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ABSTRACT

A multidimensional stochastic theory is presented for far-field dispersion
due to the spatial variability of hydraulic conductivities. We use a
second-order perturbation approach to relate the far-field velocity vector,
V, and dispersion tensor, D, to the mean and covariance of the local seep-
age velocity vector, v, and the local dispersion tensor, -d. We find that,
in general, V is not necessarily equal to the ensemble mean of v, , and
that D is a second-rank symmetric tensor. In the particular case where v v
0 O (e.g., incompressible fluid n a rigid porous medium of uniform effec-

tive porosity), V becomes equal to u, and our expressions for D simplify to
those presented by Gelhar and Axness [1983]. We further extend a conclu-
sion of these authors, that as the Peclet number, v, ncreases, becomes
asymptotically linear in , by showing that it holds for arbitrary veloc-
ity covariance functions. Finally, we derive expressions for D as a func-
tion of v for situations where the logarithm of hydraulic conductivity fits
a spherical covariance or semivariogram function, as is often the case.
These expressions are applied to log hydraulic conductivity data from
packer tests conducted in seven boreholes penetrating fractured granites
near Oracle, southern Arizona.
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PREFACE

Radionuclides released to the subsurface environment from a radioactive waste
repository will be transported and spread through the host rock by ground-
water. The average distance traveled by such radionuclides in a given time
is determined by the groundwater seepage velocity. The degree to which a
plume of radionuclides spreads about its center of gravity is controlled by
the dispersion coefficient of the flow field, which in turn depends on the
seepage velocity as well as the dispersivity of the host rock. Recent
studies have shown that dispersivity is not a constant property of the host
rock but increases as the plume moves away from the respository. If the
seepage velocity field s statistically homogeneous, the dispersivity tends
to a constant "far-field" value as the distance between the plume and the
respository increases. Under these conditions, transport in the far field
can be modeled by the classical advection-dispersion equation based on an
analogy to Fick's law of diffusion.

Most existing subsurface transport models are based on the Fickian adection-
dispersion equation. To use these models one must know, among other parame-
ters, the far field dispersivity of the host rock. Unfortunately, this dis-
persivity cannot be measured directly by tracer tests in low-permeability
rocks. The reason is that, in such rocks, one may have to wait very long
before the tracer moves far enough from its source for the dispersivity to
become constant. To overcome this difficulty, we propose a method to esti-
mate the far field dispersivity of a rock mass indirectly from measurements
of hydraulic conductivity. The latter parameter can be obtained with rela-
tive ease by packer tests.

Our method of predicting the dispersivity parameter is based on a stochastic
theory akin to that developed by others for turbulent diffusion. The theory
shows that dispersivity is a second-rank symmetric tensor which can be rela-
ted to a dimensionless Peclet number. The Peclet number is proportional to
the mean seepage velocity, the correlation length of the hydraulic conducti-
vities, and inversely proportional to the near field longitudinal dispersion
coefficient. Near field dispersion coefficients can be determined by tracer
tests in closely spaced wells. Our theory shows that for large Peclet num-
bers, the far field dispersivity tensor is independent of these dimensionless
numbers.

The formulae developed in this study have been applied to fractured granitic
rocks near Oracle, southern Arizona. We believe that the same formuale
should also be applicable to other fractured rocks. The U.S. Nuclear Regula-
tory Commission may be asked to approve applications for licensing subsurface
high-level nuclear waste repositories in low-permeability fractured rocks.
The formulae and theory developed herein should be of practical help to the
NRC in support of such license applications.

ix



1. INTRODUCTION

Subsurface solute transport has traditionally been described by the
convection-dispersion equation Scheidegger, 1954; Bear, 1972; Fried, 1975]

where c(xt) is concentration, x is position vector, t is time, d is hydro-
dynamic dispersion tensor, v(x)is seepage velocity vector, and v is gradient
operator (all symbols are difined in Appendix A). This equation is derived
from mass balance considerations and the assumption that the dispersive mass
flux, Jd, obeys Fick's first law,

The hydrodynamic dispersion tensor is believed to have principal directions
parallel and normal to the seepage velocity vector, v. The principal value of
d parallel to v, dL, is called longitudinal dispersion coefficient." 'Normal
to v, d is often taken to be isotropic and represented by the transverse dis-
persion coefficient," d. These two-coefficients are usually expressed as

where dm is the coefficient of subsurface molecular diffusion (generally
smaller than the equivalent coefficient in the pore fluid), a is "longitudi-
nal dispersivity," and aT is transverse dispersivity."

Certain aspects of this theoretical model have been confirmed by sma11-scale
laboratory experiments on relatively uniform granular materials [Bear, 1972;
Fried, 1975; Klotz et al., 1980]. These experiments further suggest
that aL and aT are velocity dependent: when [V] tends to zero, so do aL and
aT, whereas when [v] becomes large, the dispersivities approach constant
values.

