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“ . ABSTRACT

A multidimensional stochastic theory is presented for far-field dispersion
due to the spatial variability of hydraulic conductivities. We use a :
second-order perturbation approach to relate the far-field velocity vector,
¥V, and dispersion tensor, D, to the mean and covariance of the local seep-
age velocity vector, v, and the local dispersion tensor, - d.” We find that,
in general, ¥ 1s not necessarily equal to the ensemble mean of v, p, and
that D is a second-rank symmetric tensor. In the particular case where v- v
=0 (e.q., incompressible fluid in a rigid porous medium of uniform effec-
tive purosity), V becomes equal to y, and our expressions for D simplify to
those presented By Gelhar and Axness [1983]. We further extend a conclu-
sion of these authors, that as the Peclet number, v, increases, D becomes
asymptotically 1inear in |g|, by showing that it holds for arbitrary veloc-
ity covariance functions. F1na11y. we -derive expressions for D as a func-
tion of v for situations where the logarithm of hydraulic conductivity fits
a spherical covariance or semivariogram function, as is often the case,
These expressions are applied to.log hydraulic conductivity data from
packer tests conducted in seven boreholes penetrating fractured granites
near Oracle, southern Arizona. -

11



TABLE OF CONTENTS

Page
LlSTOFFIGURES.-ooot..‘-oooo.ooooooooc-ooovii

PREFACE & ¢ o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o e o o e s 0o 0000000 eeseaes ix
1. INTRODUCTION & ¢ o ¢ o ¢ o ¢ ¢ ¢ ¢ ¢ o 6 6 6 0 06 0 0o e oo
2. CENTRAL LIMIT THEOREM o ¢ ¢ ¢ ¢« ¢ ¢ ¢ o o ¢ ¢ o ¢ 0 6 o s ¢ 0 ¢ o o
3. EFFECTIVE COEFFICIENTS

O & »

* L L] L L] L ] L L L [ ] L 4 L] L L J L L ] [ L L L L] L

3.1 Genera] Case ¢ & & ¢ & & ¢ o & o ¢ S 0o & & O ¢ 0 o o &+ 0 ¢ ° 0o 9

3.2 case 'here v v = 0 L J L 2 L J L J [ ] L ] [ ] * * L] L] . [ ] L * * L ) . [ ) L 12
3.3 Behavior at large. Peclet numbers . e o o o 0 000000 14
3.4 Formulae for log hydraulic conductivity uith

spherical covariance or semivariogram . « « « ¢ ¢« ¢ ¢ ¢ ¢ o o » 17

4. APPLICATION TO FRACTURED ROCKS AT ORACLE,
SmTHER“ ARIZOHA * L] L d L L J [ ] L] L ] L ] L J * o L 4 L L L] L] [ ] . L L L] L] * L] * 24

5. RELEVANCE TO NRC LICENSING OF HIGH-LEVEL RADIOACTIVE
uASTE REPOSITORIES . * L] * * L L] L L] * @ L] L ] L ] L L] e - L] L] * * . L 32

6. REFERENCES « ¢ o « ¢ ¢ e o o o o ¢ e o s a s s s s s aseesese A
APPENDIX #  ““MENCLATURE & « « « « c-o o o o o s o s o s s o o o o 37
APPENDIX B: PERTURBATION EXPANSIONS « « « « o ¢ o o o o o ¢« s o o o 39
APPENDIX C: GENERALIZED LIMITS « v v ¢ o o o o s o s o o o o o o« 44
APPENDIX D: *DERIVATION OF H(X) ¢ « ¢ ¢ ¢ o o e o e o s o s o 0 oo 50
APPENDIX E: DELTA SEQUENCE & « o o o o o o o o o o e o s s o o oo 5
APPENDIX F: CONTOUR INTEGRALS « « o v o o o v o oo oo oo oo oo 54
APPENDIX G: @22 FORLARGE V o ¢ o ¢ e ¢ o o o o o o o o o o o o oo 57



Figure 1.

. Figure 2.

Figure 3..

Figure 4.
Figure 5.

Figure 6.

Figure 7.

Figure 8.

T L L - -

List of Figure Captions

*Location of boreboIes at Oracle site (after Jones

et a].. 1983)0 e & & & ¢ ‘0o o .?. e o . e o o . ® o o »

Horizontal . and vertical semivariograns of hydraulic
- conductivities at Oracle site. Smooth curves

represent spherical models fitted to the data’ (after

Jones et a].’ 1983). o o o c e o o e 6 8 5 8 o o o @ o

’Average (1sotrop1c) semivariogram for log hydrau11c ‘

conductivities at Oracle.  Smooth curve represents
spherical model fitted to the data (after Jones

et a]', 1983). L] ..."0 L L] . L L ] L ] [ ] ® L L] * L] [ 4 -. L [ ]

Variation of ©11 with v for fractured granite near
Oracle. The straight 1ine labeled v = = represents

asyMPtOt1C behav1°r. e o o6 06 6 o 0 0 060 0 0 0 9 0 0

Variation of D11 A with v for fractured granite ‘near
Oracle. - The s%raig t 11ne labeled v = = represents
asymptotic behavior. « « '« ¢ e ¢ o ¢ o s o ¢ o 0 o o o

Variation of @22 with v for fractured granite near
racle when d| = dy (q = 1). The straight line -
labeled Ve represents asymtotic behavior. . « . « .

Variation of (D22/d22 -1) with v for fractured granite
near Oracle when dy = dr. (q =.1). . ‘The straight 11ne
labeled VEe represents asymptotic behavior e o'e o o

.Variation of. °11/“22 with v when dL = dr (q = 1),

The straight line labeled v = = represents asymptotic
behavior L ) L o e L ) L ] [ ] * [ ] L] [ ) . L ] L [ ) L ] * * [ ] * L] [ ] .

vii

25

25

26

27

28

29

30

k)



PREFACE

Radionuclides released to the subsurface environment from a radioactive waste
repository will be transported and spread through the host rock by ground-
water. The average distance traveled by such radionuclides in a given time
is determined by the groundwater seepage velocity. The degree to which a
plume of radionuclides spreads about its center of gravity is controlled by
the dispersion coefficient of the flow field, which in turn depends on the
seepage velocity as well as the dispersivity of the host rock. Recent
studies have shown that dispersivity is not a constant property of the host
rock but increases as the plume moves away from the respository. 1f the
seepage velocity field is statistically homogeneous, the dispersivity tends
to a constant “far-field" value as the 2istance between the plume and the
respository increases. Under these conditions, transport in the far field
can be modeled by the classical advection-dispersion equation based on an
analogy to Fick's law of diffusion.
Most existing subsurface transport models are based on the Fickian adec%ion-
dispersion equation. To use these models one must know, among other parame-
ters, the far field dispersivity of the host rock. Unfortunately, this dis-
persivity cannot be measured directly by tracer tests in low-permeability
rocks. The reason 1s that, in such rocks, one may have to wait very long
before the tracer nmoves far enough from its source for the dispersivity to
become constant. To overcome this difficulty, we propose a method to esti-
mate the far field dispersivity of a rock mass indirectly from measurements
of hydraulic conductivity. The latter parameter can be obtained with rela-
tive ease by packer tests.

Our method of predicting the dispersivity parameter is based on a stochastic
theory akin to that developed by others for turbulent diffusion. The theory
shows that dispersivity is a second-rank symmetric tensor which can be rela-
ted to a dimensionless Peclet number. The Peclet number is proportional to
the mean seepage velocity, the correlation length of the hydraulic conducti-
vities, and .inversely proportional to the near field longitudinal dispersion
coefficient. Near field dispersion coefficients can be determined by tracer
tests in closely spaced wells. Our theory shows that for large Peclet num-
be;;, the far field dispersivity tensor is independent of these dimensionless
numbers. -

The formulae develored in this study have been applied to fractured granitic
rocks near Oracle, southern Arizona. We believe that the same formuale
should also be applicable to other fractured rocks. The U.S. Nuclear Regula-
tory Conmission may be asked to approve applications for licensing subsurface
high-level nuclear waste repositories in low-permeability fractured rocks.
The formulae and theory developed herein should be of practical help to the
NRC in support of such license applications.

ix
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1. INTRODUCTION

Subsurface solute transport has traditionally been described by the
convection-dispersion equation [Scheidegger. 1954; Bear. 1972 Fried 1975]

6= 7ody - veyde c(_ °) = Co(_) | - | ‘_ (1)

where c(x,t) is concentration, __is position vector. t is time, dis hydro-
dynamic dispersion tensor, v(x)"1is seepage velocity vector, and Vv is gradient
operator (all symbols are defined in Appendix A). This' equation is derived
from mass balance considerations and the assumption that the dispersive mass
flux, J4, obeys Fick's first law, ;

Jg = -dvc - | | (2)

The hydrodynamic dispersion tensor is believed to have principal ‘directions
paraliel and normal to the:seepage velocity vector, v. The principa] value of
d parallel to v, di, is called “longitudinal dispersion coefficient." : Normal
to v, d is often taken to be isotropic and represented by the "transverse dis-
persion coefficient,” dy. These’ two -coefficients are usually expressed as

L=dy+ 3 I.V.I

(3)
dr = dp + a7 |y|

_where d, is the coefficient of subsurface molecular diffusion (generaily

smaller than the equivalent coefficient in the pore fluid), 3 1is “Iongitudi-
nal dispersivity,” and aty is “transverse dispersivity.

