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NOTICE
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ABSTRACT

The boundary integral method is used to estimate hydraulic and solute
transport properties of unsaturated, fractured rock by solving the
boundary value problem within intersecting fracture planes. Flow
through both impermeable and permeable rock is determined using two and
three dimensional formulations, respectively. Synthetic fracture
networks are created to perform sensitivity studies, results of which
show that: (1) The global hydraulic conductivity is linearly dependent
on the product of fracture transmissivity and density for fractures of
infinite length; (2) The effect of correlation between fracture length
and transmissivity is to increase the global hydraulic conductivity; and
(3) Simulated flow through a fractured permeable matrix compare
favorably with analytic results.

Flow through variably saturated fractures is modeled using a constant
capillary head within individual fractures. A simulated free surface
compares favorably with an approximate analytic solution and with
laboratory results. Simulations indicate zones of water under both
positive and negative pressure, as well as regions of air-filled voids.
Travel times and breakthrough curves are determined by integrating the
inverse velocity over a streamline, and then summing over all
streamlines. Faster travel times are noted as fracture saturation
decreases for the fracture network examined.
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EXECUTIVE SUMMARY

Introduction

A computer model based on the boundary integral method is formulated to
investigate hydraulic and solute transport properties of unsaturated,
fractured rock. The model is applied to networks of discrete fractures
for the purpose of estimating steady fluid flow rates and breakthrough
curves of entrained solutes. The model formulations idealize fractures
as finite discrete discontinuities within a rock matrix. Flow and
transport through a fractured rock matrix is divided into three compo-
nents: (1) Intra-fracture (e.g., flow within a single fracture);
(2) Inter-fracture (e.g., flow within and between fractures within a
fracture network); and (3) Supra-fracture (e.g., coupled fracture and
matrix flow), each of which is governed by unique parameters.

Fracture Flow Conceptualization

Intra-fracture flow and transport is used to describe the movement of
water and solutes through individual fractures, neglecting inflows and
outflows from other fractures or the rock matrix which bounds the frac-
ture. Intra-fracture processes include the influence of fracture sur-
face roughness, channeling, and tortuosity on fluid flow and solute
transport. Inter-fracture processes are related to the effects of frac-
ture networks, such as the influence of fracture orientations, areal
extent, densities and locations. Supra-fracture processes are used to
describe the effects of coupled matrix-fracture systems, especially
solute retardation and matrix diffusion due to geochemical processes.

The treatment of fractures as finite discrete continuities offers sever-
al advantages and disadvantages over alternate conceptualizations which
idealize the porous medium as an equivalent continuum. While the dis-
crete fracture network (DFN) approach used here requires detailed under-
standing of the physical and hydraulic properties of the fractures at
the site of interest, a formidable task in most situations, the approach
offers the ability to understand in greater detail and to evaluate with
greater precision the processes which govern movement in unsaturated
fractured rock.

DFN Flow Model Parameterization

The DFN approach employed here to simulate fluid flow and solute trans-
port uses a two dimensional flow equation within fracture planes. The
hydraulic parameters of interest within the fracture plane are (1) the
fracture transmissivity and (2) the matric suction at which the fracture
desaturates, termed the capillary suction. The assumption is made that
only two zones are present within a fracture, a desaturated, air-filled
region, and a saturated, water-filled region. In the first region, the
liquid transmissivity and relative saturation are assumed to be zero,
while the transmissivity within the second region assumes a constant
value. An equilibrium air-water interface is assumed to exist between
the desaturated and saturated regions where the matric suction in the
liquid phase is equal to the capillary suction.
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Application of Boundary Integral Method

The boundary integral method is used to to solve the boundary value
problem for the geometric and hydraulic properties expected in fractured
rock. The boundary integral method takes advantage of Gauss' theorem
which reduces the problem of determining unknown head and flow rates
within a flow domain with uniform hydraulic properties to a problem
along only the boundary of the flow domain. For saturated two-
dimensional flow within a single fracture, nodes along the exterior rim
of the fracture are required. For intersecting fractures planes,
additional nodes are required along the finite lines of intersection.
Solution of the flow problem for saturated conditions can be performed
in a single iteration. Solution of the flow problem for unsaturated
flow requires that an iterative scheme be employed for determining the
position of the air-water interface.

Influence of Fracture Network Geometry

Synthetic fracture networks are created using planar fractures of finite
areal extent embedded within a three dimensional rock matrix. Once the
fracture network geometry is created, sensitivity analyses are performed
to determine the effects of variable fracture network geometric proper-
ties on inferred network hydraulic conductivity. The network hydraulic
conductivity of saturated fractures is determined for various geometric
parameters, such as fracture orientation and density. Results of the
sensitivity studies show that: (1) The global saturated hydraulic con-
ductivity for the fracture network is linearly dependent on the product
of fracture transmissivity and density for fractures of which fully
penetrate the rock volume; and (2) The effect of increasing correlation
between fractures of finite variable length and transmissivity is to
increase the global hydraulic conductivity.

Supra-Fracture Analysis

A three-dimensional flow model is used to calculate flow through a per-
meable matrix with embedded permeable fractures. Exterior and interior
surfaces are discretized using boundary elements to account for flow
between fractures and the matrix, and between the matrix and fractures
and the exterior boundaries. Results using the three dimensional
coupled fracture-matrix flow regime compare favorably with analytic
results.

Variably Saturated Fracture Flow

An important part of conceptualizing fluid travel times and paths is the
ability to locate the interface which separates the water and air-filled
regions within a fracture. Flow through variably saturated fracture
networks is modeled by assigning a constant capillary suction to
individual fractures. The air-water interface is found using an
iterative procedure which locates nodal points at the intersection of
constant total head and pressure head contours. The simulated air-water
interface compares favorably with an approximate analytic solution and
with laboratory results. Simulations indicate the presence of zones of
water under both positive and negative potential, as well as regions of
air-filled voids.
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The implications of the existence of saturated regions within fractures
(which may be under either positive or negative potential) are twofold:
(1) Equivalent continuum models which assume uniform potentials within a
variably saturated vertical fracture may provide inaccurate predictions
of flow velocities; and (2) Regions of saturation will be present in
vertical fractures at ambient suctions less than the capillary suction
of the fractures, and also in the lowermost portion of fractures under a
wide range of ambient suctions. Positive fluid potentials in fractures
can lead to the enhanced movement of water from the fracture into the
matrix, and thus attenuate fracture flow.

Travel Times and Breakthrough Curves

Travel times and breakthrough curves are determined for steady flow
conditions by integrating the inverse velocity along a streamline, and
then summing over all streamlines. The boundary integral method is used
to determine the velocity distribution at discrete points along each
streamline. The travel time is determined by dividing the distance
between points along the streamline by the averaged velocity between the
points. The total travel time is the summation of all travel times
between nodes along an individual streamline. The location of points
used to perform the travel time summation is determined by finding the
intersection of streamlines with contours of constant total head. The
intersection is found by using an iterative scheme in conjunction with
the assumption that streamlines and contours of total head intersect at
right angles. For the fracture network examined, travel times decrease
as the matric suction increases, or, equivalently, as the relative
saturation of the fracture decreases. Most of the decrease in travel
times is through regions of the fracture which are under negative poten-
tial, while the travel times within the positive potential zone are
either unaffected or substantially increased.

Matrix Diffusion and Retardation

The effects of retardation and matrix diffusion due to sorption and
migration into the rock matrix, respectively, are shown to delay and to
attenuate solute breakthrough curves. A method for demonstrating the
appropriateness of using a constant matrix diffusion attenuation coeffi-
cient is introduced which is based upon determining under what condi-
tions the time rate of change of the attenuation coefficient is neglig-
ibly small.

Conclusion

A discrete fracture network (DFN) model is used to investigate the
influence of variable fluid saturation and fracture network geometric
properties on fluid flow rates, travel times and solute breakthrough
curves. In contrast to equivalent porous media models which generally
neglect fracture geometric properties and assume uniform saturation
within individual fractures, the DFN formulation accounts for more
complex flow processes. By focusing on fracture geometries and the
position of an air-water interface within a fracture, more realistic
estimates of flow and transport properties are obtained.
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CHAPTER 1

INTRODUCTION

The ability to characterize the movement of fluids and solutes through
fractured rock media of low hydraulic conductivity is a necessary pre-
condition for identifying sites suitable for the isolation of hazardous
materials. Sites located in media of low hydraulic conductivity are
attractive because potential travel times from the zone of emplacement
may be long compared to the rate at which the hazardous materials,
especially high-level nuclear waste (HLW) and any by-products, decay.

The estimation of travel times from the containment zone to the acces-
sible environment requires that a conceptual-physical model be formu-
lated and solved using either analytical or numerical techniques, or
both. The conceptual-physical model must be rational and subject to
experimental verification. In addition, if a numerical technique is
employed to determine travel times, the algorithm must be accurate and
efficient. Lacking these properties, the derived information may not
provide reliable estimates of the containment capacity of the site.

To provide experimental verification of the conceptual-physical model,
the Apache Leap Test Site has been developed by the University of
Arizona under contract with the U.S. Nuclear Regulatory Commission. The
site is also used to investigate characterization procedures for fluid
flow and solute transport in unsaturated, fractured rock. Nine bore-
holes have been installed at the site which is located near Superior,
Arizona, in slightly welded volcanic tuff. A series of hydraulic,
pneumatic, and tracer tests have been and are being performed at three
meter intervals along the boreholes. To help design and interpret these
tests a sampling and modeling strategy must be applied. The purpose of
this document is to provide a methodology which can be used to design
and interpret the field testing activities.

1.1 Formulation of Flow Through Fractured Rock

The characterization of ground water flow and the attendant transport of
dissolved solutes in fractured rock is conceptualized as having three
distinct components, termed intra-, inter-, and supra-fracture flow.
Each component is described using different physical-chemical processes
and parameters, the understanding and quantification of each component
being necessary for the complete characterization of a flow system.
Figure 1.1 illustrates the scope of the relative processes.

It is proposed that intra-fracture flow be used to describe the movement
of water through individual fractures, neglecting inflows and outflows
from other fractures or the rock matrix which bounds the fracture. It
is assumed that the walls of the fracture are impermeable, i.e., there
are no sources or sinks from other fractures or from the matrix. The
walls of the fracture can be assumed to be parallel with a finite, non-
zero aperture, or a distribution of fracture apertures can be used to
describe intra-fracture aperture variability. Montazer and Wilson
(1984) and Wang and Narasimhan (1985) present formulations using circu-
lar regions of pendular water to account for aperture variability.
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SUPRA-FRACTURE PROCESSES
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Figure 1.1: Nesting of fluid flow and solute transport processes in
fractured rock.
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Unlike intra-fracture flow which only incorporates fluid flow and solute
transport through individual fractures, inter-fracture flow incorporates
hydraulic factors associated with flow through a network of fractures,
neglecting inflows and outflows from the rock matrix. The incorporation
of additional dimensions in the modeling of fracture networks results in
more connections between two points or surfaces than if flow through a
single fracture is considered. By including alternate flow paths, a
more likely fracture connection between two points or surfaces may
occur.

Supra-fracture flow and transport, refers to the movement of water and
solutes through a fractured rock matrix of non-zero permeability. The
evaluation of the importance of supra-fracture flow requires that the
interactions between the matrix and the embedded fractures be evaluated.
Wang and Narasimhan (1985) have investigated the effects of sorption on
fracture surfaces, as well as the movement through the matrix around
fracture asperities. Other important factors affecting ground-water
travel times and fluxes in the unsaturated zone are the saturated and
relative hydraulic conductivities, the moisture release curve, and the
stratigraphy or variation of these properties over space. At any point
in a geologic medium, the saturated hydraulic conductivity generally
remains constant, only changing due to variable stress loading and
temperature changes. Unsaturated hydraulic conductivity, however, can
vary with water content over time at a point, even at constant stress
levels and temperatures. To determine solute travel times through frac-
tures embedded in a porous matrix the effects of sorption and matrix
diffusion must be considered. Other processes, such as chemical precip-
itation and dissolution, chelation, colloid formation and movement,
radioactive decay and the attendant production of decay and/or degrada-
tion products, and volatilization of the solute, may also be important
in controlling solute transport.

1.1.1 Intra-Fracture Flow and Solute Transport

Fluid flow through individual fractures has been studied in the labora-
tory by Sharp (1970), Iwai (1976), Schrauf and Evans (1986), Kilbury et
al. (1986) who demonstrate that a linear relationship exists between the
flow rate and the applied fluid gradient, as long as flow is laminar.
Laboratory and field tests, along with simulation models, have document-
ed the effects of fracture roughness (Schrauf and Evans, 1986), tortu-
osity (Tsang, 1984), and channels (Tsang and Tsang, 1987) within indivi-
dual fractures on the measured fluid flow in response to an applied
fluid gradient.

A description of physical processes affecting solute dispersion is
provided by Neretnieks (1983) and the effect of flow channels within
fractures is described by Tsang and Tsang (1987). Analytical solutions
developed by Tang et al. (1981), Sudicky and Frind (1982, 1984),
Rasmuson (1985), Rasmuson and Neretnieks (1986), and Moreno and Rasmuson
(1986) have yielded important results concerning the physical processes
of dispersion, retardation and diffusion within individual fractures.
Rasmuson et al. (1982) and Neretnieks and Rasmuson (1984) have presented
an integrated finite difference model for simulating the movement of
radionuclides in a stream tube with arbitrary velocity. In addition,
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the effect of local permeability perturbations on observed dispersion
within porous media has been described by Neuman et al. (1987). Labora-
tory studies of dispersion in a natural rock fracture conducted by
Moreno et al. (1985) are the only results available for model calibra-
tion.

Fluid flow through variably saturated fractures has received less atten-
tion than single phase fracture flow. Wang and Narasimhan (1985)
proposed a phase constriction factor which accounts for zones of pendu-
lar water around fracture asperities that increase in size as the fluid
suction decreases. Validation of this model has not been performed to
date using field or laboratory flow studies, although fracture surface
mapping studies by Myer et al. (1986) to determine the fracture void
geometry suggest that the phase constriction factor may be a viable
descriptor of fracture hydraulic properties. Evans and Rasmussen (1988)
describe ongoing laboratory and studies which describe the influence of
fluid suction on fluid flux and velocity, as well as solute transport
processes.

1.1.2 Inter-Fracture Flow and Solute Transport

A quantitative means for estimating the hydraulic properties of a
discrete fracture network using information about fracture density,
aperture, orientation, and assuming infinite fracture length was pre-
sented by Snow (1965, 1969), which provides an estimate of the equiva-
lent porous medium hydraulic conductivity tensor using data easily
gathered from boreholes or mines. While Snow assumed that fractures are
of infinite length, many networks consist of fractures which are of
finite length, and so other methods must be used to evaluate the hydrau-
lic properties of a fractured rock mass.

Percolation theory provides a semianalytic means for estimating the
conductivity of a medium. The theory can be used to describe the effect
point interconnection variability has on the interconnections at longer
distances. Recent literature (Castellani et al., 1981; Goldman and
Wolf, 1983; Hughes and Ninham, 1983; Kesten, 1982; Orbach, 1986;
Rodrigues and Tondeur, 1981) investigates the connectiveness of a system
of pores that have a specified probability for intersecting neighboring
pores. Two types of percolation networks have been proposed; site and
bond networks. A site percolation network has been described by
Castellani et al. (1981) as a periodic lattice of sites with each site
being occupied with a probability, p, and empty with probability, (l-p),
independent of the status of its neighbors. A cluster of sites is
defined as a group of neighboring occupied sites. As the percolation
parameter, p, increases in value, there exists a percolation threshold,
p = p', at which any site within the lattice will be connected with
every other point to form an infinite cluster.

Unlike site percolation models, bond percolation networks have been
described by Hughes and Ninham (1983) as a periodic lattice of points
connected by bonds which are assigned at random, and independently of
each other. The bonds are assigned with a probability, p, of being
occupied and probability (l-p) of being vacant. For an infinite
lattice, this assignment is equivalent to removing a fraction (l-p) of
all bonds at random. Two sites are called connected if there exists at
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Figure 1.2: Site and bond percolation models for three densities of
site and bond occupancy, p. Note that networks remain
fully connected until the occupancy drops below a critical
threshold density, pt.

least one path between them consisting solely of occupied bonds. In
each realization of the bond problem there will be connected clusters of
sites, linked together by occupied bonds, and bounded by vacant bonds.
Similar to the site problem, there will be a bond percolation threshold
which defines the probability, p', at which an infinite cluster will
develop. Figure 1.2 illustrates the difference between site and bond
models for three probabilities.

Investigations of dispersion within randomly connected fractal fracture
networks have also been performed. Ross (1986) showed that small pulses
of contaminant tend to grow as the square root of distance traveled for
networks with few high transmissivity fractures. For networks with
frequent highly transmissive fractures the small pulses of contaminant
tend to grow linearly with distance traveled.

Lacking exact analytic techniques to evaluate the permeability of frac-
tured rocks, a number of researchers have developed computer simulation

8



models for relating local hydraulic properties to global rock permeabil-
ity. For example, Silliman (1986) used a stochastic approach related to
percolation theory for the purpose of comparing the effective permeabil-
ity of a rock mass with the minimum permeability of flow paths that
across a given volume within the subsurface. His results, using a
three-dimensional, nearest-neighbor, site-problem study, showed that the
minimum permeability of flow paths between any two points is greater
than the permeability calculated using globally-averaged properties.

Long and Witherspoon (1985) have also used simulation techniques to
evaluate the permeability of a fractured rock mass. Their study showed
that the interconnection between given fracture sets is a complex
function of fracture density and fracture extent. Other researchers
(Smith and Schwartz, 1984; Long et al., 1985; Huang and Evans, 1985;
Reeves et al., 1986) have proposed additional one, two, and three dimen-
sional discrete fracture network (DFN) simulation models.

Smith and Schwartz (1984) present a two dimensional DFN model in which
flow and mass transport occurs through two orthogonal fracture sets. In
this formulation, one fracture set is perpendicular to the imposed
potential gradient, while the second set provides connective routes
between discontinuous fractures of the first set. They found that the
second fracture set allows transport through pathways which would not
have been available otherwise. If this is true, then as more dimensions
are provided, it may be possible that flow and mass transport are
increased due to the additional pathways provided. They also report
that the addition of alternate fracture paths in the second dimension
results in an increase in macroscopic dispersion, an earlier initial
breakthrough time, and a delay of the final arrival time.

Long et al. (1985) extended a two dimensional DFN model (Long et al.,
1982) to three dimensions by analytically solving for boundary condi-
tions within circular disks of uniform aperture. While the formulation
is currently restricted to applications involving a limited number of
circular disks of uniform aperture, the ability to solve for flow and
pressure heads provides a solution for complete three dimensional flow,
allowing for validation with other simulation models.

Huang and Evans (1985) proposed a conceptual and numerical technique to
simulate a wide range of field conditions. The proposed methodology
uses a three dimensional formulation of the fracture network with a one
dimensional flow tube formulation within the plane of the fracture. The
model is used to provide estimates of global hydraulic conductivity
within a rock mass for specified distributions of fracture orientations,
apertures, and densities. Boundary conditions are specified by defining
the pressure head along the exterior boundary of the simulated rock
mass. Steady, saturated flow conditions are assumed. The model is also
used to calculate solute travel times and breakthrough curves. Mass
transport of solutes is simulated using a piston flow approximation. A
major deficiency of the Huang and Evans model is the simplification of
flow through an individual fracture to a one dimensional formulation
which does not incorporate interaction between multiple sources and
sinks within a fracture, or the influence of orientation of the
fracture-fracture intersections (Rasmussen, 1987).
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An early attempt to characterize fluid flow through unsaturated porous
media was proposed by Fatt (1956a,b,c) who used bundles of capillary
tubes. The technique estimated unsaturated hydraulic properties of
porous media by applying capillary theory to fluid flow through a model
incorporating a network of tubes interconnected at regular intervals.
By combining a distribution of tube sizes (obtained from pore size dis-
tributions) with capillary theory, the unsaturated wetting phase satura-
tion was calculated, along with the associated unsaturated relative
hydraulic and pneumatic conductivities. Also, by using various geo-
metric networks Fatt was able to demonstrate the effect of pore size
irregularities on unsaturated hydraulic properties.

1.1.3 Supra-Fracture Flow and Transport

Fluid flow through unsaturated fractured rock is formulated by defining
physical and hydraulic parameters for the rock matrix and for fractures
embedded within the rock. The physical and hydraulic properties of the
matrix include the pore size distribution, the dependence of the hydrau-
lic conductivity on water content and fluid potential, the moisture
characteristic curve, and the pneumatic conductivity. The physical
properties of the fractures include the orientation, areal extent, frac-
ture center location, and shape. The hydraulic property of interest for
fluid flow within fractures is the fracture transmissivity which will
vary due to geochemical processes, such as dissolution and precipita-
tion, and variable saturation.

Because properties of only a few fractures can be identified in field-
scale problems, statistical techniques must be employed to characterize
sets of fractures. Frequency distributions are obtained for each frac-
ture parameter which best approximate observed characteristics of the
fracture network at the site of interest. A number of approximation
techniques have been developed for the purpose of modeling fluid flow
through both a porous rock matrix and fractures embedded within the
matrix. The techniques are usually solved numerically, but in some
circumstances solutions can be obtained using analytic techniques.

A widely used approach for predicting fluid flow and travel times
through low permeability fractured rock is to assume that fluid flow
through such media behaves in a manner similar to flow through porous
media. The equivalent porous medium (EPM) formulation assumes that a
uniformly porous material consists of a large number of microscopic flow
routes which, upon averaging, provides consistent macroscopic parameters
that are used for modeling ground water flow and solute transport (El-
Kadi and Brutsaert, 1985). The EPM formulation is attractive because of
the widespread availability of numerical algorithms to solve problems of
this type. In general, solutions for problems related to flow through
both porous media can be grouped into three broad categories, i.e.,
analog, analytic, and numeric.

Analog solutions can be obtained using sandboxes or electric analog
models (Karplus, 1958). Analytic (or, equivalently, closed form) solu-
tions are available for a number of flow problems (see, for example:
Muskat, 1946; Carslaw and Jaeger, 1959; Churchill, 1974 Philip, 1985;
Waechter and Philip, 1985; Wheatcraft and Winterberg, 1985). In many
circumstances, the analytic expressions are appropriate only for uniform
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material properties. To account for variable hydraulic parameters,
analytic stochastic models have been developed (see: Gelhar and Axeness,
1983; Mantoglou and Gelhar, 1987a,b,c;, Yeh et al., 1985ab,c). Gelhar
and Axeness (1983) used stochastic theory to estimate the effective
hydraulic conductivity tensor for conditions of saturated flow in a
statistically anisotropic medium with arbitrary orientation of the major
axes of mean flow. The effective (or large-scale) hydraulic conductiv-
ity tensor is shown to be of second rank and symmetric. Parameters for
the stochastic model include the mean, variance and covariance function
of the natural logarithm of the local scale saturated hydraulic conduc-
tivity, as well as the orientation of the mean flow direction.

Numeric models include finite difference models (such as by: Travis,
1984; Reeves et al., 1986; Pruess, 1987), finite element models (see,
for example: Davis and Neuman, 1983; Wang and Narasimhan, 1985; Allen
and Murphy, 1986; Huyakorn et al., 1984, 1985, 1986; Noorishad and
Mebran, 1982; Pinder and Gray, 1977; Segerlind, 1984), and boundary
element models (for example those by: Brebbia, 1978, 1981a,b, 1984;
Brebbia and Ferrante, 1979; Brebbia and Maier, 1985; Brebbia and Noye,
1985; Brebbia et al., 1984a,b; Cheng, 1984; Elsworth, 1986, 1987; Lafe
and Cheng, 1987; Lafe et al., 1981; Lennon et al., 1979a,b; Liggett and
Liu, 1979a,b, 1983; Liu et al., 1981; Shapiro and Anderson, 1983;
Andersson and Dverstorp, 1987).

Various applications of the EPM concept to fractured media have been
made. One application shows that the EPH formulation is valid if there
are sufficient fractures for statistical averaging of flow paths (Neuzil
and Tracy, 1981; Long et al., 1982). The scale of statistical averaging
which is required to obtain a sufficient number may be large, especially
when fracture densities are low (Sagar and Runchal, 1982). In practice
the size of the rock volume for which the hydraulic parameter is esti-
mated is enlarged to a size which will result in consistent hydraulic
parameters (see e.g., Smith and Schwartz, 1984; Witherspoon et al.,
1979).

Dual porosity models have been developed for circumstances when substan-
tial flow through both a rock matrix and rock fractures occur simultan-
eously. Unlike single-porosity EPM models which lump matrix and
fracture properties into a single parameter, dual-porosity models dif-
ferentiate between fracture and matrix flow by solving two sets of flow
equations using a coupling parameter to represent flow between the
matrix and fractures. This technique has been used for saturated condi-
tions (see, for example: Bibby, 1981; Huyakorn et al., 1983; Moench,
1984), as well as to generate composite unsaturated hydraulic conductiv-
ity curves of fractured rock (W&ng and Narasimhan, 1985, Tsang and
Pruess, 1987).

Simulating flow through unsaturated porous media has been well described
in the literature (see, for example: Andersson and Shapiro, 1983;
Bresler and Dagan, 1982a-b; Cooley, 1983; Dagan and Bresler, 1982;
Huyakorn et al., 1983a,b,c, 1984, 1985, 1986; Nielsen et al., 1986;
Pollock, 1986; Ross, 1984). Flow through saturated, fractured rock has
also received considerable attention (for example: Neuzil and Tracy,
1981; Sagar and Runchal, 1982; Castillo et al., 1972; Chen, 1986; Ross,
1986; Hsieh and Neuman, 1985; Hsieh et al., 1985).
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Attention to flow in variably saturated fractured rocks has received
less attention. Wang and Narasimhan (1985) used a measured fracture
aperture distribution to derive a theoretical relationship between
fracture hydraulic conductivity and pressure head which considers the
influence of asperities. With this theoretical relationship they used a
numerical model to simulate flow in regularly spaced fractures of
infinite areal extent bounded by matrix blocks. The model provides
estimates of changes in saturation levels, permeabilities, darcian flow
velocities in fractures and at fracture-matrix interfaces, and in effec-
tive fracture-matrix flow areas.

Tsang and Pruess (1987) have also investigated coupled fracture and
matrix flow through unsaturated tuff. Their model employs a finite
difference mesh to discretize the region surrounding a high level
nuclear repository. Coupled vapor and fluid flow of water is investi-
gated by assigning an effective permeability between nodes which is a
composite of both matrix and fracture permeabilities. Complex fracture
orientations are not investigated, nor are differential saturation
levels between the rock matrix and embedded fractures.

Stochastic theory has also been used by Yeh et al. (1985a,b,c) to de-
scribe steady unsaturated flow in a heterogeneous medium. It is demon-
strated that the effective hydraulic conductivity of a statistically
anisotropic medium has tensorial properties, and also that the aniso-
tropy of the hydraulic conductivity is dependent upon the moisture con-
tent of the medium. This results from the variation in pore size dis-
tributions within the soil medium and the correlation structure of the
variation. Extensions of these results to fractured media are possible
if macroscopic (i.e., large scale) hydraulic properties of the fractured
rock can be determined.

1.2 Proposed DFN Models

Of immediate concern is the demonstration of an ability to define the
important geometric and physical characteristics of a fractured rock
medium which influence the hydraulic and transport properties of vari-
ably saturated fractured rock. Specific goals include the determination
of critical geometric properties of fractures with respect to bulk
hydraulic properties, the influence of fluid suction on the relative
saturation and hydraulic conductivity of fractures, and the behavior of
fluid and solute travel times and breakthrough curves in variably satur-
ated fractures incorporating sorption and matrix diffusion.

In order to meet these goals, this study is organized into three broad
areas of study. The first study, presented in Chapter 2, focuses on
fluid flow through individual and networks of discrete fractures. The
second, presented in Chapter 3, focuses on fluid flow through variably
saturated discrete fractures, while the last study, presented in Chapter
4, investigates the effect of sorption, matrix diffusion and variable
saturation on solute travel times and breakthrough curves resulting from
flow through discrete fractures. Appendix A provides the computer
models used in the simulation studies.
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1.2.1 Steady Saturated Flow Through Discrete Fracture Networks

The objectives of this study are to identify how geometric properties of
saturated fractures control the bulk hydraulic properties of fractured
rock. In particular, the effects of fracture orientation, density,
length and transmissivity on the global hydraulic conductivity (i.e.,
the effective hydraulic conductivity evaluated at a scale which incor-
porates flow through multiple fractures) are evaluated for both flow
within impermeable rock, as well as for coupled flow through fractured
permeable rock.

In order to achieve the stated objectives, numerical simulation using
the boundary integral method is used to model steady, saturated fluid
flow through networks of discrete fractures. The boundary integral
method requires that flow domain boundaries be discretized into finite
line segments for two-dimensional flow through a fracture, and into
finite planar elements for three-dimensional flow through a rock matrix.
Simulation results demonstrate that fracture orientation with respect to
the mean direction of the fluid gradient plays an important role in
determining the magnitude of the fluid flow, as does the length of
fractures, and the correlation between fracture lengths and transmis-
sivities.

As opposed to previous studies, described above, which reduce individual
two-dimensional fractures to one-dimensional line segments, the formula-
tion presented here provides a more complete geometric representation of
individual fractures by maintaining a two-dimensional fracture geometry.
Simulation results derived from the proposed methodology provide addi-
tional evidence for determining the conditions under which equivalent
porous media models are suitable for characterizing steady saturated
flow through discrete fractures.

1.2.2 Steady Flow Through Variably Saturated Fractures

The objectives of this study are to evaluate the effects of variable
fluid suction and fracture orientation on the hydraulic properties of
fractures. Specifically, the behavior of a free surface within a
fracture which delimits the air-water interface is investigated under
conditions of variable fracture orientation and fluid suction. Also, an
important objective is the determination of regions of saturation within
individual fractures, along with the regions of positive, negative, and
undefined hydraulic head. (Unsaturated regions will correspond to
regions with an undefined head, while saturated regions will contain
both positive and negative heads.)

In order to determine the hydraulic head distribution, as well as the
region of saturation, the boundary integral method is used to discretize
the saturated region and to solve the hydraulic head distribution within
the plane of a fracture. To determine the position of the free surface,
a constant capillary head is assigned to each fracture and the location
of nodes along the free surface are adjusted until the calculated
hydraulic pressure head at the air-water interface is equal to the
capillary head. Simulation studies indicate that regions of saturation
are limited to the regions immediately around a source, extending below
the source to a water table. Below the water table is a region of
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positive fluid pressure heads. The position of the water table is
defined by the location of the outlet from the fracture.

The methodology proposed here is superior to the existing methods,
presented above, in that constant or slowly varying fluid suctions with-
in the plane of individual fractures are not assumed. Instead, large
variations in head will exist, assuming values ranging from large suc-
tions to large positive pressure heads, dependent upon location within
the fracture and the orientation of the fracture. The accurate defini-
tion of fracture head variation, as well as the definition of the satur-
ated regions within a fracture, are important factors in determining the
suitability of using existing equivalent porous media models for charac-
terizing fluid flow through unsaturated rock.

1.2.3 Solute Transport Through Variably Saturated Fractures

The objectives of the third study are to develop methodologies for
calculating travel times and breakthrough curves for water and solutes
in variably saturated fractured rock. Travel times and release rates
are important characterization properties of repository performance
(USNRC, 1987). The developed methodologies must also incorporate trans-
port processes which ameliorate the effects of contaminant release, such
as sorption and matrix diffusion, as well as time dependent inputs.

The proposed methodologies consist of determining the integrated inverse
velocity along streamlines. The effect of flow path variation on the
shape of breakthrough curves is considered by discretizing calculated
fluxes into unique, one-dimensional streamlines orthogonal to potential
lines. Velocity variation along a streamline is incorporated by discre-
tization along a streamline, and by accumulating travel times between
discretization points. Simulation results show that velocity variations
along and between streamlines result in substantial variability in the
calculated travel time. Decreased travel times are noted as the rela-
tive saturation is decreased.

The boundary integral method provides superior estimates of travel times
because, unlike finite element and finite difference methods which use
piecewise interpolation functions of various orders over each spatially
discretized interval, the boundary integral method defines smooth
functions of velocity and streamline functions which are continuous in
all derivatives within the discretized flow domain.

1.2.4 Computer Simulation Models of Fracture Flow and Transport

Four computer models, written in FORTRAN-77, are developed to simulate
fluid flow and solute transport through discrete fractures. Presented
in Appendix A, the programs provide the ability to generate fracture
networks using synthetic or field data, as well as to solve for fluid
head and flow rates within fractures by discretizing the fracture boun-
daries and the matrix flow domain using the boundary integral method.

Program BIM provides estimates of steady flow rates, hydraulic head
distributions, travel times and breakthrough curves for discrete frac-
ture networks, incorporating both saturated and variably saturated flow.
Program FRACGEN is used to determine the global hydraulic conductivity
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of a fractured rock mass by generating finite fractures within a speci-
fied rock volume and then solving for the finite lines of intersections
between fractures and between fractures and the rock volume boundary.
The program uses site-specific geometric data, or can generate synthetic
fractures using distribution of fracture parameters including fracture
orientation, length, and density. Once a fracture network has been
generated using program FRACGEN, Program BIM2D is used to discretize the
fracture network and then solve for steady fluid flow and transport
using the boundary integral method. Program BIM2D is limited to appli-
cations involving an impermeable rock matrix. Program BIH3D is used to
investigate coupled flow through a fracture network embedded within a
permeable matrix.
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CHAPTEI 2

NUMERICAL SIMULATION oF STEADY FLUID FLow

A numerical procedure is presented for obtaining estimates of steady
fluid flow through saturated discrete fractures. The procedure uses the
boundary integral method to discretize and solve the boundary value
problem for hydraulic head and fluxes within discrete fractures. Appli-
cations of the method include flow through single and interconnected
fractures which are embedded within an impermeable matrix, as well as
subsequent applications to fractures contained within a permeable
matrix. For fracture flow within an impermeable matrix, the effect of
fracture orientation, density, and fracture transmissivity distributions
are evaluated for their effects on the global three-dimensional hydrau-
lic conductivity, which is a measure on a macroscopic scale of the
hydraulic properties of the fractured rock.

2.1 Fracture Flow Hydraulics

Steady fluid flow through a porous medium is governed by equations which
incorporate a mass balance constraint. For flow through fractures and
the rock matrix, the mass balance equations are, respectively:

(2.1a) Vqf(x) - 0 inO

and

(2.lb) Vq(x) - 0 in R

where
V gradient operator, 1/m;

qf darcian flux through a planar fracture, m2/s;
sm darcian flux through the rock matrix, m/s;
x position vector, m;
a two dimensional planar fracture flow domain; and
R three dimensional spatial matrix flow domain.

The relationship between fluid flux and the force driving fluid flow is
defined using the tensorial form of Darcy's law, in two and three
dimensions, respectively:

(2.2a) if(X) '- Tx) Vh(x)

and

(2.2b) qm(x) ' - &x) Vh(x)

where
h hydraulic head, m;
Li hydraulic conductivity, m/s; and
I fracture transmissivity, %2/s.

Assigned head and flux boundary conditions are, respectively (Figure
2.1):
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Figure 2.1: Flow domain and boundary conditions for two dimensional (A)

and three dimensional (B) porous media. Symbols are

defined in text.
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(2.3a) hQx) - F(x) on r or a
or

(2.3b) 3(x) - j(x) n(x) on r or a

where
Ei assigned head boundary condition, m;
i assigned flux boundary condition, mis;
n outwardly directed unit vector normal to boundary; and
r one dimensional linear domain.