Attempts to apply the same model to large-scale laboratory and field tracer
experiments have led to several difficulties. One difficulty is that aL and
aT seem to vary with the scale of the experiment. Whereas n the laboratory
aL ranges from 104m to 10-1m for relatively uniform fine to coarse-grained
soils and up to almost 1 m for coarse gravel [Bear, 1961; Lawson and Elrick,
1972; Klotz et al.,1980], in field tracer experiments aL varies from
10-2 m to 10 m, and may on occasion exceed 102- m (Lallemand-Barres and
Peaudecerf, 1978; Anderson, 1979; Pickens and Grisak, 1981a]. When aj is
obtained by matching the output of computer models based on (1) with docu-
mented histories of aquifer pollution on a regional scale, its value ranges
from less than 10 m to more than 100'm [Anderson, 1979]. Another difficulty
is that, in a given tracer experiment, aL and aT appear to grow with distance
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of the sampling point from the source Martin, 1971;
Peaudecerf and Sauty, 1978; Sudicky and Cherry, 1979;
Dieulin et al., 1980; Silliman and Smpson, 1983].
phenomenon and treating aL as a constant may lead to I
able conclusion that a concentration plume could spre
exceeding that predicted by molecular diffusion alone
Simpson, 1978].

The difficulty with the classical Fickian model is the
scale. One promising way to deal with this scale effect
age velocity as a tochastic process. Assume that, of
satisfies (1), but the seepage velocity, v(x), varies
tion to another due to aquifer heterogeneity. Then c
dependent random function: as time (and thus distance
increases, the characteristics of the plume change.
expand but, more importantly, its outline becomes
solute concentration evolves from an initially irregu
which is quite regular.

Our problem is reminiscent of scale-dependent random
used to describe phenomena in other fields of physics
mediate relevance to subsurface transport is work done
lent diffusion. On the local scale, turbulent diffus
equation having the same mathematical form as (1).
constant, second-rank, symmetric, positive-semidefinil
weakly stationary stochastic process. We can then wr

where is the mean velocity vector, u(x) is a weakly
zero mean, and c is a dimensionless parameter measuring
velocity fluctuations. Then it has been proven that,
ises, the concentration tends asymptotically to a Fick

by

where is the concentration at a large distance
after the passage of a long time, , is an effective
V is an effective velocity vector, the latter two being
c(x,t) tends asymptotically to C(X,T) have been provide
of zero concentration at infinite distances from the
cases: (a) for the case of convection-dominated (i.e.
diffusion in 1, 2, and 3 spatial dimensions by Kesten
and (b) for the case of incompressible (i.e., vv
3 spatial dimensions by Papanicolaou and Proneau [19
parameter c is scaled to zero as time gets large.
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The assumptions underlying these proofs appear to be valid not only for turbu.
lent diffusion, but also for certain cases of subsurface transport as sug-
ested by the experimental results of Martin [1971], Peaudecerf and Sauty
1978], Sudicky and Cherry [1979], Sudicky et al. [1983] and Silliman and

Simpson [1983]. In these large scale laboratory and field tracer experiments
aL and a increase with sampling distance from the source. However, the dis-
persivit es tend asymptotically to constant values as this distance increases,
implying an asymptotic tendency toward Fickian behavior. The experiment of
Sudicky et al. provides an exceptionally vivid illustration of this tendency
by showing how the outlines of two three-dimensional plumes change with time
from irregular shapes to near-perfect Gaussian distributions.

If we accept the existing mathematical proofs and experimental eidence that
the concentration field tends asymptotically toward'Fickian behavior, what
remains is to develop (a) a model for the early non-Fickian regime and (b)
expressions for the effective parameters V and D. Attempts to deal with the
first problem in connection with subsurface transport have been reported by
various authors including'Gelhar et al. [1979), Matheron and de Marsily
[1980), Dieulin et al. [1981) and Dagan [1982]. However, Pickens and Grisak
[1981b, p. 1701] found that for systems that exhibit a constant (asymptotic)
dispersivity at large times or mean travel distances, the importance of scale-
dependent dispersion at early times or short travel distances...[is) minimal
in long-term prediction of solute transport." This, together with our primary
interest in regional dispersion, has led us to focus on the second problem of
determining V and D.

A solution to the latter problem for the case of purely convective turbulent
diffusion, where d is identically equal to zero, has been given by Roberts
[1961). Gelhar et al. [1979) and Matheron and de Marsily [1980] have con-
sidered the highly specialized case of subsurface transport n layered media.
The velocity fields in such media are in fact so special that they
violate the conclusions of Kesten and Papanicolaou [1979] and Papanicolaou
and Pironeau [1980) unless a very 'strong condition is fulfilled:, the covari-
ance function of v exhibits a so-called hole effect." An interesting work on
two-and three-dimensional subsurface transport where d is very small compared
to D has been published by Dagan [1982]. More recently, Gelhar and Axness
[1983) have presented a comprehensive stochastic theory of dispersion in sta-
tistically anisotropic three-dimensional porous media.