Certain aspects of this theoretical model have been confirmed by ‘small-scale
laboratory experiments on relatively uniform granular materials [Bear, 1972;
Fried, 1975; Klotz et al., 1980]. These experiments further suggest ~
that a; and ay are velocity dependent: when IVI tends to zero, so do 2, and
aT{ whereas when |v| pecomes iarge, the dispers vities approach constant
values. e » ) 4

Attempts to appiy the same model to large-scale laboratory and field tracer
experiments have led to several difficulties. One difficulty is-that 2 and
at seem to vary wigh the’ scaie of tho -vperiment. Whereas in the laboratory
ap ranges from 10-%mi{o 10-Im for ralatively uniform fine to coarse-grained
soils and up to almost 1 m for coarse gravel [Bear, 1961; Lawson and Elrick,
1972; Klotz et al., - 1980], ‘in field 'tracer exgeriments a_'varfes from =~
10° m to 10 m, and may on occasion exczed ‘10 m Lallemand Barres and ..
Peaudecerf, 1978; Anderson, '1979; Pickens ‘and Grisak 1981a]. When 3 -is
obtained by matching the ‘output of ‘computer models based on (1). with docu-
mented histories of aquifer pollution on a regional. scale. its value ranges
from less than 10 m to more than 100 m [Anderson, 1979]. Another’ difficulty
is that, in a given tracer experiment, 3 and ar appear to grow with distance

1
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of the sampling point from the source [Martin, 1971; |
Peaudecerf and Sauty, 1978; Sudicky and Cherry, 1979;
Dieulin et al., 1980; Silliman and Simpson, 1983]. I
phenomenon and treating 3 as a constant may lead to ¢
able conclusion that a concentration plume could spre;
exceeding that predicted by molecular diffusion alone
Simpson, 1978].

The difficulty with the classical Fickian model is tht
scale. One promising way to deal with this scale eff:
age velocity as a ~tochastic process. Assume that, ot
satisfies (1), but the seepage velocity, v(x), varies
tion to another due to aquifer heterogeneity. Then c
depenaent random function: as time (and thus distance
increases, the characteristics of the plume change. !
expand but, more importantly, its outline becomes inci
solute concentration evolves from an initially frrequ’
which is quite regular.

Our problem is reminiscent of scale-dependent random |
used to describe phenomena in other fields of physics
mediate relevance to subsurface transport is work done
lent diffusion. On the local scale, turbulent diffus-
equation having the same mathematical form as (1). L
constant, second-rank, symmetric, positive-semidefinit
weakly stationary stochastic process. We can then wr:

¥(x) = p + e ulx)

where p is the mean velocity vector, u(x) is a weakly

zero mean, and ¢ is a dimensionless parameter measuris

velocity fluctuations. Then it has been proven that, ..
ises, the concentration tends asymptotically to a Fickf

by

aC .
3? = .(VOQV-VO_V)C H c(ilo) 2 c0(_x.)

where C(X,t) is the concentration at a large distance
after the passage of a long time, t, D is an effective
¥V is an effective velocity vector, the latter two beir
c(x,t) tends asymptotically to C(X,T) have been provic
of zero concentration at infinite distances from the
cases: (a) for the case of convection-dominated (i.e.

diffusion in'1, 2, and 3 spatial dimensions by Kesten
and (b) for the case of incompressible (i.e., V.v = 0
3 spatial dimensions by Papanicolaou and Pironeau [19¢
parameter ¢ is scaled to zero as time gets large.

2
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The assumptions underlying these proofs appear to: be valid not only for turbu-
lent diffusion, but also for certain cases of .subsurface transport as sug-

ested by the experimental results of Martin [1971! Peaudecerf and Sauty
E1978] Sudicky and Cherry [1979], Sudicky et al. [1983] and Silliman and

impson [1983]. In these large scale laboratory and field tracer experiments
aL and ay increase with sampling distance from the source.’ However, the dis-
persivitIes tend asymptotically to constant values as this distance increases,
implying an asymptotic tendency toward Fickian behavior. The experiment of
Sudicky et al. provides an exceptionally vivid illustration of this tendency
by showing how the outlines of two three-dimensional plumes change with time
from irregular shapes to near-perfect Gaussian distributions. '

If we accept the existing mathematical proofs -and experimenta] evidence that
the concentration field tends asymptotically toward Fickian behavior, what
remains is to develop (a) a model for the early non-Fickian regime and .(b)
‘expressions for the effective parameters ¥V and D. Attempts to-deal with the
first problem in connection with subsurface transport have been ‘reported by
various authors including Gelhar et al. [1979], Hatheron and ‘de Marsily
£1980], Dieulin et al, [1981] and Dagan [1982]. "However, Pickens and Grisak

- [1981b, p. 1701] found that “for systems ‘that exhibit :a constant (asymptotic)
dispersivity at large times or mean travel distances, the importance of scale-
dependent dispersion at early times or short travel distances...[is] minimal

" in long-tern prediction of solute transport.” ' This, together with our primary
interest in regional dispersion, has led us to focus -on the second ‘problem of
determining V and D.

A so]ution to the latter prob]em for the case of purely convective turbuient
¢iffusion, where d is identically equal to zero, has been given by Roberts
[1961]. Gelhar et al. £1979] and Matheron and de Marsily [1980] have con-
sidered the highly specialized case of subsurface transport in -layered media.
The velocity fields in such media are in fact so special that they

violate the conclusions of Kesten and Papanicolaou [1979] and Papanicoiaou
and Pironeau [1980] unless a very ‘strong condition is fulfilled: . the covari-
ance function of v exhibits a so-called "hole effect.” An interesting work on
two-and three-dimensional subsurface transport where d is very small compared
to.D has been published by Dagan [1982].  More recently, Gelhar and Axness
[1983] have presented a comprehensive stochastic theory of dispersion in sta-
_tistically anisotropic three-dimensional porous media.

In this paper we. outiine a’ second-order perturbation theory that relates V and
.D to the mean and covariarce of the seepage’ ‘velocity vector, v, and to the
Tocal-dispersion tensor,: d. Our perturbation expansion is in the’ spirit of
" Kubo [1963] and its mathematical details can be found in the Ph.D. disserta-
tion of Winter [1982] ur:the paper of Winter'et al, [1983]: ‘The theory -
applies in an arbitrary number of spatial dimensions and under a variety of
flow conditions. We find that, in generai V is not necessarily the same as u
(in .the one dimensional case, V is less’ than ' u),-:and D is‘a second-rank sym-
metric tensor. Only in the particuiar case where v-v = 0 (e.q., incompres-
sible fluid in a rigid porous medium of uniform effective porosity) are V ana
u equal.. In this latter case, our expressions for D simplify to those presen-
‘ted by Gelhar and Axness [1983].-
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Suppose that the x, coordinate is oriented parallel to y and define a Peclet
number, v, as

v =¥l L
d11

where L is some characteristic length. Gelhar and Axness [1983] were able to
show for two specific velocity covariance functions that when vev = 0, D be-
comes asymptotically linear in ¥y as v increases. We show that their conclu-
sion holds true for all velocity covariance functions, and their corresponding
expression for the asymptotic dispersivity has universal validity under the
above conditions.

Bakr et al. [1978] and Gelhar and Axness [1983] have derived expressions
relating the spectrum of v to the spectrum of the log-hydraulic conductivity,
K, for statistically isotropic and anisotropic situat.ons, respectively.
These expressions make-it possible to write ¥ and D as functions of the mean
log-hydraulic conductivity and its covariance (or spectrum). In practice, the
spatial variability of K is often analyzed by means of geostatistical methods
involving semivariograms. Experience to date has shown that many semivario-
grams of loy K fit a so-called "spherical® model. We therefore conclude our
paper by deriving expressions for D in terms of a spherical semivariogram or
covarfance and applying these expressions to packer test data from fractured
granites near Cracle in southern Arizona.

2. CENTRAL LIMIT THEOREM

In the following two sections we describe our approach to calculating the
effective velocity and dispe~sion coefficients, V and D. The final forms of
these coefficients are given in equations (36)-(30) beTow.

Three key ideas lie behind our estimates of V and D: averaging the small-
scale concentration, c, over the distribution of the local seepage velocity,
v; rescaling time and space in (1); and applying the semigroup approach to the
rescaled transport equation. There is an intimate connection between trans-
port equations like??l)'and stochastic “"diffusion” processes. The latter are
processes describing the position of a solute particle whose concentration is
given by-functions like c(x,t). In fact, the fundamental solution (Green's -
function) of (1) is the transition (probability) density of the following sto-
chastic diffusion process [Gihman and Skorohod, 1972]

() =p e u[X(t)] + bw'(t) (7)

where X(t) is the particle position at time t, 2? = 2d, w(t) is 2 standard
Wiener process, and the prime indicates differentiation with respect to time.
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Since (1) is a stochastic equation due to the randomness of \, we can
consider the (ensemble) mean of the local concentration, ¢(x,t). . Although ¢
does not generally satisfy (1) or (5), we proceed on the assumption that, as
time increases, C tends asymptotically to the solution.of (5). The rationale
for this assumption is based on the 1imit theorems of Kesten, and Papanicolaou
[1979] and Papanicolaou and Pironeau [1980] togethar with the experimental
evidence cited in the introduction.

