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ABSTRACT

Under the sponsorship of the U.S. Nuclear Regulatory Commission, Sandia
National Laboratories (SNL) is developing a performance assessment
methodology for the analysis of long-term disposal of high-level radioactive
waste (HLW) in unsaturated welded tuff. As part of this effort, SNL
evaluated existing strongly heat-driven flow computer codes for simulating
ground-water flow in unsaturated media. The three codes tested, NORIA,
PETROS, and TOUGH, were compared against a suite of problems for which
analytical and numerical solutions or experimental results exist.- The
problems were selected to test the abilities of the codes to simulate
situations ranging from simple, uncoupled processes, such as two-phase flow
or heat transfer, to fully coupled processes, such as vaporization caused by
high temperatures. In general, all three codes were found to be difficult to
use because of (1) built-in time stepping criteria, (2) the treatment of
boundary conditions, and (3) handling of evaporation/condensation problems.
A drawback of the study was that adequate problems related to expected
repository conditions were not available in the literature. Nevertheless,
the results of this study suggest the need for thorough investigations of the
impact of heat on the flow field in the vicinity of an unsaturated HLW
repository. Recommendations are to develop a new flow code combining the
best features of these three codes and eliminating the worst ones.
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CHAPTER 

INTRODUCTION

1.1 Overview

Welded tuff is now the only potential host rock 
for the disposal of

high-level radioactive waste (HLW) being considered 
by the U.S. Department of

Energy (DOE). The Nuclear Regulatory Commission (RC) has the

responsibility, according to the Nuclear Waste 
Policy Act of 1982, to

regulate DOE's activities pertaining to HLW 
disposal. One avenue being

pursued by NRC to conduct evaluations of DOE's 
license applications is to

develop a performance assessment methodology 
for analyzing the long-term

disposal of HL in welded tuff. The NRC has contracted to Sandia National

Laboratories (SNL) to assist in the development of this methodology. 
One of

the first steps in this work was the evaluation 
of existing flow codes for

unsaturated rock.

The heat generated by an HLW repository can 
cause a large impact on liquid

and gas flow around the repository. For instance, the high heat output of

the waste expands the air and water vapor around 
the repository. 'The

expanding gas creates large gas pressure increases 
near the repository.

This, in turn, forms a pressure gradient in 
the gas causing it to flow.

Because capillary pressure couples the gas pressure 
to the liquid pressure, a

pressure gradient also forms in the liquid and 
the liquid begins to flow. In

addition, if the temperature becomes high enough, 
water'in the rock could

vaporize. The water vaporization'increases the gas pressure 
and enhances

water flow. Therefore, it is reasonable to expect that the flow field 
will

change after placing HLW in the repository. 
The standard unsaturated flow

codes (Oster, 1982) do not have the capability 
to model the complex physical

situation created by the vaporization of water 
due to heat loading.

This project originally started as a search 
for unsaturated flow codes, of

which many with varying capabilities exist. 
Unfortunately, few can model

heat transport and, if they do have this capability, 
they do not include

vaporization of water. While SNL searched for unsaturated flow codes, 
the

interest in modeling strongly heat-driven flow 
became apparent. The modeling

of strongly heat-driven flow is applicable 
not only to HLW disposal but to

geothermal resources as well. TOUGH, a strongly heat-driven flow code which

has some application to HLW problems, was developed 
initially for geothermal

reservoirs. Because of the recent development of the strongly 
heat-driven

flow codes, SNL decided to evaluate them for 
possible use in the tuff

methodology.

1.2 purpose

The computer codes evaluated in this report 
may have limitations with respect

to the development of aspects of the tuff methodology. 
This study attempts

to identify these limitations and to suggest 
ways to overcome them. These



suggestions may range from modifying an existing code to developing an
entirely new one.

1.3 Scope

The investigation proceeded in a sequential manner, which the organization of
this report reflects. First, SNL searched the literature to find strongly
heat-driven flow codes from a list of available unsaturated flow codes.
After reviewing the codes to determine their capabilities, SNL searched the
literature to find problems to test these capabilities. The problems tested
such capabilities as heat transport, unsaturated flow, and vaporization of
water. Then, SNL examined each code's capabilities by modeling each of the
test problems. The results of the modeling formed the basis for recommending
code improvements or designing a new code.

1.4 Organizati2n

This report consists of six sections divided according to the work involved
in studying the strongly heat-driven flow computer codes. Section 1
describes the underlying reasons for choosing the strongly heat-driven flow
codes over the standard unsaturated flow codes. Section 2 presents a
description of the three strongly heat-driven flow codes evaluated by
simulating the test problems. This section explains the physical processes,
boundary conditions, numerics, limitations, and structure of the codes.
Section 3 presents a list of the test problems selected for the evaluation.
These problems include five for which exact or numerical solutions exist and
three for which experimental results exist. Section 4 presents the results
of running the three codes and comparing them to the exact and numerical
solutions, and experimental results. Section 5 presents a list of
recommendations to consider for developing a new strongly heat-driven flow
code. Section 6 presents a list of references used for describing the codes
and the problems.

Several sections of this report refer to gas and liquid. In this report,
when the codes track the mass of several components, the gas phase consists
of water vapor and air. If the codes model only one component, the gas phase
consists of either air or water vapor. Although air and water vapor are
gases, this report refers to them by their respective names. Liquid refers
to any liquid, but in this report it means water.

When modeling a problem, the code input data were kept as similar as possible
for each code. For instance, the grid spacing for a problem was kept the
same as much as possible. This presented assurances that the codes be
equitably compared for results and running times. All problems were run on
SNL's CRAY XP/24 computer.
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CHAPTER 2

CODES

Several computer codes capable of simulating strongly heat-driven flow
problems were found. These codes include TOUGH, developed by Pruess (1987)
at Lawrence Berkeley Laboratories; NORIA, developed by Bixler (1985) at
Sandia National Laboratories; PETROS, developed by Hadley (1985) at Sandia
National Laboratories; and WAFE, developed by Travis at Los Alamos National
Laboratory (Oster, 1982). All of these codes, except WAFE, ave published
documentation. Because AFE was undocumented, it was neither reviewed nor
tested in this report.

2.1 TOUGH

TOUGH (Pruess, 1987) solves the gas- and liquid-phase flow of air and water,
and heat transport in a fully coupled way. The formulation used in TOUGH is
analogous to that used in multiphase, multicomponent geothermal or
steam-flooded hydrocarbon reservoir problems. The governing fluid flow
equations account for gaseous diffusion, Darcy flow, capillary pressure,
vaporization, and~ condensation. Vaporization and condensation with latent
heat effects, and conduction and convection of heat are included in the
energy equation. Water, air, and rock are assumed to be in thermodynamic
equilibrium at all times. The flow domain can include liquid-, gas-, and
two-phase regions, indicating that the code handles both saturated and
unsaturated flow problems either individually or simultaneously. The
thermophysical properties of liquid and vaporized water are represented by
the International Formulation Committee's (1967) steam tables. Air is
approximated as an. ideal'gas and additivity of partial pressures is assumed
for air-water vapor mixtures.

TOUGH solves three nonlinear partial differential equations simultaneously..-
These consist of the conservation equations for air, water, and energy. Air
and water can be transported in either the liquid phase, the gas phase, or
both. The'dissolution of air in water is represented by Henry's law and flow
by Darcy's law.

The code caxa simulate flow in one, two, or three dimensions because the
method of solution is based on a general integrated finite-difference,,
method. Time stepping is accomplished by a fully implicit procedure. The
resulting nonlinear difference equations are linearized by the Newton-Raphson
technique. The linearized equations are solved by the Harwell MA28 matrix
solver (Duff, 1977) which stores only the nonzero elements of a matrix thus
reducing core storage requirements for the code.

The governing flow equations used in TOUGH are similar to those used h
modeling geothermal reservoirs.' The governing mass conservation equation of
water can be written as:

at J wd r ndr + Fqwdv
wv Jr Vn n Vn

-3-



where 14w is the mass of water per unit volume in the integrated
finite-difference grid block, V is the volume of the grid block, w is
the mass flux of water out the grid block, r is the surface area of a
grid block, n is an outward pointing unit normal vector, and qw is the
mass production of water per unit volume. Note that water is stored in both
the liquid and gas phases in the above equation. The mass of water per unit
volume is, therefore,

kw (SlPlXw + gpgKwg)

where is the matrix porosity, S1 is the liquid saturation, p1
is the liquid density, X is the mass fraction of water in the liquid,
S is the gas saturation l-Sl), p is the gas density, and Xwg
it the mass fraction of water in te gas.

A set of equations, similar to the ones for water, can be written for air:

a J adv Fa.dr + qadv

n n Vn

and

Ha _ (SlPlXal + sgpgxag

where Ma is the mass of air per unit volume in a grid block, Fa is the
mass flux of air out the grid block, qa is the mass production of air per
unit volume, XaI is the mass fraction of air in the liquid and Xa is
the mass fraction of air in the gas. 8

The mass flux for either the air or water component is simply the sum of the
mass fluxes of a component over both phases. For water the mass flux is:

FW- FW1 + Wg

and for air:

Fa- Fa + Fag

where Pw1 is the mass flux of water in the liquid phase, pw is
the mass flux of water in the gas phase, Fa1 is the mass fl L of air in
the liquid phase, and Fa is the mass flux of air in the gas phase.
The mass flux of each component in a phase is governed by Darcy's law and
gaseous diffusion. These four equations are:

-4-



FWl -- k dplXw(VP1-Plg)

Fa1 -k!rLTpXal(Q`P1-Plg)
P1

kr
FWg_ -k ~gxWg(vPgpgg) _ DvapgvX g

Pug

and

krg aPv
IFa -k- j ~pgpg - Dva g Xg

Pg

where k is the porous medium permeability in the direction of n, k is

the liquid relative permeability, kr is the gas relative permeability,

1 is the liquid dynamic viscosity, is the gas dynamic

viscosity, 1 is the liquid pressure,gP is the gas pressure, g is the

acceleration of gravity and Da is the inary diffusion coefficient for

air-water vapor mixtures. TOUGH cannot handle the off-diagonal terms of the

permeability tensor. Further, the code allows only functions to determine

the relationship between relative permeability 
and saturation, and contains a

library of functions for these in one of its subroutines. 
The solubility of

air in the water is governed by Henry's law:

P M

Y-h KWW

where Pa is the air partial pressure, Kh is Henry's 
constant, MWa is

the molecular weight of air, and KWw is the molecular 
weight of water. The

binary diffusion coefficient is dependent on both 
temperature and pressure

and is written:

Dva - rOS S WVaY4 27.15 ]

where r is tortuosity, T is temperature, and 
Dva and .i are

parameters which have values of 2.13 x 10 
2 /S and 1.80,

respectively, for a pressure of one bar and a temperature 
of 0'C.

Partial pressures are assumed to be additive to 
determine the gas pressure: .

P P + Pvg a v

-5-



where Pa is the air partial pressure and Pv is the vapor partial
pressure.

The energy conservation equation can be written in an integral form similar
to the air and water conservation equations. The energy equation is:

a IV-hdv Ihn. + qhdv
at Jv J Jv

n rn n

where h is the amount of heat per unit volume in an integrated fin te
difference grid block, is the heat flux out the grid block and q is
the amount of heat produced per unit volume of grid block. The heat term
contains contributions from both the rock, liquid, and vapor:

Mh (lj)PrcrT + (SlPlul+SgPgug)

where p is the rock grain density, cr is rock grain specific heat,
Ul is te specific internal energy of the liquid, and u is the specific
internal energy of the gas. The heat flux term consists of conductive and
convective parts: )

-- KVT + hw Pw + ha Fal + hw Fw + ha Fa1 1 11 gg gg9

where K is the thermal conductivity of the rock-fluid mixture by is the
specific enthalpy of water in the liquid phase, ha1 is the specific
enthalpy of air in the liquid phase, hw is the specific enthalpy of
water in the gas phase, and ha is the pecific enthalpy of air in the
gas phase. The thermal conductivity model, selected by the user, is allowed
to vary with saturation by either of the following equations:

K Kdry + IS1 ( et7Kdry)

and

K - Kdry + S (wet7Kdry)

where Kd is the thermal conductivity of the totally dry porous medium and
Kwet is te thermal conductivity of the fully saturated porous medium.

The above equations are recast into an integrated finite-difference form for
solution. The integrated finite-difference method employed in TOUGH is
general. It can be used to solve problems in one, two or three dimensions
and Cartesian or axisymmetric geometries. Because of this general method,
the TOUGH code requires volumes for the grid blocks, distances between the

-6-



grid blocks, and nterfacial areas between the grid blocks as input data
instead of grid-block spacings that might be required by finite-element or
node-centered fnite-difference codes. Because of ts generality, TOUGH is
not limited to rectangular or rectangular-parallelpiped grid blocks. The
grid blocks can be any shape such as pentagons or tetrahedrons, but the
aspect ratio must not be extreme.