Total fluid flow across a boundary is calculated by integrating the
darcian velocity over the boundary, or:

(2.4a) Qf - f qf(x) n(x) d r

and

(2.4b) Qm - fm(x) n(x) do

where Qf and QM are fracture and matrix flow rates (m3/s), respectively.
For a rock mass incorporating both a porous rock matrix and embedded
fractures oriented parallel to the gradient, the total fluid flow is the
sum of fracture and matrix flow components:

(2.5) Q - f i(X) n(x) dr 4 f qm(2) n(x) dO

For constant darcian fluxes over the fracture boundaries and a fracture
boundary lying upon a matrix boundary (Figure 2.2), Equation 2.5 can be
reduced to:

(2.6) Q - qf wf l qm Am

where
qf - qf(x) n(x)

qm - _qm() n(x)
and

wf extent of the fracture intersecting the matrix boundary, m;
Am area of the matrix boundary, m.

The mean darcian flux over the cross sectional area, q (m/s), for the
conditions of Equation 2.6 is calculated using:

(2.7) q - Q / A

where A is the total surface area of rock. By noting that the matrix
area, Am, is not appreciably different than the total surface area, A,
and that the extent of fractures can be related to the total area using
a density measure, i.e.:

(2.8) df - wf A
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Figure 2.2: Fluxes, qf and qm, and geometric properties, wf and Am, for
a single fracture and rock face intersecting a boundary.

where df is the fracture extent per unit rock surface (1/m), the follow-
ing relationship is obtained:

(2.9) q a df qf 4 qm

The intrinsic permeability of a porous medium is related to the
hydraulic conductivity for an isotropic medium with constant viscosity
and fluid specific weight, using:

(2.10a) T - kf W/

and

(2.10b) K - km '7/,

where
kf fracture permeability, m3;
km matrix permeability, m 2;
' specific weight, Palm; and
A dynamic viscosity, Pa s.

Substituting Equations 2.2 and 2.10 into Equation 2.9 and assuming a
equivalent hydraulic gradient in both the fracture and the matrix
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yields:

(2.11) q - -(df kf 4 k.) 7/p Vh - -k Vh

or

(2.12) k - df kf 4 km

where k is the bulk permeability of the fractured rock. The fracture
permeability can be determined using injection tests such as those
devised by Kilbury et al. (1986). The fracture density can be measured
using exposed rock surfaces and borehole core samples, while the matrix
permeability can be measured using unfractured rock samples or borehole
tests in unfractured intervals.

In some circumstances, fluid flow within a fracture can be assumed to
obey Poiseuille's law which relates the intrinsic permeability of a
fracture to the hydraulic aperture of the fracture. This assumption has
been examined in several studies (Iwai, 1976; Schrauf and Evans, 1986;
Kilbury et al., 1986; Witherspoon et al., 1980). The relationship
between the fracture permeability and the fracture aperture, e (m), is:

(2.13) kf - e3 / 12

Equation 2.13 is appropriate for the case of a planar fracture with
constant cross-sectional area. For a fracture with variable aperture,
Smith et al. (1987) demonstrate that Equation 2.13 does not provide
estimates of fracture aperture which compare with estimates made using
tracers or with a volume balance calculation. Schrauf and Evans (1986)
show that the volume balance calculation provides a larger estimate of
aperture than Equation 2.13 (Figure 2.3). Given these ambiguous rela-
tionships between fracture permeability and aperture as measured by
different methods, the aperture defined by Equation 2.13 is not used in
this study. Instead, a fracture transmissivity and permeability are
used to relate the hydraulic gradient to darcian fluxes.

A global hydraulic conductivity, X (mWs), for an assemblage of
fractures by noting that:

(2.14a) K - [A Vh(x)]

and

(2.14b) K - if

These two relationships provide alternate methods for experimentally
determining the bulk hydraulic properties of a fractured rock medium.
The first method assumes an equivalent porous media exists for the
fractured rock so that macroscopic properties can be determined using
existing porous medium hydraulic testing procedures (Hsieh and Neuman,
1985). The second formulation uses field data about fracture spacing
and transmissivity, in conjunction with laboratory or field estimates of
matrix hydraulic conductivity, to provide an estimate of the macroscopic
hydraulic properties of the fractured rock. Section 2.3 provides simu-
lation studies which compare these formulations.
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Figure 2.3: Measured relationship between hydraulic and mass balance
fracture aperture.

2.2 Boundary Integral Method

The boundary integral method has been widely applied within the field of
fluid hydraulics and subsurface flow modeling (Lafe et al., 1981),
normally for two dimensional applications. A few three dimensional
applications have been reported (Liggett and Liu, 1983; Brebbia et al.,
1984; Huyakorn and Pinder, 1983), as well as applications to flow
through fractured rock (Shapiro and Andersson, 1983; Elsworth, 1986,
1987). Such studies have examined flow through homogenous media, or
through layered media with homogeneous properties within each layer.
Recent advances have also provided the ability to examine two dimension-
al flow through heterogeneous media (Lafe and Cheng, 1987).

In order to determine fluid head within a prescribed flow domain subject
to arbitrary boundary conditions, Gauss's formula can be used to solve
Laplace's equation in two and three dimensions, respectively:

(2.15a) fV 2 h da - fbh/bn dr

and

(2.15b) fV2 h dR - fbh/bn do

where n is the direction normal to boundary. If, instead of Vh, we use
an arbitrary weighting function fVg in Equation 2.15, we have Green's
first identity:
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(2.16a) f(fV2g 4 VfVg) do - f f bg/6n dr

and

(2.16b) f(fv2g 4 VfVg) dR - f f ag/bn do

Due to symmetry in the middle term, interchange of f and g and
substraction of terms yields Green's second identity:

(2.17a) f(f V2g - g V2f) do - f(f bg/On - g of/bn) dr

and

(2.17b) f(f V2g - g V2f) dR - f(f bg/bn - g bf/on) do

Assigning h(x) to g and h (x,x ) to f results in:

(2.18a) f(h*(x,x*) V2h(x) - h(x) V2h *(x,x*)) dr -

f(h*x,x *) bh(x)/bn - h(x) oh* (x,x )/6n) dr

and

(2.18b) f(h*(xx*) V2h(x) - h(x) V2h* (xx)) dR =

f(h*(x~x) bh(x)/6n - h(x) h* (x,x* )/bn) do

where
h (x,f ) weighted residual function, m; and

x position vector of weighted residual function.

An approximate solution for fluid head and flux which minimizes the
error between the true and estimated head and flux over the flow domain
is obtained by assigning the weighted residual statement (Brebbia et
al., 1984) in both two and three dimensions, respectively:

(2.19a) f[h*(x,x*) V2h(x)] do - 0

and

(2.19b) frh*(x,x*) V2h(x)J dR - 0

The weighted residual function is dependent on position within the flow
domain and on the physical and fluid properties within the flow domain.
The first half of the integral on the left-hand side of Equation 2.18 is
equal to zero (from Equation 2.19), while the remaining half is calcu-
lated by noting that (Brebbia et al., 1984):

(2.20a) V2h*(xx*) - - 2 (xx
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and

(2.20b) V2h *(x,x*) - 4r A(xx*)

in two and three dimensions, respectively, where A(x,x ) is the Dirac
delta, with properties:

0 Ox* x
(2.21) A(xx*) :

co - x x

Substituting Equation 2.20 into Equation 2.18 and noting that:

(2.22a) fh(x) A(x,x*) do - h(x )

and

(2.22b) fh(x) M(x,x*) dR = h(x )

yields:-

(2.23a) c(_) h(x) 4 fh(x) q*(x,x*) dr - fq(x) h*(x,x*) dr

and

(2.23b) c(x) h(x) 4 fh(x) q*(x,x*) do - fq(x) h (x,x ) do

where q(x) - bh(x)/bn and q*(x,x ) b h (x,x )/bn. For positions inter-
nal to the flow domain, c(x ) equals 2r in two dimensions and 4v in
three dimensions. For positions along a one-dimensional boundary
(Brebbia et al., 1984; Elsworth, 1986):

(2.24) c(x) - 8

where 6 is the interior angle at location x. By discretizing the boun-
daries of the flow domain, a relationship between flow and head can be
used which replaces the integral terms of Equation 2.23 with numerical
summations for nodes along the boundaries (Figure 2.4):

(2.25a) c(x) hQE) 4 Zh(x) (X I(X) h* (xx)
r r

and

(2.25b) c(x) h(x) 4 Eh(x) q*(x,x*) - E(x) h*(xx*)

Equation 2.25 can be written more concisely as (Brebbia, 1978):

(2.26) A h - _ q

where
h head on boundary, located at discrete boundary positions, m;
i flux normal to boundary, located at discrete boundary posi-

tions, m/s; and
A,& boundary integral coefficient matrices, with
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Figure 2.4: Boundary discretization schemes for two dimensional planar
fractures (A) and three dimensional rock matrix (B).
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- all a12 a13 so* alm
a21 a 2 2 a23 *.. a2m

(2.27a) A = a3I a32 a33 ** Q3m

a ma2 am3 * ammJ

and

b1l b12 b13 *- bj*
b2 1 b2 2 b2 3 *** b2m

(2.27b) b31 b32 b33 **b3m

_bml bm2 bm3 * * jm

where m is the number of discretization intervals along the boundary.

For constant heads and fluxes along discrete boundary segments, the
elements of A and A can be found for two and three dimensional flow
domains using Equation 2.25:

(2.28a) aij - fh*(x,x*) dr

(2.28b) bij f | q (x,x) dr

and

(2.28c) a1t ' | h (x,x*) do

(2.28d) bij f J q (x!x) dn

where i and j are indices corresponding to the position in the A and _

matrices, and 2.28a and 2.28c include 6 when i-J.

Linear interpolation of head and flux along elements will more
accurately account for variations along the boundary than constant
interpolation functions. Higher order interpolation will also improve
the accuracy of the procedure, at the expense of numerical convenience.
For a linear head and flux variation along an element, the head and flux
at any point along the element is determined for two and three dimen-
sional flow domains using, respectively (Figure 2.5):

(2.29a) h(e) - [h,(1-e) 4 h2(14e)] / 2

(2.29b) q(e) - [ql(l-e) 4 q2(14e)] / 2

and

(2.29c) h(el,e2) - h1e, 4 h2e2 4 h3(1-el-e2)

(2.29d) q(ele 2) ' qjel 4 q2e2 4 q3(1-el-e2)

where
h,q head and flux at any position along a boundary line or surface

element;
e linear interpolation coordinate (-l<e<l) along boundary line

element;
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linear interpolation coordinates (O<el<l; O<e2<1) along
boundary surface element;
head at endpoints of boundary line element;
flux at endpoints of boundary line element;
head at corners of triangular boundary surface element; and
flux at corners of triangular boundary surface element;
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Figure 2.5: Linear interpolation functions for one (A) and two (B)
dimensional boundaries.
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The only remining requirement*is to determine the weighted residual
functions, h (x,x ) and q (x,x ). For two and three dimensional
homogeneous isotropic flow domains with constant transmissivity and
hydraulic conductivity, the functions are taken to be the fundamental
solutions, or, respectively:

(2.30a) h* (x,x*) - ln(Tl/2/r) / 2r T

(2.30b) q* (x,x *) - br/an / 2r r

and

(2.60c) h*(x,x *) - -1/4w K r

(2.30d) q* (x,x) - 6(l/r)/bn / 4w

where r is the scalar distance between x and x . Huyakorn and Pinder
(1983, p. 317) present analytic solutions to the integration of Equation
2.30 for two dimensional flow, as required by Equation 2.28. For condi-
tions of three dimensional flow the integrations are performed numeri-
cally using gaussian integration over triangular areas (Cowper, 1973).

For flow between two intersecting fractures, additional internal
boundary elements are introduced to represent the line of intersection
between the fracture planes (Figure 2.6). From mass balance considera-
tions and equivalence of heads along the boundary, a larger matrix can
be formed which is composed of sub-matrices of flow within each fracture
plus the flow across the line of intersection.

q, hi / q 2 1Ih2

Figure 2.6: Multiple flow domain geometry.
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The pure-fracture flow matrix equation in each fracture is:

(2.31a) -1 hi 11

and { ii

(2.31b) [-2i A-2] | Ni

12

M hii

- [Ai A21 !

where
AllB 1 boundary

exterior
A2,B2 boundary

exterior
AlisBl boundary

exterior
A2 i,B2 i boundary

exterior
hl~ql flow and
h2 q2 flow and
hivqi flow and

integral
surfaces
integral
surfaces
integral
surfaces
integral
surfaces

coefficient
of fracture
coefficient
of fracture
coefficient
of fracture
coefficient
of fracture

matrices between elements along
1;
matrices between elements along
2;
matrices between elements along
1 and interfacial elements;
matrices between elements along
2 and interfacial elements;
boundary of fracture 1;
boundary of fracture 2; and

heads along exterior
heads along exterior
heads along interfacial boundary between fractures.

Combining Equations 2.31a and 2.31b yields:

-A A1 li A , A, iA2 ( A i)

(2.32) [4 l )h31 -[lii2g & i A2 12 Q 12 i -

Equation 2.32 is appropriate for two intersecting fractures. Networks
of intersecting fractures require more interfacial elements, with a
matrix structure composed of blocks of non-zero elements, alternating
with blocks of zero elements corresponding to nodes which do not lie in
the same fracture plane. Equation 2.32 is solved by selecting
appropriate boundary conditions at all non-interfaciaL nodes (either
prescribed head or flux) and by reducing the resulting global set of
equations to the form:

(2.33) l u - v V - VI

where
L,Y square matrices of known boundary integral coefficients;
u vector of unknown boundary conditions;
v vector of known boundary conditions; and
v' vector of known coefficients and boundary conditions.

Equation 2.33 can be solved using gaussian elimination or other direct
solvers.

Once the unknown head and fluxes are determined, the head at any
position internal to the flow domain can be calculated using:

(2.34) hi - s (qj aij - hj bij)
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The location of streamlines can be determined by noting that streamlines
correspond to constant stream function contours. Within any two
dimensional flow field, the stream function is defined using the Cauchy-
Riemann conditions:

(2.35a) as/ay - - - T ah/ax

and

(2.35b) as/ax - - qy - T ah/ay

where
s stream function, m3/s;
xy orthogonal cartesian coordinates in two dimensions, m;

qxpq flux components, m /s; and
K Y isotropic hydraulic conductivity scalar.

For boundary surfaces, a stream function can be calculated as:

(2.36) Si - si-i 4 f qi dr

si- i 4 li (qi 4 qj-l) / 2

where Si is the stream function at position i, and li is the length of
the boundary segment between nodes i-l and i.

2.3 Applications for Steady Flow Through Discrete Fractures

An examination of the boundary integral method is first performed for a
variety of simplified steady fluid flow examples. Once confidence is
gained in the ability to estimate heads and flow in simple systems,
applications to more complex examples are made. The numerical precision
of the method is also evaluated when analytic or other results are
available. The methods are implemented in FORTRAN-77, and are presented
in Appendix A as programs BIM, a general purpose, multidimensional
boundary integral solver, BIM2D, which solves the two-dimensional boun-
dary integral problem, and BIM3D, which solves the three-dimensional
boundary integral problem.

2.3.1 Flow Through a Single Fracture

Steady flow through a single square fracture with a constant unit
fracture transmissivity is estimated for uniform one-dimensional flow in
response to a unit head gradient. Figure 2.7 illustrates the flow field
configuration. Notice that nodes are located along the boundary of the
flow domain, and double nodes are closely spaced at locations where the
boundary conditions change rapidly. The close spacing is also required
to prevent mixed boundary conditions between two nodes.

Unknown head and flow rates along the boundaries are computed using
FORTRAN program BIH which incorporates linear variation in head and flow
between nodes. (Documentation for program BIM is presented in Appendix
A). Values of the stream function are calculated using Equation 2.34.
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Figure 2.7: Discretization schemes for boundary integral method
simulation study.
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Table 2.1 presents results for a coarse discretization scheme using
twelve nodes to represent the flow domain. A unit transmissivity value
is used in this example. The errors in estimated unknown head and flow
values are also presented in the table; the largest error in head being
0.0012 and the largest error in flow being 0.0006. Note that the error
in head is small except near zones where boundary conditions change from
constant flux to constant head.

T a b 2 . .

Table 2. 1:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Results for simulation experiment using coarse discretiza-
tion interval, twelve nodes total. Fracture transmissivity
is 1. Bold faced values are assigned boundary conditions.

. . . . . . . . . . . . . . - - . - - - - - - - - - . . -

Node Location
x y

1.0000
1.0000
1.0000
0.99999
0.5000
0.0001
0.0000
0.0000
0.0000
0.0001
0.5000
0.9999

0.0000
0.5000
1.0000
1.0000
1.0000
1.0000
1.0000
0.5000
0.0000
0.0000
0.0000
0.0000

Head
h

0.00121
0.50000
0.99879
1.00000
1.00000
1.00000
0.99879
0.50000
0.00121
0.00000
0.00000
0.00000

Flow
q

0.0000
0.0000
0.0000
1.0003
1.0006
1.0003
0.0000
0.0000
0.0000

-1.0003
-1.0006
-1.0003

Stream
5

-0.00005
-0.00005
-0.00005

0.00000
0.50011
1.00023
1.00028
1.00028
1.00028
1.00023
0.50011
0.00000

Head/Flow
Error

0.0012
0.0000

-0.0012
0.0003
0.0006
0.0003

-0.0012
0.0000
0.0012

-0.0003
-0.0006
-0.0003

(h)
(h)
(h)
(q)
(q)
(q)
(h)
(h)
(h)
(q)
(q)
(q)

A second simulation using the coarse discretization
with the transmissivity value increased from one to
presented in Table 2.2, show that:

mesh is performed
five. The results,

o The total flow increases five-fold;

o The maximum error in estimated heads is equivalent to the errors in
Table 2.1; and

o The maximum error in estimated flows is increased approximately
five-fold, to 0.0030.

The two simulations presented above are repeated using a finer dis-
cretization which doubles the number of nodes along the boundary from
twelve to twenty-four. Table 2.3 presents the results for the finer
discretization problem for a unit transmissivity and Table 2.4 presents
results for a transmissivity of five. The resulting heads and flows are
not appreciably different from those estimated using the coarse discre-
tization interval. The maximum error in estimated head is reduced from
0.0012 to 0.0004, but the maximum error in estimated flux increased from
0.0030 to 0.0045 for the fracture with a transmissivity of five.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 2.2: Results for simulation experiment using coarse discretiza-

tion interval, twelve nodes total. Fracture transmissivity
is 5. Bold faced values are assigned boundary conditions.

Node Location
x

1.0000
1.0000
1.0000
0.9999
0.5000
0 .0001
0 .0000
0.0000
0.0000
0.0001
0.5000
0.9999

y

0.0000
0.5000
1.0000
1.0000
1.0000
1.0000
1.0000
0.5000
0.0000
0.0000
0.0000
0.0000

Read
h

0.00121
0.50000
0.99879
1.00000
1.00000
1.00000
0 .99879
0.50000
0.00121
0.00000
0.00000
0.00000

Flow
q

0.0000
0.0000
0.0000
5.0016
5.0030
5.0016
0.0000
0.0000
0.0000

-5.0016
- 5.0030
-5.0016

Stream
8

-0.00025
- 0.00025
-0.00025
0.00000
2.50057
5.00114
5.00139
5.00139
5.00139
5.00114
2.50057
0 .00000

Head/Flow
Error

0.0012
0. 0000

-0.0012
0.0016
0.0030
0.0016

-0.0012

0.0000
0.0012

-0.0016

-0.0030
-0.0016

(h)
(h)
(h)
(q)
(q)
(q)
(h)
(h)
(h)
(q)
(q)
(q)
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Table 2.3: Results for simulation experiment using fine discretization
interval, twenty four nodes total. Fracture transmissivity
is 1. Bold faced values are assigned boundary conditions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Node Location
x y

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9999
0.8000
0.6000
0.4000
0.2000
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.2000
0.4000
0.6000
0.8000
0.9999

0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.8000
0.6000
0.4000
0.2000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Head
h

0.00044
0.19997
0.39999
0.60001
0.80003
0.99956
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99956
0.80003
0.60001
0.39999
0.19997
0.00044
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

Flow
q

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0009
0.9999
1.0000
1.0000
0.9999
1.0009
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

-1.0009
-0.9999

-1.0000
-1.0000

-0. 9999
-1.0009

Stream
8

-0.00005
-0.00005
-0.00005
-0.00005
-0.00005
-0.00005

0.00000
0.20003
0.40002
0.60002
0.80001
1.00004
1.00009
1.00009
1.00009
1.00009
1.00009
1.00009
1.00004
0.80001
0.60002
0.40002
0.20003
0.00000

0.0004
0.0000
0.0000
0.0000
0.0000

-0.0004
0.0009

- 0. 0001
0.0000
0.0000

-0.0001
0.0009

-0.0004
0.0000
0.0000
0.0000
0.0000
0.0004

- 0.0009
0.0001
0.0000
0.0000
0.0001

-0.0009

(h)
(h)
(h)
(h)
(h)
(h)
(q)
(q)
(q)
(q)
(q)
(q)
(h)
(h)
(h)
(h)
(h)
(h)
(q)
(q)
(q)
(q)
(q)
(q)

Head/Flow
Error
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Table 2.4: Results for simulation experiment using fine discretization
interval, twenty four nodes total. Fracture transmissivity
is 5. Bold faced values are assigned boundary conditions.

Node Location
x

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9999
0.8000
0.6000
0.4000
0.2000
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.2000
0.4000
0.6000
0.8000
0.9999

y

0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.8000
0.6000
0.4000
0.2000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Head
h

0.00044
0.19997
0.39999
0.60001
0.80003
0.99956
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99956
0.80003
0.60001
0.39999
0.19997
0.00044
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

Flow
q

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
5.0045
4.9999
5.0000
5.0000
4.9999
5.0045
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

- 5.0045
-4.9999

-5.0000
-5.0000

- 4.9999
- 5.0045

Stream
s

-0.00025
-0.00025
-0.00025

-0.00025

-0.00025

-0.00025

0.00000
1.00016
2.00011
3.00009
4.00004
5.00020
5.00045
5.00045
5.00045
5.00045
5.00045
5.00045
5.00020
4.00004
3.00009
2.00011
1.00016
0.00000

Head/Flow
Error

0.0004
0.0000
0.0000
0.0000
0.0000

-0.0004
0.0045

-0.0001
0.0000
0.0000

-0.0001
0.0045

-0.0004
0.0000
0.0000
0.0000
0.0000
0.0004

- 0.0045
0.0001
0.0000
0.0000
0.0001

-0.0045

(h)
(h)
(h)
(h)
(h)
(h)
(q)
(q)
(q)
(q)
(q)
(q)
(h)
(h)
(h)
(h)
(h)
(h)
(q)
(q)
(q)
(q)
(q)
(q)
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2.3.2 Flow Through Serial Fractures

Flow through a series of fractures with constant transmissivity within
individual fractures but with varying transmissivities between fractures
is estimated for steady flow in response to a unit head gradient.
Figure 2.8 illustrates the flow field configuration. The configuration
is also appropriate for two zones within a single fracture having
differing transmissivities.

h=2
me (1 a~

q=04i

q=O

I I~~~~'

P.

q=O

o constant
* constant
x interface

head nodes
flux nodes
nodes

q=O

*1 -up9

h=O

Figure 2.8: Serial fracture discretization scheme.
tion shown.

Coarse discretiza-
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Table 2.5 presents simulation results using FORTRAN program BIM for two
coarsely discretized fractures with equal unit transmissivities. Table
2.6 presents results for the same discretization but with one fracture
having a transmissivity five times that of the other. Tables 2.7 and
2.8 repeat the simulation experiments using a finer discretization
Interval. Note that the approximation errors are small in all cases;
the largest single error being 0.0020 associated the calculated head
value for two coarsely discretized fractures with differing
transmissivities. No measurable mass balance errors are present for any
of the simulations.

T 2 - - -5
Table 2.5:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Results for simulation experiment using coarse discretiza-
tion interval, twelve nodes total. Transmissivity of both
fractures is 1. Bold faced values are assigned boundary
conditions.
_ . . . . .

Underlined values are shared
_ - - - - - - - - - - - - - -

between fractures.
- - - - - - - - -

Node Location
x y

Head
h

Flow
q

Stream
s

Head/Flow
Error

I 1.0000
1.0000
1.0000
0.9999
0.5000
0.0001
0.0000
0.0000
0.0000
0.0001
0.5000
0.9999

2 1.0000
1.0000
1.0000
0.9999
0.5000
0.0001
0.0000
0.0000
0.0000
0.0001
0.5000
0.9999

2.0000
1.5000
1.0000
1.0000
1.0000
1.0000
1.0000
1.5000
2.0000
2.0000
2.0000
2.0000

0.0000
0.5000
1.0000
1.0000
1.0000
1.0000
1.0000
0.5000
0.0000
0.0000
0.0000
0.0000

1.99879 0.0000
1.50000 0.0000
1.00121 0.0000
1.00000 -1.0003
1.00000 -1.0006
1.00000 -1.0003
1.00121 0.0000
1.50000 0.0000
1.99879 0.0000
2.00000 1.0003
2.00000 1.0006
2.00000 1.0003

0.00121 0.0000
0.50000 0.0000
0.99879 0.0000
1.00000 1.0003
1.00000 1.0006
1.00000 1.0003
0.99879 0.0000
0.50000 0.0000
0.00121 0.0000
0.00000 -1.0003
0.00000 -1.0006
0.00000 -1.0003

-0.00005
-0.00005
-0.00005

0.00000
0.50011
1.00023
1.00028
1.00028
1.00028
1.00023
0.50011
0.00000

-0.00005

- 0.00005
- 0.00005

0.00000
0.50011
1.00023
1.00028
1.00028
1.00028
1.00023
0.50011
0.00000

-0.0012
0.0000
0.0012

- 0.0003
-0.0006
-0.0003
0.0012
0.0000

-0.0012
0.0003
0.0006
0.0003

0.0012
0.0000

-0.0012
0.0003
0.0006
0.0003

-0.0012
0.0000
0.0012

-0.0003
- 0.0006
- 0.0003

(h)
(h)
(h)
(q)
(q)
(q)
(h)
(h)
(h)
(q)
(q)
(q)

(h)
(h)
(h)
(q)
(q)
(q)
(h)
(h)
(h)
(q)
(q)
(q)
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Table 2.6: Results for simulation experiment using coarse discretiza-
tion scheme, twelve nodes total. Transmissivity of first
fracture is 5; of second is 1. Bold faced values are
assigned boundary conditions. Underlined values are shared
between fractures.

Node Location
x y

Head
h

Flow
q

Stream
5

Head/Flow
Error

1 1.0000
1.0000
1.0000
0.9999
0.5000
0.0001
0.0000
0.0000
0.0000
0.0001
0.5000
0.9999

2 1.0000
1.0000
1.0000
0.9999
0.5000
0.0001
0.0000
0.0000
0.0000
0.0001
0.5000
0 .9999

2.0000
1.5000
1.0000
1.0000
1.0000
1.0000
1.0000
1.5000
2.0000
2.0000
2.0000
2.0000

0.0000
0.5000
1.0000
1.0000
1.0000
1.0000
1.0000
0.5000
0.0000
0 .0000
0.0000
0.0000

1.99960 0.0000
1.83333 0.0000
1.66707 0.0000
1.66667 -1.6672
1.66667 -1.6676
1.66667 -1.6672
1.66707 0.0000
1.83333 0.0000
1.99960 0.0000
2.00000 1.6672
2.00000 1.6676
2.00000 1.6672

0.00201 0.0000
0.83333 0.0000
1.66465 0.0000
1.66667 1.6672
1.66667 1.6676
1.66667 1.6672
1.66465 0.0000
0.83333 0.0000
0.00201 0.0000
0.00000 -1.0009
0.00000 -0.9999
0.00000 -1.0009

- - - - - - - - - -

- 0.00008
-0.00008
-0.00008
0.00000
0.83352
1.66705
1.66713
1.66713
1.66713
1.66705
0.83352
0.00000

-0.00008
-0.00008
-0.00008
0.00000
0.83352
1.66705
1.66713
1.66713
1.66713
1.66705
0.83352
0.00000

-0.0004
0.0000
0.0004

-0.0005
-0.0009
-0.0005
0.0004
0.0000

-0.0004
0.0005
0.0009
0.0005

0.0020
0.0000

-0.0020
0.0005
0.0009
0.0005

-0.0020
0.0000
0.0020

-0.0009
0.0001
0.0009

(h)
(h)
(h)
(q)
(q)
(q)
(h)
(h)
(h)
(q)
(q)
(q)

(h)
(h)
(h)
(q)
(q)
(q)
(h)
(h)
(h)
(q)
(q)
(q)

_ - - - - - - - - - -
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Table 2.7: Results for simulation experiment using fine discretization

interval, twenty four nodes total. Transmissivity of both
fractures is 1. Bold faced values are assigned boundary
conditions. Underlined values are shared between fractures.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Node Location
yx Y

head
b

Flow
q

Stream
s

Head/Flow
Error

1 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9999
0.8000
0.6000
0.4000
0.2000
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.2000
0.4000
0.6000
0.8000
0.9999

2.0000
1.8000
1.6000
1.4000
1.2000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.2000
1.4000
1.6000
1.8000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

1.99956 0.0000
1.80003 0.0000
1.60001 0.0000
1.39999 0.0000
1.19997 0.0000
1.00044 0.0000
1.00000 -1.0009
1.00000 -0.9999
1.00000 -1.0000
1.00000 -1.0000
1.00000 -0.9999
1.00000 -1.0009
1.00044 0.0000
1.19997 0.0000
1.39999 0.0000
1.60001 0.0000
1.80003 0.0000
1.99956 0.0000
2.00000 1.0009
2.00000 0.9999
2.00000 1.0000
2.00000 1.0000
2.00000 0.9999
2.00000 1.0009

-0.00005
-0.00005
-0.00005
-0.00005
-0.00005
-0.00005

0.00000
0.20003
0.40002
0.60002
0.80001
1.00004
1.00009
1.00009
1.00009
1.00009
1.00009
1.00009
1.00004
0.80001
0.60002
0.40002
0.20003
0.00000

-0.0004
0.0000
0.0000
0.0000
0.0000

40.0004
-0.0009
0.0001
0.0000
0.0000
0 .0001
0.0009
0.0004
0.0000
0 *0000

0.0000
0.0000

-0.0004
0.0009

-0.0001
0.0000
0.0000

- 0.0001
0.0009

(h)
(h)
(h)
(h)
(h)
(h)
(q)
(q)
(q)
(q)
(q)
(q)
(h)
(h)
(h)
(h)
(h)
(h)
(q)
(q)
(q)
(q)
(q)
(q)
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Table 2.7 (Continued):
- - - - - - - - - - - - -

Node Location
x y

Head
h

Flow
q

Stream
a

Head/Flow
Error

2 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9999
0.8000
0.6000
0.4000
0.2000
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.2000
0.4000
0.6000
0.8000
0.9999

0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.8000
0.6000
0.4000
0.2000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.00044 0.0000
0.19997 0.0000
0.39999 0.0000
0.60001 0.0000
0.80003 0.0000
0.99956 0.0000
1.00000 1.0009
1.00000 0.999
1.0o0000 -1.0000
1.00000 1.0000
1.00000 0.9999
1.00000 1.0009
0.99956 0.0000
0.80003 0.0000
0.60001 0.0000
0.39999 0.0000
0.19997 0.0000
0.00044 0.0000
0.00000 '1.0009
0.00000 -0.9999
0.00000 -1.0000
0.00000 -1.0000
0.00000 -0.9999
0.00000 -1.0009

-0.00005
-0.00005
-0.00005
- 0.00005
-0.00005
-0.00005
0.00000
0.20003
0.40002
0.60002
0.80001
1.00004
1.00009
1.00009
1.00009
1.00009
1.00009
1.00009
1.00004
0.80001
0.60002
0.40002
0.20003
0.00000

0.0004
0.0000
0.0000
0.0000
0.0000

-0.0004
0.0009

-0.0001
0.0000
0.0000

-0.0001
0.0009

-0.0004
0.0000
0.0000
0.0000
0.0000
0.0004

-0.0009
0.0001
0.0000
0.0000
0.0001

- 0.0009

(h)
(h)
(h)
(h)
(h)
(h)
(q)
(q)
(q)
(q)
(q)
(q)
(h)
(h)
(h)
(h)
(h)
(h)
(q)
(q)
(q)
(q)
(q)
(q)
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Table 2.8: Results for simulation experiment using fine discretization
interval, twenty four nodes total. Transmissivity of first
fracture is 5; of second is 1. Bold faced values are
assigned boundary conditions. Underlined values are shared
between fractures.

Node Location Head
h

Flow
q

Stream
S

Head/Flow
Errorx y

1 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9999
0.8000
0.6000
0.4000
0.2000
0.0001
0.0000
0 .0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.2000
0.4000
0.6000
0.8000
0.9999

2.0000
1.8000
1.6000
1.4000
1.2000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.2000
1.4000
1.6000
1.8000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

1.99985 0.0000
1.93334 0.0000
1.86667 0.0000
1.80000 0.0000
1.73332 0.0000
1.66681 0.OOp
1.66667 -1.6682
1.66667 -1.6665
1.66667 -1.6666
1.66667 -1.66 ;
1.66667, -1.6665
1.66667 -1.6682
1.66681 0.0000
1.73332 0.0000
1.80000 0.0000
1.86667 0.0000
1.93334 0.0000
1.99985 0.0000
2.00000 1.6682
2.00000 1.6665
2.00000 1.6666
2.00000 1.6666
2.00000 1.6665
2.00000 1.6682

-0.00008
-0.00008
-0.00008
-0.00008
-0.00008
-0.00008
0.00000
0.33339
0.66670
1.00003
1.33335
1.66673
1.66682
1.66682
1.66682
1.66682
1.66682
1.66682
1.66673
1.33335
1.00003
0.66670
0.33339
0.00000

-0.0001
0.0000
0.0000
0.0000
0 .0000
0 .0001

-0.0015
0.0002
0.0001
0.0001
0.0002

-0.0015
0.0001
0.0000
0.0000
0.0000
0.0000

-0.0001
0.0015

-0.0002
- 0.0001
-0.0001
-0.0002
0.0015

(h)
(h)
(h)
(h)
(h)
(h)
(q)
(q)
(q)
(q)
(q)
(q)
(h)
(h)
(h)
(h)
(h)
(h)
(q)
(q)
(q)
(q)
(q)
(q)
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Table 2.8 (Continued):
_ . . . . . . . . . . . .

Node Location
Kx y

Head
h

Flow
q

Stream
8

Head/Flow
Error

2 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.9999
0.8000
0.6000
0.4000
0.2000
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.2000
0.4000
0.6000
0.8000
0.9999

0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
.1.0000
1.0000
0.8000
0.6000
0.4000
002000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.00073 0.0000
0.33328 0.0000
0.66665 0.0000
1.00002 0.0000
1.33339 0.0000
1.66594 0.0000
1.66667 1.6682
1.66667 1.6665
1.66667 1.6666
1.66667 1.6666
1.66667 1.6665
1.66667 1.6682
1.66594 0.0000
1.33339 0.0000
1.00002 0.0000
0.66665 0.0000
0.33328 0.0000
0.00073 0.0000
0.00000 -1.0009
0.00000 -0.9999
0.00000 -1.0000
0.00000 -1.0000
0.00000 -0.9999
0.00000 -1.0009

-0.00008
-0.00008
-0.00008
-0.00008
-0.00008

-0.00008
0.00000
0.33339
0.66670
1.00003
1.33335
1.66673
1.66682
1.66682
1.66682
1.66682
I.66682
1.66682
1.66673
1.33335
1.00003
0.66670
0.33339
0.00000

0.0007
0.0000
0.0000
0.0000
0.0000

-0.0007
0.0015

-0.0002
-0.0001
-0.0001
-0.0002
0.0015

-0.0007
0.0000
0.0000
0.0000
0.0000
0.0007

- 0.0009
- 0.0001
0.0000
0.0000

- 0.0001
-0.0009

(h)
(h)
(h)
(h)
(h)
(h)
(q)
(q)
(q)
(q)
(q)
(q)
(h)
(h)
(h)
(h)
(h)
(h)
(q)
(q)
(q)
(q)
(q)
(q)
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2.2.3 Flow Through Fractures with Internal Intersections

Flow experiments are performed to investigate the effects of fractures
intersecting along line segments internal to individual fractures. In
all, four experiments are performed with three scenarios per experiment.
In the first experiment, two parallel unit length constant head
boundaries are aligned parallel to each at a unit distance apart (Figure
2.9a). A unit difference in potential is maintained between the two
boundaries. The three scenarios examined are:

o An exterior no flow boundary is first placed so that both of the
constant head boundaries intersect but do not cross the no flow
boundary;

o A scenario with the length of the no flow boundaries being three
times as long as the constant head boundaries; and

o A scenario with the no flow boundary length being five times as
long as the constant head boundaries.

