
LA-12062-MS, Rev. 1

FEHMN 1.0: Finite Element Heat and Mass Transfer Code

HYDROLOGY DOCUMENT NUMBER 709

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. Prepared by Kay Coen, Group EES-5

and a second

and the second second

This work was supported by the US Department of Energy, Yucca Mountain Site Characterization Project Office as part of the Civilian Radioactive Waste Management Program.

An Affirmative Action/Equal Opportunity Employer

.

بروحي المراجع

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof.

the strategy where

reas de la Card

LA-12062-MS, Rev. 1

UC-810 Issued: April 1991 Revised: May 1992

FEHMN 1.0: Finite Element Heat and Mass Transfer Code

George Zyvoloski Zora Dash Sharad Kelkar

+

LOS Alamos Los Alamos National Laboratory Los Alamos, New Mexico 87545

Contents

FIGURES
TABLES
ABSTRACT
I. MODEL DESCRIPTION
A. Nature and Purpose
B. Mathematical Formulation
C. Discretization of the Governing Equations
D. Boundary Conditions
E. Solution Methods
F. Dual Porosity Formulation
II. CODE DESCRIPTION
A. Subroutines
B. Common Block and Parameter Statements
C. Subroutine Structure for FEHMN
III. USER'S MANUAL
A. Automatic Mesh Generation
B. Macro Command Input for FEHMN
C. Graphics Postprocessing
D. Example Input Files and Output Files
ACKNOWLEDGMENTS
DISCLAIMER
REFERENCES

•

FIGURES

1. Comparison of nodal connections for conventional and Lobatto integrations	. 16
2. Matrix band structures showing second-order fill-in.	
x - original matrix positions.	
o - fill-in with order 2 factorization.	. 20
3. Computational volume element showing dual porosity parameters	. 22
4. Structure for subroutine calls for FEHMN.	. 48
5. Elements available with FEHMN in 2-D and 3-D problems showing	
numbering convention.	. 52
6. Nodal ordering for defining 2-D and 3-D domain blocks for GENMSH Input	
7. Terminal output for a FEHMN run on a CRAY computer.	
8. Schematic diagram of the 3-D heat conduction problem	
9. Input for preprocessor GENMESH for 3-D heat conduction example	
10. Grid for 4 x 4 x 4 heat conduction problem	
11. Input file for FEHMN for 3-D heat conduction example.	
12. Computer output for the 3-D heat conduction example	
13. Instruction file (HIS.INS) for postprocessor FEHPLTR for the heat	
conduction problem. 92
14. History plot for the heat conduction problem.	
15. Solution domain and results for the Toronyi example	
16. Input for GENMSH for the Toronyi example.	
17. Input file for FEHMN for Toronyi example	
18. Output for the Toronyi example.	
19. Schematic diagram of the geometry and boundary conditions for	
the DOE code comparison project problem.	100
20. Comparison of FEHMN production well temperatures with results	
from other codes.	100
21. Comparison of FEHMN production well pressure with results from other codes.	
22. Comparison of FEHMN observation well pressure with results from other codes	
23. Input for GENMSH for the DOE example.	
24. Input for FEHMN for the DOE example.	
25. Output from FEHMN for the DOE example.	
26. Instruction file (CON.INS) for the postprocessor FECPLTR for	100
the DOE problem.	109
27. Contour plot of temperature for the DOE problem.	110

TABLES

I.	Notation		•	•				•	•	3
II.	Sorption Isotherm Models	•		•		•		•		10
III.	Subroutine Calls Within FEHMN	•	•	•				•	•	25
IV.	Capabilities of FEHMN with Macro Command References		•	•				٠		57
	FEHMN Files									
VI.	Macro Control Statements for FEHMN	•	•	•	•		•	•		60
	Input Description for FEHMN									
VIII.	Input Parameters for the 3-D Heat Conduction Problem	•	•			•	•	•	•	80
	Sample Problems for 3-D Heat Conduction									
	Comparison of Analytical and Model Results for 3-D Heat									
	Input Parameters for Toronyi Example									
	Input Parameters for the DOE Code Comparison Project									
	• • •									

÷

· .

FEHMN 1.0: FINITE ELEMENT HEAT AND MASS TRANSFER CODE

by

George Zyvoloski, Zora Dash, and Sharad Kelkar

ABSTRACT

A computer code is described which can simulate non-isothermal multiphase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and ground-water flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved using the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user's guide and sample problems are also included.

I. MODEL DESCRIPTION

A. Nature and Purpose

The FEHMN (Finite Element Heat and Mass Nuclear) code, described in this report, is a version of FEHM (Finite Element Heat and Mass, Zyvoloski et al., 1988) developed for the Yucca Mountain Site Characterization Project (YMP) and documented as required by NUREG-0856. This report satisfies the document requirements for model description and user's manual as presented in the LANL YMP Computer Software Control Quality Procedure (SQAP-3.7, R0). The verification and validation reports are produced as separate documents. The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the potential Yucca Mountain repository. This is referred to as the C-Wells project (YMP-LANL-SP-8.3.1.2.3.1.7). Also in regards to that project, the code will be used to design tracer tests (reactive and non-reactive) to characterize the flow field below Yucca Mountain. In addition, FEHMN will be used to study coupled processes (multicomponent and natural convection) in the unsaturated zone (YMP-LANL-SCP-8.3.1.3.7.1). We note here that the model requirements may be found in the above mentioned study plans.

1

Yucca Mountain is extremely complex both hydrologically and geologically. The computer codes that are used to model flow must be able to describe that complexity. For example, the flow at Yucca Mountain, in both the saturated and unsaturated zones is dominated by fracture and fault flow in many areas. With permeation to and from faults and fractures, the flow is inherently three-dimensional (3-D). Birdsell et al. (1990) recently presented calculations showing the importance of 3-D flow at Yucca Mountain. Coupled heat and mass transport occurs in both the unsaturated and saturated zones. In the far field unsaturated zone, Weeks (1987) has described natural convection that occurs through Yucca Mountain due to seasonal temperature changes. Heat and mass transfer are important in the saturated zone modeling of temperature logs and pressure tests.

The governing equations and solution techniques used in the FEHMN code are described below. In addition, a user's manual with example problems is provided. Future changes to the code and documentation will be made in accordance with quality assurance procedures being established for the Yucca Mountain Site Characterization Project.

B. Mathematical Formulation

1. Governing equations. Detailed derivations of the governing equations for twophase flow including heat transfer have been presented by several investigators (Mercer and Faust, 1975, and Brownell et al., 1975, for example), and therefore only a brief development will be presented here. The notation used in this report is given in Table I.

Conservation of mass is expressed by the equation

$$\frac{\partial A_m}{\partial t} + \overline{\nabla} \cdot \overline{f}_m + q_m = 0 \quad , \tag{1}$$

where the mass per unit volume, A_m , is given by

$$A_m = \phi(S_v \rho_v + S_\ell \rho_\ell) \tag{2}$$

and the mass flux, \overline{f}_m , is given by

$$\overline{f}_m = \rho_v \overline{V}_v + \rho_\ell \overline{V}_\ell \quad . \tag{3}$$

Here ϕ is the porosity of the matrix, S_v and S_ℓ are saturations, ρ_v and ρ_ℓ are densities, and \overline{V}_v and \overline{V}_ℓ are velocities with the subscripts v and ℓ indicating quantities for the vapor phase and the liquid phase, respectively. Source and sink terms (such as bores, reinjection wells, or groundwater recharge) are represented by the term q_m .

Conservation of fluid-rock energy is expressed by the equation

$$\frac{\partial A_e}{\partial t} + \overline{\nabla} \cdot \overline{f}_e + q_e = 0 \quad . \tag{4}$$

TABLE I. Notation

.

A	non-meter used in nonlinear a desertion model (Theur dlich, modified Theur dlich)
	parameter used in nonlinear adsorption model (Freundlich, modified Freundlich)
$[A]$ A_c	solution matrix for system of nonlinear equations accumulation term for tracer (M/L^3)
A_c A_e	accumulation term for tracer (M/L^3) energy accumulation term $(M/^2L)$
$egin{array}{c} A_m \ [\widetilde{A}] \end{array}$	mass accumulation term (M/L^3)
	approximation of matrix $[A]$
a	weighting factor for time discretization
a_1, a_2, a_3, a_4	coefficients used in reaction rate model
{b} C _l	right hand side (forcing function) for system of linear equations tracer concentration in liquid
C_R	tracer concentration adsorbed on rock
C_{v}	tracer concentration in vapor
	parameter used in nonlinear adsorption model (modified Freundlich)
[Ĉ]	capacitance matrix
$C_{max} \ [\hat{C}] \ C_{ij}^{up}$	upwind value of tracer concentration
C_{g}	parameter used in linear porosity model
C _{pa}	heat capacity of air $L^2/\theta^2 T$
C _r	parameter used in linear porosity model
cp_1, cp_2	parameters used in the capillary pressure models
cp_3, cp_4	parameters used in the capillary pressure models
D_c	dispersion coefficient for tracer (L^2/θ)
$[D_c]$	finite element coefficients for tracer dispersion term
Det	energy transmissibility term for liquid (L^2/θ)
$D_{e,v}$	energy transmissibility term for vapor (L^2/θ)
$D_{m\ell}$	mass transmissibility term for liquid (θ)
$egin{array}{llllllllllllllllllllllllllllllllllll$	mass transmissibility term for vapor (θ)
D_e^{up}	upwind energy transmissibility term (L^2/θ)
D_m^{up}	upwind mass transmissibility term (θ)
{e}	unit vector
	Youngs modulus (ML/θ^2)
F	function representation
	L^2 norm of residuals
$[F_c]$	residual for tracer equation
F _e F	flux vector for energy equation (M/θ^3)
$rac{F_m}{\overline{F}(\overline{x})}$	flux vector for mass equation (M/L^2)
	vector of equation residuals residual for energy equations
$\{F_e\}$ $\{F_m\}$	residual for mass equation
f(y)	intermediate calculation in GMRES acceleration
	acceleration of gravity (L/θ^2)
$[H]^m$	intermediate calculation in GMRES acceleration
[]	

TABLE I. Notation

h	generalized energy variable $(T \text{ or } L^2/\theta^2)$
h_a	enthalpy of air (L^2/θ^2)
hmel	parameter in GMRES acceleration
h_v	mass fraction of air in the vapor phase
$h_{v,w}$	vapor enthalpy (L^2/θ^2)
he	mass fraction of air in the liquid phase
$h_{\ell,w}$	liquid enthalpy (L^2/θ^2)
I _i	impedance at node $i(\theta/L^2)$
Ie,i	heat flow impedance at node $I(M/L^3\theta T)$
[K]	finite element coefficient for heat conduction term
K_D	retardation coefficient (linear adsorption)
$K_{h,v,w}$	thermal conductivity $(ML/T\theta^3)$
k	intrinsic rock permeability (L^2)
L_f, L_0	length scales used in dual porosity problem
L_{f1}, L_{f2}	length scales used in dual porosity problem
$[\widetilde{L}]$	approximate lower factorization of matrix
m	exponent used in Gangi stress model
[N]	finite element shape function
Q_m	source term for mass equation $(M/\theta L^3)$
q _c	source term for tracer $(M/\theta L^3)$
qe	source term for energy equation $(M/L^3\theta)$
q_i	mass source term at node $i (M/\theta L^3)$
qe,i	energy source term at node $i (M/L^3 \theta)$
$\{q_e\}$	coefficient for energy source terms
$\{q_m\}$	coefficient for mass source terms
P_{c}	closure stress for use in Gangi stress model (ML)
Po	initial pressure (ML/θ^2)
P_{ℓ}	liquid pressure $(M/L\theta^2)$
P_{v}	vapor pressure $(M/L\theta^2)$
P _{cap}	capillary pressure $(M/L\theta^2)$
Pflow	flowing pressure at node $i (M/L\theta^2)$
$[R_c]$	coefficients for tracer gravity term
R_{ℓ}	liquid relative permeability
$\{R_e\}$	gravity term coefficient for energy
$\{R_m\}$	gravity term coefficient for mass

Table I. Notation

R_v	vapor relative permeability
$\{r\}$	residual of linear system of equations
r, r _b	parameters used in nonlinear adsorption model (Langmuir)
r_{p1}, r_{p2}	parameters used in relative permeability models
r_{p3}, r_{p4}	parameters used in relative permeability models
S	normalized liquid saturation
St	liquid saturation
Ŝı	normalized liquid saturation
Str	residual liquid saturation
Sto.	maximum liquid saturation
S_v	vapor saturation
T	temperature (T)
T^*	absolute temperature (T)
$[T_{\epsilon}(P,h)]$	stiffness matrix for energy equation
$[T_c(C)]$	stiffness matrix for concentration equation
$[T_m(P,h)]$	stiffness matrix for mass equation
T_{flow}	flowing temperature at node $i(T)$
T_{ff}, T_{ff1}	transfer terms in dual porosity solution
T_{ff2}	transfer terms in dual porosity solution
t	time (θ)
ul	liquid internal energy (L^2/θ^2)
u_v	vapor internal energy (L^2/θ^2)
u _r	rock internal energy (L^2/θ^2)
V_f	volume fraction for fractures in a dual porosity problem
V_{f0}, V_{f1}	volume fractions used in a dual porosity problem
V_{f2}	volume fractions used in a dual porosity problem
Ve	liquid velocity (L/θ)
V_v	vapor velocity (L/θ)
$[V]^m$	intermediate calculation in GMRES acceleration
[\$7]	approximate upper factorization of matrix
{v}	intermediate calculation of GMRES acceleration
{w}	parameter in GMRES acceleration
{ y }	intermediate calculations in GMRES acceleration
\overline{x}^i	vector of corrections at iteration <i>i</i>
α	coefficient of thermal expansion $(1/T)$
α_1, α_2	coefficients used in sorption models

•

Table I. Notation

\$

ε	tolerance taken for solution scheme
λ	parameter used in defining the van Genutchen capillary pressure model
μa	air viscosity $(M/L\theta)$
μe	liquid phase viscosity $(M/L\theta)$
μe,w	liquid water viscosity $(M/L\theta)$
μ_v	vapor phase viscosity $(M/L\theta)$
$\mu_{v,w}$	steam viscosity $(M/L\theta)$
ϕ	porosity
ϕ_o	initial porosity
σ	fractional vapor flow parameter
σ	in situ stress (ML/θ^2)
$\left(\frac{\partial \overline{F}}{\partial \overline{x}^{k}}\right)$	Jacobian matrix for nonlinear system
* Units g	given in ML $ heta$ T system of dimensions:

Mass [M], length [L], time $[\theta]$, temperature [T]

where the energy per unit volume, A_e , is given by

$$A_{\boldsymbol{e}} = (1 - \phi)\rho_{\boldsymbol{r}}\boldsymbol{u}_{\boldsymbol{r}} + \phi(S_{\boldsymbol{v}}\rho_{\boldsymbol{v}}\boldsymbol{u}_{\boldsymbol{v}} + S_{\boldsymbol{\ell}}\rho_{\boldsymbol{\ell}}\boldsymbol{u}_{\boldsymbol{\ell}}) \tag{5}$$

and the energy flux, \overline{f}_e , is given by

$$\overline{f}_{e} = \rho_{v} h_{v} \overline{V}_{v} + \rho_{\ell} h_{\ell} \overline{V}_{\ell} - K \overline{\nabla} T \quad .$$
(6)

Here the subscript r refers to the rock matrix; u_r , u_v , and u_ℓ are specific internal energies; h_v and h_ℓ are specific enthalpies; K is an effective thermal conductivity; T is the temperature; and q_e is the energy contributed from sources and sinks.

To complete the governing equations it is assumed that Darcy's Law applies to the movement of each phase:

$$\overline{V}_{v} = -\frac{kR_{v}}{\mu_{v}} \ (\overline{\nabla}p_{v} - \rho_{v}\overline{g}) \tag{7}$$

and

$$\overline{V}_{\ell} = -\frac{kR_{\ell}}{\mu_{\ell}} \ (\overline{\nabla}p_{\ell} - \rho_{\ell}\overline{g}) \quad . \tag{8}$$

Here k is the permeability, R_v and R_ℓ are the relative permeabilities, μ_v and μ_ℓ are viscosities, p_ℓ and p_v the phase pressures, and g represents the acceleration due to gravity (the phase pressures are related by $p_v = p_\ell + p_{cap}$). For simplicity, the equations are shown for an isotropic medium, though this restriction does not exist in the computer code.

