
(elzz -
153

EGG-ELS-6845
UC 66a

wMr RECORD COPY
PHYSICAL MODEL STUDIES OF DISPERSION

IN FRACTURE SYSTEMS

Laurence C. Hull

Idaho National Engineering Laboratory
Operated by the U.S. Department of Energy

Informal Report

I Z
0
xl

~0

- 0

C
I TZ

r73

'0

U. S. Department of Energy
Idaho Operations Office
DE-AC07-761D01570 f

6i EGRGIdaho



DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product or process disclosed, or represents that its use would
not infringe privately owned rights. References herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.



EGG-ELS-6845
UC 66a

PHYSICAL MODEL STUDIES OF DISPERSION
IN FRACTURE SYSTEMS

April, 1985

Laurence C. Hull
Geosciences Section

Earth and Life Sciences Branch
EG&G Idaho, Inc.

Prepared for the
U.S. Department of Energy
Idaho Operation's Office

Under DOE Contract No. DE-AC07-761D01570



CONTENTS

SUMMARY . ...................................................... vii

INTRODUCTION ...................................................... I

BACKGROUND . ...................................................... 3

THEORY .................. ................................... 5

Parallel Plates .................................................. 5

Lognormal Distribution of Aperature ....... ....................... 17

COMPUTER CODES USED FOR DATA ANALYSIS ........ ......................... 23

Particle Tracking Algorithm ........... ........................... 23

PNLFRAC ...................................................... 25

SALE . ..................................................... 30

FRACSL . ..................................................... 30

PHYSICAL MODEL CONSTRUCTION ............... ............................ 32

SINGLE FRACTURE ELEMENTS . ............................................. 36

Single Fractures ................................................. 36

Fracture Junction . ............................................... 44

INTERPRETATION of INJECTION-BACKFLOW TRACER RECOVERY CURVES ..... ...... 51

Raft River Field Tests . .......................................... 51

Physical Model Description and Tests ....... ...................... 53

Comparison of Results . ............................................ 55

DUAL-PERMEABILITY LABORATORY MODEL .......... .......................... 60

Model Design and Construction .......... .......................... 60

FRACSL Simulations . .............................................. 66

CONCLUSIONS . ..................................................... 68

ACKNOWLEDGEMENTS ...................................................... 70

REFERENCES . ...................................................... 71

ii



FIGURES

1. Illustration of the differences between in-situ and
flowing concentration ............................................ 6

2. Dimensionless concentration versus dimensionless time for
an electrode embedded in a fracture wall and for water exiting
a fracture at a fracture junction or well .9

3. Effect of Peclet number on the shape of tracer breakthrough
curves calculated using Equation 7 ............................... 12

4. Dimensionless concentration profiles across a fracture
having a constant concentration boundary at y/b = 0.0. ..... ...... 16

5. Conceptual fracture model used to develop modified Poiseuille
equation . ........................................................ 18

6. Effect of aperture variance on tracer breakthrough curves
for fractures with lognormal distribution of aperture. ..... ...... 22

7. Velocity profiles for 2-0 parallel plates and for a 3-D
channel with an aspect ratio of 6:1. ............................. 27

8. Ratio of average fluid velocities in rectangular channels
of various aspect ratios to average fluid velocity for
infinite parallel plates ......................................... 28

9. Normalized pseudo-three dimensional velocity profile for
simulating rectangular channels with a 6:1 aspect ratio
using a two-dimensional code ..................................... 31

10. Normalized pseudo-three dimensional velocity profile for
simulating rectangular channels with a 12:1 aspect ratio
using a two-dimensional code ....................... 31

11. Normalized pseudo-three-dimensional velocity profile for
simulating rectangular channels with a 50:1 aspect ratio
using a two-dimensional code ........................ 31

12. Diagram showing installation of a specific conductance
electrode ........................ 35

13. Experimental support equipment for physical model studies .... .... 35

14. Single fracture model for studying dispersion .................... 37

15. Comparison of tracer breakthrough measured in the single-
fracture laboratory model with PNLFRAC simulated
breakthrough at an average flow velocity of 3.0 cm/min ..... ...... 38

iii



16. Comparison of tracer breakthrough measured in the
single-fracture laboratory model with PNLFRAC
simulated breakthrough at an average flow velocity of
1.0 cm/min . ...................................................... 38

17. Comparison of tracer break-through measured in the
single-fracture laboratory model with PNLFRAC
simulated breakthrough at an average flow velocity of
0.3 cm/min . ...................................................... 38

18. Comparison of tracer breakthrough measured in the
single fracture laboratory model with PNLFRAC
simulated breakthrough at an average flow velocity of
0.1 cm/min . ...................................................... 38

19. Map of tracer concentration in a fracture where
dispersion is controlled by the parabolic velocity
profile (Pe = 0.0) ............................................... 39

20. Comparison of analytical to numerical solutions for
tracer breakthrough where dispersion is controlled by
the parabolic velocity profile (Pe = 0.0) ........................ 39

21. Map of tracer concentration in a fracture where
transverse molecular diffusion dominates development
of a parabolic velocity profile (Pe = 500) ....................... 41

22. Comparison of analytical and numerical solutions for
tracer breakthrough where transverse molecular diffusion
dominates development of a parabolic velocity profile
(Pe = 500) ........................................................ 41

23. Map of tracer concentration in a fracture where both
transverse molecular diffusion and the parabolic
velocity profile affect tracer dispersion (Pe = 5) ..... .......... 42

24. Comparison of the analytical solution for transport
at Pe * 0 with a numerical simulation of velocity profile
and diffusion effects at Pe = 5 .................................. 42

25. Comparison of a one-dimensional analytical solution
that assumes transverse diffusion dominates
development of the velocity profile with a numerical
simulation of velocity profile and diffusion effects at
Pe = 5 ......................................... .................. 43

26. Photograph of the laboratory fracture Junction showing
distribution of tracer when inflow from the left is
1.5 times inflow from the bottom ................................. 46

27. Computer simulation of a fracture junction showing tracer
distribution when inflow from the left is 1.5 times
inflow from the bottom ........... ................................ 47

iv



28. Computer simulation of a fracture junction showing
distribution of tracer when inflow from the left equals
inflow from the bottom. Average flow velocity is 1 m/day. ....... 48

29. Maximum velocities in fractures of various apertures that
permit sufficient residence time for mixing to occur due
to molecular diffusion ............ ............................... 50

30. Map showing locations of the Raft River geothermal field
and the geothermal wells used in testing ......................... 52

31. Tracer recovery curves for backflow portions of injection
back-flow testing in well RRGP-5. ................................ 54

32. Tracy recovery curves for backflow portions of injection-
backf ow testing in well RRGP-5 .................................. 54

33. Fracture network used for variable volume injection-
backflow tests conducted in the laboratory ....................... 54

34. Tracer concentrations for injection-backflow tests conducted
in the laboratory fracture network ............................... 55

35. Tracer concentrations for injection-backflow tests conducted
in the laboratory fracture network ............................... 55

36. Changes in shape of a one-dimensional tracer front at
various distances from an injection point based on
classic dispersion theory ........... ............................. 56

37. Changes in shape of a tracer front moving between infinite
parallel plates at various distances from an injection point.
Transverse diffusion is assumed to be negligible ..... ............ 58

38. Schematic of the dual-permeability fracture network model ........ 62

39. Plot of reduced tracer concentration versus the volume
modifying function on probability paper illustrating the
method of determining the dispersion coefficient from
the test data . ................................................... 64

40. Predicted steady-state pressure distribution in the dual-
permeability laboratory model using the FRACSL code ..... ......... 67

41. Predicted tracer distribution in the dual- permeability
laboratory model using the FRACSL code ....... .................... 67

V



TABLES

1. Normalized fluid velocities in rectangular channels with
various aspect ratios ............. ............................... 29

2. Coefficients of polynomial equations to describe the 2-D
projection of 3-D velocity profiles for rectangular channels ..... 32

vi



SUMMARY

The purposes of the laboratory-scale fracture network experiments are

to study mechanisms controlling solute transport under conditions of known

fracture parameters, to evaluate injection-backflow test procedures under

conditions of known reservoir parameters, and to acquire data for

validation of numerical models. Validation of computer codes against

laboratory data collected under controlled conditions provides reassurance

that the codes deal with important processes in a realistic manner.

The technology of building laboratory-scale physical models has

advanced with succeeding generations of models. Early models used

flow-through conductance cells to measure tracer concentrations at outlets

from the models. Incorporation of small (3.2 mm diameter) platinum

electrodes in the walls of the fractures permits measurement of tracer

concentrations to be made throughout the models, without disturbing the

flow field. Originally, the conductance electrodes were monitored one at a

time using a specific conductance meter and a chart recorder. The data

acquisition system has been computerized, and can now monitor up to

20 electrodes per test.

In working with single fracture models this year, it was found that

the circular cross-section of stopcocks and tubing in the injection system

was significantly affecting the shape of breakthrough curves. Special

stopcocks have been designed and built that eliminate all tubing in the

inlet system to the model. The stopcocks have rectangular channels with

the same aspect ratio as the model being used, thus there is no change in

geometry as fluid enters the model.

The most recent development in physical models is in the construction

of a dual permeability fracture network. Matrix blocks, instead of being

impermeable, will have porosity and permeability. Porous polyethylene has

been selected as the porous material for model construction. It is readily

available in large sheets (1 m by 1 m by 2 cm), is easy to machine, and has

reasonable hydraulic properties (porosity 35%; permeability 0.20 cm/min).
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Because it is easy to machine, a rather elaborate fracture network has been

designed. The model is currently under construction, and will be ready for

testing during FY-85.

