whereby solutes are traansported by the bulk mass
of flowing fluid.

anisotropy - the condition of having different properties in different
directions.

breakthrough curve = a plot of relative concentration versus time, where
relative concentration is defined as C/Co with C as the
coucentration a a point in the ground-water flow domain, and Co as
the gource conceatration.

contaminant - an undesirable substance not normally present or an
unusually high concentration of a naturally occurring substance in
soil or water.

diffusion - process whereby ionic or molecular constituents move under
the influence of their kinetic activity in the direction of their
concentration gradient.

distribution coefficient - the quantity of solute, chemical or
radionuclide sorbed by the solid per unit weight of solid divided
by the quantity dissolved in the water per unit volume of water.

Fickian diffusion - spreading of solutes from regions of highest to
regions of lower concentrations caused by the concentration
gradient.

flow path - the course a water molecule or solute would follow in a
given velocity field.

fluid potential - the mechanical energy per unit mass of a fluid at any
given point in space and time with regard to an arbitrary state and
datum.

ground-water travel time - the time required for ground water to travel
between two locations along a flow path.

head, capillary - the difference in pressure head across the interface
between two immiscible fluid phases jointly occupying the pores of
a medium caused by interfaclal tension between the two phases.

head, gravitational - the component of total hydraulic head related to
the position of a given mass of water relative to an arbitrary
datum.

head, total - the total head of a liquid at a given point is the sum of
the gravitational, pressure, capillary, and osmotic heads.

head, osmotic < the difference in pressure head across a membrane
between two liquids with different solute concentrations.
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head, pressure - the height of a column of static water that can be
supported by the static pressure at the point.

heterogeneity - a characteristic of a medium in which material
properties vary from point to point.

homogeneity -~ a characteristic of a medium in which material properties
are identical everywhere.

hydraulic conductivity, relative - equal to the specific discharge
divided by the hydraulic gradient, 2 property of a porous medium,
the liquid used during the test, and the relative saturation of the
medium.

hydraulic gradient « the change in static head per unit of distance in a
given direction.

hydrodynamic dispersion - the spreading at the macroscopic level of a
solute front during transport resulting from mechanical dispersion
and molecular diffusion.

interface - the contact zone between two materials of different chemical
or physical composition.

isohead line - line along which the head is constant.

isotropy = the condition in which the property or properties of interest
are the same in all directions

matric suction - the energy required to extract water from & porous
medium to overcome the capillary and adsorptive forces per unit
volume of porous medium.

matrix - the solid framework of a porous system.

mechanical dispersion - the process whereby solutes are mechanically
mixed during advective transport caused by the velocity variations
at small scales.

permeability, relative - the property of a porous medium to transmit
fluids under a hydraulic gradient, a function of relative
saturation.

porosity = the ration of the total volume of voids of a given medium to
the total volume of the mediua.

porosity, effective - the amount of interconnected pore space and
fracture openings available for the transmission of fluids,
expressed as the ratio of the volume of intercomnnected pores and
openings to the volume of rock.

relative saturation - the ratio of the volume of water to the total
volume of voids in a given porous medium.
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retardation - the process or processes that cause the time required for
a givea solute to move between two locations to be greater than the
ground water travel time, due to physical and chemical interactions
between the solute and the geohydrologic unit through which the
solute travels.

solute - the substance present in a solution in the smaller amount.

solute transport - the net flux of solute through a hydrogeologic unit
controlled by the flow of subsurface water and transport
mechanisms.

specific discharge - the rate of discharge of ground water per unit
area of a porous medium, meagsured perpendicular to the direction of
flow.

transmissivity - the rate at which water is transmitted through a two
dimensional flow domain per unit length of flow domain
perpendicular to the direction of flow divided by the hydraulic
gradient.

unsaturated zone - the zone between the land surface and the regional water
table. Generally, the water in this zone is under less than
atmospheric pressure, although zones of positive pressure may occur
locally.
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