NLS2003111 Attachment 2 Page 1 of 81

١

ATTACHMENT 2

Calculation No. 98-024

APRM - RBM SETPOINT CALCULATION

COOPER NUCLEAR STATION NRC DOCKET 50-298, DPR-46

Nebraska Public Power District DESIGN CALCULATIONS COVER SHEET

____. - . **.**

Title_/	APRM - F	BM Setpoint Calculation	Calcu	lation No. 98-024				
			Task	Task Identification No. <u>N/A</u>				
Systen	NStructure	e <u>NM</u>	Desig	Design Change No. N/A				
Compo	nent <u>NM-</u>	NAM-AR 2, 3, 4, 5, 6, 7, 8, 9	Disci	pline Instrument and Co	ontrol			
Classif	ication:	[X] Essential [] Non-Essential						
Calc.	Descript	lion:						
Determ portions	nination of s of NEDC	f the Allowable Values and setpoints for NM-NA 92-050S Rev. 2.	AM-AR 2, 3, 4, 7, 8, 9 a	and NM-NAM-AR 5,6. 7	his calculation supersed	tes the APRM and RBM		
Revisio Incorpo Rearrar	n 2 rates the l liges steps	new analytical limits for the Flow Biased Rod Blos s 4.1.3.4.1 and 4.1.3.4.2 to make the calculation f	ck, Flow Biased Scram, a low better.	and the Rod Block Clamp	for use with MELLLA.			
Devieie			de andii MELLLA medi	insting is installed.		Rev 3		
Revi C	sion 3 hange	s status from 3 to 1 COF	, based on	implementati				
3	1	Administrative change of Status to As built Status	alone all 5-17-00	NA	NIA	W.Frann 917/00		
2	3	Determination of new setpoints for the APRM Flow Biased Scram, Flow Biased Rod Block, and Rod Block Clamp. Corrected errors in the GAF setting.	alankala 12/30/99	Robert D. Champlin 12-31-99	Robert D. Champlin 1-3-2000	V3/200		
1	1	Revised RBM Setpoints based on 6 month calibration frequency and added COLR and NEDC 92-050S rev 2 to affected documents.	Alan L. Able 7/30/98	Mark E. Unruh 7/30/98	Mark E. Unruh 7/30/98	Elden Plettner Jr. 7/31/98		
0	1	Initial Issue supersedes APRM and RBM portion of NEDC 92-050S and resolution of Rev 0 Review comments	Alan L. Able 7/27/98 Alan L. Able 7/19/98	Mark E Unruh 7/27/98 Ralph Krause 7/19/98	Mark E. Unruh 7/27/98 Mark E. Unruh (App A,B) 7/23/98 Ralph Krause 7/19/98	Ted Gifford 7/27/98		
Rev. No.	Status	Revision Description	Prepared By/Date	Checked or Reviewed By/Date	Design Verification/Date	Approved By/Date		

Status Codes 1. As - Built

3. For Construction 4. Superseded or Deleted

.

2. Information only

Nebraska Public Power District DESIGN CALCULATIONS COVER SHEET

_.....

Title /	APRM - F	BM Setpoint Calculation	Calo	Calculation No. 98-024				
			Tas	Task Identification No. N/A				
System	n/Structur	e NM	Des	ion Change No. N/A				
Compo	onent NM-	NAM-AR 2 3 4 5 6 7 8 9	Disc	cipline Instrument and C	ontrol			
Classif	ication:	[X] Essential [] Non-Essential		<u></u>		•		
			I					
Calc.	Descrip	ion:						
Determ portions	ination of s of NEDC	the Allowable Values and setpoints for NM-N 92-050S Rev. 2.	AM-AR 2, 3, 4, 7, 8, 9	and NM-NAM-AR 5,6. 1	his calculation supersed	les the APRM and RBM		
					1			
					····-			
					<u> </u>			
		Revised RBM Setpoints based on 6 month	al Pale	Mah Ellah	Mal III.I	Elden Platternal		
1	1	calibration frequency and added COLR and NEDC 92-050S rev 2 to affected documents.	7/30/98	7/30/98	7/30/98	7/31/98		
0	1	Initial Issue supersedes APRM and RBM portion of NEDC 92-050S and resolution of Rev 0 Review comments	Alan L. Able 7/27/98 Alan L. Able 7/19/98	Mark E Unruh 7/27/98 Ralph Krause 7/19/98	Mark E. Unruh 7/27/98 Mark E. Unruh (App A,B) 7/23/98 Ralph Krause 7/19/98	Ted Gifford 7/27/98		
Rev. No.	Status	Revision Description	Prepared By/Date	Checked or Reviewed By/Date	Design Verification/Date	Approved By/Date		

Status Codes 1. As - Built

t 3. For Construction

.

• •

2. Information only

4. Superseded or Deleted

Nebraska Public Power District DESIGN CALCULATIONS COVER SHEET

Title	APRM - F	RBM Setpoint Calculation	Calc	Calculation No. <u>98-024</u> Task Identification No. <u>N/A</u> Design Change No. N/A				
			Tas					
System	n/Structur	e_ <u>NM</u>	Des					
Compo	onent <u>NM</u>	NAM-AR 2, 3, 4, 5, 6, 7, 8, 9	Disc	cipline <u>Instrument and C</u>	ontrol			
Classif	lication:	[X] Essential [] Non-Essential						
			I		· · · · · · · · · · · · · · · · ·			
Calc.	Descrip	tion:						
r I								
Determ	nination o	f the Allowable Values and setpoints for NM-N	IAM-AR 2, 3, 4, 7, 8, 9	and NM-NAM-AR 5,6. 1	This calculation supersed	les the APRM and RBM		
portions	s of NEDC	C 92-050S Rev. 2.						
						ľ		
					<u> </u>			
						}		
				1				
					=			
			J		ļ	J I		
		Reportion & Review	Con fall	Maledal	APPA+B: AGAZIUL	CARILIA .		
		comments	7/27/98	7/27/98	7/23/95 MEUN	VIII a not		
0	1	Initial Issue supersedes APRM and RBM	alakalle	Q. Traise	d. Joure	1//		
Rev	Statue	portion of NEDC 92-050S.	7//9/98 Prenared	<u></u>	<u></u>			
No.	Glatus	Revision Description	By/Date	Reviewed Bv/Date	Verification/Date	By/Date		

Status Codes

1. As - Built 2. Information only

3. For Construction 4. Superseded or Deleted

Nebraska Public Power District

Sheet_1of_3

DESIGN CALCULATION CROSS REFERENCE INDEX

NEDC	<u>98-024</u> Preparer: <u>Cilca</u>	Gele	Reviewer: Robert A. Champlin
Rev No	D Date:/2-30.99	······	Date: <u>/2-3/-99</u>
Item No.	DESIGN INPUTS	Rev. No.	PENDING CHANGES TO DESIGN INPUTS
1	USAR Section III-7.5.4	-	
2	USAR Section VII-5.7	-	
3	USAR Section VII-5.8	-	
4	USAR Section VII-7.4.3	-	
5	NEDC-32676P	1/97	
6	NEDC-31892P	1	
7	GENE-187-27-1292	12/92	
8	VM1025, Vol. 8, Part 4, Book 1 (GE Type 555 DP Transmitter)	9/70	
9	197R148, Sheet 2	N03	
10	197R148, Sheet 3	N06	
11	197R148, Sheet 4	N04	
12	197R148, Sheet 11	N02	
13	197R148, Sheet 13	N05	
14	791E256, Sheet 9	N17	
15	791E256, Sheet 10	N11	
16	EQDP 46	6	
17	GE Spec. 23A1399	1	
18	GE Spec. 22A2811	3	
19	GE Spec. Data Sheet 22A281AC	0	
20	GE IDS 248A9730NS	0	
21	GE IDS 234A9301NS	9	
22	GE Spec. 21A1368	2	
23	VM1177	0	
24	VM1025, Vol. 4, Part 2 (Neutron Monitoring System)	8/93	
25	VM1025, Vol. 4, Part 1 (Neutron Monitoring Components)	9/86	
26	VM0067	8	
27	Design and Perf. Spec. 175A9679	0	
28	Design and Perf. Spec. 235A1386	1	

•

Sheet 2of 3

Nebraska Public Power District

DESIGN CALCULATION CROSS REFERENCE INDEX

NEDC <u>98-024</u>

.

.

Preparer: <u>Glan Lall</u> Reviewer: <u>Rahit A. Champlin</u>

Rev No	2 Date:	12-30-99		Date: <u>12-31-99</u>
Item No.	DESIGN INPUTS		Rev. No.	PENDING CHANGES TO DESIGN INPUTS
29	257HA392AD		4	
30	VM1518		0	
31	VM1575		1	
32	VM1137		1	
33	VM1045		4	
34	DC89-219		0	
35	DI-004		-	
36	VM 1106		1	
37	GE-NE-L12-00867-01-01		1	
		······		

Sheet<u>3</u>of<u>3</u>

Nebraska Public Power District

DESIGN CALCULATION CROSS REFERENCE INDEX

NEDC	<u>98-024</u> Prep	al Lall	Reviewer: Robert & Champlin		
Rev No	Date	:: <u>/2</u>	30-99	Date: <u>12-31-99</u>	
Item No.	Affected Documents	Rev. No.	CHANGE Required	Action Item Tracking Number (If change is required)	
1	Tech Specs 3.3.1.1	178	Yes	CED 1999-0117	
2	Tech Specs 3.3.2.1	178	No		
3	TRM Section 3.3.1	1	Yes	CED 1999-0117	
4	6.1APRM.303	4C1	Yes	CED 1999-0117	
5	6.1APRM.304	5	Yes	CED 1999-0117	
6	6.1APRM.305	8C1	Yes	CED 1999-0117	
7_	6.1RBM.301	4	No		
8	6.1RBM.302	2	No		
9	6.2APRM.303	7C1	Yes	CED 1999-0117	
10	6.2APRM.304	5	Yes	CED_1999-0117	
11	6.2APRM.305	7	Yes	CED 1999-0117	
12	6.2RBM.301	4	No		
13	6.2RBM.302	2	No		
14	DCD 14	2	No		
15	DCD 21	2	Yes	CED 1999-0117	
16	4.1.5	13C1	No		
17	2.3.2.27	25	Yes	CED 1999-0117	
18	2.3.2.28	32	Yes	CED 1999-0117	
19	Core Operating Limits Report	-	No		
20	6.1RR.303	6	No		
21	6.2RR.303	6	No		
	·····				
			<u></u>		
			<u></u>		

Page <u>1 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer: _	al Lall	Reviewer: Rolet A. Champlin_
Rev. No:	2	_Date:	12-30-99	Date: <u>12-31-99</u>

REFERENCES

- 1. USAR Sections III-7.5.4, Flow Control, VII-5.7, Average Power Range Monitor Subsystem; VII-5.8, Rod Block Monitor Subsystem; VII-7.4.3, Rod Block Interlocks.
- 2. J. E. Walker, P.D. Knecht, Analytical Limits for Cooper Nuclear Station, NEDC-32676P, General Electric Company, San Jose, CA, January 1997.
- 3. General Electric Report NEDC-31892P, Revision 1, May 1991, Extended Load Line Limit and ARTS Improvement Program Analyses for Cooper Nuclear Station Cycle 14.
- 4. W.H. Cooley, J.L. Leong, M.A. Smith and S. Wolf, *General Electric Instrument Setpoint Methodology*, NEDC-31336P-A, General Electric Company, San Jose, CA, September 1996.
- 5. W.H. Cooley, Setpoint Calculation Guidelines for the Cooper Nuclear Station, EDE-38-1090, Rev. 0, General Electric Nuclear Energy, San Jose, CA, January 25, 1991.
- 6. GE Report GENE-187-27-1292, DRF-A00-05122, "Neutron Monitoring New Analytical Limits for Cooper Nuclear Station", December 1992.
- 7. CNS Engineering Procedure 3.26.3, Rev. 4, Instrument Setpoint and Channel Error Calculation Methodology.
- 8. VM 1025, Volume 8, Part 4, Book 1, (198-4532K16-300C), GE Type 555 Differential Pressure Transmitter Instructions.
- 9. CNS Surveillance Procedure 6.1APRM.305, Rev 8C1 / 6.2APRM.305, Rev 7, APRM System (Flow Bias and Startup) Channel Calibration
- 10. CNS Surveillance Procedure 6.1RBM.302, Rev 2 / 6.2RBM.302, Rev 2, RBM Channel Calibration.
- 11. CNS Surveillance Procedure 6.1RR.303, Rev 6 / 6.2RR.303, Rev 6, Reactor Recirculation Flow Unit Transmitter and Flow Unit Cyclic Channel.
- GE Elementary Diagram Power Range Neutron Monitoring System, 197R148, Sheet 2, Rev. N03; Sheet 3, Rev. N06; Sheet 4, Rev. N04; Sheet 11, Rev. N02; Sheet 13, Rev. N05.
- 13. GE Elementary Diagram Reactor Protection System, 791E256, Sheet 9, Rev. N17; Sheet 10, Rev. N11.
- 14. EQDP 46, Rev. 6 Environmental Conditions.
- 15. GE Letter, J. Leong (GE) to R. Bussard (NPPD), Subject "Cooper Low Power APRM Analytic Limits", Dated October 1, 1992.
- 16. Cooper Letter, CNS 928823, P. Ballinger (NPPD) to J. Leong (GE), "LPRM Information / APRM Setpoint Review", November 13, 1992.
- 17. Equipment Data File (EDF).
- 18. CNS Letter to GE, Guide Lines to Review GE Reference Document, August 15, 1996.
- 19. Cooper Nuclear Station Improved Technical Specifications.
- 20. GE Letter, C960911 to CNS (Gautam Sen), Telephone Conversation Confirmation (regarding CNS Setpoint Analysis), September 11, 1996.
- 21. CNS Instrument and Control Procedure 14.1.2.1, Rev. 11, IAC Test Gauge Calibration.

A

Page <u>2</u> of <u>64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NE	DC: <u>98-024</u>	Preparer: _	al Lall	Reviewe	er:	_
Re	v. No:2	Date:	12.30-99	Date:		
22.	GE Design Specifi	cation, 23A139	9, Neutron Monitorin	g System (RBM/AR	ΓS), Rev. 1.	10
23.	CNS IAC Procedu	re 14.1.40, Rev	. 2.1, Fluke 8600A Di	gital Multimeter Ope	ration and Maintenance.	1 LES
24.	GE Neutron Monit	oring System D	esign Specification, 2	2A2811, Rev. 3.		
25.	GE Neutron Monit	oring System D	esign Specification D	ata Sheet, 22A2811A	AC, Rev. 0.	
26.	GE Neutron Monit	oring System Iı	istrument Data Sheet,	248A9730NS, Rev.	0.	
27.	GE Nuclear Boiler	Instrument Dat	a Sheet, 234A9301NS	S, Rev. 9.		
28.	GE Recirculation F	Flow Element S	pecification, 21A1368	3, Rev. 2.		
29.	VM 1177, RR Ven	turi Flow Elem	ents, Rev. 0			
·`` 30.	VM 1025, Volum Modification), Aug	e 4, Part 2, ((gust 1993.	GEK-34550C), Powe	r Range Neutron M	lonitoring System (W/ ARTS	
31.	VM 1025, Volume 1986.	e 4, Part 1, (GE	K-34551B), Power R	ange Neutron Monit	oring Components, September	
32.	Flow Unit (GE Dy Flow Unit OMI, Ja	vg 791E392NS nuary 1995.	G1; Design & Perf S	pec 225A6445). Al	so, VM 0067 (GEK-34642D),	
33.	Local Power Range	e Monitor Desig	gn and Performance S	pecification, 175A96	79 Rev. 0.	
34.	APRM Page Desig	n and Performa	nce Specification, 235	5A1386, Rev. 1.		
35.	Nuclear Engineerir	ng Data Book -	Nuclear Instrumentati	on Cooper Station, 2	57HA392AD Rev. 4.	
36.	Average Power Ra	nge & Flow Co	nverter Specification,	175A8250, Rev. 0		
37.	VM 1518, DVM F	luke 45, Rev. 0.				
38.	VM 1575, Pneuma	tic Calibrator, C	Crystal Engineering, R	ev. 1		
39.	VM 1137, Ametek	Type RK Dead	Weight Tester, Rev.	1.		
40.	VM 1045, Fluke 80	500A Digital M	ultimeter Instruction I	Manual, Rev. 4		
41.	Letter, J.S. Charnle December 12, 1996	ey (GE) to G. S 5.	en (NPPD), Subject "A	Analytical Limits for	Neutron Monitoring System",	
42.	Memo, P. Ballinger Rev. 1", Dated Jan	r (CNS) to Dr. uary 16, 1997.	R. Burch (CNS), "Re	view of NEDC 92-5	0S, Rev. 3 and NEDC 95-109,	
43.	GE Susceptibility I	Design and Perf	ormance Specificatior	n, 225A4338, Rev. 0.	,	
44.	DC 89-219, ARTS/	ELLA Implem	entation.			
45.	ST96-084, Determi Control Room.	ination of Radi	o Frequency Interferen	nce (RFI) by Hello I)irect Wireless Headsets in the	
46.	SP97-010, Testing	of Permanent C	Cellular Phones.			
47.	SP97-009, Testing	SAIC Model P	DE-4 and PD-4 Teled	osimetry and Repeate	er Units.	
48.	DI-004, Impell Des	ign Input				

49. NUREG-1433, Vol. 1, Rev. 1, Standard Technical Specifications, GE Plants, BWR/4, dated April 1995.

Page <u>3 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		Preparer:	ale Lall	Reviewer:
Rev. No:	2	Date:	12-36-99	Date:

50. VM 1106, Fluke Model 8502A Digital Multimeter Instruction Manual, Rev. 1

- 51. GE Letter, from D. J. Bouchie (GE) to Elden Plettner (CNS), dated July 8, 1998, APRM Restricted Condition Definition.
- 52. GE Letter NPPD-R-98062, from Richard Rossi (GE) to Elden Plettner (CNS), dated July 22, 1998, Impact of Questions on APRM/RBM Calculations.
- 53. GE Calculation GE-NE-A41-00065-01-02-04-05-06-07 Rev. 1, Average Power Range Monitor (APRM), Rod Block Monitor (RBM) and Technical Specification (ARTS) and Power Range Monitoring Setpoint Calculations (NEDC 92-050S, Rev. 3)

54. Cooper Nuclear Station MIG Project, GE-NE-L12-00867-01-01, Rev 1, Reactor Power/Flow Map

55. CED 1999-0117, Cycle 20 Core Reload.

Page <u>4 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-02</u>	24	Preparer: _	al Lall	Reviewer: Relit A. Champlin
Rev. No:	2	Date:	12-30-99	Date: <u>12-31-99</u>

1. PURPOSE

In consideration of the Cooper setpoint verification program in conjunction with a 7.5 month surveillance interval (required 6 months plus 25% grace period), determine the Nominal Trip Setpoint and Allowable Value for the Reactor Protection System (RPS) scrams from the Average Power Range Monitoring High Neutron Flux, Flow Biased, and Low Power (Setdown) High Neutron Flux trip functions. Also considerations of allowable APRM gain adjustment factors (AGAF) of 0.98 to 1.02 will be made (CNS Technical Specifications SR 3.3.1.1.2).

In conjunction with a 7.5 month surveillance interval (required 6 months plus 25% grace period), determine the Nominal Trip Setpoint and Allowable Value for the Rod Block Monitoring System (RBM). The RBM System (NM-NAM-AR5 and NM-NAM-AR6) monitors local neutron flux around a control rod selected for withdrawal, and blocks control rod withdrawal when neutron flux exceeds predefined, power dependent setpoints, Reference 1.

2. REQUIREMENTS

2.1 The APRM System (NM-NAM-AR2, NM-NAM-AR3, NM-NAM-AR4, NM-NAM-AR7, NM-NAM-AR8, NM-NAM-AR9) monitors average neutron flux throughout the entire core and provides a rod block and scram at two separate flow-biased setpoints. The APRM system has the further requirement of providing rod blocks and scrams at other lower setpoints when the reactor mode switch is in a mode other than RUN (rod block in STARTUP, and scram in REFUEL or STARTUP and HOT STANDBY), Reference 1. Per References 2, 6, 15, 41, and 54, the Analytical Limits for the APRM Trip Channels are as follows;

APRM Trip Function Analytical Limit Flow Biased Scram 0.66W + 74.8% RTP Flow Biased Rod Block 0.66W + 63.5% RTP **High Neutron Flux Scram** 123.0% RTP Rod Block Clamp 111.7% RTP Downscale Neutron Flux Rod Block 0.0% RTP High Flux - Setdown Scram 17.4% RTP High Flux - Setdown Rod Block 14.4% RTP

Where "W" is the two loop recirculation flow rate in percent of rated (rated loop recirculation loop flow rate is that recirculation flow rate which provides 100% core flow at 100% power).

2.2 The APRM, Rod Block Monitor, and Technical Specifications (ARTS) / Extended Load Line Limit Analysis (ELLLA) Implementation of DC-89-219 physically reconfigured the RBM and changed the Analytical Limits of the setpoints for both the RBM and APRM (in RUN mode), Reference 3. Per References 2, 3, and 22, the Analytical Limits for the RBM ARTS Trip Channels and Nominal Trip Setpoints for the Time Delay (Td1) and Time Constants (Tc1, Tc2)*, Reference 44, are as follows;

RBM Trip Function	Analytical Limit
Low Power Setpoint (LPSP)	30%
Intermediate Power Setpoint (IPSP)	65%
High Power Setpoint (HPSP)	85%

0

B

Page <u>5 of 64</u>

NEDC: <u>98-024</u> Prep		_Preparer: _	alaLall	Reviewer: Robert & Champlin_		
Rev. No:	2	_Date:	12-30-99	Date: <u>12-3</u>	1-99	
				Analytical Limit	MCPR Limit	
Low	Trip Setpo	int (LTSP)		117.0% 120.0% 123.0% 125.8%	1.20 1.25 1.30 1.35	
Intern	mediate Tr	ip Setpoint (II	TSP)	111.2% 115.2% 118.0% 121.0%	1.20 1.25 1.30 1.35	
High	Power Set	point (HTSP)		107.4% 110.2% 113.2% 116.0%	1.20 1.25 1.30 1.35	
Dow	nscale 1 rip	Setpoint (D1	Sr)	<u>NTSP</u>		
Time	Delay 1 (1	ſd1)		3.5 sec.		
Time	• Constant	I (Tc1)		0.5 sec.		
Time	Constant 2	2 (Tc2)		б sec.		

Nebraska Public Power District DESIGN CALCULATIONS SHEET

* Time Delay 1 (Td1): Delays nulling sequence after rod selection so RBM filtered signal nears equilibrium before calibration; no delay without filter. Adds additional time delay from rod selection to allowable rod withdrawal start.

Time Constant 1 (Tc1): RBM signal filter time constant.

Time Constant 2 (Tc2): Variable APRM signal filter constant. Does not affect RWE transient response.