In the second experiment, the three scenarios are again repeated, only
this time the unit length constant head boundaries are now perpendicular
to each other with the midpoints of the boundaries located a unit
distance apart. Figure 2.9b illustrates the geometry of the boundaries.
For the third experiment, fractures of disparate lengths are compared.
Again the boundaries are successively displaced away from the flow
region, as shown in Figure 2.9c. The final experiment uses multiple
sources within an individual fracture plane. In this case three unit
length sources are aligned parallel to each other. Each source is
assigned a potential of (-1,0,1) respectively. Figure 2.9d presents the
flow geometry.

Table 2.9 presents the flow test results using program BIM for the
simulation experiments. The table shows that as the outer fracture
boundaries are moved away from the fracture-fracture intersections an
increase in flow rates is observed. Analytic solutions for all of the
experiments are not available. Analytic solutions for some of the
experiments are presented in the table which show that the simulation
results do not substantially deviate from the exact solution.
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Figure 2.9: Four experiments conducted to evaluate the effect of frac-
ture lengths, orientations and distances of boundaries.
Views are plan showing exterior no flow boundaries and
lines of intersection with other fractures for two parallel
fractures (A), two perpendicular fractures (B), two paral-
lel fractures of disparate lengths (C), and three parallel
fractures (D).
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Table 2.9: Calculated and exact flow rates for variable geometries
within the plane of a fracture.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Flow System Computed Exact

Two Parallel Sources:
Fully-bisecting 1.01 1.00
Near-boundary 2.11 -
Far-boundary 2.42 -

Two Perpendicular Sources:
Fully-bisecting 1.54 -

Near-boundary 2.77 -

Far-boundary 2.80 -

Two Disparate Length Sources:
(5:5) ratio 1.01 1.00
(5:3) ratio 1.56 -
(5:1) ratio 3.21

Three Parallel Sources:
Fully-bisecting 0.33 0.33
Near-boundary 0.50 -
Far-boundary 0.50 -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3.4 Influence of Fracture Density and Spacing

Additional simulation experiments are performed to evaluate the increase
in global hydraulic conductivity as a function of fracture density and
orientation. (The global or network hydraulic conductivity of a rock
block is the equivalent flow rate per unit head gradient per unit rock
area.) Fractures are synthetically generated within a rock matrix by
defining fracture centers, orientations, and areal extent for each
fracture. The fractures are organized into sets with common orien-
tations within each set. Intersections between generated fractures are
then found. The resulting network of fractures and fracture intersec-
tions are assembled within a specified sample volume such that fractures
and intersections exterior to the sample volume are removed. Exterior
portions of fractures and intersections that lie partly inside and part-
ly outside the sample volume are truncated at the boundary.

Table 2.10 presents simulation results which indicates that the global
hydraulic conductivity increases linearly as a function of fracture
density, df, and fracture transmissivity, Tf, for sets of infinite
fractures which lie parallel to each other.
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T a e 2 . 0
Table 2. 10:

.~~~~~~ ~ ~ ~ - - - . . . . .
Effect of fracture density and fracture transiissivity on
global hydraulic conductivity. A unit vertical gradient
was applied across two ends of a (50 x 50 x 50) mi rock
cube. Iracture density is length of fractures (m) per (50
x 50) m rock cube face.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fracture
Density
(1/m)

Fracture
Transmissivity

(m26s)

Global Hydraulic
Calculated

(mis)

Conductivity
Simulated

(mis)

Error
(Percent)

0.001
0.001
0.001

0.01
0.10
1.00

0.01
0.01
0.01

0.01
0.10
1.00

0.0000100
0.0001000
0.0010000

0.0001000
0.0010000
0.0100000

0.0010000
0.0100000
0.1000000

0.0000104
0.0001000
0.0010008

0.0001000
0.0010008
0.0100088

0.0010008
0.0100088
0.1000864

4.
0.0

0.0
0.08
0.088

0.08
0.088
0.0864

0.10
0.10
0.10

0.01
0.10
1.00

The flow through a network of fractures, Q, can be calculated using:

(2.37) Q - A T df [I - aT a] i

where
A flow area perpendicular to flow direction;
I identity matrix;
a vector of direction cosines; and
i hydraulic gradient.

The inferred global hydraulic conductivity is:

(2.38) - A i Tf df [I - aT a]

For a unit hydraulic gradient with a fracture set oriented parallel to
the gradient and also perpendicular to an injection surface, the
estimated global hydraulic conductivity is:

(2.39) K = Tf df

Simulated global hydraulic conductivity values presented in Table 2.10
agree closely with values calculated from Equation 2.37. The greatest
single error is four percent corresponding to the value with the least
number of significant decimal places. The calculated error for the case
with the greatest significance is 0.0864 percent.
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2.3.5 Influence of Fracture Transamissivity and Length Correlations

The influence of fracture transmissivity and length on estimated global
hydraulic conductivities is also examined. In particular, the potential
for long fractures with high transmissivities to greatly influence the
estimated hydraulic conductivity is investigated. Program FRACGEN was
used to generate four fracture networks in which the fracture lengths
are both correlated and uncorrelated with fracture transmissivity.
Input parameters consist of:

o A3fracture generating volume (assigned a value of 100 x 100 x 100
m ); and

o Three fracture sets, each with an arbitrary fracture transmissivity
of 10 x 10i6 m2/s, and with:

t Set one having 48 fractures within the generating volume, a
mean length of 10 m, a vertical orientation, and an east-west
strike;

t Set two having twelve fractures within the generating volume,
a mean length of 20 m, and a horizontal orientation; and

t Set three having three fractures within the generating volume,
a mean length of 40 m, a vertical orientation and a north-
south strike.

Prograi BIM2D was used to solve for total fluid flow through a (50 x 50
x 50 m ) sample volume within the global generating volume for a unit
gradient in the vertical direction. Figure 2.10 illustrates in two
dimensions the three dimensional fracture networks. Table 2.11 presents
simulation results using program BIM2D for both uncorrelated and correl-
ated parameters.

The simulation results indicate that an increase in the estimated global
hydraulic conductivity results from an increase in correlation for both
a configuration where one fracture connects two boundaries, as shown in
the first and second networks, and also when flow must pass through
three fractures between surfaces, as shown in the third and fourth
networks. The dependence of fracture connectivity on fracture length is
evident in these realizations, in that the fractures which provide the
opportunity for flow are always those which are longer than the mean
fracture length. As a result, a high correlation between fracture
length and transmissivity results in increases in network hydraulic
conductivity.
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Figure 2.10: Four realizations of fracture networks used to evaluate
network hydraulic conductivity.
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Table 2.11:

. . . . a .

* . . . . . . . . . . a . . a a a a a a a a . . a a a a a

Compariron of gtobal hydraulic conductivity calculated
using the boundary integral model for uncorrelated and
perfectly correlated lengths and transmissivities.

a . a . a a . . a . . . a . a . a a . a . a . a . a a a a a

Network
Number

2
3
4

mean

Uncorrelated

0.246e-8
0.318e-8
0.666e-8
0.529e-8

0.440e-8

Correlated

0.276e-7
0.327e-7
0.278e-7
0.230e-6

0.795e- 7

Ratio

11.2
10.3
4.2

43.5

18.1

a C C C C a C C C C a a . . . . . . a a a a a C a C a a a C a - C a C
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2.4 Coupled Fracture-Matrix Flow

For many geologic settings the rock matrix can not be assumed to be
impermeable. A sensitivity analysis is implemented using the boundary
integral method to determine the relative contribution to total liquid
flow through a rock block by both flow through the rock matrix and by
flow through discrete fractures embedded within the rock matrix. To
develop a methodology for simulating fluid flow through a porous rock
matrix with embedded fractures, a three dimensional boundary integral
method is examined for its accuracy. The method allows the discretiza-
tion of the outer surface of a rock volume, along with internal frac-
tures. Simultaneous fluid flow between boundaries on the rock surface
and through fractures is determined by coupling source and sink terms
along the interface between the fracture walls and the rock matrix.
Fracture flow which incorporates flow into and out of the fracture from
the matrix across the walls of the fracture is governed by the Poisson
equation:

(2.40) VY(qf) 4 qm - V*(LVh) 4 qm - 0

where qm is the areal source term, m3/s/m2, which accounts for the net
flow into the fracture from the matrix through both walls of the frac-
ture. Flow between the fracture and the matrix is spatially variable
over the fracture. The boundary integral method can be employed to
evaluate the magnitude of the flow and the head distribution within the
fracture and surrounding matrix by reforming the weighted residual
statement of Equation 2.19a as:

(2.41) frh*(x,x*) V2h(x)J do - frh*(x,x*) qm(x)j do

The fracture flow matrix equation thus becomes:

(2.42) F 4 A h - _ q

where F is the contribution to fluid flow from the rock matrix into the
fracture, integrated over all triangular fracture elements on the sur-
face of the fracture (Figure 2.11). The value of F is calculated from:

(2.43) L - 2 [ E wj (qm h*(x,x *))J] Ai

where
i index over all fracture area elements;
j counter over all numerical integration points on the fracture

area element;
wj gaussian integration weighting factor for integration points

(from Cowper, 22); and
A1 area of fracture element.

Flow through the matrix is solved using the three dimensional boundary
integral equation:

(2.44) A hm - bm qm
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qm

Figure 2.11: Fracture surface discretization geometry showing net flux
term, qm, representing flow between the fracture and the
matrix.

where the subscripts denote matrix flow components calculated using
three dimensional formulation. Equations 2.42 and 2.44 are coupled
using mass balances between interface nodes and the equivalence of heads
for fracture and matrix nodes.

2.4.1 Two Dimensional Porous Medium Application

Before proceeding with an analysts of flow through two dimensional
planar fractures embedded within a three dimensional porous matrix, it
is instructive to examine a simplified example of flow through a one
dimensional linear fracture embedded within a two dimensional porous
medium. In this example a square with unit length sides is constructed
so that two opposing sides are assigned no flow boundary conditions, the
top surface is assigned a unit hydraulic head, and the bottom surface
is assigned a hydraulic head of zero. The resulting global gradient is
only in the vertical direction, and the magnitude of this global verti-
cal gradient, Jz, is one. The matrix permeability, l , of the interior
flow region is assigned a unit value and the matrix region is assigned a
width, bma of 0.99. The center of a fracture with an arbitrary aper-
ture, bf, of 0.01 is placed in the center of the unit square and length,
rotation and fracture permeability, kf, parameters are assigned.

Fracture orientation is allowed to vary in such a manner that the frac-
ture is either parallel, perpendicular, or diagonal to the direction of
flow. Also, fracture length is allowed to vary from fully tg partially
dividing the flow domain. Finally, kf/km is varied from 10 to 10
Table 2.12 summarizes the flow test parameters.
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Table 2.12: Fracture parameters for flow experiments.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Simulation: 1 2 3 4 5 6
Length: 1. 1.4 1. 0.5 0.7 0.5
Rotation: 0° 45° 900 0° 45o 900

ALL SIMULATIONS:
Fracture center is located at center of flow domain.
Fracture aperture, bf, is 0.01. Matrix width, bm, is 0.99.
Fracture pe meability-matrix permeability ratios of

(10 5,10 , 0l1,1,101,103,105) used for each simulation.

_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To discretize the flow domain, nodes are placed around the periphery of
the unit square, as well as around the rim of the linear fracture. The
location of nodes along the perimeter of the matrix domain are selected
so that linear head and flow changes are reproduced. (Errors may be
introduced if the true head and flow are varying in a nonlinear manner
and a linear interpolation function is used.) From experience, it has
been determined that nodes must be placed at corners and near where
fractures and matrix boundaries are closest to each other. Figure 2.12
illustrates the flow domain geometry and nodal discretization schemes.

The number of nodes required to discretize the fracture surface is
determined by comparing calculated flows with flows obtained using an
analytic solution for a known problem. In this case, a flow regime with
a fracture perpendicular to the direction of the gradient completely
bisects the flow domain. The aspect ratio of the fracture is the pro-
portion between the distance between nodes to the width of the flow
domain (Figure 2.13). For an aspect ratio near one, good accuracy is
expected, with decreasing accuracy as the ratio departs from unity.
Table 2.13 presents simulation results for two dimensional flow error
analysis. It can be observed that the accuracy of the procedure
decreases rapidly when the aspect ratio is greater than 10:1. An aspect
ratio less than 10:1 is used in the simulation experiments which follow.

_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2.13: Two dimensional precision of boundary integral method as a
function of aspect ratio, defined here as the ratio of the
distance between nodes to the width of the flow domain.

_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Aspect Ratio 1:1 5:1 10:1 20:1 25:1

2-D Error (percent) 0.000 0.003 0.20 5.9 25.4
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Figure 2.12: Two dimensional flow geometry showing no flow and constant
head boundaries for fractures perpendicular (A), diagonal
(B) and parallel (C) to the direction of the mean head
gradient.
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Figure 2.13: Definition of aspect ratio as proportion of distance
between nodes to width of fracture.
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Once the geometry, boundary conditions, and the number and location of
boundary nodes have been established, simulations can be performed to
determine the global vertical hydraulic conductivity, Kz, defined as the
measured flux through the domain, Q, divided by the unit area and also
the unit hydraulic gradient imposed across the domain, Jz:

(2.45) Kz - Q / (A Jz)

This measure of the hydraulic conductivity is consistent with the inter-
pretation of a flow test in which heads and gradients within the inter-
ior region can not be examined. The global hydraulic conductivity can
also be related to k. by noting:

(2.46) Kz - kz 7l&

where I is the specific weight of water, and # is the dynamic viscosity
of water.

Figure 2.14 presents two dimensional simulation results between the
global permeability in the vertical direction, kz, to the ratio of frac-
ture versus matrix permeabilities, kf/k . It can be concluded that for
flow simulations with a fracture which ?ully bisects the flow domain,
(i.e., simulations 1, 2, and 3) that:

o Kz is directly related to km when:

t The fracture fully divides the flow domain perpendicular to
the direction of flow, and kf is high; and

t The fracture fully divides the flow domain parallel to the
direction of flow, and the kf is low.

k. can be calculated from the harmonic average of k and k when
the fracture is perpendicular to the direction of flow. Tie har-
monic average, kh, is calculated using:

(2.47a) kh m (bf 4 be) / (bf/kf 4 bm/km)

o Kz is directly related to kf when:

t The fracture fully divides the flow domain perpendicular to
the direction of flow, and kf is low; and

t The fracture fully divides the flow domain parallel to the
direction of flow, and kf is high.

kz can be calculated from the arithmetic average of kf and kim when
the fracture is parallel to the direction of flow. The arithmetic
average, ka, is calculated using:

(2.47b) ka X (bf kf 4 bm km) / (bf 4 bm)

o K, is directly related to kf when the fracture fully divides the
flow domain diagonal to the direction of flow. kz can be calculat-
ed from the geometric average of kh and ka when the fracture is
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TWO DIMENSIONAL FLOW SIMULATION RESULTS
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Figure 2.14: Results of simulations performed using the two dimensional
flow geometry for fractures fully (A) and partially (B)
dividing the flow domain.
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diagonal to the direction of flow. The geometric average, kg, is
calculated using (Bear, 1979):

(2.47c) kg - 1 / (cos2a/kh 4 sin 2a/ka)

where a is fracture orientation (a - 0 for a perpendicular frac-
ture).

For a fracture with a length one-half of the flow width (i.e., simula-
tions 4, 5, and 6) the effects of fracture orientation are similar to
those for a fully divided flow domain, but the effects are reduced.

2.4.2 Three Dimensional Porous Medium Application

To evaluate the boundary integral procedure for its ability to estimate
three dimensional flow properties of a fractured medium, a simplified
three dimensional flow domain is investigated by defining a cube with
unit length sides, four of which are no flow boundaries and the top and
bottom are assigned a constant head of one and zero, respectively
(Figure 2.15). Again, the matrix permeability is assigned a value of
unity and the center of a fracture is located at the center of the flow
domain and the fracture is allowed to vary in length and orientation, as
described in Table 2.12.

An analysis of the effect of nodal density on simulation error is
performed in a manner similar to that performed for two dimensional
flow. The aspect ratio is again defined as the distance between nodes
divided by the thickness of the flow domain. Results for three dimen-
sional aspect ratio error analyses are presented in Table 2.14. An
aspect ratio less than 10:1 (corresponding to an error of less than five
percent) is used in the simulation experiments described below.

Results for experiments conducted using the same conditions (i.e., simu-
lations 1 through 6; presented previously in Table 2.12) as for the two
dimensional experiments are presented in Figure 2.16. Table 2.15
compares simulation and analytic results using Equation 2.47. Note that
the simulation results compare favorably except for the case when the
fractures are placed diagonally across the flow domain and a large frac-
ture/matrix permeability ratio is used. In this case, the error is
attributed to the positioning of one end of the fracture directly upon
the upper flow surface, with no intervening matrix. By providing a
direct connection between the upper flow boundary and the fracture, an
estimated global permeability higher than the theoretical value is to be
expected.
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. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .

Table 2.14: Three dimensional precision of boundary integral method as
a function of aspect
the distance between

ratio, defined here as the ratio of
nodes to the width of the flow domain.

Aspect Ratio

3-D Error (percent)

1:1

0.*000

5:1

0.*484

10:1

4.*70

20:1

7.2

25:1

17 *8

Table 2.15: Analytic and simulation results for variable fracture-
matrix permeability ratios using three dimensional boundary
integral method. Fully bisecting fractures.

kf /km~

105
1lo 3

10.-i
10

105

Perpendicular
kh k

Parallel
ka k

Diagonal
k9

0.001
0.091
0.92
1 .
1.01
1.01
1.*01

0.0018
0.023
0.90
1.
1.02
1.02
1.*02

0.*99
0.99
0.*99

0.98
0.99
0.*99

1. 1 .
1.09 1.20

10.1 9.79
1000. 1013.

0 *002
0.17
0.*95
1.
1.05
1.84
2.02

0.003
0.07
0.*96
0.99
1.07
6.23

12.40
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Figure 2.16: Results of simulations performed using the three dimension-
al flow geometry for fractures fully (A) and partially (B)
dividing the flow domain.
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2.4.3 Summary of Three Dimensional Coupled Fracture-Matrix Flow

Hydraulic flow properties of a combined fracture-matrix system are char-
acterized using a proposed three dimensional boundary integral pro-
cedure. The procedure accounts for flow through fractures embedded
within a porous matrix. The only discretization required is along the
boundaries of the fractures and the exterior surface of the matrix block
being examined. An average unit vertical head gradient is induced
across the block and the resultant flow is used to estimate the global
vertical hydraulic conductivity, YKZ.

The effect of variations in fracture permeability og Kz are simulated by
allowing the fracture permeability to vary from 10 to 10 relative to
the matrix permeability. The variations in fracture permeability can
result from geochemical processes such as dissolution and precipitation
of minerals, or the result of variable water saturation levels within
the fracture. It is shown for both two and three dimensional flow that
the vertical global hydraulic conductivity is a function of the length
of intervening fractures and their orientation.

When fractures are of infinite areal extent and the permeability/matrix
permeability ratio, kf/k , is large, K is directly related to kf when
all the fractures are orTented vertically, but is unaffected by the
fractures if they are all oriented horizontally. For small kf/km
ratios, the roles of vertical and horizontal fractures reverse, with
horizontal fractures controlling the magnitude of Kz, and vertical frac-
tures having no effect.
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CHAPTER 3

NUMERICAL SI1ULATION OF STEADY FLOW THROUGH VARIABLY SATURATED FRACTURES

Conceptual models for liquid flow through discrete fractures under
conditions of variable fluid saturation have been proposed by Montazer
and Wilson (1984), Wang and Narasimhan (1985), Tsang and Pruess (1987)
and Peters and tlavetter (1988). Their models quantify the variation in
fracture permeability as a function of variable fracture water content.
The resultant functions are then used to assign macroscopic parameters
in regional models of flow through a fractured rock medium by assuming a
uniform permeability over discretization intervals which may be larger
than the size of individual fractures (Figure 3.1).

The purpose of the studies presented in this chapter is to present a
formulation which provides for variable fluid potential within indivi-
dual fractures at a scale which allows for a finer resolution than
previous models. The methodology accounts for large variations in water
contents within vertical fractures, as well as demonstrates that regions
within an individual fracture may be under positive pressure while other
regions are under negative pressure. The macro-variability of water
content within fractures is investigated by using a free surface to
represent a discrete air-water interface. Applications using this
representation have been presented by Bear and Dagan (1964), Neuman and
Witherspoon (1970), Pinder and Gray (1977), Liu et al. (1981), Huyakorn
and Pinder (1983), and Liggett and Liu (1983).

This chapter first presents the theory used to generate synthetic
moisture characteristic and unsaturated transmissivity functions for
fractures. The synthetic functions are required due to the lack of
available data which can be used to specify actual functions. A subse-
quent section presents the free surface formulation and the boundary
method procedure developed here to solve for the air-water interface in
fractures. A final section presents simulation results for flow through
fractures of arbitrary orientation and fluid saturation.

3.1 Generation of Synthetic Moisture Characteristic and Unsaturated
Transmissivity Functions for Discrete Fractures

The influence of fluid saturation and potential on fracture trans-
missivity has not been quantified using laboratory or field testing
methods. Tsang and Pruess (1987) present a hypothetical relationship
between fracture permeability and relative saturation, which is closely
related to a form proposed for soils (Van Genuchten, 1978, 1980). While
this parametric form has the advantage of application to a wide range of
curves, the parameters in the model are not amenable to field testing
techniques. Existing research activities (Evans and Rasmussen, 1988)
are directed toward generating representative moisture characteristic
and unsaturated transmissivity functions for discrete fractures using
laboratory methods. Until such time as realistic functions become
available, synthetic functions must be generated based on relevant
physical theories and observed statistical properties of fractures.
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Figure 3.1: Macroscopic and microscopic formulations of unsaturated
flow through fractured rock.
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The following sections first present an overview of capillary theory,
which is a fundamental description of the forces acting upon fluids
contained within small cavities. Subsequent sections describe how
synthetic hydraulic properties of discrete fractures are generated.

3.1.1 Theory of Flow Through Capillaries

Capillary theory relates the height of rise of a liquid in a tube to the
diameter of the tube. The relationship is derived from the free energy
states of the liquid-solid, liquid-gas and solid-gas interfaces
(Richards, 1931). The force acting upon the interfacial junction is the
free energy difference per unit length perpendicular to the junction
(Figure 3.2). Equivalently, the force is is the free energy difference
per unit area multiplied by the length of the junction. The force is
acting to minimize the sum of the free energies of the system. The
junction will adjust until the sum of the energies are minimized or
until an equal and opposing force is encountered. Because the solid may
not deform, the location of the junction will move along the two-dimen-
sional surface of the solid, normal to the fluid interface junction.

SOLID

Figure 3.2: Surface tension forces acting upon a gas-liquid-solid
interface.
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When the junction is a ring in a hollow tube, the force is directed
toward the drained end of the tube. in this case, the magnitude of the
force can be computed as the product of the fre 'energy surface density
difference and the length of the junction, :or:

(3.1) F - TrL

where
F force acting upon the junction, N; 2
T free energy surface density difference, J/m ; and
L length of the junction, m.

The free energy surface density difference is obtained by noting that
the force acting upon the junction of the interfaces is the sum of the
individual forces acting at the junction (Hillel, 1971, p. 41):

(3.2) F - (rig cosa 4 7sl Tag) L

where
rig liquid-gas interface free energy surface density, J/m2;
7sl solid-liquid interface free energy surface density, i
Tsg gas-solid interface free energy surface density, J/m ; and
a meniscus angle, °, with the solid.

The free energy surface density difference can be set equal to:

(3.3) 7= 7lg cosa 4 'sl 7, sg

By also noting that the length of the junction is the circumference of a
circle, Equation 3.1 can be expressed as:

(3.4) F - T(2 7 r)

where r is the radius of the capillary tube, m. If the capillary tube
is suspended vertically with the bottom of the capillary immersed in
water, then a gravitational force is directed downward. The magnitude
of the gravitational force is the mass of the fluid multiplied by the
gravitational constant, or:

(3.5) F - V-V

where V is the volume of liquid within the capillary tube, i 3 , and V is
the specific weight of the liquid, Pa/m. By noting that the volume of
the liquid within the capillary tube can be approximated by a cylinder,
Equation 3.5 is replaced with:

(3.6) F - (v hc r 2 )

where hc is the height of rise of liquid within the capillary tube, m.
The opposing forces must balance at equilibrium, allowing Equations 3.4
and 3.6 to be set equal. Solving for the height of rise yields:

(3.7) hc a 2 T / r7

Incorporating Equation 3.3 in 3.7 yields:
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(3.8) h- = 2 (Crg cosa 4 7s1 - -sg) / r

Many authors (e.g., Richards, 1931; Hillel, 1971; Marshall and Holmes,
1979) neglect the solid-liquid and solid-gas interface terms:

(3.9) 7sl - 76g 0

which allows Equation 3.8 to be reduced to:

(3.10) hC = 2 ?lg cos / r

It is further assumed that the contact angle is zero, appropriate for
surfaces such as clean glass, resulting in the expression:

(3.11) hc - 2 Tlg / r7

For most applications (i.e., temperatures near 20C), the constants in
Equation 3.11 can be assigned the values of:

(3.12) 71g - 0.07275 Pa m

and

(3.13) 'Y- 9806 Pa/m

yielding:

(3.14) hc - 0.1484 x 10i4 / r

Equation 3.14 can be generalized for the case where an arbitrary fluid
potential is imposed at the bottom of the capillary tube. The height of
rise from the bottom of the capillary tube, h (m) is calculated as the
sum of the capillary head calculated using Equation 3.14 and the
pressure head at the bottom of the capillary tube, hp (m), outside of
the capillary tube:

(3.15) h - hc 4 hp

When the pressure head imposed at the bottom of the capillary tube is
negative (i.e., a suction is imposed), the height of rise will be less
than the height calculated using capillary theory. When the suction
exceeds the capillary head, the capillary tube will be completely
drained. To determine the suction required to drain the capillary, the
height of rise in Equation 3.15 is set equal to zero, yielding:

(3.16) hc - - h

For capillary tubes inclined at an angle, P , from the vertical the
height of rise within the tube can be calculated by first noting that
the volume within the tube is approximately:

(3.17) V - hc r2 / cost.

The gravitational force opposing the capillary force is calculated as:
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(3.18) F - lhc r2 y / cosp

At equilibrium, the gravitational force equals the capillary force
directed up the tube. Setting the forces equal and solving for the
height of rise results in:

(3.19) hc - 2 Ttg cos / rY

It should be noted that Equations 3.10 and 3.19 are equivalent except
for the addition of the cosine coefficient which accounts for gravita-
tional forces which are exerted as a function of the orientation of the
tube.

Similar equations for a geometry characterized by parallel plates offset
by a constant aperture are next derived. In this case, it will be shown
that the aperture is used to determine the height of rise in place of
the radius in the capillary tube geometry. Like a capillary tube, a
fracture will not fill unless the ambient pressure head is less negative
than the capillary height of rise. The force acting to draw water up
the fracture is equal to the length of the fracture, multiplied by two
to indicate that both walls are acting upon the water, and further
multiplied by the free energy surface density difference:

(3.20) F - 2T L

where L is the length of the fracture, m. If the fracture is set in
water at an arbitrary angle with respect to the vertical, then the grav-
itational force is the mass of the fluid multiplied by the gravitational
constant and the cosine of the angle from horizontal, or:

(3.21) F - V 7 / cosp

where V is now the volume of liquid within the fracture, m3 . By noting
that the volume of the liquid within the fracture can be approximated by
a square prism, Equation 3.21 is replaced by:

(3.22) F = h e L Y / cosp

Solving for the vertical height of rise in a fracture and substituting
known constants yields:

(3.23) he - 0.1484 x 10'4 / e

Equation 3.23 is valid for all fracture inclinations. The total head at
any point within the fracture is the sum of the gravitational and
pressure forces (exclusive of osmotic, thermal and other forces),
expressed in terms of hydraulic head:

(3.24) ht ' hg 4 hp

where
ht total head, m;
hl elevation head, m; and
hgp fluid pressure head, i, from:
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(3.25) hp - h - he

where h is the pressure head exclusive of capillary head, a, and hc is
the capillary head, m.

3.1.2 Fracture Moisture Characteristic Function

The relationship between the water content of a fracture and the fluid
potential is the moisture characteristic curve. For a horizontal
fracture with a uniform aperture and one end immersed in a fluid reser-
voir maintained at constant total head, h , the relationship is a step
function; the fracture will be entirely filled at for positive pressure
plus capillary heads (i.e., h - hp 4 he > 0), and the fracture will be
completely drained otherwise:

(3.26) O/ef 0 'p<hc
1 hp > he

where 0 is the saturated water content, dimensionless. The relation-
ship between water content and fluid potential for a vertical fracture
with the lower edge of the fracture immersed in a reservoir maintained
at a constant head is a ramp function:

o The fracture will be entirely filled when the total pressure head
equals the height of the fracture, H; and

o The fracture will be drained when the total pressure plus capillary
heads are negative.

The ramp function can be expressed as a function of the total head
applied at the lower end of the fracture, ht:

0 ht < -he
(3.27) i/e0 ht/(H-hc) *hc < ht < H-he

I H-hc Zht

where H is the height of the fracture. For inclined fractures, Equation
3.27 is rewritten as:

0 h <(-he
(3.28) e/es ht/(H'-hc) -hc 2 ht < H'-hc

t1 HI-h <t ht

where H' - H sinP and P is the dip of the fracture from the horizontal,
degrees (Figure 3.3). Figure 3.4 illustrates a hypothetical
characteristic curve for horizontal, vertical and inclined fractures.
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Figure 3.3: Geometric properties of an inclined fracture in contact
with a liquid surface at its base.
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SUCTION
Moisture characteristic curves for planar fractures with
constant capillary head at various ortentations.
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3.1.3 Fracture Unsaturated Transmissivity Function

For conditions of variable fracture saturation, the assumption is made
that an air-water interface exists within the fracture, such that two
flow fields can be defined within an individual fracture (Figure 3.5),
which is exact for fractures with a constant aperture. When the
fracture aperture is not constant, it is further assumed that large
apertures which lie on the wetted side of the interface remain saturated
even if the pressure head within the fracture is more negative than the
capillary head. In addition, isolated small apertures which lie on the
opposite side of the interface are assumed to remain unsaturated. The
pressure head at the interface is equal to a capillary head which is
assumed constant for the entire fracture. From Equations 3.24 and 3.25,
the pressure head exclusive of the capillary head, h, on either side of
an air-water interface is equal to zero, or:

(3.29) h- ht-hg 4 h -o0t3.29) .t 8 c

and the residual pressure head within the saturated domain interior is:

(3.30) h = ht . h 4 hc > 0

The capillary head, hc, is determined using Equation 3.23 while the
gravitational head, h , is the elevation difference between the point
under consideration, (m) and an arbitrary reference elevation, zo (m):

(3.31) hg - z- O

If z is used as a local coordinate within the plane of the fracture,
Equation 3.31 must be adjusted by the dip of the fracture, P , or:

(3.32) hg - (z - zo) sin P

AIR -FILLED

WATER-FILLED

AIR- WATER INTERFACE

Figure 3.5: Conceptual model of zone of saturation within an unsatur-
ated fracture.
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3.2 Boundary Integral Solution of Free Surface Problem

The position of the equilibrium air-water interface is found by first
locating temporary nodes which move the interface incrementally toward
the equilibrium interface. The interface is moved incrementally because
the fluid pressure distribution within the flow region will change as
the boundary conditions change. The methodology for determining the
temporary interface consists of (Figure 3.6):

o Determining the fluid pressure at every boundary node using:

(3.33) hp - h - hz - h - (z - z0) sinj

o Determining which nodes are beyond the air-water interface by test-
ing whether the fluid pressure is less than the sum of the capil-
lary and air pressure heads, or:

(3.34) hp < (hc 4 ha)

o For those nodes which satisfy Equation 3.34, a new temporary posi-
tion is calculated such that:

t The total head at the temporary location, h', is equal to the
total head at the previous location, ho:

(3.35) h' - ho

t The pressure head at the temporary location,
the interfacial pressure head, hp, or:

(3.36) hp' - h

hp', is equal to

DARY (K=)

. .. NEW BOUNDARY
'__ M.%. (K=2)

TEMPORARY
BOUNDARY

h= constant

Figure 3.6: Procedure for locating nodal positions: (1) Determine
which nodes satisfy h < hc, solid circles; (2) For these
nodes, locate new temporary boundary nodes on the same
isohead contour and the contour of I . hc, open circles;
(3) Update nodal position by finding midpoint between ini-
tial and temporary nodal positions, crosses.
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The position of the temporary location is calculated by using a
Newton-Raphson Iteration scheme to incrementally arrive at the new
position. The iterative scheme calculates displacements in the z
direction, dz, by using the chain rule:

ah/8x dhp - ah p/x dh
(3.37) dz - p _

ah/ax ahp/az - ah/az h p/ax

where

(3.38a) dh - h'- h - O

and

(3.38b) dhp - h'- h 0 (h 0 4 h )/2 - h 0 n(hp - h °)/2
p p p p p p

The displacement in the x direction, dx, is calculated using:

(3.39) dx - (dh - ah/az dz) / ah/ax

The values of the changes in (hhp) with respect to (x,z) are
determined using:

(3.40a) ah/az - [h(x,z4dz) - h(x,z)J / dz

(3.40b) ah/ax - [h(x4dx,z) - h(xz)] / dx

(3.40c) ah /8z - th (xzxdz) - h (xz)] / dz

and

(3.40d) ahp/8x - [hp(x-dxz) - hp(xz)] / dx

where dx and dz are small relative to the offset desired.

o The updated position of node i after iteration k is calculated
using half of the calculated displacement:

(3.41a) x(i,k) - x(i,k-l) 4 dx(i,k)/2

and

(3.41b) z(i,k) - z(i,k-l) 4 dz(i,k)/2

where dx(i,k) and dz(i,k) are the calculated horizontal and verti-
cal displacements for node i during iteration k, respectively.

Once the temporary positions for all nodes has been determined, the
boundary value problem is recomputed for the new geometry. Because the
original boundary conditions are still used, only the position of some
of the nodes must be changed. If, after updating the pressure head at
all boundary nodes, the pressure head at any of the nodes are less than
the sum of the capillary plus atmospheric pressure heads (i.e., Equation
3.34), the methodology presented above is repeated. Iteration is
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stopped when the change in pressure head, dh from Equatton 3.38b, is
less than a desired stopping criterion. Appendix A presents the source
code and users manual for the FORTRAN program BIM which implements the
procedure.

3.2.1 Comparison of Boundary Integral Results with Analytic and
Laboratory Results

In order to validate the application of the boundary integral method to
unsaturated flow problems, a simplified flow example is constructed such
that a small circular ring is maintained at a constant total head within
a vertical fracture (Figure 3.7).