In this paper we outline a second-order perturbation theory that relates V and
D to the mean and covariance of the seepage velocity vector, v, and to the
local dispersiontensor, d. Our perturbation expansion is in the spirit of
Kubo [1963] and ts mathematical details can be found in the Ph.D. disserta-
tion of Winter [1982) r the paper of Winter et al.[1983). The theory
applies in an arbitrary number of spatial dimensions and under a variety of
flow conditions. We find that, in general, V is not necessarily the same as
(in the one dimensional case, V is less than u), and D is a second-rank sym-
metric tensor. Only in the particular case where vv D (e.g., incompres-
sible fluid in a rigid porous medium of uniform effective porosity) are V and
v equal. In this latter case, our expressions for D simplify to those presen-
ted by Gelhar and Axness [1983].
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Suppose that the x coordinate is oriented parallel to U and define a Peclet
number, as

where L is some, characteristic length. Gelhar and Axness 1983] were able to
show for two specific velocity covariance functions that when V-v 0, be-
comes asymptotically linear in I as v increases. We show that their conclu-
sion holds true for all velocity covariance functions, and their corresponding
expression for the asymptotic dispersivity has universal validity under the
above conditions.

Bakr et al. 19783 and Gelhar and Axness 1983] have derived expressions
relating the spectrum of v to the spectrum of the log-hydraulic conductivity,
K, for statistically isotropic and anisotropic situations, respectively.
These expressions make it possible to write V and as functions of the mean
log-hydraulic conductivity and its covariance (or spectrum). In practice, the
spatial variability of K is often analyzed by means of geostatistical methods
involving semivariograms. Experience to date has shown that many semivario-
grams of log K fit a so-called spherical' model. We therefore conclude our
paper by deriving expressions for in terms of a spherical semivariogram or
covariance and applying these expressions to packer test data from fractured
granites near Oracle in southern Arizona.

2. CENTRAL LIMIT THEOREM

In the following two-sections we describe our approach to calculating the
effective velocity and dispersion coefficients, V and 0. The final forms of
these coefficients are given in equations (6)-(40) below.

Three key ideas lie behind our estimates of V and : averaging the small-
scale concentration, c, over the distribution of te local seepage velocity,
v; rescaling time and space in (1); and applying the semigroup approach to the
rescaled transport equation. There is an intimate connection between trans-
port equations like (l) and stochastic diffusion processes. The latter are
processes describing the position of a solute particle whose concentration is
given by-functions like c(x,t). In fact, the fundamental solution (Green's
function) of (1) is the transition (probability) density of the following sto-
chastic diffusion process Gihman and Skorohod, 1972)

where X(t) is the particle position at time t, b2 2d, w(t) is a standard
Wiener process, and the prime indicates differentiation with respect to time.
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Since (1) s a stochastic equation due to the randomness of , we cn
consider the (ensemble) mean of the local concentration, c.). Although c
does not generally satisfy (1) or (5), we proceed on the assumption that, as
time increases, c tends asymptotically to the solution of (5). The rationale
for this assumption is based on the limit theorems of Kesten and Papanicolaou
[1979] and Papanicolaou and Pironeau 1980) together with the experimental
evidence cited in the introduction.

In order to compare the asymptotic-behaviors of (1) and (5), we first
rescale the variables and X in (5) by means of a positive scalar, A,
such that and and the convective term vanishes.
Thus, upon defining the modified concentration takes
the form

where V is the gradient operator with respect to
this becomes

(8)

In the limit as

The fundamental solution of (9) is a Gaussian density function, f(X,), with
zero mean and covariance 2 D . Equivalently, the random position vector

has a density which approaches
a central limit theorem as A, and thereby ,

In other words, (10) satisfies
become large.

we now turn to (1) and treat u for a moment s a given (i.e., nonrandom)
function. If we define

takes on the modified form

Since-u is given, can be viewed as the conditional density of the
position process On the other hand the translated process,

has a conditional density, given by

5



Let us, for clarity of notation, replace and by and
respectively. To obtain the marginal density, from we recall
that

where f(X, u) is the joint density of 24(t) and u, f(u) s the marginal
density of u, and Eu represents expectation over u.

Our objective is to exploit the limit assumption

to calculate V and . According co (13), this is the same as

An equivalent form of (14) - (15), which we prefer to use below, is

where g is an arbitrary function and has the density f).

To apply (16) we return to (11). The fundamental solution of the latter
equation is equal to the conditional transition density of X(it)/A for a
given u, which we designate by The product is the
probability that a particle starting at at time has reached a small vol-
ume centered on x at te t. It is important to note that is also the fun-
damental solution to the formal adjoint of (11),

where -L is the differential operator i the middle expression acting on the
variable y. The interested reader should consult a standard text on stochas-
tic differential equations. e.g. Gihman ad Skorohod [1972], for details.
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Define an integral operator with kernel on an arbitrary-function,
h, as

where Rk is the k-dimensional Euclidean space. Since Pu s the transition
density of a diffusion process the operators P for a continuous semigroup,
the backwards semigroup of Pu Fellier, 1966]. use these operators because
they are conveniently represented by exponentials. To help see this, observe
that if (18) is differentiated with respect to s, and the arbitrary h is
ignored, then formally