The recast equations are differenced backwards in time and linearized with
the Newton-Raphson procedure. The resulting algebraic equations are solved
with the Harwell matrix inverter (Duff, 1977) until the solution converges.

TOUGH handles several types of boundary conditions. If a grid block edge is
not connected to another grid block, then that edge becomes a zero flux
boundary condition for all the dependent variables. If a grid block is
assigned an extremely large volume relative to the other grid blocks, then
the dependent variables are essentially fixed with respect to time. Time
varying flux boundary conditions can be implemented by using the time varying
source/sink capability in TOUGH. However, time varying Dirichlet type
boundary conditions have to be implemented using TOUGH'S restart capability,
a process which can be cumbersome in practice.

TOUGH's method of handling boundary conditions may cause difficulty in
actually implementing them. For instance, suppose a problem requires a zero
liquid flux and constant temperature boundary condition along a grid block
edge. The first condition implies that the grid block is not connected to
another grid block through the boundary edge. The second condition implies
that the grid block is connected to a large volume grid block through the
boundary edge. Clearly, these two condition are incompatible. However, with
some ingenuity these difficulties in implementing boundary conditions can be
overcome. The important point to remember is that implementing boundary
conditions with TOUGH is not always straightforward.

2.2 NORIA

NORIA (Bixler, 1985) is designed to simulate liquid, vapor, air, and energy
transport in partially saturated and saturated porous media. The following
mechanisms are included in NORIA: (1) transport of water, vapor, and air due
to pressure gradients; (2) transport of water, vapor, and air due to density
gradients; (3) binary diffusion of vapor and air; (4) Knudsen diffusion of
vapor and air; (5) thermodiffusion of vapor and air; (6) conduction of
sensible heat; (7) convection of sensible heat; (8) evaporation and
condensation; (9) nonequilibrium and equilibrium vapor pressure models; and
(10) capillary pressure.. The user can define nearly all the code's,
thermodynamic and constitutive properties in terms of the remaining dependent
or independent variables.

NORIA solves four nonlinear partial differential equations governing the flow
of water, vapor, air, and energy. These equations consist of a water
pressure equation, a vapor partial pressure equation, 'an air partial pressure
equation, and a heat equation. The equations are solved by the Galerkin
finite-element method. Time stepping is accomplished by a two-step time
integrator with automatic time-step selection. The nonlinear difference

-7-



equations formed by application of the finite-element method are solved
simultaneously by Newton-Raphson iteration. Normally, a one-step iteration
is used; however, a multistep iteration is used if the correction on the
first iteration is larger than a specified amount.

NORIA solves three mass conservation equations and a heat conservation
equation. The liquid conservation equation is:

at
Pl- -V*J - Fv

where pl is the liquid density, is the soil/rock moisture
content, J1 is the liquid mass flux vector, v is the vaporization rate
of water per unit volume and t is time. Note that the liquid density is
constant. The liquid mass flux is governed by Darcy's law and the Boussinesq
approximation for natural convection due to temperature gradients:

31 - -P1 *V(P - plgzBzAT)

where k is the porous media permeability tensor, krl is the liquid
relative permeability, p1 is the liquid dynamic viscosity, P is the
effective pressure, g is the gravitational constant, B is the liquid
volumetric expansion coefficient, z is the vertical coordinate, and AT is
the difference between the local temperature and a reference temperature.
The effective pressure, P. is a combination of a liquid pressure term and an
elevation term:

P - P + lgZZ

where P1 is the pressure in the liquid. The vapor conservation equation is
written as:

a (0-9),v--V + Fv

where v is the vapor density and v is the vapor mass flux
vector. The vapor density is governed by the ideal gas law:

-v N RT

where P, is the vapor partial pressure and Rv is the ideal gas constant
divided by the molecular mass of the vapor. The mass flux term is controlled

-8-



by several factors including Darcy's law, natural convection caused by
temperature and pressure gradients, Knudsen diffusion, binary diffusion, and
thermodiffusion:

iv -Pv 9V(Pg+pgz) _

D vDk v(Pgpggzz)-- vp ^ Pvb K+Pa Xkv g

W+O)p rvpoM M P (Pvvgzz) 
vPgDb+PvDka+PaDkv

where kr is the relative gas permeability, is the gas dynamic
viscosity, P is the air partial-pressure, P is the gas pressure (P +
*V), p is te gas density (Pa + Pv) D is the vapor
KnudseR diffusion coefficient, D is air Knudsen diffusion
coefficient, D is the binary difusion coefficient and Dt is the
thermodiffusion coefficient. The terms on the right-hand side of the above
equation represent, in order, Darcy flow from pressure and density changes,
Knudsen diffusion, binary diffusion, and thermodiffusion.

A similar set of equations as described in the preceding paragraphs can be
developed for the air phase. The main difference is that there is no
vaporization term in the air continuity equation. Therefore, the continuity
equation for air is:

B
-- (OO~p- -VOJa

at

where P is the air density and is the air mass flux vector.
The air density is determined from the ideal gas law:

RTa

where Ra is the ideal gas constant divided by the molecular mass of air.
The expression for the air mass flux vector is:

a a 7
1 M @v(Pg+Pggzz) _

(WO)paP kca+c QV(Pg+Pgzz)-
agPDb+PvDka+PaDkv 
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apg +PhI a kabDkv (Pa+pagzz

(0-O)PP Rv~ka+D VT.
g*°gPgpPvbk+PaDkv

The energy conservation equation is based on thermal equilibrium between the
'arious phases and components, the convective transport of heat, the
conductive transport of heat, the heat of vaporization, and the addition of
heat. These factors lead to the heat equation:

aT
[PClaveat - -(Cljl+cvjv+caja)*VT + V(A.VT) - FL + Q

where

[Pclav - ()Prcr + P1cl + (e) (Pvcv + Paca)

and r is the rock grain density, is the rock grain specific heat,
cl is the liquid specific heat, cv is the vapor specific heat, ca is
the air specific heat, A is the thermal conductivity tensor, L is the
latent heat of vaporization per unit mass, and Q is the heat input per unit
volume.

A nonequilibrium vapor pressure model is implemented in NORIA as opposed to
the equilibrium model contained in TOUGH. In an equilibrium model, the vapor
is always at its equilibrium pressure for the local temperature (i.e., in
thermodynamic equilibrium with the liquid). The nonequilibrium model depends
on the vaporization rate. The default vaporization model implemented in
NORIA is:

(0-0 )
Fv C W 

P -Pv v

where r is a residual moisture content, Pv is the equilibrium
vapor pressure of water as a function of temperature, and C is a constant of
proportionality. By setting C to a large value an equilibrium model can be
implemented. However, when 0 approaches r' the rate of
vaporization approaches zero in a smooth manner.

The water, vapor, air, and porous media hydrologic and thermal properties are
implemented as default models in subroutines. These subroutines can be
easily changed to reflect different property models. As a matter of fact,
NORIA is not necessarily limited to water, vapor, and air. By changing the
models implemented in the subroutines, NORIA can model almost any vaporizable
liquid and noncondensable gas.

The above conservation and flux equations are solved by means of the Galerkin
finite-element method. The basis functions used in NORIA are quadratic
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functions applied to either subparametric or isoparametric elements. The
subparametric element sides are described by polynomials whose highest order
is less than the highest order of the basis functions. In NORIA, the sides
of the subparametric elements are described by linear functions. The
isoparametric elements are described by polynomials of the same order as the
basis functions, that is, quadratic functions.

The resulting difference equations are solved in time by a two-step,
predictor-corrector method. In the first step the dependent variables are
estimated (or predicted) at the next time step by a second-order
Adams-Bashford predictor:

At AtAt
n+l- Y 2 {[2+ A Yn - 1 4

Atn4 A&tn- 

where yPn41 is the predicted value of the dependent variable at the new
time, n is the value of the dependent variable at the present time, n
is the rate of change of the dependent variable at the present time, n l
is the rate of change of the dependent variable at the preceding time,
Atn is the present time-step size (tn+l - t), and tnl
is the preceding time-step size (t - tn-l). The rate of change of
the dependent variables are described by:

2 rY~ 1n in 
Atn-l i nl nl-

and

y _ hAtn-2 n n A + tn.1 [Yn-17 n-

Ynl Atn-l+tn-2 Atn-1 A tn -i+^ _ tn_ 2

By describing rates of change this way, Bixler (1985) found that temporal
oscillations in the solution are eliminated as steady state is approached.
It can be seen that the above predictor is an explicit scheme, but because it
requires values of the dependent variable from two preceding time steps, the
scheme cannot be used on the first two time steps. Instead, the equations
for the first two time steps are solved by a backward difference 'or fully
implicit procedure.

Once the predicted solution is calculated, it is improved with a
trapezoid-rule corrector. The corrector produces highly nonlinear algebraic
equations which are solved by a Newton iteration procedure. Generally, only
one Newton iteration is required but, if the difference between the predicted
and corrected solution is large, up to three Newton iterations may be
necessary.

NORIA also has a capability for time-step-size adjustment after the first
predictor-corrector time step (third time step overall). The criteria is
based on differences between the predicted and corrected solutions.
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Both Dirichlet and Neumann boundary conditions can be implemented in NORIA.
The code has capabilities to handle both fixed and time-varying dependent
variables, and constant and time-varying fluxes. Zero flux boundary
conditions are the default boundary conditions in NORIA.

2.3 PETROS

PETROS is designed to simulate problems similar to those simulated by NORIA.
PETROS solves the same number and types of nonlinear equations and handles
the same physical processes as NORIA but in a slightly different manner. The
main difference between the two codes is that PETROS solves only
one-dimensional problems, either in linear, radial, or spherical coordinates,
and solves the equations with the finite-difference method. There are also
some differences between the codes in the way the time integrations are
performed. PETROS uses a modified version of the time integrator in NORIA.
In addition, the format for data input in the PETROS code is not as general
as that in NORIA.

PETROS solves the same three mass conservation equations and heat
conservation equation as NORIA. However, the liquid conservation equation in
PETROS is formulated with respect to saturation rather than pressure as in
NORIA. The liquid mass conservation equation is:

as 1 a [ri 1
at r ar1 r j

where is porosity, P1 is liquid density, S is saturation, r is
distance, t is time, j1 is liquid mass flux, Fv is liquid evaporation
rate per unit volume, and i is either 1, 2, or 3 for linear, radial, or
spherical geometry, respectively. The liquid mass flux is:

A1 [ar P ]

where is the porous media permeability, rl is the liquid relative
permeability, 1 is the liquid dynamic viscosity, and r is the
gravitational constant in the direction of positive r.

The vapor mass conservation equation is written as:

1 a 1
_T drr Jvl Fvr arLJ

where v is the vapor mass flux. Note that this equation is treated as a
steady-state equation. The vapor mass flux is controlled by the effects of
Darcy's law, Knudsen diffusion, and binary diffusion:
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Pv PvDkv
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where is the vapor Knudsen diffusion coefficient, Dh is the binary
diffusion coefficient, mv is the mass of a water molecule, is
Boltzmann's constant, Pa is the air partial pressure, P is the vapor
partial pressure, P is the gas pressure (P + P ), A is the square
root of the mass rahio of air to water k s the gas relative
permeability, pg is the gas dynamic viscofity, and T is temperature.

The air mass conservation equation is similar to the vapor mass conservation
except for the evaporation term:

-[rij a] 

where Ja is the air mass flux. The air mass flux equation is similar to
the vapor mass flux equation:

P + 1 + b OP_
Or- L rPaDkvJ r(l-S)mVADkv

ja WaT
kkrTmv 2pa jgr

PgxT BrI.1 PV-A
Pa

+ Pg b
PaDkv

The capillary pressure relates the gas pressure to the liquid pressure
through the relationship:

PC(ST) - Pg - P1

where Pc is the capillary pressure, which depends on both saturation and
temperature. The capillary pressure depends on the temperature through:

PC(ST) - Pc(STo)[l + dT (T-To)]

where a is the surface tension of water and To is a reference
temperature.

The heat transport equation is given by:
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aT aT 1 a r i AT
(PC]ave + (cljl+cvjv+caJa) - a r K- - FvL

va~ r r r O

where

Epclave (l 4)Prcr + OSPlel,

Pr is the rock grain density, cr is the rock grain specific heat,
cl is the liquid specific heat, cv is the vapor specific heat, ca is
the air specific heat, K is the thermal conductivity of the mixture, and L is
the latent heat of vaporization.