In order to compare the asymptotic behavicrs of (1) and (5), we first
rescale the variables t and X in (5) by means of a positive scalar, 1,

such that 7y = t/x and X, = (X-V¢)/¥3, and the convective term vanishes.
Thus, upon defining the modified concentration Cy(X,,T;) = C(X,T), (5) takes
the form . : . A .

aC o S -
W InG). 5 GRG0 R G (8)

where v, is the gradient operatcr with respect to ZA° In the limit as Ase,
this becomes

]v8

o e @G 5 G0 * Mm e AN) )

The fundamental solution of (9) is:a Gaussian density function, f(X.), with
zero mean and covariance 2 D t.. Equivalently, the random position vector
X(aty) - AV S \
7Y

(10)

has a density which approaches f(X,) as A+=. 1n other words, {10) satisfies
a central 1imit theorem as A, and thereby 7, become large. -

. “We now turn to (1) and treat uifor a moment as a given ‘(i.e., nonrandom)
' function. If we define t, = T/x, %\ = XV, and ¢, (73, t;) = c(x,t), then (1)
- takes on the modified form "~ - - D e ,

9C
'aT:' = Ve (dvacy) - /3 VA‘“}L"‘ .‘.‘,("T.’.‘A),]Cx} ; - (11)
Gilxys 0) = (/%) . B

Since-g.iS‘giien; ¢y (x ;tx):can~bg;yiewedAa§ the conditional density of the
~position process 5A?t;3 = X(Aty)/71. On the ‘other hand the-translated process,

X (ty) /Aty V, has a conditional density, fy(x,lu), given by - -



nle) = oln + ALY, ) . (12)

Let us, for clarity of notation, replace t), X, and ¥y by t, x, and ¥,
respectively. To obtain the marginal density, f,(x), trom f3(x|u), we recall
that

fy(x) = [ fy(x, u) du = [ f(x|u) f(u)du

13
- el xlw)] (3)

where f;(x, u) is the joint density of X,(t) and u, f(u) is the margiral
density of u, and E, represents exrectation over u.

Our objective is to exploit the limit assumption
lim fy (x) = f(x) (14)
A+

to calculate ¥V and D. According co (13), this is the same as
Vim Ey[fy(x]u)] = f(x) (15)
Are

An equivazlent form of (14) - (15), which we prefer to use below, is
1im Exxtg(x;-/i't;l)k Ex [9(X.)] (16)
Ave T -

where g is an arbitrary function and X, has the density f(x).

To apply (16) we return to (11). The fundamental solution of the latter
equation is equal to the conditional transition density of X(it)//a for a
given u, which we designate by p,(s.y:;t,x). The product p,(s,y:t,x) dx is the
probability that a particle starting at y at time s<t has reached a small vol-
ume centered on x at tiwe t. It is important to note that p, is also the fun-
damental solution to the formal adjoint of (11), i.e.,

3Py - -
35 " [~ 9g9 - /X [ure u(AY)]v]py = - LiPy

(17)

where -L, is the differential operator in the middle expression acting on the
variable y. The interested reader should consult a standard text on stochas-
tic differential eguations, e.g. Gihman aud Skorohod [1972], for details.
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aefine an integral operator with kernel py(s,y;t,x) on an arbitrary-function,
s 35

Pu(é;i)h = 'I{kpg(sui;t.y h(&)d_g (18)

where RK is the k-dimensional Euciidean space. Since p, is the transition
density of a diffusion process, the:operators P, form a continuous semigroup,
. the backwards semigroup of py, [Feller,v1966]. ue'useithese operators because
they are conveniently represented by exponentials. To help see this, observe
that 1f (18) 1s differentiated with respect to s, and the arbitrary h is
ignored, then formally o o , S Co

2 L
35 Pu=-Lp, - (19)
Because p, approaches a Dirac delta function when s approaches t,
-(s-t)L,

Py=e | (20)

Armed with (18)-(20) we return to the limit assumptio: (16) which, by virtue
of (13) and (12), can be represented as- , L

ngls(xx-ﬁtx!)l = [ 9lx) Ey[fi(xlu)]ex
R

AL ORI CECTRON
- {9 Eio 0l @
R .

But the solutfon of (11) is giver by the convolution of its fundamental solu-
tion with the initial condition, {.e., . ,

alzt) = [ pyl0.yit.z) colAy)dy e (@)
R .. -
On the other_hand, translation by -/At¥ is equivalent to application of the
operator-e'J‘qx°7. Thus



(o)l = [ e T5(e) Elf pul0itn) co(/ALaylez
- R
“ [ col/R) LS pyl0agit.z)e A Tg(2)ar] oy
R Rk

= {k co(ny) Eyl ethr e"«‘!"g] dy (23)

Similarly the asymptotic density, f(x), satisfies (9). Upon replacing t., x
and(v.). by t, X, and v, we can write the backwards semigroup corresponding ~ =’
to (9) as

-(s-t) v.Dv
P(s,t) = e (24)

Thus, in analogy to (23), we have

(ve

t(veDy)
Ex [g(X.)] = !k Cu(y.0) e a(y)dy (25)

From 1im co{/3y) = C.(y,0) in (9) it is clear that (16) is satisfied only
A

San

if

];im Eu[ eth e-t/l _V.°VJ = et(V'Q.v) . (26)

Ares

Because L, has random and nonrandom parts, we write it as Ly = A + ¢B where
the nonramdom part is

A= v.g + /r]!..v (27)
and the random part is
B = /% u(/3x)ev (28)

Thus (26) becomes



t(A*EB) —/AtVeV t(veDy)
e = e

1im Eu [e
Ase

(29)

EquationZ29 is the starting poinﬁ'for the next section. It 15 the mathemati-
cal equivalent of the assumption that the solution of (1) converges to that of
(5) as time increases. A ,

3. EFFECTIVE COEFFICIENTS

3.1 General Case

Our approach is to derive-perturbétibn expansions for‘!;and g_ih pokers of ¢,
V(e) = Vo + c¥y + €2¥p +... , D(e) = Dy + €Dy + €2Dp +... (30)

with p, u and d given. We obtain our expansions by writing the terms in (29)
as series in ¢. We use the standard expansfion [Hille and Phillips, 1957]

t(A+teB) tA t (t-t1)A tHA -
e =e +€[ e Be dtj
o

t t1 (t-t))A  (t)-t)A  toA
+ eff { e Be Be dtadt) + ... (31)
0

together with the expansions following from (30),

e V) & [1ee/Rtyyev - e"’/i't_\_vz-v."f-‘;c?xt? (Vy9)2

+ uee) e/t {¥5e7) (32)
t(veDv) -
e = [1 + et(vD19) + €2t (veDo¥)
1 . B
rg et (T2 + L] TR (33)



Subs tituting (31) - (33) into (29) and taking 1imits term by term we find that
Y, *p, ¥y =0, Dy =g, and Dj = 0. The second order terms are obtained from

tt
Jim (/Ftypen + [ [ el t1)Ag rgelti-talAgie(ta-tihye gy,
(o I ]

= tV.DoV (34)

Details of the derivation are given in Appendices B and C.

The second order terms, g?!Z and ¢2p,, are expressed in terms of the velocity
covarjance function

Pamlx-y) = ELvp(x)vp()] - w2 (35)

or its Fourier trcnsform (the “cross-power spectrum®)

anm(i)' = elirx Pam(x) dx
Rk

where § = /=I. With this notation, the second order approximation of V is
given by .

Veaysyr - (36)
where

N 1 &, Ppn(E)

= (2%)- de s n = 1 .k 3 kD1 (37)
L1 e e, _
and F(g) =&  d & -iyeg. The second order approximation of D is given by

B=d+D* (38)

where
p* = (p{f) + pl)T 4 plif) 4 pli)T)

10



and

ofd) = L (20)-k fk}—%g-sm,(ﬁ) € 5 o2
R o

(39)
(1) 4 = Ple)de -
Dnm = .3:.{. m +WLP(X)‘«;R,‘1 sn=ma=1
p.o(£) d € ,
(11) . - (20)k & & pm=" .or °r
am B L L For % (40)

T indicating transpose. clearij, D' is a second rank symmetric tensor,

It can be shown that if the elements of p are bounded at the origin and

integrable (e.g., if p is integrable and continuous) then (37) is well de-

fined (i.e., requires no regularizations in the integral for k>2) whenever d is
positive definite and for k=1 whenever y # 0. Similarly, -(39) and (40) are well
defined for k>3 whenever d is positive definite, for k=2 whenever d is positive
definite and p # 0, and for k=1 whenever u # 0. In some cases (377; (39) and (40)
are well defined even if these conditions are not met so ]gsg as p satisfies a 2
more stringent condition. For instance, if v-v=0 then D( vanishes .and, in R,
~.we can allow u = 4 if p(0) = G.. Of course this requires that the matrix- valued
function p itsel be not positive semidefinite over some spatial region. Such a
hole effect has been investigated by Gelhar et al. [1979] and Matheron and de
Marsily [1980], and similar conditions on p have been obtained. In most realistic
cases, however, no such strong conditions on p are required. :

In one-dimension, the evenness and positivity of P(g) imply that

v s S o | (a1
w L owmEe v | o

Thus for u >0, V < p (to second order) Hhen locai dispersion is small .04,
d = 0, this. simply reflects the difference between the arithmetic mean (u) and
harmonic mean: (V) of the- velocity. On the other-hand, 1n the special case

Vev=0 for k>1, V* = 0iand V = p (again to second order). We return to this

point in the next section.” Both of these effects are known to be valid, not Jjust
to second orcer but exactly [S.R.S. Varadhan, personal’ communication]

When v.v20, equations 38-40 incicate that the sign of D* depends on the
specific form of gj;) For instance in: the one- dimensuonal case

1



e — e maeann...