Figure 3.7: Circular constant head source in a planar fracture.
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An approximate analytic solution to this problem consists of super-
imposing two driving forces, a uniform gravitational field directed in
the (-z) direction, and a radial flow field directed in a radial (4r)
direction, where:

(3.42) r2 . x 2 4 z2

and x is orthogonal to z. A pressure head, ho is imposed along the
outer rim of a circular opening within the flow domain:

(3.43) hp a ho at r - ro

where ro is the radius of the opening. The velocity of water resulting
from gravitational forces is:

(3.44a) vx - - K ah/ x - - Ka rhz 4 h ]/ax
- - Ka((z-zo) sinl 4 hp]yix
- - K ah p/ax

and

(3.44b) vz - - Kah/az K arhz 4 h ]/az
- - Ka [(z-zo) sinp I hp]az
- - K [sinp 4 ah p/azj

where z is an arbitrary reference elevation, located at the center of
the radial source in this example, and K is the hydraulic conductivity
of the flow domain, assumed constant. The fluid pressure is constant
for steady gravitational flow within a fracture of uniform hydraulic
properties and with no sources or sinks. Equation 3.44 becomes:

(3.45a) vX - 0

and

(3.45b) vz = - K sinp

The velocity of water resulting from the radial flow field is:

(3.46) vr = Q / A = Q / 2r r e

where
Q injected flow rate through the circular source;
A cross-sectional area through which radial flow occurs; and
e thickness of the flow domain, i.e., the fracture aperture.

The velocity at any point is the superposition of the gravitational and
radial flow solutions, or:

(3.47a) v. - 0 4 Q / 2r r e 8 Q / 2v (x2 4 z2)1/2 e

and

(3.47b) vz - - K sinp 4 Q /2r r 2 1/2
- - K sino 4 Q /2 (x 4 z ) e
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Figure 3.8 presents the configuration of the flow field resulting from
this formulation. Of interest to this analysis is the height of rise of
the fluid above the internal source, as well as the width of the flow
emanating from the internal source at large distances below the source.
The height of rise is calculated by noting that the position of the
source is directly above the internal source (i.e., x - 0) and that the
radial and gravitational velocities in the z-direction at this point are
equal and opposite in magnitude, or:

(3.48a) vz -- Vr

or

(3.49b) K sing - Q / 2w z' e

and

(3.49) z' - Q 1 2w e K sinA - Q / 2z T sing

where z' is the height above the center of the radial source where the
stagnation point occurs, and T is the domain transmissivity. The width
of the flow domain emanating from the radial source is calculated at
long distances by noting that the pressure gradient resulting from the
radial source approaches zero at large distances. Thus, the velocity
resulting from the radial source is zero, leaving only the gravitational
driving force, or:

(3.50) vz a - K sinj3 A -Q/x' e

and

(3.51) xI - - Q I T sinf

where x' is the width of the flow domain emanating from the radial
source. It Is interesting to note that the ratio of x' to z' is:

(3.52) xI/z' - [- Q / T sinIP ] / [Q / 2wxT sine J - - 2w

The location of the dividing streamline between the saturated and unsat-
urated zones is (Kovacs, 1981):

(3.53) z - x cotan(x/z')

To evaluate the accuracy of the numerical and analytic formulations
presented above, a flow visualization experiment was performed using two
glass panels separated by metal shims. The dimensions of the glass
panels are (0.240 x 1.200 x 0.006 m). Two metal shim strips (1.200 x
0.010 x 0.0001 m) were placed between the glass panels along the sides
of the longest dimension, and then clamped using six clamps along each
side. Twenty seven metal shim pieces (0.010 x 0.010 x 0.0001 m) were
placed regularly within the space between the two glass panels for the
purpose of providing a uniform aperture between the two panels. Figure
3.9 illustrates the geometry of the flow visualization experiment.
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Figure 3.8: Graphical representation of superimposed flow fields
resulting from a circular source and a gravitational field.
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Figure 3.9: Laboratory flow visualization experiment.
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To provide a constant head of water at a point between the panels, a
mariotte bottle was connected with tubing and a stopper to the interior
of a 0.010 m diameter hole drilled through one of the glass panels. The
flow rate was monitored by measuring the time required to drain 100 ml
from the mariotte bottle. Pressure at the flow inlet of the glass panel
was obtained using a water manometer connected to the same stopper. The
flow rate was controlled by raising or lowering the mariotte bottle.
During each flow experiment, the flow rate, inlet pressure, height of
rise above the inlet, and the asymptotic width of the flow field below
the inlet were measured.

Table 3.1 reports the test results and Figure 3.10 demonstrates the
results for two input pressure head boundary conditions. The experi-
mental results indicate that to within a maximum fifteen percent error
the expected ratio of flow height to flow width is accurate. Variabil-
ity in results are due to aperture irregularities and the inclusion of
small air pockets within the flow domain. The effect of air pockets is
to increase the flow width. Assuming that the air pockets do not con-
duct flow, and that the transmissivity of the saturated fracture remains
constant, the flow width is:

(3.54) x' - (- Q / T sin )/wa

where w is the relative proportion of the air pockets width per unit
flow wiath. Neither the effects of air pockets on the flow height, nor
the effects of aperture irregularity on both the flow height and width
are easily quantified. Simulation studies are required to evaluate
these effects, but are beyond the scope of this study.

… . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.1: Results of flow visualization experiments.
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Flow Rate Height Width Error1

(ml/s) (mm) (mm) (X)

1.101 25 146 7
0.980 12 79 - 5
0.927 10 71 -13
0.899 15 80 15
0.700 10 56 11
0.640 7 47 -7

1 Error calculated using 100(1 - Width/Height/2 pi)

… - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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ho= 5cm
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10 cm

Figure 3.10: Flow visualization experiment for two input pressure head
boundary conditions.
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A comparison of the simulation model with the analytic and laboratory
model results was performed using four input pressures, 10, 25, 40 and
50 mm. Figure 3.11 illustrates the geometry and nodal configuration of
the flow domain. A (100 x 100 mm) square flow domain was constructed
using 24 nodes around the perimeter. The top and two sides were
assigned no flow boundary conditions (i.e., q - 0) and the bottom was
assigned a zero total head (i.e., h - 0). A small (2 mm diameter) cir-
cular source region with a constant head was placed at a point 80 mm
above the bottom of the flow domain. Eight nodes were used to construct
the circular source. A unit transmissivity (i.e., T - 1 mm2/s) was
assigned to the flow domain. Figure 3.12 illustrates the final air-
water interface for the three input pressure head boundary conditions.
Simulation results are summarized in Table 3.2.
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Figure 3.11: Unsaturated flow domain geometry for circular source.
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Figure 3.12: Simulated free surface position for three input pressure
head boundary conditions.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Table 3.2: Results of computer simulation experiments. Flow geometry
is presented as Figure 3.11. A unit fracture transmissivity
is used.

_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Flow Rate Pressure Height Width Errorl
(MM3/s) (mm) (mm) (mm)

62.844 50 > 20 > 100 -

62.531 40 > 20 > 100 -

57.344 25 15.7 > 100 -

40.576 10 9.9 42.1 32 X

1 Error calculated using 100(1 - Width/Height/2 pi)

e . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . .

The simulation results can be compared to analytic and laboratory
results in two ways:

o The observed flow rate divided by the unit transmissivity (i.e.,
40.576 / 1 - 40.6) is approximately equal to the calculated flow
width (i.e., 42.1). One explanation for the small discrepancy may
be that a unit gradient may not have been achieved at the location
where the flow width was measured.

o The ratio of the flow width to the flow height is smaller by 32
percent of the analytic results. This result can be attributed to
the difficulty in numerically locating the node which lies imme-
diately above the source. The numerical difficulty stems from the
fact that the node lies at a stagnation point within the flow
domain and a unique fluid gradient does not exist at that point.

3.2.2 Applications to Fracture Networks

To demonstrate the application of the boundary integral method to
unsaturated media, a flow example is created using a single square frac-
ture with dimensions of (100 x 100 m). The fracture is intersected by
two other fractures forming linear slits of length 20 m. External nodes
are placed along the rim of the fracture and internal nodes are placed
along the lines of intersection between the fractures. External nodes
are maintained as zero flow boundaries, and internal nodes are maintain-
ed at constant heads of 80 mm for the fracture intersecting at (x,z)
coordinates between (60,80) and (80,80) and at 20 mm for the fracture
intersecting between (20,20) and (20,40). The geometry of the flow
example is indicated in Figure 3.13. Figure 3.14 presents the total and
pressure heads for a flow example which assumes flow through a horizon-
tal fracture. The fluid flux in this example amounts to 27.7 mrm2/s.

79



p p p~~ ~ = p

q=O

Hz80m

H=20m

qzO

lOOm

'I lOOm :1I

Figure 3.13: Flow geometry and boundary conditions for fracture inter-
secting two other fractures.
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Figure 3.14: Contours of total head within the plane of a horizontal
fracture.
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Figure 3.15 presents the results of a simulation for flow through a
vertical fracture with no capillary forces and no air entry. Also indi-
cated is the region under negative pressure which would drain if an air
entry route were available. If air is allowed to enter the fracture,
then the equilibrium interface position can be calculated. The location
of this interface after each iteration is shown in Figure 3.16 along
with the final position. Compared to the previous example, the fluid
flux has been reduced by 38 percent, to 17.21 mm2/s.

Flow through a vertical fracture with a capillary pressure head of 10 m
is presented in Figure 3.17. Because of the increased flow area, an
in rease of 25 percent is observed over the previous example, to 21.46
mmi/s. Table 3.3 summarizes simulation parameters and flow results.

_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ._

Table 3.3: Simulation results for (1) horizontal flow, (2) vertical
flow with no capillary head, and (3) vertical flow with capillary head.

Simulation: 1 2 3

Orientation: Horizontal Vertical Vertical

Capillary Head (mm): 0.0 0.0 10.0

BIK Flux (mm2/s): 27.7 17.2 21.4
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Figure 3.15: Contours of total head and zone where pressure heads are
negative within the plane of a vertical fracture allowing
no air entry.
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Figure 3.16: Contours of total head and free surface position after
successive iterations and after the final iteration within
the plane of a vertical fracture allowing air entry.
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Figure 3.17: Contours of total head and interface position after the
final iteration within the plane of a vertical fracture
allowing air entry. A capillary head of 10 m was used.
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CHAPTER 4

SOLUTE TRANSPORT THROUGH UNSATURATED FRACTURED ROCK

The ability to calculate travel times and breakthrough curves for flow
through unsaturated discrete fracture networks is important for
predicting the confinement capability of materials stored in such a
medium. In addition, solute interactions with fracture surfaces and with
the matrix which surrounds the fracture may be important sources of
solute attenuation. In this chapter, the boundary integral method is
extended to provide estimates of travel times and breakthrough curves
within unsaturated fractured rock. The method incorporates variable
velocities by integrating the inverse fluid velocity along flow paths
between two boundaries, and by integrating the resultant travel time for
individual flow paths over all flow paths intersecting the downstream
boundary. While the method neglects molecular diffusion within the flow
domain, hydrodynamic dispersion is incorporated by accounting for vari-
able velocity profiles within individual fractures.

It is advantageous to use the boundary integral method over other
methods because the boundary integral method provides the ability to
calculate smoothly varying hydraulic heads and velocities at points
internal to the flow domain. In other methods, interpolation functions
must be used which may limit the accuracy of calculated heads and velo-
cities, especially at boundaries between elements which discretize the
interior of the flow domain (Figure 4.1).

4.1 Travel Time and Breakthrough Curve Calculation

Estimates of fluid travel times are obtained by first determining the
fluid velocity within a fracture and then relating fluid velocity to
travel times. Equation 2.1 presented an expression which relates the
darcian velocity vector to a hydraulic conductivity tensor and the
hydraulic head gradient. Equation 2.1 is repeated here as:

(4.1) V(x) - - K Vh(x)

where
q darcian flow velocity, m/s;
x position, m;
X hydraulic conductivity, m/s;
V gradient operator, 1/m; and
h hydraulic head, m.

Equation 4.1 is valid for one, two, and three dimensional flow, but is
used in this chapter for two dimensional flow fields. The estimation of
travel time between two points along a flow path requires that the inte-
gral of inverse fluid velocity over the one-dimensional flow path (with-
in a two dimensional flow domain) be evaluated (Figure 4.2):

(4.2) tt fI/v(x) dx s - constant
I1
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Figure 4.1: Finite element and boundary integral approximations of
fluid streamlines. Note sharp change in direction at edge
of element in finite element approximation.
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Figure 4.2: Streamline showing two endpoints and velocity at a point
along the streamline.

where
tt travel time between two points, 5;

xl position of initial point, m;
X2 position of final point, m;
v fluid velocity, m/!; and
s stream function, m /s.

In a porous medium the porosity is used to relate the darcian to the
fluid velocity. Within a fracture, however, the porosity is equal to
unity and the darcian and fluid velocities are equal. Equation 4.2
incorporates spatially variable velocity and hydraulic conductivity
fields and assumes no diffusion or dispersion and that the initial and
final points lie on the same flow path. Within any two dimensional flow
field, the stream function is defined using the Cauchy-Riemann
conditions:

(4.3a) as/ay - v. = - T ah/ax

(4.3b) as/ax - - vy - T ahiay

where x and y are orthogonal cartesian coordinates in two dimensions and
T is the isotropic transaissivity. For anisotropic flow, lines of con-
stant stream functions are no longer orthogonal to the lines of constant
hydraulic head. In this case, Equation 4.3 can be either expanded to
include a transamissivity tensor, i.e.:

(4.4a) as/ay - Vx X - (Txxa h/ax 4 Txy ahlay)

(4.4b) as/ax - - vy M (Tyx ah/ax 4 Tyy ah/ay)

where T.., Txy, Tx and T are the elements of _ with T T or a
pseudopotential function c9aln be defined such that the pseydopolential
function is orthogonal to the stream function (Matanga, 1988). While
the latter formulation aids graphical construction of flow nets,
Equation 4.4 is used in this analysis because the graphical construction
of flow nets is unnecessary. The stream function formulation (also
called the dual formulation) has been used by Frind and Matanga (1985),
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Frind et at. (1985) to model contaminant transport from landfills. In
addition, Hull and Koslow (1986) and Philip (1988) have used the stream-
line formulation to route solutes through fracture junctions.

A breakthrough curve is generated for conditions of steady flow and
arbitrary input concentrations of a conservative tracer (i.e., a tracer
which travels at the same velocity as the water) by noting that along a
flow path the concentration of the tracer will be equal to the inflow
concentration delayed by the travel time, or (Figure 4.3):

(4.5) C2(s,t) - Cl(sat-tt)

where
t time, 8;

C2 downstream concentration, kg/mm3; and
Cl input concentration, kg/m 3.

.0

K 2

XI

Ca (sot)

t

C2 (st)

It t

Figure 4.3: Translation in time of solute concentration curve ignoring
molecular diffusion.
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In general, the breakthrough curve at a line boundary resulting from an

arbitrary input from a second line boundary is the sum of breakthrough

curves averaged over all flow paths (i.e., over all stream functions)

intersecting the downstream boundary (Figure 4.4):

(4.6) 1(t) f 82(s,t) ds /(32-31)
81l

. |8 l(sst-tt(s)) ds /(32-sl)
fsl~~~d

=fS 1 (s tfl/v(x) dx) ds 1(s2-sl)
81 X1

where al and s2 are the bounding flow paths, m/s, on the downstream
boundary.

- S 3

r 2

Figure 4.4: Geometry of flow between two boundaries.
are limiting streamlines.

Also indicated
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4.1.1 Travel Time and Breakthrough Curve Calculations Using Boundary
Integral Method

The boundary integral method is used to calculate travel times and
breakthrough curves by assuming the existence of a constant aperture
within the plane of the fracture. The stream function is solved using
the Laplace equation:

(4.7) V2 s - O

Equation (4.7) can be solved for specific boundary conditions using the
boundary integral method (Figure 4.5):

(4.8)

where
A,_

ST
boundary integral coefficient matrices; and
derivative of stream function w.r.t. the outward directed
boundary normal, computed using the Cauchy-Riemann condition.

The A and P matrices are identical to those used for solving the head
and flux boundary integral problem, avoiding the need for recomputing
these matrices. The boundary conditions are imposed by equating the
stream function with cumulative discharge:

(4.9a) Si W Si-l 4 fqi dr

or

(4.9b) Si - 5i-l 4 li (qi 4 qi.1)/2

where
r
Si
ii
qi

one dimensional flow domain boundary;
stream function value at node i;
length of boundary segment between nodes i-l and i; and
discharge at node i.

Figure 4.5: Boundary conditions for streaM functions.
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4.1.2 Specification of Potential and Stream Intersections

The determination of the location of streamlines using Equation 4.6 is a
necessary first step prior to performing the integration of Equation
4.2. In order to provide a continuous representation of the velocity
field, the velocity along the streamline must be evaluated. Instead of
the continuous representation, however, an approximation is made by
discretizing the streamlines into segments so that equal potential
differences are found along each segment. The location of the segment
endpoints are determined by finding the intersection of the streamlines
with potential contours. The range of stream functions is divided into
ten equal intervals, as is the range of potential functions, as shown in
Figure 4.6. The (x,z) locations of the intersections of the stream
contours with the potential functions are found using a Newton-Raphson
procedure. The method is similar to that developed in the previous
chapter for unsaturated flow. In this case, however, rather than solv-
ing for the intersection of the isohead contour with a desired pressure
contour, the goal is to find the location of the intersections of the
desired stream and isohead contours. The iterative procedure increment-
ally approaches the intersection using:

(4.10a) x(i,k) - x(i,k-1) 4 dx(i,k)/2

and

(4.10b) z(i,k) - z(i,k-1) 4 dz(i,k)/2

where dx(i,k) and dz(i,k) are the horizontal and vertical displacements
for node i during iteration k, respectively.

Figure 4.6: Streamline and head contour discretization scheme.
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The displacements are found using:

ah/ax ds - as/ax dh
(4.11a) dz = -

ah/ax as/az - ah/az as/ax

and
dh - ah/az dz

(4.1lb) dx -
ah/ax

where s is the stream function value and h is the potential function
value. The values of the changes in (h,s) with respect to (x,z) are
determined using:

(4.12a) ah/8z - [h(x,z-dz) - h(x,z)] / dz

(4.12b) ah/ax - [h(x4dx,z) - h(x,z)I / dx

(4.12c) as/az - (s(x,z-dz) - s(x,z)J / dz

and

(4.12d) as/ax - [s(x4dxz) - s(xz)] / dx

where dx and dz are small relative to the offset desired. Once the
location corresponding to the total head and stream of interest is
found, the next intersection along the stream line is identified. The
velocity between the two intersections is obtained by finding the mean
velocity between the two intersections. A harmonic average velocity, v,
is used:

(4.13) v v(l) v(i-l)l / [v(i) 4 v(i-1)]

4.1.3 Application to Saturated and Variably Saturated Flow

The first application is made to a single square planar fracture with
constant unit transmissivity and a unit aperture. Two opposing boundar-
ies are imposed no flow boundaries. The other two opposing boundaries
are held at constant heads with a difference in total head equal to the
distance between the two boundaries. Because the velocity field is
uniform, the expected breakthrough curve for a step injection of a
conservative solute assuming no dispersion due to diffusion should be a
step function. Figure 4.7 illustrates the flow geometry, boundary
conditions, computed potential and stream contours, and the resultant
breakthrough curve. Note that the computed and expected breakthrough
agree to within one percent except for streamtubes which lie along the
boundary of the sample. Due to the approximation function used by the
boundary integral method, the largest errors are to be expected in this
region. If instead of computing velocities along boundaries using the
Newton-Raphson method, the velocities are computed using head differ-
ences between nodes, a superior estimate of the breakthrough curve is
obtained, the error being reduced to less than three percent.
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Figure 4.7: Flow geometry, boundary conditions, calculated total
head contours, and calculated stream function contours for
a square flow domain and calculated breakthrough curves at
the outflow boundary for a step injection at the inflow
boundary.
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Three additional applications are made to a saturated, horizontal
fracture, and two vertical, variably saturated fractures. One of the
vertical fractures is assigned no capillary head, while the other is
assigned a capillary head of 10 m. These applications are identical to
those examined in Section 4.3 of the previous chapter. Figures 4.8
through 4.10 illustrate the flow geometries, boundary conditions, com-
puted potential and stream contours, and resultant breakthrough curves
for the three applications. Table 4.1 presents the breakthrough curves
in tabular form. It is to be noted that substantial tailing of the step
injection of a conservative tracer occurs. The tailing results from the
two stagnation points located at opposing corners behind the constant
head boundaries. Velocities at the stagnation points will be zero and
any stream line passing nearby will be affected by a reduction in velo-
city and a concomitant increase in the travel time. This effect is not
noticeable in the simulated problem due to the coarse discretization
intervals used.

_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.1: Calculated breakthrough times for streamlines in horizontal
and vertical fractures.
_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Streamline Horizontal Vertical

1 274.5 349.2
2 221.6 239.9
3 126.5 144.8
4 99.3 101.0
5 81.6 83.9
6 81.9 80.8
7 90.3 85.7
8 100.5 81.5
9 131.1 87.1

10 248.7 89.3
11 275.1 121.8
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Figure 4.8: Flow geometry, boundary conditions, calculated total head
contours, and calculated stream function contours for a
horizontal fracture with two intersecting fractures and
calculated breakthrough curves at the outflow boundary for
a step injection at the inflow boundary.
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Figure 4.9: Flow geometry, boundary conditions, calculated total head
contours, and calculated stream function contours for a
vertical fracture with two intersecting fractures and
calculated breakthrough curves at the outflow boundary for
a step injection at the Inflow boundary.
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Figure 4.10: Flow geometry, boundary conditions, calculated total head
contours, and calculated stream function contours for a
vertical fracture with two intersecting fractures and a
capillary head of 10 m and calculated breakthrough curves
at the outflow boundary for a step injection at the inflow
boundary.
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4.2 Effects of Sorption and Solute Retardation

Sorption of solutes to fracture surfaces will result in the retardation
of the breakthrough curve. At any point the solute velocity can be
modeled by assuming that the solute velocity can be linearly related to
the fluid velocity using a retardation coefficient:

(4.14) vs = v / R

where
Vs mean solute velocity, m/s;
v mean fluid velocity, m/s; and
R retardation factor, dimensionless.

The use of a retardation coefficient to model sorption onto fracture
surfaces is appropriate when fast reversible adsorption is present with
a linear isotherm (Jennings, 1987). It is interesting to note the
behavior of the retardation coefficient:

o If the solute is conservative (i.e., no sorption) the coefficient
is set to one;

o If the solute is subject to instantaneous, reversible sorption, the
coefficient is set a number greater than one;

o If the solute is excluded from boundary layers where the fluid
velocity is less than the mean velocity (such as due to anion
exclusion), the coefficient may be less than one.

For slow reversible adsorption with a linear isotherm, a first-order
sorption rate constant can be used to model the process (Valocchi,
1986):

(4.15) Hs - K (Cf - Cm)

where
HS mass of solute sorbed per unit time, kg/s;
K sorption rate constant, kg/s;
Cf. concentration of the solute in the fracture fluid, dimension-

less; and
Cm concentration of the solute sorbed onto the matrix, dimension-

less.

When sorption and desorption occur at different rates, such as for
irreversible reactions, two rate parameters are required:

(4.16a) Hs - t (Cf - Cs)

and

(4.16b) Hs - K (Cf Cs)

where K4 and K are sorption and desorption rate constants, kg/s,
respectively. The process of linear instantaneous sorption can be
modeled using the retardation coefficient which results from a
Freundlich isotherm:

(4.17) S - Kd Cn
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where
S mass of solute species adsorbed or precipitated on the solids

per unit fracture area, kg/m22;
Kd distribution coefficient, or the mass of solute on the solid

phase per unit fracture area divided by the concentration of
solute in solution, m;

C solute concentration, kg/m3; and
n exponent, equal to one for a linear isotherm, dimensionless.

The retardation coefficient is applied in the computer simulation model
by assuming that the retardation coefficient is everywhere constant
within the medium and that the arrival of a concentration change at the
point of observation can be shifted by dividing the travel time by the
retardation factor. In this case, Equation (4.14) is modified to yield:

(4.18) Vs a v / R - q / (e R)

where
Vs solute velocity, m/s;
v fluid velocity, m/s; and
R retardation coefficient, dimensionless, equal to:

(4.19) R - 1 4 A Kd

where A is the surface area to volume ratio for the fracture, 1/m. For
a planar fracture:

(4.20) A - 1 / e

so that Equation 4.19 becomes:

(4.21) R - 1 4 Kd / e

This formulation results in a delay of the breakthrough curve. Figures
4.11 through 4.13 present simulated breakthrough curves for the
horizontal and vertical fractures described in Section 3.2.2 using a
retardation coefficient of 2. Note that the solution is a trivial case
of doubling the travel time between the influent and effluent nodes.
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Figure 4.11: Calculated breakthrough curves at the outflow bouadary for
the flow domain of Figure 4.8 with a retardation coeffi-
cient of 2.

RxI Rc2

C/Co

100 200 3
TIME

Figure 4.12: Calculated breakthrough curves at the outflow boundary for
the flow domain of Figure 4.9 with a retardation coeffi-
cient of 2.
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Figure 4.13: Calculated breakthrough curves at the outflow boundary for
the flow domain of Figure 4.10 with a retardation coeffi-
cient of 2.
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4.3 Effects of Matrix Diffusion

Matrix diffusion is the movement of a solute into a rock matrix from 
a

fracture which can be described using Fick's first law (Grisak and

Pickens, 1981). Loss of solute into the matrix can not be modeled using

the retardation coefficient because the assumption of instantaneous

equilibration is violated. Instead, a decaying rate of loss is

generally observed. By assuming a flow system, illustrated in Figure

4.14, in which a step injection of solute is made into a fracture, an

analytic relationship between solute concentrations as a function of

time and distance along the fracture and matrix porosity and diffusivity

can be established (Grisak and Pickens, 1981):

(4.22) a(x,y,t) - C(xy,t) / C0

- erfc[((OD*/ve)x 4 y/2) / (D (t-x/v))l1/2

where
a(x,y,t)
C(x,y,t)

C
erfcx)

0
D*
v
x

y
t

attenuation coefficient, dimensionless;
solute concentration at any point (x,y) within the matrix or

fracture at time (t > x/v), dimensionless;

initial solute concentration, C(O,O,t) for Vt, dimensionless;

complementary error function, 1 - erf(x), dimensionless;

effective matrix porosity, dimensionless;
effective molecular diffusion coefficient of the solute, m

2/s;

mean fluid velocity in the fracture, m/s;

distance from source, parallel to fracture, m;

distance from source, perpendicular to fracture, m; and

time from beginning of injection, s.

.. ...... .... ............................ X...................... .............................. .....

C O
I
e

I. .......... ................. .....
....... ... .........

.............
............. .............................

...... ....................... ........................ .....................
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.14: Conceptual model of flow through an individual fracture of

semi-infinite areal extent.
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Of interest to this analysis is the behavior of the solute concentration
at a point within a fracture as a function of time. If the rate of
change of the solute concentration is low, then a constant solute
concentration can be modeled using the attenuation coefficient. This
will only occur if the attenuation is very nearly a constant, i.e.:

(4.23) aa(xyt) / at - 0

To determine under what conditions Equation 4.23 is valid, an analytic
expression is derived. Combining Equations 4.22 and 4.23 yields:

(4.24) a erfc[((eD*/ve)x 4 y/2) / (D*(t-x/v))l/2] / at = 0

This derivative can be calculated by noting that (Abramowitz and Stegun,
1972, Eq. 7.2.8):

(4.25) a(in erfc(z)) / az - -i(n-l) erfc(z) (n -0, 1, ... )

where i is the square root of minus one. In our case, n - 0. Using op.
cit. (Eq. 7.2.1):

(4.25) a(erfc(z))/az - -1/i erfc(z) - - 2 exp(-z2) / V1/2

By also noting that:

(4.26) aalat - 6(erfc(z))/bz az/at

We can substitute Equation 4.25 into Equation 4.26 to obtain:

(4.27) aa/at - [- 2 exp(-z2) / V1/21 az/at

We can find the derivative of z with respect to time by noting that:

(4.28) z - ((ED /ve)x 4 y/2) / (D (t-x/v))l/2

Taking the derivative yields:

(4.29) az/at - - z / 2 (t - x/v)

Substituting Equation 4.29 into Equation 4.27 results in:

(4-30) aa/at - z exp(-z2) / [1X 1/2 (t - x/v)]

where z is given by Equation 4.28. Equation 4.30 relates the rate of
change of the attenuation coefficient at any point within the fracture
or matrix to physical properties.

Sensitivity analyses can be used to determine under what conditions the
attenuation coefficient is constant with respect to time. Such a
sensitivity analysis is presented in Figures 4.15 through 4.22. {or all
the analyses an effective solute diffusion coefficient of 0.003 m Ayr
and an aperture of 100 um was used. The relative concentration and the
time rate of change of the relative concentration are plotted as func-
tions of both distance and time.
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Figure 4.15 shows the movement of a solute pulse contained in a solvent
moving at a rate of 10 m/yr through a fracture bounded by an impervious
matrix. Note that the fluid pulse is a step function for all distances
and times. Figures 4.16 and 4.17 show the movement in both space and
time for a solvent moving at a rate of 10 m/yr through a fracture
bounded by a matrix with an effective porosity of 0.001. Note here that
the sharp front of the solute has been attenuated. Note also that the
time rate of change of the relative concentration is highest near the
leading edge of the solute step function, and becomes minor once the
leading edge of the step function moves past the observation point.
Figures 4.18 and 4.19 are for identical parameters as for the previous
figures, except that the matrix porosity is increased to 0.01. Again,
the time rate of change of the relative concentration is small except in
the proximity of the leading edge of the solute step function. Figures
4.20 and 4.21 present results for a matrix porosity of 0.1. Figure 4.22
presents results for a flow velocity increased to 100 m/yr for through a
matrix with an effective porosity of 0.1. Of interest is the
observation that the time rate of change of the relative concentration
is very high at early time, but is diminishing at later times. From
these limited scenarios, it Is demonstrated that under specific
conditions the mass flux into the rock matrix is very nearly a constant
for short time intervals, allowing the use of a attenuation factor which
is variable in space but constant in time.

Once the limitations of the use of the solute attenuation coefficient
have been determined, the effect of matrix diffusion can be investigated
by assuming slow diffusion into an immobile liquid phase in the rock
matrix (Rasmussen, 1982). Matrix diffusion is modeled assuming that a
constant solute flux into the rock matrix exists for short time
intervals. A reduction of the solute concentration is calculated by
using a convolution summation to calculate the attenuation coefficient
at each time step. The convolution is:

t
(4.31) a(x,t) = E a(xi) C(xo,t-i)

i-o

where a is the time and spatially dependent solute attenuation coeffi-
cient which accounts for diffusion into the rock matrix, dimensionless,
obtained from Equation 4.22. As demonstrated in the sensitivity
studies, above, Equation 4.31 will not accurately calculate the break-
through curve when the attenuation coefficient changes quickly over
time. To evaluate whether the coefficient is constant, the value of the
derivative of the constant with respect to time should be small. The
derivative is calculated using Equation 4.30. As long as the derivative
is small, there is no need to update the matrix diffusion attenuation
coefficient within each time step.

Figure 4.23 plesonts simulation results for three values of the
parameter 0(D ) 2. The figures were generated using the square flow
domain of Figure 4.7 at two velocities, 0.08 m/s, and 0.16 m/s over a
distance of 100 m in response to a step injection of solute at the
inflow boundary.
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Figure 4.16: Analytic solutions of solute concentration and the time
rate of change of the solute concentration as a function of
distance from the source resulting from a step inflow of
solute past a rock matrix with a porosity of 0.001.
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CHAPTER 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

Flow and transport through fractured media has been variously simulated
in other studies by using equivalent porous media models, dual (or
double) porosity models, and discrete fracture network models. The
modeling of discrete fracture networks has progressed from one-
dimensional bundle of tubes models, to two-dimensional fracture net-
works, and recently to fully three-dimensional simulation models. The
model presented in this work uses the discrete fracture network formula-
tion to generate fractures within a three dimensional space, and to
solve both a two-dimensional flow field within a fracture network embed-
ded in an impermeable matrix, as well as a three-dimensional flow field
using fractures embedded in a permeable matrix. Extensions to unsatur-
ated flow and solute transport are made assuming an impermeable, porous
matrix.

Flow and transport processes through the fracture network are subdivided
into three components, termed intra-fracture, inter-fracture, and supra-
fracture processes. Intra-fracture processes occur within individual
fractures, while inter-fracture processes result from flow and transport
through networks of discrete fractures. Supra-fracture processes occur
as the result of interactions with the rock matrix. Such interactions
include matrix diffusion and retardation, and flow through the matrix.
The quantification of the components proceeds from the demonstrated
ability to solve a flow problem within an individual fracture
incorporating unsaturated conditions and solute breakthrough curves, to
the ability to solve a flow problem through a network of intersecting
fractures, and finally to a problem incorporating flow through both a
fracture network and the matrix surrounding the fractures.

The simulation of flow and transport is based on the boundary integral
method which provides a methodology for discretizing the boundary of
each fracture and to solve for fluid flow within the two dimensional
fracture flow domain. Extensions to combined matrix and fracture flow
are made. Fracture network hydraulic conductivity is calculated by
stochastically generating a network of fractures. Each fracture within
the network is defined by its center, orientation, lengths in two direc-
tions, and transmissivity. The intersections between fractures are
found numerically, and mass balance equations are used to determine the
flow between intersections. The mass balance equations are solved for
specified boundary conditions. The proposed models employ Darcy's law
to relate fluid flow to a potential field, capillary theory to relate
fracture saturation to a potential, and the concept of stream lines to
calculate travel times. The models are implemented using computer code
which is executable on a PC-compatible micro-computer.
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5.2 Conclusions

Sensitivity studies have been performed to evaluate the influence of
specific fracture parameters on network hydraulic conductivity, as well
as on solute breakthrough curves. From these studies the following
conclusions are made:

o Steady fluid flow through individual fractures can be calculated
using the boundary integral method for various boundary geometries.
Calculated errors vary from 0.06 to 0.30 percent for fine and
coarse discretization schemes, respectively.