Using Darcy's Law the basic conservation equations (1) and (4) can be rewritten

$$-\overline{\nabla} \cdot (D_{m\ell}\overline{\nabla}p_{\ell}) - \overline{\nabla} \cdot (D_{m\ell}\overline{\nabla}p_{\nu}) + q_m + \frac{\partial}{\partial z}g(D_{m\ell}\rho_{\ell} + D_{m\nu}\rho_{\nu}) + \frac{\partial A_m}{\partial t} = 0 \quad (9)$$

and

$$-\overline{\nabla} \cdot (D_{e\ell}\overline{\nabla}p_{\ell}) - \overline{\nabla} \cdot (D_{ev}\overline{\nabla}p_{v}) + \overline{\nabla} \cdot (K\overline{\nabla}T) + q_{e} + \frac{\partial}{\partial z}g(D_{e\ell}\rho_{\ell} + D_{ev}\rho_{v}) + \frac{\partial A_{e}}{\partial t} = 0,$$
(10)

where z is oriented in the direction of gravity. Here the transmissibilities are given by

$$D_{ev} = h_v D_{mv}, \quad D_{e\ell} = h_\ell D_{m\ell} \tag{11}$$

and

$$D_{m\ell} = \frac{kR_{\ell}\rho_{\ell}}{\mu_{\ell}}, \quad D_{m\nu} = \frac{kR_{\nu}\rho_{\nu}}{\mu_{\nu}} \quad . \tag{12}$$

The source and sink terms in equations (1) and (4) arise from bores, and if the total mass withdrawal, q_m , for each bore is specified, then the energy withdrawal, q_e , is determined as follows:

$$q_e = q_v h_v + q_\ell h_\ell \tag{13}$$

where

$$q_v = \sigma q_m, \quad q_\ell = (1 - \sigma)q_m \tag{14}$$

and

$$\sigma = \frac{1}{\left(1 + \frac{\rho_{\ell} R_{\ell} \mu_{\nu}}{\rho_{\nu} R_{\nu} \mu_{\ell}}\right)} \quad . \tag{15}$$

The form of equation (15) shows how important the relative permeability ratio R_{ℓ}/R_{ν} is in controlling the discharge composition. The relative permeability and capillary pressure functions are summarized in the next section, Constitutive Relationships. ٠

In addition to the flow of heat and mass, FEHMN is also capable of simulating noncondensible gas flow (usually air) and passive tracer flow. The noncondensible gas conservation equation is

$$-\overline{\nabla} \cdot (C_{\ell} D_{m\ell} \overline{\nabla} p_{\ell}) - \overline{\nabla} \cdot (C_{v} D_{mv} \overline{\nabla} p_{v}) + \frac{\partial}{\partial z} g(C_{\ell} D_{m\ell} \rho_{\ell} + C_{v} D_{mv} \rho_{v}) + \frac{\partial A_{c}}{\partial t} + q_{c} = 0 \quad .$$
(16)

Here C is the concentration of the noncondensible gas and is expressed as a fraction of total mass. The term \overline{f}_c is the mass flux, q_c is the source (or sink) strength, and A_c is the accumulation term:

$$\overline{f}_{c} = C_{v} \rho_{v} \overline{V}_{v} + \rho_{\ell} \overline{V}_{\ell} C_{l}$$
(17)

$$q_c = C_v q_v + C_\ell q_\ell \tag{18}$$

$$A_c = \phi(S_v \rho_v C_v + S_\ell \rho_\rho C_\ell) \tag{19}$$

The passive tracer equation is not directly coupled to the pressure field but merely uses the pressure field obtained by the heat and mass transfer solution:

$$-\overline{\nabla} \cdot (C_{\ell} D_{m\ell} \overline{\nabla} p_{\ell}) - \overline{\nabla} \cdot (C_{v} D_{mv} \overline{\nabla} p_{v}) + \overline{\nabla} \cdot (D_{c} \overline{\nabla} C_{\ell}) + g \frac{\partial}{\partial z} (C_{\ell} D_{m\ell} \rho_{\ell} + C_{v} D_{mv} C_{v}) + \frac{\partial A_{c}}{\partial t} + q_{c} = 0$$
(20)

(where the terms are defined analogously to the condensible gas equation terms) the additional term $\overline{\nabla} \cdot (D_c \overline{\nabla} C_\ell)$ is the dispersion term. At present the code allows for up to 10 tracers.

2. Constitutive Relationships. In the equations described above the porosity, permeability, density, enthalpy, and viscosity can be strong functions of pressure and temperature. These functions make the code very nonlinear. In addition the relative permeabilities and capillary pressure can be strong functions of saturation.

The pressure and temperature dependent behavior of the density, enthalpy, and viscosity are represented by rational polynomials. Using a technique developed at the University of Auckland, New Zealand, accurate fits to the National Bureau of Standards (NBS) steam table data were obtained over the ranges:

$$0.001MPa \le P \le 110.MPa$$

$$0.001^{\circ}C \le T \le 360^{\circ}C$$

$$(21)$$

The maximum error was 0.3% for all the functions. The rational polynomial representation proved to be both accurate and fast. For details the reader is referred to Zyvoloski and Dash (1991). In addition a low pressure thermodynamics set is provided with the ranges $0.001MPa \le P \le 20MPa, 0.5^{\circ}C \le T \le 360^{\circ}C$. The maximum error for this set is also 0.3%.

The tracer module of FEHMN has provisions for reactive tracers. At present four adsorption models have been included. These are the linear, Langmuir (Satter et al., 1980), Freundlich, and modified Freundlich isotherm models. The discussion follows the description given by Robinson (1988). With adsorption the equations describing the conservation of species, Eq. (16) is modified by the addition of the term

$$\rho_r \frac{\partial C_R}{\partial t}$$

where ρ_r is the rock density and C_R represents the adsorption of species onto the reservoir rock and is given by

$$C_R = \frac{\alpha_1 C_\ell^\beta}{1 + \alpha_2 C_\ell^\beta} \quad . \tag{22}$$

The terms in Eq. (22) are given in Table II where K_D , A, β , C_{max} , r_b , and r are parameters associated with the sorption models. The adsorption term is included in the tracer solution by replacing the A_c term, Eq. (19), with the new term

$$A_c = \phi(S_v \rho_v C_v + S_\ell \rho_\ell C_\ell) + \rho_\tau C_R \quad . \tag{23}$$

Chemical reactions are modeled by modifying the source term, q_c in Eq. (18), with the addition of the term q_{cR} given below:

$$q_{cR} = \frac{a_1 C_{\ell}^{a2}}{a_3 + a_4 C_{\ell}} \tag{24}$$

9

TABLE II. Sorption Isotherm Models					
Model	Expression	α1	α_2	β	
Linear	$C_R = K_D C_\ell$	KD	0	1	
Freundlich	$C_R = A C_\ell^{eta}$	A	0	$0 < \beta < 1$	
Modified Freundlich	$\frac{C_R}{C_{max} - C_R} = A C_\ell^\beta$	C _{max}	A	0< <i>β</i> <1	
Langmuir	$C_R = \frac{r_b C_\ell}{1 + r C_\ell}$	rb	r	1	

where the quantities a_1 , a_2 , a_3 , and a_4 are user inputted parameters. The general case given in Eq. (24) can sometimes be replaced by a simplier expression $q_{cR} = a_1(C_{\ell} - a_2)$. Both of the models are addressed in the input section.

Several well known relative permeability functions are available to the user. They are the simple linear functions, the Corey (1954) relationships, and the Sandia functions (van Genuchten, 1980).

The linear functions are given by

$$R_{\ell} = 0 , S_{\ell} \le rp_{1}$$

$$R_{\ell} = (S_{\ell} - rp_{1})/(rp_{3} - rp_{1}) , rp_{1} < S_{\ell} < rp_{3}$$

$$R_{\ell} = 1 , S_{\ell} \ge rp_{3}$$

$$R_{v} = 0 , S_{v} \le rp_{2}$$

$$R_{v} = (S_{v} - rp_{2})/(rp_{4} - rp_{2}) , rp_{2} < S_{v} < rp_{4}$$

$$R_{v} = 1 , S_{v} \ge rp_{4}$$
(25)

where rp_1 , rp_2 , rp_3 and rp_4 are user supplied quantities.

The Corey relative permeability functions are given by

$$R_{\ell} = \hat{S}_{\ell}^{4}$$

$$R_{v} = (1 - \hat{S}_{\ell})^{2} (1 - \hat{S}_{\ell}^{2})$$
(26)

where $\hat{S}_{\ell} = (S_{\ell} - rp_1 - rp_2)/(1 - rp_1 - rp_2)$ and where the input quantities rp_1 and rp_2 are the residual liquid and vapor saturations respectively.

The van Genuchten (van Genuchten, 1980) functions are described by the following formulae:

$$\hat{S} = \frac{(S_{\ell} - rp_2)}{(rp_3 - rp_2)}
R_{\ell} = \sqrt{\hat{S} \left[1.0 - (1.0 - (\hat{S})^{1/\lambda})^{\lambda} \right]^2}, \, \hat{S}_{\ell} < rp_3
= 1.0 , \, \hat{S}_{\ell} \ge rp_3
R_{\nu} = 1.0 - R_{\ell}$$
(27)

where $\lambda = rp_1$ and rp_1, rp_2 and rp_3 are parameters supplied by the user.

Composite relative permeability curves, as described by Klavetter and Peters (1986), are also available. See Section III B, macro-command RLP for an input description.

 R_{ℓ} and R_v are restricted by the relationships

$$0 \le R_v \le 1.0 \tag{28}$$
$$0 \le R_\ell \le 1.0$$

and the relative permeability functions are truncated to the appropriate value if the above conditions are violated.

The capillary functions included with FEHMN are the linear function and the Sandia capillary pressure model. Our terminology follows that of Pruess (1987).

The linear capillary function model is given by the following equations

$$P_{cap} = cp_1, \qquad S_{\ell} \le cp_2$$

$$P_{cap} = 0.0, \qquad S_{\ell} \ge cp_3$$

$$P_{cap} = cp_1 \frac{cp_3 - S_{\ell}}{cp_3 - cp_1}, \quad cp_2 < S_{\ell} < cp_3 \qquad (29)$$

$$cp_2 \text{ and } cp_2 \text{ are parameters supplied by the user. The restriction } cp_2 \ge cp_2 \text{ is}$$

where cp_1 , cp_2 , and cp_3 are parameters supplied by the user. The restriction $cp_3 > cp_2$ is also necessary.

The van Genuchten functions (van Genuchten, 1980) are described by the following equations

$$\hat{S} = \frac{S_{\ell} - S_{\ell r}}{S_{\ell s} - S_{\ell r}}$$

$$P_{cap} = 0, \quad S_{\ell} \ge cp_{5}$$

$$P_{cap1} = P_{o} \left\{ (\hat{S})^{-1/\lambda} - 1.0 \right\}^{1.0 - \lambda}$$

$$P_{cap} = P_{max}, P_{cap1} \ge P_{max}$$

$$P_{cap} = P_{cap1}, P_{cap1} < P_{max}$$
(30)

where $\lambda = cp_1$, $P_o = 1.0/cp_3$, $P_{max} = cp_4$, $S_{\ell s} = cp_5$, $S_{\ell r} = cp_2$.

11

The capillary pressure curves approach an infinite value as S_{ℓ} approaches 0. This was observed by Nitao (1988) who suggested using Eq. (30) only to a value of one-half the maximum suction observed in the rock (P_{max}) and linearly extrapolating the capillary pressure to the maximum capillary pressure at $S_{\ell} = 0$. We have also employed this technique in FEHMN.

The van Genuchten relative permeability curves and capillary pressure functions are the primary ones used for Yucca Mountain calculations.

If the flow of air is also modeled, appropriate thermodynamic information for air must also be provided. The density of air is assumed to obey the ideal gas law, using atmospheric conditions as our reference state we have

$$\rho_a = 1.292864 \left(\frac{273.0}{T + 273.0} \right) \left(\frac{P}{0.101325} \right) \tag{31}$$

where ρ_a has the units kg/m^3 , T is in C, and P is in MPa. The mixture density is given by

$$\rho_{\boldsymbol{v}} = \rho_{\boldsymbol{v},\boldsymbol{w}} + \rho_{\boldsymbol{a}} \tag{32}$$

where $\rho_{v,w}$ is the density of the water vapor. The density of the liquid phase is assumed to be unaffected by the amount of dissolved air it contains.

The enthalpy of air is a function of temperature only

$$C_{pa} = 6122.0 - 11.76(T^*) + 0.0177(T^*)^2$$

$$h_a = C_{pa}(T \cdot 10^{-6})$$
(33)

where h_a is the enthalpy of air (MJ/kg), C_{pa} is the heat capacity of air (MJ/kg °C), and $T^* = T + 273$. The mixture enthalpy for the vapor phase is

$$h_v = h_{v,w}(1 - \eta_v) + h_a \eta_v \tag{34}$$

where $h_{v,w}$ is the enthalpy of steam and η_v is the fraction by mass of air in the vapor phase. The enthalpy of the liquid phase is given by the enthalpy of the dissolved air, the heat of solution, and the enthalpy of the water. At present, we neglect the heat of solution and use the enthalpy of air described above:

$$h_{\ell} = h_{\ell,w}(1 - \eta_{\ell}) + h_a \eta_{\ell} \tag{35}$$

12

where $h_{\ell,w}$ is the enthalpy of liquid water and η_{ℓ} is the mass fraction of a in the liquid phase.

Assuming ideal gas behavior, the mass fraction of air in the vapor phase may be expressed as

$$\eta_v = \frac{\rho_a}{\rho_v}$$

the mass fraction of air in the liquid phase is assumed to obey Henry's law or

$$\eta_e = \alpha P_a$$

where α is the Henry's law constant ($\alpha = 1.611 \ge 10^{-4} P_a^{-1}$) for air and P_a is the partial pressure of air.

The viscosity of the vapor phase is assumed to be a linear combination of the air viscosity and the water viscosity

$$\mu_{\boldsymbol{v}} = \mu_{\boldsymbol{v},\boldsymbol{w}}(1-\eta_{\boldsymbol{v}}) + \mu_{\boldsymbol{a}}\eta_{\boldsymbol{v}} \tag{36}$$

where $\mu_{v,w}$ is the steam viscosity and is obtained from steam data. The viscosity of air is assumed constant

$$\mu_a = 1.82 \times 10^{-5} cp \quad . \tag{37}$$

The liquid phase viscosity is assumed to be independent of the amount of dissolved air and is obtained from steam table data:

$$\mu_{\ell} = \mu_{\ell,w} \quad . \tag{38}$$

Often it is necessary to accommodate changes in the rock porosity and permeability due to changes in effective stress caused by temperature and pore fluid pressure changes. A linear and nonlinear model are currently incorporated into the code for this purpose.

The linear pore pressure model for porosity is given by

$$\phi = \phi_o + (1 - \phi_o)(c_r - c_g)(P - P_o)$$
(39)

where ϕ is the porosity at pressure P, ϕ_o is the initial porosity at pressure P_o , c_r is the pore volume compressibility of the rock and c_g is the compressibility of the matrix grain material.

The nonlinear model for porosity (Gangi, 1978) currently used in the code is given by

$$\phi = \phi_o \left[1 - \left(\frac{P_c}{P_o} \right)^m \right] \tag{40}$$

and

$$P_c = \sigma - P - \alpha E \Delta T \tag{41}$$

where P_c is the closure stress, σ is the *in situ* stress (assumed isotropic), α is the coefficient of thermal expansion of the rock, E is Young's modulus, ΔT is the temperature change and P_o and m are parameters in the model.

For either case the effect of stress and temperature changes on permeability are modeled with

$$k = k_o \left(\frac{\phi}{\phi_o}\right)^3 \tag{42}$$

where k is the permeability at porosity ϕ .

C. Discretization of the Governing Equations

The time derivatives in the Eqs. (1-42) are discretized using the standard first order method given by

$$f(t^{n+1}) = f(t^n) + \Delta t \left(a f'(t^{n+1}) + (1-a) f'(t^n) \right)$$
(43)

where $f(t^{n+1})$ is the desired function at time t^{n+1} , $f(t^n)$ is the known value of f at time t^n , Δt is the time step, f' is the derivative of f with respect to time and a is a weighting factor. For a = 1, the scheme is fully implicit (backward Euler) and for a = 0, the scheme is fully explicit (forward Euler).

The space derivatives in the governing equations are discretized using the finite element formulation. The finite element equations are generated using the Galerkin formulations. For a detailed presentation of the finite element method the reader is referred to Zienkiewicz (1977). In this method the flow domain, Ω , is assumed to be divided into finite elements; and variables P, h and T, along with the accumulation terms A_m and A_e , are interpolated in each element:

$$P = [N]\{P\}, h = [N]\{h\}, T = [N]\{T\}, A_m = [N]\{A_m\}, \text{ and } A_e = [N]\{A_e\}$$

where [N] is the shape function. Here h is used to represent the generalized energy variable; T in single phase water states, S in 2-phase water states. These approximations are introduced in Eqs. (9), (10), and (20), and the Galerkin formulation (described by Zienkiewicz and Parekh, 1970) is applied. The following equations are derived:

$$[T_m(P,h)]\{P\} + \hat{C}\frac{\partial A_m}{\partial t} + \{q_m\} - g\{R_m\} = \{F_m\}$$
(44)

and

$$[T_{e}(P,h)]\{P\} + [K]\{T\} + \hat{C}\frac{\partial A_{e}}{\partial t} + \{q_{e}\} - g\{R_{e}\} = \{F_{e}\}$$
(45)

where

$$T_{mij} = \int_{\Omega} \overline{\nabla} N_i \cdot D_m^{UP} \overline{\nabla} N_j dV \quad , \tag{46}$$

$$T_{eij} = \int_{\Omega} \overline{\nabla} N_i \cdot D_e^{UP} \overline{\nabla} N_j dV \quad , \tag{47}$$

$$K_{ij} = \int_{\Omega} \overline{\nabla} N_i \cdot \overline{\nabla} N_j dV \quad , \tag{48}$$

$$\hat{C}_{ij} = \int_{\Omega j} N_i N_j dV \quad , \tag{49}$$

$$R_{mi} = \int_{\Omega j} \frac{\partial N_i}{\partial y} N_j D_m^{UP} \rho_m dV \quad , \tag{50}$$

and

$$R_{ei} = \int_{\Omega j} \frac{\partial N_i}{\partial y} N_j D_e^{UP} \rho_e dV \quad . \tag{51}$$

Equations (50) and (51) need some comment. The term D_e^{UP} indicates an upstreamweighted transmissibility (Dalen, 1979). This technique has worked well in the low-order elements (3-node triangle, 4-node quadrilateral), where the schemes resemble difference techniques. The upstream weighting is determined by comparing the velocities at the nodes *i* and *j*. The shape function coefficients are generated in a unique way that requires the integrations in Eqs. (50) and (51) to be performed only once and the nonlinear coefficients to be separated from this integration. The reader is referred to Zyvoloski (1983) for more details.