The characteristic curves (the relative permeability versus saturation, the
capillary pressure versus saturation, the derivative of saturation with
respect to capillary pressure), and the thermal conductivity versus
saturation and temperature are supplied to PETROS through user-written
function subprograms. Other parameters, such as the various diffusion
coefficients, the water viscosity, the saturation vapor pressure of water,
and the default values of the characteristic curves and thermal conductivity,
are supplied internally in the code as function subprograms. Constants, such
as gas viscosity, specific heats, and water density, can either be set at
default values or supplied by the user. The user can also choose between
equilibrium and nonequilibrium vapor pressure models.

The above equations are solved numerically by a finite-difference method.
The equations are differenced in both space and time. Backward differencing
in time results in fully implicit equations. Saturations can be spatially
discontinuous between two different materials or soil/rock types. PETROS
handles this discontinuity by using the average saturation from each side of
the interface between the materials. The saturation and temperature
equations are solved with a tridiagonal algorithm. Because the vapor and air
partial pressure equations are strongly coupled, they are solved with a block
tridiagonal algorithm. Dirichlet and Neumann boundary conditions can be
applied to all the equations.
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CHAPTER 3

TEST PROBLEMS

In this section of the report, a description of the various test problems
used in the evaluation of the the strongly heat-driven flow codes is
presented. The codes were compared to five problems with an exact or
numerical solution and three problems with an experimental result.

The problems ranged over various degrees of complexity. They were chosen to
test various uncoupled aspects of the codes, such as two-phase flow or heat
transport, before testing coupled processes. As such, the problems consist
of an infiltration problem, heat transport problems in one and multiple
dimensions, and coupled problems in one and multiple dimensions. It is
believed that, if the codes cannot adequately simulate simple uncoupled
processes, they cannot adequately simulate relatively complex coupled
processes expected at an HLW repository.

None of the problems described below are considered to represent actual
conditions at an HLW repository. At most, they represent some of the
processes that can occur. Finding problems with exact solutions representive
of expected HLW conditions is not possible. The same is true of problems
with experimental results. Therefore, at most, the problems described below
can only be expected to represent some simplification of the conditions at an
HLW repository.

3.1 Test Problems With Exact or Numerical Solutions

3.1.1 One-Dimensional Horizontal Infiltration

The one-dimensional horizontal infiltration problem was originally solved by
Phillip (1955) and is described in Ross et al. (1982). In this problem, a
semi-infinite horizontal tube filled with a homogeneous soil is partially
saturated with water. Air is not accounted for and is, in essence, a passive
spectator. The tube of soil is held saturated at one end and, as time
progresses, the moisture at the saturated end is pulled into the porous
matrix. The purpose of this problem is to test the various codes'
capabilities to simulate transient unsaturated flow in a porous medium. A
schematic of the problem is presented in Figure 3.1.

The following data are applicable to the infiltration problem:

initial moisture content 0.20
hydraulic conductivity 1.1574 x 10-7 /S (1 cm/day)
porosity 0.45

The relative hydraulic conductivity characteristic curve of the unsaturated
medium is described by the following curve (Figure 3.2):
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Figure 3.1: One-Dimensional Horizontal Infiltration Problem
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where kr is the relative hydraulic conductivity, is the moisture
content, 9s is the saturated moisture content (or porosity), and
Or is the residual moisture content. The residual moisture content
specified for the problem is 0.15. The capillary head characteristic curve
is given by (Figure 3.2):

|Or [ Or r if >or

Orm s~~~~~~
'or if $<Or

where Or is a constant and is the limit of capillary head as the soil
dries. Its value for this problem is 1.00 m.

Ross et al. (1982) specify the exact solution at times of 864 s (0.01 days),
5184 s (0.06 days), and 9504 s (0.11 days). It is necessary to compare code
predictions at these same simulation times. These results of the exact
solution indicate that the semi-infinite soil tube can be represented by a
finite one with a minimum length of 0.2 m.

3.1.2 One-Dimensional Heat Transport

Avdonin (1964) originally solved the one-dimensional heat transport problem,
which is described in Ross et al. (1982). In this problem cold water is
injected into an semi-infinite, 100-m-thick hot water aquifer, which is
overlain and underlain by an overburden and underburden, respectively. For
modeling purposes, the overburden and underburden are neglected in order to
simplify the problem and adiabatic boundary conditions are prescribed there.
This, in effect, prevents heat from escaping the aquifer and reduces the
equation governing heat transport to the convective-diffusive equation.
Figure 3.3 presents a diagram of the problem. This problem was used to test
the ability of the various codes to simulate convective-diffusive heat
transport.

The convective-diffusive equation for heat transport describes the
temperature field in the aquifer:

8T aT d2T
pmel-t + uwpwcwx aX2
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where pm is the density of the saturated porous medium, c is the
specific heat of the saturated porous medium, uw is the Darcy velocity of
the water, pw is the density of water, c. is the specific heat of the
water, Km is the thermal conductivity of the saturated porous medium, T is
temperature, x is distance, and t is time. At x - 0, the temperature is held
fixed at 160'C. The temperature at the far end is fixed at the same
temperature as the aquifer, 170'C. Ross et al. (1982) present a
corrected solution of the Avdonin (1964) solution to the convective-diffusive
equation. The Ross et al. solution includes the effects of the overburden
and underburden. However, if the overburden and underburden components are
eliminated from the solution, it reduces to the solution of the
convective-diffusive equation with a Dirichlet boundary condition:

T(x,t) - T(x,O) 1 r Fx-vtl vix rx+vtl
_- _erfc- + exp _ Irc

T(O,t) - T(x,O) 2 . 4=/t a r D

where v - uwpwcw/(p c), D - (p cm), T(0,t) -
temperature at x - I, ate initial temperature of the aquifer.

Additional parameters must be specified to complete the problem. These
include a fully saturated aquifer specific heat of 1000 J/kg-C, a fully
saturated aquifer density of 2500 kg/M 3 , a water specific heat of 4185
J/kg-'C, a water density of 919 kg/m, a water mass flow rate of 10
kg/s, an aquifer porosity of 0.2, a fully saturated aquifer thermal
conductivity of 20 W/m--C, and an aquifer thickness of 100 m. Other
water properties are taken from the steam tables (Meyer et al., 1968).
Buoyancy of heated water within the aquifer is neglected. Code predictions
are required at 130 000 s after the start of cold water injection. Previous
modeling studies indicate that a 40-m-long aquifer is enough to approximate
the semi-infinite aquifer (Ward et al., 1984).

3.1.3 Radial Heat Transport

The radial heat transport problem is very similar to the linear heat
transport problem described in Section 3.1.2. The problem was originally
solved by Avdonin (1964) and is described by Ross et al. (1982). The only
difference between the radial heat transport problem and the linear one is
that the former problem is formulated in a radial coordinate system while the
linear problem is formulated in a one-dimensional Cartesian system. In both
cases, the hydraulic and thermal properties are the same, and the overburden
and underburden are neglected. Figure 3.4 presents a diagram of the
problem. This problem was used to test the codes' ability to solve heat
transport problems in multidimensional coordinate systems.

The heat transport is governed by the radial convective-diffusion equation:

Pmc T + UwPwcwr 1 L OT1
Mat war r arn r]
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where r is radial distance and the other parameters are the same as those
defined in Section 3.1.2. Since this is a radial coordinate problem, the
water Darcy velocity, u, depends on the radial distance. This means that
the Darcy velocity is defined by:

Q
u _ _x

-w2rrb

where Q is the volumetric injection rate of cold water and b is the aquifer
thickness. At an infinitesimally small injection well, the temperature is
fixed at 160'C. At a distance of 1000 m from the injection well the
temperature is fixed at 170'C, the initial temperature of the aquifer.

Avdonin (1964) provides a solution to the above problem which includes the
effects of the overburden and underburden. However, if the overburden and
underburden are neglected and the temperature does not reach the outer
boundary, the solution reduces to:

T(r,t) - T(r,0) r(v,W2/4r)

T(0,t) - T(r,0) r(v)

where r(P) is the gamma function, r(y,w/4r) is the complementary incomplete
gamma function, -4Qpwcw/(4xbKm), c-2r/b, and
r-4Kmt/(pmcmb2). This problem requires code output of temperature as a
function of distance at 109 s.

3.1.4 Radial Boiling Front

The radial boiling front problem is described and solved by Garg (1980). In
this problem water and/or steam is pumped from the center of an infinitely
large, hot water aquifer. It is possible for water within a portion of the
aquifer to vaporize due to lowering of the aquifer pressure caused by the
pumping of hot water. Therefore, this is a one-component, two-phase flow and
heat transport problem. Air is not included and capillary pressure is
neglected in this problem. A diagram of the problem, which indicates four
possible cases, is presented in Figure 3.5. Only case D is considered in
this report. In this case a 100-a-thick aquifer is initially saturated with
water at a temperature of 300-C. Water is removed at a rate of 0.14 kg/s
such that water in the aquifer vaporizes. This vaporized water, forming a
flash front, advances into the aquifer with time. The approximate equation
governing flow in the two-phase region is:

aP2 ( k/.)2 1 a [rP 21
-- I~- r-I_

at (Opct)2 r arl r]

where P2 is pressure in the two-phase region, t is time, r is radial
distance, (k/Y)2 is total kinematic mobility in the two-phase region,
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* is porosity, p is mixture (liquid and gas) density, and c is
total compressibility. The kinematic mobility is a combination of the liquid
and gas mobilities:

(k/v) 2 - kkrgPg/lg + kkrlpl/pl

where k is the porous medium intrinsic permeability, kr is the gas
relative permeability, k 1 is the liquid relative perme9bility, p is
the gas density, p1 is the liquid density, p is the gas dynamic
viscosity, and p1 Is the liquid dynamic viscsity. The mixture density
in the two-phase region is:

P - Sg + Sp 1

where S is gas saturation and S is liquid saturation.
compreslibility depends on the rock compressibility and
mixture compressibility, the latter of which depends on
temperature.

The total
the liquid/gas
both pressure and

The governing flow equation in the one-phase region is:

dP1 (k/v)1

At (pet)l
- [ r Ir r a 

where (k/Y)l is the total mobility in the single-phase region, which
is defined as:

(k/v)l - kkrlpi/pl

The total compressibility in the one-phase region is defined as:

Ct - cm (1-0)/ + Cf

where cm is the rock compressibility and c is the liquid
compressibility. The density in the one-phase region is simply the liquid
density, p1 . The boundary condition for fluid removal at the well is:

lim [P 1 H
ldr J 2xb(k/v)

where is the mass withdrawal rate, b is the aquifer thickness, and j is
either "1 or "2" depending on whether the region near the wellbore is either

-24-



a one- or a two-phase region. The total kinematic mobility has been defined
previously. The boundary condition at the outer edge of the aquifer is:

lim P - P
r-.

where P is the initial pressure of the aquifer. In order to completely
describe the mathematics, two compatibility conditions are required at the
flash front, r - R. First, a continuous flux condition,

(k/v) 2 r-2 (k/v) a-1

where R is the distance where the flash front occurs as a function of time,
is necessary. The second compatibility condition prescribes a continuous
pressure:

P21r-R - Pllr-R

Both pressures are equal to the saturation pressure, P (T), where T is
temperature. Garg (1980) provides a solution to the problem. However, for
purposes of this report, only long-time asymptotic solutions of pressure in
the wellbore are of interest. The long-time asymptotic wellbore pressure
distribution is given as:

Ei(-A2)
Pw(t) - ~s - 4irb(k/v) 2

1.15M _g (k/&)2t

- 2rb(k/v) 2 (#pct)2 + 0.351

where Ei(-A2) is the negative exponential integral with argument,
.A2, P is the wellbore pressure, and rw is the wellbore radius.
The important thing to realize about the above solution is that it
a linear relationship between the wellbore pressure and log(t).

represents

The parameter, _A2 , can be estimated from the nonlinear equation:

(k/y)1(P$-P1)eXp[-X2 (k/v) 2/(Opct)21

EilA2[(k/V)2/(OPct)21/1(k/v)l/(OSct)l])

K
- exp(-A2 )

4irb

Garg (1980) gives a numerical solution to this problem. The numerical
solution exhibits the same qualitative behavior as the long-time asymptotic
solution. Therefore, it was decided that the numerical solution generated by
Garg was adequate for the code comparisons.
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To simulate the radial boiling front problem, Garg (1980) used the following
hydrologic and thermal properties:

rock grain density 2650 kg/m3

porosity 0.2
rock compressibility 0 MPa 1

rock grain thermal conductivity 5.25 W/m-C
rock grain specific heat 1000 J/kg-C
permeability 9.8697 x 10-15 m2

The relative permeabilities were represented with Corey's equations:

1Slr- SgJ

krl (S )4

krg - (1_S*)2(1_S*2)

where S r is the residual liquid saturation and S is the residual gas
saturation. Slr and Sgr have values of 0.30 and A05s respectively.