Because Pu approaches a Dirac delta function when s approaches t,

(19)

Armed with (18)-(20) we return to the limit assumption (16) which, by virtue
of (13) and (12), can be represented as

But the solution of (11) is giver by the convolution of its
tion with the initial condition, i.e.,

On the other hand, translation by is equivalent to application of the
operator. Thus

7



Similarly the asymptotic density, f(x), satisfies (9). Upon replacing
and V., by t, x, and V, we can write The backwards semigroup corresponding
to (9) as

P(s,t) e (24)

Thus, in analogy to (23), we have

Because LA has random and nonrandom parts, we write t as LA A + cB where
the nonramdom part is

and the random part is

Thus (26) becomes

8



Equation 29 s the starting point for the next section. It is the athemati-
cal equivalent of the assumption that the solution of (1) converges to that of
(5) as time increases.

3. EFFECTIVE COEFFICIENTS

3.1 General Case

Our approach is to derive perturbation expansions for V and in powers of c,

with , u and d given. We obtain our expansions by writing the terms In (29)
as series in c. We use the standard expansion [Hille and Phillips, 1957]

together with the expansions following from (30)

9



Details of the derivation are given in Appendices B and C.

(34)

The second order terms, are expressed in terms of the velocity
covariance function

or its Fourier transform (the "cross-power spectrum')

where With this notation, the second order approximation of V is
given by
[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]
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[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

T indicating transpose. Clearly, is a second rank symmetric tensor.
It can be shown that if the elements of are bounded at the origin and
integrable (e.g., if is integrable and continuous) then (37) is well de-
fined (i.e., requires no regularizations in the ntegral for k2) whenever d is
positive definite and for kl whenever . Similarly, (39) and (40) are well
defined for k3 whenever d is positive definite, for k2 whenever d is positive
definite and 0, and for k whenever u * 0. In some cases (37T, (39) and (40)
are well defined even if these conditions are not met so long as satisfies
more stringent condition. For instance, if v=O then vanishes and, in
we can allow Of course this requires that the matrix valued
function itsel be not positive semidefinite over some spatial region. Such a
hole effect has been investigated by Gelhar et al. 1979] and Matheron and de
Marsily [1980], and similar conditions on have been obtained. In most realistic
cases, however, no such strong conditions on g are required.

In one-dimension, the evenness and positivity of P) imply that

Thus for (to second order). When local dispersion is small, i.e.,
d = 0, this simply-reflects the difference between the arithmetic mean and
harmonic mean (V) of the velocity. On the other hand, n the special case

(again to second order). We return to this
point in the next section. Both of these effects are known to be valid, not just
to second order but exactly S.R.S. Varadhan, personal communication].

When equations 38-40 indicate that the sign of D* depends on the
specific form of For instance in the one-dimensional case

11



which could be positive or negative.

3.2 Case where V.v 0

In the special case where V-vO (e.g., incompressible fluid in a rigid porous
medium of uniform effective porosity) our results simplify considerably.
These simplifications follow from the fact that vv 0 implies

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

Thus weApplying (43) to (36) - (40) it is obvious that V* - 0 and 0(ii) 0.
have the result quoted in the last section,

(44)

Additionally, since g is even, D for k can be expressed as

This is equivalent to equation 22' of Gelhar and Axness (1983).

Since d and + T are positive semidefinite matrices, so too s the matrix
with elements (45). Thus, D is a symmetric positive semidefinite tensor,
implying that in the sense that D - A is positive semidefinite.

Similarly in the one-dimensional case

12



which is positive because P(C) is positive. This explains why dis-
persion on a large scale is often greater than on a local scale.

Using relationships between the spectra of log hydraulic conductivity and
local velocity obtained by Gelhar and Axness E1983], equation 45 can be
written in a form which depends only on properties of the medium. For a
locally isotropic but statistically anisotropic medium,

where Py is the spectrum of log conductivity, Y log10K, and

being the geometric mean of hydraulic conductivity, the effective
(kinematic) porosity, J the mean hydraulic gradient and Kronecker's,
delta. Equation 47 follows from (45) by

after Gelhar and Axness [1983]. When hydraulic conductivity is statistically
isotropic, Bakr et al. 1978] had earlier shown that

when the coordinate system has been rotated so that El coincides with Here
being the log conductivity variance.

For the remainder of this paper we will treat the case In subsurface
hydrology this corresponds either to steady state flow of an incompressible
fluid in a medium with uniform effective porosity, or transient flow if the
medium is additionally rigid. When these conditions are violated, one must
use (36)-(40) instead of (44)-(47) On the other hand, (40) shows that
another sufficient condition for (but-not V*) to vanish is d 0. When
this happens and the effective porosity is variable (while the rest of
the above conditions hold), mass conservation requires v- 0, and the
equation

13



reduces to 1) with Hence the standard results from the literature of
turbulence e.g., Kesten and Papanicolaou, 1979, which are identical to our
(36)-(40) with d apply to this case. Note that when one can
compute from(45)-(47), but (44) does not hold unless and the
effective velocity, V, is generally different than