O Steady flow through serial fractures can be calculated with a maxi-
mum error of 0.20 percent for a coarse discretization scheme.

o Steady flow through a fracture with internally intersecting frac-
tures is demonstrated. A maximum 1.0 percent error was present for
simulations where an analytic solution was available.

o Flow through fracture networks containing fractures of infinite
length is linearly dependent on fracture density (i.e., fracture
length per unit area normal to the hydraulic gradient) and fracture
transmissivity.

o The effect of correlation between fracture length and fracture
transmissivity on estimated network hydraulic conductivity indi-
cates that increasing the correlation between fracture length and
fracture transmissivity results in an increased network conductiv-
ity for all four realizations examined.

o A three dimensional boundary integral equation is shown to accur-
ately represent combined flow through both a permeable matrix and
an embedded fracture. Estimated global hydraulic conductivities
are calculated for variable fracture to matrix permeability ratios.
It is shown that estimated errors increase as the aspect ratio
increases.

o Extension of the boundary integral method to unsaturated fracture
flow is performed by assuming a constant capillary potential within
individual fractures. A mobile (or moving) interface formulation
is used to position the air-water interface along the zero pressure
head surface. A Newton-Raphson scheme is used to locate nodal
positions. Comparison of simulation results is made with an analy-
tic solution, along with laboratory results obtained from a flow
visualization experiment.

o Simulations of unsaturated flow through a fracture network demon-
strates the presence of zones of water under large positive pres-
sures, along with zones of air-filled voids.

o Retardation and matrix diffusion are shown to delay and to atten-
uate, respectively, solute breakthrough curves. The retardation
coefficient is used to model instantaneous sorption, while matrix
diffusion is used to model slow diffusion into a porous rock
matrix.
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5.3 Recommendations

Based upon demonstrated modeling capabilities and the sensitivity
studies which have been performed, the following recommendations are
made:

o It is recommended that calibration of the model be performed using
field tests and comparison with porous media and analytic stochas-
tic models. Once calibration has been performed, the computer
simulation model can used to provide parameter sensitivity esti-
mates for flow through a fractured rock mass of arbitrary matrix
permeability.

o Additional needs for model calibration include the determination of
the relation between pressure heads in fractures and the unsatur-
ated fracture hydraulic conductivity. Such tests are required to
validate the hypothesized relationship between hydraulic conduc-
tivity and pressure head. The testing of travel times and break-
through curves within fracture networks at various pressure heads
need to be performed for model validation. Observations for frac-
ture length estimation also need to be performed to determine
field-scale values of this parameter.

o It is recommended that several features be included in the methodo-
logy to more completely characterize fluid flow and solute trans-
port through variably-saturated fractured rock. In particular, a
two-dimensional representation of fracture transmissivity variation
within the plane of the fracture should be included. The formula-
tion of the two-dimensional representation of an fracture transmis-
sivity would more completing account for head distributions within
the plane of the fracture, as well as tortuosity, streamlines and
dispersivity coefficients.

o An additional feature which should be incorporated within the meth-
odology is the computation of breakthrough curves resulting from
flow between the rock matrix and the fractures. For networks of
fractures within a rock mass at large negative pressure heads, flow
will predominantly occur through the matrix, drained fractures
serving to inhibit the flow of water from one block to another.

o The inclusion of transient fluid flow should also be examined. The
effects of pulsed, step, and cyclic boundary conditions should be
evaluated to determine the effect of fractured rock on peak flow
rates, especially with respect to depth below a source.
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APPENDIX A

COMPUTER SIMULATION MODELS

This appendix presents four computer simulation models used in this
study for investigating the effects of geometric properties of fractures
on fluid flow and solute transport through variably saturated fractured
rock. Simulation inputs and outputs are presented, along with source
code listings of the programs. It should be noted that the programs are
being continually updated as improved algorithms are implemented.
Updated versions of the programs, as well as source code on PC-compati-
ble floppy disks are available from the author. The programs are
written in FORTRAN-77 for implementation on a Definicon DSI-32 68000
processing board, but can be used in any environment supporting FORTRAN-
77 with minor modifications.

The programs presented here were prepared in support of research
activities and are not intended for other uses. Neither the United
Sates Government, the University of Arizona nor any of their employees,
makes any warranty, expressed or implied, or assumes any legal liability
or responsibility for any third party's use, or the results of such use,
of any portion of these programs or represents that its use by such
third party would not infringe privately owned rights.
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A.1 BIM: Fluid Flow Solver Using the Boundary Integral Method

This section presents the data entry requirements, sample data output,
and the program listing for a computer simulation model used to model
saturated and unsaturated flow through networks of discrete fractures.
Table A.1 presents the opening menu, indicating the various options
available. Option 1 requires an input data file, an example of which is
provided in Table A.2. Options 3 through 6 provide output data files,
an example of which is presented as Table A.3 for the sample input of
Table A.2. Options 7 and 8 store and retrieve intermediate output, and
should be executed after or instead of data entry, respectively. Option
9 is implemented in order to return to the operating system. A listing
of the program is presented following Table A.3.

. … . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table A.l: Opening menu for program BIM
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BOUNDARY INTEGRAL METHOD

Implemented by Todd C. Rasmussen
Department of Hydrology, Univ. of AZ

1 - Input from Data File
2 - Display Boundary Equation Matrix
3 - Find Potentials and Streamlines at Boundary Points
4 - Find Potentials and Streamlines at Interior Points
5 - Find Free Surface
6 - Calculate Breakthrough Curves
7 - Write Backup File
8 - Read Backup File

9 - Exit to DOS

Enter Selection:
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Table A.2: Sample input data for program BIM.

1
1

5.
100.
100.
100.
100.
100.
100.
99.99
80.
60.
40.
20.
0.01
0.
0.
0.
0.
0.
0.
0.01

20.
40.
60.
80.
99.99

24

0.
20.
40.
60.
80.

100.
100.
100.
100.
100.
100.
100.
100.
80.
60.
40.
20.
0.
0.
0.
0.
0.
0.
0.

1
1
1
I
1
1

100.
100.
100.
100.
100.
100.

1
1
1
1
1
I

0.
0.
0.
0.
0.
0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table A.3: Sample data output from Option 3 from program BIM using
input data from Table A.2.

£ n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

K

100.000
100.000
100. 000
100.000
100.000
100.000
99 .990
80.*000
60.000
40.000
20.000

.010

.000

.000

.000

.000

.000

.000

.010
20.000
40.000
60.000
80 .000
99 .990

y

.000
20.000
40.000
60.000
80.000

100.000
100.000
100.000
100.000
100.000
100.000
100.000
100 .000
80.000
60. 000
40. 000
20.000

.000

.000

.000

.000

.000

.000

.000

U

.044
1.9.997
39.999
60. 001
80.003
99. 956

100.000
100.000
100.000
100.000
1.00.000
100. 000
99.956
80.003
60.001
39. 999
19 .997

.044

.000

.000

.000

.000

.000

.000

q

.000

.000

.000

.000

.000

.000
5.*007
5.000
5.000
5.000
5.000
5.007
.000
.000
.000
.000
.000
.000

-5.007
-5. 000
-5.000
-5.000
-5.*000
-5.007

d

- .006
.000
.000
.000
.000
.006

50.045
99 .986
99 *997
99.*997
99. 986
50.045

.006

.000

.000

.000

.000
-.006

- 50.045
- 99. 986
-99.997
-99.997
- 99. 986
- 50.045

C

- .025
- .025
- .025
- .025
- .025
- .025
.000

100.016
200.011
300.009
400.004
500.020
500.045
500.045
500.045
500.045
500.045
500.045
500.020
400.004
300.009
200,011
100 .016

.000

Mass balance: .0000
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Boundary Integral Prograsm
* solves syst.. Of equations of the form (A h - o q)

.- . uam .. - -.. i .- 5 sw U .

PROGRAM bb in.M-w *-A...l8 .* wiUn wn ._ d. w. a- m ,
T _ ."a %Out&. _ d MI a" L._ U._u w

rfsawftlMutw 90 MI ou aSas M. -Ma as neu .1 a ~mI.
SINCLUDE j ,scofln PINU w Ma -e - _ _-m- uS LO - .? - am'

qWS "Imi as Ukmsip PKamL, im .10..

01PD(6,fil.' flov.out' ,statuc-'ne')
OPzEi9,file-flfw.res',stataea-nev)

10 CALL cls(2)

WRUTE(*,1O1)
READ (*,',err-10) L

1 (2i .SQ. 1) TUN
CA"L cla(2)
CAL input
CALL build
CALL pack

ELssir (i ws. 2) Num
CA" c1S(2)
CALL plot

X8EIr (i .(Q. 3) TEM
CAL c1s(2)
CALL g
CAL unpeack

CALL 018(2)
CAUL strea
CALL pck

CALL unpack
CALL ahow

3.S? (i .lEQ. 4) THEN
CALL cls(2)
CALL points
CALL pointers

3.S3F Ci .EQ. 5) THEM
CALL c1s(2)
CALL contract
CALL cls(2)
CALL build
CA" pack

ELSE=? (i .SQ. 6) S
CMULL a1(2)
CALL tracer

ELSUE (i .30. 7) THU
OPEI(7.file-flow.dat' ,for_' binary')
wRIlS(7) nn,nd,n ,n.na,nAt,total,x,y,n,vq, rkodg,h,ikode
CASE (7)

MsE83! (i .Q. 6) TH E
oP06(7, file' flow.dat' ,forma' binnry')
READ (7) nnia.nnl.im,no,ttotAl.x.y,a.vq,r.knde.g,h,ikode
CLOS3(7)

ELSE!? (i .SQ. 9) TM
CALL C18(2)
CWSE(s)
CLO6SU9)
STOP

mir?

G00 10

101 ORMA (
I //ISx,' 1

I/I 5x, ' 2
I /lSx, 2
. /1Sx,' 3

. /lSx,' 6
I /lSx,' 7
. /1Sx,' 7
I //15X, a

.///I 5x,'
mmD

Input frau Data File,
Display bloundary 8"ation Htrix',
rind Potentials and Strieainle at rodazy Points',
Find Potentiala and Streamlines at Intarior Pointa',
Find Frae Surfaea ,
Calculate Dreakthrough Curves',
write backup ile',
Reed backup Film',
Uit to DWI,

Reter Selections 't)



*a. -*-*** * ea at a a0 * ea . a * .a - * - a a* O

* Pa" outpat and Clear *cer *

* C * -* - - -* *-* *O-*O * * C * * Ot att Otto.* ***

SUBROUTIOR @1mm

CUMC R 'ad

IT (a .Q. 1) TM
WP3(*,101) CHARM)
FlD t-,102) wmlt

VbDIT

WRrs'(*,103) CRRR(27)

F (n .EQ. 2) WRTE(*,104)

2rig"
101 N0MRT(A1,(25o253'1,1lvu ORM key to efotr .*.'$

102 POWMt(A1)
103 19M1(AI, I |2J' )
104 7F05N&(//lSx,' 30BOUNARY Imt hl,

//i3x,' Implemented by Iodd C. Ra ',
/tSx Departeet of Nydrology, univ. of As)

ED

* * * C C -OB etO O e t. tac ee.. -. .

* Read OMta and ltild Global Artays
* C* e- t . -- * *a ee* -.~ e eat*@ * e at a

Su NX input

CD tERl10 reedfils, chrl, ch2
C 8~1ER90 ehr

* Determine inpt file am.
MIRe(* 101 }

RED (*,102) readfila
OPEN (1 .fil-tleadfile)

a isho input data?
aI(-,103)

READ (*,104) list

a PeAd number of domeiuu
READ (1,105) ad
IF (d .CT. a2) TM

wpy~ant 106)

3- 108

* Input data for all domatna
00 20 i a 1, a

READ (1,105) 'i).(ne{,i},-tm(i))
lr (list.SQ.1) WURS(*.105) nsi).(no3.i),-1,(L))

Mni) - ne(dm(i),i)
IF (n(i) .G0. m3) TM

VAXt(-,108)
CALL La(l)
fTOP

r

E

NERD (1.109) t(i)
IF (liUt.9Q.1) IWY(1,109) t(i)

00 10 j - 1, n()R
NRbD (1 ,107) i,j,zx(,i),yC5 ±,kode(ji),u(5 ,t)

10 I (list.Zg.1) WRITR(Z,107) i.,x(,i),y(,i).kod.(ji)n(5,i

In (liat.rQ.1) LL olA(1)

* Find total number of bodes.
IF ( .EQ. 1) nj() -0

20 IF (i .. 1) nj(i) a n(a-1) + ml(i-l1



* Done with data file, close it.
CLJOSBB )

an a nj(nd) * n(nd)
IF (nn .CS. mu) THEM

SINXT(*,108)
CALL 0la(i)

So~r

101 FORMg C//10x,' Inter noa of input data files '5)
102 FORMat (A10)
103 FORMAT (/1Ox,' IhWo of input data?t '5
104 FORMT (11)
105 FOReAT (1615)
106 FORMt (2f10.2,i5,fwO.2)
107 FORMAT (2i5,2f10.2,i5,f10.2)
108 FORMAT (//10s,' Problam excmeds memory capacity')
109 FORMAT (SflO.2)

En

I-'

*Compute guadratlire w1eightingi Frinctionm

sussouIVz build

$I1CLUD& jicos a

* Clear 8 and N
00 10 1. a 1, ad
DO 10 j a 1, AWi
0O 10 k - 1, AaMi

h(j,k,i) =0.
10 9(j~k~i) -0.

• Compute G and 8
D0 30 i - 1, ad
IF MU~i .11. 0) THEN
Do 20 j - 1, nAM
Do020 k-i., nCI)
L. - osxt~k.noGli),nm(i)
a - laat(k.a(1i)D.nMi))
IF ((j .11. k) .AU0. (3 Ng1. 1)) 211
ChuL integral (~)xji,~~)zki,~~)sli,(,)
&1,a.2,blb2)
h(3,k,i) - h(j,k.i) * a
q(J.k,i) g (j,k.i) 4 bi

h~,.)*h(J~l,i) I. a2
g9(li)- 5,1,i) + b2

h~jji *hjj.i) alc - a2
BL82

ax -z~l,i) -x(k.i)

ay -Y(l,i) -y(ki)

or Dsga?(es*a + ayfay)
bi -at * (1.5 - DWGQ~ar/DSQRF(t(L)))) I2. /t(i)
b2 ora * (0.5 - DL0Q(ar/DS8RT(t(W))) /2. It~i)
IF (kc .11. J) M

g(j~k.i) wg(j,k,i) + b2
g(Jl.i)0 a g9j,1i) + bi

nag
g~~~)- q~j~k,i) + bi

a~~~i q(I,,Li) + b2
30D!?

3011F
20 CONTINUE

Emir
30 COVFNTIR

Rum-
no



%A

* nind influance funotion between two lUne segents

3U900ZW tatagrul (t~x~y,zt,yt ,x2,y2,a ,-2,bl~b2)

SIMUCIT RZ'SCA-N.0-3)

DSISrow fC6), v(6)

CkA f /0.12523340Stld469. 0.36783149998180, 0.587317954286617,
0.769902674194305, 0.904117256370475, 0.961560634246719/

Dk.R v /0.249147045813403. 0.233492534538355, 0.203167426723066,
0.160078328543346, 0.106939325995313. 0.047175336386512/

ax * C2 - xi) / 2.
ay - Cy2 - yl) / 2.
ba * Wx2 ezi) / 2.
by a (y2 + y) / 2.

IF (ax .13. TM
ta * ay/ ax
diet * AM C(tax - y + yl - tW 'u) DSQIT(ta*ti + 1))

diet * An (x - xi)

ir C (x1-x)wy2-y) *LI. Cx2-x)*(yl-y) dit -diet

Al s0.
aa * 0.
*i - 0.
b2 -0.

DO 10 L * 1, 6
gi * fMi)
D0 10 j - 1, 2

I1 F .Q. 2) gi a
xx a x - (ax * gt + bx)

- y - (ay * gi e by)
ra a DUQRY Cxx~xx + ryyy
ar - DSt (ax*ax + ayftsy)
q - ar * w(i) * DOC(ra/DSGM(t)) / 2. I t
h a ar * WUi) * diet / (frara) / 2.
At - at + h * (9i - I.)
*2 -*2 - h * (gi e 1.)
hi* bal + g (qi - 1.)

10 b2 - b2 - g * (qi , 1.)
Ra
Etl

*t FInd Subsequent nodQ

INSEM function next 0.nam)

DS135011 OkC(*)

next - j e 1
I? Ci .3g. nCM)) 19

next a I
SWiNI (a .GT. 1) T

DO 10 I * 2, a
10 IF (I .Q. ncfk)) next - nMCM-l) + 1

~sr

*ind pevious noda

S lMM function Ilt (Cnc,a)

DIMkt0 no(*)

last * - - I
IF (C .3. 1) ) M

4t - ne(t)
n5W C T .CT. I) 1

DO 10 k - 2, a
10 UP (3 .Q. etk-I)+e) last ane(k)

Emir

RETURN
mm



* ~~~~create G obal matrix

808UBumm pack

$Z1lCLUDO j Iamo

*Cbebino u with Q to form vector of knowme
and tremefer from Q to gg ezd 0 to 00

DO S i 1, NX1
qq(±) O .
DO S ) - 1, Nxt

S 9g(iJ) -0.

D0 50 i - I, nd
I - O Mi
DO SO k - 1, a(i)

II - kode(k,i)
mj - 1e2(-U,128)
sk -M-/I 28
la I- ~(sk)4ej
IF (a .GT. 0) THEN

DO 10 1 - I, u(L)
Rqq~lij) - qq(1.e) - g(1.k.i) n (k,i)

10 gqg(1.j,lek) a - h(j,k,i)

3man (a .8Q. 0) THEN
DO 20 j - 1, n(i)

qlj - qiq(1+j) + h(1,XL) 0u~k,i)

20 gyC14+J,.k) - 9(j,k~i)

UIKIP Ci *LT. SOk TMz
DO 30 j - 1, MDi

30 le,.k)-wjki

* Plo~~~t matrix

SUBaOUTXZa plot

*ZINOltD j Icons

CHiARACTER aC200).d,s~b

DATA *,b/ ,1/

DOM kc /1/

MrsL 0eCO)
00 20 L - 1, nu

DO 10 j a 1, an
IF Cqg~i,j) .0?. 0.) TMD

aC( )-'4-
MA.5W Cgq(i,j) LT.. 0.) THEN

10 CDMTIMZU

IF CqqCJ) .Mz. 0) mfm
d-

d

WIITE C.100) (ac1).Ju1,rA),*,b,sud

It (i EQ0. Cnj(k) + MMk)) TOSM

20 CONFIMUS

100 YORMACx,200&1)
mm

I--

40

so

31a3
00 40 j - 1, n~i)

qqCIeJ,mL) - -qCj.k,i)
99(l.Jl~k) - -h~l~k~i)

flawr
cOwrzINU

REUR
END



* Om~~amulan *iminaltion,*
* a * a.... .** .. a..... **.. 0*** *a a. akosubstitute

DO 60 J a 1. an-1.
S0U00fO1I games I - ant-j

D0 60 Ii - 11. an
UN1CLUDS js 60o s qq(l) a qq(1) - qq(1,IcJ qq~k)

oRy& exroll / 1.D-6 R ETURN

Do 50 I. a 1, na-I

* Exchange row. if sure in dtiqnqm"
ZI (ABS(q9(1,1)) .LT. 62ter) TM!

00 20 k s 1.1. a

IF (AinS(qq(k.11) AGT. arrar) IYER
DO 10 J - 1. un

a - qq(1,j)
w9(1.j3 "(- j

10 qq(k,j) a

a- qy(1)
qqy(1 - qq(kc)
qq(k) a a

(.3 00T0~~GM30

20 CWTNU3

• an't find non-u.?. to excabflq with, sinqular matix
WRI!T(,) SingularityP In rew,, I

lmir

* Divide raw by diagon.1 aooffiaieat
30 a - WI2 ..2. )

c~M- qfq(1) / a
Do d0 k - 141. an

40 gg(1,k) a wI2..)/a

* Slisinat. unknown Q(L from row .7
00 S0o 1.1,

a - "JL
qq(j) a qq(j) -a ' qq(l)
Do 50 k - 1,1, on

so .w~l~k) - gqqC.k) - a qq(1,k)

• Compute last unknown
Ir (AMl("q(nm~na)) .1. error) TMN3

WRITE(.* *0 SinquaritIP a n rar an
STOP

lugS
qqlnn) a qq(rnj / qyln,nm)

ago??



* le~~~xduce* Global, lquation

SUsaROtMU unpack

Do 10 i a 1, Dd
Do 10 j - 1. a~i)

a = kod.(JAi)
mJ - 44D(-e.128)
sk *-./128

k -nj(uk).uJ
I -nl~i) + I

IF (a .GT. 0) TH4EM
q(J'l) *U(J.±)
u(J'l) -qq(l)

KSEZI (a SQ.. 0n) TM13
q(j,i) -qq(l)

u a~i qq(k)

.ELS
*~,L -qq(k)

u(j,±) =qq(l)

10 COmfzWUUU

RUUR

IN

* Display Solution

SUBROUTINE show
$INCLODt j eoin

ki a I
sun a 0.
WU?3(S.601)

00 20 i = 1, ad
00 10 j - 1, Q(i)

* fix page break
IF (OD(j-1,20) .EQ. 0) Tn
IF (j .E. 1) CALL eCUM
IF (j .3Q. 1) ChLL ClA(O)
ARIlE (*,601)

mwxi

* Adjust discharges by length
1 - next (j,nc(1,1),nad±))
k - lest (j.no(1,i),rm(i))
dl - DSQT(DoaS(X(j,i)-x(l,i))*-2.DAS(y(j,i)-y(l,i))ft2)/2.
dk = DSgRT(DASSxz(j,i)-x(k,i))J 2eAM(y(j ,i)-y(k.i))ft2)/2.
d - d1*(3.*q(ji)+q(l,i))/4.+dk'(3.*q(j,i)+q(k.i))/4.
IF (j .Q. 1) THU

total(ji) * dk * (q(ji)q(ki))
ELs

total(ji) - total(j-1,i) + dk * (q~j~i)+q(k.i))
30!?
mum - sum + d

* Display locations, potentials, discharge., and mass balance
WRITE (*,603) i,j xcj .±),y(ji),u~j .i).q~ji).drotal(ji)
WaITE (8,603) ±4 ,xzj 4),y(ji),u(j i),q(jidtotalsji)

I? (j .DQ. no(ki,i)) T1131
total(j,i) 0.
ki * hi + I

DEIT

10 COINUE

WITt (*,604) sum
'AU!! (8,604) sum

20 CALL cls1()

RVaRU
601 FOTA (4x,i1,4xn,7xx,9x,y,9xu',9x,q,9x,d,9x,'t'/)
603 PORMA? (2i5,7fJ0.3)
604 FRMAT (/I Mass balances ,f10.4)

NID



* ~~~Fag. Stteau Funetjone

00 10 j 1* DMI
1kad.(J,i) a koda(j,L)
koft(j.i) - 0.
V(J,i) a * Ji
t(1,i1 - q(j,i)

10 G(ji) = tatalfj,i)

Nb"

-A

00 000 *Compute potential at interior points

SUB r0Y1U point.

cI.A~l10 readtile

DAtft erro. I1.D-3/
pi - DAcO( -1.00)

WRITU(9,201)
RE.0 (1.101) nom

00 50 j a 1, au
RhOD (1.101) 1. hi, Si
delta - 0.1
itar -I
dcl -1.

S z t-SO.
TO - SO.

*Find bead and ettr.. in center Of domain
10 zi azO

Ai - yo
hi *0.
El 0.

Do 20 k - 1. MLi)
I a next kn(iImi3
CAL nesltizRiz)U)yk~)zlI.~~)
aI~a2,bl,bZ)

0Find head and stream in two other directions
Si a tO delta
b2 - 0.
w2 a 0.

DO 30 k- I. MUi
I - alxt kn(i)ui)

ala2,bl~b2)

dhft = Ch2-hl)/daita
dedt - (.2-a1)/delta



w
To

*Again

xi a 3C0
yi = yO .delta
h2 * 0.
.2 - 0.

Do 40 k 1 , MDi
1 - next (lc.nc(1,i).nm(i)
CALL inteqral(t~i),xi,?i.x~k~i),Y(k,i),x(1.i),Y(l,i),

h2.h2.( (bI*r(k~i)+b2*r(l~i))-(al~vUk~i)+a2*v(l~i)))/(2.*pi)
40 s2.s2,((bl*q(k~i)+b2oq(1.i))-(al~u(3C,i)4&2%(l,i)) )/(2.'pi)

dhdy - Wh-bl/delto
dody - (.-el )/delta

*Calcu1lat~e Ja~p using Nmet~on-PAphson
dh - hi - hi
d. -Sii - SI

dy * (Adk.Ms - dodx~dh) / Cdhdz'dsdy - ddy~dadx)
dx - Cdh - ddy~dy) / dbdt

:0 -S zo * x/del
yO - yO + dy/del

IF (z0 .GT. 200. .01 3cO .1. -100. O.01
* YO .GT. 300. .06L. YO .1T. -100) THU
del * 2. ' del

*Stopp~ing Criteria
Xr ((oABg(dh) .0?. err"r .01

msDs(do) .0T. error) AJND. iter .MR. 50) THUE

GMT 10

WaZUS ('.102) 2.itar,hLi..X~OYO
50 WRITS (9,102) J~iter,hi,mi~xO.yO

CAML oiCUM

101 FORMAT (L5,2f10.3)
102 FOaMAT (10x,2i5,4f10.3)
201 FORMAT(/1zOIter U Y -1y

aND

* ~~~Compute potential at interior points

SUB*OUTIMN pointers

$ ZVCLUZJ jIo o

CMAAhCTSR'10 reedfile

pi a OACOS(-1.DO)

opzI(1 ,file-1flov.in2V)

URZTEC' .201 )
WRUTZ(9, 201)

READ (1.101) nlue
DO 20 j w 1, flue

READ (1.101) to CZ, ay
hi *0.
*I 0.

DO 10 k - I, DCU)
1 - next(kn(,)ai)
CALL nerltixcx(.ik.jxli.li)

* a1,a2,b1,b2)

WRITS ('.102) j~cx,ay,hl .91
20 WEIIW (9,102) 1,cx~cy,bi,s1

CLOSN(1)
CALL CUM(

RETURN
101 FORMAT (iS,2S1.3)
102 10O*4k? (1ORiS,4f!10.3)
201 FORAmT (//t0x~ Domain - z y - -' *

NWD
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* ~~Find Me. Surface

313101M11 contract

DATA error / I.D-1
01W. eps / 1.0-9/
pi. = DACOS(-1.DO)

vo03 - i, MIt)
3 ieRY3C,113) i, x(i,l), y(L.1). v(i.1), r(L.1). t , ) r 1 1

113 foruet(i10,6f10.3)
CAML 0100)

p-M (** angi. heed

&Mql - 0SN(anql * pi 180.)

iffil!(9,202)

Do 30 L m 1, ad
DO 50 1 - 1. MLt)

IF UIkod.j1i) .%Q. I."D9. Mmtl(JUi)) .LN. ova) TM
hi - VOA.) - a+ly2i heed
Ir (hi .ZE. 0) T"M
hi =0.

delta - 0.23
del. a 1.
iter - I

S ZO a (4.*NC1,1) + 50.) IS.
y0 a (4.*Y(J,i) * 50.) S .

rind bead end stmeen in center of dommin
10 xi - s

hi - - anqleyI * heed
el - 0.
DO 20 It - 1, n(i)
I - next k n ( i) u i )

* ai,a2,bi~b2)
tap - ((bt~r(k.i).b2er(14i))-

* ~~~(atev(k~i)4a2*v(l.i)))/(2.*Pi)
hi - hi * MaP

20 mlt- l + cp

Find lead and streaa in two other directions
xi - xO + delta
ri * yO
h2 - - uqlyTi + heed
*2 - 0.