- ** The Downscale trip setpoint (DTSP) functions to prevent a rod withdrawal if the selected RBM channel power is too low from its most recent normalized calibration conditions (i.e. 100%). This assures that the calibration (i.e., normalization) performed at the time of rod selection remains valid before permitting withdrawal of the rod. The Analytical Limit was changed from 91% to 89% of reference level per Reference 6. The DTSP limit is not utilized in any licensing bases Rod Withdrawal Error (RWE) analysis or that the range is restricted by design to values considered in the RWE analysis.
- *** There is no MCPR limitation associated with the DTSP.
- 2.3 This calculation is performed in accordance with CNS Engineering Procedure 3.26.3, Instrument Setpoint and Channel Error Calculations (Reference 7).
- 2.4 The methods used in this calculation are consistent with the requirements of Reg. Guide 1.105 that the GE Instrument Setpoint Methodology (Reference 4) is in compliance.

Page <u>6 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer: _	alant all	Reviewer: Robert D. Champlin
<u>Rev. No:</u>	2	_Date:	12-30-99	Date: 12-31-99

3. ASSUMPTIONS

- 3.1 The GE APRM/RBM equipment accuracy specification includes the uncertainties due to seismic effect on the equipment located in the Neutron Monitoring System equipment panels. All equipment in these panels are qualified as a unit.
- 3.2 The recirculation loop flow transmitters are classified as non-essential instruments. These instruments are rigidly mounted and their ZPA (zero period acceleration) during a seismic event would be insignificant. Thus Seismic Effects (SE) will not be considered for this calculation.
- 3.3 The values of the As Left Tolerance, CTOOL, and CREAD are controlled by 100% testing. Therefore, they are assumed to represent 3 sigma values, Reference 5. Calibrating equipment accuracies are taken as three (3) sigma values due to industry required periodic calibration with high accuracy standards traceable to NIST. The accuracy of the calibration standard is assumed the same as that of the accuracy of the testing equipment, unless otherwise specified.
- 3.4 The manufacturer does not specify Vendor drift for the RBM signal conditioning equipment (Reference 22). Therefore the value used for Vendor Drift (VD) will be assumed to be equal to the random portion of Vendor Accuracy for 6 months, on a 2-sigma basis (References 4 and 5). The long term Vendor Drift for the RBM trip unit, is assumed to be adequate for the allowed VD within the period between surveillance tests (assumed 3 months), based on GE's experience of this equipment's performance in BWR plants.
- 3.5 The manufacturer does not specify Vendor drift for the recirculation loop flow transmitters (Reference 8). Therefore the value used for Vendor Drift (VD) will be assumed to be equal to the random portion of Vendor Accuracy for 6 months, on a 2-sigma basis (References 4 and 5).
- 3.6 For ARTS operation, setpoints for the RBM with filter are considered (Reference 3). Table 10-5(b) of Reference 3 states, for these items that no limitations exist (setpoint does not affect the RWE analysis or the range is restricted by design to values considered in the RWE analysis). The time delay (Td1) and time constant (Tc1, Tc2) settings currently used are assumed to be valid, and it is assumed that no setpoint calculations (using setpoint methodology) are required for these timing functions.
- 3.7 The APRM/RBM Technical Specification (ARTS) improvement to the RBM does not degrade the instrument accuracy and drift of the system.
- 3.8 The Radiation Effect (RE) to the equipment in the specified environment does not exceed the normal integrated dose specified in NPPD Environmental Design Conditions document (Reference 48).
- 3.9 The variation of the LPRM ion chamber output current with ±1 percent change of the ion chamber voltage in the saturated range is negligibly small or equal to zero (Reference 4).
- 3.10 The APRM/RBM equipment is electrical and is not subject to Overpressure Effects (OPE). The recirculation loop flow transmitter has a design pressure rating of 2,000 psig (Reference 8), well above the normal and accident pressures that will be seen by this instrument.
- 3.11 It is assumed that the currently installed NMS equipment is the same as that originally supplied by GE other than normal PC board (by GE) electronic upgrades (References 30, 31, and 32).
- 3.12 Unless otherwise specified, the vendor accuracies are considered to be 2 sigma values.
- 3.13 The manufacturer does not specify a Power Supply Effect (PSE) for the APRM/RBM Technical Specification (ARTS) equipment and it is assumed to be included in the equipment accuracy.

Page <u>7 of 64</u>

10

囟

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer: _	alatable	_Reviewer: Robert D. Champlin_
Rev. No:	2	_Date:	12-30.49	Date: <u>12-31-99</u>

- 3.14 The APRM/RBM Technical Specification (ARTS) equipment is subject only to normal ambient environment and are not subject to harsh, post-accident conditions. Trip and accident environmental conditions will be considered equal to normal ambient conditions for the purpose of this calculation. Accuracy Temperature Effect (ATE) and Humidity Effect (HE) will not be considered.
- 3.15 Static Pressure Effects (SPE) are generally only applicable for differential pressure instruments (References 3 and 4). The SPE will only apply to the recirculation loop flow transmitter for calculations which involve flow signal inputs. Per References 8 and 52, for an assumed 1,000 psig process pressure, the SPE is equal to 0.88% span per 1,000 psig.
- 3.16 The flow element inaccuracy is assumed by References 28, 29 to be 2% of flow at normal temperature.
- 3.17 The As Left Tolerance (ALT) allowance for the APRM gain adjustment factor (AGAF) of greater than 1 (NPPD allowables are 0.98 to 1.02) is treated as an ALT of 1% power. This ALT is not included in the APRM Neutron Flux High Rod Block Setdown or the Neutron Flux High Scram Setdown, because AGAF is not performed at that low power. The ALT for the LPRMS is assumed to be the same as that of the APRMS, Reference 9.
- 3.18 The ALT for the recirculation loop flow unit summer output is assumed equal to the sum of the two recirculation flow loop square root unit output, Reference 11.
- 3.19 The APRM/RBM/Flow Unit equipment meets the requirements of the Susceptibility Design and Performance Specification, Reference 43. For normal plant operations with expected operational transient radio frequency or electromagnetic emissions, there are negligible RFI/EMI Effects (REE). Peak transient REE that may occur during plant maintenance that may affect performance of the APRM/RBM/Flow Unit equipment is not considered in this calculation. APRM/RBM/Flow Unit equipment has been subjected to various testing for determination of effects from REE (References 45, 46 & 47) and the results of these tests show no adverse effect on the components from the introduce REE. Therefore, REE will not be considered for this calculation.
- 3.20 It is assumed that for all APRM and RBM electronics in the Control Room, the stated accuracy includes temperature effects, so the ATE and DTE values are assumed to be zero.
- 3.21 Reference 38 gives a temperature accuracy of 0.01% per °F for 30°F to 130°F for a crystal engineering calibrator. Therefore, the temperature accuracy for calibration temperatures from 65°F to 104°F is:

Temperature Accuracy = 0.01% F x 39°F = 0.39% F.S..

- 3.22 Leave Alone Tolerance (LAT) for the APRM and RBM functions is assumed to be equal to $\pm 1.25\%$ power for consistency within this calculation. The use of $\pm 1.25\%$ is conservative since the current procedures (Ref. 9, 10, 11) have a LAT of $\pm 1.25\%$ or less for the identified APRM and RBM functions.
- 3.23 The use of an ALT of 1.25% for the APRM functions was used during the development of Revision 0 of this calculation in determination of Allowable Values. Changing this value would affect the Allowable Value determination, therefore this value is being maintained and is conservative with regards to the use of 1.00% in current calibration procedures. The ALT for the APRM Rod Block Clamp function is assumed to be 1.25% for the purpose of this calculation. This ALT is consistent with the related APRM functions.

Page <u>8 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer: _	ala Labh	Reviewer: Robert D. Champlin
Rev. No:	_2		12-30-99	Date: <u>12-31-99</u>

. .

4. METHODOLOGY

4.1 Instrument Channel Arrangement

4.1.1 Channel Diagram (References 12, 13, 30)

RBM Channel

•

Page <u>9 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer:	ala Lall	_Reviewer: Robert D. Champlin_
Rev. No:	2	Date:	12.30.84	Date: <u>12-31-99</u>

4.1.2 Definition of Channels

The APRM channel (loop) consists of the LPRM neutron detector inputs and electronic signal conditioning equipment for the neutron flux trip logic. In addition to above, the flow biased trip logic includes input from the recirculation flow signal. The APRM panel electronics is located in the main control room.

The RBM channel (loop) consists of the LPRM neutron detector inputs along with an APRM power trip reference input. The RBM panel electronics is located in the main control room.

The Flow Unit channel (loop) consist of the recirculation transmitter input to the flow unit which outputs to the APRM and RBM for flow biased trips (also output to Flow Unit Rod Block trip). The recirculation loop flow transmitters are located in the reactor building on instrument rack 25-7, northwest 859' elevation (Reference 11).

4.1.3 Instrument Definition and Determination of Device Error Terms

4.1.3.1 Instrument Definition

··· · • .

		<u>Reference</u>
APRM/RBM Channels		
CIC:	NM- NAM-AR2,3,4,7,8,9 (APRMS)	17
	NM- NAM-AR5,6 (RBMS)	17
Manufacturer:	GE	26, 30
Model:	K605	52
Upper Range Limit (UR)): 125%	24, 25, 26
Calibrated Range:	0-125% Power	24, 25, 26
Calibrated Span (SP):	0-125% Power	24, 25, 26
Output Signal:	0-10 Vdc	24, 26
Vendor Perf. Specs:	See Section 4.1.3.3	
Flow Transmitter		
CIC:	RR-FT-110A-D	17
Manufacturer:	GE	26, 30
Model:	Туре 555	8, 27 .
Upper Range Limit (UR)	: 850 in WC	27
Calibrated Range:	0-125% Flow	30
	(-5.7 in WC to 403.2 in WC)	11
Calibrated Span (SP):	125%	30
	(408.9" WC)	
Input Signal:	differential pressure	11
Output Signal:	10-50 mV	11
(across precision 1 ohm i	resistor)	
Vendor Perf. Specs:	See Section 4.1.3.3	

Page <u>10 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

• •

NEDC: <u>98-024</u> _		Preparer:	ala Lal	l	Reviewer: Ref	Leit D. Champlin
<u>Rev. No:</u>	2	Date:	12-30-99	•	Date: 12-31 -	99 0
		<u>Flow Unit</u> Manuf: Input Signals Output Signa Vendor Perf.	(2) 1 Specs:	GE 10 - 50 m 0 - 10 Vc See Secti	1A 1lts on 4.1.3.3	32 32 32
4	4.1.3.2	Process and I	Physical Interface	<u>s</u>		
		APRM/RBM	/Flow_Unit			Reference
		Calibration T	èmperature	60 - <u>9</u> 0 °]	7	14
		Calibration	Interval	6 months 18 month	(+25% grace) APRM s (+25% grace) RBM	19 49
		Normal Plant Tempera Radiatio Pressure Humidit	Conditions ture: n: :	60 - 90 ° 1.75x10 ² 0.10" to 1 40% - 50	R (TID, 40 yrs) .0" WG % R H	14 48 14 14
		Trip Environ Tempera Radiation Pressure: Humidit	ment Conditions - ture: n: y:	- (if requir 60 - 90 °I 1.78x10 ² 0.10" to 1 40% - 50	ed): ; R (TID, 40 yrs) .0" WG % R.H.	14 48 14 14
		Temperature	Range for Trip co	ondition E 	fror Calculations: (max trip temp - min $\frac{1}{90}$ - $\frac{60}{90} = 30^{\circ}$	calib temp) F
		Tot. Temp ra	nge (ΔT_T) = larg	er of 	or (max calib temp - min 90 - 60 = 30	n trip temp) °F
• • • F		Temp range f	$= 30 ^{\circ}\text{F}$ for DTE calc (ΔT	(_D) = max	calib temp - min calib - $00, 60 - 30$ °F	temp
		Temp range f	for ATE calc (ΔT_{j}	$(\Delta T_{T}) = \Delta T_{T}$	$\Delta T_{\rm D}$ = 30 - 30 = 0 °F	
		Temperature	Range for Norma	l condition	Error Calculations:	n calib temp) = 30 °F
		Tot. Temp rat	nge (ΔT_N) = larg = 30 °F	er of	(max calib temp - min (max calib temp - min	norm temp) = $30 ^{\circ}\text{F}$

Page <u>11 of 64</u>

		ת	Nebraska FSIGN C	a Public	c Power	District S SHEET		
			ESIGNO	ALCOI			JUJAAN 1	1.
NEDC: <u>98-0</u> 2	24	Preparer:	alı	La	eh	Reviewer: L	Kobert S. Change	IM_
Rev. No:	2	Date:	12-30	.99	······	Date: <u>12-3</u>	31-99	
		Temp rang Temp rang	e for DTE e for ATE	calc (Δ calc (Δ	$(T_D) = m;$ $(T_{AN}) = \Delta T$	$\begin{array}{l} \text{ax calib temp - min c} \\ = 90 - 60 = 30 ^{\circ}\text{F} \\ \Gamma_{\text{N}} - \Delta T_{\text{D}} \end{array}$	alib temp	
						= 30 - 30 = 0 °F		
		Seismic Co Prior t During	onditions - o Function g Function	(if requ : :	ired): N/A N/A		Assumption 3.1 Assumption 3.1	
		Decose Co		(:6	(nod).			
		Process Co	numons - r Calibratio	(ii iequi	N/Δ			
		Worst	Case:		N/A			
		During	g Function	:	N/A			
		Flow Trans	smitter					
		Calibration Temperature Range:			65 - 10	4 °F	20	
		Calibration	n Interval		18 mon	ths (+25% grace)	19, 20	
		Normal Pla	ant Conditi	ons				
		Tempe	erature:		40 - 10	4 °F	14	
		Radiat	ion:		5.2x10	R (TID, 40 yrs)	48	
		Pressu	re:		-0.10" 1	o -1.0" WG	14	
		Humic	lity:		20% - 9	90% R.H.	14	
		Trip Envir	onment Co	nditions	5			
		Tempe	erature:		40 - 10	4°F	14	
		Radiat	ion:		5.2XIU	K(11D, 40 yrs)	14	
		Humic	lity:		20% - 9	00% R.H.	14	
		Temperatu	Temperature Range for Trip conditi			Error Calculations: $\int (\max trip temp - n)$ $\int = 104 - 65 =$	uin calib temp) = 39 °F	
		Tot. Temp	range (∆T	' _Τ) = lar	ger of	0 (max calib temp - = 104 - 40	r min trip temp) = 64 °F	
		Temp rang	e for DTE	$= 64^{\circ}$ calc (Δ	$(T_D) = ma$	ix calib temp - min c = 104 (5 = 20 m	alib temp	
		Temp rang	e for ATE	calc (∆]	Γ _{ΑΤ}) = ΔΊ	= 104 - 65 = 39 °F $T_T - \Delta T_D$ = 64 - 39 = 25 °F		

Page <u>12</u> of <u>64</u>

		D	Nebra ESIGI	aska P N CAL	ublic Powe CULATIC	er District DNS SHEET		
NEDC: <u>98-024</u>		Preparer:	al	and	all	Reviewer:	but A	Champlin
<u>Rev. No:</u>	2	Date:	12-3	0-99	:	Date: 12-3	1-99	
		Temperatu Tot. Temp Temp rang Temp rang	re Ran range te for D te for A	ge for Ν (ΔT _N) = /TE cal·	Normal con = larger of $64 {}^{\circ}F$ $c (\Delta T_D) =$ $c (\Delta T_{AN}) =$	dition Error Calculations $\begin{bmatrix} (max norm temp - r) \\ 0r \\ (max calib temp - n) \\ (max calib temp - n) \\ max calib temp - min cal \\ = 104 - 65 = 39 \text{ °F} \\ \Delta T_N - \Delta T_D \\ = 64 - 39 = 25 \text{ °F} \end{bmatrix}$: nin calib t nin norm t lib temp	emp) = 39 °F emp) = 64 °F
		Seismic Co Prior t During	ondition o Func g Funct	ns - (if i tion: ion:	required): 0 0		Ass Ass	umption 3.2 sumption 3.2
		Process Co During Worst During	ndition g Calib Case: g Funct	ns - (if 1 ration: tion:	equired): N/A N/A N/A			
	4.1.3.3	Determina	tion of	<u>Individ</u>	ual Device	Accuracies		
		All accurac	су епто	contri	butions are	random variables unless	otherwise	noted.
		4.1.3.3.1	Vendor	Accura	icy (VA)			
		4.1.3.3	3.1.1	APRM	Channel			
				<u>Value</u>			<u>Sigma</u>	Reference
				VA (LI	PRM Card)	= 0.8% FS	2	33, 35
				VA (LI	PRM/APRN	} x 125%		
						= 0.30% Power		35
				VA (A	PRM Avg.	Circuit) = 0.8% FS	2	34
						= 0.8% x 125%		
						= 1.00% Power		
				VA (Tı	ip Unit Fix	(ed) = 1%FS	2	34
						= 1% x (125%)		
						= 1.25% Power		
				VA (Tı	ip Unit Flo	w-Biased) = 1% FS	2	34
						= 1% x (125%)		
						= 1.25% Power		
				VA (Fl	ow Transm	itter) = 0.4% Span	2	8
				VA (RI	R Flow Ele	ment) = 2% Rated Flow	2	28

Page <u>13</u> of <u>64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

- -..

NEDC: <u>98-024</u>		Preparer:(ala Lall Reviewer: Robert A. Champlin				
Rev. No:	_2		-30-99	Date: 12-31-	99	0	
		4.1.3.3.1.2	RBM Channel				
			VA (LPRM Card)	= 0.8% FS	2	33, 35	
			VA (LPRM/RBM)) = (0.8%)/ [SQRT (2 lprr	ns)] x 125	%	
				= 0.707 % Power			
			VA (Signal Condit	tioning Eq.) = 1.32% FS	2	22	
				$= 1.32\% \times (125\%)$			
				= 1.65% Power			
			VA(Trip Upit) = 0) 5% FS	2	22	
			VIA (IIIp Olini)	$= 0.5\% \times (125\%)$	2	h- l-	
				$= 0.578 \times (12576)$			
		412212	T1 1 1 14	- 0.03% Fower			
		4.1.3.3.1.3	Flow Unit	0 0 W TO	2	22	
			VA _i (Flow Unit.)=	2.0 % FS	2	32	
			VA, (Flow Transm	(ter) = 0.4% Span	2	8	
			VA _i (RR Flow Ele	ment) = 2% Rated Flow	2	28	
		4.1.3.3.2 Accu	iracy Temperature Ef	ffect (ATE)			
		ATE is ±19 100 °	for the recirculation % span per 100 °F at F from 49% to 20% s	GEMAC 555 flow transr 100% to 50% span and ± span	nitter per 1 1% to ±2%	Reference 8, 6 of span per	
		As sh to 48. for 48	own in 4.1.3.1 the ca .1% of the 850 in WC 8.1% span is obtained	librated span is 408.9 in V Cupper range limit. The t by linear extrapolation to	WC which emperatur be:	corresponds e coefficient	
		Temp	$5 \text{ Coeff} = 1 + 1 \times \frac{50}{50}$	$\frac{-48.1}{-20} = 1.06$ % span per 1	00 deg F		
		There	fore, for ATE _N calcu	lation where $\Delta T_{AN} = 25^{\circ} F$	⁷ (from 4.1	.3.2)	
		ATE	(Flow Transmitter) •	= 1.06% span x 25° F/100	° F = 0.27	% span	
		4.1.3.3.3 Other	Errors (Recirculation	n Flow Loop)			
		Value	2	Sigma	Refer	ence	
		OPE	0		Assur	motion 3.10	
		SPE:	0.88% span	2	Assur	nption 3.15	
		SE:	0		Assur	nption 3.2	
		RE:	U		Assur	nption 3.8	
		ne: Psf:	0		Assur	nption 3.14	
			×				

Page <u>14 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer:	ala Labe	_Reviewer: Robert D. Champlin_
Rev. No:	2	Date:	12-30-99	Date: 12-31-99

4.1.3.3.4 Accuracy Values

The identified accuracy error contributions are combined using the SRSS method to determine total device accuracy under normal conditions. The device accuracy is normalized to a 2 sigma confidence level, and is given by:

 $A_i = 2 \times SQRT((VA_i/n)^2 + (ATE_i/n)^2 + (OPE_i/n)^2 + (SPE_i/n)^2 +$ $(SE_{i}/n)^{2} + (RE_{i}/n)^{2} + (HE_{i}/n)^{2} + (PSE_{i}/n)^{2} + (REE_{i}/n)^{2} + (REE_{i}/n)^{$ any bias terms

Where the terms inside the square root sign are the random portions of the individual effects, and 'n' is the sigma value associated with each individual effect.

4.1.3.3.4.1 Normal Accuracy

For the APRM and RBM channels, there are several devices in the loop. Thus first the device accuracies under normal conditions will be calculated.

1. APRM Channel Accuracy

- a) Accuracy of devices in the APRM loop
 - 1. Accuracy of APRM Unit (including LPRM)

VA (APRM and LPRM) = 2 x SQRT (($VA_{lorm}/2)^2 + VA_{aprm}/2)^2$))

```
= 2 \times \text{SQRT} ((0.30/2)^2 + (1.00/2)^2)
```

- = 1.044 % Power 2 sigma
- 2. Accuracy of APRM Trip Unit
 - ATU (Flow Biased Trip Unit) = 1.25 % Power ATU (Fixed Trip Unit)

= 1.25 % Power

b) Accuracy of devices in the flow loop

1. Accuracy of Flow Transmitter

VA GMAC 555 = 0.40% span

SPE GMAC 555 = 0.88% span at 1,000 psig

 $A_{FT} = 2x \text{ SQRT}[(0.40/2)^2 + (0.88/2)^2 + (0.27/2)^2]$

$$= 1.00\%$$
 span $= 4.08$ in WC

The flow error at the output of the flow unit due to this A_{FT} error from both loop transmitters has been calculated in Appendix B to be:

FT Error = 0.7366 % flow

Page <u>15</u> of <u>64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-0</u>	24	Preparer:	ala Labl	Reviewer: Robal D. Chample	<u>11</u>
Rev. No:	2	Date:	12-30-99	Date: 12-31-99	
			2. Accuracy of	Flow Element	
			The Flow El loops is 2% output of th flow elemen	lement error from the venturis used in the fl flow per loop (Ref. 28). The flow error at le flow unit due to this error from both le ts has been calculated in Appendix B to be:	low the bop
			FE Error =	1.414 % flow	
			3. Accuracy of	Flow Unit	
			The Flow U error at the been calcula	Init error for is 2% FS (Ref. 32). The fl output of the flow unit due to this error ted in Appendix B to be:	ow has
			FU Error =	2.5 % flow	
			4. Total Flow C	Channel Accuracy	
			The total fl elements and	ow error due to the 2 transmitters, 2 fl d the 1 flow unit is:	ow
			AFC (ft+ fe	+ fu) = $2\sqrt{\left(\frac{0.7366}{2}\right)^2 + \left(\frac{1.414}{2}\right)^2 + \left(\frac{2.5}{2}\right)^2}$	
				= 2.965 % flow	
			This flow o multiplying slope, which (Ref. 1).	error can be converted to power error by the Flow Control Trip Reference (FCI h refers to the slope of the power/flow I	by TR) ine
			FCTR slope	= 0.66 (W coefficient) (Ref. 54)	1
			Therefore		
			AFC = 0.66	x 2.965 = 1.957 % power	
			2. RBM Channel A	ccuracy	·
			Accuracy of module	s in the RBM loop	
			1. Accuracy of RB	BM Unit (including LPRM) from 4.1.3.3.1.2	is
			VA(RBM and L	$PRM) = 2 \times SQRT((0.707/2)^2 + (1.65/2)^2)$	
				= 1.80 % Power	
			2. Accuracy of RE	BM Trip Unit 4.1.3.3.1.2 is:	
			VA (Trip Unit)	= 0.63% Power	
	•				

Page <u>16 of 64</u>

12

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-0</u>	24	Preparer:	ala Labe	Reviewer: Robert A. Champlin
<u>Rev. No:</u>	2	Date:	12-30-99	Date: <u>/2 - 31 - 97</u>
-			3 Total Channel A	couracies
			The total channel	accuracies for the various ADDM and DDM
			functions are:	accuracies for the various APRIM and RBM
			1. APRM Fixed	
			$A_{LN-fix} = 2 \times SQRT$ unit))	$((VA/n)^2 (Iprm + aprm) + (ATU/n)^2 (fixed trip)$
			$A_{LN-fix} = 2 \times SQRT$	$((1.044/2)^2 + (1.25/2)^2)$
			$A_{LN-fix} = 1.63\%$ Pov	wer
			2. APRM Flow B	iased
			$A_{LN-fb} = 2 \times SQRT$	$\int ((VA/n)^2 (Iprm + aprm))$
			+ (,	ATU/n) ² (f.b. trip unit) + (AFC/n) ² (ft+fe+fu))
			$A_{LN-fb} = 2 \times SQR'$	$\Gamma((1.044/2)^2 + (1.25/2)^2 + (1.957/2)^2)$
			$A_{LN-fb} = 2.55 \% Po$	ower (2)
			3. RBM Power F	unction
			$A_{LN-RBM-pwr} = 2 \times SC$	QRT ((VA/n)² (lprm + aprm)
			+ (A'	TU/n) ² (trip unit))
			$A_{LN-RBM-pwr} = 2 \times SC$	$QRT ((1.044/2)^2 + (0.63/2)^2)$
			$A_{LN-RBM-pwr} = 1.22\%$	6 Power
			4. RBM Trip Fur	iction
			$A_{LN-RBM-trip} = 2 \times SC$	QRT ((VA/n)² (lprm + rbm)
			+ (A'	TU/n) ² (trip unit))
			$A_{LN-RBM-trip} = 2 \times SC$	$QRT ((1.80/2)^2 + (0.63/2)^2)$
			$A_{LN-RBM-trip} = 1.91\%$	Power .
		4.1.3.3.4.2	Trip Accuracy	
			Since the normal assumption 3.14, the	and trip environments are the same, per e accuracy under trip conditions is the same as

accuracy under normal conditions.