0% 2 3(0) bt | e ule
ZTu_rp ZIluI {. (€2+1)£ p d

which could be positive or negative.

3.2 Case where 9.v = 0

In the special case where 7.v=0 (e.g., incompressible fluid in a rigid porous
medium of uniform effective porosity) our results simplify considerably.
These simplifications follow from the fact that vev = 0 implies

. k4 Kk 3
EC vy(0) m§1 T n(2)] = m§1 3, Pma(2) =0 (42)

X -
Since the Fourier transform of the middle term in (42) is ] (-1&q)Pma(E),
Vev = 0 requires that m=1

k - )
m):l (-1€) Pmalg) = 0 (43)

Applying (43) to (36) - (40) it is obvious that V* = 0 and g_(“) = 0. Thus we
have the result quoted in the last section,

Y=y _ (44)

Additionally, since g is even, D* for k>1 can be expressed as

.d ~n ~n
Dfm ";' (2r)-k I = [Pra(8) + Pma(£)1dg (45)
ok (£98)%(p.g)2

This is equivalent to equation 22' of Gelhar and Axness (1983).

Since d and g + 3T are positive semidefinite matrices, so too is the matrix
with elements (45). Thus, D* is a symmetric positive semidefinite tensor,
implying that 0 > d in the sense that D - d is positive semidefinite.

Similarly in the one-dimensional case

g = #le) 1

L - de +
L~ e TR

p(o) (46)

12



which is positive because 5(5) is positive. This explains why dis-
persion on a large scale is often greater than on a local scale.

Using relationships between the spectra of lo hydraulic conduct1v1ty and
local velocity obtained by Gelhar and Axness’ 81983], equation 45 can be
written in a form which depends only on properties of the medium. For a
locally 1sotrop1c but statistica]ly anisotropic medium, . :

£ede o
. . o1k () Pyl dc (a7)
Opm = (2] I ¢ (EgE)Z + (ueg)2 Gnm !

where Py(£) is the spectrum of loyg conductivity, Y = logygK, and

Grm(E) = (—) z Z Jp p (snp Enfp )(6pp - Erfm ) o (48)
p=1 r=l lgl |z|2 ‘

Kq being the geometric -mean of hydraulic conductivity, ’ the effective
(Einematic) porosity, J the mean hydraulic gradient, and 613 Xronecker's
delta. Equation 47 follows from (45) by ~

1. . o |
» [Prm() + PoalE)] = Gon(E) Py(E) SR . (49)

after Gelhar and Axness [1983]. When hydrauiic conductivity is statistically
isotropic, Bakr et al. [1978] had ea~lier shown that

2
"1 £16n . &1 _ :
Gon(E) = o Cn - _ET; ) ( ml - 'm;) (50)

when the Soordingte system has been rotated so that £1 coincides with !, Here
y= 1 + 94¢/6, 9y¢ being the log conductivit' variance. ‘

For the remainder of this paper we will treat the-case v.v = 0. .In subsurface
hydrology this corresponds either to steady state flow 'of an incompressible
fluid in a medium with uniform effective porosity, or transient flow if the
medium is additionally rigid. When these conditions are violated, one must
use (36)-(40) 1nstead of (44)-(47) ?n the other hand, (40) shows that
another sufficient condition for- D(ii (but not V*) to vanish is d = 0. When
this happens -and the effective porosity, i¢ (x), Ts variable (while ‘the rest of
the above conditions hold), mass conservatfon reauires v+(¢ev).= 0, and the
equation

13



—— e -

;—f (9eC) = 9+ {pqve) (51)

reduces to él) with d = 0. Hence the standard results from the literature of
turbulence [e.g., Kesten and Papanicolaou, 1979], which are identical to our
(36)-(40) with d = 0, apply to this case, Note that when d = 0 one can
compute 0* from (45)-(47;, but (44) does not hold unless vsv = 0, and the
effective velocity, V, is generally different than .

3.3 Behavior at large Peclet numbers

Let us orient £y parallel to u so that My= |u| and up = u3 = 0, and define a
dimensionless Peclet number, v, as '

L (s
VS —— 2
dll )

where L is some characteristic length. . One-dimensional experiments suggest
that D11/dy1 tends to 1 as v+0, and becomes proportional to v when the latter
ig large [e.g., Bear, 1979]. This is equivalent to saying that, for small v,
D]) tends to zero, whereas for large v it tends to % |u| where 9, the
asymptotic longitudinal dispersivity, is a constant. Furthermore, experiments
indicate that there {s a smooth variation in Dy; as v takes on different
values. In this section we investigate the behavior of 0 by writing (45) in
terms of v and formally taking the limits as v+0 and v+, Since the behavior
of O depends on the form of 2&?) for intermediate values of v, we defer con-
sfideration of such values until the next section. There we employ (47), re-
written as a function of v, for a particular Py(x) arising from the widely
used spherical semivariogram of log hydraulic conductivities.

In the case we now consider, g is symmetric and k = 3, so that (45) can be
be written as

D = (20)-3 | L4 Prn(5) dg
RI (gede)e + (u-g)2
= (2)-3 [ H(3) PralE) &€ . (53)
R3

where ﬁ(g) is just the termm in brackets in the first line. By standard
Fourfer transform arguments--Parseval's theorem-- (53) can be written in

terms of the inverse transforms of H and Ppm,
Dom = J H(x) Ppmix) dx (54)
R3
14
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In Appendix D we show that

d’l/Zi.;d_"l/Zi ' . -gl;g_‘l/in-
e

e
Hx) = Gt @ =172 (55)
2x Ydet(d '9_ X1 o o

where x = 1d-1/2y1 and d-1/2 s the positive definite matrix square root of

. Following conventional’ practice. we assume that d is diagonal when.g is
parallel to x;. Then

O * Coml) el ~ (s6)

where %nm 15 a second rank symmetric positive semidefinite “dispersivity“
tensor given by ,

Lv V(Zl - 121) 2
nm(\,) = T R3 . ———It——- Bnm(LZI, L/d 27(’1 ZZ’

L /8337911 ’3) az (57)

Here 2) = x1/L Zp = xg /a 1/92 /L, 23 = x? /a'-7a-yL, and Bnm = pnm/l¥
i.e., Bpm Can viewe as a coefficient 0 var}ation of the seepage v oc1ty
field, v. :

Since v, z and g are dimensionless, a has dimensions of length, like L. It

is intuitively appealing -and mathematically convenient to take L as some _
measure of the correlation length of the log hydraulic conductivity, Y. Thus,
L is an intrinsic property of the medium, provided only that the fluid proper-
ties are constant. Equations 49-LJ show that, in a statistically isotro-

pic medium, g depends only on “y and Py,:so that it also is an intrinsic
medium property. Consequently, a in a given statistically isotropic medium

is only a function of the Peclet number, v. On the other hand, (48)-(49)

show that in a statistically ani:otropic medium g is additiona.]y denendent
on the direction of the mean hydraulic gradient, J though not on the magni-
tude of this gradient. ~ ‘

As expected, (57) shows that Snp(v)+0 as v+0; thus D+d for dispersion domin-
ated transport. Next we observe that °nm(“)‘ constant as v for arbitrary g.
Appendix E demonstrates that

. ~ v(zy-r21) o ‘

§y(2) = ;?'TST ~+ 8(zp,23) | as vew when 23 390 (58)
, Z L34 > v 58
Sy (2) - 0 | as v+= when 23 <0

15



That s, &8,(2) approaches a delta function concentrated on the 210 axis.
dence, from (57)-(58), Spm(v) + apy where

% * £ BnnZ(x1,0,0) dxy ' (59)

which clearly is a constant, depending only on the medium when the latter is
statistically isotropic, and additionilly on the mean hydraulic gradient
direction when the medium is statistically anisotropic.

Interesting features of (53) emerge when (48)-(50) are used to represent ;zk'

It follows from (48) that ppy(x),0,0)--and thus B.,(xy,0,0)--is even in X1
Therefore

1
Spm = 3 ] B%m (x1,0,0) dxy

-

1 2
7 £3 Bnm(X1,%2,%3) 8(xp,x3) dx

1 -2
B —, £1:82, d
()2 g Brm(51:E2,E3) 8(g1) dg
1 -2
= 2z )2 ‘{2 8rm(0:52,83) dgadeg (60)

where we use the fact that 2x§(£)) is the Fourier transform of 8(x2,%3).
Since

1 -
Bﬁm (0.52’53) - 17 51n61m 9?(°»Ez»€3)o (51)
1. a
Py(0.£2,E3) dgade3 ;  n=m=l
mm {2 v(0,82,53) dEades n=m=
Gm = (62)
e ;  n2l or mal

Hence for large Peclet numbers the only nonzero component of D* is 0'11. an
effect noted earlier by Gelhar and Axness [1983] for a special form of Py cor-

responding to an exponential covarfance. On the other hand, when the log

16



conductivity is statistical]y anisotropic, G (0 Ny ﬂ3) can be nonzero even
when 1, ml. Thus sﬁ (0,77,73) is also nonzero 4nd (61) indicates that
apm* 0 in general. Ts implies that D has’ components Dpm * O so that even
for convection dominated transport:the principal directions of D do not
coincide with u, the mean velocity vector, :unless the lattersis | parallel to a
principal direction of effective hydraulic conductivity. This result, too,
has been observed by Gelhar and Axness for a particular ﬁy, in this case the
transform of a modified exponential covariance.