Preliminary simulations of the dual-permeability physical model have

been made using the FRACSL reservoir code. These simulations permit

locating electrodes and piezometers in the most advantageous positions to

record tracer migration and pressure response. Simulations are also

invaluable in helping to plan the test program that will be used.

Much of the physical modeling effort this year was oriented towards

validating the particle tracking algorithm used in FRACSL, and developing a

better theoretical understanding of transport processes in fractures. The

former activity has shown that particle tracking has many advantages over

numerical methods for simulating solute transport. The latter activity has

provided important insight into how to design future testing of fracture

systems.

Experiments were conducted in single fractures and single fracture

junctions, and data on tracer migration collected. The Prickett, Naymik,

and Lonnquist Random Walk aquifer simulation program has been modified to

simulate flow in single fractures. Both infinite parallel plates and

rectangular channels can be simulated. The ability to handle rectangular

channels is necessary for simulating laboratory models, which are

rectangular channels with finite aspect ratios. Computer simulations were

quite successful in matching the laboratory results with no manipulation of

parameters. Flow is based on the three-dimensional velocity profile for

rectangular channels. A diffusion coefficient for the potassium chloride

tracer of 1.2 X 103 cm2/min was taken from the literature.

The particle tracking algorithm was also used to simulate infinite

parallel plates under conditions where analytical solutions to the

transport equation could be derived. The first case is for zero diffusion

in the fracture, and transport based on a parabolic velocity profile. The

second case is for diffusion homogenizing the tracer solution across the

fracture. The particle tracking algorithm matched both analytical
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solutions quite well, with the same grid for both simulations. Most

numerical techniques for solving the transport equation for this broad

range of flow conditions would have required extensive changes to the model

grid.

To expand our abilities to simulate increasingly more complex

laboratory models, a method of adapting FRACSL, a two-dimensional code, to

simulating the three-dimensional laboratory fracture models was necessary.

This has been done by projecting the three-dimensional velocity profile for

rectangular channels into two-dimensions. Third order polynomial equations

are used for the new velocity profile. Diffusion coefficients must be

scaled to account for the decreased distance particles must move in

two-dimensions. So far this has been done by brute force matching of

computer simulations, but theoretical approaches are being evaluated.

FRACSL can be readily modified to accept the polynomial equations instead

of the usual parabolic velocity profile.

From the single fracture studies and from theoretical considerations,

it has been found that diffusion will homogenize tracer concentration

across a fracture in a dimensionless time of:

Dot
m2 2.0

b

The appearance of tracer recovery curves from injection-backflow field

tests should change dramatically as reduced times increase from less than

2 to greater than 2. Thus, by planning the lengths of injection-backflow

tests to span this critical time interval, estimates of fracture apertures

may be possible.

This past year our ability to simulate fractures and fracture systems

has been greatly expanded. The particle tracking algorithm has been

verified against laboratory data and analytical solutions. Model

construction techniques have been refined, with many problems that

introduced uncertainties in measurements being eliminated. Once a good
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sealing material has been found for the porous polyethylene, laboratory

experiments will be conducted on the dual-permeability fracture network. A

better theoretical understanding of transport in fractures will permit the

design of more sensitive field tests for measuring reservoir parameters.
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PHYSICAL MODEL STUDIES OF DISPERSION

IN FRACTURE SYSTEMS

INTRODUCTION

Geothermal energy applications frequently require large quantities of

hydrothermal fluids. Injection of these spent geothermal fluids may be the

only economically feasible and environmentally suitable means for

disposal. Injection may also maintain reservoir pressures and prevent

surface subsidence. However, the effects of injection may not always be

beneficial to reservoir performance. For example, breakthrough of cooled

injected fluids has lowered the enthalpy of production fluids at Onikobe

and Otake geothermal fields in Japan (Horne, 1982). Multiwell tracer tests

at Wairakei show transit of injected fluids between wells can take as

little as five to ten days (Fossum and Horne, 1982). To properly assess

the effects of injection on geothermal systems, a better understanding of

the nature of fractures in geothermal reservoirs is required. Tracer tests

can provide the researcher with an increased understanding of the fluid

travel paths and rates of movement through fractured reservoirs. However,

the interpretation of tracer tests in fractured reservoirs is not based on

a sound theoretical understanding of the processes that control tracer

behavior in fractures.

The Department of Energy (DOE) has recognized the need for additional

research into the complex subsurface behavior of geothermal reservoirs

during injection. A comprehensive research program has been established to

examine the problems associated with the injection of spent geothermal

fluids into fractured reservoirs (Downs et al.,1982; Capuano et al.,

1983). The purpose of the DOE injection program is to develop new methods

for reservoir assessment that can be used in fractured geothermal

reservoirs. EG&G Idaho and the Earth Sciences Laboratory of the University

of Utah Research Institute (UURI), under the DOE Idaho Operations Office,

have been actively involved in this injection research program. The joint

effort consists of a series of field experiments with supporting laboratory

and theoretical work.
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The purposes of laboratory scale experiments are to study mechanisms

of solute transport under controlled conditions of aperture, roughness,

flow, geometry, and matrix permeability, and to obtain data for validation

of computer codes. Field testing is designed to evaluate new methods of

reservoir assessment, and to obtain data on tracer behavior in geothermal

reservoirs. In conjunction with the field and laboratory testing,

numerical simulation methods are being developed for analysis of tracer

movement in fracture systems with matrix porosity and permeability (Miller,

1983; Clemo and Miller, 1984). Validation of these computer codes against

laboratory data collected under controlled conditions provides reassurance

that the codes deal with the important processes in a realistic manner.

This paper summarizes the laboratory physical modeling that has been

conducted by EG&G Idaho, and provides a discussion of test results from the

laboratory that have bearing on the interpretation of field tests conducted

in the fractured reservoir at Raft River, Idaho. A discussion of the

approaches to dealing with solute transport in fractures is given first,

and the particle tracking algorithm, used in the computer codes being

developed by EG&G, is presented and validated.
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BACKCGROUND

A large number of studies have been published in the past 10-12 years

dealing with solute transport in fractured media. The vast majority of

this work deals with solute transport in single fractures. Much of this

work has been motivated by the need for a repository for storage of nuclear

wastes that is safely sequestered from man and the environment.

Many of the papers deal with a dual porosity aquifer, where fractures

occur in a rock that also contains primary porosity. Usually, the

permeability of the matrix blocks is considered insignificant relative to

the permeability of the fracture system. The matrix blocks do not

participate in fluid flow through the rock, but can be involved in heat

transfer and solute retardation phenomena. Diffusion from the fracture

into the rock matrix retards the migration of solutes. None of the

approaches deals with advective transport between fracture and matrix.

Solute transport in the fracture is either by advection alone (McKinley and

West, 1982; Rundberg et al., 1981) or by advection and dispersion based on

a one-dimensional solution to the advection-dispersion equation (Nuttall

and Ray, 1981; Tang et al., 1981; Travis and Nuttall, 1982). Computer

codes that can simulate complex fracture networks, and which use this

approach have been presented by Baca et al., (1981), Huyakorn (1982), and

Travis (1984).

Alternative methods for dealing with dispersion in fractured rocks

have been proposed. Krizek et al., (1972) developed a numerical model for

solute transport in a fractured network. In their model, dispersion was a

direct result of the velocity profile of fluid moving through the

individual fractures. Grisak and Pickens (1980) used an approach that

combined both the velocity profile concept and a one-dimensional solution

to the advection-dispersion equation. They divided the fracture into six

zones, calculated the mean velocity in each zone based on the velocity

profile, and then calculated dispersion based on the advection-dispersion

equation for each zone. Horne and Rodriguez (1981) and Fossum and Horne
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(1982) use a one-dimensional solution to the classic advection-dispersion

equation, but with a dispersion coefficient that is related to fracture

aperture.

Neretnieks and coworkers (Neretnieks, 1979, 1981, 1983; Abelin et al.,

1982; Neretnieks et al., 1982) have taken the approach that channeling

within a fracture produces dispersion. Their model is based on an

idealization of a fracture as a set of parallel channels of differing

width. The population of channel apertures has a lognormal frequency

distribution, and each channel has a velocity proportional to the square of

the aperture. Solute breakthrough measurements are made on mixtures of

water from all channels, thus producing a gradual breakthrough of tracer.

This conceptual model was applied to breakthrough curves measured on a

laboratory fracture in granite.

Complete mixing at fracture junctions has been found or assumed in

several studies of fracture networks. Krisak et al., (1972) carried out

experiments on single fracture junctions to validate their numerical model,

and found results suggesting complete mixing of tracers at fracture

junctions. Their experiments were limited to cases where tracer entered

the junction from a single fracture and left via two or three that were at

equal potentials. Schwartz et al., (1982, 1983) adopted this concept for a

stochastic numerical modeling study of solute migration through

discontinuous fracture networks. Experimental studies conducted by Wilson

and Witherspoon (1976) and Hull and Koslow (1982) found no evidence of

complete mixing at fracture junctions where flow converged from two

fractures and left via two fractures.
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THEORY

Most approaches to dispersion in fractures are based on parallel plate

theory. Dispersion is related to the parabolic velocity profile that

develops due to friction against fracture walls. This is the most commonly

used approach, and the one that has been adopted for current modeling

studies, both numerical and in the laboratory. A second approach to

dispersion in fractures has been presented by Neretnieks et al., (1982,

1983). This approach is based on natural fractures where apertures are not

constant. Following Snow (1970), Neretnieks postulates a lognormal

distribution of fracture apertures. Because velocity is proportional to

aperture squared, the tracer front will be dispersed because of the

different paths. In this section, the equations governing dispersion for

these different approaches will be presented, analytical solutions derived,

and implications of the approaches discussed.