The integration scheme used in this report is similar to that described by Young (1981). His implementation differs from common methods in that it uses Lobatto instead of Gauss integration. The net effect is that, while retaining the same order of integration accuracy (at least for linear and quadratic elements), there are considerably fewer nonzero terms in the resulting matrix equations. Figure 1 shows a comparison of the nodal connections for Lobatto and Gauss integration methods. It should be noted that these results hold on an orthogonal grid only. If a nonorthogonal grid were introduced, then additional



Fig. 1. Comparison of nodal connections for conventional and Lobatto integrations for an orthogonal grid.

nonzero terms would appear in the Lobatto quadrature method. Note also that the linear elements yield the standard 5- or 7-point difference scheme. The reader is referred to Young's paper for more details.

A similar approach is used to solve the transport equation. Following the discussion above the species concentration, C, and the species accumulation term, A_c , are interpolated in each element.

$$C = [N]^T \{C\}, \quad A_c = [N]^T \{A_c\}$$

Using these approximators and using a Galerkin approach, we obtain the following equation

$$[T_c(C)]\{P\} + [D_c]\{C\} + \hat{C}\frac{\partial A_c}{\partial t} + \{q_c\} + \{R_c\} = \{F_c\}$$
(52)

when

16

$$T_{cij} = \int_{\Omega} \overline{\nabla} N_i \cdot D_m C_{ij}^{UP} \overline{\nabla} N_j dv$$
(53)

$$D_{cij} = \int_{\Omega} \overline{\nabla} N_i \cdot D_c \overline{\nabla} N_j dv \tag{54}$$

$$R_{cij} = \int_{\Omega} \frac{\partial N_i}{\partial y} \cdot D_m C_{ij}^{UP} \overline{\nabla} N_j dv$$
(55)

where C_{ij} was defined previously and C_{ij}^{UP} is an upstream weighted species concentration. This approach is similar to the finite difference method for solving the transport equations.

D. Boundary Conditions

Two mass flow boundary conditions are allowed in FEHMN. They are no flow and specified variable values. The no flow conditions are automatically satisfied by the finite element mesh. Specified variable quantities are obtained in the following manner. A pressure dependent flow term is used:

$$q_i = I_i(P_{flow,i} - P_i) \tag{56}$$

where P_i is the pressure at node *i*, q_i is the flow rate, I_i is the impedance, and $P_{flow,i}$ is the specified flowing pressure at node *i*. By specifying a large I_i , we can force the pressure to be equal to $P_{flow,i}$. The energy (or temperature) specified at node *i* refers only to the incoming fluid value, if fluid flows out of the reservoir, stability dictates that the energy of the in-place fluid be used in the calculations. Species concentration is handled in a manner analogous to the energy variable. Only the incoming species concentration can be specified; if the flow is out of the reservoir the in-place species concentration is used.

In addition to the mass flow boundary conditions, heat flow boundary conditions are also provided. A specified heat flow can be input or a specified temperature obtained

$$q_{e,i} = I_{e,i}(T_{flow,i} - T_i)$$

where T_i is the nodal temperature, $T_{flow,i}$ is the specified flowing temperature at node i, $I_{e,i}$ is the impedance to heat flow at node i, and $q_{e,i}$ is the heat flow at node i. This heat flow is superimposed on any existing heat flow from the other boundary conditions or source terms.

E. Solution Methods

The application of the discretization methods to the governing partial differential equations yields a system of nonlinear algebraic equations. To solve these equations, the Newton-Raphson iterative procedure is used. This is an iterative procedure that makes use of the derivative information to obtain an updated solution from an initial guess. Let the set equations to be solved be given by

$$\overline{F}(\overline{x}) = 0 \tag{57}$$

where \overline{x} is the vector of unknown values of the variables that satisfy the above equation. The procedure is started by making an initial guess at the solution, say \overline{x}° . This is usually taken as the solution from the previous time step. Denoting the value of \overline{x} at the *kth* iteration by \overline{x}^k , the updating procedure is given by

$$\overline{x}^{(k+1)} = \overline{x}^k - \overline{F}(x^k) \left(\frac{\partial \overline{F}}{\partial \overline{x}^k}\right)^{-1} \quad .$$
(58)

At each step, the residuals $\overline{F}(x^k)$ are compared with a prescribed error tolerance. The prescribed error tolerance, ϵ , is an input parameter and an ℓ^2 norm is used:

$$||F||_{k} = \left(\sum_{i} F_{i}^{2}\right)_{k}^{1/2}$$

Convergence is achieved when

$$\|F\|_k \le \epsilon \|F\|_o$$

 ϵ is usually in the range 10^{-4} - 10^{-7} . Semiautomatic timestep control is designed based on the convergence of the Newton iterations. If the code is unable to find a solution \overline{x}^k such that the residuals become less than the tolerance within a given number of iterations, the time step is reduced and the procedure repeated. On the other hand, if convergence is rapid, the timestep is increased by multiplying with a user supplied factor, thus allowing for large timesteps when possible.

The matrix equation to be solved at each Newton-Raphson iteration has the form

$$[A]\{x\} = \{b\} , (59)$$

where [A] is the Jacobian matrix, $\{x\}$ is the solution vector, and $\{b\}$ is the residual. The [A] matrix is sparse and banded. For computation, $\{x\}$ is replaced by $\{\delta x\} = \{x\}^{n+1} - \{x\}^n$, and $\{b\}$ is replaced by $\{r\} = \{b\} - [A]\{x\}^n$, where *n* is the iteration number. (Note that this is different from the overall Newton iteration.) Thus, only changes in $\{x\}$ are calculated.

Complete Gaussian elimination or factorization on Eq. (59) would result in fill-in of all the bands between the lowest subdiagonal and the highest superdiagonal bands. Incomplete factorization involves finding only approximate upper and lower triangular matrices \widetilde{L} and \widetilde{U} , requiring very little fill-in. The computing effort for obtaining the incomplete factors is much less than for the complete factors. However, an iterative procedure is now required. The presentation of the theory below follows that of Saad and Schultz (1986). The matrix [A] is partially factored into upper and lower triangular form

$$[\overline{A}] = [\widetilde{L}][\widetilde{U}] \quad , \tag{60}$$

where $[\overline{A}] \neq [A]$ because, in general, $[\widetilde{L}]$ and $[\widetilde{U}]$ will contain only some of the steps of the elimination process. To incompletely factor a matrix, a prior knowledge of the fill-in pattern is required. A symbolic factorization is performed (just once) to establish where the fill-in occurs and to determine the order of each term. Figure 2 shows a matrix and its first level of fill (0's) resulting from factorization of the original matrix elements (x's). We could continue the process to get higher-order terms, but usually the lower-order terms are all that are necessary (Zyvoloski, 1986). The amount of factorization is limited by computer storage considerations. Once factored, the solution is easy to carry out as it consists of a forward and a backward substitution:

$$\{v\} = [\widetilde{U}]^{-1}\left\{[\widetilde{L}]^{-1}\{r\}\right\}$$
(61)

where $\{v\}$ is the approximate change in $\{x\}$. The following recursion scheme is used to refine the approximation:

$$\{v\}^{n+1} = [\overline{A}]^{-1} \{r\}^n = [\widetilde{U}]^{-1} \left\{ [\widetilde{L}]^{-1} \{r\}^n \right\} \quad , \tag{62}$$

$$\{x\}^{n+1} = \{x\}^n + \{v\}^{n+1} \quad , \tag{63}$$

$$\{r\}^{n+1} = \{r\}^n - [\overline{A}]\{v\}^{n+1}$$
(64)

where n is the iteration index and $\{x\}^0 = 0$ since the original matrix equation is written in residual form [see paragraph after Eq. (59)]. The solution scheme, comprising Eqs. (61)-(64), may be accelerated by over-relaxation procedures, but it is better to use orthogonalization-minimization. If the Jacobian matrix were symmetric, conjugate gradient could be used. For nonsymmetric matrices, the GMRES (Generalized Minimal Residual Equation Solver) procedure (Saad and Schultz, 1986) is used.

For comparison purposes, the simple over-relaxation procedure is discussed first. In the recursion scheme [Eqs. (62)-(64)], Eq. (63) is replaced by $\{x\}^{n+1} = \{x\}^n + w\{v\}^{n+1}$, and Eq. (64) is replaced by $\{r\}^{n+1} = \{r\}^n - w[A]\{v\}^{n+1}$. Here w is the over-relaxation parameter and satisfies the relation 1 < w < 2. After Eq. (64) is calculated, the procedure returns to Eq. (61) and continues until $\{r\}^{n+1}$ is reduced to some predetermined value. For many reservoir problems, convergence is extremely slow, and the ortho-minimization procedures provide a valuable alternative.

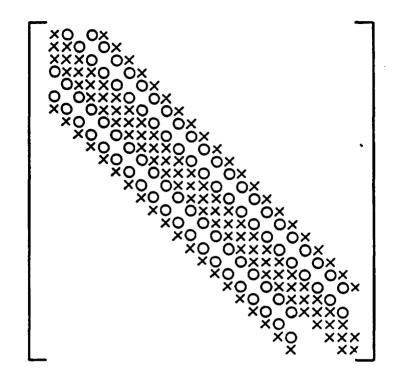


Fig. 2. Matrix band structures showing second-order fill-in. x - original matrix positions.

o - fill-in with order 2 factorization.

The GMRES algorithm is

- 1. Set $\{r\}^{\circ} = \{b\}$ and set $\{v\}^{1} = \{r\}^{\circ}/||r^{\circ}||$ where ||r|| is the sum squared norm $(||r|| = \{\sum_{i=1}^{n} r_i\}^{1/2})$ of $\{r\}$ and n is the number of unknowns. We also assume that $\{x\}^{\circ} = \{0\}$.
- 2. Perform orthogonalization calculation, m = 1, NORTH

$$\{w\}^{m+1} = [A]\{v\}^m - \sum_{i=1}^m ([A]\{v\}^i, \{v\}^i)\{v\}^i$$
(65)

$$h_m^{m+1} = \|\{w\}^{m+1}\| \tag{66}$$

$$\{v\}^{m+1} = \{w\}^{m+1} / h_m^{m+1}$$
(67)

Where NORTH is the maximum number of orthogonalizations allowed.

3. Form approximate solution (n = NORTH)

$$\{x\}^{m} = \{x\}^{\circ} + [V]^{m} \{y\}^{m}$$
(68)

20

where $[V]^m$ is an *n* by *m* matrix which contains the $\{v\}^i$ (i = 1, m) and $\{y\}^m$ is an *n* dimensional vector which minimizes the function.

$$f(y) = \|B\{e\}^1 - [H]^m\{y\}\| \quad . \tag{69}$$

Here B = ||r°||, {e}¹ is the unit vector, and [H]^m is a k + 1 (= n) by k matrix whose only nonzero entries are the h_iⁱ⁺¹ calculated in Eq. (66). This minimization is economically done using Q-R factorization. (See Saad and Shultz, 1986, for details.)
4. Calculate ||r_m|| where

$$\{r\}^m = \{b\} - [A]\{x\}^m \tag{70}$$

If $||r_m|| \leq \epsilon$, some specified tolerance, then the process is complete. Otherwise we set $\{x\}^{\circ} = \{x\}^m, \{v\}^1 = \{r\}^m/||r^m||$ and proceed from Eq. (65) of the GMRES algorithm. There is an intimate relationship between the outer iteration (Newton-Raphson) and the inner iteration (solution of linear equations). If the outer iteration is far from convergence, we can solve the linear system of equations with a rather large tolerance. As the outer iterations converge we must likewise have a finer tolerance for the inner iteration. The method used here is one developed by Diaz, Jines, and Steihaug (1985). Regions of linear and quadratic convergence are defined, and multipliers for the square of the residuals and the residuals are specified. Comparing the magnitude of the terms determines the largest possible tolerance for the inner iteration.

A mathematical theory similar to that for conjugate gradient methods (for example, showing a reduction in condition number with each iteration) is not available. In basic terms the h_m^{m+1} in Eqs. (66) and (67) ensure that the $\{v\}^i$ are orthogonal and that the $\{y\}^m$ in Eqs. (68) and (69) are such that the square of the $\{r\}^{n+1}$ is minimized. For more details the reader is referred to Meijerink and Van der Vorst (1981), Behie and Forsythe (1984), and Behie and Vinsome (1982). To minimize the storage required, the procedure is restarted after every NORTH iteration. The more orthogonalizations before restarting, the faster the convergence, but this benefit must be weighed against the greater storage and longer running time required for the additional orthogonalizations.

F. Dual Porosity Formulation

Many problems are dominated by fracture flow. In these cases the fracture permeability controls the pressure communication in the reservoir even though local storage around the fracture may be dominated by the porous rock which communicates only with the closest fractures. Moench (1984) has studied several wells in the saturated zone beneath Yucca Mountain and found the results could be understood if dual porosity methods were used. Figure 3 depicts the dual porosity concept. The computational volume in the figure consists of a fracture which communicates with fractures in other computational cells, and matrix material which only communicates with the fracture in its computational cells. This behavior of the matrix material is both a physical limitation and a computational tool. The physical limitation results from the model's inability to allow the matrix materials in different cells to communicate directly. This yields only minor errors in saturated zone calculations, but could pose larger errors in the unsaturated zone where capillary pressures would force significant flow to occur in the matrix material. The computational advantages will be addressed at the end of this section.

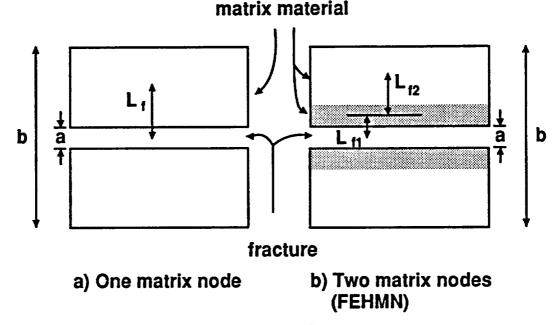


Fig. 3. Computational volume element showing dual porosity parameters.

Two parameters characterize a dual porosity reservoir. The first is the volume fraction, V_f , of the fractures in the computational cell. For the simple system shown in Fig. 3a this fraction is a/b. The second parameter is related to the fracture's ability to communicate with the local matrix material. In the literature this parameter takes a variety of forms. The simplest is a length scale, L_f . This quantifies the average distance the matrix material is from the fracture. This length scale is also shown in Fig. 3a. With just one node in the matrix material the transient behavior in the matrix material cannot be modeled. To improve this situation, two nodes are used in FEHMN to represent the matrix material. Conceptually, this is the same formulation as just described with only additional fracture volume needed (it is assumed the length scale of each matrix volume is proportional to the volume fraction). This is shown in Fig. 3b. More matrix nodes could be added, but data is rarely good enough to justify the use of even two matrix nodes. We note here that the simple slab model depicted in Fig. 3 is just one of several different geometric arrangements. Moench (1984) and Warren and Root (1963) list other reservoir types. All of them are similar in the assumption of a local one dimension connection of the matrix to the fracture.

Computationally, the volume fraction and length scale are used to create one dimensional versions of Eq. (9), Eq. (10), Eq. (16), and Eq. (20). The length scale is used to modify spacial difference terms and the volume factors are used to modify the accumulation terms [the \hat{C} matrix in Eq. (44)]. The volume fractions for FEHMN are given by

 $V_f = 1 - V_{f1} - V_{f2}$, volume fraction of fractures V_{f1} - fraction of first matrix volume (input) V_{f2} - fraction of second matrix volume (input) the length scales are given by $L_f = L_{f0}V_f$, length scale for the fracture volume L_{f0} - length scale (input) $L_{f1} = L_{f0}V_{f1}$ length scale of first matrix volume $L_{f2} - L_{f0}V_{f2}$, length scale of second matrix volume

The geometric factor representing the spacial differencing of the one dimensional equation for flow between the fracture and the first matrix node [analogous to the geometric part of Eq. (46) and Eq. (47)] is given by

$$T_{ff1} = \frac{1.0}{L_{f1}} (L_{f1} + L_f) \quad . \tag{71}$$

The analogous term for the flow from the first matrix volume to the second matrix volume is given by

$$T_{f1f2} = \frac{1.0}{L_{f2}} (L_{f1} + L_{f2}) \quad . \tag{72}$$

The one dimensional nature of the equations provides a computationally efficient method to solve the algebraic equations arising from the dual porosity simulation. Equation (73) shows the matrix equation arising from a dual porosity simulation.

$$\begin{bmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{bmatrix} \begin{Bmatrix} P_0 \\ P_1 \\ P_2 \end{Bmatrix} = - \begin{Bmatrix} R_0 \\ R_1 \\ R_2 \end{Bmatrix}$$
(73)

Here the subscript 0 refers to the fracture, 1 refers to the first matrix volume, and 2 refers to the second matrix volume.