3.3 Behavior at large Peclet numbers

Let us orient parallel to so that and define a
dimensionless Peclet number, as

where L is some characteristic length. One-dimensional experiments suggest
that D11/d11 tends to 1 as v, and becomes proportional to when the latter
is large [e.g., Bear, 1979]. This is equivalent to saying that, or small ,
Dll tends to zero, whereas for large it tends to where , the
asymptotic longitudinal dispersivity, is a constant. Furthermore, experiments
indicate that there is a smooth variation in D11 as takes on different
values. In this section we investigate the behavior of by writing (45) in
terms of and formally taking the limits as and v. Since the behavior
of D depends on the form of g(E) for intermediate values of v, we defer con-
sideration of such values until the next section. There we employ (47), re-
written as a function of , for a particular y(x) arising from the widely
used spherical semivariogram of log hydraulic conductivities.

In the case we now consider, is symmetric and k 3, so that (45) can be
be written as

where is just the term in brackets n the first line. By standard
Fourier transform arguments--Parseval's theorem-- (53) can be written in

terms of the inverse transforms of H and

14



[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

Since v, z and are dimensionless, a has dimensions of length, like L. It
is intuitively appealing and mathematically convenient to take L as some
measure of the correlation length of the log hydraulic conductivity, Y. Thus,
L is an intrinsic property of the medium, provided only that the fluid proper-
ties are constant. Equations 49-j show that, n a statistically isotro-
pic medium, depends only on y and Py, so that it also is an intrinsic
medium property. Consequently, in a given statistically isotropic medium
is only a function of the Peclet number, v. On the other hand, (48)-(491
show that n a statistically antiotropic medium a is additionally dependent
on the direction of the mean hydraulic gradient, J.though not on the magni-
tude of this gradient.

As expected, (57) shows that nm(v)-O
ated transport. Next we observe that
Appendix E demonstrates that

as v+O; thus Dd for dispersion domin-
anm(v)+ constant as v+- for arbitrary

15



That s, approaches a delta function concentrated on the axis.
Hence, from where

(59)

which clearly is a constant, depending only on the medium when the latter s
statistically isotropic, and additionally on the mean hydraulic gradient
direction when the medium is statistically anisotropic.

Interesting features of (59) emerge when (48)-(501 are used to represent tk

It follows from (48) that --and thus is even in x.
Therefore
[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

Hence for large Peclet numbers the only nonzero component of D* is D l1 an
effect noted earlier by Gelhar and Axness 1983 for a special form of Py cor-
responding to an exponential covariance. On the other hand, when the log

16



conductivity is statistically anisotropic, G(On 2,03) can be nonzero even
when Thus is also nonzero and (61) indicates that

n general. This implies that D has components D 0 so that even
for convection dominated transport the principal directions of do not
coincide with , the mean velocity vector, unless the latter is parallel to a
principal direction of effective hydraulic conductivity. This result, too,
has been observed by Gelhar and Axness for a particular y, n this case the
transform of a modified exponential covariance.

3.4 Formulae for log hydraulic conductivity with spherical covariance or
semivariogram

For extreme values of v, the behavior of a is affected by the actual form
of in only a minor ay. However, the form of-the spectrum has a more pro-
nounced effect on for intermediate v. Experience with geostatistics has
shown that log hydraulic conductivity as well as log transmissivity are often
characterized by a spherical semivariogram function [e.g., Neuman'1983; Jones
et al., 1983]. It is therefore of interest to calculate a dispersivity
tensor, a, for the corresponding spherical covariance function in three
dimensions. For simplicity, we shall assume that this latter function is
isotropic,

and refer to L as the range" of the covariance function. On the other hand,
the local dispersion tensor, d, will be allowed to remain anisotropic with its
principal axes parallel and normal to the direction of flow. 'Thus, when
coincides with this tensor takes the form

where d and dT are the longitudinal and transverse local dispersion
coefficients, respectively.

Our aim is to-express a as a function of the Peclet number, v for
v ranging from To accomplish this, we rewrite in terms of v.
From (45),
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Since nm is an odd function of at least one of its variables when n (see
equation 50), A for nm, and for a statistically isotropic log
hydraulic conductivity field s thus a diagonal tensor. Furthermore, D
D*33 and our problem therefore reduces to that of analyzing A11 and A22.22

Taking the Fourier transform of Py and rearranging leads to

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]
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The expressions for are obtained by standard methods of contour
integration (details are given in Appendix F). Each s well defined even
when When local dispersion is isotropic and (68)
is greatly simplified. In any event (68) can be simplified by letting u
cose,

19



[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

Series representations for dispersivities can be derived from (69) by expand-
ing summing term-by-term, and then integrating. For

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]
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Since (73) does not depend on q, d, or d, it is clear that the asymptotic
longitudinal dispersivity is not affected by local anisotropy in dispersion.
Gelhar and Axness [1983] have noted the same when the covariance of log
hydraulic conductivity is exponential, in which case
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As before, (75) and (76) are good for intermediate values, but not very
helpful n the analysis of c22(v) for large v. Furthermore, the line of
reasoning which led to (73) is not enlightening since it only serves to show
that a22 That suggests that
and not much more. The problem is to find A.
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The second line follows from the first by a lengthy calculation given in
Appendix G. The notation, signifies terms which go to
zero as v faster than v .