Parallel Plates

When dealing with tracer concentration, in either fractures or porous

media, there are two different concentrations that are of interest; in-situ

concentration and flowing concentration. In-situ concentration is the

spatially averaged concentration at a specific cross-section within a

fracture (Figure la). It is the concentration that would be measured with

an electrode embedded in the fracture wall. Flowing concentration is the

volumetrically averaged concentration of fluid passing through a plane

across the fracture (Figure lb). It is the concentration that would be

measured by collecting a water sample over some small time increment.

Equations describing the two types of concentration are:

y
C C fo A(y) dy (in-situ) (la)

° At

*

by
C = C o v(y) A(y) dy (flowing) (lb)C 0 uA (lwn)(b
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Electrode
~~y~b

-- Y= 0

a. In-situ concentration

b. Flowing concentration

5 6881

Figures la and lb. Illustration of the differences between in-situ and
flowing concentration.
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where

C = tracer concentration

C0 = injected tracer concentration

vWy) = fluid velocity at a distance y from the centerline of the

fracture

u = average linear fluid velocity

A(y) = incremental area

At = total cross-section of fracture

y = transverse position in fracture, measured from the centerline

y = transverse position of interface between tracer solution and

native fluid (see Figure la and lb).

The value of y can be defined by using the Poiseulile equation for the

velocity profile between parallel plates (Albertson et al., 1960):

v(y) = 2 (1 - y /b2) (2)

Rearranging and solving for y gives:

y* =b(l- )2x 1/2
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where

b = half the fracture aperture

x = distance coordinate along the fracture

t = residence time in fracture.

A(y) in Equations la and lb can be replaced by zdy and At by zb where z

is the height of the fracture normal to flow. However, as this height

drops out of all equations, it does not affect the results as long as it is

very large relative to aperture (z > 1Ob). Because of symmetry about

the centerline of the fracture, the integration needs to extend over only

half the fracture aperture.

Integrating Equation la across half the with of the fracture and

evaluating the result at y gives the equation for in-situ tracer

concentration where concentration is controlled only by the parabolic

velocity profile within the fracture.

C = CO(l _ 23x 1/2 (4)
O~-3ut)()

For flowing concentration, the point velocity is defined using Equation 2,

and Equation lb is integrated across half the width of the fracture. The

result is evaluated at y giving the equation for flowing concentration

in a fracture.

C = 2(4 - 3(2x)2- ( 23u 11 )2 (5)

Plotting reduced concentration (C/C0) versus reduced time (ut/x), shows

the difference between Equations 4 and 5 (Figure 2). The difference

between the two curves is the difference between measuring tracer

concentration in-situ, and collecting samples for measurement. The flowing

concentration curve describes the transfer of tracer from one fracture to

8



1.0

C
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C
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C
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Figure 2.

1.0 1.5

Reduced time (ut/x)

2.C
5 688

Dimensionless concentration versus dimensionless time for an
electrode embedded in a fracture wall (Equation 4, in-situ)
and for water exiting a fracture at a fracture junction or
well (Equation 5, flowing).
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another across a fracture junction, or from a fracture into a wellbore.

The flowing concentration curve rises more steeply because it is weighted

by flow volume. As a result, the more rapidly moving fluid down the center

of the fracture, which carries more tracer, is weighted more heavily than

the slower moving fluid along the fracture walls. For the in-situ

concentration, all portions of the fracture are weighted equally.

Transverse diffusion between streamlines in a fracture will move

tracer from the fast-moving water in the center of the fracture into

slower-moving water nearer the fracture walls. This will reduce the rate

of movement of tracer relative to the water flowing along the center of the

fracture. At very low flow rates, this transverse diffusion will

homogenize tracer in the fracture. Under these conditions, the velocity of

a solute particle exiting a fracture will be independent of the velocity of

the solute particle when it entered the fracture. Each solute particle

will have sampled a range of transport velocities, and there will be no

correlation between input and output velocities of particles. Transport

can then be described using the one-dimensional advection-dispersion

equation, and the tracer front will move at the average linear velocity of

fluid in the fracture.

The differential form of the one-dimensional advection-dispersion

equation is:

2
aac= D Ac u ac (6)

at Iax2 ax

Ogata and Banks (1961) derived an analytical solution in one-dimension for

constant concentration boundary conditions and a step input:

C _ [erfc - T) + ePe erfc(l T)] (7)
0 \ 2 /rI P 2; /]
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where

erfc = complementary error function

Pe = Peclet number ux/D.

DQ = longitudinal dispersion coefficient

t = dimensionless time, ut/x.

The parameter that controls the shape of breakthrough curves described by

Equation 7 is the Peclet number. When the Peclet number is large

(> 200), a symmetrical, sigmoidal shaped curve is produced (Figure 3).

When the Peclet number is small, the curve is asymmetrical, and in the

extreme (Pe < 1), appears almost exponential.

Treatments of dispersion in single fractures that use the

one-dimensional advection-dispersion equation frequently treat the

dispersion coefficient as independent of fracture aperture and a linear

function of fluid velocity (Nuttall and Ray, 1981; Noorishad and Mehran,

1982). For parallel plate theory, however, the dispersion coefficient

should be a function of aperture, and be related to velocity squared.

Taylor (1953, 1954) derived an expression for the dispersion coefficient

for a solute flowing through a circular tube. A similar derivation can be

made for a fracture by changing the geometry from circular to parallel

plates (Horne and Rodriguez, 1981).

Based on parallel plate theory, as water moves along a fracture, the

water moving along the center of the fracture will move at a rate equal to

1.5 times the mean velocity. This generates a very steep concentration

gradient transverse to the direction of flow. This approach to transport

in fractures is two-dimensional, with both longitudinal and transverse

motion explicitly considered. Molecular diffusion will cause some of the

tracer to migrate from the faster water, moving down the center of the

fracture, into the slower water moving along the fracture walls. At slow

11
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Figure 3. Effect of Peclet number on the shape of tracer breakthrough
curves calculated using Equation 7.

flow rates, diffusion will result in homogenization of the tracer front

across the fracture. The change in concentration at a point within the

fracture will be determined by the combined effects of diffusion and

advection. The two-dimensional differential equation that describes this

process is:

a =D ( m aY2 ) 2 (I_ 2 )x ( 8)

where Dm is the coefficient of molecular diffusion. As long as the walls

of thure willt re eimpermeable, there will be no advect ion perpendicular

12



to the fracture. This is not the case for dual porosity situations, where

matrix permeability is present.

It can generally be assumed that advective transport along the

fracture (x direction) will dominate diffusive transport in that

direction. Therefore, only transverse diffusion need be considered.

Equation 8 can be transformed to a coordinate system that moves at the

average velocity of the tracer front by making the following substitutions:

p = y/b (9)

t = x - ut (10)

dx (1
Ft = v(y) (ll)

Substituting Equations 9 through 11 in Equation 8 gives the two-dimensional

equation for transport through a fracture in terms of a relative coordinate

system.

ac Dm 2C 3u 2) 8C (12)
at- b2 aCp u( 23 aC(12

A solution to Equation 12 can be obtained for conditions where transverse

diffusion is rapid relative to the development of a transverse

concentration gradient due to longitudinal transport. For steady state

conditions in the moving coordinate system, aC/at = 0 and aC/at

can be assumed constant. Carrying out the double integration on p gives

the tracer concentration as a function of lateral position and input tracer

concentration.

C = C 0+ ub2 at p - p (13)
m
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To determine the average tracer concentration (C) over the width of the

fracture, Equation 13 must be integrated from p = 0 to p = 1.

Back substituting the result of this integration into Equation 13

gives the point concentration as function of the average tracer

concentration.

C ub2 aC(_ 73 + p2 _ 124) {C = C + O at 30 ~~~~~~~~~~~~~(14)
m

The flux of tracer along the fracture (J) is given by:

J = C v(p) dp (15)

Integrating Equation 15 using Equation 14 for the average tracer

concentration and the parabolic velocity profile (Equation 2 with

substitution of Equation 9) to describe the velocity as a function of

lateral position gives:

32u 2 b 2 aC
105=m a (16)

where

2u2 b2(7
DQ = l D105 (17)

defines the longitudinal dispersion coefficient. The dispersion

coefficient is related to both fracture aperture and velocity squared.

Replacing Equation 17 in the definition for the Peclet number, see

Equation 7, gives the Peclet number for fractures:

105 0 x
Pf 2ub2 (18)
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Equation 17 substituted in Equation 7 will be valid for fractures only

under certain conditions. To evaluate these conditions, the processes

involved must be considered. The general assumption in the derivation was

that transverse diffusion would homogenize the tracer across the fracture

before fluid reached the end of the fracture. The time required for

diffusion to homogenize the tracer can be calculated from an analytical

solution to the diffusion equation presented by Crank (1975). The boundary

conditions for this solution are a constant concentration at the centerline

of the fracture and dC/dy a 0 at the fracture wall. The constant

concentration boundary condition is used because as diffusion moves tracer

from the center of the fracture, new tracer will be brought into place by

the more rapidly moving water in the center of the fracture. The

one-dimensional solution will only be valid when the tracer concentration

averaged across the fracture is equal to the input concentration everywhere

behind the moving front. The less rigorous boundary condition of constant

mass for the diffusion equation only provides that point concentrations

across the fracture equal the average concentration at that point, i.e.

that the tracer is homogenized. This is not sufficient since it allows for

a tracer concentration gradient in the longitudinal direction along the

fracture which stretchs from the origin of the fracture to the moving

front. The equation describing diffusion under the constant concentration

boundary conditions is (Crank, 1975):

C/C0 = (-l)n erfc ( 2 PD)

n =o m

+ E (-l)" erfc ((n +) /b ) (9)
n~~~o ~2 VDmtb

A plot of dimensionless concentration versus dimensionless time is shown in

Figure 4. Tracer will have homogenized in a dimensionless time of:

D t
2 = 2.0 (20)
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Figure 4. Dimensionless concentration profiles across a fracture having a
constant concentration boundary at y/b = 0.0. Curves were
calculated using Equation 19 for the various dimensionless
times shown.