The P represents the unknown variable or variable pair. The one dimensional character of the matrix diffusion means that the second matrix node can only depend on the first

matrix node. Therefore, the submatrix A_{20} is empty. The fact that matrix nodes cannot communicate with matrix nodes in other computational cells means that the submatrices A_{21} and A_{22} are diagonal. Therefore we may write

$$\{P_2\} = [A_{22}]^{-1} [-\{R_2\} - [A_{21}]\{P_1\}]$$
(74)

where the inversion is trivial because $[A_{22}]$ is diagonal. Substituting this expression into the equation for the first matrix node we have

$$[A_{10}]\{P_0\} + [A_{11}]\{P_1\} + [A_{12}][A_{22}]^{-1} \left\{ -\{R_2\} - [A_{21}]\{P_1\} \right\} = -\{R_1\} \quad .$$
 (75)

Rearranging, we have

$$[A_{10}]\{P_0\} + \left[[A_{11}] - [A_{12}][A_{22}]^{-1}[A_{21}] \right] \{P_1\} = -\{R_1\} + [A_{12}][A_{22}]^{-1}\{R_2\}$$

or

$$\{P_1\} = [\widetilde{A}_{11}]^{-1} [\{\widetilde{R}_1\} - [A_{10}]\{P_0\}]$$
(76)

where

$$[\widetilde{A}_{11}] = [A_{11}] - [A_{12}][A_{22}]^{-1}[A_{21}]$$

and

$$\{\widetilde{R}_1\} = -\{R_1\} + [A_{12}][A_{22}]^{-1}\{R_2\}$$

where the inversion and multiplications are trivial because of the diagonal nature of the matrices involved. Equation (76) may next be substituted into the equation for the fracture variables. Noting that $[A_{02}]$ is empty (the fracture can only communicate with the first matrix volume) we have

$$[A_{00}]\{P_0\} + [A_{01}][\widetilde{A}_{11}]^{-1} \left\{ \{\widetilde{R}_1\} - [A_{10}]\{P_0\} \right\} = -\{R_0\} \quad .$$
 (77)

Rearranging terms we have

$$\left[[A_{00}] - [A_{01}] [\widetilde{A}_{11}]^{-1} [A_{10}] \right] \{ P_0 \} = -\{ R_0 \} + [A_{01}] [\widetilde{A}_{11}]^{-1} \{ \widetilde{R}_1 \}$$
(78)

Equation (78) consists of an augmented fracture matrix of the same form as the original fracture matrix $[A_{00}]$. The operations carried out only add a few percent to the solution time required to solve a single porosity system. After the solution of Eq. (78) is obtained with the methods described in Section E, the solution in the fracture volume can be obtained by using Eq. (74) and Eq. (76).

II. CODE DESCRIPTION

In this section we present three important descriptions of FEHMN. First descriptions of all the subroutines are presented. Next the common block variables and calling parameters are described. Finally, the subroutine call tree structure for FEHMN is provided.

A. Subroutines

The main program of the code FEHM is GZ. This program calls subroutine DATA to initialize most of the common block variables and calls subroutine INPUT which initializes most non-array variables and directs the data input. GZ also performs one time startup calculations: scaling of some variables, directing the calculation of element coefficient arrays, and the setting up of equation solution schemes. The major time step loop is contained within GZ. In this loop the model equations are solved at each time step, solution parameters adjusted, and variables updated for the next time step. Plotting data is also output from this loop.

The following subroutines are called from GZ (excluding calls to intrinsic functions): ANONP, BNSWER, COEFFC, CONCEN, CONTR, CO2CTR, DATA, DATCHK, DISK, DUAL, ENTHP, INPUT, NEAR3, PEINT, PLOT, RADIUS, RARNG, RESETV, SETORD, SICE, SLVESU, STEADY, STORSX, STRESS, TIMCRL, TYMING, USER, VARCHK, VELOC, WELBOR, WRTOUT.

Table III contains a complete alphabetical listing of the FEHMN subroutines. A brief description of each routine is provided along with listings of which subroutines call the given routine and which subroutines it calls (intrinsic functions are excluded).

TABLE III. Subroutine Calls Within FEHMN						
Name	Description	Calls	Called by			
ANONP	Categorize elements. Call routines to generate finite element coefficients		GZ			
BNSWER	Call routines to assemble finite ele- ment equations and solve for the Newton-Raphson equations.	VARCHK, OUTBND, GENSL13, GENSL14, GENSL1	INPUT, THRMWC, THERMW			
CAPPR	Calculate capillary pressure func- tions.		GZ, THRMWC			
CNSWER	Call routine to generate tracer trans- port equations. Call tracer equa- tion of state routines.	THERMC, GENCON	CSOLVE			

Name	Description	Calls	Called by
COEFFC	Change coefficients of polynomial fits of the thermodynamic proper- ties specified.		GZ
CONCEN	Organize calls required to run tracer transport model.	RDCON, CSOLVE, WRTCON, PLOTC, DISKC, CONTRC	GZ, WRTOUT, DISK, INPUT, CONTR
CONEQ1	Generate the equations of tracer tran port.	18-	GENCON
CONTR	Write out data for time history plots at particular nodes.	CONCEN, VELOC	GZ, TIMCRL
CONTRC	Write out tracer data for contour plots.		CONCEN
CO2CTR	Read input for noncondensible gas and initialize variables associated with the noncondensible gas.	PSAT	GZ, TIMCRL, WRTOUT, INPUT
CSOLVE	Organize tracer solution so smaller time steps can be used for the tracer solution than for the flow solution.	CNSWER, PLOTC1 THERMC	CONCEN
DATA	Initialize common block variables.		GZ
DATCHK	Initial value analysis and data check.		GZ
DISK	Read and/or write to files for restart purposes.	CONCEN, STRESS	GZ,TIMCRL
DISKC	Read and write restart files for tracer variables.	:	CONCEN
DUAL	Read dual porosity data. Initialize dual porosity variables.	VARCHK, DUALFA, DUALEX	GZ, TIMCRL, GENSL4, GENSL1, INPUT
DUALEX	Extract dual porosity solution from primary variable solution.		DUAL

DUALFA	Assemble and load dual porosity solution and modify primary vari- ables solution to account for dual porosity effects.	VARCHK, GENEQ1, GENEQ3	DUAL
ENTHP	Calculate the temperature for a given input enthalpy.	n	GZ, STEADY
GENCOF	Call routines to generate finite ele- ment coefficients. Perform the nu- merical integration of the elements.	GNCF3, GNCF2	ANONP
GENCON	Call routines to generate tracer equations. Call solver to obtain Newton-Raphson equations for trace variables.	CONEQ1, SOLVE, RD1DOF r	CNSWER
GENDAT	Generate coordinates and element information in simple geometric prob- lems.)-	INPUT, ZONE
GENEQC	Generate equations for Newton-Rapl corrections for the water and non- condensible gas flow.	hson	GENSL4
GENEQ1	Generate equations for Newton-Rapl corrections for water/vapor flow with no noncondensible gas.		DUALFA, GENSL1
GENEQ3	Generate equations for Newton-Rapl corrections for heat conduction only (i.e., permeability).	hson	DUALFA, GERSL4, GENSL1, GENSL3
GENSL1	Call routines to generate the Newton-Raphson equations for wa- ter only problems. Call equation solver subroutine.		BNSWER
GENSL3	Call routines to generate the Newton Raphson equations for heat conduc- tions only. Call equation solver rou- tine.		BNSWER
GENSL4	Calls routines to generate equations for water/noncondensible gas prob- lems and calls equation solver.	GENEQC, GENEQ3, DUAL, NORMAL, SOLVE3, RD3DOF	BNSWER

-

Name	Description	Calls	Called by
GEOIN	Reads element and coordinate information from MARC preprocessor.	INPUT,ZONE	
GNCF2	Generate 2-D finite element coefficients.	SHAP2R	GENCOF
GNCF3	Generate 3-D finite element coefficients.	SHAP3R, SHAP3P	GENCOF
INPUT	Initialize variables, read input, write out some input information.		CAPPR,CONC CO2CTR,DUA GENDAT,GEC IOFILE,PORO RLPERM, SIC STHER,STRES USER,WELBO ZONE
IOFILE	Open up initial pressure distribu- tion when gravity is present (enabled).		INPUT
LUDBKSB	Performs forward and rock substitution for N degree of freedom matrix elements.	SOLVEN	
LUDCOMP	Performs Gauss elemination on N degree of freedom matrix elements.	SOLVEN	
NEAR3	Finds nearest node to a set of coordinates.	GZ	
NELMFL	Load nodal connection array.		GENCOF
NOPCNR	Identify form of incomplete LU de- composition matrix for the Newton- Raphson solution matrix with re- ordering of the node numbering.		SLVESU
NOPCNV	Identify form of LU decomposition matrix for the Newton-Raphson solution matrix with no recording of the node numbers.		SLVESU
NORMAL	Normalize Newton-Raphson equa- tions and calculates sum-squared sum of residuals.		GNSL4, GENS

Name	Description	Calls	Called by
OUTBND	Test the dependent variables to de- termine if they are within the bounds set by the thermodynamics proper- ties.	3	BNSWER
PEINT	Set up initial temperature gradi- ents where gradient information is user specified.		GZ
PLOT	Write out data for time history plots at particular nodes.		GZ, TIMCRL
PLOTC1	Write out tracer data for time his- tory plots. Print out at flow time steps.		CONCEN RDCON
POROSI	Read in data for pressure depen- dent porosity and permeability mod- els. Calculate porosity and perme- ability functions.	ROCK	INPUT, WRTOUT, THERMW
PSAT	Calculate the saturation pressure of water for a given temperature.		VARCHK, CO2CTR, THRMWC
RADIUS	Modify finite element coefficients to obtain a radial model.		GZ
RARNG	Rearrange 3-D coordinates to ob- tain 2-D problems when enabled.		GZ
RDCON	Read in tracer data. Initialize tracer variables.	THERMC PLOTC1	CONCEN
RD1DOF	Solves the equations generated for heat conduction by a reduced de- gree of freedom method.	SOLVE	GENSL3, GENCON
RD2DOF	Solve the equations generated for the water only problems by the re- duced degree of freedom method.	SOLVE	GENSL1
RD3DOF	Solve the equations generated for water/noncondensible gas problems by the reduced degree of freedom method.	SOLVE2, SOLVE	GENSL4

•

Name	Description	Calls	Called by
RESETV	Reset the dependent variables to the last time step value. Used when iteration limits are exceeded and a particular time step is restarted.		GZ
RLPERM	Calculate relative permeability func- tions.		GZ, THRMWC, THERMW
SFN2R	Interpolation routine used by ZONE (2-D).		ZONE
SFN3R	Interpolation routine used by ZONE (3-D).		ZONE
SHAP2R	Evaluate 2-D finite element shape functions at quadrature points.		GNCF2
SHAP3P	Evaluate 3-D prism elements at quad ture points.	lra-	GNCF3
SHAP3R	Evaluate 3-D finite elements shape functions at quadrature points.		GNCF3
SICE	Reads in data for simulation with ice present.	STHER	GZ,WRTOUT INPUT
SLVESU	Set up equation solver by identify- ing fill-in positions in the Newton- Raphson matrix.	NOPCNV, NOPCNR, STORAG	GZ
SOLVE	Solve the one degree of freedom lin- ear system of equation.		RD3DOF, RD2DOF, GENSL3, RD1DOF, GENCON
SOLVEN	Solve the N degree of freedom linear system of equations.	LUBKSB LUDCMP	GENCON
SOLVE2	Solve the two degree of freedom lin- ear system of equations.		RD3DOF, GENSL1

,

TABLE III. Subroutine Calls Within FEHMN

TABLE III. Subroutine Calls Within FEHMN

Name	Description	Calls	Called by
SOLVE3	Solve the three degree of freedom linear system of equations.		GNSTR3, GENSL4, RD3DOF
STEADY	Set up initial pressure distribution when gravity is present (enabled).	BNSWER, ENTHP	GZ
STORAG	Write out storage requirements of matrices and arrays associated with the solution of linear equations (New Raphson equations).	ton-	SLVESU
STORSX	Manage the storage or retrieval of element coefficients from auxiliary file.	GZ	
THERMC	Evaluate tracer equation of state information.		RDCON, CNSWER
THERMW	Evaluate the thermodynamic prop- erties (density, enthalpy, and vis- cosity) as a function of pressure and temperature (or saturation).	CAPPR, POROSI RLPERM VFCAL	VARCHK, SOLVE
THRMWC	Evaluate the thermodynamic prop- erties (density, enthalpy, and vis- cosity) as a function of pressure, temperature and partial pressure of noncondensible gas for water/noncondensible gas problems.	RLPERM CAPPR, PSAT, VFCAL	VARCHK
TIMCRL	Control time step information and stopping criteria.	DUAL, DISK, CO2CTR, PLOT, CONTR	GZ
TYMING	Calculate CPU time for a particu- lar computer run.	SYSTEM CLOCK*	GZ
USER	A user programmed subroutine that provides for changing common block variably every time step. Disabled for YMP work.		GZ,INPUT

*Call is made to the system clock of the computer on which it is run.

TABLE III.	Subroutine	Calls	Within	FEHMN
------------	------------	-------	--------	-------

Name	Description	Calls	Called by
USERC	User defined subroutine for chang- ing common variables associated with tracer transport. Disabled for YMP project.	h	CONCEN
VARCHK	Decide, based on current pressure, temperature and saturation values current phase state (fully saturated, partially saturated). Call routine THERMW or THRMWC to up- date thermodynamic properties of density, enthalpy, and viscosity. Add the Newton-Ralphson corrections to the dependent variables.	THRMWC, THERMW, PSAT	GZ, BNSWER, DUAL, DUALFA
VELOC	Calculate velocities in coordinate directions.		GZ, CONTR
VFCAL	Change porosity and permeability as functions of pressure (when en- abled).		THRMWC, THERMW
WRTCON	Write output for tracer at specified intervals.		CONCEN
WRTOUT	Print output information at a user specified interval.	POROSI, CO2CTR, CONCEN, SICE,	GZ
ZONE	Divide the input problem space by allowing the user to define zones geometrically and then labeling the nodes as to which zone they belong to. These zones are then used to assign properties to the nodes.	GENDAT, SFN3R, SFN2R, GEOIN	INPUT

B. Common Block and Parameter Statements

The common block and parameter statements are contained in INCLUDE files. The INCLUDE files needed to compile FEHMN are COMAI, COMBI, COMCI, COMDI, COMEI, COMFI, COMGI, COMHI, COMII, COMPRI, and DAVIDI. The INCLUDE file COMDTI contain the parameter statements and will be described first. If a variable is entered, the input MACRO statement is indicated parenthetically.

INCLUDE file COMDTI (parameter statements)

Only parameters that are different from those found in COMPRI are described.

N0	maximum number of nodes allowed	
N2	2 * NO, storage parameter	
N3	3 * N0, storage parameter	
N4	array storage parameter for noncondensible gas solution	
N5	array storage parameter for dual porosity solution	
N6	array storage for ice solution	
N7	array storage for tracer solution	
N8	array storage for variable porosity solution	
NR	maximum space allowed for each finite element coefficient array	
NBD	180 * N0 maximum array space for incomplete LU decomposition matri	x
LDN	maximum array space needed for Jacobian array matrix	
NELMD	maximum array space for element connectivity array and (later) the no	dal
	connectivity array	
NNOP	maximum array space for LU decomposition connectivity array	
NN	maximum number of connected elements	
NQ	maximum array space for each finite element coefficient array associated	l
	with the stress solution	
NE1	array size of common block /FEBB/, NELMD + NNOP + 4N0	
NE2	array size of common $/FEB/$, N0 + 9NR + 6NQ	
NE3	array size of common block /FBS/, 3N0 + 336	
NE5	array size of common block / FCC/, $39N0 + 5N7$	
NE6	array size of common block / FDD/, 36N0	
NE7	array size of common block / FDD1/, 14N7 + 870	
NE8	array size of common block / $FFD2/$, $7N8 + 4$	
NE9	array size of common block / FDDI/, $5N0 + 1$	
NE10	array size of common block / FHH/, 14N0	
NE11	array size of common block / $CO2/$, $32N4 + 1$	
NE12	array size of common block / FGG/, 9NN + 2N3	
NE13	array size of common block / DUALP/, 23N5	
NE14	array size of common block /FICE/2*N6 +1	
NE15	array size of common block /ICE/N6	

INCLUDE File COMAI

common/FAA/

IAB IAC IAD IACCMX	 iteration counter in stress routines counter for print-out interval current iteration number in flow solution maximum iterations allowed for time step increase (tracer solution)
IAMM IAMX ICAPP	 maximum iterations allowed for time step increase (heat and mass solution) iteration count after which the time step will be halved indicates capillary pressure model
ICE	- parameter which indicates if the ICE solution is enabled
ICEN ICF	 parameter which indicates if the tracer solutions enabled parameter indicating status of tracer solution
ICF	- parameter indicating status of tracer solution
ICGTS	- parameter controlling the time of solution parameter changes
ICHNG	- number of thermodynamic region changes
ICNL ICO2	- indicates problem dimension
	 indicates if noncondensible gas solution is enabled (CO2I) parameter used in contour plot management
IDOF	- number of degrees of freedom per node for the current problem
IDUALP	- parameter which indicates if the dual porosity solution is enabled (DUAL)
IFINSH IHF	 indicates if the finishing criteria for the simulation is achieved parameter indicating status of flow solution (TRAC)
IHS	- parameter indicating status of flow solution (TRAC)
III	- print-out interval, number of time steps (TIME)
IFLAG	- flag used in input subroutine
IINP	- unit number input file
ILT	- parameter used in time step control
INTG IPOROS	- indicates integration type used
IPQZ	indicates if deformation model is enabled (PPOR)the number of nodes used for the contour plot output
IPSAT	- parameter regulating call to subroutine PSAT (EOS)
IOUT	- unit number for output file
IREAD	- unit number for restart file (to read)
	- parameter to reorder system of linear equations
IRPD	- indicates relative permeability model
ISTRS ISAVE	 parameter indicating if the stress solution is enabled unit number for restart file (to write)
ITER	- number of iterations of last call to SOLVE(N) subroutine
ITERT	- intermediate iteration counter
	- total iteration count
ITSAT	- parameter specifying the setting of saturation temperature
IYEAR	- current year in simulation