To evaluate the integral in (77 and

Then
[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]
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4. APPLICATION TO FRACTURED ROCKS AT ORACLE, SOUTHERN ARIZONA

Some of the results developed in this paper have been applied to log hydraulic
conductivity data btained by packer tests from fractured granitic rocks near
Oracle, southern Arizona. Details about the site and the packer tests can be
found in the reports of Jones et al. 1983] and Hsieh et al. [1983]. Over a
hundred test data have been analyzed from seven boreholes arranged in the
pattern shown in Fig. 1 (no data are available from borehole HB). In each
test, the distance between the packers was 13 feet, i.e., the measured log
hydraulic conductivities are averages over 13 foot depth intervals. The
tested intervals cover a range of depths from about 60 to 250 feet in most of
the boreholes.

Fig. 2 shows two spherical semivariograms fitted to sample semivariograms
obtained from the Oracle data. One of these semivariograms epresents the
horizontal direction, the other represents the vertical. The parameters y
and L of the two semivariograms were determined by cross-validation with the
aid of kriging [see Jones et al., 1983, for details]. While both semivario-

grams have the same their ranges vary from L 30 feet in
the horizontal direction to L 60 feet in the vertical direction. Despite
this apparent statistical anisotropy, the data can also be fitted with almost
equal justification to an isotropic semivariogram (averaged over all

directions) with 0.83 and L 30 feet. It is this latter semivario-
gram, illustrated in Fig. 3, that we will utilize for our example below.
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Figure 1 Location of boreholes at Oracle site
(after Jones-et al., 1983).

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

Figure 2. Horizontal and vertical semivariograms of log hydraulic
conductivity at Oracle site. Smooth curves represent
spherical models fitted to the data (after Jones et al.,
1983).
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Figure 3. Average (isotropic) semivariogram of log hydraulic
conductivity at Oracle site. Smooth curve represents
spherical model fitted to the data (after Jones
et al., 1983).

Fig. 4 shows a logarithmic plot of versus as obtained from the iso-
tropic semivariogram of the Oracle test data by means of (71). The horizontal
line labeled represents the asymptotic value of ( 7.2 feet) as com-
puted from (73). It is of some interest t note that this asymptotic value
seems to be reached at approximately - 100. The same data can be replotted
as D01 /dj1 versus v based on the relationship

as shown in Fig. 5. The reader may do well to compare the resulting curve
with Fig. 7-4(a) in Bear 1979).

The variation of a,(v) with for the case of isotropic local dispersion
(dL dT and q 1Y is shown in Fig. 6, based on (76). The straight line
labeled - represents the asymptotic value of a22 ( 6.4V-1 feet) as
computed from (80). Fig. 7 shows (D22/d22 -1) versus v as computed from
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for q2 1 (a plot of D22/d22 versus v would be essentially a horizontal line
with D22/d22 . 1.0). The horizontal line labeled v corresponds to the
asymp-totic value of 22. The behavior of c33 and D33/d33 is identical to
that Of 22 and D22/d22.

Figure 8 shows the ratio between 011 and 022 for isotropic local dispersion
(q This curve does not depend on or L and is thus valid
not only for the Oracle site, but for any rock whose log hydraulic conduc-
tivity s characterized by a spherical covariance function. Note that for

whereas for
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Figure 4 Variation of all with v for fractured granite near
Oracle. The straight line labeled v - represents
asymptotic behavior.
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Fig. 5. Variation of with for fractured granite
near Oracle. The straight line labeled
represents asymptotic behavior.
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Figure 6. Variation of with v for fractured granite near
Oracle when The straight line
labeled v - represents asymptotic behavior.
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Figure 7. Variation of (D22/d22 - 1) with for fractured
granite near Oracle when d dT (q 1). The
straight line labeled v - a represents asymptotic
behavior.
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Figure 8. Variation of with v when dL dT. The straight

line labeled v represents asymptotic behavior.
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5. RELEVANCE TO NRC LICENSING OF HIGH-LEVEL RADIOACTIVE WASTE REPOSITORIES

In licensing, high-level radioactive waste (HLW) disposal, NRC will be respon-
sible for implementing the Environmental Protection Agency's (EPA) radio-
logical standard for HLW, Part 191 of Title 40 of the Code of Federal Regula-
tions (40 CFR 191). This standard was published as a Notice of Proposed Rule-
making (NPR) on page 58196 of Volume 47 of the Federal Register (47 FR 58196).
As the regulatory vehicle for implementing 40 CFR 191, NRC has published pro-
cedural and technical criteria for its high-level waste rule 10 CFR 60. The
procedural criteria were published as a final rule in the Code of Federal
Regulations. The technical criteria was published as an NPR in 46 FR 35280.
NRC is currently preparing a final rule for 10 CFR 60 which contains modifica-
tions to both the procedural and technical criteria. To clarify what needs to
be done to comply with 10 CFR 60, NRC is planning to publish some regulatory
guides. One such guide, on the preparation of site characterization reports,
was published. The Department of Energy (DOE), the sole licensee for HLW dis-
posal, published an NPR on guidelines for disposal of HLW, 10 CFR 960 (48 FR
5670).