3.4 Formulae for 1og hydraulic conductivity with spherical covariance or
semivariogram

For_extreme values of v, the behavior of a is affected by the actual form
of p in only a minor way. However, the form of .the spectrum has a more pro-
nounced effect on a for intermediate v. Experience with geostatistics has
shown that log hydraulic conductivity as well as log transmissivity are often
characterized by a spherical semivariogram function [e.g., Neuman 1983; Jones
et al., 1983]. It is therefore of interest to calculate a dispersivity
tensor, a, for the corresponding spherical covariance function in three
dimensions. For simplicity, we shall assume that this latter function ‘is
isotropic, -
! 2(1 - 31x1 l5_l3) 0 L
o - e+ ’ <|Ll<
pyli) = Al (63)
0 C3 1IXDL

and refer to L as the “range” of the covariance functfon. On the other hand,
the local dispersion tensor, d, will be allowed to remain anisotropic with its
principal axes parallel and normal to the direction of flow. Thus, when p
coincides with g3, this tensor takes the form

g0 O
d = 04dr 0 T o (64)
0 0 .dr C

where d; and dy are the longitudinal and transverse local dispersion
coefficients, respective\y. S h

Our aim is to- express a as a function of the Peclet number, v = 91 L/dL, for
v ranging from 0 to ». To accomplish this, we rewrite o* in terms of v.
From (45), . .

- PR "
[ !

[ . Vl‘ . . - B )
Do = 3 Aom . (65)

8x
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where
dg
- =

R3 (5_.2;‘)( +1u(152 pnm(i) d.§.

Upon letting My = L&y, M = L /d77d 82, and N3 = L/d7/d] §3, Aqp takes the

form
1 nen

b =ty I3 Tz ez PenlLInnLolanz,Lolan) dn (€5)

1

where q = /3L7ET.

Since Pnm is an odd function of at least one of its variables when n#m (see
equation 50), A,n = O for n#m, and DO* for a statistically isotropic Tog
hydraulic conductivity field is thus a dfagonal tensor. Furthermore, D 22"
0*33 and our problem therefore reduces to that of analyzing A,y and Azz.

Taking the Fourier transform of Py and rearranging leads to

- LZOYZ 12 LZ[{.Z L4'_§|4
py(1g1) = - & i C L5'55(cos LIgt = 14— o )

12 L3i1gs3
+'E3;E?T (sin Ligy - LigH + —7)

3 L21gs2
- Ble_lg (COS Lli‘ -1+ 20 )] (67)
Note that (67) is well defined even if 1£1 = 0,

Substituting (50) and (67) into (66) and converting to spherical coordinates
gives -

1sa$u12L22: JE (68)
Ann = -_7231- 2(e) fa(e) [11(8) + Ix(6) + I3(8)] sine de

18



where
cos2e

(x/2) (1 - E{m

q cose sins
(x/4) (—__EZISS—-_ )

2 5 nad
f2(g) = ‘
2 ;i ne2

R(6) = Ycos?p + q2sin%e »

o) =12 [ sinkr - Rr + R3r3/3)
13(8) = =1 ' '
1 RS { r3(re + v¢ cose)

dr

12 eREOSE_ 1 4+ wReose - vZRBeos2esal + virdcose/al
"/ R3 ( _ Vcosho

o COSRFr - 1 + Rzr2/2!
——  dr

3
o = =
2" "R £ ré(ré+vecos<o)

3 e"VRCOS8_ 3 4 yRcose - v’ﬂzcoszo/z
= 2 e —
"/ ?8? ( _ v3 cos® 6 7

12 = COSRr - 1 + R2r2/2!l- R4r4/4l”
I3=-x / — dr

0 r*(r¢ + vcose)

T 12 (e'”R°°s°-'1 * vReose - v2R2cos?0/21 + vIR3cosde/31 - vAR%costesal
-RT : ' v c:;ﬁ '

The expressions for Iy, Iz, I3 are obtained by standerd methods of contour
integration (details are given in Appendix F). Each is well defined even:
when 8 = x/2. When local dispersion is isotropi¢, q ».1, R(e) = 1, and (68)
is greatly simplified. 1In any event (68) can be §implified by letting u =
cose, o L L

. "
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Ay = - 169441212 25 £ 2 (e (u)+a(u))] du

2 .
ISOY"IZLZ
® - —-—2—Y dr—' 2x Bn (69)

Series representations for dispersivities can be derived from (69) by expand-
ing Iy, Ip, I3, suming term.-by-term, and then integrating. For n =1

1 1 ul
. e (] - e )2 ,
-2 0 O - gy 12 ) ¢ 1) ¢ 1] @
% = (m+1) (m+4)
T L e W
where
1 ul 2 M ~m-1
Bm * {) (1- EZF:_)-) R™=1(u) du.
Thus,
39y21q2 = m (m+1) (med) 1

If “ispersion is locally isotropic, R(u) = qu_(qz_l)uz = 1 and

= 8

(m+41)(m+3) (m+5)
In that case
24“‘{2. - (m‘)
311(v) = - L (-pm vl (71)

vy m=0 (m*3)(m+5) (m+5) !
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Equations (70) and (71) are useful for intermediite values of v, but.not for
large values of v. Happily, the fact that

n°n

3v(ﬂ) " v (ﬂ'n)z + Vzﬂ r4

is the Fourier transform of the delta sequence" (58) and can be used to obtain an
expression for ©1; at large v. Using (62,. we obtain

-2 - -
1im Oll(V) = L _‘ DY(OoL 1'12)'-.1“3)dnzdn3 - (72)
v 2(2)52 g2

The limit in (72) can be easily evaluated by applying (67) with n; = O and
changing to polar coordinates:

- - s | -1
f [ Py(0,L.-"np, L "n3) dnpdn3

- - 4
= -81203L2 J [‘13 (sinr - r + r3) + 12 (cosr - 1 + r

r2 y
oo@ 3 3 T oA
. 3 (cosr-1+ r2 Jdr 25.2,3
3 7P - - alel
Thus, for vee,
3921 Lo LT A
“11'57-2—.- (73)

Since (73) does not depend on q, dy, or dy, it is clear that the asymptotic
longitudinal dispersivity is not -affected by local anisotropy in dispersion.
Gelhar and Axness [1983] have noted -the same when the covariance of log
hydraulic conduct1vity 1s exponential in uhich case c e

°Y21e
YZ

i § My
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where L, is the distance at whicn the covariance is °$e-1.

For intermediate values of v, the analysis of %p2(v) is similar to that of
@11(v). The relevant integral is

1 2012
By =2 a2 [ Y005 £ g (u)stpu)elg(u)] du
4 o " jpé(y)
LE 2 ¥ m )E) (74)
msQ m+ !

where

1
tn = [ (1-u2) ™2 p®-5(y) du
o

Thus in general

. LY T gym () (me8) el (75)
22(v) »: 'mZO( ) O v

When local dispersion is isotropic, X, reduces to

2
x =
" = 3) (w5
so that
ap) » YLD (1R (me)@) g (76)
-';Zf"'n'o s o ™

As before, (75) and (76) are good for intermediate values, but not very
helpful 1in the analysts of %22(v) for large v. Furthermore, the line of
reasoning which led to (73) 1s not enlightening, since it only serves to show
that 322(v)+0 as v, That suggests that ﬂzz(vs = 0(v-2) for some A0,

and not much more. The problem is to find aA.
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The relevant integral is

1
eI ":(:;‘;2) [y (u)+1p(u)+13(u)] du

x2 21 1-ul
= g2 1-u® gy o+ o(v?). . , (77)
E:z 0 R7(u)

The second line follows from thi “‘rst by a lengthy calculation given in
Appendix G. The notation,_o(v~¢), signifies terms which go to ‘
Zero as v+e= faster than v'z.

To evaluate the integral in (77), let cz_-f qz-TI, u-= ; sin e, and v = sin"lc/q.
Then

1 2 1 2
! l-u du = I l-u du
q2 c2ul

1 T 1-(afe)%sine
q®c © cosbg

, o | .
= (q2+4) - | . (78)
5q3 o . .

[

[15:5 (q2+§)v'? «&_‘9(\»'2)].'~

23



"and asymptotically

2

GYL 4d~r
a = 1 4 —) -~ . (79)
217 U+30) 3

When local dispersion is isotropic

odt 1
%22 * 325 (80)
and on the other hand when dy >>dy.
2
agy = oL (81)

4. APPLICATION TO FRACTURED ROCKS AT ORACLE, SOUTHERN ARIZONA

Some of the results developed in this paper have been applied to log hydraulic
conductivity data cbtained by packer tests from fractured granitic rocks near
Oracle, southern Arizona. Details about the site and the packer tests can be
found in the reports of Jones et al. (1983] and Hsteh et al. [1983]. Over a

" hundred test data have been analyzed from seven boreholes arranged in the
pattern shown in Fig. 1 (no data are available from borehole H8). In each
test, the distance between the packers was 13 feet, i.e., the measured log
hydraulic conductivities are averages over 13 foot depth intervals. The
tested intervals cover a range of depths from about 60 to 250 feet in most of
the boreholes.