3.1.5 Heat Pipe

The heat pipe problem is described and modeled by Udell and Fitch (1985).
Figure 3.6 presents a schematic of the problem. In this problem, a
one-dimensional horizontal layer of porous medium filled with water and a
two-component gas (nitrogen and water vapor) is subject to a heat flux at the
right end. The result is that moisture collects at the left end of the
porous medium layer while the right end, which is subject to the heat flux,
dries. In addition, near the saturated left end the temperature increases
strongly before approaching a constant value at the heat flux end. Finally,
the mass fraction of nitrogen in the two-component gas decreases rapidly to
zero near the left end of the porous medium layer. This problem was used to
test the codes' capability to simulate coupled two-phase flow, heat
transport, and evaporation processes.

Udell and Fitch (1985) formulated the steady-state flow and heat transport
equations into a set of four one-dimensional equations. These equations, for
a horizontal porous medium layer, are:

ax as Pi
as [ [1 I kr]

krg lay g krl
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aPC

aP as

aag [ g 

ay a SIgpgDeff'J
as 141 +

krg lY 'Vg kriJ

aP,l-A hf]

Irg Y Vg krl

where x is distance, S is normalized saturation, Pc is capillary pressure,
P. is gas pressure, Pi is liquid density, p is gas density, k

permeability, krg Is gas relative permeability, k 1 is liquid relative
permeability, v' is gas kinematic viscosity, al is liquid
kinematic viscogity, y is molar fraction of noncondensable gas in the gas, t
is temperature, g is gravity, and hf is latent heat of vaporization. The
ratio of convective heat flux to totagl heat flux, A, is described by:

aT a/

X - 1 + aa
q

where q is the heat flux (positive to the right) and K is the thermal
conductivity, which is described by:

K - Kdry + I (wet Kdry)

where mwet is the thermal conductivity of the saturated porous medium,
ist is the thermal conductivity of the dry porous medium, and is the
litiid saturation. The constant, , is defined by:

qv

cond cotty whc isdsrie y

hfgkPl g
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The normalized saturation is simply:

Si-SirS lM l
l-Sl

where and S is the residual saturation. The effective molecular
diffusivity Is given by:

f (l-S)Dnc

where + is porosity, is tortuosity, and Dnc is the molecular
diffusion coefficient of gas 'n' in gas mixture n-c'. The term, (-Sl),
accounts for blockage due to pore water. The characteristic curves for
capillary pressure and relative permeability are described as:

PC - (OA) 1 1k(.417(1-S)-2.12(1S)22+1.263(1-S)31

krg - (1-S)3

rg

where a is the surface tension of water.
equations described above are subject to

The first-order differential
the following boundary conditions:

S 1

Pg Pgi

T - Ti

at x - 0

at x - 0

at x - 0.

In addition, y must satisfy the boundary condition:

T f J
1-To; ln y

at x - 0, where T is a reference temperature, P is a reference
pressure, and R is the condensable gas constant. The differential equations
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are formulated with respect to S to improve the stability of the numerical
solution.

Udell and Fitch (1985) solved the above set of differential equations for the
properties listed in Table 3.1. Unless otherwise indicated, the properties
are independent of temperature and pressure and are, thus, constants. The
boundary conditions at x - 0 are:

Ti - 343.15 K
Pgi : 101 330 Pa
S - 1

y - 0.6818 (calculated from boundary equation).

The solution of Udell and Fitch (1985) is shown in Figure 3.7. It is noted
that all the dependent variables reach asymptotic values within 2 m of the
left boundary. This implies that when modeling this problem the right
boundary of the modeled region should be 2 m or more from the left boundary.
The right boundary conditions should reflect zero flux of both liquid and gas
and a 100 W/M2 heat flux directed inward. Boundary conditions for the
left side are listed above.

In order to compare code predictions to the solution for this problem, the
simulation needs to be carried out to steady-state conditions.

3.2 Test Problems With Experimental Results

3.2.1 Two-Dimensional Infiltration

The two-dimensional infiltration problem is described and solved numerically
by Vauclin et al. (1979). This problem was used to test the codes' ability
to model unsaturated flow under laboratory conditions. Figure 3.8 presents
only the right half of the problem. In this problem, a 2-i-high by 6-m-long
vertical slab of soil is recharged at a rate of 4.111 x 10-5 m/s (14.8
cm/hr) over a length of 1 m. The recharge zone is located at the center of
the top of the slab.

The slab is bounded on each side by lateral trenches, each filled with 0.65 m
of water. Both the bottom and line of symmetry of the slab are considered
impermeable to flow. Prior to the initiation of flow, the bottom of the slab
is filled with water to a level equal to the water level in the trench. In
the unsaturated zone, there is a no flow initial condition.

The equation governing flow in both the unsaturated and saturated zones is:

aH a r aHi a r aHi
C(h) - - K(h)- - + - K(h) 

dt axL ax z z

-30-



Table 3.1: Representative Fluid
for the Heat Pipe

dry rock thermal conductivity

wet rock thermal conductivity

gas density

liquid density

gas kinematic viscosity

liquid kinematic viscosity

heat of vaporization

permeability

surface tension

molecular diffusion of gas

condensable gas constant

reference temperature

reference pressure

gravitational constant

porosity

tortuosity

heat flux

and Hedium Properties
Problem

0.582 W/m-K

1.130 W/m-K

0.960 kg/M3

958.400 kg/S

21.0 x 10-6 2/s

0.3066 x 10-6 M 2/s

2.257 x 106 J/kg

1.0 X 112 M2

0.05878 N/m

26.0 x 10-6 m2/s

461.52 J/kg-mole-K

373.15 *K

101 330.0 Pa

9.817 M/s2

0.4

2.0

100.0 V/M 2
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where H is the total hydraulic head, h is the capillary head, C(h) is the
moisture capacity, defined as d/dh where is the moisture content,
K(h) is the hydraulic conductivity, t is time, x is horizontal distance, and
z is vertical distance. Data for the moisture capacity and the unsaturated
hydraulic conductivity are presented on Figures 3.9a and 3.9b, respectively.
Vauclin et al. (1979) estimate that the relationship:

5(h)- 95 I
1+15.7741hI 2- 9

where 0s is the saturated moisture content (porosity), describes the
moisture content fairly well. Furthermore, they estimate that:

1+3344.481his

where K is the saturated hydraulic conductivity, describes the hydraulic
conductivity-capillary head relationship. Both curves are shown on Figures
3.9a and 3.9b. The saturated moisture content and hydraulic conductivity are
0.30 and 9.7222 x 10' m/s (35 cm/hr), respectively.

Several boundary conditions are applied to the modeled right portion of the
slab. Both the lower boundary of the slab and the line of symmetry have zero
flux boundary conditions. Along the top boundary, between x - 0.0 and x -
0.5 m, a flux of 4.11 x 0 m/s into the slab is applied. Between x -
0.5 and x - 3.0 m along the top, and between z - 0.65 m and z - 2.00 m along
the right side of the slab, a seepage face boundary condition is applied. A
seepage-face boundary is a mixed boundary condition in that, if the soil is
saturated, the total head is equal to the elevation head, and, if the soil is
unsaturated, the water flux is zero.

Two types of initial conditions are applied to the slab interior. In the
saturated zone, between z - 0.0 and 0.65 m, the total head is fixed at 0.65
m. Above z - 0.65 m, in the unsaturated zone, there is no water flux.

Code output in the form of moisture content with respect to depth is required
at x - 0.19, 0.49, 0.79, 1.09, 1.39, 1.69 and 1.99 m from the line of
symmetry, and t - 1 800, 3 600, 5 400, 7 200, 10 800, 14 400, 18 000, 21 600,
and 28 800 s.

3.2.2 Convection Cell

The convection cell experiment is described, performed, and modeled by Reda
(1984). In this experiment, the annular region between two vertical
concentric cylinders is filled with a saturated porous medium and heated.
The application of heat creates forced convection cells in the porous medium
which convect heat throughout the annular region. A schematic of this
experiment is presented on Figure 3.10. The purpose of modeling this
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experiment was to test the various codes' capabilities to handle
multidimensional problems and simulate heat transport.

The inner edge of the annular region consisted of a finite-length heat source
supported above and below by an insulating rod of radius 0.0095 m. Power is
supplied through the heat source between 0.3982 m and 0.6498 m above the
bottom of the annular region. The outer edge of the annular region consists
of a constant temperature reservoir separated from the annular region by a
thin wall. The thin wall effectively prevents water flux out the annular
region in the radial direction. The bottom of the annular region is
comprised of an insulated end plate that effectively prevents water and heat
flux out this end. A constant-temperature water bath comprises the upper
boundary of the annular region. The water bath has a fixed pressure and
allows water either to enter or to leave the annular region during the
experiment. Prior to heating, the water in the annular region was stagnant
and had a fixed temperature. Figure 3.10 also shows the boundary conditions
applicable to the experiment.

Parameters necessary to simulate the experiment include:

porosity 0.34
permeability 610. x 10.12 m2

saturated thermal conductivity 0.87 W/m-C
rock grain density 2500 kg/M
rock grain specific heat 740 J/kg-'C.

Code output is required at elevations of 0.4192, 0.6288, 0.7336, and 0.7860 m
above the bottom of the annular region for various times between 100 and
100 000 s for a power level of-278.3 W/m at the level of the heater.

3.2.3 Two-Phase Flow

The two-phase flow experiment was performed and modeled by Kruger and Ramey
(1974) and independently modeled by Faust and Mercer (1979). The experiment
consisted of heating a pressurized core sample saturated with hot water. A
diagram of the experiment is presented in Figure 3.11. This problem was used
to test the codes' capability to handle vaporization of water and heat
transport.

A saturated piece of core with a length of 0.5969 m and a cross-sectional
area of 2.027 x 10- 2 is placed in an oven and heated to
198.9-C. The left end of the core is insulated to prevent the flux of
heat, liquid, and vapor. The right end of the core has a valve which is
slowly opened to the atmosphere such that the pressure at the right side
decreases with time. The pressure decline can be described approximately by:

Pr 1 840 965.0 - 11 395.519 72t + 21.406 421 3t2
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where Pr is pressure at the core's right side, and t is time, which ranges
between 0 and 300 s. Prior to emplacement in the oven, the saturated core
sample is pressurized to 1 840 965 Pa (267 psi) and heated so that the
temperature varies approximately linearly between 192.0'C at the left
side and 184.0'C at the right side.

Both Kruger and Ramey (1974) and Faust and Mercer (1979) modeled this
experiment. To represent the hydraulic conductivity characteristic curves,
they used Corey's curves. These curves are represented by:

S - SSr

lSrlfSrg

krl - S'

krg - (1-S)2(l-S2)

where S is liquid saturation, S is residual liquid saturation, Sg is
residual gas saturation kl is relative hydraulic conductivity witi respect
to the liquid, and krl is relative hydraulic conductivity with respect to
the gas. The values of Sr and Srg are 0.30 and 0.05, respectively.

Other values of the hydrologic and thermal properties are:

porosity
saturated thermal conductivity
rock grain density
rock grain specific heat
rock compressibility
permeability

0.36
2.10 W/m-'C
2650. kg/ms
1010. J/kg-C
0. Pa 1l
1. X 10-13 m2

Code output in the form of temperature is required along the core at 300 .
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CHAPTER 4

CODE COMPARISONS

This section presents comparisons of the various codes with exact and
numerical solutions or experimental results for the problems described in <

Section 3. Comparisons with exact and numerical solutions are presented
first. For the most part the strongly heat-driven flow codes produced good
comparisons with the exact or numerical solutions for the simpler problems.
For the more complex solutions, those involving vaporization, the codes
produced poor solutions or no solutions could be obtained. Comparison with
the experiments are presented in the second part of this section. For the
most part, solutions with the codes for comparison with experimental results
could not be obtained.

4.1 omparison With Exact or Numerical Solutions

4.1.1 One-Dimensional Horizontal Infiltration

4.1.1.1 TOUGH

TOUGH successfully ran the one-dimensional horizontal infiltration problem to
completion. The code required approximately 12.1 s of CPU time to complete
the problem. The grid used in the solution to the problem is shown in Figure
4.1. The grid consisted of a front row of grid blocks labelled LEl and Fl
through F40, and a back row labelled R1 through R40. The sole purpose of the
back row was to suck air out of front-row grid blocks so that air would not
interfere with the flow of water in the front row. The LBI element, a
boundary-condition element, was assigned an extremely large volume to keep
the saturation at 1.000 at the left boundary. Grid blocks F1 through. F40
were given widths of 0.005 m and heights and depths of 1.0 m. Heights and
depths are irrelevant to the solution of one-dimensional problems with TOUGH,
but they need to be specified anyway. Zero flux boundary conditions are
implied along the right edge of block R40 because no additional grid blocks
are attached there. The initial time step was 1.0 seconds, which was allowed
to double if the solution at a time step converged within four iterations.
The code required 28 time steps to complete the solution.