4.1.3.4 Determination of Individual Device Drift

4.1.3.4.1 Drift Temperature Effect (DTE)

The only device in the APRM system that has a drift temperature effect is the GEMAC 555 flow transmitter. For this device the error temperature coefficient is 1.06% span per 100° F (from 4.1.3.3.2). Therefore:

DTE = $(1.06\% / 100^{\circ}F) \ge \Delta T_{D}$, where $\Delta T_{D} = 39^{\circ}F$ (section 4.1.3.2). DTE = $(1.06/100) \ge 39$ DTE = 0.413% span

Page <u>17 of 64</u>

A

Nebraska Public Power District . DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>	<u> </u>	_Preparer: _	aladall	_Reviewer: Robert & Champlin
Rev. No:	2	_Date:	12-30-99	Date: <u>12 - 31 - 99</u>

This DTE value has been included in the flow transmitter drift shown in 4.1.3.4.2 1(b).

4.1.3.4.2 Vendor Drift (VD)

The drift for APRM Trip Units was derived from analysis of site calibration data, and for the rest of the APRM and RBM processing electronics channels the drifts were derived from vendor drift and accuracy specifications.

1. APRM Channel Drift (6 month + 25% grace = 7.5 months)

a) APRM Electronics Drift

1. LPRM and APRM Unit Drift

The specified drift for the LPRM and APRM Units are:

LPRM = 0.8 % FS / 8 Weeks	2 sigma	(Ref. 33)
APRM = 0.5 % FS / 700 Hours	2 sigma	(Ref. 34)

the drift times specified in the above specifications are longer than the weekly calibration interval of the APRM electronics based on heat balance and process computer calculations. Therefore, conservatively the above drift values will be used as is (without reduction) in the drift calculation.

1.

As done for VA in 4.1.3.3.1.1, the drift error due to LPRM cards is reduced by the square root of the minimum number of LPRMs in the APRM channel. Thus the APRM electronics drift error is:

VD (APRM and LPRM) =
$$2\sqrt{\left(\frac{\frac{0.8}{\sqrt{11}}}{2}\right)^2 + \left(\frac{0.5}{2}\right)^2} = 0.555 \% \text{ FS}$$

= 0.555 x 1.25 % Power

= 0.694 % Power

2. APRM Trip Unit Drift

The drift error for the Trip Units was determined by analyzing field data by program Y-GEITAS (and GEITAS) as described in Appendix A. Results of this calculation show that the Trip Units drift for 7.5 month is 1.34 % Power:

DTU (fixed trip) = 1.34 % Power

DTU (flow-biased trip) = 1.34 %

Page <u>18 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

:

÷

		D	ESIGN CALCULATIO	ONS SHEET	
NEDC: <u>98-0</u>	24	Preparer:	alalall	Reviewer Robert A. Champlin	_
<u>Rev. No:</u>	2	Date:	12-30-95	Date: 12-31-99	
			b) Flow Channel Drift		
			1. Flow transmitter Drif	ĥ.	
			Specified vendor drift i	s:	
			VD (GEMAC 555) = (0.40% span per 6 months Assumption 3.5	
			Therefore the drift for 2	22.5 months is:	
			= 0.40% x SQ	QRT(22.5 mo / 6 mo) for 22.5 mo.	
			= 0.775 % sp	an	
			The DTE value for the	flow transmitter is:	
			DTE = 0.413 % span f	from section 4.1.3.4.1.	
			Therefore the total drift	t for the flow transmitter is:	I
			D _{FT} (flow transmitter)	=2 x SQRT ($(VD_{GEMAC 555}/n)^2 + (DTE/n)^2$)	
			$D_{FT} = 2 \times SQRT((0.77))$	$(75/2)^2 + (0.413/2)^2)$	
			= 0.878 % span		
			= 0.00878 fraction	of span	
			to convert flow transm shown in Appendix B (Thus the error due flow	hitter drift in % span to % flow, use the method (equation 10) and substitute D_{FT} in place of A_{FT} .	
			$FTD = 73.66 \text{ x } D_{FT} = 0$	0.647 % flow	
			2. Flow Unit Drift		
			From Ref. 32 the flow u	unit drift is specified to be:	
			D _{FU} = 1.25 % FS / 700) Hours	
			Since the flow units an above drift is applicable	re checked every month, it is assumed that the e for calculation.	
			Therefore the error due	to flow unit drift is:	
			FUD = 1.25 x 10/8 = 1	1.56 % flow	
			3. Flow Element Drift		
			The flow element drift i	is assumed to be negligible.	
			FED = 0		
			4. Total Flow Channel I	Drift	
			The total drift of the flo	w channel is:	
			$DFC = 2 \times SQRT$ ((F)	$(TD/n)^{2} + (FUD/n)^{2} + (FED/n)^{2})$	
			$= 2\sqrt{\left(\frac{0.647}{2}\right)^2} +$	$\left(\frac{1.56}{2}\right)^2 = 1.689$ % flow	

Page <u>19</u> of <u>64</u>

. e

Nebraska Public Power District DESIGN CALCULATIONS SHEET

2

Dour Mos	ი	Deter	17-7/1-55		Date: 12-21-99
Rev. No:	Z	Date:	12-30-31		Date: <u>/</u>
			To convert this f the FCTR slope s	low channel e hown in 4.1.3.	rror in % flow to % Power, multiply by 3.4.1
			$DFC = 0.66 \times 1.$.689 % Power	
			= 1.12 % I	Power	- -
		<u>2.</u>	RBM Channel (6	6 month + 25%	% grace = 7.5 months) Drift
			a) LPRM & RBM	Unit Drift	
			The RBM specific signal conditionin months is equal to	cations (Ref. 2 g equipment, the vendor ac	22) does not specify drift for the RBM hence it is assumed that the drift for 6 curacy. (Ref. 5)
			Thus:		
			VD (signal cond.	equipment) =	VA x SQRT(7.5 mo. / 6 mo.)
			= 1.65%	% x SQRT (7.5	576)
			= 1.84	% Power	
			As described in the electronics is 0.8% minimum number signal conditioning	e APRM drift 5 FS (or 0.8 x of LPRMs is 2 g electronics is	calculation above, the drift of the LPRM 1.25 = 1.0% Power). Also, for RBM, the 2. Therefore the overall drift of the RBM 5:
			VD (RBM and Ll	$PRM) = 2 \sqrt{\left(-\frac{1}{2} \right)^2}$	$\frac{1.00}{\frac{2}{2}}\right)^2 + \left(\frac{1.84}{2}\right)^2 = 1.91$ % Power
		1	b) RBM Trip Unit	Drift	
кtё .			For the RBM Trip drift for the maxi maximum previou months) is 0.4 % F	Unit, the ven mum calibration s calibration	dor specification (Ref. 22) states that the ion period (assumed to be equal to the set of 3 months plus 25% grace, or 3.75
			Drift (3.75 month	n) = (0.4% x 12	25) % Power = 0.50 % Power
			Therefore the drift	for 7.5 month	s is:
			DTU (rbm trip)	= 0.5% x SQ	RT (7.5 mo. / 3.75 mo.)
				= 0.5% x SQ	RT (7.5 / 3.75)
				= 0.71%	
			DTU (rbm power	·) = 0.5% x SQ	PRT (7.5 mo. / 3.75 mo.)
				= 0.5% x SQ	PRT (7.5 / 3.75)
				= 0.71 % Pc	ower

Page <u>20 of 64</u>

A

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>	<u> </u>	Preparer:	aludall	Reviewer: Robert D. Champlin
Rev. No:	2	Date:	12-30-99	Date: <u>12-31-99</u>

4.1.3.4.3 Drift Values

The total Device Drift Error is calculated by SRSS combination of the random portion of vendor drift and the DTE errors, and normalizing to 2 sigma. Bias errors are added (or subtracted) separately.

 $D_i = 2 \times SQRT((VD_{Mi} / n)^2 + (DTE_i / n)^2) + any bias terms$

The overall drift for the various channels is obtained by SRSS addition of the total drifts of the devices in that channel, and is shown below:

a) APRM Flow Biased Channel Drift

 $D_{fb} = 2 \times \text{SQRT} [\text{VD}^2 (\text{APRM and LPRM}) + \text{DTU}^2 (\text{Flow Biased Trip} Unit) + \text{DFC}^2 (\text{Flow Channel})]$ $= 2 \times \text{SQRT} [(0.694/2)^2 + (1.34/2)^2 + (1.12/2)^2]$ = 1.88 % Power

b) APRM Fixed Channel Drift

 $D_{fix} = 2 x SQRT [VD² (APRM and LPRM)$ + DTU² (Fixed Trip Unit)]= 2 x SQRT [(0.694/2)² + (1.34/2²)]= 1.51 % Power

c) RBM Power Channel Drift

 $D_{RBM-Pwr} = 2 \text{ x SQRT [VD}^2 (LPRM \text{ and } APRM) + DTU^2 (RBM Power)]$ = 2 x SQRT [(0.694/2)² + (0.71/2²)] = 0.99 % Power

d) RBM Trip Channel Drift

 $D_{RBM.Trip} = 2 \times SQRT [VD^{2} (RBM and LPRM) + DTU^{2} (RBM Trip)]$ = 2 x SQRT [(1.91/2)² + (0.71/2²)] = 2.04 % Power

4.1.3.5 Establishing As-Left Tolerances

(n, n)

The As-Left Tolerance for the APRM and RBM channels are established as shown below. All values are assumed to be 3-sigma unless otherwise specified.

1. APRM Channels

The basic ALT data for the APRM functions are:

	<u>Vdc</u>	<u>% Power</u>	<u>Ref.</u>	
$ALT_1 =$	0.10	1.25 lprm	Assumption 3.17	~
$ALT_2 =$	0.10	1.25 aprm nf fixed high scram	Assumption 3.23	
$ALT_{2A} =$	0.08	1.0 aprm downscale rod block	9	-
$ALT_{2B} =$	0.10	1.25 aprm rod block clamp	Assumption 3.23	
ALT3 =	0.10	1.25 aprm nf f-b scram	Assumption 3.23	100

Page <u>21 of 64</u>

____ ·

	D.	ESIGN CALCUI	LATIONS SHEET	1001 1	
NEDC: <u>98-024</u>	Preparer:	alu Las	LReviewer: Roly:	1D. Champlin	-
Rev. No:2_	Date:	12-30-99	Date: 12-31-9	g	
	$ALT_4 =$	0.10	1.25 aprm nf f-b rod block	Assumption 3.23	
	ALT ₅ =	0.05	0.5 aprm nf setdown scram	9	192
	$ALT_6 =$	0.05	0.5 aprm nf setdown rod block	9	
	$ALT_7 =$		1.0 (AGAF)	Assumption 3.17	
	2. <u>APRM I</u>	low Reference Ch	annel	-	
	The basic A	ALT data for the A	PRM flow reference channel are:		
		mVdc/Vdc	<u>% FS</u>	<u>Ref.</u>	
	$ALT_8 =$	0.20	0.5 xmit output: 1 mV/1mA	11	
	ALT,=	0.01	0.01 test current, Sq Rt input	11	
	$ALT_{10} =$	0.005	0.05 Sq Rt Output	11	
	$ALT_{11} =$	0.01	0.1 Summer Output	Assumption 3.18	
	Since the tr to obtain %	ransmitter is spann flow for the above	ed to 125% of rated flow multiply ALTs. Therfore:	%FS by 1.25%flow	
	$ALT_{B} = 0.5$	x 1.25% flow = 0.	625 %flow		
	ALT,=0.0	$1 \ge 1.25\%$ flow = 0).0125 %flow		
	$ALT_{10} = 0.0$	05 x 1.25%flow =	0.0625 %flow		
	$ALT_{11} = 0.$	$1 \ge 1.25\%$ flow = 0	.125 %flow		
	To convert Therefore:	t %flow to %pow	ver for the above ALTs, multipy	y by $FCTR = 0.66$.	
	$ALT_{8} = 0.6$	25 x 0.66 = 0.41 %	6power		
	ALT, = 0.0	$125 \ge 0.66 = 0.019$	%power		
	$ALT_{10} = 0.0$	$0.0625 \ge 0.060 = 0.040$	%power		
	$ALT_{H} = 0.1$	$125 \ge 0.66 = 0.08 $	%power		
	3. <u>RBM Ch</u>	annels			•
	The basic A	LT data for the R	BM functions are:		
		Vdc	% Power	<u>Ref.</u>	
	$ALT_{12} =$	0.10	1.25 lprm	Assumption 3.17	
	$ALT_{13} =$	0.10	1.25 lpsp	10	
	ALT ₁₄ =	0.10	1.25 ipsp	10	
	$ALT_{15} =$	0.10	1.25 hpsp	10	
	$ALT_{16} =$	0.10	1.25 dtsp	10	
	$ALT_{17} =$	0.08	1.00 ltsp	10	
	$ALT_{18} =$	0.10	1.25 itsp	10	

Nebraska Public Power District DESIGN CALCULATIONS SHEET

Page <u>22 of 64</u>

· · · -

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-02</u>	4	Preparer: _	al La	le	Reviewer: Robert D. Changlin	
<u>Rev. No:</u>	2	Date:	12-30-99		Date: <u>12-31-99</u>	
		$ALT_{19} =$	0.09	1.13 htsp	10	

4.1.3.6 Determination of Device Calibration Error (Refs. 9, 12)

1. APRM Channels

Calibration Equipment

 $C_1 = DVM$ Fluke 45 or Fluke 8600A CSTD₁ = C_1

 $C_2 = DVM$ Fluke 45 or Fluke 8600A CSTD₂ = C_2

 $C_3 = DVM$ Fluke 45 or Fluke 8600A CSTD₃ = C₃

Page <u>23 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer: _	aling able	_Reviewer: Robert D. Champlin_
Rev. No:	_2	_Date:	12-30-99	Date: <u>12-31-99</u>

2. APRM Flow Reference Channel (Refs. 9, 11, 12)

Calibration Equipment

 $C_{4A,B}$ = Pneumatic Calibrator CE 1120 CSTD_{4A,B} = Dead Weight Tester Ametek RK

 $C_{5A,B} = DVM$ Fluke 45, Fluke 8502A, or Fluke 8600A CSTD_{5A,B} = $C_{5A,B}$

 $C_{6A,B} = DVM$ Fluke 45, Fluke 8502A, or Fluke 8600A $CSTD_{6A,B} = C_{6A,B}$

 $C_{7A,B}$ = DVM Fluke 45, Fluke 8502A, or Fluke 8600A CSTD_{7A,B} = $C_{7A,B}$

 $C_8 = DVM$ Fluke 45, Fluke 8502A, or Fluke 8600A CSTD₈ = C₈

Page <u>24 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer: _	alant all	_Reviewer: Robert A. Unoplin_
Rev. No:	2	_Date:	12-30-99	Date: <u>12-31-99</u>

3. RBM Channel (Refs. 10, 12)

Calibration Equipment

 $C_9 = DVM$ Fluke 45 or Fluke 8600A CSTD₉ = C₉

4.1.3.6.1 Device Calibration Tool Error

The APRM and RBM channels are calibrated using Digital Voltmeters (DVM) which can be the Fluke 45, Fluke 8502A, or Fluke 8600A per References 9, 10. The DVMs are sent off site for calibration against a standard. Therefore the calibration tool error is assumed to be equal to the calibration standard error. The least accurate DVM calibration tool is used as bounding in this calculation. (References 37, 40, 50)

The recirculation flow loop transmitter is calibrated with a pneumatic calibrator which can be an Ametek or Crystal Engineering, per References 11, 21. The least accurate pneumatic calibrator tool is used as bounding in this calculation. The pneumatic calibrator tool is in turn calibrated by an Ametek type RK deadweight tester, Reference 21.

Page <u>25 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		Preparer:	al Lall	Reviewer: Robert D. Champlin_
<u>Rev. No:</u>	2		12-30-98	Date: <u>12-31-99</u>

4.1.3.6.2 Device Calibration Error

The Calibration Error (C_i) for Device "i" is the SRSS combination of the As Left Tolerance (ALT), and the errors due to input and output calibration tools (including tool accuracy and readability and the error of the calibration standards). Thus, on a 2 sigma basis the calibration error is:

 $C_{i} = 2 \times \text{SQRT}((\text{ALT}_{i} / n)^{2} + (\text{CTOOL}_{inp} / n)_{i}^{2} + (\text{CREAD}_{inp} / n)_{i}^{2} + (\text{CSTD}_{inp} / n)_{i}^{2} + (\text{CTOOL}_{out} / n)_{i}^{2} + (\text{CREAD}_{out} / n)_{i}^{2} + (\text{CSTD}_{out} / n)_{i}^{2}) \pm \text{any bias terms}$

where 'n' is the sigma value associated with each individual term.

4.1.3.6.3 Device Calibration Error Values

Since the values of ALT, CTOOL, CREAD and CSTD are controlled by 100% testing, they are assumed to represent 3 sigma values. Vendor Accuracy is written as "Vendor Accur. or VA" below.

1. APRM Channels

Item	Cal. Instrument	Description	Error
Cı	DVM Fluke 45	Vendor Accur.	0.025% reading + 6 digits
	Range =10 Vdc	Display Exp	-3
	(Ref. 37)	Temp. Comp.	0.1 x VA per °C/(T-28) °C
		Resolution	100 microVdc
CREAD,	N/A (digital)	

For DVM 10.000 Vdc = 125% Power on APRM meter, range = 10 Vdc, and maximum calibration temperature 90 deg F = 32 deg C. Therefore, CTOOL₁ = SQRT { $[0.025\% \times 10 \text{ Vdc} + 6 \text{ digits } \times 10^{-3}]^2$

+ $[0.1 \times (0.025\% \times 10 \text{ Vdc} + 6 \text{ digits} \times 10^3) \times (32-28) \text{ °C}]^2$

+ $(100 \text{ microVdc})^2$

 $CTOOL_1 = 0.0092 Vdc$

= $(0.0092 \text{ Vdc} / 10 \text{ Vdc}) \times 100\% = 0.092 \% \text{ FS}$

= 0.092% FS x (1.25 % Power/100% FS)

= 0.115 % Power

 $CREAD_1 = 0 Vdc = 0.000\% FS = 0.000\% Power$

And since items C_2 and C_3 are identical to C_1 and use the same range:

 $CTOOL_1 = CTOOL_2 = CTOOL_3 = 0.115$ % Power

 $CREAD_1 = CREAD_2 = CREAD_3 = 0.000$ % Power

Page <u>26 of 64</u>

Nebraska Public Power District

NEDC: <u>98-024</u>		Preparer: _	al Lall	Reviewer: Role to Champlin
Rev. No:	2		12-30-99	Date: 12-31-99

The calibration standard error for each TOOL in the fixed neutron flux channel is conservatively assumed to be equal to the calibration tool error. Therefore:

 $CSTD_1 = CSTD_2 = CSTD_3 = 0.115$ % Power

2. APRM Flow Reference Channel

Item	Cal. Instrument	Description	Error				
C _{4A,B}	Pneu calib	Vendor Acc.	0.1% FS + 1 digit				
(4 digit display)Display Exp1							
		Temp. Comp.	0.39% (Assump. 3.21)				
		Read	N/A (digital) (Ref. 38)				
CSTD _{4A,B}	Ametek RK	VA	0.05% of ind (Ref. 39)				
C _{5A,B}	DVM Fluke 45	(range = 100 mVdc)					
		VA	0.025% reading + 6 digits				
		Disp Exp	-2				
		Temp. Comp.	0.1 x VA per °C/(T-28) °C				
		Resolution	1 microVdc				
		Read	N/A (digital)				
C _{6A,B}	DVM Fluke 45 (range = 100 mVdc)						
		VA	0.025% reading + 6 digits				
		Disp Exp	-2				
		Temp. Comp.	0.1 x VA per °C/(T-28) °C				
		Resolution	1 microVdc				
		Read	N/A (digital)				
C _{7A,B}	DVM Fluke 45	(range = 10 Vdc))				
C ₈	DVM Fluke 45	(range = 10 Vdc))				
Calibratio	n Error for C _{4A,B}						
Pneuma	atic calibrator rang	ge = 0 - 830 in WC	C; therefore:				
$CTOOL_4 = SQRT[(0.1\% FS \times 830 inWC + 1 \times 10^{-1})^2]$							
	+ (0.39% FS x 830 inWC) ²]						
	= 3.37 in WC over span of 408.9 in WC						
= (3.37 in WC/ 408.9 in WC) x 100% = 0.824% FS							
= 0.824% FS x (1.25 % Power/100% FS)							
= 1.03% Power							

Also,

۰. <u>۲</u>

 $CREAD_4 = 0 \text{ or } 0.000\% \text{ FS}$

Page <u>27 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET Robert D. Champlin Preparer: <u>Celand Celand</u> _Reviewer:/ Date: 12-31-99 Date: 12-30-98 Calibration Error for CSTD_{4AB} Unit = Ametek Type RK deadweight tester; Range = 830 in WC CSTD $_{4A,B} = 0.05\% \times 830$ = 0.415 in WC (over span of 408.9 in WC) = (0.415 in WC / 408.9 in WC) x 100% = 0.101 % FS x (1.25 % Power/100% FS) = 0.126% Power Calibration Error for C_{5A.B} Unit: DVM Fluke 45; Range: 100.00 mV dc, Reading = 50.00 mVdc Max Calib Temp = 40 deg CTherefore:

 $CTOOL_5 = SQRT \{(0.025\% \times 50 \text{ mVdc} + 6 \times 10^{-2})^2\}$

+ $[0.1 \text{ x} (0.025\% \text{ x} 50 \text{ mVdc} + 6 \text{ x} 10^{-2}) \text{ x} 12^{\circ}\text{C}]^2$

+ $(1 \text{ microVdc})^2$

= 0.113 mVdc

 $= (0.113 \text{ mVdc}/40.0 \text{ mAdc}) \times 100\%$

= 0.283% FS x (1.25 % Power/100% FS)

= 0.353% Power

Also,

 $CREAD_{5} = 0 \text{ or } 0.000\% \text{ FS}$

Calibration Error for CSTD_{5A,B}

Assume calibration standard error is equal to the tool error $CSTD_5 = CTOOL_5 = 0.353\%$ Power

ан. 194

NEDC: <u>98-024</u>

2

Rev. No:

•

11 1

```
Calibration Error for C6A,B
```

Unit: DVM Fluke 45; Range: 100.00 mV dc, Reading = 50.00 mVdc Max Calib Temp = 32 deg C

Therefore:

 $CTOOL_6 = SQRT \{ (0.025\% \times 50 \text{ mVdc} + 6 \times 10^{-2})^2 + [0.1 \times (0.025\% \times 50 \text{ mVdc} + 6 \times 10^{-2}) \times 4^{\circ}\text{C}]^2 + (1 \text{ microVdc})^2 \}$

= 0.078 mVdc

= (0.078 mVdc/40.0 mAdc) x 100%

= 0.195% FS x (1.25 % Power/100% FS)

= 0.244% Power

Also,

 $CREAD_6 = 0 \text{ or } 0.000\% \text{ FS}$

Page <u>28 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

DESIGN CALCULATIONS SHEET $\bigcirc 1 + 0 \wedge 1 = 0$					
NEDC: <u>98-0</u>	24	Preparer: <u>Celen L Cele</u> Reviewer: <u>Kobuit D. Champlin</u>			
Rev. No:	2	Date: Date:			
: · ·		Calibration Error for $C_{6,BSTD}$ Assume calibration standard error is equal to the tool error			
		$CSID_6 = CIOOL_6 = 0.244\%$ Power			
		Calibration Error for $C_{7A,B}$ Unit: DVM Fluke 45; Range = 10.000 Vdc at 100% FS CTOOL ₇ = 0.0092 Vdc = 0.092 % FS = 0.092% FS x (1.25 % Power/100% FS) = 0.115% Power			
		= 0.115% Power			
		$CREAD_{7} = 0 \text{ or } 0.000\% \text{ rS}$			
		Assume calibration standard error is equal to the tool error $CSTD_7 = CTOOL_7 = 0.115$ % Power			
		Calibration Error for C ₈ Unit: DVM Fluke 45; Range = 10.000 Vdc at 100% FS $CTOOL_8 = 0.0092$ Vdc = 0.092% FS = 0.092% FS x (1.25 % Power/100% FS) = 0.115% Power $CREAD_8 = 0$ or 0.000% FS Calibration Error for CSTD ₈ Assume calibration standard error is equal to the tool error $CSTD_8 = CTOOL_8 = 0.115\%$ Power 3. <u>Overall APRM Channel Calibration Errors</u> The overall 2 sigma calibration errors for the various APRM functions is			
		obtained by SRSS addition of the 3 sigma loop errors due to calibration tools, calibration standards and As Left Tolerance (ALT). Since all the calibration equipment is well maintained and tested, it is assumed that the C_i and C_i STD values given above are 3 sigma values. Also, since the instruments are always kept within ALT after calibration, the ALT values listed in the calibration procedures (and shown in 4.1.3.5) represent 3 sigma values. Thus the overall 2 sigma calibration errors for the various APRM functions is obtained from:			
		$C_{L} = 2 \times SQRT \{\Sigma(ALT_{1}/n)^{2} + \Sigma(CTOOL_{1}/n)^{2} + \Sigma(CREAD_{1}/n)^{2}$			
		$+ \Sigma (CSTD/n)^2$			
	i				

Page <u>29 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

		D	ESIGN CALCUL	ATIONS SHEET
NEDC: <u>98-02</u>	24	Preparer:	<u>ala Labe</u>	Reviewer: (Robert D. Champlin
Rev. No:	2	Date:	12-30-99	Date: <u>12-31-99</u>
		2) For APRM flow	biased scram
			$C_{\text{fb-SCRAM}} = 2 \\ 2(4)$	$x \text{ SQRT } \{(ALT_1/3)^2 + (ALT_3/3)^2 + (ALT_7/3)^2 + ALT_8/3)^2 + 2(ALT_9/3)^2 + 2(ALT_{10}/3)^2 + (ALT_{11}/3)^2 + 2(ALT_{10}/3)^2 + $
			+($(\text{CTOOL}_{1}/3)^{2} + (\text{CTOOL}_{2}/3)^{2} + (\text{CTOOL}_{3}/3)^{2}$
			+2	$2(CTOOL_4/3)^2 + 2(CTOOL_4/3)^2 + 2(CTOOL_4/3)^2$
			+ (C) 2(0 (C)	$2(CTOOL_{7}/3)^{2} + (CTOOL_{8}/3)^{2} + (CSTD_{1}/3)^{2} + STD_{2}/3)^{2} + (CSTD_{3}/3)^{2} + 2(CSTD_{4A,B}/3)^{2} + CSTD_{5A,B}/3)^{2} + 2(CSTD_{6A,B}/3)^{2} + 2(CSTD_{7A,B}/3)^{2} + STD_{8}/3)^{2} \}$
			$C_{\text{fb-SCRAM}} = 2 \times S$ 2(0.0 (0.1) 2(0.2) (0.1) 2(0.2) (0.1)	QRT { $(1.25/3)^2 + (1.25/3)^2 + (1.0/3)^2 + 2(0.41/3)^2 + (0.115/3)^2 + 2(0.04/3)^2 + (0.08/3)^2 + (0.115/3)^2 + (0.115/3)^2 + 2(1.03/3)^2 + 2(0.353/3)^2 + 244/3)^2 + 2(0.115/3)^2 + (0.115/3)^2 + (0.115/3)^2 + (0.115/3)^2 + 2(0.353/3)^2 + 244/3)^2 + 2(0.115/3)^2 + 2(0.126/3)^2 + 2(0.353/3)^2 + 244/3)^2 + 2(0.115/3)^2 + (0.115/3)^2 + (0.115/3)^2 + (0.115/3)^2 + 2(0.115/3)^2$
			$C_{\text{fb-SCRAM}} = 1.83\%$	Power A
		ł) For APRM flow	biased rod block
			$C_{\text{fb-RB}} = 2 \times \text{SQR}^{\prime}$ $2(\text{ALT}_{9}/3)$	$\Gamma \{ (ALT_1/3)^2 + (ALT_4/3)^2 + (ALT_7/3)^2 + 2(ALT_8/3)^2 + 0)^2 + 2(ALT_{10}/3)^2 + (ALT_{11}/3)^2 + (CTOOL_1/3)^2 + 0 \}$
			+ (CTO	$(L_2/3)^2 + (CTOOL_3/3)^2 + 2(CTOOL_{4A,B}/3)^2$
			+ 2(CTO	$OL_{5A,B}/3)^2 + 2(CTOOL_{6A,B}/3)^2 + 2(CTOOL_{7A,B}/3)^2$
			+ (CTOC	$(L_8/3)^2 + (CSTD_1/3)^2 + (CSTD_2/3)^2 + (CSTD_3/3)^2$
			+ 2(CSTI	$D_{4A,B}/3)^2 + 2(CSTD_{5A,B}/3)^2 + 2(CSTD_{6A,B}/3)^2$
			+ 2(CST	$_{7A,B}/(3)^2 + (CSTD_3/(3)^2)$
			$C_{fb-RB} = 2 \times SQRT$ + 2(0.01/ + (0.115/	$ \begin{cases} (1.25/3)^2 + (1.25/3)^2 + (1.0/3)^2 + 2(0.41/3)^2 \\ 3)^2 + 2(0.04/3)^2 + (0.08/3)^2 + (0.115/3)^2 + (0.115/3)^2 \\ 3)^2 + 2(1.03/3)^2 + 2(0.353/3)^2 + 2(0.244/3)^2 \end{cases} $
			+ 2(0.115	$(3/3)^2 + (0.115/3)^2 + (0.115/3)^2 + (0.115/3)^2$
			+ (0.115/	$3)^{2} + 2(0.126/3)^{2} + 2(0.353/3)^{2} + 2(0.244/3)^{2}$
			+ 2(0.115	$\frac{1}{3}^{2} + (0.115/3)^{2}$
			$C_{\text{fb-RB}} = 1.83 \% P$	ower defined a second s
		C) For APRM neutr	on flux fixed high SCRAM
			$C_{\text{fix-SCRAM}} = 2 \times SC$	$QRT {(ALT_1/3)^2 + (ALT_2/3)^2 + (ALT_7/3)^2}$
			+ (CT)	$OOL_{1}/3)^{2} + (CTOOL_{2}/3)^{2} + (CTOOL_{3}/3)^{2}$
			+ (CS	$(D_1/3)^2 + (CSTD_2/3)^2 + (CSTD_3/3)^2$
			$C_{\text{fix-SCRAM}} = 2 \times S$	$QRT \{ (1.25/3)^2 + (1.25/3)^2 + (1.0/3)^2 + (0.115/3)^2 \}$
			+ (0.1	$(5/3)^{2} + (0.115/3)^{2} + (0.115/3)^{2} + (0.115/3)^{2}$
			+ (0.1)	[5/3] ⁺ }
			$C_{\text{fix-SCRAM}} = 1.379$	o rower
Page <u>30 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET Reviewer: (Kalut A NEDC: <u>98-024</u> Preparer: <u>Alm Label</u> 12-31-99 12-30-99 Date: 2 Date: Rev. No: d) For APRM neutron flux rod block clamp $C_{clamp-RB} = 2 \times SQRT \{(ALT_1/3)^2 + (ALT_{2B}/3)^2 + (CTOOL_1/3)^2 \}$ + $(CTOOL_{3})^{2}$ + $(CTOOL_{3})^{2}$ + $(CSTD_{1}/3)^{2}$ B + $(CSTD_2/3)^2 + (CSTD_3/3)^2$ $C_{\text{clarm-RB}} = 2 \times \text{SQRT} \{ (1.25/3)^2 + (1.25/3)^2 + (0.115/3)^2 + (0.115/3)^2 \}$ $+ (0.115/3)^{2} + (0.115/3)^{2} + (0.115/3)^{2} + (0.115/3)^{2}$ C_{clamp-RB} = 1.19% Power e) For APRM neutron flux downscale rod block $C_{down-RB} = 2 \times SQRT \{(ALT_1/3)^2 + (ALT_{2A}/3)^2 + (CTOOL_1/3)^2 \}$ + $(CTOOL_{3})^{2}$ + $(CTOOL_{3}/3)^{2}$ + $(CSTD_{1}/3)^{2}$ + $(CSTD_{3})^{2}$ + $(CSTD_{3}/3)^{2}$ $C_{down-RB} = 2 \times SQRT \{(1.25/3)^2 + (1.0/3)^2 + (0.115/3)^2 + (0.115/3)^2 \}$ $+(0.115/3)^{2}+(0.115/3)^{2}+(0.115/3)^{2}+(0.115/3)^{2}$ $C_{down-RB} = 1.08\%$ Power f) For APRM neutron flux fixed high scram - setdown $C_{sct-SCRAM} = 2 \times SQRT \{(ALT_1/3)^2 + (ALT_5/3)^2 + (CTOOL_1/3)^2 \}$ + $(CTOOL_2/3)^2$ + $(CTOOL_3/3)^2$ + $(CSTD_1/3)^2$ + $(CSTD_{2}/3)^{2} + (CSTD_{3}/3)^{2}$ $C_{set-SCRAM} = 2 \times SQRT \{(1.25/3)^2 + (0.5/3)^2 + (0.115/3)^2 + (0.115/3)^2 \}$ $+(0.115/3)^{2}+(0.115/3)^{2}+(0.115/3)^{2}+(0.115/3)^{2}$ C_{sct-SCRAM} = 0.92% Power g) For APRM neutron flux fixed rod block - setdown $C_{srt,RB} = 2 \times SQRT \{(ALT_1/3)^2 + (ALT_6/3)^2 + (CTOOL_1/3)^2 \}$ + $(\text{CTOOL}_{3})^{2}$ + $(\text{CTOOL}_{3})^{2}$ + $(\text{CSTD}_{1}/3)^{2}$ + $(\text{CSTD}_{2}/3)^{2}$ $+(CSTD_{3}/3)^{2}$ $C_{set-RB} = 2 \times SQRT \{(1.25/3)^2 + (0.5/3)^2 + (0.115/3)^2 + (0.115/3)^2 \}$ $+(0.115/3)^{2}+(0.115/3)^{2}+(0.115/3)^{2}+(0.115/3)^{2}$ $C_{set-RB} = 0.92$ % Power 4. RBM Channel Cal. Instrument Description Error Item DVM Fluke 45 Vendor Accur. 0.025% reading + 6 C₉ digits -3 Range =10 Vdc Display Exp 0.1 x VA per °C/(T-28) °C (Ref. 37) Temp. Comp. Resolution 100 microVdc CRead N/A (digital)

Page <u>31 of 64</u>

			Nebraska Public Power	District			
		D	ESIGN CALCULATION	S SHEET			
NEDC: <u>98-024</u>		Preparer:	ale Lath	Reviewer: Robert D. Champlin			
<u>Rev. No:</u>	2	Date:	12-30-99	Date: 12-31-99			
		ł	For DVM 10.000 Vdc = 125 naximum calibration temper CTOOL ₉ = SQRT {[0.02: + [0.1 x (0.025 + (100 microV	% Power on RBM meter, range = 10 Vdc, and ature 90 deg F = 32 deg C. Therefore, 5% x 10 Vdc + 6 digits x 10^{-3}] ² % x 10 Vdc + 6 digits x 10^{-3}) x (32-28) °C] ² dc) ² }			
			CTOOL = 0.0002 Vda	,, ,			
			$- (0.000) V_{4-}$	10 Vdc = 0.002 % ES			
			$= (0.0092 \text{ Vac})^{-1}$	10 vac) x 100% – 0.092 % FS			
			= 0.092% FS X	1:25 % FOWEI			
			- 0.115 % FOW				
		$CREAD_9 = 0 Vdc = 0.000\% FS = 0.000\% Power$					
] e	The calibration standard ern equal to the calibration tool e	or for the is conservatively assumed to be rror. Therefore:			
			$CSTD_9 = 0.115 \%$ Power				
			The overall 2 sigma calibration calibration calibration calculated from	on error including As Left Tolerance (ALT) is			
		($C = 2 \times SQRT \{ (ALT_i/n)^2 + (n)^2 +$	$CTOOL_{1}/n)^{2} + (CREAD_{1}/n)^{2} + (CSTD_{1}/n)^{2}$			
		ן א ג	This overall calibration erro values of CTOOL _i , CREAD ALT _i values from 4.1.3.5 sub	rs for the various RBM functions, using the , and CSTD, from above and the appropriate heading 2, are shown below :			
		2	ı) For RBM low power setp	point (LPSP)			
			$C_{lpsp} = 2 \times SQRT \{(ALT_{12})$	$(3)^{2} + (ALT_{13}/3)^{2} + (CTOOL_{9}/3)^{2}$			
			+ (CSTD ₉ /3) ² }				
			$C_{lpsp} = 2 \times SQRT \{(1.25/3) C_{lpsp} = 1.18 \% Power \}$	$)^{2} + (1.25/3)^{2} + (0.115/3)^{2} + (0.115/3)^{2}$			
		ł) For RBM intermediate n	ower setpoint (IPSP)			
			$C = 2 \times CODT ((A1T)$	$(2)^{2} + (A + T + 2)^{2} + (CTOO + 2)^{2}$			

 $C_{ipsp} = 2 \times \text{SQRT} \{ (\text{ALT}_{12}/3)^2 + (\text{ALT}_{14}/3)^2 + (\text{CTOOL}_{9}/3)^4 + (\text{CSTD}_{9}/3)^2 \}$ $C_{ipsp} = 2 \times \text{SQRT} \{ (1 25/2)^2 + (1 25/2)^2 + (0 115/2)$

 $C_{ipsp} = 2 \times SQRT \{(1.25/3)^2 + (1.25/3)^2 + (0.115/3)^2 + (0.115/3)^2\}$ $C_{ipsp} = 1.18\% \text{ Power}$

c) For RBM high power setpoint (HPSP)

 $C_{hpsp} = 2 \times SQRT \{ (ALT_{12}/3)^2 + (ALT_{15}/3)^2 + (CTOOL_9/3)^2 + (CSTD_9/3)^2 \}$ $C_{hpsp} = 2 \times SQRT \{ (1.25/3)^2 + (1.25/3)^2 + (0.115/3)^2 + (0.115/3)^2 \}$

 $C_{hpsp} = 1.18\%$ Power

Page <u>32 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-0</u> 2	24	Preparer:	Clad all	Reviewer: Robert D. Champlin
<u>Rev. No:</u>	2	Date:	12-30-98	Date: <u>12-,31-99</u>
<u>Kev. No:</u>	2	Date:	d) For RBM downscale trip $C_{dtsp} = 2 \times SQRT \{(ALT_1 + (CSTD_9/3)^2\}$ $C_{dtsp} = 2 \times SQRT \{(1.25/3)^2\}$ $C_{dtsp} = 1.18\%$ Power e) For RBM low trip setpoin $C_{1tsp} = 2 \times SQRT \{(ALT_{12} + (CSTD_9/3)^2\}$ $C_{1tsp} = 2 \times SQRT \{(1.25/3)^2\}$ $C_{1tsp} = 1.07\%$ Power f) For RBM intermediate tr	Date: $12 - 37 - 77$ ip setpoint (DTSP) $12^{3}^{2} + (ALT_{16}^{3})^{2} + (CTOOL_{9}^{3})^{2}$ $3^{2} + (1.25^{3})^{2} + (0.115^{3})^{2} + (0.115^{3})^{2}$ Dint (LTSP) $12^{3}^{2} + (ALT_{17}^{3})^{2} + (CTOOL_{9}^{3})^{2}$ $3^{2} + (1.00^{3})^{2} + (0.115^{3})^{2} + (0.115^{3})^{2}$ trip setpoint (ITSP)
			$C_{itsp} = 2 \times SQRT \{(ALT_{12} + (CSTD_{9}/3)^{2}\}$ $C_{itsp} = 2 \times SQRT \{(1.25/3)^{2}\}$ $C_{itsp} = 1.18\% \text{ Power}$ g) For RBM high trip setper $C_{htsp} = 2 \times SQRT \{(ALT_{12} + (CSTD_{9}/3)^{2}\}$ $C_{htsp} = 2 \times SQRT \{(1.25/3)^{2}\}$ $C_{htsp} = 1.13\% \text{ Power}$	$(12/3)^{2} + (ALT_{18}/3)^{2} + (CTOOL_{9}/3)^{2}$ $(3)^{2} + (1.25/3)^{2} + (0.115/3)^{2} + (0.115/3)^{2}$ $(115/3)^{2} + (ALT_{19}/3)^{2} + (CTOOL_{9}/3)^{2}$ $(3)^{2} + (1.13/3)^{2} + (0.115/3)^{2} + (0.115/3)^{2}$

4.1.4 Determination of Loop/Channel Values

For this calculation the loop contains several devices, thus the device error values for Accuracy, Drift and Calibration are the same as those for the loop. These values have been reported in Section 4.1.3.

4.1.5 Determination of PEA and PMA

Primary Element Accuracy (PEA):

APRM Channel

The PEA is a combination of the GE-LPRM sensor sensitivity and sensor non-linearity uncertainties. The sensitivity of the detectors decreases with neutron influence. The average sensitivity loss, and its 2 sigma variation, for all GE LPRM detectors has been determined to be:

Sensor Sensitivity loss = 0.33 % (bias term)

+/- 0.20%

(random term)

(Reference 4, section 4.5)

Page <u>33 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>	Preparer: _	al Lash	Reviewer: Robert D. Champlin
Rev. No:2	Date:	12-30-95	Date: <u>12-31-99</u>

The detector non-linearity and its 2 sigma variation (in the power range) has been determined to be:

Sensor Non-linearity = 0.49%	(bias term)	
+/- 1%	(random term)	(Reference 4, section 4.5)

The first part of these detector errors represent bias type errors which apply to all detectors whereas the second part are random errors that represent variability amongst the sensors. Assuming a worst case senario where the APRM has the minimum number of operational detectors, the PEA, which on a percent of power basis, is simply obtained by adding the bias terms and taking the SRSS of the random terms, is calculated below. In the calculation, the random error is reduced by the square root of the minimum number of operable LPRMS to one APRM channel which are 11 per Reference 35.

Minimum number of LPRMS per APRM = 11 Therefore, PEA = $(0.33 + 0.49) \pm (1/ \text{ sqrt } 11)(\text{sqrt } (0.20^2 + 1^2))$ or PEA (APRM) = $0.82 \pm 0.31\%$ power

The first part of the PEA (0.82%) is treated as a drift term (DPEA) and the second part (\pm 0.31%) as an accuracy term (APEA).

The PEA value for the Westinghouse LPRM sensors installed at the Cooper site is given as $0.7 \pm 1\%$ per Reference 52. In the present calculations the GE LPRM PEA error values will be used as they are more conservative.

<u>RBM Channel</u>

PEA is similar to that for the APRMS and equals

0.33%	(bias term)	+/- 0.20% (random term)
and		
0.49%	(bias term)	+/- 1% (random term), respectively

In the calculation, the random error is reduced by the square root of the minimum number of operable LPRMS to one RBM channel which are 2 per Reference 35.

Minimum number of LPRMS per RBM = 2

Therfore, PEA = $(0.33 + 0.49) \pm (1/ \text{ sqrt } 2)(\text{SQRT} (0.20^2 + 1^2))$

or PEA (RBM) = $0.82 \pm 0.72\%$ power

The first part of the PEA (0.82%) is treated as a drift term (DPEA) and the second part (\pm 0.72%) as an accuracy term (APEA).

The value PEA value for the Westinghouse LPRM sensors installed at the Cooper site is given as $0.7 \pm 1\%$ per Reference 52. Since the GE value is larger than the Westinghouse LPRM uncertainty value, the GE value will be used in the calculations.

Page <u>34 of 64</u>

12

12

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer:	almh abh	Reviewer: Robert D. Champlin
<u>Rev. No:</u>	2		12-30-99	Date: 12-31-99

Flow Unit

The PEA for the flow channel venturis is included in the flow channel uncertainty, therefore no additional uncertainty is necessary, it follows that,

2 . .