Fig, 2 shows two spherical semivariograms fitted to sample seaivariograms
obtained from the Oracle data. One of these semivariograms iepresents the
horizontal direction, the other represents the verti:al. The parameters %y
and L of the two seaivarfograms were determined by cross-validation with the
aid of kriging [see Jones et al., 1983, for details]. While both semivario-

grams have the same “sill,” 03 = 0.83, their ranges vary from L = 30 feet in
the horizontal direction to L = 60 feet in the vertical direction. Despite
this apparent statistical anisotropy, the data can also be fitted with almost
equal justification to an isotropic semivariogram (averaged over all

directions) with 0? = 0,83 and L = 30 feet. It is this latter semivario-
gram, {llustrated in Fig. 3, that we will utilize for our example below.
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Figure 1. Location of boreﬁbles at Oracle site
(after Jones et al., 1983).
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Figure 2. Horizortal ahd_VeFiiE$1;sémivééi:grQM§foflloé,hydraulic
conductivity at Oracle site. Smooth curves represent

Sphe;ical models fitted to the data (after Jones et al.,
1983).
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Figure 3. Average (isotropic) semivariogram of log hydraulic
conductivity at Oracle site. Smooth curve represents
spherical model fitted to the data (after Jones

et al., 1983).

Fig. 4 shows a logarithmic plot of %11(v) versus v as obtained from the iso-
tropic semivariogram of the Oracle test data by means of (71). The horizontal
line labeled v = « represents the asymptotic value of 911 (= 7.2 feet) as com-
puted from (73). 1t is of some interest ta note that this asymptotic value
seems to be reached at approximately v = 100, The same data can be replotted

as Dj}/dyy versus v based on the relationship

S et (82)
d11 L

as shown in Fig. 5. The reader may do well to compare the resulting curve
with Fig. 7-4(a) in Bear [1979].

The variatfon of ¥32(v) with v for the case of isotropic local dispersion
(d) = dpand q = 1) "is shown in Fig. 6, based on (76). The straight line
lakeled v = w reprasents the asymptotic value of 922 (= 6.4v-1 feet) as

computed from (80). Fig. 7 shows (Dp2/dp2 -1) versus v as computed from
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- for q2 = 1 (a plot of Dyp/dyp versus v would be essentially a horizontal line
with Dyp/dz2 = 1.0). The horizontal line labeled v = = corresponds to the
asymp-totic value of 922. The behavior of 933 and D33/d33 is identical to
that of 922 and Dyp/dyp. ,

Figure 8 shows the ratio between %1} and @5 for {sotropic local dispersi.n
(g = /4 7dy = 1). This curve does not depend on %42 or L and s thus valid
not only for the Oracle site, but for any rock whose log hydraulic:condu:-
tivity is characterized by a spherical covariance function. HNote that %or
v <1, %11/922 ~ 8.00, whereas for v > 100, ©11/%7 ~ 1,12 v,

10%-
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Figure 4 Variation of aj) with v for fractured granite near
Oracle.. The sgraight‘ling;labeled‘v = = represents
asymptotic behavior, - -~ - .~
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Fig. 5. Variation of D}I/dll with v for fractured granite
h

near Oracle. e straight line labeled v = w
represents asymptotic behavior.
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Figure 6,

Variation of.aps with v for:fractured granite near
Oracle when di = dy (q ="1)." The straight line
labeled v = = represents asymptotic behavior.
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Figure 7.

Variation of (D22/d22 - 1) with
granite near Oracle when dy =

v for fractured

dr (9 = 1). The

straight line labeled v = « represents asymptotic

behavior,
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. F‘lgure 8. Variation of 011/“22 w'ith v when dL = dT The straight
. - 1ine labeled v = =. represents as_ymptotic behavwr. T
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S. RELEYVANCE TO NRC LICENSING OF HIGH-LEVEL RADIOACTIVE WASTE REPOSITORIES

In 1icensing high-level radioactive waste (HLW) disposal, NRC will be respon-
sible for implementing the Environmental Protection Agency's (EPA) radio-
logical standard for HLW, Part 191 of Title 40 of the Code of Federal Regula-
tions (40 CFR 191). This standard was published as a Notice of Proposed Rule-
making (NPR) on page 58196 of Volume 47 of the Federal Register (47 FR 58196).
As the regulatory vehicle for implementing 40 CFR 191, NRC has published pro-
cedural and technical criteria for its high-level waste rule 10 CFR 60. The
procedural criteria were published as a final rule in the Code of Federal
Regulations. The technical criteria was published as an NPR in 46 FR 35280.
NRC is currently preparing a final rule for 10 CFR 60 which contains modifica-
tions to both the procedural and technical criteria. To clarify what needs to
be done to comply with 10 CFR 60, NRC is planning to publish some regulatory
guides. One such guide, on the preparation of site characterization reports,
was published. The Department of Energy (DOE), the sole licensee for HLW dis-
gg§a;. published an NPR on guidelines for disposal of HLW, 10 CFR 960 (48 FR
0).

In 960.21 of 10 CFR 60, item (6) states that a license application must in-
clude "a description of site characterization work actually conducted by DOE
at all sites considered in the application.” Item (c) states that a Safety
Analysis Report must be submitted including "a descriptivn and analysis of the
site at which the proposed geologic repository operations is to be located ...
the assessment shall contain an analysis of the geology, geophysics, hydro-
logy, ..." and other aspects of the site. The NRC Regulatory Guide 4.17 for
the preparation of site characterization report states specifically that hy-
drological evaluation of a site must include "information on hydraulic char-
acteristics of the matrix and fluid for each principal hydrogeologic unit* and
“the method of determination (95.9.2). Among these hydraulic characteristics
are "intrinsic permeability” and "hydraulic conductivity.” The Guide further
requires “a discussion of statistical parameters™ including "range, and mean
values.” If this requirement is fulfilled, there should be enough data to
perform the statistical analyses (described in this report) necessary for the
computation of far-field dispersivities.

That such dispersivity values are needed is evident from the requirement of
the NRC Regulatory Guide 4,17 to characterize “radionuclide transport factors"
(95.9.4). Furthermore, the EPA takes the attitude that despite (Section
191.13 of 47 FR 58196) “significant uncertainties in the analytical models
used to assess the lcng-term performance of geologic repositories,” (Section
191.15)" a vital part of [the EPA standard] implementation will be the use of
adequate models...to relate appropriate site and engineering data to projected
performance.” Some of these models will include dispersivity parameters to
predict the effect of hydrodynamic spread on the concentration of radio-
nuclides at various points along their flow paths. The larger is this spread,
the earlier will the radionuclides arrive at designated points along their
flow paths, and the smaller will be their concentration. Since both the
arrival time and the concentration decrease with increasing dispersivities, it
is important to estimate the correct valucs of these parameters as accurately
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as possible: neither by overestimating nor by-uhderéstimating the dispersivi-
ties will the models be takirng a conservative approach to the assessment of
risk posed by subsurface radionuclide migratipn,;

In this report, we propose a method to estimate dispersivities in the far
field based on measurements of hydraulic conductivities. Since such measure-
ments must be performed as an integral part of every site characterization,
‘the data required for our proposed calculations should be readily available.
what remainseis to analyze these data statistically and insert the resulting
statistical parameters into appropriate formulae to compute dispersivities, as
described in Chapter 4.
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APPENDIX A: NOMENCLATURE

Symbol Description
2 Local dispersivity tensor
aL Local longitudinal dispersivity
ar Local transverse dispersivity
c © Far-field concentcation
c Local concentration
Co Inftial concentration
1] Far-field dispersion tensor i
o+~ Db-d ’
d Local dispersion tensor | .
dy Local longitudinal dispersion coefficient
dr Local transverse dispersion coefficient
dm Molecular diffusion coefficient
94 Local dispersive mass flux .
K Hydraulic conductivity
Kg Geometric mean hydraulic conductivity - -
k Dimension of Euclidean space '~
L Correlation length of Y, 'or range of semivariogram of ¥ L
¢ = /d7er ' R
R Euclidean space
t Time
u Weakly stationary zero mean velocity process
y Far-field effective seepage velocity vector
V'ow Ve |
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aL
aT

8 nm

Local seepage velocity vector
Lagrangian position vector
Eulerian position vector

Log X

Far-field dispersivity tensor
Far-field logitudinal dispersivity
Far-field transverse dispersivity
®nd {1)2

1+ 072/6

Positive scaling factor
Perturbation parameter

E(v), mean seepage velocity
¥1L/dy) when y = (uy, 0, 0), Peclet number

tensorial covariance function of v
Fourier transform of p

Covariance functfon of Y
Fourier transform of fy

variance of Y
Large-scale time
effective (kinematic) porosity

Fourfer transform variable (vector)

Large-scale Eulerian positive vector

Gradient operator
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APPENDIX B: PERTURBATION EXPANSIONS

To simplify the integral in (34) lek Ks(y-x) dencte the kernel of eSA and
substitute § = 4d., Then applying e3” to an arbitrary function, g, is equiva-
lent to convolving Kg and g,

- (5-1-/?5 )tfl Q-i-ffns s

eSAg = (22)°k/2 [ g(x) dx
Rk .. /det(§)s
NI S - ~(81)
Hence

EC8e"5] = EL/RU/AY) 9], Kslax) (RVER) 9(9)d

| B 9 9
3 10, E (A Br K- slx))ex

2= j=1
vk 2 iy |
=x 1 1 ka pgj [/X{y-x)] 3yp Ks(y-x) 3xy 9(x) X . (82)

2=1 j=1

ppj(32) 3 K¢(z), with 2 go(z). ‘
3z, I TR -

The integral in '(B2) is just the convolution of a new function, xij(y -

The Fourier. transform of K: * 3%—»9 is (-ics)ii g, where the star symbol

i{ndicates convolution. Using standard results irou the theory of Fourier

transfarms
S
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)
K = 23 0/32) 327 Ks(2)

)
= (2n)7K o, 5(/32) * 3275 Rg(2).