Results of the run for times of 864, 5184, and 9504 seconds are presented in
Figure 4.2. The simulation results compare very well with the exact solution
results for saturations greater than approximately 0.7. Below this limit,
the simulation results are greater than the exact solution by less than 5 of
the exact solution. The results from TOUGH follow the trend of the exact
solution very closely. In general, there is good agreement between the
results from TOUGH and the exact solution.
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4.1.1.2 NORIA

NORIA successfully ran the one-dimensional horizontal infiltration problem
but required approximately 1980 s of CPU time to do so. The grid used to
model this problem is presented in Figure 4.3. It consisted of 20 finite
elements, each 0.0100 m wide and 0.0001 m high. The height of the elements
is irrelevant to the solution of the problem, but comparisons with various
heights show that the solution converged better with a height this small.

The problem was modeled with Dirichlet boundary conditions along the left
side of element 1 and the right side of element 20. The liquid pressure
along the left side was set to atmospheric pressure, 101 330 Pa, to insure
full saturation at that point. The liquid pressure at the right side of
element was fixed at 93 157.5 Pa to reflect the initial condition saturation
of 0.4444. The vapor and air pressures were arbitrarily fixed at 10 000 Pa
and 91 330 Pa, respectively, because NORIA requires some type of pressure for
gases or it produces zero divide errors. Finally, the temperature at both
boundaries was fixed at 20'C. The initial time-step size was 0.01
seconds and was allowed to increase or decrease with time according to
NORIA's built-in time-step-size criteria. The code required 935 time steps
to complete the simulation.

The results from NORIA for times of 864, 5184, and 9504 s are presented in
Figure 4.4. There is an excellent agreement between the resuts from NORIA
and the exact solution. There is no noticeable difference between the two
solutions at any time or distance. The use of quadratic element basis
functions, which produce a closer approximation to the exact solution than
linear basis functions, and small time steps probably account for the
excellent agreement between solutions.

4.1.1.3 PETROS

PETROS successfully ran the one-dimensional horizontal infiltration problem.
Three runs were necessary, each with a different ending time of 864, 5184,
and 9504 s; the required CPU times were approximately 2.0, 2.9, and 3.3 s,
respectively, and the required time steps were 131, 198, and 221,
respectively.

The PETROS grid for modeling the one-dimensional horizontal infiltration
problems is shown in Figure 4.5. The grid consists of 41 nodes, each
separated by a distance of 0.005 m. Nodes at each end of the grid, nodes 1
and 41, are located on the boundaries. The left boundary was held fixed at a
saturation of 1.00 and a temperature of 20'C, and the right boundary was
fixed at the initial conditions, a saturation of 0.4444 and a temperature of
20'C. The air and vapor phase pressure equations were decoupled from the
problem and were not solved. The initial time step was chosen as 1.0 and
allowed to vary according to the criteria in PETROS.

The results from PETROS compared to the exact solution are presented in
Figure 4.6. For times of 864 and 5184 s, there is an excellent agreement
between the two solutions for saturations greater than 0.8 over the distance
simulated. Below saturations of 0.8, PETROS predicts saturations slightly
less than the exact solution. The differences are less than approximately
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2%. For a time of 9504 s, PETROS agrees with the exact solution extremely
well. It appears that, as time increases, the comparison between PETROS and
the exact solution gets better. Overall, there is a very good comparison
between the two solutions.

4.1.2 One-Dimensional Heat Transport

4.1.2.1 TOUGH

TOUGH successfully ran the linear heat transport problem, but required
approximately 967 seconds of CPU time and 1300 time steps to do so. The grid
used to solve the problem is presented in Figure 4.7. The grid consisted of
502 grid blocks. The left grid block, LB1, and the right grid block, RB1,
were each assigned very large volumes to keep the left and right boundary
pressures and temperatures constant throu hout the simulation. The left
boundary grid block was held fixed at a temperature of 160"C and a
pressure of 5 050 000 Pa and the right boundary grid block at 1700C and 5
000 000 Pa. The initial temperature was set at 170'C. The initial
pressure varied linearly between 5 050 000 Pa and 5 000 000 Pa throughout the
modeled region. The permeability of 1.74 x 10- m 2, the
viscosity of water for a temperature between 160'C and 170'C, and the
pressure gradient kept the mass flux of water at 10 kg/s within the modeled
region. The choice of the permeability and the pressure gradient could be
anything as long as they are chosen to maintain the proper flow rate. The
grid spacing of 0.1 m and time-step size of 100 s were based on criteria
established in the SWIFT II documentation (Reeves et al., 1986) to control
numerical dispersion and overshoot. However, a limiting factor in
determining the grid spacing was dimensions of certain arrays in the code.

A comparison of TOUGH results with the exact solution is presented on Figure
4.8. The results indicate that, although the location of the heat front
predicted with TOUGH appears to be located at the same distance as the
location obtained with the exact solution, some numerical dispersion occurs.
Apparently, the grid spacing and time-step sizes were too large, which were
restricted by the memory requirements in TOUGH. .

4.1.2.2 NORIA

The NORIA code successfully simulated the linear heat transport problem with
approximately 3850 a of CPU time. The finite-element grid used to solve the
problem with NORIA is presented on Figure 4.9. Only 30 m of the aquifer were
modeled so the grid consisted of 150 elements each 0,2 m wide. Node spacing
was 0.1 m, the same as that used with TOUGH for this problem. An initial
time step of 0.1 a was used to start the simulation and the time-step size
increased with simulation time according to the criteria in NORIA. The code
required 225 time steps to solve the problem with the final time-step size
being 1195 s.

The left boundary was held fixed at a temperature of 1601C and a liquid
pressure of 5 050 000 Pa. The right boundary was held fixed at a temperature
of 170'C, the initial temperature, and a pressure of 5 000 000 Pa. The
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initial pressure varied linearly between the assigned boundary pressures at
each end of the modeled region. The pressure gradient coupled with a
constant permeability and viscosity of 1.09 x 10-10 m2 and 0.001
Pa-s, respectively, maintained a flow rate of 10 kg/s through the
aquifer. In addition, NORIA required initial and boundary values of the air
and vapor pressure. These were both set arbitrarily to values of 25 000 Pa
throughout the modeled region.

A comparison of the NORIA solution with the exact solution is presented in
Figure 4.10. There is a very good agreement between the two solutions.
There is no evidence of numerical dispersion. Any difference between the two
solutions seems to be caused by the location of the two fronts. The location
of the midpoint of the front predicted by NORIA lags behind the midpoint of
the front predicted by the exact solution by approximately 0.15 m or
approximately 0.7% of the distance traveled.

4.1.2.3 PETROS

PETROS, needing 935 seconds of CPU time, successfully solved the linear heat
transport problem. The finite-difference grid used to solve the problem with
PETROS is presented in Figure 4.11. The grid consisted of 501 grid points,
0.1 m apart. Grid points 1 and 501 are located on the boundaries of the
modeled region. An initial time-step size of 1.0 s was used to start the
simulation. Time-step sizes varied up to a maximum of 100 s according to the
time-step criteria in PETROS. The simulation required 1317 time steps.

The left boundary was held fixed at a saturation of 1.0, a temperature of
160'C, and a vapor pressure of 5 050 000 Pa. Similarly, the right
boundary was held fixed at saturation of 1.0, a temperature of 170'C, and
a vapor pressure of 5 000 000 Pa. The air equation was not solved in this
simulation. The initial conditions were set at a saturation of 1.0 and a
temperature of 170'C. The initial liquid pressure could not be set
explicitly in PETROS. The gas pressure equations in PETROS do not include a
time-dependent term and, therefore, an initial condition is not necessary for
these equations. Instead, to set initial gas pressure conditions, PETROS
solves the steady-state gas-pressure equations based on the specified
boundary conditions. In this case, the resulting gas pressure solution
produced a linear gas pressure initial condition. By setting the capillary
pressure to zero, the liquid pressure initial condition was the same as the
gas pressure initial condition, a linear function with a pressure of
5 050 000 Pa at the left end and 5 000 000 Pa at the right end. The
permeability of 1.09 x 10-10 m and liquid dynamic viscosity of 0.001
Pa-s maintained a 10 kg/s mass flow rate throughout the simulation.

A comparison of the PETROS solution with the exact solution is presented in
Figure 4.12. There is a small amount of numerical dispersion noticeable on
the figure. However, the location of the fronts produced by the two
solutions is the same. Overall, there is a very good agreement between the
PETROS and the exact solutions.

-53-



170

169

168

167

166

0

I
23
S

165

164

163

162

180

16 18 20 22 24 26 28

Distance (m)

Figure 4.10: Comparison of NORIA Results with Exact Solution for the
One-Dimensional Heat Transport Problem

-54-



1 2 3 4 498 499 Soo 501

nf
n

Figure 4.11: PETROS Grid for the One-Dimensional Heat Transport Problem



170

169 

18

167

165

_ 165

I-~~~~

164

183

162

161

160 
16 18 20 22 24 26 28

Distance (m)

Figure 4.12: Comparison of PETROS Results with Exact Solution for the
One-Dimensional Heat Transport Problem

-56-



4.1.3 Radial Heat Transport

4.1.3.1 TOUGH

TOUGH could only simulate the first 1.5 x 106 s of the radial heat
transport problem with 2000 s of CPU time and 3000 time steps. The problem
specification required x109 s or approximately 32 years of simulation.
It was unlikely that TOUGH could have simulated the 32-year problem with h
of CPU time. For this reason, the TOUGH prediction is compared only with the
exact solution at x106 s.

The grid used to simulate this problem with TOUGH is shown in Figure 4.13.
It consisted of 252 elements of which IB1 and OB1 were used to control the
pressure and temperature boundary conditions. The IBl element represented
the injection well and was assigned a large volume to hold the wellbore
temperature and pressure fixed at 160'C and 5 050 000 Pa, respectively,
and a small radius of 0.01 m in order to approximate an infinitesimally small
well. Subsequent distances to outer edges of grid blocks (i.e. A-l through
C-49) were assigned such that the ratio of the distance to the outer edge of
a grid block to the outer edge of the preceding grid block was 1.047 128 548
or (1000 m/0.01 )11250, where 1000 m is the distance from the wellbore
center to the outer edge of the aquifer, 0.01 m is the wellbore radius, and
'250' is the number of grid blocks through which there is flow. This is the
same relationship that SWIFTII uses to calculate the grid spacing for
cylindrical coordinate systems (Reeves et al., 1986). The OB1 element, 1000
m away from the wellbore center, was assigned a large volume to hold the
temperature and pressure fixed at 170'C and 5 000 000 Pa, respectively.
The initial temperature was set at 160'C and the initial pressure
distribution was determined according to a logarithmic pressure function:

P - P IF (P -P ) ln(r/ro
- + ln(r/r)

where P is liquid pressure, P is pressure at the outer boundary, P
is pressure at the wellbore, r is distance from the center of the weilbore,
ro is distance between the center of the wellbore and the outer boundary,
and ri is the radius of the wellbore. The pressure gradient determined
from the above equation, the mass flux rate of 10 kg/s at the wellbore, and
the density and viscosity of water at 165'C (the midpoint of 160'C
and 170'C) resulted in a permeability of 6.36 x 10-11 m2 being
assigned to this problem.

A comparison of the TOUGH results to the exact solution results is presented
in Figure 4.14. The comparison seems to indicate little numerical
dispersion. However, the distance traveled by the front predicted by TOUGH
is only about 95% of the distance predicted by the exact solution. It is
suspected that the temperature dependence of the density and viscosity models
implemented in TOUGH are the cause for this difference. As the cold water is
injected into the aquifer, the viscosity of the aquifer decreases and the
fluid moves slower. This may account for the difference in the front
locations.
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4.1.3.2 NORIA

NORIA could only simulate the first 4.6 x 106 s of the 1 x 109 s
simulation for radial heat transport problem in 2 h of CPU time. The code
required 459 time steps to solve the equations for the first 4.6 x 106
s. The initial time-step size was 1.0 s. The time-step size selection
behaved in an oscillatory manner throughout the simulation. The time-step
size would be as large as 105 s, then reduce to 102 s, then increase
again to 105 s.