In 160.21 of 10 CFR 60, item (6) states that a license application must in-
clude "a description of site characterization work actually conducted by DOE
at all sites considered in the application." Item (c) states that a Safety
Analysis Report must be submitted including a description and analysis of the
site at which the proposed geologic repository operations is to be located ...
the assessment shall contain an analysis of the geology, geophysics, hydro-
logy, ... " and other aspects of the site. The NRC Regulatory Guide 4.17 for
the preparation of site characterization report states specifically that hy-
drological evaluation of a site must include "information on hydraulic char-
acteristics of the matrix and fluid for each principal hydrogeologic unit" and
"the method of determination (15.9.2). Among these hydraulic characteristics
are intrinsic permeability" and "hydraulic conductivity." The Guide further
requires "a discussion of statistical parameters' including range, and mean
values." If this requirement is fulfilled, there should be enough data to
perform the statistical analyses (described in this report) necessary for the
computation of far-field dispersivities.

That such dispersivity values are needed is evident from the requirement of
the NRC Regulatory Guide 4.17 to characterize radionuclide transport factors"
(15.9.4). Furthermore, the EPA takes the attitude that despite (Section
191.13 of 47 FR 58196) significant uncertainties in the analytical models
used to assess the long-term performance of geologic repositories," (Section
191.15)" a vital part of the EPA standard] implementation will be the use of
adequate models...to relate appropriate site and engineering data to projected
performance." Some of these models will include dispersivity parameters to
predict the effect of hydrodynamic spread on the concentration of radio-
nuclides at various points along their flow paths. The larger is this spread,
the earlier will the radionuclides arrive at designated points along their
flow paths, and the smaller will be their concentration. Since both the
arrival time and the concentration decrease with increasing dispersivities, it
is important to estimate the correct values of these parameters as accurately
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as possible: neither by overestimating nor by underestimating the dispersivi-
ties will the models be taking a conservative approach to the assessment of
risk posed by subsurface radionuclide migration..

In this report, we propose a method to estimate dispersivities in the far
field based on measurements of hydraulic conductivities. Since such measure-
ments must be performed as an integral part of every site characterization,
the data required for our proposed calculations should be readily available.
What remains is to analyze these data statistically and insert the resulting
statistical parameters into appropriate formulae to compute dispersivities, as
described in Chapter 4.
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APPENDIX A: NOMENCLATURE

Symbol Description Dimensions

a Local dispersivity tensor L

aL Local longitudinal dispersivity L

aT Local transverse dispersivity L

C Far-field concentration ML-3

c Local concentration ML-3

co Initial concentration ML-3

D Far-field dispersion tensor L2T-

D* D - d L2 1-

d Local dispersion tensor L2T-1

dL Local longitudinal dispersion coefficient

dT Local transverse dispersion coefficient L 2H

dm Molecular diffusion coefficient L2T-1

Jd Local dispersive mass flux ML- 2T- 1

K Hydraulic conductivity LT-1

Kg Geometric mean hydraulic conductivity LT-

k Dimension of Euclidean space

L Correlation length of Y, or range of semivariogram of Y L

q

R Euclidean space Lk

t Time T

u Weakly stationary zero mean velocity process LT-1

V Far-field effective.seepage velocity vector LT-1
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v Local seepage velocity vector LT1

X Lagrangian position vector L
x Eulerian position vector L

Y Log K

I Far-field dispersivity tensor L
aL Far-field logitudinal dispersivity L

Far-field transverse dispersivity L

Positive scaling factor

Perturbation parameter

E(v), mean seepage velocity LT-1

when Peclet number

tensorial covariance function of v L2T-2
Fourier transform of L2+kT-2
Covariance function of Y
Fourier transform of y

variance of Y

Large-scale time T
effective (kinematic) porosity

Fourier transform variable (vector) L-1

Large-scale Eulerian positive vector L

Gradient operator L-1
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APPENDIX B: PERTURBATION EXPANSIONS

To simplify the integral in (34) let denote the kernel of
substitute Then applying e to an arbitrary function,
lent to convolving Ks and 9,
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But the transform of is . where
variable, and K5 s Gaussian with Fourier transform
operator A has the Fourier transform

the transform

eSA(n). The

Hence
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and the requirement (34) becomes

The expression on the left of (B7) can be simplified by letting

Then dividing (B7) by t the requirement becomes, in the limit as
[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

41



[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

It is convenient to put conditions (ii) and (iii) somewhat differently.
would also suffice if
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In our other paper (Winter, Newman, and Neuman, 1983) we find such generalized
limits. In this paper we apply those limits in equations (36) - (40) here we
give the large-scale velocity and dispersion coefficients.
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APPENDIX C: GENERALIZED LIMITS

We can determine the limits (B18)-(B20) by applying dominated convergence
arguments. The final results are

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

When these limits are substituted into (B21)-(B23), they yield (36)-(40).