The tracer moving along the center of the fracture will arrive at the end

of the fracture in a dimensionless time of:

ut = 0.67 (21)
x

Solving Equations 20 and 21 for time and requiring that the transport time

be greater than the diffusion time gives:

2b2 0.67xo <(2:
m

or rearranging:

D x
2 > 3.0 (2

ub

!2)

'3)
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Multiplying both sides of Equation 23 by 105/2 gives the Peclet number for

fractures (compare to Equation 18). This ratio must therefore be greater

than 157.5 to apply Equation 7 using Equation 17 for the dispersion

coefficient. Comparison between this limiting Peclet number and shapes of

breakthrough curves plotted in Figure 3 shows that breakthrough curves for

fractures under the assumption of one-dimensional dispersion will always be

symmetrical and sigmoidal.

One aspect of this definition of a Peclet number for fractures is that

the Peclet number is inversely related to fluid velocity. For the classic

Peclet number, the magnitude of the ratio increases as velocity increases.

For the fracture Peclet number, the magnitude decreases as velocity

increases. Therefore, the one-dimensional approach is only applicable at

low flow rates where diffusion can produce homogenization. When the

limiting Peclet number requirement is violated, the assumptions behind the

derivation of Equation 17 are violated, and a two-dimensional approach to

dispersion is required. Application of Equation 7 to fractures at low

Peclet numbers is not valid. Hydrodynamic constraints on peak velocities

under the parallel plate assumption are violated by application of

Equation 8 if the Peclet number is less than 157.5.

Lognormal Distribution of Aperture

The velocity profile approach to dispersion in fractures treats

fractures as two-dimensional. Fractures have a third-dimension, height.

Also, fracture surfaces are not smooth parallel plates, but are rough with

asperities and sections that may be closed. Neuzil and Tracy (1981)

conceptualized a fracture as a series of finite parallel plates, with

apertures that were lognormally distributed (Figure 5). Aperture requires

two parameters to describe, mean and variance. Neretnieks and coworkers

(1982, 1983) expanded on this concept to show how this lognormal

distribution of aperture would affect solute transport.

A fracture is conceptualized as a series of smaller parallel plates,

where the aperture of the parallel plates varies over a range, and can be

described by a probability density function. The steps between plates are
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Figure 5. Conceptual fracture model used to develop modified Poiseuille
equation (from Neuzil and Tracy, 1981).

assumed to have no effect on the flow. The concentration of tracer exiting

the fracture at any given time is dependent on the ratio of discharge that

is carrying tracer to total discharge from all channels. This ratio is

given by:

C Q* fb* v(b)A(b) f(b) db (24)

CO Qt v(b)A(b) f(b) db

where Q* is the volumetric flow rate carrying tracer and Qt is the total

volumetric flow rate. The limit of integration b*, is the smallest

aperture that carries tracer after a time t*, where t* is related to the

length of the fracture divided by the velocity in the particular fracture

element (x/u*). Snow (1970) found that fracture apertures in granitic

rocks could be described by a lognormal probability density function.

The functional relations between velocity, area, and aperture are given by:

2
v(b) = IL- (25)
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A(b) = 2bz (26)

1 e -(in b - mu) 2

f(b) = w2 exp 2m2 (27)

where

Y = specific gravity

P = dynamic viscosity

mu = mean of the aperture

r2 = variance of the aperture

To make the equations equivalent to those discussed in the previous

section, an average velocity must be determined. This can then be

substituted into Equation 25 for v(b) in order to eliminate the gradient

term. Velocity is the discharge divided by the area, and is given by the

equation:

u fo v(b) A(b) f(b) db (28)

fJ A(b) f(b) db

Using Equations 26 and 27 to describe the functional relation between area

and aperature gives the equation for area of the fracture:

A = 2bz exp -lnb - mu) db (29)
o b 2ww2 ex 202

This equation can be integrated by multiple levels of substitution.

Integrating Equation 29 gives the area of the entire fracture of:

A = z exp (a 2/2 + mu) (30)
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For flow volume, the equation to be integrated is:

Q = ( Yb 2bz dh exp -(mnb - mu)2 db (31)

o 3jib V2r dx 2a2

The same substitutions are used as before, and the integration of

Equation 31 gives the total discharge through the fracture as:

Q = yzhx exp (3mu + 9o /2) (32)

Dividing Equation 32 by Equation 30 gives the equation for mean velocity

through the fracture:

u = 3dhx exp (2mu + 4a2o (33)

Back-substituting in Equation 25 for velocity within a single channel gives:

v(b) = ub exp -(2mu + 4U ) (34)

This definition of v(b) can then be used to calculate the distribution of

tracer at the outlet of the fracture. The equation for the total discharge

out of the fracture has already been solved (Equation 32), which when set

in terms of average velocity gives:

Q = uz exp (mu + -2/2) (35)

The discharge from channels having an aperture greater than b is given

by:

Q* ( 2ub3z exp -r(lnb - mu) 2/2a21 db (36)

J b* bV Fexp -(2mu + 4a 2)
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where b is given by:

b* = exp (2mu + 4a2))1/2 (37)

Integrating Equation 36 from b to infinity gives the discharge carrying

tracer at time t . Dividing the result by the total discharge through

the fracture, Equation 35, gives the equation for tracer concentration as a

function of time at the outlet of the fracture:

C 0* 1 1fc(v (in x exp (2mu + 4a2) 3
C Q=- 2erf qT (nut - WI 2 )V2 (38)

0 t

This equation is the volumetric average of the concentration, and therefore

represents the flowing concentration discussed above. Figure 6 shows a

family of tracer breakthrough curves that illustrate the effect of the

variance in fracture aperture on tracer breakthrough.
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Effect of aperture variance on tracer breakthrough curves for
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Calculated using Equation 38.
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COMPUTER CODES USED TO ANALYSE DATA

Three computer codes are used for data analysis. These codes provide

data analysis and simulation capabilities for a broad range of fracture

geometries. Two codes are used for simulation of single fracture elements,

and the third for simulation of dual permeability fracture systems, with or

without matrix porosity. The single element codes will be discussed here,

along with the theory behind the particle tracking algorithm. The

reservoir simulation code is discussed in more detail by Clemo and Miller

(1984) where details of the mechanics behind particle transfer between

fractures and matrix are discussed.

Particle Tracking Algorithm

Finite element and finite difference schemes for numerical simulations

can suffer from numerical oscillations and numerical dispersion,

particularly at high mesh Peclet numbers (Noorishad and Mehran, 1982). The

mesh Peclet number is defined similarly to the standard Peclet number in

Equation B, but with the x distance representing the grid spacing. As

velocities tend to be greater in fractures than in porous media, the

problems with oscillation tend to be greater than for porous media models.

To avoid these problems, a particle tracking approach was adopted.

Particle motion from diffusion and dispersion in porous matrix blocks

is assumed to follow a random walk (Bear, 1972; Ahlstrom et al., 19771).

The probability of a particle being at a point m after N independent steps

is given by:

P(m,N) = N! 0 ,5N (39)
[0.5(N+m)]J [O.5(n-m)]!

For very large N, such as would be the case for ion diffusion by Brownian

motion, Equation 39 yields a Gaussian probability distribution:

P(mN) = Lexp(X) (40)
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If a particle undergoes n displacements of length t per unit time, it

will travel at a velocity of v = nt. The time required for N

displacements is N/n. A diffusion coefficient is defined as:

DM = nt2/2 (41)

Using the relations discussed above and Equation 41 to replace N in

Equation 40 gives the classic one-dimensional solution to the diffusion

equation:

P(x,t) = lexp(x i ) (42)

This describe a Gaussian distribution of particles with a variance given by:

= 20mt (43)

By multiplying sigma by a random normal variate with mean zero and variance

one, the distance a particle travels during one time step can be

simulated. The procedure is used to simulate both diffusion in fractures

and dispersion in matrix blocks, with appropriate values for the

diffusion/dispersion coefficient.

For two-dimensional simulations, diffusion in two directions is

possible. In this case, Equation 43 is used to determine the distance the

particle diffuses, and the direction is assumed to be uniformly

distributed. The angle of diffusion is determined by multiplying 2w by a

uniformly distributed random variable between 0 and 1.

For fracture simulations, starting and ending coordinates of the

particle are calculated based on diffusion. The longitudinal velocity is

then calculated for these starting and ending coordinates, determining the

average particle velocity. The particle is then moved to its new position

in the fracture. For particles that bounce off fracture walls or cross the

centerline of the fracture, two averages are calculated. One for the path
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from the starting position to the wall or centerline, and one from the wall

or centerline to the ending position. This takes into account the very low

velocities along the wall and the peak velocities along the centerline.

PNLFRAC

The first code is derived from the Prickett, Naymik and Lonnquist

'Random Walk' model (Prickett et al.,1981) modified to simulate flow and

transport in fractures. Velocities at nodes are calculated from analytical

solutions to the velocity equation between parallel plates (2-D) or for
flow in rectangular channels (3-D). Both two-dimensional and

three-dimensional velocity fields can be employed, giving capabilities for

both infinite parallel plates and rectangular channels, such as in the

physical models. The code can handle single fractures only. Solute

transport is by particle tracking. Advection is calculated from the

velocity at the particle position in the fracture times the time step. The

lateral position of the particle is changed by transverse diffusion within

the fracture. This approach allows easy simulations in both two and three

dimensions, and is valid over the entire range of laminar flow velocities.