(83)

But the transform of Pyj(/Az) 1s a-k/2 Dzj (n/¥x), where n is the transform

variable, and Kg is Gaussian with Fourler transform K s(n) = eSA(n)
operator A has the Fourier transform A = - (n°dn) - 1 /au°n. Hence

~ - “k ~ — -~
x‘j @A) L PR K (g ) dn

= @K P /R k(e e

( ’ )"
= ((..1) sA(E ) R (g y ) SR Ppj(k) dg ,
2x

since

AE'-/TE) = (- g *dg'-1/Ap.E') - A (g dk - ',f. £'+dg-ipk)

= Ag')-AFy (£:8"),
where F, is defined by the second equality of (BS).

Thus the transform of E[BeSAB] is

Ment e sA(&)

e I 3R e G5 g g
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and the requirement (34) becomes

<K WrRY
l:f a(2r) z),::j i“{[-m‘ YAE,) 9;3(.5)1

t oty -(t-taaR(EsE')
| e LA

[-ig' | dtpdty]} dg 3
j o I ¢ )
-tm_zo(-‘li') = t ;);.j (DZ);j ('15;)('153) . | (87)

The expression on the left of (B7) can be simplified by letting

A otty -(t-tphFy(6g')
GlEsE) =TS te T 0 AR ey
J o

~AtF
» At‘(e ',mx -1 +.1tF1)
lztzsz

(88)
Then dividing (B7) by t the requirement becomes, in the limit as A + =,

(z:.)-'? L (-izj')(-ie;)i ka”i (&) ‘Fx‘(.s:s'.').' dg

+ (Zw)"‘,ij(-icj')fi 7T (16) Py3(8) Gr(E35')4E + VT Yo (1g")

= (k) (gt de) {zk By3(8) Ga(E:E') &

SO NCIRRUCHL “]l':(ié;j) 503(8) By(5381) dgd -(¥)5)
R

+ ZJ. (82)

(ig*) (ig}) . ‘ (89)
L, j 2 J :

2
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Hence, it would suffice to have

(1) 3 (20)% [ P3(0) GulEss") o » 0!}’

1 P
(1) Z /% {(2")-*R£ [)j (1g4)P25(£)] Gy (g:8") de - (_2} }

) D(“)( ig g)
2

where the tjth component of Dy 1s

(1} (1) (ﬂ) (11)
(D2)gj = Dgj  +Djy  + Dy Dje .

From (B11) it is clear that we should also have

(1) ()% [ D] (18P0 GlE8) &~ (i)
4

(yz)j being the jth component of V, .

It is convenient to put conditions (i1) and (iii) somewhat differently.

would also suffice if

1 -
(i1)' 24X (Zw)'*g( (16m) Pmj(&) Gx(&35') dE - Vp3l

k
) Df}:,) (- 1e ) ,
2=1

(1) 7 @)™ [, (1ea) g (©) GEL) & + Yoy
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(811)

(812)

(813)

It

(B14)

(815)



where

(V2)5 = I Vmj , _ N .- (816)
m . N

(11 14 S

LS WAL (817)
m

. From ( i% (14 and (iii it 1s clear that if there are, generalized
functions (), (;). which, in the sense of generalized functions

on RK, satisfy

(1)" 4 6 (5:8") » O(8) » . (818)
(11)* 4 /% [(eg) 6 (EE") - Ra@)] » I B (-1E5") o (819)
: |
(114)* (feg) G(E3E") » Anle) | (820)
then 1)

-2 (2x)- "1 o(g) Pu(s) ds e | ~(s21)

LR Fal@)Prg(e) &€ . o (e22)
(1) 1

Pejm = Z (20)° “! Dzm(S.)"nd(i) ¢ (823)

In our other paper (Winter, Newman, and Neuman. 1983) we find such generalized
limits. In this paper we apply those limits in equations (36) - (40) where we
give the large-scaie velocity and dispersion coefficients.
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APPENDIX C: GENERALIZED LIMITS

We can determine the 1imits (B18)-(B20) by applying dominated convergence
arguments. The final results are

1/F(g) , k> 2
D(g) = (1)
3 + = &(g) y k=1
Y2t T;T
AalE) = 1EQ/F(E) (c2)
~ k .
Dpe = - 2 21 EndenEn/(F(E)12. (c3)
n=

When these limits are substituted into (B21)-(B23), they yield (36)-(40).

Although it may at first seem unnecessarily rigorous to apply dominated con-
vergence to so formal a perturbation analysis, by doing so we obtain the §
function regularization of (C1) when k = 1, which does not appear in the naive
1imit, and we show that no other “hidden regularizations" appear in the other
expressions.

Consider (B18) first. Since £' is a parameter we can define a sphere cen-
tered on the origin, :

A, = U EcRR:)gede] < (16a71))g e’} (ca)

and a function

6 c A .
T, - A &M (5)
0 ke A;‘

Suppose ¢(g) is a bounded function which approaches zero “fast enough” at =.
Then

de = [ Gyoe(g)dg + [ Gye(g)dg . c6
[ B#(e)de = [ Srele)ee IA; a#(5)dg (¢6)
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Our strategy (for k # 1) is to take the 1imit inside the first integral on
the right by dominated convergence and to show that the second 1ntegral
converges to zero. :

It can be shown (Winter, Newman, and Neuman 1983) that there is a positive
constant, K, such that ,

[Gyel < K—ILH_ (c7)

where F(;& has been defined following (37). When k > 3, it can easily be seen
“that is integrable near the origin even if y = 0., If k= 2 and + 0,
rotat ng the coordinate s¥stem so that one axis.coincides with 3 gws tha*
tg Iyﬁegrability of |F|=} near the origin follows from that of [(x +y

i A change to polar coordinates shows that the latter is 1ntegrable
near the origin. , .

Hence if k > 2, Gy¢ is dominated by an 1ntegrable function. Since F-1 {s the
pointwise limit o} Gy»

14 Gyo de = [ ¢-de. . c8
xﬂfk" ¢ 45 !Rk%.i | (c8)

To see that the rightmost integral of. (C6) -converges to zero, observe that
[Gy] = 0(x) when EcAy since Re(AFy) ='0(1). Thus

[ G¢ g = 0a)f dg = o(i-(k-2)/2), (c9)
. Ax - AA :
If k > 3, the integral clearly approaches zero as i+e,

To determine the case k = 2, we define’
B = {£: Jueg| < 2(£-d8)/V3) (c10)

0f course we can determine the behavior of the 1ntegra] over A, by analyzing
integrals over Ax B and Ax B separate]y where B denotes the complement of B.

First suppose EcAy B. From Winter, Newman and Neuman (1983),

LG dE < ,,Kl¢l |
!Ax 5 s !A,\ 5T (c11)
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As we have indicated in discussing (C3), the integral on the right of (Cl1)
exists in every region of RK (k > 2) so long as u # 0. In the case of (Cl1),
however, the integral tends to zero because A, (Ehus Ay B) approaches {0) as
A+,

There remains only the regfon Ay B in RZ for which it will be enough to show
that

A dg + 0. (C12)
A, B

Since in RZ we require y # 0, we can suppose without loss of generality that
2 (uy,0) with uy # 0. Then

A, B  (£eR2:gy = 0(x-1) and gp = 0(x-1/2)) (€C13)
and thus

de = o(a-1/2), C14
XIAXB&(*) (C14)

Using (C8), (C9), (C11) and (Cl4) we find that for k > 2,

1im Gyo d = [ ¢ dg
Ao IRk A RKF (c15)
which gives (C1) for k > 2.

For X = 1 the case is different. Llet y = d, and suppose that u > 0, then

Fy(€3€') = vg 2. %}(e‘e) - {ug
=1 (3 + 1b)) (C16)
Y

where a, = y(A62 - 2/X g'¢) and by = -ApE . Thus,

-(a +1bl)t
e A -1+ (ax+ibx)t

242
(ax+ibx) t

Gy = At (€17)
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Now G, + 1/F(€) and the bound |e~%-1} < k|z| for Re z > 0 and some k > O shows
that this convergence is uniform in compact subsets of some small complex
strip, 0 < ImE < e, since ReF > 0 there. It follows that -

i - 1
1im f Gy ¢ d 118+ f..'FTE:TET- ¢(E) de. - (C18)

Ade

The right hand side of (C18) has the standard -representation

PI *{5} % - Froy ¥(0) — (c19)

where P denotes the brintipal part. The calculation for the case u < 0 is the
same except that the contour is deformed into the lower half plane. By sub-
stituting p for ¢ and using the fact that 5 is even, we obtain (Cl) for k = 1,

. The derivation of Am. the limit of (15m)3x- fol]ows a similar 1ine. In this
" event, however, the case k = 1 is not exceptional. Let /,, B and G be as
before. Then for £ € A, the same reasoning which led to ?ca) shows that

|(teadag] < lenl Lol fp - (c20)

If d is positive definite the expression on the right is integrable for k > 2
even if p= 0. It 1s also 1ntegrab1e when k= 1 so long as y # 0. If, more-

over, £ € A B, it can be shown that |Fy] > (1/2) |F| and we have (C20) once
again, For §_c Aa we have, by the posit%ve definiteness of d, that for some

constant, x.>.0, yi.ii| > (‘Em) for. evecy . Hence |£m| = O(A'l/z) in Ay.
Since |Gy¢| = 0(1 in Ay, _ .