Although it may at first seem unnecessarily rigorous to apply dominated con-
vergence to so formal a perturbation analysis, by doing so we obtain the
function regularization of (Ci) when k - 1, which does not appear in the naive
limit, and we show that no other hidden regularizations" appear in the other
expressions.
[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]
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Our strategy (for k 1) s to take the limit inside the first integral on
the right by dominated convergence and to show that the second integral
converges to zero.

It can be shown (Winter, Newman, and Neuman, 1983) that there is a positive
constant, K, such that

where F(g) has been defined following (37). When k 3, it can easily be seen
that is integrable near the origin even if If k :2 and
rotating the coordinate system so that one axis coincides with shows that
the integrability of [F]- near the origin follows from that of

A change to polar coordinates shows that the latter is integrable
near the origin.
[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

45



As we have indicated in discussing (C3), the integral on the right of (Cll)
exists in every region of Rk (k 2) so long as . In the case of (Cll),
however, the integral tends to zero because approaches (0) as

There remains only the region A B in R2 for
that

which it will be enough to show

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]
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Now G and the bound for Re and some shows
that this convergence is uniform n compact subsets of some small complex
strip, since ReF > 0 there. It follows that

where P denotes the principal part. The calculation for the case
same except that the contour s deformed into the lower half plane.
stituting p for and using the fact that i is even, we obtain (Cl)

The derivation of the limit of (m)GA, follows a similar line.
event, however, the case k 1 is not exceptional. Let A , B and
before. Then for A the same reasoning which led to (C8) shows

If d is positive definite the expression on the right is integrable for k > 2
even f 0. It is also integrable when k 1 so long as * 0. If, more-

over, it can be shown that and we have (C20) once
again. For we have, by the positive definiteness of d, that for some

constant, for every Hence
Since
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Newman, and Neuman (1983) it is shown that the expression on the
of the inequality is bounded in 'A, the complement of A, by an
function. H c converges (as a generalized function) to its point-
wise limit

Now we need only show that
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In taking the limit we need only consider the terms n brackets in (C28).

The integrability of [F-1] implies that

while the arguments leading to (C8), (C9), (Cl1), and (C12) establish that

Of course we have (C30) when k 2 only. if

The argument for k - 1 s analogous to that used to obtain (C2).
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APPENDIX D: DERIVATION OF H(x)
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APPENDIX E: DELTA SEQUENCE

A delta sequence is a sequence of functions,
function. Convergence is in the natural sense:

which converges to a delta

(E2)

Is a delta sequence concentrated on the positive z axis, we must show that
(El) holds in R for fixed a constant. However, before giving
the proof we note that defined by (E2) exhibits the kind of behavior
classically associated with delta sequences. In particular
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demonstrating the fact alluded to above.

The technical conditions we require of f(z) are that it be 1) bounded and
2) continuous at the origin. Since f(z) corresponds to P(z), these require-
ments are realistic. The function g(Z2,Z3) is thus bounded and approaches
zero at the origin. Our problem is to show that

This integral can be separated into two: one over an open sphere, centered
on the origin and with radius a; the other the remainder of R denoted by
R2 -n. So

Since g(y) is continuous at the origin and g(O) - 0. M(n) Thus
for any c > 0 there is an a so small that the integral over a of is
less than c/2 in absolute value. Since this result is ndependent of v, we
can consider a to be fixed below.
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APPENDIX F: CONTOUR INTEGRALS

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

Since the techniques are the same for all three integrals, we demonstrate the

method by evaluating J2. Note that

The integrand of J2 is an even function, thus
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where we let b vcos(e) We suppose b > 0; the b 0 cose can be obtained
as a limit. Because J2 cannot be evaluated by elementary methods, we find it
by contour integration in the complex plane. The countour is shown in
Figure 8 below.
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Figure 8 Contour integral in the complex domain
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and hence From (F2) and the Residue Theorem, the nte-
gral over r+r 2 s 2 times the residue at z=ib (which is the only residue
of in the upper half plane),
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APPENDIX G: 22 FOR LARGE

The asymptotic evaluation of

is simple, f a bit tedious. By separating (G1) into subintegrals and
cancelling terms we can write
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Now y(x) is a bounded function on and (x) as x -. Thus, as
pointwise and is unifirmly bounded. It follows by the

dominated convergence theorem, since R(1-u2) is integrable on [0,1] that
(G2) is asymptotically given by

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]

56



BIBIOGRAPHIC DATA SHEET NUREG/CR-3612

AUTHORS:
C. L. Winter, S. P. Neuman, C. M. Newman

Department of Hydrology and Water Resources
University of Arizona
Tucson, AZ 85721

Division of Health, Siting, and Waste Management
Office of Nuclear Regulatory Research
United States Nuclear Regulatory Commission
Washington, DC 20555

[COULD NOT BE CONVERTED TO SEARCHABLE TEXT]