Because of symmetry, only one-half or one-quarter of the fracture need be

simulated. There is no explicit treatment of dispersion; dispersion is

handled on a mechanistic level by velocity profile and diffusion.

For two-dimensional flow simulations, velocity at a point in the

fracture is calculated from Equation 2. For rectangular channels, the

three dimensional velocity profile is calculated from an equation presented

by Happel and Brenner (1965).

V(yZ) = ydx y(y -2b)

+ I 3 [cos(mir) -1] sin(miry/2b)
m=l m(irm) dx

[* + exp(-mu3)] I exp(-miz/2b) + exp(-mir (n-z/2b))] (44)
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where:

n = 2a/2b

Figure 7 shows a comparison between the velocity profile between parallel

plates and for a rectangular channel having the same aperture, but with an

aspect ratio of 6:1. The peak velocity in the rectangular channel is

greater than between parallel plates to compensate for extremely low

velocities in the corners. The vertical velocity profile is almost square,

but shows lower velocities due to boundary effects on the top and bottom

surfaces. Figure 8 illustrates the effects of friction losses along upper

and lower boundaries for rectangular channels of varying aspect ratios. At

a constant gradient, the mean flow velocity will decrease as the aspect

ratio decreases. Rectangular channels of aspect ratio of 50:1 and above

are within about 1% of flow velocities for infinite parallel plates.

Table 1 shows point velocities for one-quarter sections of rectangular

channels with aspect ratios of 6:1, 12:1, 50:1, and velocities for infinite

parallel plates for comparison.

A constant concentration boundary condition is used at the inlet of

the fracture. This is achieved by releasing particles into each cell based

on the discharge through that cell. Cells near the fracture walls get only

a few particles while those in the center of the fracture get up to

1.5 times the average number of particles, for parallel plates. The

particles are released randomly over the width (and height) of the cell,

and randomly over the time step.

Output from the model consists of breakthrough curves at electrodes

both embedded in the fracture and at the fracture outlet. Maps of particle

locations within the fracture can be produced at various times.

To simulate data from laboratory models that have three-dimensional

characteristics using the FRACSL code, which is a two-dimensional code,

some modification of the velocity profile equation is necessary. Empirical

two-dimensional velocity profile equations were developed to describe the
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Figure 7. Velocity profiles for 2-0 parallel plates and for a 3-D channel
with an aspect ratio of 6:1. Calculated using Equation 44.
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Figure 8. Ratio of average fluid velocities in rectangular channels of
various aspect ratios to average fluid velocity for infinite
parallel plates.

three-dimensional velocity profile projected into two dimensions. These

equations were developed by running three-dimensional simulations, and

fitting the results with third-order polynomial equations.

To determine the shape of the three-dimensional velocity profile when

projected onto two dimensions, the particle tracking capabilities of

PNLFRAC were used. A pulse of tracer particles was released uniformly

across the inlet to a rectangular channel. The diffusion coefficient was

set to zero, so particles did not move laterally in the fracture. This

produced a set of particles that uniformly sampled all velocities in the

velocity profile. By counting the number of particles that arrived at the

end of the fracture over a given tire interval, the fracticn of flow having

velocities within a certain velocity range was determined. By integrating,

inverting, and normalizing the particle data, the two-dimensional velocity
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TABLE 1. NORMALIZED FLUID
ASPECT RATIOS

VELOCITIES IN RECTANGULAR CHANNELS WITH VARIOUS

y/b

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

6:1

0.0

0.318

0.603

0.855

1.073

1.257

1.408

1.525

1.609

1.659

1.676

12:1

0.0

0.301

0.570

0.807

1.013

1.187

1.330

1.440

1.520

1.567

1.583

50:1

0.0

0.288

0.545

0.772

0.968

1.135

1.271

1 .377

1.453

1.498

1.513

G 1

0.0

0.285

0.540

0.765

0.960

1.125

1.260

1.365

1.440

1.485

1.500
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profile was calculated. Examples of two-dimensional velocity profiles for

rectangular conduits for aspect ratios of 6:1, 12:1, and 50:1 are shown in

Figures 9 to 11. Table 2 gives the coefficients for the polynomials.

Figure 9 also shows the shape of the true parabolic velocity profile in

comparison to that for an aspect ratio of 6:1. For rectangular channels,

the peak velocities along the center of the fracture are greater, which

compensates for slower velocities in the midrange. Because the transverse

distances the tracer must travel in the pseudo three-dimensional fracture

are smaller than in an actual three-dimensional fracture, the diffusion

coefficient must also be modified. This has been done by a brute force

fitting method, but has not been evaluated from a geometrical standpoint.

SALE

The second code is a fluid dynamics code from Los Alamos National

Laboratory, written by Amsden et al., (1980). The acronym for this code

stands for Simplified Arbitrary Lagrangian Eularian. Both two-dimensional

and three-dimensional versions are available, although all simulations

carried out to date have been with the two-dimensional version. The code

had no provisions for solute transport, and so the same particle tracking

algorithm used in the PNLFRAC code was adapted to the SALE code. The SALE

code was initially used for single fractures until it was confirmed that an

analytical solution to the flow equation would produce the same results.

Most of the use of SALE has been to simulate single fracture junctions.

FRACSL

The third code is a reservoir level simulation code for dealing with

flow in porous media, discrete fractures, and dual porosity media (Miller,

1983; Clemo and Miller, 1984). It uses the (ACSL) simulation language

(Mitchell and Gaither Assoc., 1981) to solve the numerical equations, and

so is called FRACSL. It is a two-dimensional finite difference code. It

is currently undergoing verification tests. Current capabilities include

transient and steady solutions for flow in porous, fractured, and

dual-permeability media, transport of conservative solutes, and advective
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Figure 9. Normalized pseudo-three
dimensional velocity profile for
simulating rectangular channels with
a 6:1 aspect ratio using a two-
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dimensional velocity profile for
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Figure 11. Normalized pseudo-three-dimensional velocity profile for
simulating rectangular channels with a 50:1 aspect ratio using a
two-dimensional code.
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TABLE 2. COEFFICIENTS OF POLYNOMIAL EQUATIONS TO DESCRIBE THE 2-0
PROJECTION OF 3-D VELOCITY PROFILES FOR RECTANGULAR CHANNELS

The equations have the form:

v(y) = Ao + A1 (y/b) + A2 (y/b)2 + A3 (y/b)3

6:1 12:1 50:1

AO 1.68866 1.55819 1.50249
Al -0.88977 -0.26516 -0.06380
A2 -0.86437 -1.74918 -2.05296
A3 0.05868 0.43988 0.60352

transport of solutes between fractures and matrix blocks. Fractures can be

verticle, horizontal, or diagonal across a cell. The code solves for one

pressure distribution for both matrix and fractures. Solute transport is

by particle tracking, as for the two previously described codes.

PHYSICAL MODEL CONSTRUCTION

Many of the physical models constructed contain common

characteristics. The common characteristics of the physical models are

discussed here, with details on individual models given in the sections

devoted to the individual model studies. All models have been built of

plexiglass, which allows visual observation of tracer movement by using a

dye added to solutions. Plexiglass is easy to work with, impermeable, and

nonconductive of electricity. Sheets of plexiglass ranging from 1 cm to

2.54 cm have been used. Plexiglass sheets are first secured to solid bases

of either plywood or aluminum to add strength and to prevent the plexiglass

from bending. The fractures are then cut into the plexiglass using a

milling machine. Tolerances on fracture depth and width are within

+ 0.1 mm. Fractures are not cut through the plexiglass, which precludes

the need for sealing the bottoms of the fractures. The tops of the

fractures are sealed with thin plexiglass cut to match the shape of the

fracture or fracture network, producing a lattice effect. With the lattice

structure, glue (ethelyne dichloride) is pulled under the cover plate by

capillary action, giving a good seal and preventing short circuiting across

the tops of the matrix blocks.
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In early physical models, injection was through polyethelene nipples

epoxied to the plexiglass. The nipples were fed through a short length of

Tygon tubing extending from a 3-way stopcock. The 3-way stopcock permitted

a flow field to be developed using the native fluid, and then a rapid

switch to the tracer solution. As measurement capabilities improved,

however, it became apparent that the circular geometries of the stopcock

and inlet tubing where significantly affecting the tracer breakthrough

curves. Special stopcocks were designed to alleviate this problem. The

stopcocks are made of plexiglass, and are attached directly to the

plexiglass model, with no intervening tubing. The channels of the stopcock

are all rectangular, with the same geometry as the model being used. Thus

there are no changes in flow configuration as the fluid is injected into

the models. This configuration is necessary to get a sharp step change in

input concentration.

Two solutions are used in the models to study the mixing

characteristics between two miscible fluids. The native fluid consists of

distilled water dyed yellow with food coloring. Tracer solution is a

dilute solution of KCl in distilled water with blue food coloring added.

Thus, movement and mixing of the two solutions can be monitored both

visually by observing the color changes, and by measuring the resistivity

of the fluid. The distillation process deaerates the water, and air bubble

formation during testing has not been a problem. Entrapment of air during

the initial filling operation can be a problem, however. Physical models

are purged with carbon dioxide gas prior to filling, which flushes all air

out of the model. Any carbon dioxide gas bubbles trapped in the model

during subsequent filling operations are rapidly dissolved.