IVFCAL	- indicates if VFCAL subroutine will be called
IW	- number of storage locations needed to store geometric input types
IWELB	- indicates if wellbore solution is enabled
L	- current time step number
LDA	- parameter which specifies if the geometric coefficients are saved (CTRL)
Μ	- total number of nodes used for output information (NODE)
MLZ	- out of bounds node
MAXIT	- maximum number of iterations allowed before time step is halved (CTRL)
MINK	- number of active variables
MONTH	- current month in simulation
Ν	- total number of nodes
NBND	- maximum number of nonzeros per row in the incidence matrix
NCNTR	- contour plot interval (CONT)
NDEM	- coordinate direction perpendicular to the contour plane
NI	- number of integration points per element
NICG	- parameter used in time step control
NEI	- total number of elements in the problem (ELEM)
NEQ	- number of nodes, not including dual porosity nodes (CORD)
NEIGH	- maximum number of neighbors occur in tracer solution
NEMX	- number of unique (geometrically) elements
NORTH	- maximum number of orthogonalizations allowing in (CTRL)
NS	- number of nodes per element (ELEM)
NSAVE	- indicates if a restart file will be created in the current problem
NSNK	- number of source or sink terms
NSTEP	- maximum number of time steps
/FAAR/	
AIAA	- time step multiplication factor (CTRL)
AN0	- initial tracer concentration (TRAC)
AM0	- initial mass in problem
AMASS	-
AMASS	- current mass in problem
ASTEAM	- initial energy in system problem - current steam mass in problem
ASTEAM ASTM0	- initial stem mass in problem
AENER	- current energy in problem
AW	- time step weighting parameter for heat and mass solution (CTRL)
AWC	- time step weighting parameter (TRAC)
AWT	- value of implicitness factor
AY	•
AYC	- time step weighting parameter for tracer (TRAC)
CONTIM	- time step weighting parameter for tracer
DAY	- interval (days) for contour plot output - current time step size in days
DAYCF	- time at which tracer solution stops (TRAC)
	- unit at which tract solution stops (1 MAV)
I I A VI 'NA NA	
	- maximum time step size for tracer solution - maximum time step size for tracer solution

DAYCS	- time at which tracer solution starts (TRAC)
DAYHF	- time at which flow solution stops (TRAC)
DAYHS	- time at which flow solution starts (TRAC)
DAYMAX	• • • •
DAYMIN	• ()
DAYNEW	- parameter used in time step control
DAYS	- current simulation time
DAYSCN	- next time for contour plot
DAYSI	- simulation time at last time step
DAYSP	- time at next time step
DEN	- intermediate value of mass accumulation term
DENE	- intermediate value of energy accumulation term
DEPCNG	- depth at which temperature gradient changes
DIFE	- energy balance error
DIFM	- mass balance error
DITND	- next time step change time
DNWGT	- upwind weighting parameter
DNWGTA	- upwind weighting parameter in tracer solution
DTOT	- current time step size in seconds
DTOTC	- tracer time step size in seconds
DTOTDM	- last time step size in seconds
EPC	- specified solution tolerance for tracer solution
EPE	- tolerance for Newton-Raphson iteration
EPS	- tolerance for linear equation solver
F0	- initial time step residual
FDUM	- current sum squared of residuals
GRAD2	- parameter in description of temperature gradient
GRADNT	- parameter used in description of temperature gradient
GRAV	- value of gravity
G1	- iteration accuracy control parameter (ITER)
G2	- iteration accuracy control parameter (ITER)
G3	- iteration accuracy control parameter (ITER)
OVERF	- over relaxation factor for SOR equations (ITER)
PEIN	- initial pressure of problem (INIT)
POW	- power output for a given time step
QT	- total outflow for time step
QTE	- total energy outflow for time step
QTOT	- total outflow for problem
QTOTE	- total energy outflow for problem
QTOTEI	- intermediate energy flow total
QTOTI	- intermediate flow total
QUAD	- parameter used in temperature gradient
RNMAX	
SECMA	- maximum time step size in seconds
JUUMA	maximum mile step size in seconds

STR STRD SV SW TEOUTF TIMS TIN TIN0 TIN1	 multiplier for Newton-Raphson corrections multiplier for Newton-Raphson corrections vapor saturation of a node liquid saturation of a node parameter used in calculation of energy output ending simulation time (TIME) parameter used in temperature gradient initial problem temperature (INIT) parameter used in temperature gradient
TMCH TOUTFL UPWGT UPWGTA UPWGTB	 parameter used in temperature gradient machine tolerance (ITER) parameter used in calculation of flow output upwind weighting parameter upwind weighting factor for tracer solution (TRAC) upwind weighting factor for tracer solution
VLMAX VTOT VVMAX	 - maximum liquid phase velocity - total volume in problem - maximum vapor phase velocity

common/FAAC/

SSSOL	- indicates if initial steady state solution is needed
VEQNO	- contains version number of FEHMN code used

common/FAAC1/

IDATE - contains the date (mm/dd/yr)

INCLUDE file COMBI

common/FBB/

NELM(NELMD)	- initially information about nodes in each element, later nodal connectivity information
NOP(NNOP)	- matrix sparsity structure for LU decomposition
NAR(N0)	- array containing gauss elimination order for each node
ISTRW(N0)	- starting positions in sx(nr,9) array of finite element coefficients for each node
KA(N0)	- contains boundary type information for each node
NELMDG(N0)	- contains position of (i,i) element in connectivity array

common/FBC/

SX1(N0)	-	contains volume associated with each node
SX(NR,9)	-	contains finite element geometric coefficients necessary for heat and
		mass transfer simulation
SXS(NQ,6)	-	contains more finite element geometric coefficients (ie., those
		necessary for the stress module)

common/FBS/

CORD(N0,3) XD(8),YD(8),ZD(8) SI(8),ETA(8),EXCI(8)	-	contains the coordinates of each node global coordinates of the nodes in a finite element local coordinates in a finite element of the numerical
XT(8),YT(8),ZT(8) W(8,8) WX(8,8) WY(8,8) WZ(8,8) DR(8) DP(6) WR(8,8) WXR(8,8)		integration points parameters needed in element calculations finite element shape functions derivative of shape functions with respect to x derivative of shape functions with respect to y derivative of shape functions with respect to z contains weights for integration points (bricks, rectangles) contains weights for integration points (prisms, triangles) finite element shape functions (rectangles) derivative of shape functions with respect to x (rectangles)
WXR(8,8) WYR(8,8) WZR(8,8) WP(8,8) WXP(8,8) WYP(8,8) WZP(8,8)	- - - -	derivative of shape functions with respect to x (rectangles) derivative of shape functions with respect to z (rectangles) derivative of shape functions with respect to z (rectangles) finite element shape functions (prisms) derivative of shape functions with respect to x (prisms) derivative of shape functions with respect to y (prisms) derivative of shape functions with respect to z (prisms)

INCLUDE File COMCI

common/FCC/

DANL(N7)	- derivative of liquid phase concentration with respect to total concentration
DANV(N7)	- derivative of vapor phase concentration with respect to total concentration
AKC(N7)	- tracer accumulation term derivative with respect to total concentration
DRC(N7) DEEF(N0) DEPF(N0)	 tracer source term derivative with respect to total concentration derivative of energy accumulation with respect to energy variable derivative of energy accumulation term with respect to pressure

		1 • • • • • • • • • • • • • • • • • • •
DMPF(N0)		derivative of mass accumulation term with respect to pressure
DMEF(N0)		derivative of mass accumulation term with respect to energy variable
DQ(N0)		derivative of mass source term with respect to pressure
DQH(N0)		derivative of energy source term with respect to pressure
DEQH(N0)		derivative of energy source term with respect to energy variable
• •		derivative of temperature with respect to energy variable
· · ·		derivative of temperature with respect to pressure
		derivative of enthalpy with respect to energy variable
DEVF(N0)		derivative of enthalpy with respect to pressure
		derivative of vapor relative permeability with respect to pressure
DRVEF(N0)	-	derivative of vapor relative permeability with respect to energy variable
DGLE(N0)	-	derivative of liquid mass gravity term with respect to energy variable
DGLP(N0)	-	derivative of liquid mass gravity term with respect to pressure
DELEF(N0)	-	derivative of liquid enthalpy with respect to energy variable
DELF(N0)	-	derivative of liquid enthalpy with respect to pressure
DRLPF(N0)	-	derivative of liquid relative permeability with respect to pressure
		derivative of liquid relative permeability with respect to energy variable
DILE(N0)	-	derivative of liquid transmissibility with respect to energy variable
DILP(N0)	-	derivative of liquid transmissibility with respect to pressure
ENLF(NÓ)	-	liquid enthalpy
ENVF(N0)		vapor enthalpy
DSTM(N0)		steam mass
DENI(N0)	-	mass accumulation term
DENÈI(NO)	-	energy accumulation term
DIL(N0)		liquid transmissibility
DIV(NO)		vapor transmissibility
ROLF(N0)		liquid density
ROVF(N0)		vapor density
RLF(N0)		liquid phase relative permeability
RVF(N0)		vapor phase relative permeability
DENCI(N7)		tracer accumulation term
GL(N0)		liquid phase gravity term
GV(N0)		vapor phase gravity term
DIVE(N0)		derivative of vapor transmissibility with respect to energy variable
DIVP(N0)		derivative of vapor transmissibility with respect to pressure
		derivative of vapor mass gravity term with respect to pressure
DGVE(N0)		derivative of vapor mass gravity term with respect to pressure derivative of vapor mass gravity term with respect to energy variable
		derivative of vapor mass gravity term with respect to energy variable derivative of capillary pressure with respect to the energy variable
<i>Di Obi</i> (110)	-	contraine or cabinities breastic with respect to the cherky variable

INCLUDE file COMDI

common/FDD/

THX(N0) - thermal conductivity x-direction

THY(N0)	- thermal conductivity y-direction	
THZ(N0)	- thermal conductivity z-direction	
VOLUME(N0)	- volume associated at each node	
SK(N0)	- source strength of each node	
ESK(N0)	- inlet enthalpy associated with a source	
QFLUX(N0)	- heat flux at each node	
QFLXM(N0)	- heat flux impedance at each node	
PNX(N3)	- permeability in the x-direction, liquid velocity in the x-direction	,
	vapor velocity in the x-direction	
PNY(N3)	- permeability in the y-direction, liquid velocity in the y-direction	,
	vapor velocity in the y-direction	
PNZ(N3)	- permeability in the z-direction, liquid velocity in the z-direction,	,
	vapor velocity in the z-direction	
PS(N0)	- porosity at each node	
EFLOW(N0)	- energy flow at each source node	
PHI(N0)	- pressure at each node	
PHÔ(NÓ)	- last time step pressure at each node	
T(N0)	- temperature at each node	
TÒ(Ń0)	- last time step pressure at each node	
VF(N0)	- volume factor at each node	
PFLOŴ(N0)	- flowing pressure at each source node	
DENEH(N0)	- last time step energy accumulation term at each node	
QH(N0)	- energy source term at each node	
S(N0)	- liquid saturation at each node	
SÒ(Ń0)	- last time step saturation at each node	
WELLIM(N0)	- well impedance at each source node	
DENH(N0)	- last time step mass accumulation term at each node	
DENJ(N0)	- last time step mass accumulation time derivative at each node	
DENEJ(NO)	- last time step energy accumulation time derivative at each node	
DENR(N0)	- rock density at each node	
CPR(N0)	- rock specific heat at each node	
PCP(N0)	- capillary pressure at each node	

common/FDDI/

NSKW(N0) - contains nodes for print-out

common/FDD1/

AN(N7)	- total tracer concentration at each node
ANL(N7)	- liquid tracer concentration at each node
ANV(N7)	- vapor tracer concentration at each node
CNSK(N7)	- tracer concentration source term at each node

T1SK(N7)	- time when the tracer source term is activated at each node
	- time when the tracer source term is activated at each node
T2SK(N7)	
RC(N7)	- tracer source term at each node
DENCH(N7)	-
DENCJ(N7)	- last time step tracer accumulation derivative term at each node
ANLO(N7)	- last time step total tracer concentration at each node
FC(N7)	- tracer equation residual at each node
TCX(N7)	- tracer diffusion term in the x-direction
TCY(N7)	- tracer diffusion term in the y-direction
TCZ(N7)	- tracer diffusion term in the z-direction
CM(10)	- total tracer mass for each specie
CM0(10)	- initial total tracer mass for each specie
QCIN(10)	- total injected tracer mass for each specie
QOUT(10)	- total produced tracer mass for each specie
A1ADF(10)	- alpha1 parameter for each specie(nonlinear adsorbtion)
A2ADF(10)	- alpha2 parameter for each specie (nonlinear adsorbtion)
BETADF(10)	- beta parameter for each specie (nonlinear adsorbtion)
A1R	- parameterin reaction rate model
A2R	- parameterin reaction rate model
A3R	- parameterin reaction rate model
A4R	- parameterin reaction rate model
RP1F(25)	- parameter in relative permeability model
RP2F(25)	- parameter in relative permeability model
RP3F(25)	- parameter in relative permeability model
RP4F(25)	- parameter in relative permeability model
RP5F(25)	- parameter in relative permeability model
RP6F(25)	- parameter in relative permeability model
RP7F(25)	- parameter in relative permeability model
RP8F(25)	- parameter in relative permeability model
RP9F(25)	- parameter in relative permeability model
RP10F(25)	- parameter in relative permeability model
RP11F(25)	- parameter in relative permeability model
RP12F(25)	- parameter in relative permeability model
RP13F(25)	- parameter in relative permeability model
RP14F(25)	- parameter in relative permeability model
RP15F(25)	- parameter in relative permeability model
RP16F(25)	- parameter in relative permeability model
RP17F(25)	- parameter in relative permeability model
CP1F(10)	- parameter in capillary pressure model
CP2F(10)	- parameter in capillary pressure model
CP3F(10)	- parameter in capillary pressure model
DIT(300)	- array containing time step changes
()	

.

common/FDD1I/

NSPECI	- number of species for tracer solution
NSP	- current specie number
NPN	- parameter used in storing tracer data
NPT(10)	- storage parameter used in tracer solution
IADD(10)	- iteration count for tracer solution
IADDT(10)	- iteration count used for linear equation solver in tracer solution
IADSF(10)	- adsorption model used in tracer solution
ICAPT(10)	- capillary pressure model
IRLPT(10)	- relative permeability model
ICNS(10)	- liquid or gas phase tracer model
ICRATE	- reaction rate model
ITC(100)	- array containing information used in time step changes

common/FDD2/

PHINI(N8)	- initial pressure at each node
PSINI(N8)	- initial porosity at each node
DPORP(N8)	- derivative of porosity with respect to pressure at each node
DPORT(N8)	- derivative of porosity with respect to temperature at each node
TINI(N8)	- initial temperature at each node
SIGINI	- parameter used in rock deformation model
PHYDRO	- parameter used in rock deformation model
THEXP	- parameter used in rock deformation model
YOUNG	- parameter used in rock deformation model
AMGANG(N8)	- parameter used in gangi model at each node
PGANGI(N8)	- parameter used in gangi model at each node

common/FICE/

- SII(N6) ice saturation at each node
- SIO(N6) last time step value of ice saturation TMELT freezing temperature of water

common/IICE/

ICES(N6) - state of ice at each node

- thermodynamics set at each node
- phase state of fluid at each node
- phase change parameter
- deformation model at each node
- relative permeability model at each node
- capillary pressure model at each node

INCLUDE file COMEI

common/FEE/

A(LDN) - array containing the Jacobian matrix

common/FFF/

B(NBD) - array containing the incomplete LU decomposition of the Jacobian matrix

common/FHH/

IRB(N0)	- array containing the reordered node numbers
IIRB(N0)	- inverse of irb
NOPT(N0)	- array indicating active variables
NPVT(N0)	- pivot information for the LU decomposition matrix
IG(N0)	- variable order LU decomposition information
PIV(N0,9)	- the pivot elements of the LU decomposition

INCLUDE file COMFI

DMC(N4)	- derivative of mass accumulation term with respect to gas at each node
DEC(N4)	- derivative of energy accumulation term with respect to gas at each node
DCP(N4)	- derivative of gas accumulation term with respect to pressure at each node
DCE(N4)	- derivative of gas accumulation term with respect to energy at each node
DQC(N4)	- derivative of mass source term with respect to gas
DEQC(N4)	- derivative of energy source term with respect to gas
DCQC(N4)	- derivative of gas source term with respect to gas

DENDOI(NA)		
DENPCI(N4)		gas accumulation term at each node
· · ·		last time step value of the mass accumulation term at each node
DIVC(N4)		derivative of vapor transmissibility with respect to gas
DGVC(N4)	-	derivative of vapor gravity term with respect to gas
DCVCF(N4)	-	derivative of gas concentration with respect to gas
DCVEF(N4)	-	derivative of gas concentration with respect to energy
DCVF(N4)	-	derivative of gas concentration with respect to pressure
DEVCF(N4)	-	derivative of energy with respect to gas
CNVF(N4)	-	concentration of gas in the vapor phase
DILC(N4)	-	derivative of liquid transmissibility with respect to gas
DGLC(N4)	-	derivative of liquid gravity term with respect to gas
ESKC(N4)	-	source term for gas equation
DCLCF(N4)	-	derivative of liquid concentration with respect to gas
DCLEF(N4)	-	derivative of liquid concentration with respect to energy
DCLF(N4)	-	derivative of liquid concentration with respect to pressure
DELCF(N4)	-	derivative of liquid energy with respect to gas
CNLF(N4)	-	gas concentration in the liquid phase
$QC(N\dot{4})$	-	source term for the gas equation
DCC(N4)		derivative of gas accumulation term with respect to gas
· · ·		derivative of temperature with respect to gas
· · ·		last time step accumulation term of gas equation
DCQH(N4)		derivative of gas source term with respect to energy
PCI(N4)		gas pressure
PCIO(N4)		last time step gas pressure
DIFC	-	noncondensible gas mass balance error