PEA (Flow) = 0

Process Measurement Accuracy (PMA):

APRM Channel

The PMA is a combination of the APRM tracking and the uncertainty due to neutron noise. Considering the APRM neutron flux, for the MSIV closure transient event, the APRM tracking error is 1.11% and the uncertainty due to neutron noise is typically 2.0%, Reference 4. Flow noise is estimated to be 1.0% rated flow (0.66% power) per References 52 and 54. The tracking error is the uncertainty of the maximum deviation of APRM readings with LPRM failures or bypasses during a power transient. The neutron noise is the global neutron flux noise in the reactor core with a typical dominant frequency of approximately 0.3 to 0.5 Hertz and a typical maximum peak-to-peak amplitude of approximately 5 to 10 percent.

For neutron flux PMA = $2 \times \text{SQRT} [(2.0/2)^2 + (1.11/2)^2] = 2.29\%$ power (fixed)

For flow biased, PMA = $2 \times \text{SQRT}[(1.11/2)^2 + (2/2)^2 + (0.66/2)^2] = 2.38\%$ power (flow-biased)

<u>RBM</u>

The PMA of the RBM is a combination of the RBM tracking error and the uncertainty due to neutron noise. The uncertainty due to neutron noise is estimated to be the same as the APRM or 2.0% (2-sigma). The error calculated by comparing the reading with all LPRMS operable to readings with different combinations of LPRM failure is estimated to be within 1% (3-sigma) per Reference 52. A 3-sigma confidence level is used because the 1% value is based on testing.

PMA = $2 \times \text{SQRT} [(2.0/2)^2 + (1.0/3)^2] = 2.11\%$ power (RBM Power)

PMA = $2 \times \text{SQRT} [(2.0/2)^2 + (1.0/3)^2] = 2.11\% \text{ power (RBM Trip)}]$

4.1.6 Determination of Other Error Terms

All error terms to be considered have been accounted for in the previous sections.

4.1.7 Calculation of Setpoint Margin and Operating Setpoint

4.1.7.1 Setpoint Margin

The setpoint margin is defined as the margin between the nominal setpoint and the analytic limit. Based on References 5, 7, this margin is given by:

SM = (1.645/N)(SRSS OF RANDOM TERMS) + BIAS TERMS

Where N represents the number of standard deviations with which all the random terms are characterized (normally 2 standard deviations) and 1.645 adjusts the results to a 95% probability (one-sided normal).

The error terms are calculated for trip conditions, and the margin becomes SM = (1.645/N) x SQRT ($A_{LT}^2 + C_L^2 + D_L^2 + PMA^2 + PEA^2$)+ (Σ BIAS TERMS)

Page <u>35 of 64</u>

11 - S

Page <u>36 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET Reviewer: Robert A. Champlin Preparer: <u>alshaul</u> NEDC: 98-024 12-31-99 2 Date: 12-30-99 Date: Rev. No: 7. Neutron Flux Fixed High Rod Block - Setdown $SM_{set-RB} = [(1.645/2) \times SQRT (A_{LT-fix}^2 + C_{set-RB}^2 + D_{fix}^2 + PMA^2 + APEA^2)]$ + DPEA $= (1.645/2) \times \text{SORT} (1.63^2 + 0.92^2 + 1.51^2 + 2.29^2 + 0.31^2) + 0.82$ = 3.56 % Power b) **RBM CHANNEL** 1. Low Power Setpoint (LPSP) $SM_{lpsp} = [(1.645/2) \times SQRT (A_{LT-RBM-pwr}^{2} + C_{lpsp}^{2} + D_{RBM-pwr}^{2} + PMA^{2})$ $+ APEA^{2}$] + DPEA = (1.645/2) x SQRT $(1.22^2 + 1.18^2 + 0.99^2 + 2.11^2 + 0.72^2) + 0.82$ = 3.26 % Power 2. Intermediate Power Setpoint (IPSP) $SM_{ipsp} = [(1.645/2) \times SQRT (A_{LT-RBM-pwr}^2 + C_{ipsp}^2 + D_{RBM-pwr}^2 + PMA^2)]$ $+ APEA^{2}$] + DPEA $= (1.645/2) \times \text{SQRT} (1.22^2 + 1.18^2 + 0.99^2 + 2.11^2 + 0.72^2) + 0.82$ = 3.26 % Power 3. High Power Setpoint (HPSP) $SM_{hpsp} = [(1.645/2) \times SQRT (A_{LT-RBM-pwr}^{2} + C_{hpsp}^{2} + D_{RBM-pwr}^{2} + PMA^{2})$ $+ APEA^{2}$] + DPEA $= (1.645/2) \times \text{SORT} (1.22^2 + 1.18^2 + 0.99^2 + 2.11^2 + 0.72^2) + 0.82$ = 3.26% Power 4. Downscale Trip Setpoint (DTSP) $SM_{disp} = [(1.645/2) \times SQRT (A_{LT-RBM-trip}^{2} + C_{disp}^{2} + D_{RBM-trip}^{2} + PMA^{2})$ + APEA²)] + DPEA = (1.645/2) x SQRT $(1.91^2 + 1.18^2 + 2.04^2 + 2.11^2 + 0.72^2) + 0.82$ = 3.92 % Power 5. Low Trip Setpoint (LTSP) $SM_{lup} = [(1.645/2) \times SQRT (A_{LT-RBM-trip}^2 + C_{lup}^2 + D_{RBM-trip}^2 + PMA^2)$ $+ APEA^{2}$] + DPEA = (1.645/2) x SQRT $(1.91^2 + 1.07^2 + 2.04^2 + 2.11^2 + 0.72^2) + 0.82$ = 3.89 % Power

Page <u>37 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

-

		DE:	SIGN CALCULATIONS		1.
NEDC: <u>98-024</u>	<u>.</u>	_Preparer:	alant all	Reviewer: (Kobul N. Chamfl	m
Rev. No:	2	_Date:	12-30-99	Date: <u>12-31-99</u>	_
		6. Interm	ediate Trip Setpoint (ITS	Р)	
		$SM_{itsp} = [$	(1.645/2) x SQRT (A _{lt-rbm} . + DPEA	$c_{trip}^2 + C_{itsp}^2 + D_{RBM-trip}^2 + PMA^2 + APEA^2)$	
		= (1	.645/2) x SQRT (1.91 ² + 1	$.18^2 + 2.04^2 + 2.11^2 + 0.72^2) + 0.82$	
		= 3	.92 % Power		
		7. High T	rip Setpoint (HTSP)		
		$SM_{htsp} = [$	(1.645/2) x SQRT (A _{LT-RBM} + APEA ²)] + DPEA	$trip^2 + C_{htsp}^2 + D_{RBM-trip}^2 + PMA^2$	
		= (1	.645/2) x SQRT (1.91 ² + 1	$.13^2 + 2.04^2 + 2.11^2 + 0.72^2) + 0.82$	
1. Contract (1997)		= 3	.90 % Power		
	4.1.7.2	<u>Nominal Trij</u>	p Setpoint (NTSP1) Calcula	<u>ition</u>	
		The Nomina given by:	1 Trip Setpoint (NTSP1) for	process variables which increase to trip is	
		NTSPI	= AL - SM		
		NTSP1 repression assuming ze (AV).	esents the upper limit (clos ro leave alone tolerance in	test to AV) at which the setpoint can be set in the direction toward the Allowable Value	
		a) APRM C	THANNEL		
		1. Flow B	iased Scram		
		Flow bi (0.66 W	iased setpoints will be show /) is a constant	m in terms of the intercept, since the slope	12
		NTS	SP1 fd-SCRAM = AL - SM fd-SCR	AM	
		For this	function		. .
		AL	= 0.66W + 74.8 % Power	(Reference 54)	12
		Therefo	ore:		
		NTS	SP1 _{fd-SCRAM} = 74.8% - 4.429	% = 70.38% Power	ł
		2. Flow B	iased Rod Block		
		NTS	$SP1_{fb-RB} = AL - SM_{fb-RB}$		
		For this	function		
		AL	= 0.66W + 63.5% Power	(Reference 54)	
		Therefo	ore:	i	
		NTSPI	$_{\text{fb-RB}} = 63.5\% - 4.42\% = 59$	9.08% Power	

Page <u>38 of 64</u>

----- ---- . .- .

1

Nebraska Public Power District DESIGN CALCULATIONS SHEET

.

•:

		Distan oniboominion.	$\cap (1) \cap (1)$	Λ.
NEDC: <u>98-024</u>	Prep	parer: <u>Alu Lablu</u>	Reviewer: <u>Kobul A. Cha</u>	mplin_
Rev. No:	2Date	12-30-99	Date: <u>12-31-99</u>	
	3.	Neutron Flux – Fixed High SCR $NTSP1_{fix-SCRAM} = AL - SM_{fix-SCRAM}$ For this function	AM	
		AL= 123.0% Power Therefore: NTSP1 _{fix-SCRAM} = 123.0% - 3.69%	(Reference 2)	1
	4.	Neutron Flux Rod Block Clamp NTSP1 _{clamp RB} = $AL + SM_{clamp RB}$ For this function		A
		AL= 111.7% Power Therefore: NTSP1 _{down RB} = 111.7% - 3.63% =	(Reference 54) = 108.07% Power	
	5.	Neutron Flux Downscale Rod Bl NTSP1 _{down RB} = $AL + SM_{down RB}$ For this function	lock	
		AL= 0.0% Power Therefore: NTSP1 _{down RB} = $0.0\% + 3.60\% =$	(Reference 2) 3.60% Power	
	6.	Neutron Flux Fixed High SCRA $NTSP1_{set-SCRAM} = AL - SM_{set-SCRAM}$ For this function	M - Setdown	
		AL= 17.4% Power Therefore: NTSP1 _{set-SCRAM} = 17.4% - 3.56	(Reference 2) % = 13.84 % Power	
	7.	Neutron Flux Fixed High Rod B $NTSPl_{set-RB} = AL - SM_{set-RB}$ For this function	lock - Setdown	
. 1		AL= 14.4% Power Therefore: NTSP1 _{set-RB} = 14.4% - 3.56%	(Reference 2)	

Page <u>39</u> of <u>64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

		Reviewer: (Raki(K), (Aamfell)
Rev. No:2	Date: 12-30.89	Date: <u>12-31-99</u>
	b) RBM CHANNEL	
	1. Low Power Setpoint (LPSP)	
	NTSP1. = AI - SM.	
	For this function	
	AI = 30.0% Power	(Reference 2)
	Therefore:	
	NTSP1 = 30.0% - 3.26% =	= 26.74 % Power
	2 Intermediate Dewar Setuciat	
	2. Intermediate Fower Serpoint	
	$NISPI_{ipsp} - AL - SiM_{ipsp}$	
	For this function $AL = (5.0%)$ Denver	
	AL = 65.0% Power	(Reference 2)
	Inerefore:	
	$NISP1_{ipsp} = 65.0\% - 3.26\% =$	61.74 % Power
	3. High Power Setpoint (HPSP)	
	$\mathbf{NTSP1}_{\mathbf{hpsp}} = \mathbf{AL} - \mathbf{SM}_{\mathbf{hpsp}}$	
	For this function	
	AL= 85.0% Power	(Reference 2)
	Therefore:	
	$NTSP1_{hpsp} = 85.0\% - 3.26\% =$	= 81.74% Power
	4. Downscale Trip Setpoint (DT	(SP)
	$NTSP1_{dsp} = AL + SM_{dsp}$	
	For this function	
	AL= 89.0% Power	(Reference 2)
	Therefore:	
	$NTSP1_{dtsp} = 89.0\% + 3.92\% =$	= 92.92% Power

1

Page <u>40 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

		DE	SIGN CALCULATION	
NEDC: <u>98-02</u>	24	_Preparer: _	ala Lable	Reviewer: (Kobut N. Champlin
<u>Rev. No:</u>	2	Date:	12-30-98	Date: <u>12-31-99</u>
		5. Low T NTSP1 For thi AL Theref	rip [†] Setpoint (LTSP) $_{hsp} = AL - SM_{hsp}$ s function = 117.0% Power pre:	(Reference 2)
		NTSPI	$h_{tsp} = 117.0\% - 3.89\% = 1$	13.11% Power
		6. Intern NTSP1 For thi	$ediate Trip' Setpoint (11)$ $_{itsp} = AL - SM_{itsp}$ s function	Sr)
		AL	= 111.2% Power	(Reference 2)
		Therefo NTSP1 7. High 7 NTSP1 For this	bre: $_{itsp} = 111.2\% - 3.92\% = 1$ $Trip^{\dagger}$ Setpoint (HTSP) $_{htsp} = AL - SM_{htsp}$ S function	07.28 % Power
		AL Theref NTSP1	= 107.4% Power pre: $h_{tsp} = 107.4\% - 3.90\% = 1$	(Reference 2) 03.50 % Power
	4.1.7.3	<u>Allowable V</u>	alue Calculation	
		For this setp Value (AV)	oint calculation the proces is calculated using the follo	s variable increases to trip, so the Allowable wing equation (Reference 4):
			AV = AL - (1.645/N)(SRS	S OF RANDOM TERMS) - BIAS TERMS
		Where N rep terms are cha to a 95% pro	presents the number of sta aracterized (normally 2 star bability (one-sided normal)	ndard deviations with which all the random dard deviations) and 1.645 adjusts the results).
		The random drift. Thus,	errors include the random	portion of ALT, CL, PMA, PEA, but exclude
		AV = AL - (1.645/N) x SQRT(A_{LT}^{2} +	C_{L}^{2} + PMA ² + PEA ²) - (Σ BIAS TERMS)

[†] Note: For the RBM trip setpoints, a MCPR of 1.20 is used, margins are the same for other MCPRs and are summarized in the conclusion (Section 5).

Page <u>41 of 64</u>

٨

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer:	alm & able	_Reviewer: Robert D. Champlin
Rev. No:	2	Date:	12-30-99	Date: <u>12-31-99</u>

a) APRM CHANNEL

1. Flow Biased Scram

Allowable values for flow biased setpoints will be shown in terms of the intercept, since the slope (0.66 W) is a constant.

 $AV_{fb-SCRAM} = AL - (1.645/2) \times SQRT (A_{LT-fb}^2 + C_{fb-SCRAM}^2 + PMA^2 + PEA^2)$

For this function the AL is

AL = 0.66W + 74.8%

Therefore

 $AV_{\text{fb-SCRAM}} = 74.8 - (1.645/2) \times \text{SQRT} (2.55^2 + 1.83^2 + 2.38^2 + 0.31^2)$

= 71.55 % Power

Rounded down conservatively to nearest readable increment:

 $AV_{fb-SCRAM} = 71.5\%$ Power

2. Flow Biased Rod Block

Allowable values for flow biased setpoints will be shown in terms of the intercept, since the slope (0.66 W) is a constant.

 $AV_{fb-RB} = AL - (1.645/2) \times SQRT (A_{LT-fb}^{2} + C_{fb-RB}^{2} + PMA^{2} + PEA^{2})$

For this function the AL is

AL = 0.66W + 63.5%

Therefore,

 $AV_{\text{fb-RB}} = 63.5 - (1.645/2) \times \text{SQRT} (2.55^2 + 1.83^2 + 2.38^2 + 0.31^2)$

= 60.25% Power

Rounded down conservatively to nearest readable increment:

 $AV_{fb-RB} = 60.0 \%$ Power

3. Neutron Flux - Fixed High SCRAM

 $AV_{fix-SCRAM} = AL - (1.645/2) \times SQRT (A_{LT-fix}^2 + C_{fix-SCRAM}^2 + PMA^2 + PEA^2)$ For this function the AL is:

AL = 123.0%

Therefore,

 $AV_{fix-SCRAM} = 123.0\% - (1.645/2) \times SQRT (1.63^2 + 1.37^2 + 2.29^2 + 0.31^2)$

= 120.41 % Power

Rounded down conservatively to nearest readable increment:

 $AV_{fix-SCRAM} = 120.0$ % Power

Page <u>42 of 64</u>

		Nebraska Public Power District DESIGN CALCULATIONS SHEET					
NEDC: <u>98-02</u>	4	Preparer:	alme all	Reviewer: Robert D. Champlin	_		
<u>Rev. No:</u>	2	Date:	12-30-99	Date: 12-31-99			
Rev. No:	_2	Date: Date: 4. Neutron AV_{clam} For this fund AL Therefore, AV_{dowr} For this fund AV_{clam} 5. Neutron AV_{clam} 5. Neutron AV_{dowr} For this fund AL Therefore, AV_{dowr} 6. Neutron AV_{set-S} For this fund AL Therefore, AV_{set-S} For this fund AV_{set-S} For this fund AV_{set-S} Therefore, AV_{set-S} For this fund AV_{set-S} For this fund AV_{set-S} Therefore, AV_{set-S} For this fund AV_{set-S} Therefore, AV_{set-S} For this fund AV_{set-S} Therefore, Therefore,	j2-30-99 Flux Rod Block Clamp $p_{RB} = AL + (1.645/2) \times SQR$ ction the AL is: $J = 111.7\%$ $m_{RB} = 111.7\% - (1.645/2) \times 109.17\%$ Power pown conservatively to nearch $p_{RB} = 109.0\%$ Power Flux Downscale Rod Bloch $m_{RB} = AL + (1.645/2) \times SQR$ ction the AL is: $J = 0.0\%$ $m_{RB} = 0.0\% + (1.645/2) \times SQR$ ction the AL is: J = 0.0% Flux Fixed High SCRAM $m_{RB} = 3.0\%$ Power Flux Fixed High SCRAM $m_{CRAM} = AL - (1.645/2) \times SQR$ ction the AL is $J = 17.4\%$ $m_{RB} = 17.4\% - (1.645/2) \times SQR$ crand = 17.4% - (1.645/2) \times Flux Fixed High Rod Bloch $m_{RB} = 14.5\%$ Power Flux Fixed High Rod Bloch $m_{RB} = AL - (1.645/2) \times SQR$ Crand = 14.5% Power	Date: $12-31-99$ RT (A _{LT-fix} ² + C _{clamp-RB} ² + PMA ² + PEA ²) RT (A _{LT-fix} ² + C _{clamp-RB} ² + PMA ² + PEA ²) est readable increment: Ack RT (A _{LT-fix} ² + C _{down-RB} ² + PMA ² + PEA ²) SQRT (1.63 ² + 1.08 ² + 2.29 ² + 0.31 ²) plementation consideration: 1 - Setdown QRT (A _{LT-fix} ² + C _{set-SCRAM} ² + PMA ² + PEA ²) SQRT (1.63 ² + 0.92 ² + 2.29 ² + 0.31 ²) est readable increment: Dek - Setdown ^ (A _{LT-fix} ² + C _{fix-RB} ² + PMA ² + PEA ²)			
		Therefore,					

Page <u>43 of 64</u>

Nebraska Public Power Districty DESIGN CALCULATIONS SHEET _Reviewer: Robert A Champlin_ Preparer: <u>Alu Lable</u> NEDC: <u>98-024</u> Date: 12-31-99 12-30-99 2 Date: Rev. No: $AV_{set-RB} = 14.4\% - (1.645/2) \times SQRT (1.63^2 + 0.92^2 + 2.29^2 + 0.31^2)$ = 11.95 % Power Rounded down conservatively to nearest readable increment: $AV_{set-RB} = 11.5\%$ Power **b) RBM CHANNEL** 1. Low Power Setpoint (LPSP) $AV_{lpsp} = AL - (1.645/2) \times SQRT (A_{LT-RBM-pwt}^{2} + C_{lpsp}^{2} + PMA^{2} + PEA^{2})$ For this function the AL is ÷., AL = 30.0 % Therefore, $AV_{losp} = 30.0\% - (1.645/2) \times SQRT (1.22^2 + 1.18^2 + 2.11^2 + 0.72^2)$ = 27.69 % Power Rounded down conservatively to nearest readable increment: $AV_{lpsp} = 27.5\%$ Power 2. Intermediate Power Setpoint (IPSP) $AV_{ipsp} = AL - (1.645/2) \times SQRT (A_{LT \cdot RBM \cdot pwt}^{2} + C_{ipsp}^{2} + PMA^{2} + PEA^{2})$ For this function the AL is AL = 65.0 % Therefore, $AV_{insp} = 65.0 - (1.645/2) \times SQRT (1.22^2 + 1.18^2 + 2.11^2 + 0.72^2)$ = 62.69 % Power Rounded down conservatively to nearest readable increment: $AV_{ipsp} = 62.5\%$ Power 3. High Power Setpoint (HPSP) $AV_{hpsp} = AL - (1.645/2) \times SQRT (A_{LT \cdot RBM \cdot pwr}^2 + C_{hpsp}^2 + PMA^2 + PEA^2)$ For this function the AL is AL = 85.0 % Therefore, $AV_{hosp} = 85.0\% - (1.645/2) \times SQRT (1.22^2 + 1.18^2 + 2.11^2 + 0.72^2)$ = 82.69 % Power Rounded down conservatively to nearest readable increment:

 $AV_{hosp} = 82.5\%$ Power

```
Page <u>44 of 64</u>
```

	D	Nebraska Public Power ESIGN CALCULATION	District 4 3%
NEDC: <u>98-024</u>	Preparer:	al Lake	Reviewer: Robert D. Champlin
Rev. No:2	Date:	12-30-99	Date: 12-31-99
<u>Kev. No:</u>	4. Downs AV _{dt} For this fu A Therefore, AV _{dt} Rounded u AV _{dt} 5. Low T	cale Trip Setpoint (DTSP) $_{5p} = AL - (1.645/2) \times SQRT$ nction the AL is $_{5p} = 89.0\% + (1.645/2) \times SQRT$ $_{5p} = 89.0\% + (1.645/2) \times SQRT$ $_{5p} = 91.60\%$ ap conservatively to nearest $_{5p} = 92.0\%$ Power rip [†] Setpoint (LTSP)	$(A_{LT-RBM-trip}^{2} + C_{dup}^{2} + PMA^{2} + PEA^{2})$ $(RT (1.91^{2} + 1.18^{2} + 2.11^{2} + 0.72^{2})$ readable increment:
	AV _{lts} For this fu A Therefore, AV _{lts}	$(A_{LT-RBM-trip}^{2} + C_{htsp}^{2} + PMA^{2} + PEA^{2})$ QRT (1.91 ² + 1.07 ² + 2.11 ² + 0.72 ²)	
	Rounded o AV _{tts} 6. Interm AV _{its} For this fu	lown conservatively to near p = 114.0 % Power ediate Trip [†] Setpoint (ITS) p = AL - (1.645/2) x SQRT nction the AL is L = 111.2 %	est readable increment: P) $(A_{LT-RBM-trip}^{2} + C_{itsp}^{2} + PMA^{2} + PEA^{2})$
	A Therefore, AV _{is} Rounded d AV _{is} 7. High T AV _{hte}	L = 111.2 % $_{p} = 111.2\% - (1.645/2) \times SQ$ = 108.59 % Power lown conservatively to nearch $_{p} = 108.5 \%$ Power rip [†] Setpoint (HTSP) $_{p} = AL - (1.645/2) \times SQRT$	PRT $(1.91^2 + 1.18^2 + 2.11^2 + 0.72^2)$ est readable increment: $(A_{LT-RBM-trip}^2 + C_{htsp}^2 + PMA^2 + PEA^2)$

[†] Note: For the RBM trip setpoints, a MCPR of 1.20 is used, margins are the same for other MCPRs and are summarized in the conclusion (Section 5).