DO 30 kc - 1, n(i)
I - next (k,tc~l i),Pw(i))
CLA inteqral(t(i).xi,yi,x(hi),y(k.i).x(,i),C(li),
1 a,a2.bt ,b2)
tap- C(bt-k.1).b2?Cl1i)).

* ~~~(atev(k,i)a2Y(li)))/(2.*pi)
h2 - h2. tap

30 *2 a *2 4 top

dhdx - (h2-hl)/delta
dads * (2-el )/delta

* hain

xi * xO
It - 30 + delta
h2 - - Mnqlyi + bed
.2 - 0.

DO 40 x * 1, Ani)
1 - next Cknc(ti),Ui))
CAL. inaaral(t~i) ,xi.71.s~k,i).y~k.1) ,x~l~l).,Cl~i),
ala2,bib2)
top- (hter(k.1).b2-C(1))-

* Ca,*vC(kic)4ewe(1,i)))/(2.'pi)
h2 - b2 tap

40 a2 a 2 + tap

dbdy - (h2-ht )/dlta
dedy - (2-el)/delta

* Calculate up using Nowban-RaphUO
dh - hi - hi
de at - el

dy - (dhdxde - dgdsdh) / Cdhixdedy - dhdyededx)
dx a 4dh - dhdyyd) / dhdx

xO - xO + dx/del
yO - yO + dy/del

ZN (SO .CT. 200. .OR. xO .LT. -100. .Ol.
yO .CS. 200. .OR. yO .LT. -100) TMlx

del * 2. * del
ao U

Emir



*Stopping Criteria
IF ((DAfl8(db) GT. error R.01

DABS(da) .GT. error) .Am. iter .W. so) TEEN
itar a iter 1

G01 10

99 WRITE (*,102) J~iter~dh,da.xO,yO
WAITE (9,102) J~itar,db,ds~bO,yO

X(1.i) - Wx(,i) + WO / 2.
Y(J,i) - (y(j.i) + yO) / 2.

DO 60 i * I1, nd
D0 60 j - 1, n(i)
kode(j.i) * kaode(j,i)
u(J.i) = V(J,i)

60 IF (kode(j,i) .UQ. 1) u~j ,i) *r(j ,i)

102 FORMAT ClOi.2i5,6f10.3)

w ~~~~~201 FORMAT ( ///Xlx, titer dip and heads I,$)
202 TODIT (//i4z,'# Iter -h -p -z -y-

END

* .* ** ** * a * * * - * * * * At . * * * * * * * * * * * *

* Calculate lreakthraugh Curves *

SUBROUTINE tracer

$IMADR j :omo

CHARAcTm 10 readfile
REALO tet( )

DATA error, delta, ddelt / 1.D-3, 1 .D-1, 1. /
piS O bNOS(-1.D0)

* find maxium/minimum flow/head
flowmax = 0.
flowim a 1.012

headmax a 0.
headain - 1.012

DO 60 i * 1, nd

WRITX (,301)
WRITE (9,301)

301 FVBAT(' flow head itar sO yO distance%
I velocity time')

W0 5 j - 1, MUt)
IF (floimax .LT. u(Ji)) floweax - u(1,i)
IF (flowin r.T. c a(2,i)) flown * u(j,i)
IF (headex .LT. v(j,i)) headeax - v(j,i)

5 IF (headein CT. v(J,i)) heedein a V(J,i)

istep * 10

headinsc - (headmax-headein) / mL(iitep)
flowinc - (flowmax-flowmin) / 0DLE4istep)

hdelta - b1adin/l0.
fdalta - flowinm/10.

ai - flowain * fdlta

DO 40 j - 1, iatep+1

IF (j Q. 23) WIN
I - flowein + flowiac

USZIF (j EQ. iatep+1) tM
Si * flwaz - Malta

lSNW

hi * hbadmin + hdelta



P-.
w
W

time - 0.
DO 35 jk - 1, istepi+

IF (jk .1Q. 2) IIMI
hi * Iadmin + headina

aSim? (3k .Pa. istep+l) TM
hi beadax - hdMlta

iter * t
del * 1.

10 xO a50.
0 -50.

i5 ti -MO
yi - 10

-Sl 0.

DO 20 k * 1, n)
1 - next (k,na(1,i).miM)
CIUS intaqral~t~i).zi,yi,atk,i),yfk~i).azl,i),Y(1.i)e
* a,&2.bl b2)
hlbl((l + ; r~k i)4b2^rZl,i ))-(alY( k~i)442V~ l~) ))/( 2.pi )

20 *t..ll (bl q~k i)+b2-qZ 1,i) )-(a1*uzk~i)442' l~i ) ))/( 2.pi )

xi - xO + delta

h2 a 0.
*2 * 0.

Do 25 k - 1. nMi)
1 * next (k,ac(l,lna(i))
cAhl. lntegrlztzi).xi~yi~x~k~i).y{t,i) ,x{l,i) ,yzl~i),
*al,2,blb2)
h2-h2+((bl*r(k,i)+b2tr(l.i))-(al'wik.i)4.2*Y(li)))/(2.*pi)

25 *2_2+,((blOq(k.i)+b2 q l,i))-(a1 u(k,i)4a2*u(l1L)))/(2.-pi)

dhdx * (h2-hl)/delt
dadx - (.2-81)/delta

xi - sO
ii - 10 + delta

h2 * 0.
*2 * 0.

DO 30 k * 1, n(i)
1 - net (k,nc(1,i),nm(i)
CRM inteqral(t(i),xi.yitx(k,i),Y(ki),z(l.i),yil,i),
aI,a2,bl,b2)
h23h2+ (Cbl*r(k,i) b2*q(l,i))-(a5U(ki)+ 2Uv(l.i)))/(2.^pi)

30 s2-o2+t{bl Xq~k,i)+b2*q l,i) )-Xa1 ^u~k~i)+&2*u(%l) ))/(2.^pi)

dhdy - (ha-hl )/dlta
dedy - u2_-l)/delta

dh - hi - hi
do *i - a*

dy a (dbdx'd - d dx dh) / (dhdx*dedy - dMrddae)
dx - dh - dhdrydy) / dhdx

x0 * xO + dx/dal
y0 a y0 + dy/del

IF (zO .cr. 200. .OR. xO .LT. -100. .OR.
y0 .CT. 200. .OR. y0 .LT. -100) TRW

del - 2. * del
GM tO

DIDMF

IV ((DRm(dh) .Gr. error .OR.
DM(du) .CT. *rror) .AD. iter .m. 50) THM

iter a iter + I
GatO 15

END?,

xI - DSQRT(dbhdy2 4 dbdx*-2)
dint - DSQR1(az0-zo)**2 + (O-yo)*-2)

IF (3k .EQ. 2) TMR
tine - tim + dist / VI * headina / (headinm - Melta)

LUM, (3k .Q. istep4 TM
tim - time 4 dist / vo * headino / (budio - Melta)

mumr? (3k .M. 1) SllW
time - time + dist * (t .yo) / (2.vt)

PDID

Vo - VI

- xO

bo a e0

NU? (t*,102) 3.jk~ietrO,YO,dutv 1,tim
3rIM (9,102) 3,jkitvr,aOyOdimt.vtime

35 hi - hi + hadine

tt(j) * tim
40 i - i + flowina

CALL ClMM1

45 WX?! (*,100)
RtAD (*,^) retard

IF (retard .LT. 0.) GMo 60



WRITE (*,109)
READ (*,') atten

WRITE (.110)
READ (*,.) to, delta

WRITE (9,112) retard, atten, to, delta

time - to
DO 55 jt * 1, 100

time - time + delta
Sumatt - 0.

Do 50 j - 1, istep + I
IF (rcetard-tt(j) .G. time) THEN

att - 0.
ELSE

att - erfc(atten a retard * tt(j)
/ DSQRT(time retard * tt(j)))

*umatt - *umatt + att
ZNDIF

50 CO =NU

WMUTE (*,IIt) jt, time, umatt/DBLE(iutapt1)
55 WRITE (9,111) jt. time, bumatt/DBLE(istep4I)

CALL cUMt)
GOm 45

60 COWTInIXE

REAL 8U 0 01 arfacx)

INPLICZT RELS (A-K.O-ZI)
DATA pa,b,cd,e / 0.327591100, 0.254829592, -0.284496736,

1.421413741, -1.453152027, 1.061405429 /

t * 1/(I+p*x)

erfc - Ca't + tC(b-t t*(c't e tC(d't * toe't)))) / D1(zx)

RETURN
ZDD

CONION SK= DECLaRATIouS

IMPLICIT REAL-'SA-H,o-Z)

PARAMETERS:
&Al - maximum size of solver matrix

x2 - maximum numer of domains
mx3 - maximum number of nodes per domain

PARAMETER (mx-I 00,z2-S5,ms3-60)

COKM10M nn, nd, UNAx2V, nj(mz2), nn(mx2, nczmx2,wx2), t(ms2),
total(sx3,mx2),xS x3,mx2),y(mx3,ax2),uZax3,mx2),v(mx3,m12),

q(ax3,mx2), rtm&3,mx2), kode(mx3,mx2), g(mx3,mx3.mx2),
h(mx3,mz3,mx2), (mxl ,naZx, qqZ xl), ikode(mx3jm2)

1i-A

.

RZSURI
10O FORMAT (// nter retardation coefficient: )
1O9 FORMAT // Enter matrix diff. coefficient (negative to end) I,$)

110 FORMAT C/ Eater intial time and time step ,S
III FORMAT (iO,2f12.6)
112 FORMAT (Sx,' Retard. Attan Coef, To. Delta - ',4012.3)
101 FORMAT CiS,2f10.3)
102 FORMAT (3i5,6f1O.3)
201 FORMAT (//14z,'# Iter - u - - x - - x - - y -1

FDt



A.2 FRACGEN: Discrete Fracture Network Generator

This section presents a computer simulation model, FRACGEN, used to
generate networks of discrete fractures. The simulation model was writ-
ten for the purpose of providing analysis and Interpretations of the
hydraulic properties of fractured rock masses. FRACGEN represents frac-
tures as two dimensional finite planes with a fixed thickness. The
simulated fracture network is a collection of a number of individual
finite planes within a three dimensional global volume. The global
volume is composed of six exterior surfaces which are defined by the
user. Internal surfaces can also be specified to represent boreholes or
mine shafts, adits and drifts.

The simulation model is used to generate the planar fractures within the
three-dimensional global volume using physically-based parameters. A
smaller sample volume is then extracted from within the global volume to
remove effects of undersampling near boundaries. Isolated and dead-end
fractures are also removed. The computer model is able to generate
synthetic fractures using descriptive statistical data inputs on the
size of the generating volume, number of fracture sets, fracture
density, areal extent, orientation, and transmissivity. The model also
allows the user to input observed fractures from a field site as an
option. The model then solves for intersections between fractures, and
between fractures and surfaces.

FRACGEN is based on code originally developed by Huang and Evans (1985).
The original code generated three-dimensional networks of discrete
fractures for only a single fracture set. The fracture network was then
reduced to a set of nodes with no account taken for the physical
geometry of individual fractures. The newly revised code allows for the
incorporation of multiple fracture sets, as well as for discretization
of fractures and surfaces. The discretization of boundaries is required
when the boundary integral method is used to solve two and three
dimensional flow problems.

A.2.1 Creation of Individual Fractures

Fractures are defined as finite planar features within a three-
dimensional volume. The fractures can either be defined using input
data obtained from field observations, or synthetic fractures can be
generated using statistical methods. Estimation techniques for obtain-
ing the relevant physical parameters are presented in Appendix A. If
the computer simulation model is used to generate individual fractures,
a pseudo-random number generator is used in conjunction with specified
frequency distributions (i.e., normal, log-normal, uniform and exponen-
tial) for fracture parameters. Pseudo-random numbers are generated
using a linear congruential generator (LCG) of the form:

(A.1) s(i41) - (a s(i) 4 c) MOD m

where
s(i) pseudo-random variable for random number i;
a,c multiplier and increment;
MOD modulus operator; and
m modulus.
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For a full-period LCG (i.e., the number of generated random numbers is
equal to the modulus), the value of the multiplier and the increment are
limited to:

(A.2a) a - 4n - 1 n - 1, 2, ... m/4

and

(A.2b) c - 2p - 1 p - 1, 2, ... m/2

The value of the modulus is normally limited by the number of bits in
the largest unsigned integer declaration. For a language which accepts
unsigned integers and allows register overflow, the largest value of the
modulus is:

(A.3a) m = 2J

where j is the number of bits of the largest unsigned integer declara-
tion. For a computer language which does not allow implicit overflow,
the modulus operator is required and the value of j must be halved. In
addition, if unsigned integers are not allowed, the value of j must be
decremented by one. For standard FORTRAN the largest value of the modu-
lus is computed by:

(A.3b) m = 2(J/2 - 1)

For languages with integer declarations limited to four bytes, (i.e., j
equal to 32 bits) the largest modulus is 32768. By specifying different
seed numbers, multipliers or increments, a large number of unique frac-
ture networks can be generated.

A.2.2 Definition of Global and Sample Volumes, and Interior Surfaces

The global volume is the region within fractures are defined. The
global coordinate system is a three dimensional Cartesian coordinate
system used to locate points within the global volume. The coordinate
system is defined by specifying a center location, Ro(x,y,z), and the
dimensions of the global volume, (LX,L ,Lz ). Once the global coordinate
system has been defined and the initial fracture network has been gener-
ated, a sample volume within the global volume is specified. The sample
volume is defined as a sub-region within the global volume. The ability
to specify a sample volume is necessary in order to remove the effects
of undersampling near boundaries, to provide the capability for investi-
gating scale effects, and to evaluate the spatial and directional varia-
bility of network properties.

The sample coordinate system is also a three dimensional Cartesian
coordinate system used to describe the intersections (or nodal points)
contained inside a rectangular block of sample. The coordinate system
is defined by an origin at the center of the bottom of the rectangular
block, ro(xyz). The sample coordinate system need not be oriented in
the same direction as the global coordinate system, allowing the axes to
be rotated (a,b) degrees with respect to the original coordinate system.
The dimensions of the sample volume, (lxly'lz), should be smaller than
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the global volume so that undersampling near boundaries can be avoided.
The undersampling occurs because only fractures whose centers lie within
the global volume are generated. Fractures whose centers are located
outside of the global volume but which would have extended into the
global volume are not sampled. Near the global volume boundary the
density of fractures will fall to one-half of the density near the
center.

The transformation from the global coordinate system to the sample
coordinate system is given by:

(A.4)
x cosa cosp
y M asine
z -cosa stnP

sina cosf
cosa
-sina sing

SI~ (X - 0
0 -

Cos) (z - z)

where
x0y,z
X,Y,Z

~o ~'to, Zo

axes of the sample
axes of the global
origin of the axes

cartesian coordinate system, m;
cartesian coordinate system, m; and
of the global coordinate system, m.

Interior surfaces, such as boreholes, mines, etc. are defined by
similarly specifying a center position, three volume dimensions, and two
rotation dimensions. The interior surfaces are allowed to intersect
each other, as well as the external sample volume surfaces. Currently,
up to three interior volumes, composed of eighteen interior surfaces,
are possible. Figure A.1 illustrates the geometric properties of the
global and sample volumes, and interior surfaces.

,

-_e

GLOBAL VOLUME

Figure A.1: Relative positions of global, sample and interior volumes.
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A.2.3 Number of Fracture Sets and Fracture Density

Fractures are usually observed to form sets, with unique orientations,
densities, and transmissivities for each set. To allow for the
stratification of observed fractures into distinct sets, the simulation
program allows the generation of families of fractures with user speci-
fied parameters for each set. If fractures are not synthetically gener-
ated, known fractures are input without regard to set membership. Cur-
rently, up to six fracture sets are possible. For each fracture set,
the number of fractures within the global volume must be specified.
This number can be computed as the global volume divided by the fracture
density. Only integer values are permitted. For all fracture sets the
total number of synthetic or observed fractures is currently limited to
one hundred.

A.2.4 Fracture Location

Fracture centers for individual fractures are found by designating a
point (Ro) having a global coordinate of (XoYoZ 0), as denoted on
Figure A.2. The location of fracture centers within the global volume
are found by assuming that they occur according to a Poisson process.
This process results in a uniform probability of fracture centers for
any location within the global volume and an exponential distribution of
distances between fracture centers.

A.2.5 Fracture Orientation

The orientation of the fracture plane is defined by two angles of
rotation (A and B) which are used to specify a vector normal to the
fracture plane with the tail of the vector located at Ro- The first
angle is the horizontal angle measured counter-clockwise from the 4X
axis. The second angle is the elevation angle in the plane of R T and
measured from the XY plane (Figure A.2). The equation of an infinite
plane encompassing the finite fracture is:

(A.5) a (x - x0 ) 4 b (y - yo) 4 c (z -zo)

where a - cos(a)cos(0)
b - cos(a)sinig)
c - sin(a)

The two rotation angles can be related to the strike and dip of a frac-
ture set using an appropriate transformation. Deviations from the mean
value of the orientation parameters are used to provide perturbations
distributed about the central tendency.

A.2.6 Fracture Areal Extent

The areal extent of each fracture requires that Information about the
shape and length be provided. Currently, a circle, square, rectangle or
ellipse may be selected. The areal extent of the fracture is defined
using characteristic lengths appropriate for the shape. Both an ellipse
and a rectangle require two characteristic lengths, i.e., the major and
minor axis lengths. In addition, the direction of the major axis, C, is
also needed to specify the orientation of each shape.
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The bounding regions of regular fractures are defined by converting the
global coordinates into a local coordinate system. The fracture
coordinate system is a two dimensional Cartesian coordinate system
defined at the center of each fracture or boundary surface, and is used
to find the intersections among fractures and boundary surfaces. For
every surface, there is one such coordinate system defined. Within the
local coordinate system Equation (A.6a) defines the region of an ellipse
and Equation (A.6b) defines the region of a rectangle:

(A. 6a) X / r 1
2 4 y 2 /r 1

2 - 1

where

(A.6b) x < ri and y < r2

Figure A.2 illustrates the geometric properties of individual fractures.
While a circle and square are special cases of an ellipse and rectangle,
respectively, FRACGEN can be extended to generate other shapes as long
as the boundaries can be expressed by analytic functions.

Ro0 ff/X

II
I
I
I

x

X

Figure A.2: Position and orientation parameters for discrete fractures.
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A.2.7 Fracture Transmissivity

The intrinsic fracture transmissivity can be defined for each fracture,
or the transmissivity can be generated using statistical distributions.
The model treats the intrinsic fracture transaissivity as a constant,
but allows the relative transmissivity to vary as a function of fluid
potential. The relationship between the relative transmissivity and
fluid potential is dependent upon the intra-fracture transmissivity
distribution, which may or may not be the same as the inter-fracture
transmissivity distribution. To account for this difference, a func-
tional relationship between the relative transmissivity and fluid poten-
tial is specified using input parameters.

A.2.8 Determination of Fracture Intersections

Once the individual fractures have been generated, the fractures are
further manipulated so that intersections between fractures and between
fractures and surfaces can be found. Also, isolated and dead end
fractures are eliminated. Intersections between fractures are called
internal intersects, while intersections between fracture planes and
boundary surfaces are called external intersects. The lines of
intersection are obtained by first finding the intersecting line between
two infinite planes containing the two finite fractures, or the finite
fracture and a finite surface. The infinite line of intersection is
next truncated to a finite segment such that it is common to both finite
surfaces. The equation of an infinite plane containing the first finite
fracture is:

(A.9a) a, x 4 b, y 4 cl z ' dl

Similarily, the equation for a second plane containing the second frac-
ture is:

(A.9b) a2 x 4 b2 y 4 c2 z d2

The equation of a line common to both planes is given as:

(A.10) Y Yl u 4

where u is a scalar. As long as:

(A-ll) E m c2b, - c1b2 0

then:

xi I1
(A.12a) -Y -(a2cl aIc2) / E|

Z (b 2al - bla2 ) E

and

(A.12b) Y2 {(c2dl - cld2) / E}
Z2 (d2b, - d1b2) E
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If the value of E in Equation (A.ll) is equal to zero, then Equations
(A.12) may be estimated using the other two cofactors as the basis func-
tion. Once the two vectors have been found, the line of intersection of
the twoplanes can be represented by two distinct points on the line.
This is accomplished by choosing two different values of t. Assume that
points T1 and T2 are two distinct points on the line of intersection.
The procedure for truncating this line to a finite line segment common
to both fractures is:
(1) Transform T, and T2 to local coordinates defined on Fracture 1 and

find the two boundary point intersects, Pll and P12, between the
line and the boundary of Fracture 1, if they exist.

(2) Similar to step 1, find the two boundary points, P21 and P2
representing the intersection between the~line of intersection and
Fracture 2. If the line does not intersect either one of the two
fracture boundaries, then the two fractures do not share a common
line (Figures A.3A and B).

(3) If the line intersects both fractures, then Points P 1 and P12 are
checked to see if they are contained within the boundary of
Fracture 2. Similarily, Points P21 and P22 are checked on Fracture
1. If the two fractures share a common line segment, then two of
the four points should be common to both fracture regions (Figures
A.3C and D). These two points are two end points of the finite
line segment.

PLANE I PLANEI

FRACTURE I

FRACTURE 2 P FRACTURE 2

i)~~~~~~~~1 -Ub IN 2n LN

NE 2~~~~~~~~~~~~
FRACTURE I

©NPLANE I 2 PLANE

FRRACTURE I

\M) '\FRACTURE 2 FRACTURE 2

FRACTURE

Figure A.3: Four possible outcomes of non-parallel fractures: Fracture
planes intersect but neither discrete fracture intersects
the line of intersection (A); Only one fracture intersects
the line of intersection (B); Both fractures intersect the
line of intersection, but not each other (C); and Both
fractures intersect line of intersection and each other.
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A.2.9 Truncation of Fractures

Within an isolated sample, the finite line segments between fractures
are truncated to lie within the boundary of the sample. To accomplish
the truncation, internal and external intersects are expressed in sample
coordinates and the segments of the intersects which lie outside of the
sample volume are truncated. If the intersect lies entirely outside of
the sample volume, then that intersect is eliminated.

A.2.10 Removal of Isolated and Dead-End Fractures

Once the fracture network is assembled, isolated and dead-end fractures
are removed to eliminate non-contributing flow routes. Isolated
fractures are fractures which do not intersect any boundary surfaces or
other fractures. Dead-end fractures are fractures which only intersect
one boundary surface or one other fracture. While the removal of dead-
end fractures will cause a decrease in the computed macroscopic disper-
sion coefficient, the effect will be in a conservative direction. That
is, the exclusion of dead-end fractures will cause a decrease in the
travel time from an injection point to an observation point. In
addition, chemical interactions with the host rock will result in a
higher total mass flux than when the dead-end fractures are included.

A.2.11 Examples of Program Inputs and Outputs

Table A.4 presents a description of input data for FRACGEN when data
about individual fractures are available. Table A.5 describes the input
data requirements when statistical data about fracture sets is
available. Table A.6 provides sample input data for the option requir-
ing statistical data. Also included is information about the sample
volume and the boundary conditions imposed upon the boundaries of the
sample volume. Table A.7 displays sample program output for the input
data of Table A.6. Information about generated fractures as well as the
location of the endpoints of fracture-fracture and fracture-boundary
intersections are displayed.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table A.4: Fracture Network Parameters: Specified for interior volumes
m greater than 1, fractures one through J and boundary sur-
faces 1 through k.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input Variable: Attribute Variable Name

Sample Volume

Interior Volume

Fracture

Boundary Conditions

Center
Dimension
Orientation
Center
Dimension
Orientation
Center
Orientation
Areal Extent
Transmissivity
Shape
Type
Value

CORO(i,l) i
COSZ(i, 1) i
COAL(i,l) i
CORO(i,m) i
COSZ(i,m) i
COAL(i,m) i
XINP(iJ) i
XINP(i,J) i
XINP(i,j) i
XINP(9,J)
XINP(10,j)
NBTYPE(k)
BVALUE(k)

m

MM

1,2,3
1,2,3
1,2
1,2,3
1,2,3
1,2
1,2,3
4,5,6
7,8

Table A. 5:

. . . . . .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fracture Network Parameters: Specified for interior volumes
m greater than 1, generated for fractures one through j and
specified for boundary surfaces 1 through k.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Input Variable:
Global Volume
Sample Volume

Interior Volume

Fracture

Boundary Conditions

Attribute
Dimension
Center
Dimension
Orientation
Center
Dimension
Orientation
Number of sets
Number in set
Orientation
Areal extent
Transmissivity
Shape
Type
Value

Variable Name
FRX,FRY,FRZ
CORO(i,I) i -

COSZ(i,l) i -
COAL(i,l) i -
CORO(i,m) i -
COSZ(i,m) i =

COAL(i,m) i -
NSET

1,2,3
1,2,3
1,2
1,2,3
1,2,3
1,2

I
FRstrk,FRdip,SDstrk,SDdip
FRlth,SDlth
Fktran,SDtran
FRshp
NBTYPE(k)
BVALUE(k)

....................................
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Table A.6: Sample program input.
- - - - - - - - - - - - - - - - - - - - - - - - -. . . . . . . . . ..

Fracture Set: 1

Number of Fractures:
Size of Prism (x,y,z):
(X-Y) Rotation:
(X-Z) Rotation:
Fracture Length:
Transmisivity:

20
100.000 100.000

.000 Deviation:

.000 Deviation:
10.000 Deviation:
10.000 Deviation:

100.000
.000
.000
.000
.000

Fracture Set: 2

Number of Fractures:
Size of Prism (x,yz):
(X-Y) Rotation:
(X-Z) Rotation:
Fracture Length:
Transmisivity:

20
100.000 100.000

90.000 Deviation:
.000 Deviation:

10.000 Deviation:
10.000 Deviation:

100.000
.000
.000
.000
.000

Boundary Surface Number: 1

Boundary
Boundary
Boundary

size (meters):
center (meters):
orientation (degrees):

100.00
50.00

.00

100.00
50.00

.00

100.00
50.00

F Side Type

1 1 1
1 2 1
1 3 1
1 4 1
1 5 1
1 6 1

Value

1 .000
1.000
1.000
1.000
1.000
1.000
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Table A.7: Sample program output for data set presented in Table A.6.

FRACTURE
- Location (x,y,z) -

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

73. 575
46.*707
69 .925
860038
80.740
16.153
82 .535
97. 342
650689
90. 262
24 .503
41.068
31.363
55. 545
27 .017
360282
14.*859
280421
13. 748
75. 174
25.735
430887
29.,019
49 .698
64.700
20371
39. 737
870479

180985
11.929
41. 580
40.274
5.667
70.682
360563
35. 757
970757

290959

630333

750504

520112
47. 388
30174

850107

33 .472
89 .221
540187

75.464
82. 166
4.614
16.223
53. 711
60.046
340448
25. 525
650137

30.066
98. 193
930433

48 .804
67 .871

.549
71. 765
150247
60. 547
94.067
90.051
620280
370561
69.714
160772

56.116
99 .463
96 .265
99 .670

0574

260514

87.378
92 .383
89 .343

12. 161
31.094
92. 789
70.621
19 .424
76. 614
67 .410
84. 464
8.768

690962
97.855
8.853

88. 113
39. 542
41. 971
14.224

.516
80. 191
94. 620
5.264

50. 552
690974

29. 520
77.737
490673
72. 696
78.714
62.881
22.415
770274
650421

40642
36 .343
42. 960
61.868
72. 977
630589
49.893
65. 494
910629

ATTRIBUTES
- Orientation-

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .000
90.000 .0000
90.000 .000
90.000 .000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000
.000
.000
.000
.000
.000
.000
.000
.000
.0000
.000
.000
.000
.000
.000

........ ..............
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Table A.7: (Continued)
_ . . . . . . . . . . . . . . . . . .

FRACTURE ATTRIBUTES (Continued)
- Length - Trans. Shape (I-elliptic)

1 2.550 2.550 10.000 .000
2 18.031 18.031 10.000 .000
3 9.466 9.466 10.000 .000
4 5.164 5.164 10.000 .000
5 3.806 3.806 10.000 .000
6 9.573 9.573 10.000 .000
7 7.229 7.229 10.000 .000
8 7.705 7.705 10.000 .000
9 2.831 2.831 10.000 .000

10 1.788 1.788 10.000 .000
11 8.128 8.128 10.000 .000
12 1.278 1.278 10.000 .000
13 43.665 43.665 10.000 .000
14 2.596 2.596 10.000 .000
15 4.220 4.220 10.000 .000
16 8.957 8.957 10.000 .000
17 1.660 1.660 10.000 .000
18 6.161 6.161 10.000 .000
19 1.886 1.886 10.000 .000
20 5.738 5.738 10.000 .000
21 3.711 3.711 10.000 .000
22 1.367 1.367 10.000 .000
23 8.668 8.668 10.000 .000
24 10.336 10.336 10.000 .000
25 7.756 7.756 10.000 .000
26 1.198 1.198 10.000 .000
27 9.966 9.966 10.000 .000
28 2.533 2.533 10.000 .000
29 21.714 21.714 10.000 .000
30 9.602 9.602 10.000 .000
31 3.849 3.849 10.000 .000
32 2.434 2.434 10.000 .000
33 2.908 2.908 10.000 .000
34 1.805 1.805 10.000 .000
35 4.390 4.390 10.000 .000
36 18.316 18.316 10.000 .000
37 2.735 2.735 10.000 .000
38 6.581 6.581 10.000 .000
39 10.203 10.203 10.000 .000
40 .294 .294 10.000 .000
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Table A.7: (Continued)

BOUNDARY SURFACES

100.000
.000

50.000
50.000
50.000
50.000

Locatiton
50.000 50.000
50.000 50.000

100.000 50.000
.000 50.000

50.000 100.000
50.000 .000

.000
180.000
90.000

270.000
.000
.000

Orientation
.000 .000
.000 .000
.000 .000
.000 .000

90.000 .000
270.000 .000

50.000
50.000
50.000
50.000
50.000
50.0000

Size
50.0000
50.000
50.000
50.000
50.*000
50.*000

.000

.000

.000

.000

.000

.000

Endpoints of Fracture-Fracture Intersections

N .-.- Location .- . -..- Location ---

1
2
3

31.363
31.*363
36. 282

90.051
87.378
710765

68.748
44 .448
20.852

310363
31.363
36. 282

90.051
87.*378
71. 765

88.680
56 .474
23.181

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fracture-Fracture Intersections by Fracture Number

F # F F F F F .

13
16
23
27
38

2 27 38
1 23
1 16
1 13
1 13

Nodal Number by Fracture Number

F # N N N N N .

13
16
23
27
38

2
1
1
1
I

1 2
3
3
I
2
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- - - - - - - - - - - - - - - - - - -

Table A.7: (Continued)

EXTERNAL NODES

B

1
2
3
4
5
6
7
8
9

10

- - - Location

100.000
.000

31.363
28.421
69.925
69.925
24.503
31.363
14.859
75.174

26.514
37.561

100.000
100.000

.000
12.640
24.351

100.000
31.726
54.542

- - -

60.855
.701

44.448
74.030
83.323

100.000
100.000
100.000

.000
.000

- - - Location - - -

100.000
.000

31.363
28.421
69.925
69.925
24.503
31.363
14.859
75.174

26.514
37.561

100.000
100.000

.000

.000
8.095
16.381
28.406
43.065

66.324
44.130

100.000
86.352

100.000
100.000
100.000
100.000

.000

.000

Fracture Number by Boundary Surface Number

S # F F F F F ...

1 1 37
2 1 29
3 2 13 18
4 1 3
5 3 3 11 13
6 2 17 20

Node Number by Boundary Surface Number

S I B 3 B B a ...

1
2
3
4
5
6

I

2
1
3
2

1
2
3 4
5
6 7
9 10

8
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Table A.7: (Continued)

Boundary Surface Number by Fracture Number

F # S S S S S *

3 2 4 5
11 1 5
13 2 3 5
17 1. 6
18 1 3
20 1 6
29 1 2
37 1 1

. . . . . . .e . . . . .

Boundary Node Number by Fracture Number

F I B B B B B se

3 2 5 6
1.1 1 7
13 2 3 8
17 1 9
18 1 4
20 1 10
29 1 2
37 1 1
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II II . It * Is * - * -* II a III * II * II Is Is II * II 6 . II * -

* FRACGIt FRACture Gdrating Model *
* (Last Modification - March 18, 1987)
II II J. II a * It II a II Is * I Is It Is a II Is II II II II II Is .Is

PROGRAM FRACGEN
;aLCWDE j :coeon.a

CRLCTZR*1O readfile

* Write initial screen.
CALL cls(o)
PRINT 202, CRAR(27)
CALL clstl)

10 CAM c1a(2)
WRITEZ0, 200)
READ (*,100) itype

SF (ityp .BQ. 1) mmII
CAM cl1(2)
WRITR(-,201)
READ (*,101) readfile
OPEN (l,FZlXJ-re&fil ,st tus-'old',err tO)
RAD (1,100) nfrct
READ (1,102) ((xinp(,i),j.1,10),i.1.nfrct)
CLOSE1)
CALL sbowfractures

200 FORMAT (//ISx,' MaIm NEW,
/15x,' 1 - Input Dnown Fractures',
/15.x' 2 - Generate Random Fractures',
/ISx,' 3 - Define Boundary Sizxz',
/15x,' 4 - Generate Fractures and Combine Network,

//1Sx,' 9 - Exit to DOS'e
/1//Sx,' Enter Selections 'I)

201 FORMAT //lOx,' Enter name of data file, 'S)
202 ORMATflA1' [27',/////

. //lox," PRAcEN
//lox,' Program to Generate Discrete Fracture Networks'

///lOx,' Oriqinally developed by Chi-8n Huang (6/804)
/lox,' Substantially modified by Todd C. Ramussean (6/86)'
/lOx,. Department of ydrology a water Resourcesn
/lOx*' University of Arizona, Tucson 85721')

MD

a._W IW...SUj W. - P.u"i s "Pm d9 -0e ann.d

~.ti mu .. SW ad 1 ay- a uo oh" -"lop-W. -10
., inn.-O - SWM W* - sW &*AiL 110U0* -
-""U twe nWi P.M.,.. W Me -. ss 49 m11 -. -C
-v .,a. a1 sloe PM - rqwos am uhn 1w IIlI W MINS Ke

paew emm on5 tISMW IftLI U" flo-I-
I.n
0 uLsazr (ityp .SQ. 2) THEW

CALL generate
CAL whofgractures

g;SWXx (itype .SQ. 3) T5E
CAL six*

HSEll (itype .Q. 4) THEN
CALL buildfractures
CALL findfrmcturea
CALL listtractures
OPEN(9,file-'"vfile' ,form'binay' ,Status-'vn' )
WRITe29) cos ,corO,coaloorA,nfrct,nnode,nfr,ncf,zinp,ncfn,ndef,
nfrn,ndfr,xxl ,xx2,xi 1,xi2,indcx,jtotal,neut,zxctinbondcnot,actn,
ndet,nd
CLOSZ g9)

ELSEIF (itype EQ. 9) TEMI
CALL cls(2)
SSOP

DWIF

000 10
100 FORMAT (silo)
101 FORMAT (alO)
102 SORPAT (1lO.3)

* * e s s e e. s sI I s* II.. . Is IIIs*I I s I

* Pau" output nd clear screen
Is.......... * * * I.I a..II. * II - IIIA IIIII*. I I I

SUMOlt1I ols(n)
tF (n .Q. 1) THEN

PRDIST 101, CIiAE(27)
READ (*,102)

ENDID
PRIMP 103, CKAR(27)
IF (n .Q. 2) pRI 104
RETURN

101 VOIWAT(Al,'[25125H','1tus <RlEURN)> key to continu .e.')

102 FORIAT(Al)
103 FORHSA(A1, (27' )
104 FOREAT(/15:X, DISCRBt FRACTRE ZWORE MOCL',

/l5x ' Implemented by Todd C. R msoen'.
/15x 'Departmaet of Hydrology, Univ. of At')



an

* .cc. * *0,. At... .4 ** *0** * `* * 0, * *

* Ge~~Cneraft Fracture Attributed
* .cc.. ,.* 0*. `0Q * *. *cc.., eec.... .A

SU UROTM generate
$INCLUDE js am an

CHRRACTZU0
1O todftie

comaen /prime/ malt, Lour
oAhn malt,iseed,imar / 123,456,7899

ChuL CIS(2)
WWITR(-,200)
READ ('.100) recifile
OPEN (1 ,filo-readfil.)

*Determine number of fracture sots
RE7D (1,101) nuetm

?Anmd in fracture network paraecteru for each fracture set
elrct a a'
CZ.L CISM0
DO 30 avet - 1. maeet

RflD (1,101) S.
397D (1,102) mi. r~y. mf
R4M (1,102) 79stk, FldAip, 791t1, Mutrnn
Who (1,102) Sfttk, 99dip. 3019t, S8ra

* tbo inpmt Parmtr
WITS * C,204) nset,i,frx,fry~frx~fuetrk,9dmtrk,

frdip,sddip, frlth, ddlth~frtran.mdtran
GALL CIAsM

• Ocnetate fracturee
Do 20 j - atratI, afrat~i

* poiseon locations
iARP(1J) - ftI * uRM~Oufine.d)

zinp(2,d) - MA * MlUDuaf.(iseed)
zinp(3.J) - RI * AM"Onfm(imeed)

* SpberIcal-normal orientations
zinp(4.1) - Fwatk + s50tri A, ftwarm(iueed)
zinp(5,3) a P~ip 4. sodip *, RalIermaiscsMl
ziap(6,J) n 0.0
DO 15 k - 4, 6

IF (zinp(k,J) .2.. 0.) xinp(k.4) - xinp(k.j) + 360.
Is IF (minp(k,1) .09. 360.) xiap(k,j) - zinp(k.1) - 360.

C rponential lengqths
xinp(7,2) - - FMith * DWO(R7lIotUf(seed))
3inp(B,J) - zinp(7j)

CLoq-ntormal traaeemiseiuities
SQtrana r ltrane * 1F~tran
Cytran - somae * Sotran / S~tir..
Aftran - DU)G(SQtran/(l+CVtren))/2.
V~tran - DDG( I C~tran)
xiop(gj) - U(AVtran+6q11T(Ytraa) *RRiIOnrm~iseed))

Cshape is square.
20 xinp(l0,j) *0.
30 nfrot a frat +i

CWS0(IM

cc .. e , ae& P4c. a 1 sa.. *0 .c .... e * *c

Osnerat. uniform (0,1) Peendo-random numbers
An .Xposnetially distributed r.V. Lu generated bys

FWNC'MO RIU~fo( ieed)
IIIPICIT AJMWS(A-tL0-Z), DW5r3W4(1-111
common /ptim./ mult, Ifew
LO*ed a MOD(NOltiecd 4. Inar,32768)
Rk~ouft - FLOATUieed)/32768.

A-UR

A

OPEN (9,filo-'data.ant' ,tatue.'new')
IIATE(g.102) slop

100 VMW.Y (AID)
101 70333 (silo)
102 10333 (10f10..)
200 r0oam? (Mox,c, utter .ame of input files IS)
204 TOAMW( Fracture gets ,.13

.1/ omber of Fracture., '15
*I' sine of prism (sa's,)s 0,31P10.3

*// (X-Y) Notationt ',110.3.1 DeviatioO ',710.3
*// (N-2) Rotation, ',110.3.0 Dewiation: %,110.3

II friacture Length, ,tIrO.3,' Deviations *,?10.3
*// ?ranmwaiuivitya * ,P10.3,' Devlatiouu '.11.3/I
MDo

* * A` * -1 1 IN 10 A * a *, A * * * * -1 - 0 * At * - * At

* Bienerate normal (0,1) Iwrs using the Polar method
A log-normally distributed r.v. to generated byr

C 9R 1gm - EXP(Odecn + edow * RRMnj09 }m(ed))

PDOM0 RANWnrm (Laed)
XKPICX REWSA-R,0-S), IM4oMI-N

1 a 2. * pHpfojgd) - 1.
v - 2. * Nde(amed) - 1.
aum -a U 4V

0
*

IF (wA .03. 1.) GMo I
Rwonr a* u * SQRl(-2. * DO(samI/sw

DI

* 0



* ~~~~Display fractures

SUBROMMXE sbovfractiares
$XNCLD! I jtcowsft.a

DO 10 i - 1, afrot

WRITS ('.201)
EmEir (153X1-1,20) .ZQ. 0) mumX

CALL CUM(1
WRITS? ('.201)

ZWorF
10 VRITI. ('.101) i,(X~np(j.i),J*1,6)

CALL cLsMI

D0 20 ± - 1, nfrct
IF (1 .Q. 1) T1001
CALL cls(0)
WRITE ('.202)

KimW ("Mu~-l,20) .uQ. 0) TUNK
CAL @18(1)
WRITS (*.202)

KNOXY
20 WRITE ('.101) i.tzinpUj.i),j.7,j0)

101 10WRAT (i.3,5x,6f1O.3)
201 POBMAT( 30x. 'FtACTUIE AT!IBITSM

* I' 0 - ~~~Locatico (x.y.x) -
* - ~~orientation -1)

202 VOPi4AT(25x. 'flAC21uR AwaiuXmn (continued)
* p -~~~~~Tanqth- Trans.,

* Shape (1-elliptic)')

I-
vi

Determine boandaries of sample values *

SUBSOUiTIM size
$IWCLsZ j s coml.&

C ARACTZA'10 read~fle
DD ZS1O0 alpha(12), beta(12), WXlS), slpha(). MOtW(6)
DATA alpa /I., O., 1.1080., 1.,90., 1.,270.. 1., 0..1., 0./
DATA bts / 1., 0.,-I., O., O., O., O., O., 1.,90.,1.,270./
DATI. NLpha/ 3, 3, 3, 3, 1, 1 I
DATA Whets / 2, 2, i, 1. 2, 2 /
DAA WX / 1., 0., 0., -1., O., O., o., 1., o.,

0.,-1., O., O., O., 1.. O., 0.,-1.

CA"L cls(2)
WRITE( *,200)
READ ('.100) readfile
o013 (2,file-rssdfile)
AAD (2.101) Itotal
DO 10 k - 1, toetal

10 RlAD (2,102) cos(1,k),coe(2,k).o(3,k).
corO(1,k),corO(2,k),corO(3,k),ooal(l,k).col(2,X)

CLSU(2)

* Convert Angles to radian measure
Do 40 k - 1, jtotal
alpha - coal(l,k) * 0.0174532925199433
beta - coal(2.k) * 0.0174532925199433
coCA(1,1,k) - COI(alpha) * OS(beta)
corA(2,1.k) - SIN(apha) * 006(beta)
corAU3,1,k) - SI(beta)
cork(1,2,k) - -SIMaipha)
corA(2.2.k) - CO(alpha)
corA(3,2,k) - 0.
corA(1.3,k) - CS(alphs) * SIM(beta)
corA(2.3,k) S -SXN(alpba) * SzM(beta)
corA(3,3,k) C OOr(beta)

ncutP6

* hild ZCUT array (assume prismatic shape)
DO 40 1- 1, fout

a* a * (X-W)acat
00 30 11 * 1,3

w * 0.
D0 20 i2 * 1,3

20 w a w + corA(1l,j2,k) * cosxs(2,k) ' Wk(3*1-3+j2)/2.
30 cutn(jim) - w + corO(jl,k)

xcut(4,m) - coel(l,k) * alph&(2-J-1) + alpha(2'1)

xcut(5,) * coal(2.k) * beta(2'j-l) + beta(2*j)
xaut(6,m) - 0.0
xwut(7,M) - 0.5 * coas(valph(M),X)
xcut(B,a) a 0.5 * cossMmi(te(J),k)

40 Ycut(9,m) - 0.0



CALL. 6ls(0)
xy (itotal *zQ. 0) then

Dosoit I, * jRR t 'mo * dttl

5O vRMf(11,201) k~cu(¶.k),c~eS(2.k),cOUZ(3X.~
oorO(l k).coOo(2.k),coro(3,k).ooal(l~k).noal(2,k)

CALL claSi)

D0 Go it - I j totalnc~ut
60 wRm"(*,j02) (nant~jok).joleg)

OUL. cLaSi)

100 YO6NP. (aO)
101 10213. (lOis)
102 FORMAT? (9f9.3)

200 p1m9Y ("/lost, antot nowe of data files 6
201 1021. U~P Boundary SsufaCe PUbers '130

"OI floundary *iaa (motors): *3t10.2
* I' Bsoqmada center (meters): '3f10.2
* /' Soandary orteatation (deqrees)t ',2fl0.2)

202 FO2NAT (//30.' OONDART SUPPA=,
* 1hz, LocmtsxI.a5',l Otientatiofl' l'sizSie.)I.-A

* C*O*O* * * * * &&* e *00 00 0 0000 **IN 0 *0 *

* N~~~uild Fracture intersection Matrices
IN Is I 11 * * Is s * ft * * A IN Is Is Is

SUMERHW3 buildtractures
snxucz isc jmon.a

DIMMDION ti(3,2), t2(3)
CALL ols(2)

* indltargeot ass aecnq fr~alter.. inside sample volumne
* a4 b.etwe fractuce. and exterior snurfacs

ahead -0
unoode =0

DO S - 1, nfrat
mcf(j) = 0

S afrtJ) .0

*Compare all fractere-fracture coebinaticee
DO 25 11 - 1,nfrot-1
DO 25 J2 a jl.1,afrat

*DO they intersect?
il - IM(zinP(0413))
12 - UTzunpl0O.J2))
CALL intersect (Lii xinp(1,Jt),i2.xlap(1,J2),icheck.tl)
Xi (ichock .3g. 2) THIN

*Are fractaes insside sample Volume?
CALL teuncate (ti ,iahlt)
Xi (icbk .BQ. 0) TM"M

*save frmctue intersectiofa
anode - nnodo * 1
IF (nnode .AT. all) TEM

P3R3? *, I - er of Allowed Internal nodes e ..d4d

Eimir

Cm Covrt from global to sample volume.
DO 15 1 a 1. 2
DO 10 1 = 1, 3

t2Mj - ti (J.i
10 tl(j'i) = 0.