INCLUDE file COMGI

common/FGG/

DFMP(NN)	- derivative of mass accumulation term with respect to pressure for neighbor nodes
DFME(NN)	- derivative of mass accumulation term with respect to energy for neighbor nodes
DFEP(NN)	- derivative of energy accumulation term with respect to pressure for neighbor nodes
DFEE(NN)	- derivative of energy accumulation term with respect to energy for neighbor nodes
DFMPC(NN)	- derivative of mass accumulation term with respect to gas for neighbor nodes
DFEPC(NN)	- derivative of energy accumulation term with respect to gas for neighbor nodes
DFPCP(NN)	- derivative of gas accumulation term with respect to pressure for neighbor nodes
DFPCE(NN)	- derivative of gas accumulation term with respect to energy for

DFPCPC(NN) -	neighbor nodes derivative of gas accumulation term with respect to gas for neighbor nodes
BP(N3) -	array of Newton-Raphson residuals, after solution, an array of Newton-Raphson corrections
BPC(N3) -	array of Newton-Raphson residuals for gas, after solution, an array of Newton-Raphson corrections

INCLUDE file COMHI

common/DUALP/

VOLF1(N5)	- volume fraction at each node for the first matrix layer
VOLF2(N5)	- volume fraction at each node for the second matrix layer
APUV1(N5)	- area per unit volume for the first matrix layer
WB11(N5)	- array needed to store intermediate dual porosity results
WB12(N5)	- array needed to store intermediate dual porosity results
• •	
WB21(N5)	- array needed to store intermediate dual porosity results
WB22(N5)	- array needed to store intermediate dual porosity results
TB11(N5)	- array needed to store intermediate dual porosity results
TB12(N5)	- array needed to store intermediate dual porosity results
TB21(N5)	- array needed to store intermediate dual porosity results
TB22(N5)	- array needed to store intermediate dual porosity results
A21MPF(N5)	- array needed to store intermediate dual porosity results
	• • · · · • • • • • • • •
A21MEF(N5)	- array needed to store intermediate dual porosity results
A21EPF(N5)	- array needed to store intermediate dual porosity results
~ /	· · ·
A21EEF(N5)	• • •
A32MPF(N5)	- array needed to store intermediate dual porosity results
A32MEF(N5)	- array needed to store intermediate dual porosity results
11021111 (110)	- and needed to store intermediate dual porosity results
A32EPF(N5)	- array needed to store intermediate dual porosity results
A32EEF(N5)	- array needed to store intermediate dual porosity results
RB2MF(N5)	- array needed to store intermediate dual porosity results
RB2EF(N5)	- array needed to store intermediate dual porosity results
RB3MF(N5)	- array needed to store intermediate dual porosity results
RB3EF(N5)	- array needed to store intermediate dual porosity results
HDODF(HD)	- array needed to store intermediate dual porosity results

INCLUDE file COMII

common/COEFF/

CEL(20,2)	- polynomial coefficients for liquid water enthalpy equations
CRL(20,2)	- polynomial coefficients for liquid water density equations
CEV(20,2)	- polynomial coefficients for vapor water enthalpy equations

CRV(20,2) CVL(20,2) CVV(20,2) TSA0	 polynomial coefficients for vapor water density equations polynomial coefficients for liquid water viscosity equations polynomial coefficients for vapor water viscosity equations polynomial coefficient for saturation temperature equation
TSPA1	- polynomial coefficient for saturation temperature equation
TSPA2	- polynomial coefficient for saturation temperature equation
TSPA3	- polynomial coefficient for saturation temperature equation
TSPA4	- polynomial coefficient for saturation temperature equation
TSB0	- polynomial coefficient for saturation temperature equation
TSPB1	- polynomial coefficient for saturation temperature equation
TSPB2	- polynomial coefficient for saturation temperature equation
TSPB3	- polynomial coefficient for saturation temperature equation
TSPB4	- polynomial coefficient for saturation temperature equation
PSA0	- polynomial coefficient for saturation pressure equation
PSTA1	- polynomial coefficient for saturation pressure equation
PSTA2	- polynomial coefficient for saturation pressure equation
PSTA3	- polynomial coefficient for saturation pressure equation
PSTA4	- polynomial coefficient for saturation pressure equation
PSB0	- polynomial coefficient for saturation pressure equation
PSTB1	- polynomial coefficient for saturation pressure equation
PSTB2	- polynomial coefficient for saturation pressure equation
PSTB3	- polynomial coefficient for saturation pressure equation
PSTB4	- polynomial coefficient for saturation pressure equation

common/COEFF1/

PMAX(3)	- maximum pressure allowed for each coefficient set
PMIN(3)	- minimum pressure allowed for each coefficient set
TMAX(3) TMIN(3)	- maximum temperature allowed for each coefficient set - minimum temperature allowed for each coefficient set
T WITH(0)	- minimum temperature anowed for each coefficient set

common/COEFF2/

EW1	- coefficient used in simplifying thermodynamics relations
EW2	- coefficient used in simplifying thermodynamics relations
EW3	- coefficient used in simplifying thermodynamics relations
EW4	- coefficient used in simplifying thermodynamics relations
EW5	- coefficient used in simplifying thermodynamics relations
EW6	- coefficient used in simplifying thermodynamics relations
EW7	- coefficient used in simplifying thermodynamics relations
EW8	- coefficient used in simplifying thermodynamics relations
EW9	- coefficient used in simplifying thermodynamics relations
EW10	- coefficient used in simplifying thermodynamics relations
EW11	- coefficient used in simplifying thermodynamics relations

EV1	- coefficient used in simplifying thermodynamics relations
EV2	- coefficient used in simplifying thermodynamics relations
EV3	- coefficient used in simplifying thermodynamics relations
EV4	- coefficient used in simplifying thermodynamics relations
EV5	- coefficient used in simplifying thermodynamics relations
EV6	- coefficient used in simplifying thermodynamics relations
EV7	- coefficient used in simplifying thermodynamics relations
EV8	- coefficient used in simplifying thermodynamics relations
EV9	- coefficient used in simplifying thermodynamics relations
EV10	- coefficient used in simplifying thermodynamics relations
EV11	- coefficient used in simplifying thermodynamics relations

INCLUDE file DAVIDI

common/DAVID1/

IRDOF	- reduced degree of freedom model used
ISLORD	- parameter used in the reduced degree of freedom model
IBACK	- LU factorization save parameter
ICOUPL	- number of SOR iterations
ITEST	- parameter used in the reduced degree of freedom model

common/DAVID2/

NMAT(9)	- array used in the reduced degree of freedom method
NRHS(3)	- array used in the reduced degree of freedom method
NMAT32(4)	- array used in the reduced degree of freedom method

C. Subroutine Structure for FEHMN

Figure 4 presents the general subroutine call tree structure for the code FEHMN. Due to its complexity, the entire structure could not fit within a page, hence it is broken into several branches. As an example of the tree's use we trace the call structure from GZ (the main program), which calls INPUT (0003), which calls CONCEN(0021), which calls CSOLVE (0026), which calls CNSWER (0028) which calls THERMC (0028). At subroutine THERMC, the tree is directed to line 0024 where the calls from THERMC have been previously explained. We see that THERMC calls DABS. This was only one path of many possible; all paths may be traversed in a way analogous to above.

Fig. 4. Structure for subroutine calls for FEHMN.

48

0067	1	1	1	+-@AL1
0068	1	1	1	+-#ALM
0069	1	1	+DU/	KLEXBALN
0070	1	+CAPPR	> 00	54
0071	1	+RLPERK-		
0072	1	+\$1CE		
0073	1	1	+-=NA)	
0074	1	1	+\$1	NER
0075		+WELBOR	,	
0076	+-#NAXD			
0077 0078	+NEAR3			50T
0079	1	-+VELOC 1	+-=DK/	
0080	i		4-#DA	
0081	i	+CONCEN-		
0082	+AKONP			••
0083	1	+-8TP		
0084	Î.	+-BAL		
0085	1	+-=DABS		
0086	1	4-8VP		
0087	1	+-#1ABS		
0088	L	+-=NAXO		
0089	1	+GENCOF-	+GN	CF3*\$KAP3R=DSQRT
0090	1		1	+\$KAP3P
0091	1		+GN	CF2SHAP2R=DSQRT
0092	+STORSX			
0093	4-#DA85			
0094 0095	-	-+COXCEN	> 00/	£1
0096	1 +PEINT	+STRESS		
0097	1	+-#DHAX1		
0098	+RARNG			
0099	+RADIUS			
0100		-+ HOPCNV-	+-=MA)	10
0101	1	1	+-=X11	K0
0102	1	+NOPCNR-	+-#HA)	10
G 103	1	t	+-#NII	10
0104	1	+STORAG-	#X]I	10
0105	+SETORD			
0106	4DUAL			
0107	+CO2CTR	> 0044		
0108 0109	+COEFFC +\$]CE	> 0072		
0110	+VARCHK			
0111	+STEADY			
0112	1	+ENTHP		
0113	i		+VAI	CHK> 0048
0114	1		+001	
Ø115	1		+GEI	SL3+GENEQ3
0116	1		1	+-#DSQRT
0117	1		1	+-#DHAX1
0118	1		1	+-=DKIN1
0119	1		1	•\$0LVE> 0033
0120	1		1	4RD1D0F> 0036
0121	1		-	ISL4+GENEQC
0122 0123	5		1	4GENER3 4BUAL> 0048
0123	1		i	+ NORMAL+- @AL1
0125	i		i	1 +-BALM
0126	i		i	1 +-aAL13
0127	1		i	1 +-0ALN3
0128	1		i	++=DSQRT
0129	1		1	+-=BHAX1
0130	1		ł	4-#DH] N1
0131	£		1	+\$0LVE3+-#DS&RT
0132	1		1	1 +-@ALI

Fig. 4. (Continued)

.

0133	1 1 1 +- BALN
0134	1 1 +-=DNAX1
0135	1 1 4-BDABS
0136	1 +RD3D0F+\$0LVE2+-#DS&RT
0137	I I +-BALI
0138	1 1 +• DALK
0139	1 1 4-BDNAX1
0140	1 1 +-=DABS
0141	! I + \$0LVE> 0033
0142	1 +GENSL1+GENEQ1
0143	1 + GENEQ3
0144	1 + DUAL> D048
0145	4NORMAL> 0124
0145	t +-⇒DSQRT
0147	4-#DWAX1
0148	4-3DHIN1
0149	1 + \$01VE2> 0136
0150	1 + RD2D0F+ \$0LVE> 0033
0151	+-=DS&RT
0152	+CONCEN> 0021
0153	+PL0T
0154	+BATCHK+-=DHIN1
0155	1 +-=DHAX1
0156	+TINCRL+DUAL> 0048
0157	1 +DISK> 0094
0158	1 +CO2CTR> 0044
0159	1 +PLOT
0160	1 +CONTR> 0078
0161	!
0162	+ USER
0163	+VELBOR
0154	+ENTHP
0165	+BNSVER> 0113
0166	+RESETV
0167	+ \$TRE\$\$
0168	+VELOC> 0078
0159	+-#DHAX1
6170	+WRTOUT+-#NAXO
0171	I +-#DFLOAT
0172	1 +PORDSI> 0016
0173	1 +CO2CTR> 0044
0174	1 +CONCEN> 0021
0175	1 + STRESS
0175	1 +\$1CE> 0072
0177	4-*NOD

Fig. 4. (Continued)

III. USER'S MANUAL

This section provides the instructions necessary for using the code FEHMN. Section A describes an automatic mesh generation code, GENMSH, that can be used to generate the finite element mesh input required by FEHMN. Section B describes in detail the input macro-commands for FEHMN. A graphics postprocessor is described in Section C and several example problems are given in Section D.

A. Automatic Mesh Generation

The code GENMSH, which is designed to be used in conjunction with the finite element code FEHMN, operates by dividing a user-defined solution space into a prescribed number of finite elements. The solution space may be either two or three dimensional. In order to simplify geometric considerations, the solution space is broken up into a number of "blocks." Each block is then further divided into "elements." A given block uses the same "type" of element throughout, although the elements need not be of the same size. Different blocks may use different types of elements. The choice of elements available in two dimensions for output to FEHMN are 4-noded quadrilaterals and 3-noded triangles. In three dimensions, the choice is 8-noded quadrilateral polyhedrons or 3-noded triangular prisms, shown schematically in Fig. 5.

The solution space, and each block, is defined by giving the corner and/or midpoint nodes. This amounts to specifying 4 or 8 nodes per block in 2-D problems and 8 or 20 nodes per block in 3-D problems as shown in Fig. 6. The same block definition is needed for both quadrilateral and triangular elements. After discretizing the solution space and the blocks, it is necessary to specify the desired division of each block into elements. This is done by specifying the relative weights of each subdivision in each direction for each block. The reader is referred to *An Introduction to Finite Element Computations* by Hinton and Owen (pp. 328-346) for the details of the procedure and the algorithm. Note that material properties are specified at each node in FEHMN, unlike conventional finite element procedure.

A detailed description of the input to the code follows. The input must be placed in a file called MDAT. Examples of the MDAT file are given in Section D. The output is found on a file called GEOM.DAT. The output consists of a list of nodal coordinates and elements in a suitable format for the code FEHMN. Free format is used for the input. In addition, a zone definition of the input blocks is provided in file ZONE. The files GEOM.DAT and

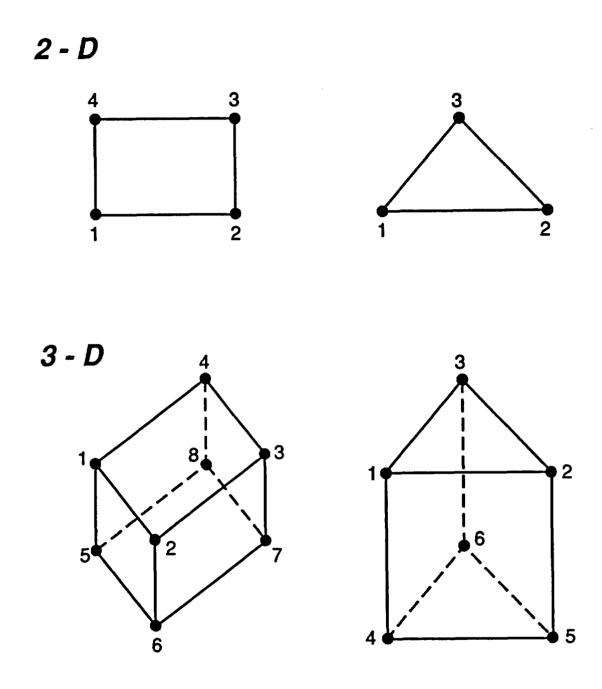
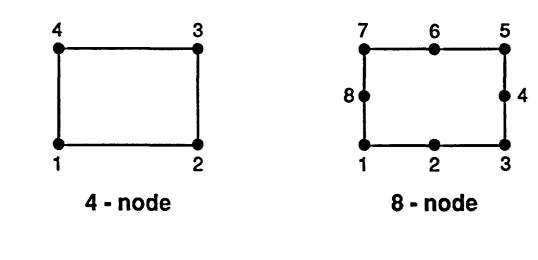



Fig. 5. Elements available with FEHMN in 2-D and 3-D problems showing numbering convention.

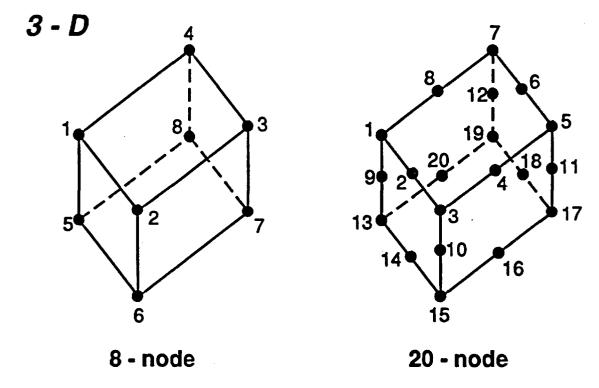


Fig. 6. Nodal ordering for defining 2-D and 3-D domain blocks for input to GENMSH.

ZONE may be used directly in the input file for FEHMN as they already include the appropriate macro command headings.

Group 1

Title, up to 80 characters long

 Group 2 NPOIN, NELEM, LNODE, IT, NDIME, KF, NRN NPOIN - total number of points used to define the solution space NELEM - number of blocks used to define the solution domain LNODE - number of nodes per block used to define the solution domain IT - element triangulation parameter, if IT=0, then no element splitting occurs, if IT≠ 0, then triangle elements are generated in 2-D and prism elements are generated in 3-D. NDIMB - dimension of problem (2 or 3)
 KF - determines the vertical axis direction in 2-D. If KF < 0 then the y-axis is positive downward. If KF ≥0, the y-axis is positive upward in 3-D, the z-axis is always positive upward. See note on plotting below.
NRN - renumber parameter. If NRN $\neq 0$ the code will renumber to minimize the band width. If NRN = 0 then no renumbering will occur.
Group 3 (NUMEL, Block Times) NUMEL, (LNODS(NUMEL,INOD), INODE = 1, LNODE) NUMEL - Block number LNODS (NUMEL, INOD) - LNODE nodes defining the block NUMEL
Group 4 CORDX (I), I = 1, NPOIN CORDX (I) - x-coordinates of points used to define the solution space
Group 5 CORDY (I), I = 1, NPOIN CORDY (I) - y-coordinates of points used to define the solution space
Group 6 (only if NDIME = 3) CORDZ (I), I = 1, NPOIN CORDZ (I) - z-coordinates of points used to define the solution space NOTE: Groups 7-10 are repeated for each block.