Page <u>45 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>	Preparer:	aland alph	Reviewer: Rebeil A. Champlin
Rev. No:2_	Date:	12-30-89	Date: <u>12-31-99</u>

AL = 107.4 %

Therefore,

 $AV_{hisp} = 107.4\% - (1.645/2) \times SQRT (1.91^2 + 1.13^2 + 2.11^2 + 0.72^2)$

= 104.81 % Power

Rounded down conservatively to nearest readable increment:

 $AV_{htsp} = 104.5$ % Power

4.1.7.4 LER Avoidance Evaluation

The purpose of the LER Avoidance Evaluation is to assure that there is sufficient margin provided between the Allowable Value and the Nominal Trip Setpoint to avoid violations of the Tech Spec Allowable Value (which, when discovered during surveillance, could lead to LER conditions). The method of avoiding violations of the Allowable Value is to determine the errors that may be present during surveillance testing, examine the margin between the calculated values of NTSP1 and AV, and then adjust NTSP1 to provide added margin if necessary. The following equation is used to determine the errors that would be expected to contribute to a potential LER situation.

Sigma(LER) = (1/N)(SRSS Of RANDOM TERMS)

Where N represents the number of standard deviations with which the random terms are characterized (normally 2 standard deviations).

4.1.7.4.1 Random Terms Included In LER Avoidance

The Random Terms that should be included in the LER Avoidance evaluations include:

Loop Accuracy under Normal plant Condition (A_{LN}) Loop Calibration Error (C_L) Loop Drift (D_L)

Process and Primary Element Errors are not included because calibration and surveillance testing are performed using input signals which simulate the process and primary element input.

Sigma(LER) = (1/2)SQRT ($A_{LN}^2 + C_L^2 + D_L^2$)

Page <u>46 of 64</u>

•

Ø

 \triangleright

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>	Preparer:	alu Rable	Reviewer: Robert D. Champlin
<u>Rev. No:2</u>	Date:	12-30-99	Date: 12-31-99

4.1.7.4.2 LER Margin Calculation

Once the value of Sigma(LER) is determined, the margin between the values of NTSP1 and AV is calculated in terms of Sigma(LER) using the equation below:

Z(LER) = |AV-NTSP1| / Sigma(LER)

This value of Z is then used to determine the probability of violating the Allowable Value by treating the error distribution as a random Normal Distribution, and then determining the area under the curve of the Normal Distribution corresponding to the number of standard deviations represented by Z.

4.1.7.4.3 GE Recommendation

-11

GE recommends that a nominal probability of 90% for avoiding an LER condition be used as the acceptance criterion for the LER Avoidance (or Tech Spec Action Avoidance) Evaluation. For a single instrument channel, the value of Z(LER) corresponding to this 90% criterion is 1.29 or greater. For an instrument channel which is part of a multiple channel logic system a value of Z(LER) greater than 0.81 can assure 90% Tech Spec Action Avoidance criterion.

4.1.7.4.4 Governing Setpoint Determination

a) APRM CHANNEL

1. Flow Biased Scram Sigma(LER) = $(1/2) \times \text{SQRT} (A_{\text{LN-fb}}^2 + C_{\text{fb-SCRAM}}^2 + D_{\text{fb}}^2)$ Sigma(LER) = $(1/2) \times \text{SQRT} (2.55^2 + 1.83^2 + 1.88^2)$ = 1.82 Z(LER) = $|\text{AV-NTSP1}_{\text{fb-SCRAM}}| / \text{Sigma(LER)}$ = |71.5% - 70.38%| / 1.82= 0.61

Since this value of Z does not correspond to a probability of more than 90% (one sided normal distribution) for a multiple channel (0.81), the NTSP is adjusted as follows:

 $NTSP2_{fb-SCRAM} = AV - 0.81 \text{ x Sigma (LER)}$ = 71.5% - 0.81 x 1.82 $NTSP_{fb-SCRAM} = NTSP2_{fb-SCRAM} = 70.02\% \text{ Power}$

Page <u>47 of 64</u>

13

Æ

Nebraska Public Power District DESIGN CALCULATIONS SHEET

2. Flow Biased Rod Block

Sigma(LER) = $(1/2) \times \text{SQRT} (A_{LN-fb}^2 + C_{fb-RB}^2 + D_{fb}^2)$ Sigma(LER) = $(1/2) \times \text{SQRT} (2.55^2 + 1.83^2 + 1.88^2)$ = 1.82 Z(LER) = $|\text{AV-NTSP1}_{fb-RB}| / \text{Sigma}(\text{LER})$ = |60.0% - 59.08%| / 1.82= 0.50

Since this value of Z does not correspond to a probability of more than 90% (one sided normal distribution) for a multiple channel (0.81), the NTSP is adjusted as follows:

NTSP2_{6-RB} = AV - 0.81 x Sigma (LER)
=
$$60.0\% - 0.81 \times 1.82$$

NTSP_{6-RB} = NTSP2_{6-RB} = 58.52% Power

3. Neutron Flux - Fixed High SCRAM

Sigma(LER) = $(1/2) \times \text{SQRT} (A_{\text{LN-fix}}^2 + C_{\text{fix-SCRAM}}^2 + D_{\text{fix}}^2)$ Sigma(LER) = $(1/2) \times \text{SQRT} (1.63^2 + 1.37^2 + 1.51^2)$ = 1.31 Z(LER) = $|\text{AV-NTSP1}_{\text{fix-SCRAM}}| / \text{Sigma(LER)}$ = |120.0% - 119.31| / 1.31= 0.53

Since this value of Z does not correspond to a probability of more than 90% (one sided normal distribution) for a multiple channel (0.81), the NTSP is adjusted as follows:

 $NTSP2_{fix-SCRAM} = AV - 0.81 \text{ x Sigma (LER)}$ = 120.0% - 0.81 x 1.31 $NTSP_{fix-SCRAM} = NTSP2_{fix-SCRAM} = 118.93 \% Power$

4. Neutron Flux Rod Block Clamp

Sigma(LER) = $(1/2) \times SQRT (A_{LN-fix}^2 + C_{clamp-RB}^2 + D_{fix}^2)$ Sigma(LER) = $(1/2) \times SQRT (1.63^2 + 1.19^2 + 1.51^2)$ = 1.26 Z(LER) = $|AV-NTSP1_{clamp-RB}| / Sigma(LER)$ = |109.0% - 108.07| / 1.26= 0.73

Since this value of Z does not correspond to a probability of more than 90% (one sided normal distribution) for a multiple channel (0.81), the NTSP is adjusted as follows:

Page <u>48 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>	Preparer:	ala Lable	Reviewer: Robert O. Champ	lin_
Rev. No:2	Date:	12-30-99	Date: 12-31-99	
	N N	$TSP2_{clamp-RB} = AV - 0.81 \times S$ $= 109.0\% - 0.81 \times 1.26$ $TSP_{clamp-RB} = NTSP2_{clamp-RB} = 0$	Sigma (LER) = 107.97 % Power	IÞ
	5.	Neutron Flux Downscale l	Rod Block	ł
	Si Si Z($gma(LER) = (1/2) \times SQRT$ $gma(LER) = (1/2) \times SQRT$ = 1.24 $[LER] = AV-NTSP1_{down} / S$ = 3.0% - 3.60 / 1.24 = 0.48	$(A_{LN.fix}^{2} + C_{down.RB}^{2} + D_{fix}^{2})$ $(1.63^{2} + 1.08^{2} + 1.51^{2})$ Sigma(LER)	
	Si 90 N	nce this value of Z does not 9% (one sided normal distrib TSP is adjusted as follows:	correspond to a probability of more than bution) for a multiple channel (0.81), the	
	N	$TSP2_{down RB} = AV + 0.81 x S$ $= 3.0\% + 0.81 x 1.24$	Sigma (LER)	
	N	$TSP_{down RB} = NTSP2_{down RB} = A$	4.00%Power	
	6.	Neutron Flux Fixed High	SCRAM - Setdown	
	Si Si	gma(LER) = (1/2) x SQRT gma(LER) = (1/2) x SQRT = 1.20	$(A_{LN.fix}^2 + C_{set.SCRAM}^2 + D_{fix}^2)$ $(1.63^2 + 0.92^2 + 1.51^2)$	
	Z(LER) = $ AV-NTSP1_{set-SCRAM} $ = $ 14.5\% - 13.84\% / = 0.55$	/ Sigma(LER) / 1.20	
	Si 90 N	nce this value of Z does not % (one sided normal distrib TSP is adjusted as follows:	correspond to a probability of more than bution) for a multiple channel (0.81), the	
	N	$TSP2_{set-SCRAM} = AV - 0.81 x = 14.5\% - 0.81 x 1.20$	Sigma (LER)	
	N	TSP _{sci-SCRAM} = NTSP2 _{sci-SCRAM}	_M = 13.52 % Power	

Page <u>49 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

		D	ESIGN CALCULATIONS S	HEET
NEDC: <u>98-024</u>	4	Preparer:	ale & abl	_Reviewer: Robert A. Champlin_
Rev. No:	2		12-30-99	Date: 12-31-99
		7 5 5 2	7. Neutron Flux Fixed High R Sigma(LER) = $(1/2) \times SQRT$ (A Sigma(LER) = $(1/2) \times SQRT$ (1 = 1.20 2(LER) = AV-NTSP1 _{set-RB} / Sig = 11.5% - 10.84% / 1. = 0.55	od Block - Setdown $A_{LN-fix}^2 + C_{set-RB}^2 + D_{fix}^2$ $.63^2 + 0.92^2 + 1.51^2$ ma(LER) .20
		5 9 1	Since this value of Z does not co 20% (one sided normal distribut 2015 is adjusted as follows:	rrespond to a probability of more than ion) for a multiple channel (0.81), the
		1	NTSP2 _{set-RB} = AV - 0.81 x Sigma	a (LER)
			$= 11.5\% - 0.81 \times 1.20$	
		1	$NTSP_{set-RB} = NTSP2_{set-RB} = 10.52$	% Power
		h) RBM CHANNEL	
		1 5 5	Low Power Setpoint (LPSP) Sigma(LER) = (1/2) x SQRT (A Sigma(LER) = (1/2) x SQRT (1 = 0.98	$A_{\text{LN-RBM-pwr}}^{2} + C_{\text{lpsp}}^{2} + D_{\text{RBM-pwr}}^{2}$.22 ² + 1.18 ² + 0.99 ²)
		Z	Z(LER) = AV-NTSP1 _{lpsp} / Sigm = 27.5% - 26.74% / 0. = 0.77	na(LER) 98
		S 9 i	Since this value of Z does not co 00% (one-side normal distributions adjusted as follows:	rrespond to a probability of more than on) for a single channel (1.29), the NTSP
		1	NTSP2 _{1psp} = AV - 1.29 x Sigma (= 27.5% - 1.29 x 0.98	(LER)
		1	$NTSP_{lpsp} = NTSP2_{lpsp} = 26.23$	% Power
		2 S S	2. Intermediate Power Setpoin Sigma(LER) = (1/2) x SQRT (A Sigma(LER) = (1/2) x SQRT (1 = 0.98	t (IPSP) $M_{\text{LN-RBM-pwr}}^{2} + C_{\text{ipsp}}^{2} + D_{\text{RBM-pwr}}^{2}$) $M_{\text{22}}^{2} + 1.18^{2} + 0.99^{2}$)
		2	$Z(LER) = AV-NTSP1_{ipsp} / Sigm$	a(LER)
			= 62.5% - 61.74% / 0. = 0.77	98
		c	= 0.77	rrespond to a probability of more than
		9	0% (one-side normal distribution	on) for a single channel (1.29), the NTSP

is adjusted as follows:

Page <u>50 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-02</u>	24	Preparer	: <u>Alm L Abh</u>	Reviewer: Robat D. Changlin
<u>Rev. No:</u>	2	Date:	12-30-98	Date: <u>12-31-99</u>
			$NTSP2_{ipsp} = AV - 1.29 \times Sign$ = 62.5% - 1.29 x 0.98 $NTSP_{ipsp} = NTSP2_{ipsp} = 61.22$	1a (LER) 23 % Power
			3. High Power Setpoint (HP Sigma(LER) = (1/2) x SQRT Sigma(LER) = (1/2) x SQRT = 0.98	SP) $(A_{LN-RBM-pwr}^{2} + C_{hpsp}^{2} + D_{RBM-pwr}^{2})$ $(1.22^{2} + 1.18^{2} + 0.99^{2})$
			$Z(LER) = AV-NTSP1_{hpsp} / Si= 82.5\% - 81.74\% = 0.77$	igma(LER) / 0.98
			Since this value of Z does not 90% (one-side normal distribu is adjusted as follows:	correspond to a probability of more than ation) for a single channel (1.29), the NTSP
			$NTSP2_{hpsp} = AV - 1.29 \times Sign$ = 82.5% - 1.29 x	na (LER) : 0.98
			$NTSP_{hpsp} = NTSP2_{hpsp} = 81.2$	23 % Power
			4. Downscale Trip Setpoint (Sigma(LER) = (1/2) x SQRT Sigma(LER) = (1/2) x SQRT = 1.52	$(DTSP) (A_{LN-RBM-trip}^{2} + C_{dtsp}^{2} + D_{RBM-trip}^{2}) (1.91^{2} + 1.18^{2} + 2.04^{2})$
			$Z(LER) = AV-NTSP1_{dtsp} / Si$ = 92.0 - 92.92 / 1.5 = 0.60	gma(LER) 52
			Since this value of Z does not 90% (one-side normal distribu is adjusted as follows:	correspond to a probability of more than ation) for a single channel (1.29), the NTSP
			$NTSP2_{dtsp} = AV + 1.29 \text{ x Sign}$ = 92.0% + 1.29 x 1.52	na (LER)

 $NTSP_{dusp} = NTSP2_{dusp} = 93.96\%$ Power

2 T

Page <u>51 of 64</u>

- - -

··· ·

NEDC: 98.09	24	Prenarer.	Charle Mill	Beviewer: Roby A. Chamchin
Rev. No:	2	Date:	12-30-55	Date: <u>12-31-99</u>
		5 5 5 5 5 5 5 5 7 5 8 9 15 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5. Low Trip Setpoint (LTS) Sigma(LER) = $(1/2) \times SQR^2$ = 1.50 $S(LER) = AV-NTSP1_{ltsp} /S$ = $ 114.0\% - 113.11$ = 0.59 Since this value of Z does no 0% (one-side normal distributes a follows: $STSP2_{ltsp} = AV - 1.29 \times Sigr$ = $114.0\% - 1.29 \times 1.50$ $STSP_{ltsp} = NTSP2_{ltsp} = 112$. Intermediate Trip Setpoint igma(LER) = $(1/2) \times SQR^2$ = 1.52 $S(LER) = AV-NTSP1_{ltsp} /S$ = $ 108.5\% - 107.28$	P) $\Gamma (A_{LN-RBM-trip}^2 + C_{Itsp}^2 + D_{RBM-trip}^2)$ $\Gamma (1.91^2 + 1.07^2 + 2.04^2)$ igma(LER) / 1.50 At correspond to a probability of more than bution) for a single channel (1.29), the NTSP ma (LER)) 2.06 % Power int (ITSP) $\Gamma (A_{LN-RBM-trip}^2 + C_{itsp}^2 + D_{RBM-trip}^2)$ $\Gamma (1.91^2 + 1.18^2 + 2.04^2)$ igma(LER) % $ / 1.52$
÷		S 9 is N N 7 S S Z	ince this value of Z does no 0% (one-side normal distribustion of the state of th	at correspond to a probability of more than button) for a single channel (1.29), the NTSP ana (LER) (23) (23) (3) (23) (3) (23) (3) (23) (3) (3) (3) (23) (3)

Page <u>52 of 64</u>

Nebraska Public Power District

NEDC: <u>98-024</u>		_Preparer:	al & abl	_Reviewer: Robert A. Champlin_
<u>Rev. No:</u>	2	_Date:	12-30-99	Date: 12-31-99

Since this value of Z does not correspond to a probability of more than 90% (one-side normal distribution) for a single channel (1.29), the NTSP is adjusted as follows:

 $NTSP2_{htsp} = AV - 1.29 \text{ x Sigma (LER)}$ = 104.5% - 1.29 x 1.51 $NTSP_{htsp} = NTSP2_{htsp} = 102.55 \% \text{ Power}$

4.1.7.5 Selection of Operating Setpoints

3

÷.,

It is recommended that the method of using NTSP as the center of the Leave Alone Zone be used. Thus, according to Reference 4, the nominal setpoint is:

 $NTSP = NTSP2 \pm LAT$

Where the LAT is the SRSS combination of the leave alone tolerances for all the devices in the loop.

4.1.7.6 Establishing Leave Alone Zones

The LAT for both APRM and RBM functions within this calculation is \pm 1.25% Power. (Assumption 3.22)

4.1.7.7 <u>Required Limits Evaluation</u>

The Required Limits Evaluation calculates an adjustment to NTSP for the case when NTSP is set at the center of the leave alone zone. The adjustment assures that with the stack-up of the errors (including leave alone tolerances) for all the devices in the loop, there is enough margin for Technical Specification Action Avoidance (or LER avoidance).

a) APRM CHANNEL

1. Flow Biased Scram

The Required Limit (RL) of device "i" with the largest LAT in the loop is:

$$RL_i = NTSP_{fb-SCRAM} + LAT_i$$

= 70.02% + 1.25% = 71.27%

This is compared against $AV_{fb-SCRAM} = 71.5\%$ from Section 4.1.7.3. Since

 $RL_i < AV_{fb-SCRAM},$

therefore NTSP need not be adjusted:

NTSP $(ADJ)_{\text{fb-SCRAM}} = NTSP_{\text{fb-SCRAM}} = 70.02 \%$

Rounding down to the nearest readable increment:

 $NTSP(ADJ)_{fb-SCRAM} = 70.0\%$

Page <u>53 of 64</u>

.

Nebraska Public Power District DESIGN CALCULATIONS SHEET

:

.

		DESIGN	CALCULATIONS	SHEET OLIO A	
NEDC: <u>98-02</u>	4	Preparer:	- Lall	Reviewer: Robert A. Champlin_	
<u>Rev. No:</u>		Date:/2	30.99	Date: 12-31-99	_
<u>Rev. No:</u>	2	Date: $/2$ 2. Flow Biased Ro The Required Limit $RL_i = NTSP_{fb-R}$ = 58.52% - This is compared ag $RL_i < AV$, therefore NTSP nee NTSP (ADJ)_{fb-R} Rounding down to t NTSP(ADJ)_{fb-R} 3. Neutron Flux The Required Limit $RL_i = NTSP_{fix.5}$ = 118.93% This is compared ag	$\frac{30 \cdot 99}{d \text{ Block}}$ $\frac{(\text{RL}) \text{ of device "i" w}}{(\text{RL}) \text{ of device "i" w}}$ $\frac{1}{25\%} = 59.77\%$ $\frac{1}{25\%} = 59.77\%$ $\frac{1}{25\%} = 60.0\%$ $\frac{1}{25\%} \text{ anst } AV_{fb-RB} = 60.0\%$ $\frac{1}{25\%} \text{ anst } AV_{fb-RB} = 58.5\%$ Fixed High SCRAM $\frac{(\text{RL}) \text{ of device "i" w}}{(\text{RL}) \text{ of device "i" w}}$ $\frac{1}{25\%} = 120.18\%$ $\frac{1}{25\%} \text{ anst } AV_{fb-RB} = 120.18\%$	Date: 12-31-99 with the largest LAT in the loop is: % from Section 4.1.7.3. Since 52 % increment: 1 vith the largest LAT in the loop is: % 20.0% from Section 4.1.7.3. Since	
		This is compared ag $RL_i > AV_{fix-SCRA}$ therefore NTSP nee NTSP (ADJ) _{fix-5} To determine if fur the loop are calcula 5) is calculated:	vainst $AV_{fix-SCRAM} = 1$ MM, ds to be adjusted: $SCRAM = AV_{fix-SCRAM} -$ ther adjustment is not ted, and Sigma(LER	20.0% from Section 4.1.7.3. Since LAT= 120.0 - 1.25 = 118.75 % eeded, the Required Limits of all devices in L, RL) given by the following equation (Ref.	
		RL _i = NTSP (A	DJ) _{fix-SCRAM} + LAT _i		
		= 118.75%	+ 1.25% = 120.00%	, 	
		Sigma(LER, RI	$L) = (1/2) \times SQRT\{($	$\Sigma((2/3)(RL_i - NTSP(ADJ)_{fix-SCRAM}))^2$	
			+ C _{fix-SCRAM} ² -	+ D _{fix} ² }	
		For this calculation device with the erro	the loop error value r of the whole loop.	es are used which is equivalent to using one Thus:	
		Sigma(LER, RI	L) = (1/2) x SQRT{((= 1.10 %	(2/3) x (120.00- 118.75)) ² + 1.37 ² + 1.51 ² }	
		Also compute Z(LE Z(LER, RL) = A For this case of mul Z(LER, RL) > 0	R, RL) given by: ABS(AV _{fix-SCRAM} - NT tiple channel, If).81	TSP(ADJ) _{fix-SCRAM}) / Sigma(LER,RL)	

then LER avoidance condition is met.

Page <u>54 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET ala Lable **Reviewer**: NEDC: 98-024 Preparer: 12-31-99 12-30-99 Date: Rev. No: 2 Date: Z(LER, RL) = ABS(120.0 - 118.75) / 1.10= 1.13This value of Z(LER, RL) is greater than the Z criterion for multiple channels of 0.81. Therefore the criterion is met without further adjustments. NTSP $(ADJ)_{fix-SCRAM} = 118.5 \%$ Power (Rounded conservatively to nearest readable increment) 4. Neutron Flux Rod Block Clamp The Required Limit (RL) of device "i" with the largest LAT in the loop is: $RL_i = NTSP_{clamp-RB} + LAT_i$ = 107.97% + 1.25% = 109.22%This is compared against $AV_{elamp-RB} = 120.0\%$ from Section 4.1.7.3. Since $RL_i > AV_{ctamp-RB}$, therefore NTSP needs to be adjusted: NTSP (ADJ) $_{clamp-RB} = AV_{clamp-RB} - LAT = 109.0 - 1.25 = 107.75 \%$ To determine if further adjustment is needed, the Required Limits of all devices in the loop are calculated, and Sigma(LER, RL) given by the following equation (Ref. 5) is calculated: $RL_i = NTSP (ADJ)_{clamp-RB} + LAT_i$ = 107.75% + 1.25% = 109.00% Sigma(LER, RL) = $(1/2) \times \text{SQRT}\{(\Sigma((2/3)(\text{RL}_i - \text{NTSP}(\text{ADJ})_{\text{clame-RB}}))^2$ $+ C_{clamp-RB}^{2} + D_{fix}^{2} \}$ For this calculation the loop error values are used which is equivalent to using one device with the error of the whole loop. Thus: Sigma(LER, RL) = $(1/2) \times SQRT\{((2/3) \times (109.00-107.75))^2 + 1.19^2 + 1.51^2\}$ = 1.04 % Also compute Z(LER, RL) given by: $Z(LER, RL) = ABS(AV_{clamp-RB} - NTSP(ADJ)_{clamp-RB}) / Sigma(LER, RL)$ For this case of multiple channel, If Z(LER, RL) > 0.81 then LER avoidance condition is met. Z(LER, RL) = ABS(109.0 - 107.75) / 1.04= 1.20This value of Z(LER, RL) is greater than the Z criterion for multiple channels of 0.81. Therefore the criterion is met without further adjustments. NTSP (ADJ) $_{clamp-RB} = 107.5$ % Power (Rounded conservatively to nearest readable increment)

B

Page <u>55 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer:	ala Raul	Reviewer: Robert & Champlin
Rev. No:	2	Date:	12-30-95	Date: 12-31-99

5. Neutron Flux Downscale Rod Block

The Required Limit (RL) of device "i" with the largest LAT in the loop is:

 $RL_i = NTSP_{down} - LAT_i$

= 4.0% - 1.25% = 2.75%

This is compared against $AV_{down} = 3.0\%$ from Section 4.1.7.3. Since

 $RL_i < AV_{down}$

ł

ż

therefore NTSP_{down} needs to be adjusted:

NTSP $(ADJ)_{down} = AV_{down} + LAT = 3.0 + 1.25 = 4.25 \%$

To determine if further adjustment is needed, the Required Limits of all devices in the loop are calculated, and Sigma(LER, RL) given by the following equation (Ref. 5) is calculated:

 $RL_i = NTSP (ADJ)_{down} - LAT_i$

= 4.25% - 1.25% = 3.00%

Sigma(LER, RL) = (1/2) x SQRT{(
$$\sum((2/3)(RL_i - NTSP(ADJ)_{down}))^2 + C_{down-RB}^2 + D_{fix}^2$$
}

For this calculation the loop error values are used which is equivalent to using one device with the error of the whole loop. Thus:

Sigma(LER, RL) =
$$(1/2) \times \text{SQRT}\{((2/3) \times (3.00-4.25))^2 + 1.08^2 + 1.51^2\}$$

= 1.02 %

Also compute Z(LER, RL) given by:

 $Z(LER, RL) = ABS(AV-NTSP(ADJ)_{down}) / Sigma(LER, RL)$

For this case of multiple channel, If

Z(LER, RL) > 0.81

then LER avoidance condition is met.