DO 15 J 1, 3
DO IS II a Ip 3

Is tl(j.i) tl(j,i) + CorA(k~j,I)
WM(k - corO(k,t) 4. comis(k.W)2.)

W - 0.
DO 20 j a 1,3
ti1(mmade,J) - t1(1,1)

20 ziaussade.1) - tt~j.2)
nfr(1l) - nfr(11) *1I
nfrn(11,nfr(jI)) a J2



ndfr(j1,nfr(j1)) - anode
nfr(j2) = nfr(12) + I
nfrn(j2.nfr(j2)) - Ji
ndfr(j2.nfr(j2)) - noode

25 CONTINUE

*Switch to boundaries

DO 45 JS - 1.ncut*jtotal
Act(JI) a0
DO 45 j2 = 1,nfrot
3.2 - !NT(xinp(10,J2))
CALL intersect (4,xout~l,jl ),i2,xinp(l,j2),icheck~tl)
IF (icheck .5Q. 2) ThEN
nboad - abond + 1
TY (abood .G. ax1) TUNM
PRINT *, I Number of Allowed Bloundary Modes ~amedede

*Convert f roe global to samiple volume.
DO 35 3. - 1, 2
DO 30 j = 1, 3

t2(j) = tl(j~i)
30 tl(J,i) = 0.

DO 35 j - 1, 3
DO 35 It - 1, 3

35 tl(j,i) - tI~j,i) e oorA(k~j,1)
* (tt(k) - eor0(kt.1) e comz(k.I)/2.)

V . 0.
DO 40 j - 1,3

zxc1(abond,j) * ti(J,I)
40 xx2(nboad~l) * ti(J,2)

nat(Jl) * act(JI) + I
nctn(Jl,nct(J1)) -2
ndct(jl,nat:(jl)) n band
nof(j2) a nef(j2) + I
ncfn(j2,ncf(j2)) aJ
ndct(j2.ncf(j2)) - ahond

45 CONTINUE

END

* Find line of intersection between two planar fractures.
* The line segment is represented by its two end points.

SCBOUTInE intersect (nIxt,n2,x2,icbehcw,p)
InMLICIT RUL8S(A-RO-Z), 1CVt*4(1-M)
DIMENSION x1(9),x2(9),p(3,2),t9iC3,2),tq2(3,2),tll(2,2),

tl2(2.2),te(3,2),tpi(2.2),tp2(2,2),tout(3,4)
DATA rror /I.E.9/

icheck - 0

* Do they intersect?
CALL upint (x1,x2,io,tx)

IF (ic .SQ. 0) RETURN

* Convert to local coordinates
CALL supgtl(2,txtil,xl)
CML supgtl(2.tztl2,x2)

Fractare I
IF ()n .tQ. 1) THam
CALL supcir(tl1,x1(7),xl (8) ,iet,tpl)

ELSE
CALL suprt(tl1,zx (1) ,x 1(8),ict,tp1)

ENDIF

* Fractre 2
It (K2 .AQ. 1) TM

CALL supcir(tl2,x2(7),x2C8),iSc2,tp2)
ELSN

CALL mupcet(tl2,x2(7),x2(8),ic2,tp2)

IF ((icl*ic2) .uQ. 0) RTN

C Convert to global
CALL supltg (2,tgl,tql,xl)
CALL supltg (2,tp2,tq2.x2)

* Convert to local
CALL *upgtl (2,tgl,tpl.x2)
CALL suptl (2,tg2,tp2,xl)

DO 30 j - 1, 2
lic - 0
XX - tpl(1,j)
y7 e tpl(2,J)
rl a z2(7)
r2 = x2C8)
IF (M2 .00. ')t TEN

IF (((xx-xx)/(r1*rl) + (yyyy)/(r2r2)) .LB. 1.) ic - 1
BuSE

tr ((DABS(xx) .SE. rl) .AuD. (DAWM(yy) .LX. r2)) ii * 1



WIM
? (Lie .EQ. 1) TM
icbeck * icheck + 1
DO 10 k * 1, 3

10 tout(k.ichock) - tgt (k,j)

Ue * 0
xx - tp2(1,)
n a tp2(2,)
rt - tI(7)
r2 ' SI(M)
IF (N JQ. 1) TM"

IF (((Mc*x)/(rt*r1) + (yy!yy)/(2r2)) .IZ. 1.) Li e t
WASt

IF ((DMAS() .AB. TI) .AND. (DAS(yy) .LJ. r2)) Lie * I

ZI (1ie .9Q. 1) 1T
Labedk * aLheek + I
DO 20 k - t, 3

20 tont(k.ichoek) - tq2(k,2)

30 CWY1DM

J- * 2
Ir (Wlaeck .CT. 2) THM

Uie - I
DO 40 j a 2, iehek

IF ((DM(tout(Ij) - tout(I.l)) .CT. error) OR.
(DABS(tot(2,j) - tout(2,1)) .OT. error) .0K.
(DA.S(tout(3,2) - tout(3,1)) .T. error)) SM

L1e - ie + 1
Je - j

40 COMUS
IF (Lie .P. 1) Twin

iehiak - 2
ESE
Lebeck * 0

ENDIF

DO 50 j -1, 3
p(,t) -tout(J.t)

*0 p(j.2) - tomt(2,je)

ID

U'P.J

* * * * * O * ** cc... * eec. ... ** *0*. 0* 0

* Timteatea fialte line segment at the boundary of the sample
* volume. Only the part of the U inseqmwnt within the *
* sample volue in returned.

* ~ ~ ~ e a eec.,** *** * * ** ** - .0*..*~ c

SOMT IDN trunat (tq,ilheok)
$nrDDU js2seem.a

DTFMZW S(6),tp(3,2),tq(3,2),tt(3)

W 1O 1 I 1, 3
9(21-1) - - ooeu(1,1) / 2.

10 s(2*i) - cosz(i,1) /2.

DO 20 i - 1,2
DO 20 Li - 1,3

v - 0.
DO t5 12 - 1,3

Is v - v + oorA(i2,it,1) * (tq(i2,i) - eorO(i2,t))
20 tp(I1,i) a o

icheck - 0
DO 30 i - 1,3

12 * it - t
30 IF (((tp(1,1) .GT. s(it)) .ID. (tp(L,2) .0!. *(it))) .0.

((tp(.lt) .LT. s(i2)) .AND. (tp(i.2) .LT. *(i2)))) iLheck * 1

ZI (ieshek .Q. 0) TM
DO 50 i - 1,3

- 0
it - t*2
12 - i*2-1
ipi - 141
ip2 - i+2
IF(pI .CT. 3) ipI a ipt-3
IF(ip2 .CT. 3) ip2 - ip2-3
ZF((tp(i,1) .CT. *U(i)) OR. (tp(1,2) .T. *(i))) M
XF((tp(i,1) .CT. tp(i,2)) .AM. (tp(i,1) .0. (11))) TM

tt(i) * *it)

NW!
VM((tp(UM2) .CT. tp(it)) .310. (tp(i,2) .GT. *(1t)))

tt(t) - UIu)
ij * 2

tt(ipl ) * tp(ipt ,t)+(tt(i)-tP(i, t) )* tp(ipt ,2)-tp(iPt, t) )
/(tpUi,2)-tpUi,M

Kti(p2) a tp(Lp2,1)+(tt(L)-tp(i.1))*(tp(ip2.2)-tp(ip2.1))

Ir( (ttipl) .Gr. *(ip1*2))
.OR. (Kt(ipt) .LT. s(ipI62-1))
.OR. (Kttip2) .CT. s(1p2*2))
.OR. (Kt(ip2) LnT. *(ip2-2-1))) TM

ichock 1
UNW!



icheck * 0
00 35 ik - 1,3

35 tp(ik,i±) - tezik)
eNOIF
ENDIF

IF((tp(it) .AS. S(±2)) .OR. (tp(i,2) .LE. S( i)) T)
iF((tp(i,2) .as. tpai,l) .AmD. (tpC±.l) .1.. *(i2))) ThEH

etti) - SM)2
ij a I

310±?
ZF((tp(il.1) .CS. tp(C,2)) .AND. (tp(i,2) .LE. *(i2))) THM

WU* *(i2)
ij * 2

VNO~T
tt(ipl ) * tp(ipl ,1)+(tt(i)-tP(i I ) )*(teP(ipl ,2)-tp(ip,1 ) )

/(tp(i,2)-tpUi,M1)
tt(ip2) * tp(±p2,1)+(tt(L)-tp(i,l))'(tp(ip2,2)-tp(ip2,1))

/(tp(±,2)-tp(1,M))
IF ((tt(ip1) .CT. M(ip1*2)) .OR. (tt(ipl) .LT. x(ip1*2-1))

. OR. (tt~ip2) .CS. *(iP2*2)) .OR. (tteip2) .LT. *mipM*-1) TH
Icheck - 1

Whack - 0
DO 40 Lk - 1,3

40 tp(ikij) a tt(±X)
ENDI,

INDIr
50 CO iM

EDIF

00 60 i * 1,2
DO 60 iM = 1,3

w - 0.
Do 55 i2 * 1,3

55 W - v + corA(i2,il,1) * tp(L2,D)
60 tq(ili) - v + cor0CIl,I)

RETURN
EID

* Find line of intersectaon betwen two planar fractures. *

SUD.OMTU *upint(a o, xbn, icX, p)
XHPLICIT RLAL*S(A-H,O-Z), IMSER*4(1-N)
OIMMXSTON xa(4),,xb(4),rl(3),r2(3),p(3,2).xa(9),xza(9)

DATA error / 1.3-9/
DATA radian / 0.0174532925199433/

xan4 - xan(4) * radian
Ean5 - xan(S) * radian

WI(1) a COS(xanS) * COS(xan4)
WV(2) - COS(xanS) * STl(xan4)

%&(3) = Sm(xranS)

xbn4 - xbn(4) * radian
W=o - xih(S) * radian

xb(l) a COS(xbn5) * COS(xhn4)
xb(2) * CDB(zhnS) * STlzxbn4)
xb(3) f STU(xbnS)

I-

IF C(MS(xa(M)@b(2)-xbM1)*xa(2))
(DMSM(z2)z*xb(3)-xb.z(2)*X3))
(DABS{m(3)*b(1 )-xb(3)*x(1))
ick - 0

ELS I
ick * 1

.LT. *rror AND.
.LT. rror) .AmE.
.LT. error)) -

xa(4M * x& 'zxa(1) + za(2)ean(2) + xa(3)ran(3)
xb(4) * zb(I)mhe(1) + xb(2)*xb(2) + zb(3)zM(3)

rOO - xEa1)'b(2)-zb(1)*x(2)

IF (DABS(rOO) .CT. error) THU
rl() - (xb(3)za(2)-za(3)*xb(2))/r0O
rl(2) * (zb(1)za(3)-za()xb(3))/rOt
rl(3) - 1.

r2(lM - (zb(2)'xA(4)-xa(2)'xb(4))/ZOW
r2(2) * (zb(4)'*z(1)-za(4)*zb(tM)/rOO
r2t3) * O.

ILSE
rOO * xa(2)r*b(3)-zb(2)*(3)
IF (DA8a(rOO) .CT. error) THU

r1(1) * 1.
rl(2) - (xb(I)*x(3)-xa(l)*zb(3))/rOO
rl(3) - (xb(M)*xa(2)-x&(M)*xb(2))/rOO

r2(1) -0.
r2(2) - (xb(3)*xa(4)-x&(3)*^b(4))MrOO
r2(3) * (zb(4)*xz(2)-xa(4)^xb(2))/r0O

ELSE



U'

r U 3; (3)ftx bM1)3tb(3) txa M

O1(1 - (zb(M)va(2)-zaMlfbC2)Ij'OO
rIM2 a 1.
OM(2 w (xb(2)zta( I)-xa(2) *%b(I )/rd

r2M1 a (zh(M ftN)-WO 4ftibM ) /r00
r2(2) a 0.
:2(3) a (Xb(1)zIS4-NA(t )ftb(4))/rO0

vmmi

Do 10 j-1,3
p(jI) a 2(j) + r1(j)

10 p(J.2) v 2(1) - r1(j)

• Used to perform coordinate traneforuation from local 2-0 reqiga
* (defined for each fracture) to the globel 3-0 region f

• (defined using the center of the sample ragion).

SUBROUTINE supltg(nL,xyI..xyuq,3dp)
IHFZ=~T R!AL*S(A-N.0-z), ZNTBM*4(i-N)

DMTA radian / 0.0174532925199433/

alpha - xtnp(4) * radian
beta w xisp(S) * radian
theta - ximp(6) ft radian

Xa2(1) a SIx(betm)*tOS(alpha)
x&2(2) a SI(betasMIu(alphs)
ma2() - -CO beta)

xeMI() a-SW(alpba)
ma3(2) a COSIalphe)
ue3() a 0.0

00O 10 a - I'ai
xa zyl(l~n)*MO(theta) - xyl(2.n)'SIW(theta)

yh - +y( . ~ g W t e a xyl(2,n)ft00 (th eta)
ID0 10 j - 1, 3

10 zyeg(j~n) - zin(J) + xb au2(j) * phftxa(J)

RE"

* used to perform coordinate transformation from global 3-0 region
(definad uaing the sample region) to the local 2-0 raqion

* (defined for each individual fractue plane).

SUNKOM *upgqtl(nl tp.5yln)
LUCUM RM*8(A-R#0-S)Z D I -SQ I-N)

OVOMIO xy1{2 ad} tp(3 gl),menX9) ^2(3),xe3(3)
0a err.r / t.0-6/

OAh radian / 0.0174532925199433/

alpha - *xn(4) * radian
beta - nz(S) * radian
theta * xen6( * radian

rc2M1) - SXN(be>tm)COS(alpha)
xa2(2) - SfWbeta)SIN(alpha)
rc2(3) - -COS(beta)

C3(1) a -SINWphn)
xa3(2) - WS(alpha)
xu3(3) * 0.0

00 10 n - 1, ni
IF (DanS(=x2(3)) .CT. error) TM

xb a (tp(3,n)-xan(3))/xc2(3)

rh- (xc3(2)a(tp(1.n)=n(1))-a3(1)a(tp(2,n)-xn(2)))
/ (xc3(2)i2(1)-bc3(M*%o2(2)1

1? (DARS(v3(i)) .0G. error) TM
yb a (tp(1 ,n))-nc)-bthxc2(1))/xv3()

yb w (tp(2,n)-x=(2)-xbrm2(2))/ec3(2)

Sl(t,n) . lbOS(teta) + ybSIW(theta)
10 xyl(2,n) * -xbwSIN(thet) + ybf tS(theta)

me



W-

* Find point of intersection between a lin and the *

* boundary of a reatangle

SuawUmN cupret(p, rlr2 ic cx)
ZIPLICIT RBAL*B(A-N0-2.) UMWiTaRn4(1-M)

DDIMM0aId p(2.2), cx(2.2). at(2,4) xx(4), yy(4)

error a 1.2-9

It(DABSUrt) .LT. error) .OA. (DAS(r2) .LS. error))
La - 0

a a p(2.2) - p(2.1)
b - p(ll) - p(1l2)
c - p(2,1)*p(1,2) - p(1,1)*p(2,2)

Ir (DABSWa .LS. error) rdW
y . - a t b
I? (DAM(y) .LB. r2) 11Ti

La - 1
cx(l1,) - rI
cz(1.2) - -ri
cx(2,1) * y
cx(2,2) - y

La - 0

Ir (DAM(b) .LT. error) TM
x - -0 / a
St (DSbC(x) .Le. rI) r S

±c * 1

cz(1,2) - x
ex(2,1) a r2
c0(2,2) - -r2

MSE

ELSIC
31(1) * rl
YYW - (...rl-c)/b
ix(2) - -ri
YY(2M *- (arl-/b
yy(3) - r2
xx(3) - (-b*r2-c)/a
yy(4) * -r2
xx(4) (bar2-o)/a
icct - 0
DO 10 c * 1, 4

lF((DBS(XXUiC)).LN. rl) _W. (DABS(yysic)).LZ. r2)) rdEw

tcot - icct I 1
ct(l±icat) - x(ic)
ct(2.icct) - yy(uc)

10 COmlDIUs
11 (act .Q. 0) TS

1a a 0
ELSE

ox2(,l) * ct(l,l)
cx(2.1) - ce(2o1)
jet - 1
DO 15 j - 2,icet
It (ct(1,j) .az. ct(1)) TIM
cx(l.2) * Ot(Oj)
cx(2.2) - at(2,j)
jet * 2

15 CDVZDUN
10 a I
Xt, (Cet EQ. 1) SH

±0 - 0

IWWI

EHOXY
RBN?

310



.

Find point of intersection between a Un. and the
boundary of an eUipe.

SUUUOUTMN supair(p~rl .r2,ia,at3
IMPLICIT RNRL'S(A-N.O-Z), IMTZ=*R4(!-W)
DINHKWOW p(2,2), at(2,2)

error - 1.2-9

!F((DMI(rl) *LT. error) .OR. (DABS(r2) *LT. error)) TfIlM
La * 0

a -p(2.2) - p(2.1)
b -p(l.1) - p(1.2)
a - P(2.1)*P(1,2) - p(1,1)ep(2,Z)
IF (DADS(b) .GT. error) T
r2b - r2'r2wb'b
az - I./CrlerI) + &*a / r2b
he - 2.*aga / r2b
ura-a~c/ r~ - I
bac - hz'be - 4.*aXt*ax
IF Maee .GT. 0) THM

ct(1,t) -C-h + reQR~Tb~a))/ (2.*az)
at(2,1) - -a~at(l,l) - a) / b
at(1,2) * -he - DsQRY(baa))/ (2.*ax)
ct(2,2) = C *at(1,2) - a) /b

ia a 0

ax - ./(r2*r2) + beb / rna
he 2.*bea / On
cz cea/ rla -tI
baa hehe~b - 4.*&z'ax
IF (baa .GT. 0) TM2

La 1
ct(2.1) a (-he + DgP*(hea))/ (2.*ax)
ct(1.13 - (- b*at(2.1) - a) / a
at(2.2) a (-he - OsQRY(bea))/ (2.*ax)
ct(1,2) * (- b'ct(2.2) - a) / a

La a 0
Emir?

WDID!
WRNTR
EDU

La

e g g e g. * * * * * * * .~gg e e.e . g e . . .-e ge- - * . . . - e

Find contributing f r e
eg gee* ..... e****.g....... e g..... a.. e.g...-****

S30ROU2 findfraaturor
St LUDD jeaoinan.a

DDIDD!ON itemp(ml)

Do 5 i - 1. nfrct
indexiM - 0

S itmp(i) 0

ind fracrtres connected to boundary aurfac..
DO t5 i - 1, nCut*jtotAl

IF (nat(i) . 2 0) t lt
D0 10 j - 1 nctDi)

k - natn(i.j)
IF (itemp(x) .2. 0) TREK

indes(k) * i
iLetpk) - I

3LSIX! (indextk) .M. i) ) M
itoupik) * 2

uWr!
10 a

v.!F
Is CORTIMU

* Find fracturm. coaneated to fracture connected to bawidari-a

20 itest - 0
DO 40 i - 1, nfrot

Jr (ito.p(i) .Q. 0) TYM
DO 25 J - 1, nfr(i)

k - nfrn(i.j)
IF (it..p(k) .BQ. 1) T)R

itest - 1
i-dexti) - index(k)

3.32!? (itap(k) .Q. 2) TM
itest a 1
itMpi3 - 2

2D!?
25 a

3s.62! (itepi) .2. ') Tmm
DO 30 j - 1. nfr(i)

k * nfrn(i.J3
IF (itemp(k) .2. 03 ZN2N
iteet - I
itemp(k) - I
index(k) - indelxi)
s3? Uitemp(k) .JQ. 1 .AND. index~i) N3. indexuk)) 5MI
itest a 1
itmp(k) - 2
ite.p(i) * 2

3.32!? (itemp(k) .tQ. 2) TM



itest - I
itemp(i) - 2

30 DONTMAU

zuJEr (itemp(i) .$Q. 2) THEM1

DO 35 J a 1, ftfr(t)
Ic - Aftrn(i.j)
IF (itemp(Ic) .Ms. 2) TM43

itest - I
itemp(Ic) a 2

35 cOUTINUB

40 CONTIMUS

IF (itest .3Q. 1) GOTO 20

*Find fractures in A ZMetwvk with acre tsan ome outlet

aid - 0
DO 45 i - 1, U frct

IF (itamp(i) .EQ. 2) THU3
nd. ad+ I
index(nd1) -

340Wi
45 CONTINUE

RXVM
me

* ~~~Common file for rRACGEN program

ZILICIT REALS (A-H,O-Z)
PARAMETER4 imxO.200 ,mxl ml 0,mj2-1 2,mx3.2 .55441 00,.-20)

* Print out nodal repres-ntation *
. . .. - *. . * -J. * . * * . . . . * . . . . . * . . . . . . . . :

SUBROUTINE listfractiwes
SINCLVDE J:eononM.a

CHARACTER c(200),d,sb
DATA s*b / I . /
DASA epsilon / 1.8-6 /

ChL clsCO)
IF (nnode .N. 0) THEN

* Display ?RACTIRE-RfACTURZ table by EWE40 3
icount - 0
lO 10 k - 1, anode

I? (icount .EQ. 0) WRITZ(O.201)
WITZt(*,101) k,(Sil(k,±),i.1.3),(2i2(ki).i 1,3)
icount * icount + I
I? (icount .G3. 20) THU3

Chu c0l4)
icount a 0

EmDir
10 CONTINUE

I? (icount .ME. 0) CAUL c1Ut1)
E3O0!

IJ (nfrct .ME. 0) THEN
* Display FR1ACTUR-rRACTURS table by NFMCTO

icount - 0
DO 20 k - 1. nfrOt

It (nfr(k) .CS. 0) 2HEN
rr (icount .DQ. 0) WRIET20,202)
WRIZU(*,102) k,nfr(k),(nfrm(k,i),i-1,afr(k))
icount - icount + 1
It (icount .CZ. 21) THU1

Chu cU1
icount * 0

3101?

EvDir
20 CoW5iNU.

IF (icount .MN. 0) CALL cle(1)

C%
0

* exOs maxivum number of boundary nodes in globl network
* Uz11 maximum number of fractures
* mdi maxiMux number of boundary surfaces (6*u53)
* W3a ma*ximum number of boundaries
* ex4s maximum number of boundary nodes in local networks
* ax5t saximum number of intersections

CO04ON /a/ oosZ(3,.x3),corO(3,mx3),coal(2,.x3),corA(3.3,sx3),
nfrctnnode,nfr( xl ) .ncfmazx).hiap(10,.51),
ncfn(ax1 ,as5) .ndcf(axmz.x5),nfrn(szxl,xsS),ndfr(zl ,maS),
=1(N11, 3),.x2(mx1,3),xiL(mx1,3),xi2(m1.3),index(mx1),
*total.ncut,xcut(9,sz2) ,aboad.not(s2Z) .actn(m'2,mx5),
ndt(mX2,m5 ) ,nd

* Display rRAcsI¶E-moNn table by NrnC
icount a 0
DO 30 k - 1, nfrct

I? (nfr(k) .CT. 0) THEN
I? (icount .EQ. 0) WRITH*,203)
WRITE(

5
,102) k,Afr(k),(ndfr(ki),i.1,nfr(k))

icount - icount + I
IF (icount .CZ. 21) 1143

CALL cIsM)
icount * 0

911DIr

30 COWTINUE
IF (icount .MR. 0) CULL claO)



0Ir

0%

I? (tbom .. O) m
*Diap).ay ?AC UPJ-300NDY tabl, by N5WH*

icomat - 0
DO 40 k I l, nbwad

I? (iLOOMt .AQ. 0) WR (.204)
U51?*,1tOt) k.(xm(k,i).i-1,3),(xx2kk),i.-1,3)
icount * locust + I
I? (icout,.03. 20) ?M

CALL 0Ia(l)
Loant * 0

JWWt
40 COTMM

IF ficount .M. 0) CIUS cO(M)

* Display 3003A1Y-VAT table by RC'
I? (jtotal .. 0) ?Tl

oo~mmt - 0
DO 50 k - 1, amtqltotAl

? (inatck) .C0. 0) ? .
XP (ioat .2Q. o) "0"*,205)
MZTZ*tI02) k,nctXS),(A~n~k,L), V,natXk))
icomt - icomt + 1
IF (ieomat .Gt. 21) ?1

iecoant - 0
Im1?

50 co5TZNU
IF (loonat .13. 0) CALL elCt)

*Display BOe~afly-UUOW table by PLVTY
laocut = 0
DO GO k - 1, ne~t*Itotal

IF (aat(k) .CT. 0) ?M1
IF (lqoomt .3Q. 0) P5z1(*,206)
W5ZTE('.102) knt1)(dtIiit.cc)

toomat a Ioust + I
IF (Iount .GE. 21) "M51

icownS - 0

Emir

D0 60 WflNnUUt

IF (Lcmist .cr. 0) CAL olas)
=01P

IF (Dfrat .1. 0) TMI
*Display VR TU!-BOWODRR1 tabl, by NFRM2

Lcstnt - 0
00 70 k - 1, sfrat

IF (Mct(k) .AT. 0) T"M
Ir (leocu t O). 0C Wefl'3.207)

wtX (*.102) k.nef(k),(mefn(k,).i-1t,nwf(k))
icount a icowt + 1
Ix (iouamt .Gr. 21) s51
CALL alCt)
lount - 0

70 COIU
IX (boast .33. 0) cas elaCUM

* Display FsaTUPi-Ni M tabl, by WmCT I
cocust - 0

DO D0 k - 1. nfret
IF naft(k) .CS. 0) "ME

IF (looint .Q. 0) WRIfZC-,206)
wRX!{(*,102) kcnf(k),(vdcf(k.i),L-t,wfak))
leount - Xcent5 1
IF (IoanS .Gc. 21) t
CaLL 1(1) -
tewant * 0

so cowfumW
Moirxr (lcoust S.330) CALL cl13(1)

100 PO2T(ftz.200A1)
101 0sx(z5,16Vo.3)
102 VOMT(161S)

201 MSMfl27x 2 X* INYWNL DOO '

* - - - Lawation - - -
I' Cx (y) (a)

202 0oWIT(27xIMrUM MD 0
I //4x. 0 V V

203 FORMT(27' 1191L 30
* //4x. 0 N U U

204 VOMA(27x '31T3M 1R1S I
./' B . . . Location ---
. /tOx, Wx) (7) (a)

205 FORWI(27s.'EMI ML 105
* /14:! * 1 1 V

206 VORMaT(27x,'WT!RUAI. WOES
* //4%.3S a 3 3

207 VORM2(27x:.'53TfdL '005I
//4z,'? 0 5 S S

206 ?ORMT(27:, WMM7L M3D '
* //4x,.? ' a a B
MD

--- meeatli -- -I
(z) (T) (3)l)

r r *.../)

R w .../)

- - - catim, - - -'

(Y) (x)')Cx)

r P '/)

B a '/

S S '/)

a a '/)



A.3 BIM2D: Boundary Integral Method for Two Dimensional Fracture Flow

This section presents the source code for the boundary integral method
applied to two dimensional fracture flow through a discrete fracture
network (BIM2D). Chapter 2 describes how the program calculates steady
fluid flow for saturated fractures. Chapter 3 describes the technique
used to solve for steady unsaturated flow. Chapter 4 presents the
methodology used for calculating tracer breakthrough curves. Inputs to
the program were described in Section A.2.

* * a -. a a .- * .* *5.* * * .* ie... .. ..

* 2-0 SDI Discrete Fracture Network Model
* (Last modification . Lugust 23, 1987)
* 0 * .* * -* *C. ..-.. .. * - * C*. * * ** .*.

PROGRAN 8D120
$lSCLW2 1 couaon.n

CSARACU10 readfila

* writn initial acren.
PRINT 202. CHAR(27)
OPEl( 9,fi;e*savetils',form 'binary'I
RZEAD9) cooZ,corOcoal,corA,nfrctw nnode,nfrnOf, xinp, nOi,

nAct, afrn,ndfrxzl ,zx2.xi xitindex, jtotalncut,
xcut,nbond.nwe nctn,szdot. nd

CAL clsdl)
10 CAM cls a(2)

NXTZ?(*,200)
RW.D C*,100) itype
I (itype .E. 1) THn

CAILL- boundary
Msz=Y Uitype zQ. 2) TESI

CALL baildatrices
CAM.global
CALL gauss
CALL display

mzzF (itype .EQ. 3) TS
CALL, points
.SAIr (ityps 20. 9) THEN
CW cls(2)
SSOP

ENDIF
CoSO 10

SOo FORMAT (s8i0)
101 FORMAT (Al0)
102 FORHAl' (lOflO.3)
200 FORMAT W//IsxI MN MM,'

//15z,' I - Aasign Doundary Conditions',
/tSx,' 2 - Generate and Solve RPM matrix',
/lSx,' 3 - Solve at interior Points-,

//15x,' 9 - Exit to DOS',
f//ISK.' Enter Selection 'S)

201 FORMAT //lOx,' nter name of data filet '8

202 iORMT(AS^I.' 12J1' .//1
* ///'Ox., PROGRAM 70 ESTIMATE HYDRAULIC PROPERTIE

/Ox,' oF DISCRZT FRACTURE N=R"IOPJ'
/lox.' Developed by Todd C. R nSS4A (6/86)'
/l0x,' Departasnt ot Hydrology Water Resources'
/lox,' University of Arizona, Tucuon 05721')

END

T _o us _ ._ _ o g ._ d .=. _ _

=A""~u C~ stai NW-o .1 I* Auiu. -W
- -. w - tV* 5. -W took 1t"Us1 M..... WA&U SW tau* 1 .W- ohdt. on. .1
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* ~~pause output and clear screen

SuSSOUTINE datn)
IF (a .EQ. 1) TwIN

uOLD (-, 102)

lmRTB(',103) CuRRR27)
IF (a .u. 21 IORMT(*,04)

101 FORP9LT(AI,1[29D25l,lPre~ (R!!135U k7y to con~tinue ..
102 INOMMIta)

104 ?VRSKT(/Igz,' OISCRtM FWPCTURZ NEW0AO~K 11003',
* /i~x,l Implemented by Todd4 C. Sasumussen'
* /I g, De".ereuant of Hydrology, Ofniv. of AZ'I

MID

* ~~~~Ammiqn boundary conditionsa

SinUTR-IPI boundary
SINCLUDZ J :acon.a
$x*ZMcU jocinca.b

CAM! CLaOW)

0)0 10 J a 1, itotal
I00 10 k a 1, flout

leRM.(*,201) J. k
10 RIMO (*,*l nbtYPe(a). bvalue(a)

200 VORMhT C//Olx' Mhter boundary type and smlue.%
/ I Ox, I * a peauaribod flMx%

* /10,' * 1 - prescribed totAl lined'.
* /103g, I 2 a constant preesureO b10d'//)

201 PORMT (2L5,IOx.'Ci.x)S 'I)

we

a ~~~Mild Boundary Momeent PatriX

s50T15buildmatricsx

ODIPMOSIO ti (2), t2(3)
DZMMISZC SsignCel. ysig"(S)
DhTA -aup 1. 1. 0-,11,0. I/
DATA Feign /0, 1, Is 1it .- ,1,t
DATA iseed /12345/

an - 0

* opthrough all contributing fga~tuxa

IF (ad .115. 0) tInM
Do 60 L - 1, nd

LL - Ladexti)
rl a xinp(7,ii)
r2 - zinp(S,ii)

a ml~ptic vs. rectangulAr fractures
I? (XLnp(10,ii) .EQ. 1.) TM15

nc(1Il) * a
:12 *OSQRT(1/(1/(rl~r1) . 1/(:2*r2)))
DO S - 1,8,2

x(1.iJ - xniqn(j) *rt
y *~i ysiga(j) * :2

X(3e1i.) - miqaC~4.1) a :12
S y(J+1,L) - yoignfje1) * rI2

nc(1IL) S
00 10 3 - 1, a

z(1,i) a figatin() al
10 y(j,i) - yaign(J) r 2

*Loop thtough anl intersecting fracturms

IF (afr(ii) .JM. 0) T
00 37 3 * 1, nfr(Li)

DMUi) * na1(i) 4.1
ncnnm(L),i) * ncn +)-~)4 2
00 203a0 1, 2

I* nc(nw(L)-1,i) +
IF (a .1Q. 1) T5151

00 15 k a 1, 3
15 t2(k) * zil(ndf:(ii,J)*k)

00 17 k -1, 3
17 t2(k) 3 x2(ndft(ii,J),k)

aily
CALL SuPgtl(1,t2,tl~xinP(I,iU))



I0'

y(jj i) * WM~l

ir C F(Xio9(10,ii)) .g. I I tm

CALL flattoofttil).tl(2) )

It DA88(ttit) .EQ. VI) R. (DW(t1(2)W .SQ. r2VW

*C A LL i r G t ~ ) t 1 ) l

MO11
20 C0WZMN

find eod of fractatru
IF Ui MS. 1)UW

DO 35 k * 1 f-l
1 l (lfa ) .3g. O Uj)) 5

DO 30 1 * 1 nfrtta(kW
IF (atnra Ms(k).l) .3Q. U) 1Irm

DO 25 aa 1, 2
jj aw Satia)-li) +

kit ao(l.k) + 4
u(fj,l) * 0.

u(kkk) = 0.
koa.t .i) * -(126*k + kk)

25 kod(kkk) a -(12it + ii)

30 OUNlME

35 COi~m
Wr

37 C OUTUM

* Loop tbznoh all 1.tatncting boundaaies

XF (naftV) ." O) TumD

Do 45 j * 1, mcf(i)
Mai - mai) + I

AC((i),i) - octm(U)-1) + 2

W 45 a v 1, 2
jj- DO(VAaM-1L.) +4 a

II (m .SQ. I) Ta
DO 40 k - t, 3

40 t2) - x3itndcf(LL.j1,k)

00 42 1 a 1. 3

42 t2(k) - xxQ(mcf(Ci.).k)

CAL l UJtL(1,12,tIl inp(tii ))

1411 i) - ti1t)

y(jj &) * MU(2

* A y beadary eovditioos

IF (nutypefacts(U,j)) .SQ. 0) TM

kode(CJi) - 1

a3i) i}- baLumtnefuoiCp)
31.0W (flbtypetflctutIi 4)) *3Q. 1) TM"N

kod.t(,i) * o

utSMA) * bvabaa(zmfn(Ulj))

ka"Cjji) * O

U(jjL) - bvAlnaeufn( tj)) + x~jj

45 CALL Laaatood. CSI).52).})

DO 50 j * 1 nstl.±)

so U04) -O.
WO uC>,i) - O.

0*ee&**

rim total wuber of nodG.

aj~i) - am~l(tt

*ft I no + AMiD
? (Ad .Or. =O) SlM

PRh *, * ?otaJ t of Aodes OXsCdd sm

CALL 0la0)

EU3M

i0 cowamsi

NOW



0 te*00 00 0 ****0000000* 0* * 0 * 9* ** 000000 *

* insert nodes alonq cirwuference of fracture

S0~UBR1Et Lasertnode (x2.yy,i)
sv6C0MNJs9jcomman.a

IF (77 .UQ. 0) thatas - 1.010

t? (zz M.6
IF (zx W.Z
IF (oX La..