Piezometers are installed in fractures to measure pressure

distributions. Holes are drilled through the cover plate of the model

directly over fractures, and copper tubing, 2 cm long and 1.5 mm in

diameter is cemented flush with the upper wall of the fracture.

Polyethelene tubing connects the copper piezometers to glass tubes fastened

to a solid base covered with graph paper. The graph paper is 10 x 10 to

the centimeter, so that differences in pressure can be read directly in cm

of water.
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Platinum electrodes, 3.2 mm in diameter, are embedded in upper and

lower fracture walls (Figure 12) to measure fluid resistivity. This

permits very precise measurement of tracer concentration changes within the

fractures without disturbing the flow field. Early models used

flow-through conductance cells, which had a finite mixing volume within the

electrode, and could only be placed at outlets from the model. The current

electrodes have no mixing volume other than the fracture itself, and can be

located anywhere within the models.

Support equipment for the physical models is shown in Figure 13. Flow

is controlled either by pressure drop between constant head reservoirs or

by syringe pumps. Flow measurement is by 'ball in tube' flow meter and

graduated cylinder. Two methods of flow measurement are used for better

control of flow. Flow rates can be set to an accuracy of only ± 10%,

although reproducibility of measurements is on the order of 2-5%. Native

solution and tracer solution reservoirs are set to equal heads at the inlet

side of the model so that a steady flow field can be established in the

model using the native fluid. The switch from native to tracer solutions

can be made in less than one second, which minimizes and inertial effects

of initiating flow in fluid at rest.

Changes in conductance are measured by scanning electrodes with a

computer controlled scanner. Multiplexing of electrodes is necessary to

avoid cross-talk between the electrodes, which are all embedded in the same

conducting fluid. A Hewlet Packard HP-1000 has been used as the controller

for the data acquisition system. Access to the HP-1000 has been lost, and

currently an IBM-PC is being programmed to take over the roll of system

controller. Communication with the scanner and digital volt meter (DVM) is

across an IEEE-488 interface bus. The scan interval can be as short as

once every six seconds, for a configuration with 20 electrodes. Data

recorded include the time when the test began, and the time and fluid

conductivity each time an electrode is accessed.
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SINGLE FRACTURE ELEMENTS

Detailed study of single fractures and single fracture junctions

provides some important insight into the processes that control

dispersion. Studies were conducted on single fractures to validate the

parallel plate equations under conditions of smooth, parallel fracture

walls. Studies were conducted on a single orthogonal fracture junction to

evaluate the conditions under which complete mixing at fracture junctions

would be a reasonable assumption. Both laboratory models and computer

codes were used in the studies.

Single Fractures

To study dispersion in single fractures, experiments were conducted on

a laboratory model constructed of plexiglass. Concentrations of tracers

were measured in the single laboratory fracture as a function of time at

four flow rates. Computer simulations were then run to determine if the

computer code could accurately predict tracer movement. The code was then

used to study the limiting Peclet number concept, as discussed previously,

for application of a one-dimensional advection-dispersion equation to

fractures.

Laboratory Model

The laboratory model consisted of a single fracture (Figure 14) cut

into plexiglass. The fracture has an aperture of 0.159 cm, is 0.953 cm

high, and 68 cm long. Platinum electrodes are embedded in the top and

bottom of the fracture 58 cm from the origin. A step change in tracer

concentration is accomplished with a specially built stopcock that has

rectangular channels the same size and shape as the laboratory fracture.

The tracer used was a dilute solution of KCl. Tests were conducted at four

flow velocities; 0.1, 0.3, 1.0, and 3.0 cm/min. These correspond to Peclet

numbers (Pf) of 5800, 1900, 580, and 190 respectively as calculated from

Equation 18.
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Figure 14. Single fracture model for studying dispersion.

Figures 15 through 18 show comparisons between the computer

simulations of a three-dimensional fracture and measurements made on the

laboratory fracture. Agreement between the lab and computer results is

very good.

PNLFRAC Simulations

To demonstrate the limitations of applying a one-dimensional solution

of the advection-dispersion equation to fractures, some two-dimensional

fracture simulations were carried out using the particle tracking model.

A series of runs was made at fractur'e Peclet numbers (Equation 18) of

0, 5, 50, and 500. A Peclet number of zero was achieved by setting the

diffusion coefficient to zero. Figure 19 shows a map of tracer

concentration in a fracture for Pe = 0. This is a purely advective system,

with dispersion resulting from the velocity profile. The front is quite

steep, but the position ranges from 1.5 ut to 0 along the fracture wall.

The breakthrough curve is shown in Figure 20 along with the analytical

solution for advective transport in a fracture (Equation 5). The computer

prediction shows vcry good agreement to the analytical solution with only a

slight anticipation of the actual time of breakthrough. The scatter in the
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Figure 16. Comparison of tracer
breakthrough measured in the single-
fracture laboratory model (line)
with PNLFRAC simulated breakthrough
(points) at an average flow velocity
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computer predicted values is due to statistical fluctuations Introduced by

the random components of injection location and diffusion.

At the other end of the range of Peclet numbers, the computer

simulations can also be compared to an analytical solution. Figure 21

shows a map of tracer concentration in the fracture at Pe = 500.

Transverse diffusion has homogenized the tracer concentration. and the

tracer front is at the same axial distance along the fracture at all

locations. Figure 22 shows a comparison between the computer simulation

and an analytical solution using Equation 17 to calculate the longitudinal

dispersion coefficient used in Equation 7. Again, very good agreement is

obtained between the computer simulations and the analytical solutions.

The code has matched analytical solutions where advection dominates over

diffusion, and where diffusion homogenizes the tracer across the fracture.

At Peclet numbers greater than 500, Equation 7 will be valid for

parallel plates, and Equation 17 can be used to calculate the dispersion

coefficient. For Peclet numbers below 157.5, Equation 7 is invalid. An

example of the difference between the one- and two-dimensional results for

a case where two-dimensional effects are significant can be seen for a

simulation at a Pe of 5. The map of the tracer concentration in the

fracture is shown in Figure 23. Along the fracture wall near the inlet to

the fracture, the tracer concentration has started to rise. This distorts

the parabolic shape of the tracer front as can be seen by comparing

Figures 19 and 23. The effects of transverse diffusion can be seen in

Figure 24. The analytical solution (Equation 5) no longer fits the data as

transverse diffusion has distorted the shape of the front. A

one-dimensional solution to the advection-dispersion equation does not fit

the data either as shown in Figure 25. The analytical solution shows a

much earlier rise in tracer than actually occurs. In fact, the analytical

solution shows a much earlier rise in tracer than can occur. Hydrodynamics

of parallel plates constrain the maximum velocity in a fracture to

1.5 times the mean velocity. In terms of reduced time, the earliest that

tracer can arrive is at 0.67. There is no such constraint on the peak

velocity for the classic advection-dispersion equation. This then is the

significance of the limiting Peclet number. Only under conditions where
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transverse diffusion homogenizes the tracer front in a fracture

(Figure 21), can the one-dimensional assumption be made.

Fracture Junction

Krisak et al., (1972) conducted a series of experiments in laboratory

fracture junctions to determine if mixing was occurring at the junctions.

Their experiment was to have inflow from one fracture divided into two or

three outflow fractures, all at equal heads. They concluded that because

there was no significant difference in concentration profiles between

outflow fractures, complete mixing had occurred in the Junction. Under

laminar flow conditions, streamlines In a fracture junction cannot cross

(Endo, 1984). Therefore, diffusion is the only mechanism to transfer

tracer solution between streamlines. Observation of tracer movement

through fractures by Wilson and Witherspoon (1976) and by Hull and Koslow

(1982) indicated no mixing of tracer between converging streams. The

experiments conducted by Krizak et al. (1972) were at flow rates even

higher than those of Hull and Koslow (1982), so diffusion was not a likely

explanation. A laboratory model and computer simulation study was

conducted to evaluate mixing at fracture junctions.

Laboratory Model

Laboratory experiments were conducted on a single orthogonal fracture

junction to evaluate mixing at the junction. The laboratory model was

constructed similarly to the single fracture model. Two orthogonal

fractures were cut into a sheet of plexiglass. Fracture aperture was

0.159 cm and height 0.953 cm, giving an aspect ratio of 6:1. Inflow from

one or two inlet fractures could be controlled separately. Outflow from

two or more outlet fractures was not controlled, but the heads were kept

equal. The fracture junction was simulated using the two-dimensional

version of SALE (Amsden et al., 1980). Because only a two-dimensional code

was used, experiments were all run to steady state conditions, rather than

studying transients. Three-dimensional effects in the laboratory fracture

were therefore avoided. Measurements of fluid resistivity indicated the
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division of inflow between outflow channels, and visual observations gave

information on the relative lateral position of tracer. Figure 26 shows a

photograph of tracer distribution during a test. Flow from the left was

1.5 times the flow volume from the bottom. The flow velocities were

34.5 cm/min and 22.6 cm/min respectively. These flow rates give a

residence time in the fracture junction of 0.5 seconds, which translates to

a dimensionless time of 0.011. No diffusion mixing would be expected for

these short residence times.

Computer Simulation

Computer simulations were conducted using the SALE computer code

(Amsden et al., 1980) at a range of flow rates to evaluate the effect of

diffusion. Figure 27 shows the computer prediction of tracer movement

through a fracture junction under the same conditions as shown in

Figure 26. Very good agreement is obtained between the predicted and

observed distribution of tracer in the outlet fractures.

Because diffusion is a very slow process, it will only have

significant effects at very slow fluid flow rates. Figure 28 shows

computer results of a simulation of a fracture junction where the flow from

the two converging fractures was I n/day. Equal flow rates is the most

sensitive condition for diversion of tracer from one fracture to another by

diffusion. Diffusion between adjacent streamlines across the diagonal of

the fracture junction diverts tracer from the righthand fracture to the

upper fracture. Very little tracer is actually diverted, and what is

diverted remains along the fracture wall where fluid flow rates are very

low.