Z(LER, RL) = ABS(3.0 - 4.25) / 1.02

This value of Z(LER, RL) is greater than the Z criterion for multiple channels of 0.81. Therefore the criterion is met without further adjustments.

Final NTSP $(ADJ)_{down} = 4.5 \%$ Power	(Rounded	conservatively	up	to
	nearest re	adable increment)	

6. Neutron Flux Fixed High SCRAM -Setdown

The Required Limit (RL) of device "i" with the largest LAT in the loop is:

 $RL_i = NTSP_{sct-SCRAM} + LAT_i$

= 13.52% + 1.25% = 14.77%

This is compared against $AV_{sci-SCRAM} = 14.5\%$ from Section 4.1.7.3. Since

 $RL_i > AV_{set-SCRAM}$

therefore NTSP_{set-SCRAM} needs to be adjusted:

Page <u>56 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer:	ale & all	_Reviewer: Robit A. Champlin
Rev. No:	2	_Date:	12-30-99	Date: 12-31-99

NTSP (ADJ)_{set-SCRAM} = AV_{set-SCRAM} - LAT= 14.5 - 1.25 = 13.25 %

To determine if further adjustment is needed, the Required Limits of all devices in the loop are calculated, and Sigma(LER, RL) given by the following equation (Ref. 5) is calculated:

$$RL_i = NTSP (ADJ)_{set-SCRAM} + LAT_i$$

= 13.25% + 1.25% = 14.50%

Sigma(LER, RL) = (1/2) x SQRT{ $(\Sigma((2/3)(RL_i - NTSP(ADJ)_{set-SCRAM}))^2 + C_{set-SCRAM}^2 + D_{fix}^2}$

For this calculation the loop error values are used which is equivalent to using one device with the error of the whole loop. Thus:

Sigma(LER, RL) =
$$(1/2) \times \text{SQRT} \{((2/3) \times (14.5 - 13.25))^2 + 0.92^2 + 1.51^2\}$$

= 0.98 %

Also compute Z(LER, RL) given by:

 $Z(LER, RL) = ABS(AV_{set-SCRAM} - NTSP(ADJ)_{set-SCRAM}) / Sigma(LER, RL)$ For this case of multiple channel, If

Z(LER, RL) > 0.81

then LER avoidance condition is met.

Z(LER, RL) = ABS(14.5 - 13.25) / 0.98= 1.28

This value of Z(LER, RL) is greater than the Z criterion for multiple channels of 0.81. Therefore the criterion is met without further adjustments.

Final NTSP (ADJ)_{set-SCRAM} = 13.0 % Power (Rounded conservatively to nearest readable increment)

7. Neutron Flux Fixed High Rod Block -Setdown

The Required Limit (RL) of device "i" with the largest LAT in the loop is:

 $RL_i = NTSP_{set-RB} + LAT_i$

= 10.52% + 1.25% = 11.77%

This is compared against $AV_{set-RB} = 11.5\%$ from Section 4.1.7.3. Since

 $RL_i > AV_{set-RB}$

therefore NTSP_{set-RB} needs to be adjusted:

NTSP (ADJ)_{set-RB} = AV_{set-RB} - LAT= 11.5 - 1.25 = 10.25%

To determine if further adjustment is needed, the Required Limits of all devices in the loop are calculated, and Sigma(LER, RL) given by the following equation (Ref. 5) is calculated:

 $RL_i = NTSP (ADJ)_{set-RB} + LAT_i$

= 10.25% + 1.25% = 11.5%

Page <u>57 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		Preparer:	al Lale	Reviewer: Robut A. Clinmplin_
Rev. No:	2	Date:	12-30-99	Date: 12-31-99

Sigma(LER, RL) = $(1/2) \times \text{SQRT}\{(\Sigma((2/3)(\text{RL}_i - \text{NTSP}(\text{ADJ})_{\text{set-RB}}))^2 + C_{\text{set-RB}}^2 + D_{\text{fix}}^2\}$

For this calculation the loop error values are used which is equivalent to using one device with the error of the whole loop. Thus:

Sigma(LER, RL) = $(1/2) \times \text{SQRT} \{((2/3) \times (11.5 - 10.25))^2 + 0.92^2 + 1.51^2\}$ = 0.98 %

Also compute Z(LER, RL) given by:

 $Z(LER, RL) = ABS(AV_{set-RB} - NTSP(ADJ)_{set-RB}) / Sigma(LER, RL)$

For this case of multiple channel, If

Z(LER, RL) > 0.81

then LER avoidance condition is met.

Z(LER, RL) = ABS(11.5 - 10.25) / 0.98 = 1.28

This value of Z(LER, RL) is greater than the Z criterion for multiple channels of 0.81. Therefore the criterion is met without further adjustments.

Final NTSP (ADJ)_{sct-RB} = 10.0 % Power (Rounded conservatively to nearest readable increment)

b) RBM Channel

1. Low Power Setpoint (LPSP) The Required Limit (RL) of device "i" with the largest LAT in the loop is: $RL_i = NTSP_{lpsp} + LAT_i$ = 26.23% + 1.25% = 27.48%This is compared against $AV_{losp} = 27.5\%$ from Section 4.1.7.3. Since $RL_i < AV_{lpsp}$, therefore NTSP_{losp} does not need to be adjusted: NTSP $(ADJ)_{losp} = NTSP_{losp} = 26.0$ % (Rounded conservatively to nearest readable increment) 2. Intermediate Power Setpoint (IPSP) The Required Limit (RL) of device "i" with the largest LAT in the loop is: $RL_i = NTSP_{ipsp} + LAT_i$ = 61.23% + 1.25% = 62.48%This is compared against $AV_{ipsp} = 62.5\%$ from Section 4.1.7.3. Since $RL_i < AV_{ipsp}$ therefore NTSP_{ipsp} does not need to be adjusted: NTSP (ADJ)_{lpsp} =NTSP_{lpsp} = 61.0 %(Rounded conservatively to nearest readable increment)

Page <u>58 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET pall **Reviewer**: Preparer: alm NEDC: 98-024 Date: Rev. No: 2 12-20-95 Date: 3. High Power Setpoint (HPSP) The Required Limit (RL) of device "i" with the largest LAT in the loop is: $RL_i = NTSP_{hosp} + LAT_i$ = 81.23% + 1.25% = 82.48% This is compared against $AV_{hpsp} = 82.5\%$ from Section 4.1.7.3. Since $RL_i < AV_{hpsp}$ therefore NTSP_{hpsp} does not need to be adjusted: NTSP (ADJ)_{lpsp} =NTSP_{lpsp} = 81.0 %(Rounded conservatively to nearest readable increment) 4. Downscale Trip Setpoint (DTSP) The Required Limit (RL) of device "i" with the largest LAT in the loop for this decreasing setpoint is: $RL_i = NTSP_{dtsp} - LAT_i$ = 93.96% - 1.25% = 92.71% This is compared against $AV_{disp} = 92.0\%$ from Section 4.1.7.3. Since $RL_i > AV_{dtsp}$, for this decreasing setpoint therefore NTSP_{dsp} does not need to be adjusted: NTSP (ADJ)_{lpsp} =NTSP_{lpsp} = 94.0 %(Rounded conservatively to nearest readable increment) 5. Low Trip Setpoint (LTSP) The Required Limit (RL) of device "i" with the largest LAT in the loop is: $RL_i = NTSP_{ltsp} + LAT_i$ = 112.06% + 1.25% = 113.31%This is compared against $AV_{lsp} = 114.0\%$ from Section 4.1.7.3. Since $RL_i < AV_{ltsp}$ therefore NTSP₁₅₀ does not need to be adjusted: NTSP $(ADJ)_{lpsp} = NTSP_{lpsp} = 112.0\%$ (Rounded conservatively to nearest readable increment) 6. Intermediate Trip Setpoint (ITSP) The Required Limit (RL) of device "i" with the largest LAT in the loop is: $RL_i = NTSP_{itsp} + LAT_i$ = 106.53% + 1.25% = 107.78%This is compared against $AV_{itsp} = 108.5\%$ from Section 4.1.7.3. Since $RL_i < AV_{itsp}$ therefore NTSP_{issp} does not need to be adjusted: NTSP $(ADJ)_{ipsp} = NTSP_{ipsp} = 106.5.\%$ (Rounded conservatively to nearest readable increment)

Page <u>59 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

		DE	SIGN CALCULATION	IS SHEET
NEDC: <u>98-024</u>		Preparer:	al Lak	Reviewer: Xobut A. Champlin_
Rev. No:	2	Date:	12-30-99	Date: 12-31-99
		7. High Tri The Require $RL_i = N$ = 1 This is comp $RL_i < A$ therefore NT NTSP (ip Setpoint (HTSP) ed Limit (RL) of device "i' $JTSP_{htsp} + LAT_i$ 02.55% + 1.25% = 103.8 pared against $AV_{htsp} = 104$ AV_{htsp} , TSP_{htsp} does not need to be ADJ) _{ipsp} = NTSP _{ipsp} = 102.5	with the largest LAT in the loop is: % .5% from Section 4.1.7.3. Since adjusted: 5% (Rounded conservatively to nearest readable increment)

4.1.7.8 Selection of Operating Setpoint

The recommended Operating Setpoints for the APRM and RBM are the NTSP(ADJ) values from section 4.1.7.7

OSP = NTSP(ADJ)

The lower limit of the setpoint (NTSP3) for purposes of performing the spurious trip avoidance calculation is:

NTSP3 = OSP - $(1.645/3) \times \text{SQRT}(\sum \text{LAT}_{i}^{2})$

4.1.7.9 Spurious Trip Avoidance Evaluation

The Spurious Trip Avoidance Evaluation is used to ensure that there is a reasonable probability that spurious trips will not occur using the selected NTSP. The method of avoiding spurious trips is to determine the errors that may be present during normal plant operation and examine the margin between the worst applicable operational transient for which trip is not required, and the lower limit (NTSP3) of selected setpoint.

The following equation is used to determine the errors that would be expected to contribute to a potential spurious trip.

Sigma(STA) = (1/N)(SRSS OF RANDOM TERMS)

Sigma(STA) = $(1/2) \times SQRT (A_{1N}^{2} + C_{1}^{2} + D_{1}^{2} + PMA^{2} + PEA^{2})$

Once the value of Sigma (STA) is determined, the margin to the selected NTSP is calculated as shown below:

Z(STA) = | NTSP3 - Operational Limit| / Sigma(STA)

To meet spurious scram avoidance criterion (Ref. 4)

Z(STA) > 1.65

If the spurious scram criterion is not violated, no further adjustments are necessary.

				Pag	;e <u>60 of 64</u>
] דע	Nebraska Public Power	District	٩
		101		QUAN	() <u>(</u> .
NEDC: <u>98-02</u>	24	Preparer: _	ala Lable	Reviewer: Artil N.	Manflin_
Rev. No:	2	Date:	12-30-89	Date: 12-31- 99	,
		<u>a) APRM (</u>	CHANNEL		
		1. Flow	Biased Scram	10 g + 1	
		For the flow biased rod b	w biased scram, the Opera block Analytic Limit value	tional Limit (OL) is considered to b	be the flow
		OL = 0.66V	V + 63.5 Power		
		Sigma(STA	$A_{LN-fb}^{2} = (1/2) \times SQRT (A_{LN-fb}^{2} - (1/2) \times SQRT (2.55) = 2.18$	$+ C_{fb-SCRAM}^{2} + D_{fb}^{2} + PEA^{2} + PMA^{2}$ $+ 1.83^{2} + 1.88^{2} + 0.31^{2} + 2.38^{2}$)
1		For this fun NTSP _{ß-SCRA} NTSP3	ction _M = 70.0, and therefore: _{fb-SCRAM} = 70.0 - (1.645/3) :	ین x 1.25 = 69.31 % Power	A '
		Z= ABS N	TSP3 _{fb-SCRAM} - OL / Sigma = ABS 69.31 - 63.5 / 2 = 2.66	a (STA) .18	
		Since this y normal distr	value of Z corresponds to ribution), 1.65, the NTSP _{fb}	a probability of more than 95% _{SCRAM} satisfies the STA criteria.	(one-sided
		2. Flow]	Biased Rod Block		
		For the flow Consequent computed.	v biased rod block functio ly the spurious trip avoid	n, the Operational Limit (OL) is not ance evaluation for this setpoint ha	available. s not been
		3. Neutr	on Flux Fixed High SCR.	AM	
		For the fix considered to setpoint at 7	ed neutron flux high scr to be the rod block setpoin 75% flow is:	am function, the Operational Lim t at 75% flow. The calculated value	it (OL) is rod block
		OL = Rod E	Block Setpoint at 75% = 0.6	56 x 75 + 58.5 = 108.0 % Power	
		Sigma(STA	$ = (1/2) \times \text{SQRT} (A_{\text{LN-fix}}^{2})^{2} $ $ = (1/2) \times \text{SQRT} (1.63)^{2} $ $ = 1.74 $	+ $C_{\text{fix-SCRAM}}^2$ + D_{fix}^2 + PEA ² + PMA ² ² + 1.37 ² + 1.51 ² + 0.31 ² + 2.29 ²)	•)
		For this fun	ction		
•		NTSP(ADJ) NTSP3	$\theta_{\text{fix-SCRAM}} = 118.5$, therefore $\theta_{\text{fix-SCRAM}} = 118.5 - (1.645/3)$:) x 1.25 = 117.8 % Power	
		Z= ABS N7	$TSP3_{fix-SCRAM} - OL / Sigma= ABS 117.8 - 108.0 / 1= 5.63$	a (STA) .74	

- = ABS| 117.8 108.0| / 1.74
 - = 5.63

\$

÷.

Page <u>61 of 64</u>

		D	Nebraska Public Power ESIGN CALCULATION	District (JANA)
NEDC: <u>98-024</u>		Preparer:	alatach	Reviewer: Robert D. Cliving
Rev. No:	2	Date:	12-30-99	Date: 12-31-99
		Since this normal dis	value of Z corresponds to stribution), of 1.65, the NTSP	a probability of more than 95% (one-sided of a satisfies the STA criteria.
		4. Neut	tron Flux Rod Block Clamp	p
		For the ro Consequer computed.	od block clamp function, t ntly the spurious trip avoida	he Operational Limit (OL) is not available. ance evaluation for this setpoint has not been
		5. Neut	tron Flux Downscale Rod B	Block
		For the fix is not ava setpoint ha	ted neutron flux downscale r ailable. Consequently the as not been computed.	od block function, the Operational Limit (OL) spurious trip avoidance evaluation for this
		6. Neut	tron Flux Fixed High SCRA	AM - Setdown
		For the Ne considered transfer the	eutron High Flux Scram - Se d to be that approximate pow e reactor mode switch to run	to we react the the operational Limit (OL) is wer level whereby operations personnel would a or 9.5% power.
		OL = 9.5%	6 Power	
		Sigma(ST) =	A) = (1/2) x SQRT (A_{LN-fix}^{2} (1/2) x SQRT (1.63 ² + 0) = 1.67%	+ $C_{set-SCRAM}^{2}$ + D_{fix}^{2} + PEA ² + PMA ²) .92 ² + 1.51 ² + 0.31 ² + 2.29 ²)
		For this fu	inction	
		NTSP(AD	$(J)_{set-SCRAM} = 13.0\%$, therefore	<u>.</u>
		NTSP	$^{2}3_{\text{set-SCRAM}} = 13.0 - (1.645/3)$	x 1.25 = 12.3 % Power
		Z= ABS N	NTSP3 _{set-SCRAM} - OL / Sigma = ABS $12.3 - 9.5$ / 1.67 = 1.67	a (STA)
		Since this normal dis	value of Z corresponds to stribution) of 1.65, the NTSP	a probability of more than 95% (one-sided set-SCRAM satisfies the STA criteria.
		7. Neutr For the fix not availat has not bee	ron Flux Fixed High Rod B ted neutron flux setdown rod ble. Consequently the spuri- en computed.	lock - Setdown l block function, the Operational Limit (OL) is ous trip avoidance evaluation for this setpoint
		<u>b) RBM C</u>	<u>CHANNEL</u>	
		Operation: setpoints h	al limits for these setpoints a nave not been computed.	re not available. Consequently STA for these

4.1.7.10 Elevation Correction

Not applicable to the APRM and RBM channels which are electrical devices. The recirculation loop flow transmitters are differential pressure devices and are not subject to elevation correction.

.

 $(\mathcal{T}_{i})_{i\in I}$

1 e - 1

·•?

Page <u>62 of 64</u>

2

анан 1918 - С

Nebraska Public Power District DESIGN CALCULATIONS SHEET

NEDC: <u>98-024</u>		_Preparer:	al Lale	Reviewer: Rotat & Champlin		
Rev. No:	2	_Date:	12-30-99	Date: 12-31-99		

4.1.7.11 Determination of Actual Field Setpoint

:

•

יני הי

۰.

Since there is no elevation correction for the APRM and RBM channels:

Actual Field Setpoint (ASP) = Operating Setpoint (OSP)

	- Page <u>63 of 64</u>
Nebraska Public Power Distri	ct i
DESIGN CALCULATIONS SHE	EET
NEDC: <u>98-024</u> Preparer: <u><i>Clu L Clu</i></u>	Reviewer: Robert N. Champlin
Rev. No: 2 Date: 12-30-99 I	Date: 12-31-99

5. CONCLUSION

For As Left Tolerance (ALT) see section 4.1.3.5, and for the Leave Alone Tolerance (LAT) see section 4.1.7.6.

a) APRM Channel

The Analytic Limit (AL), Allowable Value (AV), calculated actual field Setpoints (equal to OSP since there is no elevation correction) for the APRM instruments NM-NAM-AR2,3,4,7,8, 9 are as follows:

Trip Function	Analytical Limit	Allowable_Value	Setpoint (OSP)
1. Flow Biased Scram	0.66W + 74.8%	0.66W + 71.5%	0.66W + 70.0%
2. Flow Biased Rod Block	0.66W + 63.5%	0.66W + 60.0%	0.66W + 58.5%
3. High Neutron Flux Scram	123.0%	120.0%	118.5%
4. Neutron Flux Rod Block Clamp	111.7%	109.0%	107.5%
5. Downscale Neutron Flux Rod Block	0.0%	3.0%	4.5%
6. High Flux – Setdown Scram	17.4%	14.5%	13.0%
7. High Flux – Setdown Rod Block	14.4%	11.5%	10.0%

b) RBM Channel

The Analytic Limit (AL), Allowable Value (AV), calculated actual field Setpoints (equal to OSP since there is no elevation correction), for the ARTS / RBM instruments NM-NAM-AR5, 6 are as follows:

Trip Function		<u>Analytical</u> Limit	<u>Allowable</u> Value	<u>Setpoint</u> (OSP)
1. Low Power Setpoint (LPSP)		30%	27.5%	26.0%
2. Intermediate Power Setpoint (IPSP)		65%	62.5%	61.0%
3. High Power Setpoint (HPSP)		85%	82.5%	81.0%
4. Downscale Trip Setpoint (DTSP)		89.0%	92.0%	94.0%
	<u>MCPR</u> Limit			
5. Low Trip Setpoint (LTSP)	1.20	117.0%	114.0%	112.0%
	1.25	120.0%	117.0%	115.0%
	1.30	123.0%	120.0%	118.0%
	1.35	125.8%	123.0%	121.0%
6. Intermediate Trip Setpoint (ITSP)	1.20	111.2%	108.5%	106.5%
	1.25	115.2%	112.5%	110.5%
	1.30	118.0%	115.0%	113.0%
	1.35	121.0%	118.0%	116.0%
7. High Trip Setpoint (HTSP)	1.20	107.4%	104.5%	102.5%
	1.25	110.2%	107.5%	105.5%
	1.30	113.2%	110.5%	108.5%
	1.35	116.0%	113.0%	111.0%

etti

Page <u>64 of 64</u>

Nebraska Public Power District DESIGN CALCULATIONS SHEET

DESIGN CALCULATIONS SHEET					
NEDC: <u>98-024</u>	Preparer:	al Lach	Reviewer: Robal R. Champles		
<u>Rev. No:2</u>	Date:	12-30-99	Date: 12-31-99		

The settings (based on Reference 22 and current site settings per Reference 10) for the ARTS/RBM timing functions are:

Time Delay 1 (Td1)	3.5 sec. ± 0.8 sec.
Time Constant 1 (Tc1)	$0.5 \text{ sec.} \pm 0.05 \text{ sec.}$
Time Constant 2 (Tc2)	6.0 sec. ± 1.0 sec.

Since the field functional testing and calibration cannot functionally meet the stated tolerances of Sections 4.1.3.5 and 4.1.7.6 (as their divisions are smaller than half the smallest division on the meters), the as left and leave alone tolerances can be adjusted. The tolerance adjustment will be such that the encompassed tolerance band is comparable to the tolerance bands stated within this calculation.

The limit closest to the Allowable Value is to be moved further from the Allowable Value to the next value corresponding to half the smallest division of the meter.

The limit furthest from the Allowable Value is to be moved in either direction to the next value corresponding to half the smallest division of the meter.

• : . !