A portion of the grid used to model the problem is presented in Figure 4.15.
The exact solution indicated that the leading edge of the front would advance
less than 560 m from the wellbore. Therefore, the outer edge of the grid was
placed at 595.365 from the wellbore. The grid consisted of 117 elements.
Node spacing was specified such that the ratio of the distance between two
successive nodes to the distance of the two preceding successive nodes was
1.032 929 909. NORIA calculates the grid spacing based on the number of
elements, the distance ratio, and the distance to the outer edge of the
aquifer. From this information, NORIA calculated the distance between the
first two nodes as 0.01 m.

Constant pressure and temperature boundary conditions of 5 050 000 Pa and
160'C were assigned at the wellbore. At the outer boundary a constant
pressure and temperature of 5 002 252 Pa and 170'C, respectively, were
assigned. The outer-boundary pressure condition was estimated from the
pressure equation presented in the preceding section for a distance of
595.3596 m. In addition, the initial temperature was 170'C and the
initial pressure was estimated from the equation presented in the preceding
section. The boundary and initial conditions for the air and vapor pressure
equations, although irrelevant to the solution to the problem, were
arbitrarily chosen as 2 500 000 Pa.

Figure 4.16 presents a comparison of the NORIA solution with the exact
solution at a time of 1 x 10' s. No numerical dispersion appears and the
location of the fronts generated by the two solutions is the same. Overall,
there is excellent agreement between the NORIA and exact solutions.

4.1.3.3 PETROS

PETROS, requiring only 385 s of CPU time, was the only code to solve the
radial heat transport problem for the required 1 x 109 s simulation
time. Results for times of 1 x 10 s and 1 x 109 s are presented
here. The 1 x 108 s case required only 28.3 s of CPU time.

A portion of the PETROS finite-difference grid is presented in Figure 4.17.
The distance between the nodes is the same as in the NORIA grid. However, in
contrast to the NORIA grid, the PETROS grid consists of 251 nodes, covering
the range r - 0.01 m, the wellbore radius, to r - 1000 , the distance to the
outer boundary.

The saturation boundary conditions at each end of the grid and the initial
conditions were specified as 1.0 since this was a saturated flow problem.
The temperatures were specified as 160'C at the wellbore and 170'C,
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the initial condition, at the outer boundary. Finally, the vapor pressure
was set to 5 050 000 Pa at the wellbore and 5 000 000 Pa at the outer
boundary. As indicated in section 4.1.2.3, PETROS calculates the initial
vapor pressure distribution. Since the capillary pressure is set to zero,
the liquid pressure equals the vapor pressure and this equality sets up the
initial liquid flow field. The initial time step for both runs was 1.0 s.
The 1 x 106 s run required 63 time steps and the 1 x 109 s run
required 1066 time steps. Final time-step sizes for both runs were 77 764 s
and 471 850 s, respectively.

Results for both runs are presented on Figures 4.18 and 4.19. For the 1 x
106 s run, the PETROS solution shows a small amount of numerical
dispersion and the front advances slightly less than that predicted by the
exact solution. The overall comparison is very good. For the 1 x 10 s
run, the PETROS and the exact solutions compare extremely well. There is no
evidence of any numerical dispersion and the locations of the fronts
predicted by the two solutions coincide.

4.1.4 Radial Boiling Front

4.1.4.1. TOUGH

TOUGH, requiring 11.6 seconds of CPU time, successfully simulated the boiling
front problem. A portion of the grid used to model the problem is presented
in Figure 4.20. The grid consisted of 50 grid blocks, the first of which is
the wellbore block where liquids and gases are removed. The first ten grid
blocks, Al through A, are each 1.0 m wide. The remaining 40 grid blocks
are expanded such that the ratio of the width of one grid block to the width
of the preceding grid block is approximately 1.149 046 286. This ratio is a
geometric ratio determined from the distance between the wellbore center to
the outer edge of the grid, the grid spacing of the evenly spaced grid
blocks, and the number of grid blocks in the unevenly spaced area. The
distance from the center of the wellbore to the outer edge of the aquifer is
approximately 1741.8 m.

To force flow in the aquifer, the wellbore was treated as a sink from which
mass is removed at a rate of 0.14 kg/s per unit of aquifer thickness. At
early times, the mass removed from the wellbore grid block consisted entirely
of liquid. At later times, as the liquid in the aquifer vaporized, the mass
removed from the wellbore consisted of both gas and liquid. The amount of
gas and liquid withdrawn from the wellbore depended on the mobility ratio
between the liquid and gas. This type of mass withdrawal is a user selected
option in TOUGH. Zero flux conditions for both fluids and heat were assigned
at the center of the wellbore and the outer edge of the aquifer.

A comparison of the TOUGH generated solution with Garg's (1980) numerical
solution is presented on Figure 4.21. Except for the first 10 seconds of the
simulation, the TOUGH solution agrees extremely well with Garg's numerical
solution. It should not be inferred that, because TOUGH and Garg's solution
disagree in the first ten seconds of the simulation, that the TOUGH solution
is incorrect, since Garg's solution is also numerical. In fact, the small
discrepancies could be attributed to numerical errors. TOUGH also predicted
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the late time straight line pressure distribution as indicated by Garg's
asymptotic solution. Overall, there is an excellent agreement between the
TOUGH results and Garg's numerical solution.

4.1.4.2 NORIA

The NORIA code could not successfully simulate the radial boiling front
problem. It suffered from several problems. First, it required a very small
time-step size in order to start the simulation. Second, as time increased,
the time step also increased but reached a maximum size which varied between
about 0.05 and 0.3 s. These small time steps produced slow progress in
time. Third, the time-step size then began to decrease as time progressed
until it became smaller than the initial time-step size, which caused NORIA
to stop running.

4.1.4.3 PETROS

The PETROS code produced a solution to the radial boiling front problem.
Unfortunately, the solution did not compare favorably with Garg's (1980)
solution, either qualitatively or quantitatively.

The grid used in the PETROS simulation is presented in Figure 4.22. It
consisted of 51 nodes. The first 10 nodes were each spaced 1.0 m apart. The
first node is located 1.0 m from the center of the wellbore. For subsequent
nodes, the ratio of the distance between a pair of nodes is approximately
1.149 07 of the distance between the preceding pair of nodes. This ratio is
the same as that used in the TOUGH simulation of this problem. The distance
between the center of the wellbore and the outer boundary is 2000.0 m.

At the wellbore, the mass flux into the well consisted of both liquid and
vapor. The mass flux of each phase depended on its mobility ratio. A zero
heat flux was assigned at the wellbore. Zero mass flux conditions and a
fixed temperature of 300'C were assigned at the outer boundary. The
initial temperature and saturation were assigned as 300'C and 0.9999,
respectively. Air was not included in the simulation of this problem.
Because the vapor equation does not contain a transient term, no initial
condition was required for it. PETROS calculated an initial constant vapor
pressure prior to the simulation of the problem.

The results of the PETROS simulation are presented in Figure 4.23. There is
a poor comparison between the PETROS solution and the arg (1980) solution.
PETROS assigned an initial constant pressure of approximately 8.5 Pa, which
is the equilibrium pressure for a temperature of 300'C. This pressure
contrasts with the 9.0 Pa specified in the problem description. The
difference between the two pressures affected the wellbore pressure. On the
initial time step, it dropped to approximately 8.1 Pa. As a result, PETROS
predicted vaporization immediately after the start of the simulation, while
in Garg's solution vaporization did not occur until ten seconds into the
simulation. The net result of this is a very rapid pressure drop in the
wellbore.
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It appears, though, that the simulation is poor for another reason. The
saturation at the wellbore node and at nodes near the wellbore exhibited a
rather strange behavior. For most of the simulation, the saturation at the
wellbore stays at 1.0 and, at the adjacent node, the saturation decreases
with time. One would expect saturation to be less in the wellbore node than
at the adjacent node. The reason for this behavior is not known but it was
speculated that PETROS could not handle the mass flux boundary condition at
the wellbore boundary.

4.1.5 Heat Pipe

4.1.5.1 TOUGH

TOUGH successfully simulated the heat pipe problem in 128.5 s of CPU time.
The grid, consisting of 91 grid blocks, used to model the problem is
presented in Figure 4.24. The first grid block, LBOO, was assigned a large
volume and was used to control the boundary conditions at the left side of
the modeled region. The remaining 90 grid blocks, SAMOO to SAM89, were each
0.025 m wide.

The left boundary was held fixed at an ambient air pressure of 101 330 Pa, a
saturation of 0.5, and a temperature of 70'C. The right boundary
conditions were chosen as zero flux conditions for both mass and heat. The
flux of heat into the right side of the modeled region was handled by
injecting 100 W into the center of the SAM89 grid block. Initial conditions
for pressure, temperature, and saturation were set at 101 330 Pa, 70'C,
and 0.50, respectively. Since the required solution was at steady state, the
values of the initial conditions should be irrelevant, but because TOUGH
reaches the steady-state solution via a transient solution, initial
conditions had to be specified.

A comparison of the TOUGH-generated solution with the fourth-order
Runge-Kutta solution of Udell and Fitch (1985) is presented in Figure 4.25.
Because the liquid and gas properties were pressure- and temperature-
dependent in TOUGH and constants in the Udell and Fitch model, we should have
expected some quantitative differences in the two solutions. However, both
solutions should exhibit, at least, a similar qualitative behavior of the
dependent variables. Figure 4.25 shows an excellent agreement between the
two solutions for temperature and the mole fraction of air in the gas.

However, the saturation results for the two solutions differ. TOUGH produced
the higher saturations, but both solutions are qualitatively similar. The
saturation results were probably strongly affected by the temperature and
pressure dependence of the liquid and gas properties. Overall, there appears
to be a good agreement between the TOUGH results and the results of Udell and
Fitch (1985).

4.1.5.2 NORIA

NORIA could not simulate the heat pipe problem with 1 h of CPU time. It had
a similar problem with time-step size as mentioned in Section 4.1.4.2. The
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time step was initialized at 1.0 s and was gradually increased until a time
of approximately 1.0 x 105 s. At this time, the time-step size started
to slowly oscillate reaching values as small as 5 s and as large as 6836 s.
This behavior continued until a time of approximately 504 000 s. At this
time, the time-step size began to rapidly decrease between time steps until
it became less than the initial time-step size, at which time the simulation
stopped.

The grid used to solve the problem is presented in Figure 4.26. The grid
consisted of 45 elements, each 0.05 m wide. The liquid pressure, vapor
partial pressure, air partial pressure and temperature on the left boundary
were held fixed at 58 056.23 Pa, 10 131.23 Pa, 91 198.77 Pa, and 70'C,
respectively, These conditions corresponded to a saturation of 0.5 and a gas
density of 0.960 kg/m, which was specified in the problem description.
The boundary conditions at the right side were specified as zero flux for the
liquid, vapor, and air flow, and 100 /M2 directed inward for the heat
flow. The initial conditions are the same as the left side boundary
conditions.

Although NORIA did not run long enough to allow a direct quantitative
comparison with the Udell and Fitch (1985) solution, a qualitative comparison
was possible between the transient NORIA solution and the steady-state
solution of Udell and Fitch. On the right side of the modeled region, the
soil began to dry out just as predicted by Udell and Fitch. However, in that
region NORIA predicted a temperature in excess of 120'C, while Udell and
Fitch predicted a temperature near 104'C. It is expected that, if NORIA
could have generated a solution, it would have differed from the Udell and
Fitch solution.

4.1.5.3 PETROS

PETROS could not generate a steady-state solution. It could only generate a
solution up to approximately 250 000 s and then only by excluding air from
the simulation. The only reason times greater than 250 000 s could not be
simulated was that for large times, time steps-became very small, less than
one second, and the solution advanced very slowly in time. The problem was
also simulated including air. However, as the partial pressure of air became
very small, 0.001 Pa, the air partial pressure solution converged slowly.
Eventually, the solution did not converge at all.

The grid used to simulate the problem is presented in Figure 4.27. It
consisted of 91 nodes spaced 0.025 m apart. For the case without air, the
left boundary was held fixed at a saturation of 0.5, a temperature of 70'
C, and a vapor partial pressure of 101 330 Pa. The right side was
impermeable to liquid and gas flow and had a heat flux of 100 W/M2

directed inward. Initial conditions were the same values as the left side
boundary conditions. For the case including air, the left side saturation,
temperature, vapor partial pressure, and air partial pressure were held fixed
at 1.0, 70eC, 10 131.23 Pa, and 91 198.77 Pa, respectively. The
right-side boundary conditions were the same as in the no-air case and the
initial conditions were the same as the left-side boundary conditions.
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4.2 Comparison With Experimental Results

4.2.1 Two-Dimensional Infiltration

4.2.1.1 TOUGH

Approximately 6300 s (one and three-quarter hours) of the 8-h,
two-dimensional infiltration experiment could be simulated with TOUGH. After
the 6300 s of simulation time, time steps became very small and the solution
progressed slowly. The first 6300 s of simulation time required 39 time
steps and the next 422 s required 231 time steps. This gives an idea of the
CPU time consumed by the small time steps. The simulation was stopped after
1 h of CPU time.