?F (3x A.6?

o -An. 7 .CT. 0) J-.s * 1
o *AHo. 7y .6!. 0) Aces. * 2
o .A. 77 .1*. 0) Jesse - 3
o .AIND. y .1.. 0) Jesse - 4

DO 20 k - 1, nc(l.i)
IF (y(k.i) .16!. 0) thetar - z(k,i)/y(k,i)
IS (y(ki) .Q. 0) theta? - 1.D10

I? (x~k,i) .63. 0 AM16. y(kL) .6T. 0)
IF (a(k~i) LT.. 0 .AH. y(k~i) .G3. 0)
IF (x(k~i) .ZZ. 0 ANDl. y(k~i) *L. 0)
I? Wxk,i) .6T. 0 AM16. 7(k,i) T1*. a)

Lease - 1
Lease - 2
Lce.. 3
cas.e - 4

0 umed to perform coordinate transformation from qlobal 3-0 reqion
0 (datioa. using the sample region) to the local 2-0 reqion0
O (defined for each individual. fracture plane).

S0WMUIPM supitl (01,ttPOXYl.zn)
IMPLCXT R!AL

0
S(A-M,0-Z), X1M33t*4(XI-M)

DARM error /1.0-6/
DA!M radian I0.0174532925199433/

alpba - xan(4) * radian
beta - zc(S) 0 radIan
theta * xcn(G) 0 radian

xo2(1) - SIU(beta)*=(6alpha)
102(2) * SZIN(beta)*SXU(alpha)
zo2(3) - -COS(beta)

=3)- -SI14(alpha)
103(2) o COS(alpha)
xa3(3) - 0.0

DO 10 a - 1. nl
IF (DANSBx=2(3)) .6?. error) ITMq

=b (tp(3.n)-zan(3))/xc2(3)
gm.!

xb = (zo3(2)*(tp(1.n)-ron(t))-o3(l)*(tp(2.n)-xou(2)))
/ (xc3(2)*zc2(l)-103(1)*zc2(2))

~mZP
IF (DAM(x3(1)) A6?. error) TNH6

yb - (tp(1,n)-zon(1)-xbzcw2(1))/xc3(1)
NMa

yb - (tp(2.n)-zowa(2)-ub*xo2(2))/xo3(2)
wwri
xyl(ln) - xb*M(theta) + yb

0SIN(theta)
10 171(2.n) - -tb*SIW~theta) + yb COS(thata)

PEIURN
DM

0%

I? (oee. .?Q. Jesse A1ND. thetaB AT?. thetar) "m~
Do 10 1 o nJh ) k. -1

IF (koate(1.) .1.. 0) TMMR
Pk~ -koft(3.l) / 129
01 - W.(-kod*(1.l),12S)

kod e( m 1,mk) - k d ~ lu I

10 7( , ,1 ( 1, 1)
DO 15 J - 1u 201(i)

Is OcOA~) - no(J.L)*1
x(k.L) z=
7(k,l) -77

20 DOMINO

gm



0%

41* * * *- * 41 * 2 * 6 & 41 * 6 0 6 - * * * - * 6 e A * * *- * 6 * -

* boundary U eant program adapted troa brebbia (I1978)
* Solve* systam of eqUationm of the fore H O - a Q

* AD** * * * * 0 * * * * * * * * * * * * 1 1 **-*

SODOOTIM global
SINCIUDI jaconmo.a
$INa.VD jscommo.b

* Clear QQ and Ga
DO 25 i * 1, MaO

qqi)* 0.
00 25 j * 1, waO

25 gg(i,) - 0.

* Zoop through all domains
0 50 i - 1, ad
t - xzip(9,index(i))

* Clear a am H
DO 10 j = 1, f(i)
DO 10 k - 1, n(i)

h(2,k) 0.
10 g(jk) - 0.

WO 20 j - 1, Mni)
Do 20 X - 1, u(i)

1 * usxt~k,nc1l,i),nw(i))
* - lit(k,naCl,i),.a(i))
IF ((j .H. I) -%W. (2 .p. 1)) rM

CAML integral (t,x(j,i),Y(ji),x(ki),yYc,i),x(l,i),y(l~i),
a*,a2,blb2)

h(j,k) - h(jk) + at
g(J,k) g(j,k) + bil
h(j,l) - bh(,)1 + a2
g(j,l) = g(jl) + b2
h(j,j) - h(2,j) - el -

ax * x~li) - Xki)
ay - Y(l.±) - y(k.±)
*r - DSQRTax*ax + ayay)
bl *r * (1.5 - DWOG(nr/DSQRT(t))) / 2. / t
b2 o r * (0.S - DLOO(ar/DSQRT(t))) / 2. / t
IF (k .HE. j) TM5l

g(jk) * g(j,k) + b2
g(j,l) - g(2,l) + bl

LSgb

g(j,l) * g(j,k) + b2

UIDIF
20 CON1UM

I - nj(i
00 50 X - 1. M~i)

a ' I(odo(,i)

DJ - IND(C-,128)
*X -*/128
ml = n(Uk)4%2
IT (a .CT. 0) TM

DO 30 j - 1, n(i)
qqwl,2) - qq(lej) - g(j,k) * u(k.Jj

30 gq(l+jl+I) - - b(j,k)
XI. T in .1Q. 0) TM5

W 35 j - 1, n(i)
qq(l~j) = qq(l) + h(,) * uki

35 gg9l2jlek) - g(jk)
SZE? (. .LS. ink) TH
00 40 j 1, ant)

gg l ,ml) - -bIhcjk)
40 ggjl+,lk)) - gj,k)

USE
DO 45 j - 1, MCi)

gg 1+2,ml) - -g( ,k)
45 ggql.,l4Xk) - -b(j,k)

50 COMMA

DiDj~



.
a .*.* * e. * o -* e - . *C-* - .. .* .*. C * . .

Compute off-diaqonal elements of a aid U by
numerical Integration along boundary elements.

* - *. -. * *ge O C *0 eCe ee Ce eg* *e C 000*.
S03URO L.teqtal (t.:,y.zl ylt ,x2.y2,tl ,a2,bl ,b2)
XPOUCIT VZWS (A-Rt,O-X)
DInRsMIO f(6), i(6)
DATA f /0.125233408511469, 0.36783149998180, 0.587317954296617,

0.769902674194305, 0.904117256370475, 0.9S1560634246719/
DATA v /0.249147045813403, 0.233492536538355 @.203167426723066,

O.t60078328543344, 0. 106939325995318, 0.047175336386512/

C

ax a c2 - xi) / 2.
ay - (y2 - yl) / 2.

bx- (2 + xi) I2.
by * (72 + yl / 2.
X1 (ax .N. 0) TM

ta - ay / ax
diet -.DA30taztA - y + yt - ta Xl)

Ma,
dit - MAstx - xl)

Up C (xi-x)*(y2-y) LT. (xZ-t.cfT-Fy)
at - 0.
.2 * 0.
bi * 0.
b2 - 0.

Do 10 £ a 1, 6
g1 ' fai)
Do 10 j a 1, 2

IF (3 .2f. 2) gi - -9i
X- x - (ax * gi 4 bX)
77 y - (ay * g1 + by)
ra- DSQWRYt X-x + *y 7)
at - SMR(Ax'ax* + Way)

CeC-ee*eeee-ee*eeee--.CC..Ce..eC
Find ubequet node

2Rvrmz function next (J.aae-)
DIIIMIUM not*)
next a 3 + 1
rr (3 .m. nam) T) YWE
next * I

MAUF (a .CT. 1) TN=
DO 10 k - 2, a

10 IF (3 .EQ. msk)) next * ck-11 + 1
DZI?

Id poe nod

2w= function laet (jnc"x)
DINEWION no (e
last . j - 1
I? (3 .Q. 1) TM

last - mazl)
MaT:? (a .6. 1) 733R

WO 10 k a 2, a
10 IF (1 .Q. nclk-I1+1) last * nmok)

IMD

C

/ DSoItata * 1))

diet - -dit

.-'
0%
-J

q * ar * vUM * DUIG(t/DSQRT(t)I / 2. / t
h a ar * wMi * diet / (rat') / 2.

aI -*1 + h * t(p - 1.)
a2 - a2 - * (qi + 1.)
bi a bi + q * (9i - 1.)

10 b2 a b2 - g * (pi + 1.)

R929"
PM



I.-
a'.
00

VA= OV*A*LM / * e*g *o **@@**-* 00*

LOST" a 0
W SO 1 - 1, 1-I

* _cbmae x_ 1 swo to diagoal
I (D w (g q U..ll I 1*. epailo.) 2

DO 20 k - 1+1, n
It (MD2(g(k.1)3 . vallow) 2rm

10 10 1 * 1, _
a ggW1,)

gg(1j) - W(k,)
10 qgtk3 a C

wM) - qq(k)

GM9 30
rW~

20 owIWm
* Ca't fin nosa-o to embang with. mingular matzix

raw *, I * * OULazity i *n SOO. 1
Cau; Cdm1)

law
* D i ds ow by dhef a.4 ... gf a i.t

30 a a ge1,1)
991) a qq(1) / a
W 40 k * L1A, M

40 W(1.k) ' g(1k) a c
* ae_'- UA QTSJ fwa rJ

W SO 3 a W1,
a - 9(,l)
99M) - qW(j) - a ' 9(1)
O 50 k a LO1, a

so gg(j,k) - Wtl,k) - a * 9(lk)
* C i n at l a n -

It (e aase n ia )) .m)
Raw *, I* O* Simolt:ity l a rw, an .
C& el"(1)

1suqw(mm) - 999) (man.ma)

* Mck aswti
O G01 - 1, am-I
1 a
DO 60 k * 1LA, m

60 qqM() - "IL) - "ILk) * 99(k)
mW m

no

*odwe And Wiapln Global equation
a a . g a g . . . a a o o . a g e . . . -. . . . -* a a o a o

S UI M IU diapfar
*Z1I AD8 js2 . .
$INW joammanA

m - 0.
DO 30 * - 1, ad
DO 10 a * 1, sil)

a - _.(Ji)
ed * iUd-..128)
k * -/128

k - n1(mk)4id
I - OM(i) + j

IF ( .cr. 0) nw=

q(1j,) a 99(1)

W I ( . zt. On)
ql0,) a wi1)

ULZ s (a . 0)W

q(ji) - q(1)
SOA,) - qg(k)

q(1,i) - -99k)

10 OWZUE

O "WPlay esanut.

jj - 1
egs- O.
0a(1 .O' ')
99Zm (1,601) L d z l

DO 20 3 * 1, UU)
*ix p beak

ar (NMj-1,20) . . 0) "M
IV (1 .in 1) Ca . d m41)
IF (1 .Q. 1) a" lm)
UR -,1601) isdail

Mnau

* it dis-bgn by Ismgt
dI * anIt{,j. ,x ,i(,i),a ))

dlk DCt(Dhawnxtj,i)-zdk,S))--2 + Dams(y(j,i)-r(kiJ)*-2)
d * (3.*q(j,i)*(dldk) + dlgq(l.i) l+ dk~q(k.L))/8.
*ox * a + d

(I .SQ. me 2lIi).1) m
So - 0.
J) - jj * 1
m a



eae* mm + d

* Diapla locations, potentials. dio@h"est, and _*a balance
SS" M*602) ~,x5,,}X,}qXd

20 WUIY (1,602,
WR *,603) am
WR (.6031 MM.

30 C= 61.4)
ClOSEM 13

601 IOMA V frect s %S S

602 IOMA (3i5.6flO.3)
603 ?OaEWT (/' Pag bmlance, ,410.4

'g

*a. * a. * *..a- *a--**@*-* *000 -a a.. goose g .a*o a

* Oaeptoe potential at interior pointa

6U360UU1~3 poits

SSU~WDS Seoun.b
pt * ORCO6(-t.00)

* Pt domem OM4 location
ICALL clsOM

WUIYI(*.2013
Rm (*I) I

sr (1 .(?. ad) 0Gm0 1
F (I .EQ. 01 Rr1W

t * xLnp(9.iad*%(t)3
2 WR1T (,202)
1010 (*,*3 ox, e1
IF (cx .SQ. OM0 1
agm - 0.
eo 1o 1c a 1, ni)
I * next~itnc(li),fl(i)3
OALL~ ta t wal(t~ax.l,tx(k~i) ,(Xitei),x 1.i,Y ,1ei3.*1 ,2.bl ,

Wst (-,203) ad., ax. ay, an
OoS 2

201 (O/M Dftter Domin r (0 O en d), S)
202 r 1 (/' Eteo (x,y) codilt -9. t-99. eend). '$
203 lrM T 4/' DammA, %i3.' (XtYs (',2t10.3.) Po"Utls ,flO.3)

* 0 0 0 0 0 0. 0 * 0 0 0 0 0 0 0 0 * 0 * 0 0O 0 0 0 0 * 0 - 0 0 0 0 0

* CO t fl M fle fog S1120 0

coMPM /b/ nbty e(*x2,bceLvs(ux2),
nnn(m41 ,a2 (ax4), ,nm(4) .n4(x4,ax4) .x(x4.ax44,
*( x4,.x4, (me4, 4),q(m.4,aX4) .d*O(4, x4),

* ,( ,4m.x4 ,h(mx4,mx4),qq(mzO) .q(pxo.nt0)

0-

'C



A.4 BIM3D: Boundary Integral Method for Three Dimensional Coupled
Fracture-Matrix Flow

This section presents t~he source code for the boundary Integral method
applied to three dimensional flow through a discrete fracture network
embedded within a porous matrix (BIH3D). Chapter 2 describes how the
program calculates steady fluid flow for saturated fractures. Inputs to
the program are presented as Table A.8.

Table A.8: Sample Input Data for Program BIH3D.

1
35
0. 0. 0. 1 0.
0.5 0. 0. 1 0.
0.5 1. 0. 1 0.
0. 1. 0. 1 0.
0.25 0.5 0. 1 0.
0. 0. 1. 1 0.
0.5 0. 1. 1 0.
0.5 1. 1. 1 0.
0. 1. 1. I 0.
0.25 0.5 1. 1 0.
0. 0. 0. 1 0.
0.5 0. 0. 1 0.
0.5 0. 1. I 0.
0. 0. 1. 1 0.
0.25 0. 0.5 1 0.
0. 1. 0. 1 0.
0.5 1. 0. 1 0.
0.5 1. 1. 1 0.
0. 1. 1. 1 0.
0.25 1. 0.5 1 0.
0. 0. 0. 0.
0. 0. 1. 0.
0. 1. 1. 0.
0. 1. 0. 0.
0. 0.5 0.5 0.
0.5 0. 0. 5.
0.5 0. 1. 5.
0.5 1. 1. 5.
0.5 1. 0. 5.
0.5 0.75 0.5 5.
0.5 0.50 1. 5.
0.5 0.50 0. 5.
0.5 0.25 0.5 5.
0.5 0.50 0. 1 0.
0.5 0.50 1. 1 0.

170



Table A.8 (Continued):
. . . . . . . . . . . . . . . . . . . . . .

1.
30

1 4 5
2 1 5

34 2 5
3 34 5
4 3 5
6 7 10
7 35 10

35 8 10
8 9 10
9 6 10

11 12 15
12 13 15
13 14 15
14 11 15
16 19 20
17 16 20
18 17 20
19 18 20
21 22 25
22 23 25
23 24 25
24 21 25
32 29 30
31 32 30
28 31 30
29 28 30
32 31 33
26 32 33
27 26 33
31 27 33
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. . . . . . . . . . . . . . . . . . . . . .

Table A.8 (Continued):
. . . . . . . . . . . . . . . . . . . . . .

30
0. 0. 0. 1 0.
0.5 0. 0. 1 0.
0.5 0.5 0. 1 0.
0. 0.5 0. 1 0.
0.25 0.25 0. 1 0.
0. 0. 1. 1 0.
0.5 0. 1. 1 0.
0.5 0.5 1. 1 0.
0. 0.5 1. 1 0.
0.25 0.25 1. 1 0.
0. 0. 0. 1 0.
0.5 0. 0. 1 0.
0.5 0. 1. 1 0.
0. 0. 1. 1 0.
0.25 0. 0.5 1 0.
0. 0.5 0. 1 0.
0.5 0.5 0. 1 0.
0.5 0.5 1. 1 0.
0. 0.5 1. 1 0.
0.25 0.5 0.5 1 0.
0. 0. 0. 5.
0. 0. 1. 5.
0. 0.5 1. 5.
0. 0.5 0. 5.
0. 0.25 0.5 5.
0.5 0. 0. -154 0.
0.5 0. 1. -155 0.
0.5 0.5 1. -159 0.
0.5 0.5 0. -160 0.
0.5 0.25 0.5 -161 0.
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Table A.8 (Continued):
_ . . . . . . . . . . . . . . . . . . . . .

100.
24

1 4 5
2 1 5
3 2 5
4 3 5
6 7 10
7 8 10
8 9 10
9 6 10

11 12 15
12 13 15
13 14 15
14 11 15
16 19 20
17 16 20
18 17 20
19 18 20
21 22 25
22 23 25
23 24 25
24 21 25
27 26 30
26 29 30
29 28 30
28 27 30
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-4:

* -0 boundary Klement program adapted from Iebbia (1978)
* Solves system of equations of tbA feam U U G Q

CHMAaCTSaO00 tuh!ii

* Read Data and Build Global Arrays

1 CAML cls(2)
0 Determina input file nesse

WRIf3(*, 101)
READ (*,102) readfile
OFEM 0I fija-ceadfLm.lRR-99

* Nobe input data?
W1mTuC, 103)
ImA ('.104) hast

0 had number of domains
READ (1,105) Ad
IF (lUst.EQ.1) lWzRM(',105) ad

IF (ad r.T. =2) TMz

CALL. CIa~i)

* Input data for all domain.
00 30 ± I , nd

READ (1.105) MCI)
IF (Uiat.SQ.1) wRIZT2

0
,105) n(L)

II (ni) .GT. ax3) TM=3
WRITUC*1108)
CAML alui)

00 10 )-1. MUi

READ (1.106) ti
10 IF (list.EQ.1) WZ'1EC',107) t

IF (list.EQ.1) CALL alsCI)

MED (1.105) .0(i)
It (Ust.EQ.I) MUpTz(',105) 00(i)

1r (0(i .GT. sx3) THEN
WIwhIz*108)
CALL clsCI)

D0 20 1 , .0(i)
READ (1.105) .1Cj,i), C..(k,j,i), k1a(.)

20 TY (llet.82.1) NRIU('-,IG5) W1ji) m ~ ml) k1.(3,D))

*Find total numwmr Of nod"u.
IF (1I SQ. 1) nj (1) -0
IF i .ME. 1) a)(i) - nU-1) + nJ(I-1)

30 IF (list.EQ.1) CALL dclt)

*Done with data file, alose it.

on - nj (ad) + n~ad)

It (an .0r. mal) TRW
VEITC(* 108)
CALL CUM(

CATA. ala(2)
CALL build
CALL pack
IF (iUst.EQ.t) ChuL plot
CAL gauss
CALL nupack
CALL abasw
QNO l

101 FOUNA! C//SO:. Entar name of input data file: IS)
102 FORMAT (A1O)
103 ivwMAT /lox., zabo of input data? (1 - Ye.)f $)
104 FORK&? (XI)
105 10aM!T (1415)
104 FORMAT (3f10.20i5,2f10.2)
107 FORMAT C(i5,3f10.2,15,2f 10.2)
108 NORMA! (//IOa. * Problem esmeada semam Capacity')
109 FOAMA? (S10.2)

Oa m meinda, .4Ma mew me .4 mlT me6we. me..
memaov.-OWN w wpm". .0 ~ _r 5004* 1nUh.a

gmM~ 5Mr "Z0 WW. me. of m MMoo" ma-w. se
Ve etm of4"MP o 9 W400g a ma us *a V * III6

pm ~ ma &Wlutw ghinbOt I own.



* 96g.u output ard cla scrm *

Suomw @12(n)
CNRPACM wat
IF (a .2Q. 1 .0R. a .4Q. 3) tM

1Y-(,,101) cNA(27)
IAD (',102) wat

Emr
(-M(,.103) CMR(27)
W (a .G3 2) WIXTB(*,104)

101 7099T(Al,'25,259'.'fIose <1>UM key to continue ...*
102 FOT(MA1)
103 TMM(A1, t2:r')
104 r0RMAS(//15x,' wUOMT tT8 " n MtT9L '

//is5. I'pianted by Tbdd C. buuuoeeu,
/15x, 'Deartuet of fydroloqy, MTi. of AS')

3WD

F'

~ come Qudratm mighting PuctioU *
e*00000000 * Oee-e-e***000*-00*000

59a Wu build

fn rm js
nDlSOt3 f(3,13), w(13)
D0A1 f / 0.333333333333333, 0.333333333333333, 0.333333333333333.

0.479308067841923, 0.26034596607n38, 0.260345966079038,
0.260345966079038, 0.47930"06784193, 0.260345964079030,
0.260345966079038, 0.26034596070, 0.479308067841923,
0.869739794195568, 0.06513010902216. 0.065130102902216,
0.065130102902216, 0.8697397941955, 0.065130102902216,
0.065130102902216, 0.06513012902216, 0.869739794195%68,
0.638444180596909, 0.312965496004875, 0.048890315425316,
0.312965496004873, 0.63844418O569809, 0.048690315425316,
0.312865496004875, 0.048690315425316, 0.6304441054989,
0.638444138549"09, 0.048690315425316, 0.312865496004875.
0.048690315425316, 0.638444188569, 0.31286496004875,
0.04889031525316, 0.312496U00475, 0.63844418S56909/

ORTh w/ -0.149570044467670,
0.175615257433204, 0.175615257433204, 0.175415257433204,
0.05334723560M839, 0.053347235608639, 0.0533472356039,
0.077113760890257, 0.077113760257, 0.077113760890257,
0.077113760890257,. 0.077113760l27, 0.07713760690257/

* Cler a *d b
00 10 i a 1, tnd
D0 10 j - 1. n(L)
00 10 k - 1, n(i)

h(jk,l) - 0.
10 g(I,k.i) * 0.

* compate a and 1
DO 20 i - 1, Dd
DO 20 j a 1, U(i)
00 20 k 1, .0(1)
00 20 1 - 1, u1(k4)-1

Z? (I .9m. TMlt.U-l¶
11 * m(2+1,k.i)

11 a ml'k,l)am"

12 - tl,k,i
13 - um(al(k.i)k,.i)
CALL integral (ztj~i),yj.1,s(,ilxt,1),(11,iz(11.1).

xz12,i),Y(12,L),x(12.i),zC13,1),Y(13.), z(13,.),
at,a2,3,bl ,b2.b3,area(,k.i),*,v)

qtj,11,i) -g(j,ll,i) + bl/t(i)
gq(,12,L) - 9,( 2,1) + b2/t(i)
90.13,i) -qJ.1j~3,) * bAUt)
h(J.11,i) *-b(,lli) +a*1
hb(,12,i) - h(j.l2,i) + a2
b(Il3,i) - h(.13,t) **3

20 h(Ij.L) - bf(,J,)-al-a2-A3
329091
mm0



I-
%'

F ind influence function betwemen two line ue9melata

SURUOUYZUE integral (x,y,x~hl ,yl,z1.x2.y2.s22x3,y3.z.3,al,a2,a3.
*bI~b2.b3.*tme,g.w)

DWLZC? iwwLa (a-b~c-u)
OZHDIIOM g(3,13)) w(11)

Pi - 0&ACM(-1.DO)
t0iopi = 2. a pi
a&I 0.
£2 =0.
*3 =0.

bI 0.
b2 =0.
b3 0.

*calculate area of integrations
area - 06G8T((yI*z2 .+ y2*x3 + y3ezI - YI*9 - y2u21 - y3's2)**2

+ (xl *y2 + z2'y3 + x3*yl - z17y3 - z20yI - x3*y2)**2
+ (:102 + x2203 * s3'zl - z213 - z2211 - &3sz2)*2) /2.

*Calculate volum between point and *urface:
volume = (xi-x)*(y2-y1*(z3-x) -(xi1x)*(y3-y)*(s23z)

+ *(x3-x)*(yi-y)*(s2-s) -(z3=s).*(y2-y)*(a1*))

r ind Gaussian ZntegteJlas
Po 10 i - 1. i3

12 a (9(1,1)011 * 9(2.i)ft2 + g(3.i)ez3) - z
ry - (9(1,i)*Y1 + 9(2*i)*y2 + g(3.i)'73) - y
rz - I(1(,l)*z1 + g(2,i)**2 + 9(3,i)*x3) - a
r a 06Q8TC1112x * ry ery rx'rz)
a = vWM V olum / V**3 / twopi
Is - v(L) area r / pi
at &Ia 4. 901..) a
22 = 2 4. 9 C2, i) *

*3 m 3 4. W A3 ) a
bI bI * 9(1,i) Isb
b2 -b2 + 9(2,L) *b

10 bW W + g(3.) is

check for diagonal elenent,
IF (Volume .11Q. 0.) !HDS

Zr (xi .8Q. I .AUD. 71 .Q. y .Ai. zi .1Q. :3 TN=U
bi - SlUuC(xl~yl,x1.x2.y2,a2,x3,y3,z3) / tijopi

U3Jzw Wx .8Q. x .Am. y2 .g. y .AMD. :2 .1Q. x) 2M
b2 - SIUNC(z2,y2.z2.23,y3,z3,sl,yt~z1) / Veopi
.SSU (2 .IQ. z .AM. Y3 .8Q. y. .MD. x3 .1g. a) TMD
b3 - SIIUNCCI33,y3,x3.z1y1,zt,12,y2,x2) / twopi

DIWIP
NOWZ

NIDR

0 0 0 , * 0 ,0 * * 0* * * * * * * * * *** *00 0 * 0 0 0 0 * 0* 0 0*

* Calculate' " Diagonal Coatfics, nta

RUVS* FMICTZN SruuC(zl ,yl ,s1 x2,y2,z2,x3,y3.*3)
OWLZCT BAL* (a-b,o-u)

12 a 23 - X2

17 a y3 - 72
r2 - x3 - x2
rl - D&Qallra01x +170174. 12*13)

TX * Xl - xi
11 a 73 - 71
r3 a x3 - xi

r2 DSQRICZx01 + 17017 + Ix'ra)

rx - x2 - xi
ry a 2 - y
Ts - :2 - xi

=3 QSgRw(zOrx + 17017 + 12013)

alphal a DhcOS((e3*r3 4. t2*r2 - ritri) / (2. 0r2*r3))
alpWa = 0I48((r3*rl 4. 11*1 - 12*2) / (2.*TI'r3))
alpba3 - nMO((rl~rl 4. r2*12 - r3*r3) / (2.*r2*rI))

S~wiC - -r2*D8DI(alpba3)*DL40GCDAM(alpha/2.)*Dlm(alpba2/2.))
M~UM

NM



* ~ Crat Global Nbtrint

suo0imn" -%i
4X!CLD1 jzteomon

* o.bti 1 with Q to form weeto of knD
* and trarwftr from Q to QQ and 0 to GO

O 5i - 1, az1
qq(i) - 0.
00 5 I 1.uid

5 w(i.J) - 0.

DO 50 i * 1, od
1 - aj4i)

Do 50 I t 1, n(l)

a - koft(k~i)
NJ - IM(-R.129)
* -a/128

ol * njtd(uk)

IF (a .CT. 0).Tm

00 10 j - 1, noi)
qq(lj) - qq(loj) - q(jk,l) * u.i)

10 gg(le,l~k) - - h{,Xki)
EMUllp (a .JQ. O) SlMt

W0 20 j - 1, n(l)
qq(l*1) - qq(..) + hjkL) * u(k,i)

20 qq(l+,lek) - g(,lt.i)
9Lauxr U1 .1. oX) TMu

Do 30 1- 1, a()

30 q9(le+,lsk) * q0A.i)
USE
00 40 j - 1, n(L)
qq(leJa1) a -q(1j.,.)

40 w(1e1.lvk) - -h(c.k,i)

so aorn
SO vwT
'geW

0 plot "tix 0

SoIOQTn plot
$IPKELtO Is amen

CMRAcTM C(200).d.*,b
VATA ~b,/ ' '. ' /

WA k / 1 /

OW. alaLO)
WO 20 L - 1,
00 10 a 1. DR

17 (gg(il) .G. 0.) DlM

.sIF (qq(1.j) *LT. 0.) TM

DID!
10 00NTMMU

IF (qq(i) .P. 0) ?M
d *='

zwSUd - 'o'

WRIT! (',100) (o(1).lona),ub~u~a
XF (A .Q. (nq(k) + M(M)) SOWN

lc - 1 + 1

20 00MDM

100 POR (xZe200ft1)
ED



* ~~Gaussian elimination

SU~aCUtIII gauss.
$lNCLUDE jsO~

DATA epsilon / 1.3-4

DO 20 1 - 1, no-I
c qg(l, 1)
IF (a LS.. epsilon) THMa

VRIZT (,)*singularity in row I 1
STOP

ZHDly
qq(l) a qq(l)/c
00 1O k * 1+1. an

10 gq(l~k) - gg(1.k) a
00 20 j = 1.1, an

c - gw(j.l)
qq(j) - qq(j) - a qq(1)
00 20 k * 141, an

20 gg(j,k) - 99(j,k) - c * ggcl,k)

• Compute last unknownl
ir (ABS~ggtnn.nn)) isR. epsilon) THUl

1631U (,) **Singularity * n raw', an
STOP
iSE
qq(nn) - qq(na) / ggno~nn)

EmOir

• Back substitute
DO 30 j - 1, nm-I

I - An-j
D0 30 It - 10,1 an

30 qq(l) - qq~l) - gg(1,k) * qq(k)
RETURN
NW

* ~~~~Reduce Global Equation

SU0Omysu unpack

SINW3KD JSco

DO 10 ± a 1, ad
DO 10 1 * 1. n~i)

*a kodm(j~i)
aj - 1D00-m,128)
wk -f-mI lS
k A- a)U
1 M JUi) * j

Ir (u .GT. 0) THEM

qlJ,i) - qqtl)

31.S&W i .LT. ink) THEN

uC,)*qq~k)

qCj.i) =-qinCk)
U(J,L) -qq~l)

10 cWWuBse

I-4
=.1

RDOM
AD



%a

0 Wa~~Diplay Solution

SuORU6Tzu show
$*FIUc I I scommon

O91N C6,F!LE.'aoutpult STRUS.Uew')
WxRIT(S6,601)

su - 0.
DO 40 i a 1. nd

0Findj flow acroms each face:

00 20 1 - 1, wo(1
0 iz pa96 break

NP (MOD(1-1.20) EQ. 0)TM
Nr Ci *II I) CAML cCUM
IF Cl .DQ. 1) CAML dCIO)
WMT8 C*,603)

disch a 0.
DO 10 k a 1, .1(1.1)

11 - OM 4
NP Ck .113. ul(J,4)-l) THEM1
12 - mm(k+l,i,i)

12 - =mC14.i)

10 disch a disch + area~k.J,1)*(q(l1,i)4q(12,Li+q(13,L))/3.
20 113113(,604) L, 1. dinch

CALL olutM
0 Display locations, potential., dischurtrms, and eases balance

Do 30 J - 1, nMi
0 lix pingo break

NF (PIDD(1-1,20) .UQ. 0) TRIM4
NF Ci In6. 1) CALL cIAd)
y Ci .FQ. 1) CALL cluCO)

WRXT! (0.602) iiii)yiJii)U.1qi,)
30 MI"14 (6,602) ijzji,~~)si1,~~)qi1
40 CALL cladl)

601 10RM&T V Boundary Nodess'

602 10316 1?25,6f10l.3)
603 1031? V Boundary ?acosi,',x,li',4xr,l'uSx.'diadhntgol/)

604 FORM? C20x.2iS5,x,f10.3)
gmD

0 Common Block Fle O4941

ThPLIMI RIAL'baA-HO0-2)

* x(10Q0,3),y(l00,3),z(100,3),
* u~l00,3),q(100,3) ,kode(10, 3).9(100,100,3) , 0l,100,3)

coqn/a/ qg(awt.m1). qqj(w~)



GLOSSARY

adsorption - adherence of gas molecules, ions, or molecules in solution
to the surface of solids.

advection - the process whereby solutes are transported by the bulk mass
of flowing fluid.

anisotropy - the condition of having different properties in different
directions.

breakthrough curve - a plot of relative concentration versus time, where
relative concentration is defined as C/Co with C as the
concentration a a point in the ground-water flow domain, and Co as
the source concentration.

contaminant - an undesirable substance not normally present or an
unusually high concentration of a naturally occurring substance in
soil or water.

diffusion - process whereby ionic or molecular constituents move under
the influence of their kinetic activity in the direction of their
concentration gradient.

distribution coefficient - the quantity of solute, chemical or
radionuclide sorbed by the solid per unit weight of solid divided
by the quantity dissolved in the water per unit volume of water.

Fickian diffusion - spreading of solutes from regions of highest to
regions of lower concentrations caused by the concentration
gradient.

flow path - the course a water molecule or solute would follow in a
given velocity field.

fluid potential - the mechanical energy per unit mass of a fluid at any
given point in space and time with regard to an arbitrary state and
datum.

ground-water travel time - the time required for ground water to travel
between two locations along a flow path.

head, capillary - the difference in pressure head across the interface
between two immiscible fluid phases jointly occupying the pores of
a medium caused by interfacial tension between the two phases.

head, gravitational - the component of total hydraulic head related to
the position of a given mass of water relative to an arbitrary
datum.

head, total - the total head of a liquid at a given point is the sum of
the gravitational, pressure, capillary, and osmotic heads.

head, osmotic - the difference in pressure head across a membrane
between two liquids with different solute concentrations.
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head. pressure - the height of a column of static water that can be
supported by the static pressure at the point.

heterogeneity - a characteristic of a medium in which material
properties vary from point to point.

homogeneity - a characteristic of a medium in which material properties
are identical everywhere.

hydraulic conductivity, relative - equal to the specific discharge
divided by the hydraulic gradient, a property of a porous medium,
the liquid used during the test, and the relative saturation of the
medium.

hydraulic gradient - the change in static head per unit of distance in a
given direction.

hydrodynamic dispersion - the spreading at the macroscopic level of a
solute front during transport resulting from mechanical dispersion
and molecular diffusion.

interface - the contact zone between two materials of different chemical
or physical composition.

isohead line - line along which the head is constant.

isotropy - the condition in which the property or properties of interest
are the same in all directions

matric suction - the energy required to extract water from a porous
medium to overcome the capillary and adsorptive forces per unit
volume of porous medium.

matrix - the solid framework of a porous system.

mechanical dispersion - the process whereby solutes are mechanically
mixed during advective transport caused by the velocity variations
at small scales.

permeability, relative - the property of a porous medium to transmit
fluids under a hydraulic gradient, a function of relative
saturation.

porosity - the ration of the total volume of voids of a given medium to
the total volume of the medium.

porosity, effective - the amount of interconnected pore space and
fracture openings available for the transmission of fluids,
expressed as the ratio of the volume of interconnected pores and
openings to the volume of rock.

relative saturation - the ratio of the volume of water to the total
volume of voids in a given porous medium.
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retardation - the process or processes that cause the time required for
a given solute to move between two locations to be greater than the
ground water travel time, due to physical and chemical interactions
between the solute and the geohydrologic unit through which the
solute travels.

solute - the substance present in a solution in the smaller amount.

solute transport - the net flux of solute through a hydrogeologic unit
controlled by the flow of subsurface water and transport
mechanisms.

specific discharge - the rate of discharge of ground water per unit
area of a porous medium, measured perpendicular to the direction of
flow.

transmissivity - the rate at which water is transmitted through a two
dimensional flow domain per unit length of flow domain
perpendicular to the direction of flow divided by the hydraulic
gradient.

unsaturated zone - the zone between the land surface and the regional water
table. Generally, the water in this zone is under less than
atmospheric pressure, although zones of positive pressure may occur
locally.
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