Calc No: NEDC 92-50S, Rev. 3	Nebraska Public F DESIGN CALCULA NPPD Generated	ower District	Sheet A1 of A7 T Review of Non-NPPD	
NM-NAM-AR 2, 3, 4, 7, 8, 9	Prepared By:		Generated Calculation	
NM-NAM-AR 5, 6	Date:	1997	Company's Name: General Electric Co.	
Setpoint Calculation	Checked By:		NPPD Reviewer: Mal Toll	
	Date:	1997	Date: July 23 1898 1997 -163/58	

APPENDIX A

APRM Trip Unit Drift Data Summary

A.1___Method

The calibration data for the APRM trip units was analyzed by an Excel spreadsheet program (called Y-GEITAS) which was programmed to carry out a statistical analysis of the data similar to that performed by the GE Proprietary Program called GEITAS (General Electric Instrument Trending Analysis System). Only drift data for the APRM trip units was analyzed, since for the APRM system the APRM chassis electronics are calibrated every week (using power distribution calculations by the process computer), and only the trip units are calibrated at the extended calibration interval (7.5 months based on a 6 months interval and the 1.25 grace factor). Moreover, only data for the fixed neutron trip was analyzed, and it was assumed that since this drift was applicable to all APRM trip setpoint calculations.

The program Y-GEITAS provides a quantitative estimate of instrument drift (D), for a specified calibration interval. The methodology for Y-GEITAS drift analysis is the same as GEITAS (described in Reference 3), however for Y-GEITAS only adjacent rather than overlapping intervals were used, assuring complete data is independence. There was sufficent data for this calculation because data was taken for 6 trip units over a 6 year period. An examination of the data showed that there had been no adjustments in the trip settings, so the raw data provided an accurate represention how the instrument drifted over the 6 years, once the accuracy and calibration errors (which are present in every calibration data point) were accounted for. Briefly, the Y-GEITAS program compiles a list of all data pairs separated by a particular calibration interval which do not overlap each other, and calculates the change in calibration value for each pair. These are called the Observed In-Service Differences (OISD), and for each calibration interval a statistically significant number (N) of OISDs are needed to predict drift for that interval. For Y-GEITAS each OISD is a separate and independent measure of the drift of that instrument for the specified calibration interval. Y-GEITAS then performs a number of statistical analyses on the OISD data to compute the values needed for a statistical evaluation of the drift over this interval. Including in this computation is the average OISD, and a measure of the variance in this value about zero called SMAZ (second moment about zero). Expressed as a percent of the instrument span (to make it dimensionless), the square root of the observed SMAZ is:

SQRT(SMAZ)_{obs} = (100/span) x SQRT $\{\sum (OISD_i - OISD_{avg})^2 / (N - 1) + (OISD_{avg})^2 \}$

The numerical value of the span used in this equation is not important, since it cancels out in the determination of drift.

Since, as explained in Ref 3, drift is random and can be both positive and negative for any particular calibration interval, square-root of SMAZ is a measure of the "apparent" drift for the calibration interval. The "true" instrument drift can not be directly measured because the measurements include errors due to the accuracy of the instrument, the calibration accuracy, and the errors due to temperature effects within the calibration temperature range. Y-GEITAS computes an allowable value for SQRT(SMAZ) based on an initial 2 sigma estimate of true instrument drift (VD) for the specified calibration interval, and other known instrument errors. The calculational algorithm is as follows:

 $SQRT(SMAZ)_{allowable} = (100/span) \times (1/2) \times SQRT(2VA^2 + 2C^2 + VD^2 + DTE^2)$

Where A, C, and DTE are the accuracy, calibration error and drift temperature effect for the instrument, all 2 sigma values. Although there are other instruments in the loop, only the trip units have been
Calc No: NEDC 92-50S, Rev. 3	Nebraska Public DESIGN CALCU NPPD Generate	Power District LATIONS SHE	Sheet A2 of A7 CT Review of Non-NPPD Generated Calculation	
NM-NAM-AR 2, 3, 4, 7, 8, 9	Prepared By:		Contract Carculation	
NM-NAM-AR 5, 6	Date:	1997	Company's Name: General Electric Co.	
Setpoint Calculation	Checked By:	<u> </u>	NPPD Reviewer: Mal Ella	
	Date:	1997	Date: Aul 23, 1998 1997 721/8	

considered in this calculation, so only the accuracy and calibration error for the trip units are used in this formula. Y-GEITAS then computes the Confirmation Ratio (CR) (defined as the ratio of the experimentally observed to allowable SQRT(SMAZ)), which is a measure of how well the drift has been estimated, assuming the accuracies are estimated correctly and the sample size is adequate.

CR = SQRT(SMAZ)_{observed} / SQRT(SMAZ)_{allowable}

To determine drift D, the value of SQRT(SMAZ)_{allowable} is adjusted, by adjusting the drift (VD), so that CR is close to unity.

A.2_Drift

The 7.5 month drift for this calculation was obtained by examining the confirmation ratio for 7.5 month calibration interval. If CR was greater than 1, then the drift value for that interval was assumed to be too low, and if significantly less than 1, the drift was assumed to be too high. The drift input to GEITAS (in terms of the equivalent 6 month drift) was then manually adjusted until the CR was less than one and as close to unity as reasonable. The drift input was made in terms of the equivalent 6 month drift (VD(6 mo)), which when extrapolated to 7.5 month calibration interval according to:

 $VD_{7.5} = VD_6 SQRT(7.5/6),$

produced an acceptable CR. Some engineering judgment was used to estimate the acceptable value of CR and hence the drift value used in the setpoint calculation.

The calculational procedure for determining the 7.5 month drift was as follows:

1. The observed drift for 7.5 months was calculated as shown below:

 $D(observed)_{7.5} = SQRT((4 \times (SQRT(SMAZ)_{7.5} \times (span/100) / CR)^2 - 2(A^2 + C^2)))$

2. Since the observed drift was calculated for 7.5 months, no extrapolation was required:

 $D(extrapolated)_{7,5} = D(observed)_{7,5}$

The drift values are treated as 2 sigma values, because the inputs that go into the drift calculation are 2 sigma.

A.3 Results

Results of Y-GEITAS analysis are shown in Table A-1, and A-2. Since this calculation was only for the APRM Trip Units, the VA, C and DTE values used in the calculation (and shown in Tables A-1, and A-2) are specifically for the Trip Units and were obtained from the body of this report. VA = 1.25 % was obtained from 4.1.3.3.4.1; C = 0.157 % was obtained from 4.1.3.6.3.1; and DTE = 0 was from assumption 3.20. Table A-1 shows a summary of the SMAZ and CR calculations for the desired extended interval of 7.5 months. Results are also shown for the 3.75 months calibration interval for confirmation. Table A-2 uses the results of the 7.5 month "apparent" drift calculation from site calibration data (Table A-1), to obtain the true instrument drift D for the required 7.5 months calibration interval using the method described above.

The results for APRM trip units are:

 $VD_{7.5} = 1.34$ % power $D_{7.5} = 1.34$ % power

	Nebraska Public Powe	er District	Sheet A3 of A7
Calc No: NEDC 92-50S, Rev. 3	NPPD Generated Calc	ulation	Review of Non-NPPD
NM-NAM-AR 2, 3, 4, 7, 8, 9	Prepared By:		
NM-NAM-AR 5, 6	Date:	1997	Company's Name: General Electric Co.
Setpoint Calculation	Checked By:		NPPD Reviewer: <u>Malell</u>
	Date:	1997	Date: July 23, 1996 1997 7/23/5E

These results from the Y-GEITAS program were also verified against results from GEITAS program. GEITAS calculation results are shown in Tables A-3 and A-4, and although GEITAS has more data points (because it uses all data points including those with overlapping intervals), the "apparent drift" values were approximately equal, and the final drift (D) values were the same as those obtained by Y-GEITAS. The drift values shown above are both 2 sigma values, and are used in the main body of this report for calculating the APRM setpoints.

1

-

10.25

, ,

<u>.</u>

1

	Nebraska Public Po DESIGN CALCULA	ower District	Sheet A4 of A7		
Calc No: NEDC 92-50S, Rev. 3	NPPD Generated Calculation		Review of Non-NPPD		
NM-NAM-AR 2, 3, 4, 7, 8, 9	Prepared By:		Generated Calculation		
NM-NAM-AR 5, 6	Date:	1997	Company's Name: General Electric Co.		
Setpoint Calculation	Checked By:	<u></u>	NPPD Reviewer: Mal 794		
	Date:	1997	Date: <u>Aul 23 1998 1997</u> 7/23/98		

Table A-1. Y-GEITAS Calculation

Calc. # 1-7 NM-NAM-AR 2,3,4,7,8,9 APRM.WK3 (Trip Trend #s: 1417,1422,1427,1432,1437,1 442)

SUMMARY OF SMAZ CALCULATION FOR APRM TRIP UNITS NM-NAM-AR 2,3,4,7,8,9

CALIBRATION INTERVAL = 7.5 MONTHS;

SPAN = 125

ACCURACY = 1.25; CALIB ERROR = 0.157;

DRIFT (6 MONTHS) = 1.2; DTE = 0

INTERVAL (MONTHS)	DATA PTS	OBSERVED (SMAZ) ^{1/2}	OBSERVED (SMAZ) ^{1/2} (% SP)	ALLOWABLE (SMAZ) ^{1/2} (% SP)	CONFIRMATION RATIO
3.75	100	0.5560	0.4448	0.8592	0.5177
7.5	52	0.7261	0.5809	0.8921	0.6511

Calc No: NEDC 92-50S, Rev. 3	Nebraska Public P DESIGN CALCULA NPPD Generated	Power District ATIONS SHE Calculation	Sheet A5 of A7 ET • Review of Non-NPPD	
NM-NAM-AR 2, 3, 4, 7, 8, 9	Prepared By:		Generated Calculation	
NM-NAM-AR 5, 6	Date:	1997	Company's Name: General Electric Co.	
Setpoint Calculation	Checked By:		NPPD Reviewer: Mal I Unh	
	Date:	1997	Date: July 23 1998 1997 7/23/19	

۰.

Table A-2. Drift & LAT Calculation

Calc # =	1-7 (Y-GEITAS)
	(Trip Unit only)
SPAN =	125
VA =	1.25
C =	0.157
DTE =	0

	OBSERVED	EXTRAPOLATED
VD(6 mo) =	1.2	7
M =	7.5	7.5
VD =	1.342	1.342
D =	1.342	1.342
Let X = Calculated S X =	QRT(SMAZ) 0.892	0.892
Let Y = Observed SC Y =	QRT(SMAZ) 0.581	0.581
Let CF = Confirmatio	on Ratio 0.651	0.651

Calc No: NEDC 92-50S, Rev. 3	Nebraska Public F DESIGN CALCULA NPPD Generated	Power District ATIONS SHEE Calculation	Sheet A6 of A7 CT Review of Non-NPPD
NM-NAM-AR 2, 3, 4, 7, 8, 9	Prepared By:		Generated Calculation
NM-NAM-AR 5, 6	Date:	1997	Company's Name: General Electric Co.
Setpoint Calculation	Checked By:		NPPD Reviewer: Mak Ella &
	Date:	1997	Date: M. L & Un h q. (23, 141: 1997

Table A-3, GEITAS Calculation

Calc. # 1-7 NM-NAM-AR 2,3,4,7,8,9 APRM.WK3 (Trip Trend #s: 1417,1422,1427,1432,1437, 1442)

THE GENERAL ELECTRIC COMPANY

6 y

5. 4

SUMMARY Largest	OF SMAZ INTERVAL	CALCULATIONS (in Months)	FOR: GE requested:	NM-N 22	AM-AR3 SPA	N = 125.0		
Accuracy	= 1.2	50000 Cal	ibration Erro	or = 0.1570	00 Drift ((6 mos) =	1.200000 DTE =	= 0.00000
INTERVAL (Honths)	DATA PTS	OISD MEAN	SMAZ	OBSERVED SQRT(SMAZ) (% UR)	OBSERVED SQRT(SMAZ) (% SP)	ALLOWABLE SQRT(SMAZ) (% SP)	CONFIRMATION RATIO	(Observed, % SP / Allowable, % SP)
1 2	846 789	0.003593 -0.020076	0.111807 0.129819	0.334375 0.360304	0.334375 0.360304	0.859237 0.859237	0.389154 0.419330	
3 4	730 678	-0.019945	0.146681 0.165151	0.382990	0.382990	0.859237 0.859237	0.445733 0.472964	
5 ~6 7≮	623 592 592	-0.046998 -0.084459 -0.154189	0.190247 0.196006 0.292421	0.438173 0.442725 0.540760	0.438173	0.859237 0.859237 0.881299	0.507629 0.515254 0.613594	37
8 9	568 573	-0.166197 -0.181640	0.280400	0.529528	0.529528	0.902822	0.586525 0.615795	
10 11 12	560 559 548	-0.194714 -0.187764 -0.187007	0.313990 0.309500 0.322920	0.560348 0.556327 0.568260	0.560348 0.556327 0.568260	0.944398 0.964514 0.984219	0.593339 0.576795 0.577371	
13 14	555 560	-0.208577 -0.246286	0.300618	0.548286 0.574826	0.548286	1.003538	0.546353 0.562182	
15 16 17	508 592 608	-0.3268732 -0.326892 -0.370789	0.387858 0.437483	0.603278 0.622783 0.661425	0.603276 0.622783 0.661425	1.059381	0.579461 0.587874 0.613936	
18 19	614 605	-0.376417 -0.378050	0.454503 0.441692	0.674168 0.664599	0.674168 0.664599	1.095029 1.112424	0.615663 0.597433	
20 21 22	594 559 520	-0.382222 -0.376673 -0.370000	0.455179 0.422169 0.412012	0.674669 0.649745 0.641882	0.674669 0.649745 0.641882	1.129552 1.146424 1.163051	0.597289 0.566758 0.551895	

* The 7 month value of observed (SMAZ)^{1/2} from column 6 from this Table was used in Table A-4 to get extrapolated results for 7.5 month calibration interval.

Calc No: NEDC 92-50S, Rev. 3	Nebraska Public I DESIGN CALCULA NPPD Generated	Power District ATIONS SHE Calculation	Sheet A7 of A7 ET Review of Non-NPPD Generated Calculation		
NM-NAM-AR 2, 3, 4, 7, 8, 9	Prepared By:		Schelated Calculation		
NM-NAM-AR 5, 6	Date:	1997	Company's Name: General Electric Co.		
Setpoint Calculation	Checked By:		NPPD Reviewer: Malture		
- <u>.</u>	Date:	1997	Date: July 23, 1998 1997 7103188		

Table A-4. Drift & LAT Calculation

Calc # =	1-7 (GEITAS)		
	(Trip Unit only)		
SPAN =	125		
VA =	1.25		
C =	0.157		
DTE =	0		

. .

.

...

.

	OBSERVED	EXTRAPOLATED	
VD(6 mo) =	1.2		
M =	7	7.5	
VD =	1.296	1.342	
D =	1.296	1.342	
Let X = Calculated So X =	QRT(SMAZ) 0.881	0.892	
Let Y = Observed SC Y =	RT(SMAZ) 0.541	0.547	
Let CF = Confirmation CF=Y/X =	n Ratio 0.614	0.614	

÷

.

ş

•

.

	Nebraska Public Power District DESIGN CALCULATIONS SHEET NPPD Generated Calculation		Sheet B1 of B3	
Calc No: NEDC 92-50S, Rev. 3			Review of Non-NPPD	
NM-NAM-AR 2, 3, 4, 7, 8, 9	Prepared By:		Generated Calculation	
NM-NAM-AR 5, 6	Date:	1997	Company's Name: General Electric Co.	
Setpoint Calculation	Checked By:		NPPD Reviewer: March 2 Ul	
·	Date:	1997	Date: <u>Aly 23 1998</u> -1997 -7/3/96	

<u>APPENDIX B</u>

APRM Flow Channel Uncertainty Calculation

B.IMethod

a) Flow Transmitter Errors

The total Recirculation flow is the sum of the flows from 2 separate but virtually identical flow loops. There is a flow transmitter in each loop and the output from each transmitter goes to a square root converter and then to a summer. The output of the summer provides a signal proportional to the total recirculation flow. ٢.

1

The flow (Q) in each flow loop is proportional to $\sqrt{\Delta P}$ measured by the loop flow transmitter. The transmitter puts out a 10 - 50 ma signal proportional to ΔP , and this signal goes to the square root converter which outputs a signal S proportional to the $\sqrt{\Delta P}$. Thus for each loop:

$$S = K \times \sqrt{\Delta P} \qquad (1)$$

where K is a constant. The error dS at the output of the square root converter due to an error $d(\Delta P)$ in the transmitter is:

$$dS = (K/2) \times d(\Delta P) / \sqrt{\Delta P}$$
(2)

For a constant transmitter error $d(\Delta P)$, the dS error is a function of the flow and is larger for low flows than for high flows. Assuming that the errors from the 2 transmitters are independent, they can be added by the SRSS method, so the total input error (dS_T) from the flow transmitters to the summer is:

$$dS_T = \sqrt{2} dS = \sqrt{2} x (K/2) x d (\Delta P) / \sqrt{\Delta P}$$
(3)

The summer output (V) is proportional to the sum of the outputs from the 2 square root converters, and for equal outputs from the square root converters, can be written as:

$$V = G \times 2S = G \times 2K \times \sqrt{\Delta P}$$

where G is a constant. The summer output error due to total input error dS_T from the square root converters is:

(4)

$$dV = G \times dS_{T} = G \times \sqrt{2} dS = G \times \sqrt{2} \times (K/2) \times d(\Delta P) / \sqrt{\Delta P}$$
(5)

Combining equations (4) and (5) we get:

$$\frac{\mathrm{dV}}{\mathrm{V}} = \frac{1}{\sqrt{2}} \times \frac{1}{2} \times \frac{\mathrm{d}(\Delta \mathrm{P})}{\Delta \mathrm{P}} \tag{6}$$

For the equipment used in the flow loop, full scale output corresponds to:

Maximum flow = 125% flow

$$\sqrt{\Delta P(\text{Full Scale})} = \sqrt{\Delta P(\text{FS})} = 408.9 \text{ in WC}$$

V(max) = 10 volts

	Nebraska Public Power District DESIGN CALCULATIONS SHEE' NPPD Generated Calculation		Sheet B2 of B3 CT Review of Non-NPPD Generated Calculation	
Calc No: NEDC 92-50S, Rev. 3				
NM-NAM-AR 2, 3, 4, 7, 8, 9	Prepared By:			
NM-NAM-AR 5, 6	Date:	1997	Company's Name: General Electric Co.	
Setpoint Calculation	Checked By:		NPPD Reviewer: Mah 24/h	
	Date:	1997	Date: My 23, 1998 1991 -1-2/1/18	

Therefore:

 $10 = G \times 2K \times \sqrt{\Delta P(FS)}$, or $K = 5 / \{G \times \sqrt{\Delta P(FS)}\}$

Substituting this value of K into equation (4) shows that V for any arbitrary flow (or ΔP) is:

 $V = 10 \times \sqrt{\Delta P} / \sqrt{\Delta P(FS)}$ (Volts)

This yields:

 $\Delta P = (V^2 / 100) \times \Delta P(FS)$

Substituting equation (7) into equation (6) gives:

 $dV = \frac{1}{\sqrt{2}} \times 50 \times \frac{d(\Delta P)}{\Delta P(FS)} \times \frac{1}{V}$ (Volts)

Let the total transmitter error as a fraction of full scale (or full span) be defined as AFT, then:

$$A_{FT} = \frac{d(\Delta P)}{\Delta P(FS)}$$

- - - -

and

$$dV = \frac{1}{\sqrt{2}} \times 50 \times A_{FT} \times \frac{1}{V}$$
 (Volts) (8)

This error is a function of the voltage V (or flow), and is twice as high at 50% flow than at 100% flow. However, to enable a constant error to be used for setpoint calculation throughout the range of interest, a constant error must be chosen. For the APRM flow biased setpoint calculation the error at 75% flow (or V= 6 volts) has been chosen because it is conservative compared to flow which gives 100% power. At lower flows there is more margin in the analytic limit, and the contribution of the flow error is not significant. Thus the error for APRM flow biased setpoint calculation is:

dV (for setpoint calculation) =
$$\frac{1}{\sqrt{2}} \times 50 \times A_{FT} \times \frac{1}{6} = 5.893 \times A_{FT}$$
 (Volts) (9)

The corresponding error in flow is given by multiplying equation (9) by the volts required to get 100% flow. As mentioned earlier:

V(100% flow) = 8 volts

Thus the flow error due to the flow transmitters is:

FT Error =
$$\frac{dV}{8} \times 100$$
 (% flow)
FT Error = $\frac{5.893}{8} \times 100 \times A_{FT}$ = 73.66 x A_{FT} (% flow) (10)

Note that AFT is the total fractional transmitter error and includes error due to vendor accuracy, SPE, ATE etc.

(7)

	Nebraska Public P	Power District	Sheet B3 of B3	
Calc No: NEDC 92-50S, Rev. 3	NPPD Generated Calculation		Review of Non-NPPD	
NM-NAM-AR 2, 3, 4, 7, 8, 9	Prepared By:	- <u></u>	Ocherated Calculation	
NM-NAM-AR 5, 6	Date:	1997	Company's Name: General Electric Co.	
Setpoint Calculation	Checked By: N		NPPD Reviewer: ML EUL	
	Date:	1997	Date: July 23, 1998 1997 7/23/98	

b) Flow Element Errors

In addition to flow transmitter error, each of the 2 flow loops also has a Flow Element (FE) Error due the accuracy of the venturis. Assuming the errors from the 2 loops are independent they can be combined using the SRSS method. Also noting that the total flow is equal to the sum of the flows from the 2 loops the total Flow Element Error is:

FE Error =
$$\frac{1}{\sqrt{2}}$$
 x FE Error in % flow per loop (% flow) (11)

c) Flow Unit Error

The Flow Unit, consisting of two square root converters and a summer, has an error which must also be considered in determining the overall flow loop error. This value is given in the specifications as percent of full scale output, and can be converted to % flow by multiplying by the ratio of the output corresponding to 100 % flow and the full scale output.

FU Error = FU Error as % FS x (full scale volts / volts for 100% flow)

For the equipment used, the error is:

 $FU \operatorname{Error} = FU \operatorname{Error} \operatorname{as} \% \operatorname{FS} x (10/8) \qquad (\% \operatorname{flow}) \tag{12}$

B.2Results

a) Flow Transmitter Error

As shown in 4.1.3.3.4.1, the error for the GEMAC555 transmitter is:

 $A_{FT} = 1.00$ % span. = 0.01 fraction of span

Thus, the corresponding flow error for setpoint calculation from equation (10) is:

FT Error = $73.66 \times 0.01 = 0.7366$ % flow

This value is used as a 2 sigma value in the setpoint calculations.

b) Flow Element Error

As shown in 4.1.3.3.4.1, the flow element error for the venturis used in the plant is:

FE Error per loop = 2.0 % flow per loop

Therefore, from equation (11)

FE Error =
$$\frac{1}{\sqrt{2}} \times 2\% = 1.414\%$$
 flow

c) Flow Unit Error

As shown in 4.1.3.3.4.1, the flow unit error is:

FU Error as % FS = 2%

Therefore, from equation (12)

FU Error = $2 \times (10/8) = 2.5 \%$ flow

ATTACHMENT 3 LIST OF REGULATORY COMMITMENTS©

Correspondence Number: <u>NLS2003111</u>

l

The following table identifies those actions committed to by Nebraska Public Power District (NPPD) in this document. Any other actions discussed in the submittal represent intended or planned actions by NPPD. They are described for information only and are not regulatory commitments. Please notify the Licensing & Regulatory Affairs Manager at Cooper Nuclear Station of any questions regarding this document or any associated regulatory commitments.

COMMITMENT	COMMITTED DATE OR OUTAGE
None	