Limiting Conditions for Mixing

Based on diffusion coefficients, fracture apertures, and flow rates,

the conditions under which complete mixing at fracture junctions is

justified can be calculated. These calculations are based on the condition

that transverse diffusion between streamlines homogenizes the tracer within

45



Figure 26. Photograph of the laboratory fracture junction showing
distribution of tracer when inflow from the left is
1.5 times inflow from the bottom.
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the residence time of the tracer in the junction. This time is related to

the diffusion coefficient and the width of the junction by Equation 20. In

this case, however, the boundary conditions are the less rigorous constant

mass boundary conditions, and the constant in Equation 20 is not 2.0 but

0.5. From this constraint on residence time in the fracture junction, the

flow rates permissible for junctions of fractures of equal aperture can be

calculated. Figure 29 shows a plot of aperture versus flow velocity, with

pressure gradients based on the Poiseuille velocity equation. The upper

limit of fluid velocity that will allow complete mixing of solutions at

junctions is superimposed. Estimates of flow rates and gradients from the

Columbia River basalts near Hanford, Washington are shown to give some idea

of velocities that might be observed in a field situation. Clearly, the

conditions under which complete mixing at junctions will occur are limited,

and a computer code that assumed complete mixing in its algorithm would

cause increased lateral dispersion of tracer, and consequently decreased

concentration peaks in the direction of flow.
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INTERPRETATION OF INJECTION-BACKFLOW

TRACER RECOVERY CURVES

To aid in the refinement of the injection-backflow technique of well

testing, experiments similar to those conducted in the field have been

carried out in laboratory-scale fracture networks. The first sequence of

field tests was conducted at the Raft River geothermal site in

south-central Idaho. Numerical simulations of the test results are

currently underway using the FRACSL reservoir simulation code. Estimates

of reservoir parameters and significant processes discussed here will be

further refined and confirmed using more elaborate techniques.

Raft River Field Tests

The Raft River geothermal field, located in southern Idaho

(Figure 30), includes five deep geothermal production wells, two

intermediate depth injection wells, and thirteen monitor wells. Drilling

of these wells was completed between 1975 and 1978 during which time

numerous tests were run. Data collected indicate that the reservoir is

fracture dominated and not amenable to conventional reservoir analysis

(Dolenc et al., 1981).

Injection-backflow testing at Raft River was conducted on well RRGP-5

(Figure 30), a 1500 m deep production well. A major fracture zone with an

aperture of 0.3 to 1.5 m was intercepted during drilling (USDOE, 1980), but

was grouted-off to permit casing of the well. When drilling resumed, the

grout could not be removed from the fracture zone. Hydrofracturing

generated a man-made fracture 1.5 cm wide and 43 m long (vertically), that

intersects the major fracture zone at some unknown distance from the

wellbore (USDOE, 1980). Spinner surveys indicate the existence of one

primary producing zone associated with the hydrofracture just below the

well casing.

Well RRGE-3, approximately 2400 m from the injection well, was chosen

as the supply well for injection testing. RRGE-3 fluids contain almost
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twice the sodium and chloride concentrations of well RRGP-5, providing good

natural tracers.

Tests conducted at Raft River consisted of injecting a series of

increasing fluid volumes to examine greater portions of the reservoir

around RRGP-5. A detailed description of the tests may be found in Downs

et al., (1982) and Capuano et al., (1983). The tests were designed to

evaluate characteristics of greater reservoir volumes by examining tracer

recovery curves from three tests where different volumes of fluid were

injected and recovered. Tracer solution volumes of 63 mi3, 1500 mi3, and

3300 m3 were injected during the three tests.

Tracer recovery curves are shown in Figure 31. As the volume of fluid

injected increased, the recovery curve spread out over greater time

periods, indicating a greater amount of mixing between injected and

reservoir fluids. Backflow portions of the recovery curves were normalized

by dividing the volume of fluid recovered up to that time by the total

volume of fluid injected. The normalized recovery curves (Figure 32) were

coincident. There therefore appear to be no major changes in reservoir

characteristics within the limited range of reservoir tested.

Physical Model Description and Tests

The physical model used to carry out laboratory tests similar to those

conducted in the field consists of a rectangular fracture network. The

network consists of orthogonal fractures 0.32 cm wide and 1.91 cm deep, cut

into a sheet of plexiglass 57 cm wide and 172 cm long (Figure 33).

Fracture spacing is a uniform 10.2 cm, and all fractures are continuous and

meet the model boundaries at 45 degrees.

Injection-backflow tests of four different volumes were conducted.

Injection volumes of 60, 120, 180, and 240 cm were injected at a

constant rate of 20 cm /min. The raw data from these four tests is

plotted in Figure 34. The injection time has been subtracted from the time

axis, so that backflow began at time = 0. Similar behavior to the field

tests is observed, with the spread in the tracer recovery curves
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corresponding to greater tracer travel

the recovery curves to relative volume

curves are coincident (Figure 35).
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Figure 35. Tracer concentrations for
injection-backflow tests conducted
in the laboratory fracture network.
The volume of fluid extracted is
normalized by dividing by the
injection volume.

distances in the model. Reducing

measurement shows that all four

Comparison of Results

The behavior of tracer recovery curves from injection into fracture

systems at Raft River and in the laboratory model show a general

similarity. In both cases, the reduced tracer recovery curves are

coincident. Consider what would be expected to happen according to classic

dispersion theory. As the volume of fluid injected increased, the tracer

front would move further from the wellbore. This would increase the value

of the Peclet number (ux/DI) by increasing the value of x. This assumes

that there is a constant dispersion coefficient that describes the mixing

of the injected and native fluids. The effects of increasing the Peclet

number are illustrated in Figure 36. In Figure 36b. the absolute spread in

the tracer front increases with distance travelled. However, Figure 36c

shows that the reduced tracer breakthrough curves become steeper as the

Peclet number increases. While the spread of the tracer front increases



i I
I i

Iti I t2t3
I I

I I1

a.

1.0

U

C

Ca,
U
C
0

'a
U1
V)a,

0.5

0.0
0 100 200 300 400

b. Distance (m)
500

1.0

US
C0

C

a, 0.5
U
C
0

CD
V
a)
a:

0
0 0.5 1.0 1.5 2.0

c. Reduced distance (xut) 5 6863

Figures 36a, 36b, and 36c. Changes in shape of a one-dimensional tracer
front at various distances from an injection
point, based on classic dispersion theory.

56



with distance travelled, the relative spread compared to the total distance

travelled decreases.

For the tests conducted in the fracture networks at Raft River and in

the laboratory, the reduced tracer recovery curves did not become steeper

as the distance the tracer front travelled increased. This indicates that.

at least in the classical sense, that the Peclet number remained constant.

This requires that the dispersion coefficient also increased. Increasing

dispersion coefficients with the distance over which they are measured is

commonly observed in measurement of dispersion coefficients for porous

media (Fried, 1975; Smith and Schwartz, 1980). An alternative explanation

is available for studies in fractured media.

The coincidence of the reduced tracer recovery curves for the

injection-backflow tests conducted in the fracture systems can be explained

by the hydrodynamics of flow between parallel plates. When flow rates in

fractures are fairly high, classic dispersion theory is not valid, and the

classic Peclet number cannot be used in these situations. That velocity

profile effects were significant was clearly observed during testing of the

laboratory model. Stringers of tracer moved rapidly up the center of

fractures, retaining their parabolic shape even when split at junctions.

For classic dispersion theory, there is no constraint on the range of fluid

velocities encountered, but the range rapidly takes on a Gaussian

distribution with distance travelled. For flow in a parallel plate

fracture, however, there are definite constraints on the range of fluid

velocities encountered. In the center of the fracture, flow will travel

1.5 times the mean velocity (Figure 37). Along the fracture walls, the

velocity will be zero. This then constrains any tracer to cover a range of

fracture between a point of 0 and 1.5 ut (Figure 37c). Normalizing any

tracer breakthrough curve will generate a curve that connects these two

points, irregardless of the distance the tracer front has travelled.

Naturally, it is not that simple. Transverse diffusion will cause

tracer to move between streamlines, and therefore to move at a range of

velocities. This will distort the shape of the breakthrough curve, by

moving the C = C0 point away from the origin of the fracture, and slowing
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the peak velocity to less than 1.5 u. At the extreme, diffusion will

homogenize the tracer, under which conditions, classic dispersion theory

will be applicable to the fracture system. In the complete absence of

diffusion, the recovery curve from an injection-backflow test would be a

mirror image of the injection portion, with no spread in the data.

The shape of the recovery curve, therefore represents the interaction

of the distribution of flow velocity in the fracture with transverse

diffusion homogenizing the tracer concentration. Thus, the tracer recovery

curves from a series of tests can be used to estimate the fracture aperture

based on an assumed geometry of the fracture. For diffusion to homogenize

tracer within a fracture requires a dimensionless time of 2.0

(Equation 20). Based on measured apertures of the major fracture zone at

Raft River of 0.3 to 1.5 meters gives homogenization times of 52 to

1300 days. Thus, homogenization would not be expected to have occurred

during the tests conducted at Raft River. Lengths of tests to be conducted

for future injection-backflow field experiments can be calculated from

estimates of fracture aperture from downhole measurements and Equation 20.

A range of tests covering dimensionless times of 1.0 to 3.0 would provide

sensitivity in estimating fracture apertures.