Group 7 KBLOC, NDIVX, NDIVY, NDIVZ KBLOC - block number NDIVX - number of divisions in x-direction NDIVY - number of divisions in y-direction NDIVZ - number of divisions in z-direction (only if NDIME = 3). NOTE: The number of nodes in a direction = number of divisions + 1. Group 8 WEITX (I), I = 1, NDIVX WEITX (I) - weighting of the Ith division in the x-direction in block KBLOC Group 9 WEITY (I), I = 1, NDIVY WEITY (I) - weighting of the Ith division in the y-direction in block KBLOC Group 10 WEITZ (I), I = 1, NDIVZ (only if NDIME = 3) WEITZ (I) - weighting of the Ith division in the z-direction in block KBLOC Group 11 (only if NDIME = 3) XV, YV, ZV XV - x-coordinate of viewing point for 3-D plot YV - y-coordinate of viewing point for 3-D plot ZV - z-coordinate of viewing point for 3-D plot NOTE: XV = 300, YV = 300, ZV = 50 gives a good viewing angle for many problems. Group 12 (only if NDIME = 3) XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX XMIN - minimum x-cordinate for plot of mesh XMAX - maximum x-coordinate for plot of mesh If XMIN = XMAX then the limits will be determined from the generated mesh YMIN - minimum y-cordinate for plot of mesh YMAX - maximum y-coordinate for plot of mesh If YMIN = YMAX then the limits will be determined from the generated mesh ZMIN - minimum z-cordinate for plot of mesh ZMAX - maximum z-coordinate for plot of mesh If ZMIN = ZMAX then the limits will be determined from the generated mesh

Group 13 (optional)		
NREF, XR, YR, ZR, IRFN		
NREF - reference node for refinement		
KR - x-coordinate of reference node		
YR - y-coordinate of reference node		
ZR - z-coordinate of reference node		
RFN - refinement level for reference node		

If NREF < 0 then the node closest to the reference coordinates is used as the reference node. If IRFN < 0 then the node closest to the reference coordinates is used as the reference node and the coordinates set to the reference coordinates.

The refinement level is ABS (IRFN). If the refinement level is 1 then the elements surrounding the reference node are subdivided once and new elements created. A refinement level of 2 means this is done twice, and so on.

Note on plotting. If $KF \neq 0$ in Group 2 a plot of the mesh is provided, and if ABS(KF) > 1 node numbers are printed on the plot.

B. Macro Command Input For FEHMN

The finite element heat and mass transfer code (FEHMN) contains a macro control structure for data input that offers added flexibility to the input process. Blocks of data can be entered in any order, and any blocks unnecessary to a particular problem can be disregarded. All entries are free format, which adds flexibility, but requires that values be entered for all input variables (no assumed null values). As an aid to the user, the capabilities of FEHMN are summarized in Table IV with reference to the macro commands. Values of parameters are entered either by node number or a geometric description (macro command ZONE). The user is encouraged to read the macro ZONE description.

	TABLE IV. Capabilities of FEHMN with Macro Command References
I.	Mass, energy balances in porous media A. Variable rock properties (ROCK) B. Variable permeability (PERM) C. Variable thermal conductivity (COND) D. Variable fracture properties, dual porosity (DUAL)
II.	Multiple components available A. Air water mixture available, fully coupled to heat and mass transfer (NCON) B. Up to 10 passive tracers available (TRAC) C. Several different capillary pressure models (CAP) D. Several different relative permeability models (RLP)
III.	Equation of state flexibility inherent in code (EOS)
IV.	Psuedo-stress models available A. Linear porosity deformation (PPOR) B. Gangi stress model (PPOR)
v.	Numerics A. Finite element with multiple element capabilities (ELEM) B. Short form input methods available (COOR, ELEM) C. Flexible properties assignment (ZONE) D. Flexible solution methods 1. Upwinding, implicit solution available (CTRL) 2. Iteration control adaptive strategy (ITER)

•

.

- 2. Iteration control adaptive strategy (ITER)
- VI. Flexible time step and stability control (TIME)

TABLE V. FEHMN Files

$TAPEn1(1 \le n1 \le 10)$	input file (user supplied)
$TAPEn2(11 \le n2 \le 20)$	output file (code generated)
$TAPEn3(21 \le n3 \le 30)$	initial value tape (read a restart, user supplied)
$TAPEn4(31 \le n4 \le 40)$	final value tape (write a restart, code generated)
FE.HIS	time history of variables (code generated)
FE.CON	contour plot data (code generated)
FE.MIS	contains program information of the code crashes (code generated)
FE.TRC	tracer time history data (code generated)
STOR.FE	storage of finite element coefficients (user supplied or code generated)
FE.CHK	contains input analysis

Although most input data are contained in the input deck, some information must first be entered from the **terminal**. Most of the information required before the input deck can be read pertains to input and output files and is prompted for from within the program. Figure 7 shows the output for a typical FEHMN run on a CRAY computer. All files are of the form TAPEn, where n is the tape (unit) number. Table V contains a description of FEHMN files. The terminal input follows:

(free format) INPT, IOUT, IREAD, ISAVE, IDC

INPT - unit number of the input file

- IOUT unit number of the file to which nodal information (pressures, enthalpies, etc.) is printed
- IREAD unit number of file on which initial values of pressure and enthalpy are found. (If IREAD = 0, initial values are generated from input data. See macro control statement **PRES**)
- ISAVE unit number of file on which final time nodal information is printed for restart purposes (if ISAVE = 0, no restart file is created).
- IDC user subroutine parameter if IDC = 0 the code makes no USER subroutine calls if IDC $\neq 0$ the code calls subroutine USER (user defined) at each time step. The form is CALL USER (IDC).

In Fig. 8, the user entered data is after the "?". Here INPT = 1, IOUT = 11, IREAD = 0, ISAVE = 0, and IDC = 0. The remainder of the data is read from unit INPT (which was defined above).

The macro command structure makes use of a set of control statements recognized by the input module of the program. When a macro control statement is encountered in the input deck, a certain set of data is expected and read from the input deck. In this way, the input is divided into separate, unordered blocks of data. The input deck is therefore a collection of macro control statements, each followed by its associated data block, as the example input files (Section D) show. Note that, although the input is free format, macro control statements must appear in the first four columns of a line. Table VI lists the macro control statements with brief descriptions of the data associated with each. The macro control statements may be in any order, although the data associated with each macro control statement must follow with the prescribed format. Some statements are necessary and others are optional, as indicated in Table VI.

A detailed list of the macro control statements and the input variables associated with each is given in Table VII. In Section D example input files are given.

```
xfehmz / 6 1.2
version fehm.4.0
                  ,george zyvoloski(505 6671581)
**** program files must obey the following conventions ****
          input files: tape1-10
          output files: tape11-20
          read files(if they exist): tape21-30
          write files (if they exist): tape31-40
**** note ****
     history plot file is fe.his
     contour plot file is fe.con
     tracer plot file is fe.trc
     input check file is fe.chk
     fe.mis is used for error recovery
**** and ****
     tape59(terminal) is available for any use
input tape, output file, rd tape, wt tape, user call/step
? 1 11 0 0 0
 input title : node
 input title : rlp
 input title : sol
 input title : init
 input title : rock
 input title : cond
 input title : perm
 input title : flow
 input title : time
 input title : ctrl
 input title : coor
 input title : elem
 input title : stop
 stop
                        41.483
                                 seconds
xfehmz
         ctss time
                        2.519 mem= 20.660
         18.305 i/o=
cpu=
```

Fig. 7. Terminal output for a FEHMN run on a CRAY computer.

TABLE VI. Macro Control Statements for FEHMN		
Control Statement	Description	
CAP	capillary pressure data, optional.	
COOR	node coordinate data, required.	
COND	thermal conductivity data, required.	
CONT	contour plot data, optional.	
CTRL	program control parameters, required.	
DUAL	input for dual porosity solution, optional.	
ELEM	element node data, required .	
EOS	equation of state data, optional.	
FLOW	flow data, optional.	
HFLX	heat flux data, optional.	
INIT*	initial value data, optional.	
ITER	iteration parameters, optional.	
NGAS	noncondensible gas (air) data, optional.	
NODE	node numbers for output and time histories, required.	
PERM	permeability and velocity data, required.	
PPOR	pressure and temperature dependent porosity and permeability, optional.	
PRES	initial pressure and enthalpy data, optional.	
RLP	relative permeability data, optional (required for 2-phase problem).	
ROCK	rock density, specific heat, and porosity data, required.	
SOL	solution specifications, required.	
STEA	steady state solution generated for initial variable field, optional.	
STOP	signals the end of input, required.	
TEXT	text input, optional.	
TIME	time step and time of simulation data, required.	
TRAC	tracer data, optional.	
ZONE	geometric definition of grid for input definition, optional.	

*One or both INIT and PRES macros are necessary.

The user is encouraged to look at the file FE.CHK. This file contains information on where the maximum and minimum input parameters occur and suggestions on decreasing the storage requirements for the run; it also summarizes initial mass and energy values.

Many input parameters such as porosity or permeability vary throughout the grid and need to be assigned different values on different nodes. This is accomplished in two ways. The first is a nodal loop-type definition:

JA,JB,JC,PROP1,PROP2, ...

where

JA	- first node to be assigned with the properties PROP1, PROP2
JB	- last node to be assigned with the properties PROP1, PROP2
JC	- loop increment for assigning properties PROP1, PROP2,
Prop1,Prop2	- properties to be assigned to the nodes.

In the input blocks to follow one or more properties are manually entered in the above structure. When a value of 0 is entered for any JA, that input block is terminated and the code proceeds to the next group or control statement.

The nodal definition above is useful in simple geometries where the node numbers are easily found. The boundary nodes, in this case come at regular node intervals and the increment counter JC can be adjusted so the boundary conditions are easily entered.

In more complicated geometries, such as 3-D grids, the node numbers are often difficult to determine. Here a geometric description is preferred. To enable the geometric description the control statement ZONE (p. 74) is used in the input file before the other property macro statements occur. The input macro ZONE requires the specification of the coordinates of 4-node parallelograms for 2-D problems and the 8-node polyhedrons in 3-D. In one usage of the control statement ZONE all the nodes are placed in geometric zones and assigned an identifying number. This number is then addressed in the property input macro commands by specifying a JA < 0 in the definition of the loop parameters given above. For example if JA = -1, the properties defined on the input line would be assigned to the nodes defined as belonging to geometric Group 1. The control statement ZONE may be called more than once to redefined geometric groupings.

TABLE VII. Input Description for FEHMN

Control Statement CAP (optional)

Capillary pressure model [see Eq. (29)]

Group 1- ICAP(i), cp1(i), cp2(i), cp3(i),

ICAP(i) - Relative permeability model type

ICAP(i) = 1, linear capillary pressure

- cp1(i) maximum capillary pressure
- cp2(i) maximum liquid saturation for capillary pressure calculation

cp3(i) - not used

Note: Only ICAP(I) = 1 is allowed. The parameter *i* is incremented each time a Group 1 line is read. Group 2 lines will refer to this parameter. Group 1 is ended when a line with ICAP(i) = 0 is encountered.

Group 2- JA, JB, JC, ICAPT

JA, JB, JC - defined on page 60 ICAPT - reference counter for model defined in Group 1

It is recommended that macro CAP be preceded by macro RLP because capillary pressures are defined in macro RLP if van Genuchten models are employed. Care should be taken to ensure that capillary pressures are not defined twice.

Control statement COOR (required)

Group 1 - N

N - number of nodes in the grid

Group 2 - MB, CORD1, CORD2, CORD3

- $\begin{array}{ll} \text{MB} & \text{ node number. If MB} < 0 \text{ then the difference between the} \\ & \text{absolute value of MB and the previously read absolute value} \\ & \text{of MB is used to generate intermediate values by interpolation.} \end{array}$
- CORD1 x-coordinate (m) of node MB
- CORD2 y-coordinate (m) of node MB
- CORD3 z-coordinate (m) of node MB

NOTE: To end the control section a line with MB = 0 is entered.

Control statement COND (required)

Assign thermal conductivities of the rock [see Section I-B, Eq. (6)]

Group 1 - JA, JB, JC, THXD, THYD, THZD

- JA, JB, JC defined on page 60
- THXD thermal conductivity (W/mK) in the x-direction
- THYD thermal conductivity (W/mK) in the y-direction
- THZD thermal conductivity (W/mK) in the z-direction

Control statement CONT (optional)

Group 1 - NCNTR, CONTIM

NCNTR - time step interval for contour plots

CONTIM - time (days) interval for contour plots

NOTE: the contour data will be output whenever either of the above criteria is satisfied

Control statement CTRL (required)

Assign various control parameters needed for equation solvers and matrix solver routines (see Section I-D)

Group 1 - MAXIT, EPM, NORTH [see Eqs. (55)-(68)]

- MAXIT maximum number of iterations allowed in either the overall Newton cycle or the inner cycle to solve for the corrections at each iteration [see Eqs. (55)-(57) and Eqs. (63)-(68)]
- EPM tolerance for Newton cycle (nonlinear equation tolerance)
- NORTH number of orthogonalizations in the linear equation solver [see Eqs. (63)-(65)]
- Group 2 JA, JB, JC, IGAUS [see Eqs. (58)-(62)] JA, JB, JC - defined on page 60 IGAUS - the order of partial Gauss elimination
- Group 3 AS, GRAV, UPWGT
 - AS implicitness factor [see Eq. (40)] if $AS \le 1$, a standard pure implicit formulation will be used if $AS \ge 1$, a second-order implicit method will be used
 - GRAV direction of gravity 1 = x-direction, 2 = y-direction, 3 = z-direction. If GRAV > 3, GRAV is set equal to 3. If GRAV = 0, then no gravity is used. If GRAV $\neq 0$ then a value of gravity of 9.8 m/s² is used in the code.
 - UPWGT value of upstream weighting (0.5 ≤ UPWGT ≤ 1.0)
 [see Sec. I-C, and the paragraph following Eq. (49)]
 If UPWGT < 0.5 UPWGT is set to 0.5
 If UPWGT > 1.0 UPWGT is set to 1.0
- Group 4 IAMM, AIAA, DAYMIN, DAYMAX
 - IAMM maximum number of iterations for which the code will multiply the time step size
 - AIAA time step multiplier (see Sec. I-D)
 - DAYMIN minimum time step size (days)
 - DAYMAX maximum time step size (days)

Group 5 - ICNL, LDA

ICNL - parameter that specifies the geometry

if $ICNL = 0$	three-dimensional
if $ICNL = 1$	X - Y slice
if $ICNL = 2$	X - Z slice
if $ICNL = 3$	Y - Z slice

if $ICNL = 4$	X - Y radial slice
if $ICNL = 5$	X - Z radial slice
if $ICNL = 6$	Y - Z radial slice

LDA - parameter that specifies the external storage of geometric coefficients
LDA = +1, element coefficients are read in from file STOR.FE and no coefficients are calculated in the code (note: STOR.FE must be in local file space)
LDA = 0, element coefficients are calculated in the code and not saved
LDA = -1, element coefficients are calculated in the code and saved on file STOR.FE

Control statement DUAL (optional, see Section F)

Group 1 - JA, JB, JC, VOLFD1

JA, JB, JC - defined on page 60 VOLFD1 - volume fraction for first matrix node

- Group 2 JA, JB, JC, VOLFD2 JA, JB, JC - defined on page 60 VOLFD2 - volume fraction for second matrix node
- Group 3 JA, JB, JC, APUVD JA, JB, JC - defined on page 60 APUVD - area per unit volume (length scale) for the matrix nodes

The quantities VOLFD1 and VOLFD2 are volume fractions and related to the total volume by

VOLFD1 + VOLFD2 + VOLFF = 1.0

where VOLFF is the volume fraction of the fractures. The above relation must be satisified at all nodes.

Control statement ELEM (required)

Group 1 -	NS, NEI,		
	NS	-	number of nodes per element
	NEI	-	number of elements

Group 2 - MB, NELM (1), NELM (2)... NELM (NS) MB - node number. If MB < 0 then the difference between the absolute value of MB and the previous absolute value of MB is used to generate intermediate values by interpolation in the code.

NELM (1) - first node of element MB NELM (2) - second node of element MB

NELM (NS) - last node of element MB

NOTE: To end the control section a line with MB = 0 is entered.

Control Statement EOS (optional)

Equation of state, see pages 8-9)

- Group 1 IIEOSD, IPSAT, ITSAT
 - IIEOSD equation of state reference number. IIEOSD = 1 or 2 refer to high and low pressure data sets respectively in FEHMN. For these values the input in Group 2 and Group 3 will be ignored after it is entered.
 - IPSAT parameter to set vapor pressure to zero. If IPSAT $\neq 0$ the vapor pressure is set to zero, otherwise the vapor pressure is calculated in the code.
 - ITSAT parameter to adjust the saturation temperature. If ITSAT < 0, the saturation temperature is set to -1000°C. If ITSAT > 0, the saturation temperature is set to 1000°C.