J leml 1Ga¢] dg < [ &l 1Gyel d.§.
A, 8 Ay :

= 0(x1/2) j; de = o(x-(k-l)lzj. (c21)
A
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0f course when k > 2 the last expression approaches zero S A + =, If k=1
and y #0, the def nition of B requires that £ = 0(a-1), so

/ dg = 0(a-1). (c22)
A, & Rl

Thus
/ 1§} 1601 &5 = 0(a=1a-11) = 0(a-1) -+ 0. (c23)
A, B RL

Applying dominated convergence,

Vin [ (ien) Gy o = ] _(._Em). + dg (c24)

for k > 2 {and for k = 1 if y # 0) which is just (Cl).
The argument leading to (C3) as the limit in (819) is familtar. Let
AligpGy - An] S e Ay

H = (c25)
0 5_ € Al

where Ay is as before. To see that'ﬂk is bounded by an integrable function,
note that

[l = I/X(ien)l6y - F-13
< /X1egll16y - Fy=1] + |Fy-1 - Fo1)3. | (C26)

In Hinter. Newman, and Neuman (1983) it is shown that the expression on the
right side of the ineq_plity is bounded in &), the complement of A,, by an
integrable function. gnverges (as a generalized function) to its point-

wise limit 2(igq) (g’ °d _ﬂlF
Now we need only show that

| /ALiga6, - Apl ¢ dg + O. (c27)
A



For k > 2 observe that, when £ ¢ A, |Eq| = 0(1'1/2) for any m. Thus.
|/X[1ER6s - Agdl = /XlEnl 16y - F-1|

< 0(1) [|&] + |F1}3. (c28)
In taking the 1imit we need only consider the terms in brackets in (c2s8).
The integrability of |F-1| implies that '

!A IF’lltd_{oO ‘ SR - (c29)
A .

while the arguments leading to (c8), (C9), (C11), and (C12) establish that

[ 16l le] &+ 0. | | ~ (c30)
AA ‘ ’ e o -
Of course we have (C30) when k = 2 only ii‘gf¢io.

-
Jer

The argument for k = 1 {s analogous to that used to obtain (C2).
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APPENDIX D: DERIVATION OF H(x)

To find H(x) we note first that

U = g = ) . {01)
is radially symmetric and thus has inverse transform
-1x1
ax) = 7;,17- %,. ¢(r) = 1;}7," (02)

where o(r) --%e'|r| has the one-dimensional Fourier transform §(x) =
1

E::E- » = IX! and x = 1E1. Applying two other standard results from

the theory of Fourier transforms, the inverse transform of ?(c-is) is eaxf(x)

and that of f(Tg) is 1 f(Ing). so that we obtain (55) from (39).
CCetlm



APPENDIX E: DELTA SEQUENCE

A delta sequence s a sequence of functions, §,, which converges to a delta
function. Convergence is- in the natural sense: &, + & if

Mm [ &y(2) f(@) ez = f(O) . o (e)
Ve . . «
for f(z) arbitrary (up to some technical conditions);
To show that

v(zy-121)

s§,(2) = _ve . | N (1))
2x121

is a delta sequgnce concentrated on the ‘positive zj axis, we must show that

(E1) holds in R¢ for fixed z; = b > 0, b.a constant.” However, before giving
the proof we note that &,(z) defined by (E2) exhibits the kind of behavior
classically associated with delta sequences. In particular

0 if 20 <O0or zp#0, 230
‘ - if 21 > 0and 22 = 23 =0

Furthermore

] J 8y(2) dzp dz3 =1
a fact which we demonstrate in a moment. Thus &,(z) for z; = b, which we
denote by &,(z2,23), certainly appears to be a delta sequence.
The argument we give to establish this rigorously is standard. First

jte f(b, . = [f(b, . - f(b, 0, O f(b, 0, O d let
alzz, z§> -z¥(bf3_)z,z. 535;-_:fb.z33_ ‘0).( ren (b 0 OF and ter

[ J f(b.22.23) Gv(22,23) dz, dzj

o
-ty

= f(b,0,0) J év(zz.zjj'dzthzj e fﬁf-g(zz,z3)69(zz;z3)dzz dz3
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Observe that

2 = V(b-W)
| . Su(z2,23)dzp d2z3 = [ | Ve r dr de

vh e <yw
= ve [ e dw
b
= 1
demonstrating the fact alluded to above.

The technical conditions we require of f(z) are that it be 1) bounded and

2) continuous at the origin. Since f(z) corresponds to Ppn(2), these require-
ments are realistic. The function g(zp,z3) is thus bounded and approaches
zero at the origin. Our problem is to show that

£2 g(y) 8,(y) dy+ 0as v+ e (E3)

This integral can be separated into two: one over an open sphﬁre. g, centered
ogJ;he origin and with radius a; the other the remainder of R denoted by
Red, So

J a(y) sy(y) dy + J 09(.!) 8y(y) dy

£2 9(y) &y(y) dy = : la.

Let
M(a) = max [g(y)| ,
yeR

then

[ a(y) &,(x) dy < M() [ &,(y) dy < M(n) Izsv(l)dl = M(n)
o 9] R

Since g(y) is continuous at the origin 2nd g(0) = 0, M(n) » 0 as a + 0. Thus
for any ¢ > 0 there is an a so small that the integral over g of g(y)s,(y) is
less than ¢/2 in absolute value. Since this result is independent of v, we
can consider a to be fixed below.
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Letting M = max_|g(y)], we have
prz

v
!RZ.Q g(y)sy(y) dy <Mve [ - e dw

V(b - /az+b2)
=Me

With fixed a we can find N large enough that

v(b - /a2+b2) .
Me {e/2
when v > N.

" The limit (E3) foliows‘1mmédfaﬁély:§nd,thefpkdof‘is:ébmpieté; ,
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APPENDIX F: CONTOUR INTEGRALS
We want to evaluate the integrals

« sin(Rr) - Rr + R3r3/31

Jp = dr,
1 r3(ré + vé cos®s)
; « cos(Rr) - 1 + R%r2/21 )
= r’
2 ré(résvécoso)
» cos(Rr) -1+ R2r2/21 - R4rdyan
Jz = dr.

o r4(r+vlcoso)
Since the techniques are the same for all three integrals, we demonstrate the

method by evaluating Jp. Note that I, = - %Z Ja.

The integrand of Jz is an even function, thus

T - cos (Rr)-1+R%r2/21 L~ elRP_1_1Rr+R2r2/21
2 g [ TPV dr = 3 | erp Ty (F1)
(

-l

"where we let b = vcos(e)* We suppose b >-0; the b = 0 cose can be obtained
as a limit. Because Jp cannot be evaluated by elementary methods, we find it

by contour integration in the complex plane. The countour is shown in
Figure 8 below.

iy

v
Figure 8 Contour integral in the complex domain
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If we write

etRZ _ 1 . 1rz + R%22/21
¢(z) = 22(z2%p2)

then

g = % Um {1 o(z)dz = %'lif fr1+r2 o(2)dz (F2)

since on ra2,
( 2 + RA + R2A2/2
2z
o)} < A2 (AZ+b2)

and hence Alg j ¢(2)dz = 0. From (Fp) and the Residué"Theorem, the inte-

gral over ry+rs 1s 2xi times the residue at z=ib (which is the only residue
of ¢ in the upper ha]f plane), .

eRb . 14 pb- R2b2/2'

*

(-b2)(21b)
Thus .
&=Rb 2b2/2
Jop = - % e - 1+ Rb - R°D¢/
? | Y 53 ]
and
. e-Rd _ 1 4+ b - R%bZ/2
I2 = 502 [— e ]

%)
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APPENDIX G: 922 FOR LARGE v

The asymptotic evaluation of

1 2 2
LA S SO RS ORI DR KL (61)

fs simple, if a bit tedious. By separating (Gl) into subintegrals and
cancelling terms we can write

1 .2 2
/ Eaé%i%-) L I(u) + Ip(u) + f3(u) 1 du

o}
% 1 1-u?
= ?\’-2' f —RT— [°1+Y(VRU)] du, (62)
0
where
e X-14x eX-1 e~%-14x-x2/2

Now v(x) is a boundad function on [ O,=) #nd ¥(x) » 0 as x » =, Thus, as
v + », Y(vRu) + 0 pointwise and is unifgrmly bounded. It follows by the
dominated convergence theorem, since R” (l-uz) is integrable on [0,1], that
(G2) is asymptotically given by

L 1-u
- d
2—\)2 Io —7—R (U) u+ 0(1)

which yields (77).
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