Results from the Raft River field site provide an example of

dispersion within single fractures producing important effects in tracer

breakthrough. Ignoring the effects of microdispersion would make

interpretation of these test results difficult. Also, the Raft River

results provide a field example where parallel plate theory provides a good

explanation of observed behavior of a natural fracture system.
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DUAL-PERMEABILITY LABORATORY MODEL

While transport of solutes through fractures is important, most

fracture systems occur in rocks where the rock has some permeability and

porosity. This so-called matrix porosity will greatly affect the transport

of solutes and heat transfer in a geothermal reservoir. A number of

laboratory studies have recorded significant effects of diffusion of

solutes from fractures into matrix material (Grisak and Pickens, 1980;

Grisak et al., 1980; Neretnieks et al., 1982). The general approach to

solving dual porosity systems Is to ignore flow in the matrix blocks, and

to treat heat and mass transfer between blocks and matrix as a

one-dimensional diffusion process. This approach is based on the

assumption that pressure gradients across matrix blocks in a dual porosity

fracture network are trivial compared to pressure gradients between blocks

and fractures.

This assumption may be true for continuous fracture systems in low

permeability matrix materials, but not for systems with deadend fractures

or in rocks with high matrix permeability. An example of this type of

situation would be where major fractures and faults were being simulated

discretely, and the remaining fractures were lumped together into a

continuum, and treated as matrix. Very significant pressure gradients can

develop across matrix blocks that lie between deadend fractures. Diffusion

is not the only process for transferring material from fractures to matrix

and vice versa. Advection can play an important role. Therefore, a

laboratory scale model of a dual permeability fracture network has been

designed, and is currently being constructed.

Model Design and Construction

The dual permeability fracture model should allow for both fractures

and porous matrix blocks that participate in the flow system. A broad

range of materials were considered including corundum, sintered glass,

scintered metal, glass and plastic beads, natural rocks, porous ceramic,

and porous polyethylene. Porous ceramic was the first material of choice

because it was hyraulically well characterized, and could be fractured to
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produce 'natural' fractures. The ceramic could be made in sheets of

30.5 x 30.5 x 1.25 cm on a custom order basis. Standard materials were

only 0.67 cm thick. In making the sheets of ceramic, a double pour process

was used, which left a zone of high permeability down the center of the

porous ceramic plates. This was unacceptable for use in a physical model.

A second shortcomming of the porous ceramic was its extremely low

permeability, on the order of 107 cm/mmn. Little flow would have

entered the matrix under achievable pressure gradients. If single pour

plates can be made, the material may have some future use. With its high

porosity (50%) and low permeability, it would make a good surrogate shale.

The second material selected was a porous polyethylene. It is

available in sheets 1 m by 1 m by 2 cm thick with a pore size of

40 microns. This material could not be fractured to create 'natural'

fractures, but could be machined easily. This allowed a much more

elaborate fracture network to be designed, one that included deadend

fractures. The porous polyethelene is somewhat like a sandstone in

properties, it has a porosity of 35% and an estimated permeability of

0.20 cm/mmn. A fracture network has been designed (Figure 38) and the

pieces have been cut. Tolerances in the machining are + 125 microns.

Fracture apertures range from 380 to 1500 microns, and are lognormally

distributed.

A small matrix block model has been constructed for testing of sealing

materials and for measurement of hydraulic and dispersivity characteristics

of the porous polyethelene. The block is 15.25 cm lohg and 10.2 cm wide.

Manifolds on two sides give constant head boundaries to control flow

through the block. Flow tests have been conducted where pressure drop and

flow rate were measured. The hydraulic conductivity of the porous

polyethelene was then calculated from Darcy's Law:

61



Outflow
port

I

E
0

Io

cm

81.3 rm

5 6867

Figure 38. Schematic of the dual-permeability fracture network model.

Q/A = K dh/dx

where

(45)

Q

A

K

d b !dx

Electrodes

conducted.

= volumetric flow rate

= area for flow, 30.5 cm2

= hydraulic conductivity

-~ hydraulic gradient.

have been installed in the block, and mini-tracer tests

Normalized tracer concentrations are plotted against a volume
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modifying function on probability paper (Brigham, 1974), and the variance

determined from the plot used to calculate the dispersion coefficient. The

volume modifying function (U) is calculated from:

U = ut/x - l (46)

Figure 39 shows a plot of reduced tracer concentration versus U for a

tracer breakthrough curve calculated using Equation 7 with a Peclet number

of 100. The plot is linear despite the fact that there are significant

effects from the product of the exponential and error function terms in

Equation 7. The Peclet number is related to the slope of the plot by:

l 2.380 \2 3.625 \2 4.650 (2

80 - U2 Ugo - Ulo0 U 95 - 5)

From the results of these tests, a dispersivity coefficient of the

porous polyethylene will be calculated. The hydraulic conductivity and

dispersivity of the matrix material must be determined independently before

computer simulations of the model can be made. Preliminary computer

simulations are being made for design purposes based on estimated

parameters.

The fracture network model has been designed so that laminar flow is

preserved in all fractures. Calculations to determine the constraints on

possible flow velocities in the model were performed using the criteria

that the Reynolds number must be less than 2000 for laminar flow (Albertson

et al., 1960). The Reynolds number is defined as:

Re = pud (48)
e V
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Figure 39. Plot of reduced tracer concentration versus the volume
modifying function on protability paper illustrating the
method of determining the dispersion coefficient from
the test data.
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where

d diameter of the circular pipe

p = fluid density

v = fluid viscosity

This equation for circular pipes can be used for rectangular channels by

replacing diameter with the equivalent hydraulic radius (Albertson et al.,

1960). The hydraulic radius (Hr) is the cross sectional area of the

conduit divided by the perimeter (p).

Hr A (49)-=P

For circular pipes, the hydraulic radius is the diameter (d) divided by 4.

Therefore, the hydraulic radius of the rectangular channel multiplied by 4

is used to replace d in Equation 48.

Design criteria for the model are b = 190 microns and z = 2 cm. Using

density and viscosity data for water at 200 C and the criteria that the

Reynolds number be less than 2000, a maximum velocity permissible in the

fractures can be calculated. For a fracture hydraulic radius of 0.019 cm,
the maximum velocity allowable to retain laminar flow is 270 cm/sec. This

velocity is much higher than any planned for use in the model.

Representative velocities for the model calculated using the FRACSL code

are on the order of 0.1 to 5 cm/sec.

Electrodes and piezometers will be installed in the model, both in

fractures and in matrix blocks, to monitor pressure and movement of tracer

solutions. FRACSL simulations of the model are being conducted prior to

installation, so that monitoring instruments can be placed in the best

locations.
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FRACSL Simulations

The dual-permeability model shown in Figure 38 has been simulated

using estimated parameters and the indicated dimensions. Figure 40 shows

the predicted pressure distribution within the model under steady-state

conditions. The fluid will be injected at point A and withdrawn at

point B. The slope in the pressure gradient is not uniform from inlet to

outlet, but shows some very steep discontinuities, the most prominent of

which is between points C and D. This steep pressure gradient develops

between two deadend fractures, which end close to each other, but are

connected to the fracture network at very different locations. Thus, there

is a very steep pressure gradient to drive solutes into the matrix between

these two fractures. Figure 41 is a map view of the fracture network,

somewhat distorted, and shows position of tracer solution, injected as a

5 minute slug, after 60 minutes of moving through the fracture network.

Tracer has moved into the matrix in a number of locations. After longer

times, tracer will connect to other fractures, and move out of the matrix

into new fractures, and then back into the connected fracture system. This

model design provides a number of very rigorous tests to assess the

capabilities of a fracture network simulation code.
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Figure 40. Predicted steady-state pressure distribution in the dual-
permeability laboratory model using the FRACSL code.
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Figure 41. Predicted tracer distribution in the dual-permeability
laboratory model using the FRACSL code.

67



CONCLUSIONS

Physical models provide a means for studying the dispersion phenomenon

in fractures under controlled conditions, where observation can help

increase the understanding of the transport processes. They also provide a

means of validating computer codes that simulate flow and transport in

fracture networks. While the conditions represented by the physical models

are not necessarily realistic, the processes involved must be properly

handled to successfully match lab data.

Particle tracking algorithms for simulating transport have been

validated using analytical solutions and single fracture and single

fracture junction physical models. Particle tracking has the advantages

that it is not susceptable to numerical dispersion or oscillation, and can

readily handle a range of Peclet numbers. It also is readily adaptable to

calculating advective or dispersive transfer between fractures and matrix

blocks. The same type of algorithm is also adaptable to calculating heat

transfer.

Laboratory and computer simulation studies were used to study

conceptual models of solute transport in fractures. At low flow rates,

transverse diffusion between streamlines in a fracture homogenizes tracer

concentrations. Under these conditions, the one-dimensional advection

dispersion equation can be used to describe transport in a fracture. As

flow rates increase, homogenization does not occur, and a two-dimensional

approach is needed to describe transport. The conditions under which each

approach is valid is described by the Peclet number for fractures.

An apparent increasing dispersion coefficient was observed for

injection both into the fractured geothermal reservoir at Raft River, and

into the laboratory fracture network. This can be explained by the

hydrodynamics of flow between parallel plates. This illustrates an example

where there is not complete mixing within fractures, and where the parallel

plate model of fractures provides an explanation for observed phenomenon.
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A dual permeability fracture network model is being built in the lab.

The model demonstrates the importance of deadend fractures in controlling

the migration of solutes into matrix blocks. Tests will be conducted on a

small block of matrix material to obtain independent measurements of

hydraulic conductivity and dispersivity for use in a numerical simulation

using FRACSL. Preliminary FRACSL runs are being used to locate electrodes

and piezometers for maximum information.
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