The grid used to solve the problem is presented in Figure 4.28. It was 13
grid blocks wide and 5 grid blocks high. In the horizontal direction, grid
block columns 1 through 12 were 0.25 m wide. This width was chosen to force
the 0.50-m-wide infiltration source to cover exactly two grid blocks. Grid
block column 13 was used to control the constant pressure boundary condition
on the right side of the modeled region. In the vertical direction, grid
blocks rows A, B, C, and D were each 0.1625 m high and were located in the
saturated zone. Grid blocks rows E through N were each 0.1350 m high and
were located in the unsaturated zone. In the top grid block row, grid blocks
01 and 02 were extremely thin and were used to control the infiltration rate
boundary condition. Grid blocks 03 through 012 were very large and were used
to set a the zero infiltration rate boundary condition along the top of the
grid.

The lack of any boundary grid blocks along the bottom and left side of the
grid implies zero mass and heat fluxes out these two sides. Along the right
side, grid blocks A13, B13, C13, and D13 were held fixed at a saturation of
1.0, a temperature of 20'C, and a hydrostatic pressure distribution,
which ranged between an atmospheric pressure of 101 330 Pa at the water table
and 107 694 Pa at the bottom boundary. Grid blocks E13, F13, G13, H13, I13,
J13, K13, L13, 13, and N13 were held fixed at a temperature of 20'C, a
gas pressure of 101 330 Pa (one atmosphere), and a saturation that implied
zero vertical flux of liquid. Actually, a seepage-face boundary condition
should be applied to the right-side grid blocks above the water table, but
TOUGH does not have this capability. Grid blocks 01 and 02 were each
assigned a liquid mass input rate of 0.0103 kg/s, which corresponds to an
input rate of 4.1111 x 10 ms. Because there were no grid blocks on
top of the 01 and 02 grid blocks to allow the escape of mass or heat, zero
mass and zero heat flux conditions were assumed at the top of these grid
blocks. Grid blocks 03 through 012 were assigned zero liquid saturation.
This prevented the flow of liquid out of the top of the grid, and
approximated the seepage-face boundary conditions as long as the liquid
saturation was less than full saturation at the top boundary. Because of the
large volumes assigned to grid blocks 03 through 012, the temperature and gas
pressure were held fixed at 20'C and 101 330 Pa, respectively. For
initial conditions grid block rows A, B, C, and D in the saturated zone were
assigned a saturation of 1.0, a temperature of 20'C, and the hydrostatic
pressure distribution as described above. Grid block rows E, F, G, H, I, J,
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K, L, M, N, and 0 in the unsaturated zone were assigned a gas pressure of
101 330 Pa, a temperature of 20-C, and saturation values which correspond
to zero liquid flux in the vertical direction.

A comparison of the predictions from TOUGH with some of the experimental
results is presented in Figure 4.29. For x - 0.19, the comparison at t -
0.5, 1.0, and 1.5 h is fairly good. At t - 1.0 and 1.5 h, a small
discrepancy between the TOUGH solution and the experimental results exists at
a depth of approximately 0.40 to 0.50 . This appears to be due to a layered
heterogeneity in the experiment because the same type of behavior is seen in
the experimental curve for x - 0.49 n.

For x - 0.49 m, there is poor agreement between TOUGH and the experimental
results. It is suspected that the poor agreement is due to two factors.
First, x - 0.49 m is very near the point on the top boundary of the
experiment where the application of water stops and the seepage face begins.
Under this point, especially at small times, a steep saturation front forms
in the horizontal direction. In order to better simulate this front, it
would have been necessary to use a finer grid spacing in this region.
Second, the large discrepancy is partially due to the interpolation scheme
used to calculate the saturation at x - 0.49 . The scheme is based on
saturation values at x - 0.375 m, directly under the recharge region, and x -
0.625 m a nearly dry region. The interpolation scheme does not take into
account the actual behavior of the saturation front between the two points
but approximates it with a linear function.

For x - 0.79 m at t - 1.5 h, there appears to be a good qualitative agreement
between TOUGH and the experimental results in that the shape of the two
curves is similar. In a quantitative sense, TOUGH predicts water moving out
faster to the right than what is actually observed. In order to be sure if
this is the case, the code results would have to be compared with the
experimental results for larger times.

4.2.1.2 NORIA

The grid used to simulate the two-dimensional infiltration experiment with
NORIA is presented in Figure 4.30. It consisted of 12 elements in the
horizontal direction and 10 elements in the vertical direction for a total of
120 elements and 405 nodes. Elements 1 through 36, all located in the
saturated zone, were each 0.2167 m high and 0.25 m wide. Elements 37 through
48, each 0.15 m high and 0.25 wide, were located in the unsaturated zone
and served as transition elements to the overlying elements. Elements 49
through 120, located in the unsaturated zone, were each 0.20 m high and 0.25
m wide.

Boundary conditions along the left side and bottom of the grid were all
assigned to reflect zero fluxes of water, air, vapor, and heat. Elements 12,
24, and 36 on the right side were assigned effective pressures of 107 693.8
Pa to reflect the depth of water in the saturated zone and the atmospheric
pressure. Unsaturated zone elements along the right side of the grid were
assigned a zero liquid flux condition to reflect a seepage-face boundary.
For all elements along the right side of the grid, an air partial pressure of
100 000 Pa, a vapor partial pressure of 11 330 Pa, and a temperature of
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20'C were assigned. Along the top of elements 109 and 110 a flow rate of
4.11 x 10-6 m/s directed inward was prescribed to simulate the recharge
zone. The remaining elements along the top of the grids were assigned a zero
liquid flux to reflect a seepage face. In addition, all elements along the
top of the grid were assigned boundary conditions of 100 000 Pa for air
partial pressure, 11 330 Pa for vapor partial pressure, and 20'C for
temperature.

NORIA could not simulate this problem. It ran for approximately 8.5 s and
then stopped because the time-step size became too small. The initial time
step was 1.0 s and it increased with each time step to approximately 4.8 s at
which time it started to get smaller. It appears that the vapor partial
pressure term was the main reason causing the time steps to decrease. The
difference between the predictor and corrector vapor partial pressure
solution is so large that time-step size must be reduced in order to meet
NORIA's time-step-size criteria.

4.2.1.3 PETROS

PETROS, being a one-dimensional code, was not capable of solving the
two-dimensional infiltration problem.

4.2.2 Convection Cell -

4.2.2.1 TOUGH

The integrated finite-difference grid used in the simulation of the
convection-cell problem with TOUGH is presented in Figure 4.31. The grid
consisted of 462 grid blocks, of which 62 were used to control boundary
conditions.

Grid blocks TO to EEO, representing the heater, controlled the flux of
thermal energy into the system. Grid blocks 001 through 0010 controlled the
constant temperature and pressure conditions at the top of the convection
cell. Grid blocks All through Nll, assigned very small volumes and very
large heat capacities, were used to control the zero mass flux and constant
temperature boundary conditions.

Along the left side and bottom of the grid,- zero mass flux and zero heat flux
boundary conditions were assigned. These conditions implied that no boundary
grid blocks were necessary there. At the top of the grid, the large volume
grid blocks, 001 through 0010, were assigned a fixed temperature of
21.5'C and a fixed pressure of 200 000 Pa. The extremely large volumes
of these grid blocks allowed only very small changes to occur within the grid
blocks such that the pressures and temperatures essentially remained
constant. Along the right side, the small volume grid blocks, All through
0011, with large heat capacities handled two types of boundary conditions.
The small volume assigned to these grid blocks forced the right edge of these
grid blocks almost up against the right edge of grid blocks A10 through
0010. This, in effect, forced the zero mass flux boundary at the right side
of grid blocks A10 through 010. On the other hand, the large heat
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capacities assigned to the grid blocks All through 0011 kept the temperature
changes in these grid blocks very small, essentially keeping the temperature
fixed. The initial conditions assigned to the grid blocks included a
temperature of 21.5'C and a hydrostatic pressure distribution based on a
pressure of 200 000 Pa assigned at the interface of the NN-00 row of grid
blocks.

TOUGH could not simulate-the convection cell behavior of the experiment. The
results of the TOUGH simulation are presented in Figure 4.32. TOUGH's
predicted temperatures were higher than the experimental ones by 15'C for
small times and as much as 30'C for large times. In addition,
temperatures at the top and bottom of the rods differed by 30'C for the
experiment, while TOUGH predicted a difference of less than 10-C.

4.2.2.2 NORIA

The finite-element grid used with NORIA to simulate the convection cell
problem is presented in Figure 4.33. The grid consisted of 21 elements in
the vertical direction and elements in the horizontal direction for a total
of 105 elements and 368 nodes. The width and height of all elements except
those in the top and bottom rows were 0.041 92 m. The height of elements in
the top and bottom rows was one-half the height of the other elements, or
0.020 96 m. The reason for the one-half height elements on the top and
bottom rows was to align the elements with the heater as shown in Figure
4.33.

Along the bottom boundary, zero flux conditions for liquid, vapor, air, and
heat, were assigned. Along the outside boundary, the temperature was held
fixed at 21.5'C, while the liquid, vapor, and air were assigned zero-flux
conditions. At the top boundary, the temperature was held fixed at
21.5'C, the effective liquid pressure at 102 168.4 Pa (atmospheric
pressure plus the height of water in the convection cell), vapor pressure at
11 330 Pa and air pressure at 90 000 Pa. Along the inner boundary, zero flux
conditions were assigned for the liquid, air, and vapor. A zero heat flux
condition was assigned everywhere along the inner boundary except along the
heater where the heat flux was 278.3 W/m. The initial conditions for
effective liquid pressure, vapor partial pressure, air partial pressure, and
temperatures were assigned values of 102 168.4 Pa, 11 330 Pa, 90 000 Pa, and
21.5'C, respectively.

NORIA could not simulate the convection cell problem. As in other problems,
NORIA ran for several time steps, then started reducing its time-step size
until it became smaller than its initial value, at which time the simulation
terminated. The cause of the time-step problem is not clear but it appears
to be due to large differences between the predictor and corrector vapor
partial pressure solutions. NORIA uses differences between the predictor and
corrector solutions when estimating a new time-step size.

4.2.2.3 PETROS

PETROS, being a one-dimensional code, was not capable of solving the
convection cell problem, which was a two-dimensional problem.
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4.2.3 Two-Phase Flow

4.2.3.1 TOUGH

TOUGH could not simulate satisfactorily the two-phase flow problem. Probably
the main reason for not obtaining a good solution was the difficulty in
handling the boundary condition on the right side and the boundary condition
due to placing the core in the oven. TOUGH required 70 time steps and 25 s
of CPU time to generate its solution.

The integrated finite-difference grid used to simulate the problem is
presented in Figure 4.34. It consisted of 100 grid blocks labelled AO
through A99, each 0.005 969 m. wide, and a boundary grid block, labelled YY1,
used to control the right side boundary conditions.

On the left side of the grid, zero flux conditions for liquid, gas, and heat
were assigned. Because of these conditions, no boundary elements were added
at the left side of the grid. On the right side, a large volume element was
assigned. This forced a constant pressure, temperature, and gas saturation
at that boundary. The pressure, temperature, and gas saturation assigned to
this block were 101 330 Pa, 20-C, and 1.0, respectively. The initial
conditions were set at a pressure of 1 840 965 Pa, a liquid saturation of
1.0, and a linear temperature distribution between 192-C at the left edge
of the core and 1840C at the right edge.

The comparison of the TOUGH results with the experimental results are
presented in Figure 4.35. Although TOUGH showed a similar temperature trend
as the experiment, TOUGH consistently predicted lower temperatures than those
measured in the experiment. The cause of this was threefold and all were
related to the boundary conditions.

First, the simulation did not take into account a constant temperature along
the side of the core due to placing the core in the oven. This effect would
have increased the temperature in the core because the oven temperature was
higher than the initial core temperature. Attempts to include a constant
temperature boundary condition at the outside edge of the core failed because
extremely small time steps were required and, consequently, the solution
progressed very slowly making the computer cost prohibitive.

Second, the large volume of the right boundary grid block was inconsistent
with the zero temperature gradient boundary condition. As a result, the
temperature at the right boundary grid block was kept fixed at 20'C.
This lowered the temperature all through the core which is particularly
noticeable at the right side of the plot in Figure 4.35, where the
temperature gradient is very steep. Attempts to force a zero heat flux
condition by assigning zero thermal conductivities to the right grid block
failed because extremely small time steps resulted.

Third, TOUGH cannot directly handle a transient pressure boundary condition.
It must do so with its restart feature. Because the pressure drops very
rapidly at the right side, the code would have required a restart at almost
every time step. Setting up the input data to repeatedly use the restart
feature would have been time consuming and running the code would have been
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too expensive. However, if the restart feature had been used, heat would not
have left the system so quickly and the temperatures would have been higher.

4.2.3.2 NORIA

The finite-element grid used to simulate the two-phase flow problem with
NORIA is presented in Figure 4.36. The grid consisted of 100 elements, each
0.005969 m wide and 0.0508 m high. The height of the grid blocks was based
on the diameter of the core.

In contrast to the other codes, NORIA can account for the temperature effects
of placing the core in the oven by specifying boundary conditions along the
top and bottom of rows of nodes on the grid. These nodes were assigned
temperatures of 198.9'C, the oven temperature. In addition, these nodes
were also assigned zero values for liquid, vapor, and air mass fluxes. Along
the left edge of the grid, zero values were assigned for liquid, vapor, and
air mass fluxes, and the conductive heat flux. Along the right edge, several
types of boundary conditions were applied. First, it was assumed that the
liquid flux was zero in order to represent a seepage face. The vapor partial
pressure was allowed to vary with time according to the relationship given in
Section 3.2.3. The air partial pressure was held fixed at an arbitrarily
chosen value of 1000 Pa. Finally, a zero conductive heat flux was assigned
along the right side boundary. These conditions implied that heat could
escape from the core only by convection of water vapor out the right side
boundary. Initial conditions for effective liquid pressure, vapor partial
pressure, and air partial pressure were held constant along the length of the
core at 2 170 000 Pa, 2 170 000 Pa, and 1 000 Pa, respectively. The initial
air temperature varied linearly from 192'C at the right end of the core
to 184'C at the left end.

NORIA could not simulate the two-phase flow problem. After several time
steps, NORIA started reducing the time-step size until it became smaller than
the initial time-step size. When this situation occurred, execution
stopped. The cause for the time step size reduction might be related to the
difficulty NORIA has in simulating problems that have no capillary pressure.

Because NORIA cannot directly handle the saturation-capillary pressure curve
when there is no capillary pressure, a curve must be forced in the code. In
this problem it was done by allowing large saturation changes for extremely
small capillary pressure changes by using a linear model of the form:

S (i-Pc/a)

where S is saturation, P is capillary pressure, and a is a small number
representing the change in capillary pressure between S - 0 and S - 1. It
can be seen that if Pc becomes large due to a calculation that has not
converged, say on the first iteration, then S becomes negative and the
calculations produce poor results.
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4.2.3.3 PETROS

The finite-difference grid used to simulate the two-phase flow problem with
PETROS is presented in Figure 4.37. It consisted of 101 nodes separated by a
distance of 0.005 969 m. The left node, node 1, was set so that there was no
flux of mass and heat out the system. The right node, node 101, was used to
specify several types of boundary conditions. First, a zero flux boundary
with respect to both water and heat was used. The zero flux condition
approximated a seepage-face boundary condition as the water vaporized very
quickly near the right boundary. The zero heat flux condition allowed heat
to escape only by convection. In addition, at the right boundary the vapor
partial pressure was set to 101 330 Pa to approximate atmospheric
conditions. Actually, the pressure at the right boundary was time dependent
and approached atmospheric pressure. However, PETROS cannot handle a time
dependent boundary pressure condition so the atmospheric pressure was used as
a boundary condition. Initial conditions assigned were a saturation of
0.9999 and a temperature distribution of:

T(x) - 192.0 - 13.402 58x

where x is the distance measured from the left boundary. As in other
problems simulated with PETROS, the initial vapor pressure was calculated
internally. In this problem, PETROS set the vapor pressure to the saturation
pressure. In addition, because PETROS is a one-dimensional code, the impact
of placing the core in the oven on temperature could not be simulated. Air
was not included in the solution of this problem.

The results from PETROS, presented in Figure 4.38, did not compare well with
the experimental results. The temperature at the right side actually
increased approximately 1.5-C during the simulation when it should have
decreased significantly. The temperature at the left side decreased
approximately .9'C. Apparently, heat was transferred from the left side
of the core to the right side with very little actually leaving the system.

The saturation curve exhibited some odd behavior. The saturation curve
produced oscillations, similar to that exhibited by PETROS in the radial
boiling front problem (Section 4.1.4.3), throughout the modeled region. The
cause for this behavior is not known but may be due to the specification in
the problem of no capillary pressure. This specification caused zero divide
errors when implemented in PETROS. To remedy this, a linear capillary
pressure curve, similar to the one used by NORIA in the preceding section,
was specified. This might be producing large capillary pressures causing an
ill-conditioning of the finite-difference equation which results in
oscillations.
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CHAPTER 

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Several conclusions can be reached from this study. In general, the codes
reviewed, TOUGH, NORIA, and PETROS, are extremely difficult to use. First,
the codes have their own built-in time-step-size criteria which on more than
one occasion prevented the codes from running to completion even for very
simple one-dimensional problems. Second, each code seems to have some
peculiarity in handling boundary conditions, the result of the numerical
algorithm employed in the code or poor documentation. This second item is
presented below in slightly more detail. Third, all the codes seemed to have
some difficulty with evaporation/condensation problems. Fourth, there does
not seem to be a wealth of problems available for adequately testing these
codes for conditions that may occur near an HLW repository. The result of
each simulation is summarized in Table 5.1.

5.1.1 TOUGH

TOUGH, in general, was capable of solving most of the problems, and produced
some type of solution for all the problems. Overall, with respect to solving
problems, it performed the best of the three codes tested. The problems it
had difficulty solving were caused by the convergence problems on the
dependent variables, which resulted in small time-step sizes, and boundary
conditions. It also had the most difficulty with numerical dispersion when
the heat transport problems were tested. Numerical dispersion could have
been avoided if a finer mesh had been used when running this problem.
Typically, core storage requirements were very large, even for small
problems. Time requirements for solving problems covered a large range.
Small, well-behaved problems, those that used few grid blocks or did not
include vaporization, ran fairly quickly, even rivalling PETROS' times on
some problems. On other problems, the large ones or ones that involve
evaporation, long running times were necessary.

TOUGH's greatest weakness is probably the way it handles boundary conditions.
The method employed in TOUGH to handle boundary conditions (large volumes
elements or the lack of adjoining elements) limits its use when boundary
conditions are mixed in the form of prescribed mass fluxes and constant
temperatures or something similar. These boundary conditions are
inconsistent with each other when being implemented with the TOUGH method.

Another weakness in TOUGH is the method employed to enter the grid
information. The specifying of grid volumes and interfacial areas between
grid blocks is cumbersome when specifying a problem. Of course, this helps
with making TOUGH a one-, two-, or three-dimensional code. The weakness can
be overcome with rectangular type grids and/or mesh generators.

The governing equations in TOUGH are fairly general. The code solves only
three equations, gas pressure, mass fraction, and temperature, while PETROS
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Table 5.1: Summary of Code Comparisons

-4
ANALYTICAL/NUMERICAL SOLUTIONS

Code

TOUGH

1 solved

NORIA

solved

solved

PETROS

solved

solved2 solved with
some numerical
dispersion

3 solved fgr
1.5 x 10 s

solved fgr
4.6 x 10 

solved

4 solved small time-step
sizes

small time-step
sizes

poor solution;
oscillating
saturation

poor convergence5 solved

EXPERIMENTAL RESULTS

Code

TOUGH NORIA PETROS

1 solved for 6300 s

incorrect solution

small
sizes

small
sizes

time-step

time-step

l-d code

l-d code2

3 incorrect solution
due to poor
boundary condition
handling

small
sizes

time-step incorrect solution;
oscillating
saturations
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and NORIA solve four. This may result in its overall ability to solve the
comparison problems; it has fewer equations on which to fail. The governing
equations, however, do not consider Knudsen diffusion, which may be important
in rock with small pores such as tuff, or thermodiffusion (the transport of
one gas through the other due to temperature gradients).

5.1.2 NORIA

NORIA had difficulty solving over half the problems tested. Its difficulty,
came mainly from its built-in time-step-size criteria. In the cases where
NORIA could not solve the problem, its time-step size would increase for
several time steps and then decrease until it became smaller than the first
time step. This would cause NORIA to stop running. However, when NORIA
produced results, they were extremely accurate, the result of the use of
quadratic basis functions and small time steps. However, the cost of this
accuracy was high. The NORIA simulations typically took the longest of the
three codes tested. Even simple small problems, such as the horizontal
infiltration problem, required more than one-half hour of computer time to
complete.

When specifying input data, NORIA was fairly easy to use. Data are just
listed in order, with blanks if default values are used, and NORIA processes
the rest. There was some difficulty with the use of mass flux boundary
conditions. The documentation indicated that fluxes be specified as velocity
but did not specify if they were Darcy or pore velocities. The
two-dimensional horizontal infiltration problem, which could have been used
to test for the proper velocity, could not be successfully run.

The governing physics in NORIA are based on a liquid pressure, a vapor
partial pressure, an air partial pressure, and a heat equation. The
properties of water, air, and vapor can be specified by the user as either
constants or variables through subprograms. However, the density of water is
always a constant. The compressibility and thermal expansivity of the
soil/rock can be handled with a user supplied subroutine. In addition, the
Boussinesq approximation is used to handle density-driven flow caused by
heat.

5.1.3 PETROS

PETROS was capable of correctly simulating less than half the problems tested
and produced poor solutions for several others. The remaining problems could
not be simulated because of time-step problems and the method used to handle
vapor and air boundary conditions. In the four cases that PETROS correctly
simulated, the solution was very accurate. It produced the smallest running
times of the three codes tested, probably the result of it being a
one-dimensional code.

When PETROS had a time-step-size problem, it was because it produced small
time steps. It did not have the problem that NORIA had where time-step size
would oscillate and then become very small.
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The method used in PETROS to handle vapor and air boundaries was difficult to
implement. First, the air and vapor boundary conditions depended on each
other and a 2 x 2 matrix was set up to handle this dependence. However, the
documentation was not clear on what went into the matrix when flux conditions
were implemented. This may have been the reason why the radial boiling front
and two-phase flow problems could not be simulated.

PETROS solves similar equations as NORIA, but uses a different formulation
for them. Thermodiffusion is neglected and many of the water, air, and vapor
properties are treated as constants.

5.2 Recommendations

From this study it can be seen that each code exhibits one weakness or
another, whether it be boundary conditions (TOUGH,PETROS), core storage
(TOUGH), or computation time (NORIA). In addition, none of the codes can
directly handle fractures, a feature of welded tuff formations. Also, it is
not known how long the effects of heat generated from an HLW repository will
affect the flow field around the repository.

It is recommended that an investigation be made into the exact effects heat
may have on the flow field around an HLW repository. This investigation may
consist of either a literature search, a modeling study, or a field study.

It is also recommended that, if the results of the nvestigation proposed
above indicate a significant impact on the flow field caused by heat
generation, a new strongly heat-driven flow code be developed. This new code
would implement the best features of the codes tested in this study and
eliminate the worst. In addition, it would also include the capability to
directly handle fractures in the unsaturated zone. TOUGH and NORIA can model
fractures, but this is done explicitly by giving the fractures their own grid
blocks or finite elements. TOUGH can probably also model fractures with the
GMINC method (Pruess and Narasimhan, 1985).

The code might be based on the physics presented in TOUGH, but include
Knudsen diffusion and thermodiffusion, because TOUGH uses fewer equations and
seemed to be able to solve most of the problems. The method of handling
boundary conditions should be based on the methods presented in NORIA. These
boundary conditions were quite easy to implement. Finally, the speed of
PETROS should be implemented if possible. This may be difficult since PETROS
is a one-dimensional code which uses a tridiagonal algorithm to solve its
equations. The tridiagonal algorithm approach may be implemented in the new
code by some type of iterative directional solution technique which can take
advantage of the fast convergence of Newton-Raphson iterations. Conjugate
gradient techniques should also be considered as a possible method for
solving the equations. Conjugate gradient methods require smaller amounts of
memory and seem to be faster than other methods (Bear and Verruijt, 1987)

In Section 5.1 it was mentioned that there is a lack of test problems with
experimental results. Therefore, it is also recommended that some
experiments be designed and performed to simulate conditions that would occur
around an HLW repository. The results of these experiments should be used to
test strongly heat-driven flow codes.
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