Group 2 - EWI, EW2, EW3, EW4, EW5, EW6,

EW7, EW8, EW9, EW10, EW11

- EW1 liquid reference pressure
- EW2 liquid reference temperature
- EW3 liquid reference density
- EW4 derivative of liquid density with respect to pressure at reference conditions
- EW5 derivative of liquid density with respect to temperature at reference conditions
- EW6 liquid reference enthalpy
- EW7 derivative of liquid enthalpy with respect to pressure at reference conditions
- EW8 derivative of liquid enthalpy with respect to temperature at reference conditions
- EW9 liquid reference viscosity
- EW10 derivative of liquid viscosity with respect to pressure at reference conditions

- EW11 derivative of liquid viscosity with respect to temperature at reference conditions
- Group 3 EVI, EV2, EV3, EV4, EV5, EV6,
 - EV7, EV8, EV9, EV10, EV11
 - EV1 vapor reference pressure
 - EV2 vapor reference temperature
 - EV3 vapor reference density
 - EV4 derivative of vapor density with respect to pressure at reference conditions
 - EV5 derivative of vapor density with respect to temperature at reference conditions
 - EV6 vapor reference enthalpy
 - EV7 derivative of vapor enthalpy with respect to pressure at reference conditions
 - EV8 derivative of vapor enthalpy with respect to temperature at reference conditions
 - EV9 vapor reference viscosity
 - EV10 derivative of vapor viscosity with respect to pressure at reference conditions
 - EV11 derivative of vapor viscosity with respect to temperature at reference conditions

Control statement FLOW (optional)

[see Eq. (54)]

Group 1 -	JA, JB, JC,	SKD, EFLOW, AIPED
	JA, JB, JC	- defined on page 60
	SKD	- heat and mass source strength (kg/s), heat only (MJ/s).
		Negative value indicates injection into the rock mass.
	EFLOW	- enthalpy (MJ/kg) of fluid injected. If the fluid is flowing from
		the reservoir, then the in-place enthalpy is used. If $EFLOW < 0$,
		then ABS(EFLOW) is interpreted as a temperature and the enthalpy
		calculated accordingly. In heat only problems with $EFLOW < 0$,
		the node is in contact with a large heat pipe that supplies heat
		to the node through an impedance AIPED so as to maintain its
		temperature near ABS (EFLOW). Large values (approximately
		1000) of AIPED are recommended.
	AIPED	- impedance parameter. If AIPED is nonzero, the code interprets
		SKD as a flowing wellbore pressure (MPa) with an impedance

ABS(AIPED). If AIPED < 0, flow is only allowed out of the well. For heat only, AIPED is the thermal resistance. If AIPED = 0, SKD is flow rate.

NOTE: If the porosity of the node is zero, then there is only a temperature solution, and the code forms a source proportional to the enthalpy difference E-EFLOW, where E is the in-place enthalpy and EFLOW is a specified enthalpy. The source term is given by Q = AIPED (E-EFLOW).

Control Statement HFLX (optional)

Group 1 - JA, JB, JC, FLUX, QFLXM

JA, JB, JC - defined on page 60

- QFLUX If QFLXM = 0, then AFLUX is the heat flux (MW) if QFLXM \neq 0, then QFLUX is a temperature and the heat flux is calculated according to the formula: $Q_H = QFLXM(TL-QFLUX)$
- QFLXM multiplier for heat flux equation given in QFLUX description $(MW/^{\circ}C)$

Control Statement INIT (optional)

Set initial pressure and temperature at all nodes Group 1 - PEIN, TIN, TIN1, GRAD1, DEPTH, TIN2, GRAD2, QUAD

- PEIN initial value of pressure (MPa). If initial values are read from IREAD (see terminal input), then this value is ignored. If gravity is present, this is the value of the pressure at node 1, and the other nodal pressures are adjusted by considering the hydraulic head.
- TIN initial value of temperature (°C). If TIN ≤ 0 , then the initial temperatures are calculated using the pressure and temperature gradient.

NOTE: The initial temperatures are set according to the following formulas only if TIN \leq 0. Otherwise, the initial temperatures are determined from PEIN and TIN.

QUAD - defined in formulas above $(^{\circ}C/m^2)$

Control statement ITER (optional, see defaults below)

NOTE: If the user is not familiar with the linear equation solver routines in FEHMN please leave out control statement ITER and associated lines (see Section I-D).

Group 1 - G1, G2, G3, TMCH, OVER

G1	-	multiplier for the linear convergence region of the
		Newton-Raphson iteration
G2	-	multiplier for the quadratic convergence region of the Newton-
		Raphson iteration
G3	-	tolerance for the adaptive implicit method (multiplying factor
		for Newton-Raphson tolerance)
TMCH	-	machine tolerance. If satisfied by the residual norm, the
		Newton iteration is complete
OVERF	-	over relaxation factor for passive nodes in adaptive implicit
		method

- Group 2 IRDOF, ISLORD, IBACK, ICOUPL, RNMAX
 - IRDOF enables the reduced degree of freedom method

ISLORD - reordering parameter. The ordering can be understood by labeling the mass equation as 1, the heat equation as 2, and the CO_2 equation (if it exists) as 3. The value

of ISLORD and the corresponding equation order is given below.

ISLORD	Mass, Heat	Mass, Heat, CO ₂
0	1, 2	1, 2, 3
1	2, 1	1, 3, 2
2		2, 1, 3
3		2, 3, 1
4		3, 1, 2
5		3, 2, 1

the ordering has an effect on the speed of convergence of several solution algorithms, but will not affect most users

- IBACK back substitution parameter
- ICOUPL number of SOR iteration used in reduced degree of freedom methods

RNMAX - maximum running time for problem before the solution is stopped

If control statement ITER is not present the following default values are used G1 = 0.001,

G2 = 0.0001, G3 = 0.0001, $TMCH = 10^{-8}$, OVERF = 0.0, IRDOF = 0.

Control statement NGAS (optional)

Noncondensable gas transport

о .
ICO2D
ICO2D - solution descriptor for noncondensible gas transport
ICO2D - 0 data from control group NGAS is read but not used
ICO2D - 1, 2, reduced degree of freedom solver technology is used
ICO2D - 3, full 3 degrees of freedom solution water/noncondensible gas solution

Group 2 - JA, JB, JC, PC02

JA, JB, JC - defined as in control statement ROCK

- PC02 initial partial pressure of non-condensible gas. If PCO2 < 0 then ABS (PCO2) is interpreted as a temperature and the partial pressure of the noncondensible gas is calculated according to the formula: $PCO2 = P_T - P_{SAT}(T)$ where P_T is the total pressure and $P_{SAT}(T)$ is the water saturation pressure and is a function of temperature only.
- Group 3 JA, JB, JC, CPNK

JA, JB, JC - defined on page 60

CPNK - injection concentration of noncondensible gas for injection mode (SK(i) < 0). If it is a production node (SK(i) > 0) then the in place concentration is used.

Note: For compatability with older versions the user may substitute "CO2I" for "NGAS" in the input file.

Control statement NODE (required)

Specify the node numbers for which detailed printed output is desired. The plotting postprocessor FEHPLTR will also use these nodes.

Group 1 - M

M - number of nodes for which information will be printed on IOUT (see terminal input). If M < 0, pressure and temperature will be written for all nodes.

Group 2 - MN (1), MN (2) ... MN (M)

 $\begin{array}{ll} \text{MN} & - \mbox{ node numbers for which information will be printed on IOUT,} \\ & \mbox{M nodes (see Group 1).} \\ & \mbox{If NN(I) < 0, then coordinates are used to define the print-out} \\ & \mbox{node. The coordinate sets (x, y, z) for each NM(I) < 0 are added} \\ & \mbox{after Group 2. For 2-D problems put } z = 0. \end{array}$

Control statement PERM (required)

Assign absolute permeabilities of the rock [see section I-B, Eq. (7)-(8)] Group 1 - JA, JB, JC, PNXD, PNYD, PNZD

JA, JB, JC-	defined on page 60
	permeability in the x-direction (m^2) permeability in the y-direction (m^2)
	permeability in the z-direction (m^2)

Control Statement PPOR (Optional, default is IPOROS=0)

For variable porosity/permeability problems, define model type (see Section I-B) Group 1 - IPOROS, R1, R2, R3

- IPOROS Porosity/permeability type [see Eqs. (39)-(42)]
 - = 0 constant porosity
 - = 1 simple linear model
 - = 2 Gangi stress model
- R1,R2,R3 parameters used in the various models

Group 2 - JA, JB, JC, R4, R5

JA, JB, JC - defined on page 60

R4 - variable parameter used in porosity/permeability models

R5 - variable parameter used in porosity/permeability models

	Model		
Parameter	Linear (Eq. 39)	Gangi(Eq. 40-41)	
R1	C _r	α	
R2	C_{g}	E	
R3	not used	σ	
$\mathbf{R4}$	not used	m(exponent)	
R5	not used	Po	

For the linear model P_o is PEIN in macro INIT. ϕ_o is PSD in macro ROCK and k_o is from macro PERM for both models.

Control statement PRES (optional)

Assign nonuniform initial pressure and temperature values Group 1 - JA, JB, JC, PHRD, TIND, IEOSD

JA, JB, JC	-	defined on page 60
PHRD	-	initial pressure (MPa)
TIND	-	initial temperature (If $IEOSD = 1$ or 3) or initial
		saturation (if $IEOSD = 2$)
IEOSD	-	thermodynamic region parameter if $IEOSD = 1$, then
		in compressed liquid region, if $IEOSD = 2$, the
		saturation region, if $IEOSD = 3$, the superheated region.

NOTE: The initial values defined in control statement PRES supersede all others.

Control statement RLP (optional)

Relative permeability models [see Eqs. (25)-(27)]

Group 1 - IRLP(i), RP1, RP2, RP3, RP4

IRLP - Relative permeability model type

IRLP(i)	=	1 linear type
RP1	-	irreducible liquid saturation
RP2	-	irreducible vapor saturation
RP3	-	maximum liquid saturation
RP4	-	maximum vapor saturation
IRLP(i)	= 2	2 Corey type
RP1	-	irreducible liquid saturation
RP2	-	irreducible vapor saturation
RP3	-	not used
RP4	-	not used

IRLP(i) = 3 van Genuchten (note different input)

NOTE: With a van Genutchen formulation (IRLP=3, IRLP=4), both the relative permeability and capillary information are input. Therefore there is no capillary pressure input and information should not be input in the capillary pressure section (macro CAP) for those nodes.

RP1, RP2, RP3, RP4, RP5, RP6

- RP1 residual liquid saturation
- RP2 maximum liquid saturation
- RP3 α , parameter for model
- RP4 β parameter for model
- RP5 maximum capillary pressure

RP6 - fractional difference in pressure at maximum and cutoff saturation IRLP(i) = 4 combined van Genutchen model. All the values for IRLP = 3 are read in plus the following RP7, RP8, RP9, RP10, RP11, RP12, RP13, RP14, RP15

- RP7 residual liquid saturation for fracture
- RP8 maximum liquid saturation for fracture
- **RP9** α , for fractures
- **RP10** β , for fractures
- RP11 maximum capillary pressure for fracture
- RP12 fractional difference in pressure at maximum and cutoff saturation
- RP13 fracture intrinsic permeability (m^2)
- RP14 matrix intrinsic permeability (m^2)
- RP15 fracture porosity

Group 1 is ended when a line with IRLP(i) = 0 is encountered.

Group 2 - JA, JB, JC, I

JA, JB, JC - defined on page 60

I - number referring to the sequence of models read in Group1

NOTE: The parameter i is incremented each time a Group 1 line is read. Group 2 lines will refer to this parameter.

Control statement ROCK (required)

Assign rock density, specific heat and porosity [see Section I-B, Eqs. (1)-(10)] Group 1 - JA, JB, JC, DENRD, CPRD, PSD

JA,JB,JC - defined on page 60
DENRD - rock density (kg/m³)
CPRD - rock specific heat (MJ/kg/°C). If CPRD > 1 the code will assume the units are J/kg/°C and multiply by 10⁻⁶
PSD - porosity

Control Statement SOL (required)

Group 1 - NTT, INTG

- NTT parameter that defines the type of solution required if NTT ≥ 0 heat and mass transfer solution if NTT < 0 heat transfer solution
- INTG parameter that defines element integration type (refer to Section I-B) if INTG ≤ 0 Lobatto quadrature is used, recommended for heat and mass problems without stress.

if INTG > 0 Gauss quadrature is used, recommended for problems requiring a stress solution.

Control Statement STEA

No input is associated with this macro statement. This statement enables a 1-D solution in the y-direction (2-D) or z-direction (3-D) when gravity is present to generate an initial steady state solution.

Control Statement STOP (required)

NOTE: No input is associated with this control statement. It signals the end of input, and as such it always appears as the last line of an input deck.

Control Statement TEXT

Following the control statement, text is input until a blank line is inserted to signal the end of the control statement. This text is printed on the output file.

Control statement TIME (required)

Group 1 -	DAY, TIN	MS, NSTEP, II, YEAR, MONTH
	DAY	- initial time step size (days)
	TIMS	- simulation maximum time (days)
	NSTEP	- maximum number of time steps allowed
	II	- print-out interval for nodal information (pressure, enthalpy etc.),
		as set up under control statement node.
	YEAR	- year that simulation starts
	MONTH	- month that simulation starts
Group 2 -	DIT1, DI	T2, DIT3, ITC
	DIT1	- time (days) for time step change
	DIT2	- new time step size (days). If DIT2 < 0 then ABS (DIT2) is the new time step multiplier
	DIT3	- implicitness factor for new time step (use ≤ 1.0 backward Euler, > 1.0 for second-order implicit scheme).
	TTO	

ITC - new print-out interval

NOTE: The code proceeds to the next control statement when a line is encountered with DIT1 = 0. A contour plot will be drawn at each DIT1. A restart file will be written at each DIT1.

Control statement TRAC (optional)

[see Eqs. (16)-(19) and (22)-(24) and Table II]

Group 1 - ANO, AWC, EPC, UPWGTA

ANO	- initial tracer concentration
AWC	- Implicitness factor for tracers. $AWC > 1.0$ gives 2nd order
	solution; AWC ≤ 1.0 gives 1st order solution
EPC	- equation tolerance for tracer solution
UPWGTA	- upstream weighting term for the tracer solution
	If UPWGT < 0.5 UPWGTA is set to 0.5
	If UPWGTA > 1.0 UPWGTA is set to 1.0

Group 2 - DAYCS, DAYCF, DAYHF, DAYHS

DAYCS	- time which the tracer solution is enabled
DAYCF	- time which the tracer solution is disabled
DAYHF	- time which the heat and mass transfer solution is disabled
DAYHS	- time which the heat and mass transfer solution is enabled

Group 3 - IACCMX, DAYCM, DAYCMM, DAYCMX

IACCMS	- maximum number of iterations allowed in tracer solution if
	time step multiplier is enabled
DAYCM	- time step multiplier for tracer solution
DAYCMM	- minimum time step for tracer solution
DAYCMX	- maximum time step for tracer solution

Group 4 - NSPECIES NSPECIES - number of different tracers

NOTE: TRAC groups 5, 6, 7, and 8 are entered as a unit for each different tracer.

Group 5 - ICNS, IADSF, AIADSF, A2ADSF, BETAD

ICNS - phase designation. IF ICNS ≤ 0 a gas phase tracer is used. If ICNS > 0, then a liquid phase tracer is used.

IADSF - designates tracer type [see Eq. (23)-(24) and Table II]

- = 0, refers to the conservative tracer
 - = 1, refers to the linear model
 - = 2, refers to the Freundlich model
 - = 3, refers to the modified Freundlich model
 - = 4, refers to the Langmuir model

A1ADSF - α_1 parameter

A2ADSF - α_2 parameter

BETAD - β parameter

Group 6 - ICRATE, A1R, A2R, A3R, A4R

ICRATE	-	designates reaction model type see Eq. (24).
A1R	-	parameter in rate model
A2R	-	parameter in rate model
A3R	-	parameter in rate model
A4R	-	parameter in rate model

ICRATE = 1 refers to the simple model (p. 9) and ICRATE ≥ 2 refers to the more complicated model (p. 9).

Group 7 - JA, JB, JC, TCXD, TCYD, TCZD JA,JB,JC - defined on page 60 TCXD - dispersivity coefficient in the x-direction (m²/s) TCYD - dispersivity coefficient in the y-direction (m²/s) TCZD - dispersivity coefficient in the z-direction (m²/s)

Group 8 - JA, JB, JC, ANQO

JA, JB, JC - defined on page 60

ANQO - initial concentration of tracer, which will supersede the value given by ANO in Group 1. Note that if initial values of pressure and enthalpy are read from a file, then the code will also read initial values for the tracer from the file.

Group 9 - JA, JB, JC, CNSK, T1SK, T2SK

JA, JB, JC - defined on page 60

- CNSK injection concentration of injection node. If it is a production node, then the in-place concentration is used
- T1SK time (days) when tracer injection begins
- T2SK time (days) when tracer injection ends

NOTE: Injection nodes must be specified in control statement flow.

Control statement ZONE (Optional, default is input by nodes) Group 1- IZONE

IZONE - identification number for geometric input

Group 2- X1, X2, X3, X4, Y1, Y2, Y3, Y4 (for 2-D problems)

X1-X4 - X coordinates for zone IZONE Y1-X4 - Y coordinates for zone IZONE

X1-X8, Y1-Y8, Z1-Z8 (for 3-D problems)

X1-X8 - X coordinates for zone IZONE

Y1-Y8 - Y coordinates for zone IZONE

Z1-Z8 - Z coordinates for zone IZONE

NOTE: If the first four characters in Group 2 are 'LIST' then the code reads a list of x, y, z-coordinates, one set perline until a blank line is encountered. The nodes corresponding to these coordinates make up the zone. The geometric zone description is implemented by defining geometric regions. The coordinates given in Group 2 are defined in Fig. 5. All properties defined by node (JA, JB, JC) may be defined by ZONE. In the previous macro descriptions if JA < 0, then the zone IZONE = ABS (JA) is referenced. The macro ZONE must precede the usage of a ZONE reference. ZONE can be called more than once.

C. Graphics Postprocessing

Two graphics postprocessing codes are described in this section. They are written using the DISSPLA graphics package. Except for the plot area specification only the primitive line drawing commands are used. Therefore the routines should be easily convertible to other systems. A capability for time history plots for variables (FEHPLTR) and contour plotting (FECPLTR) are provided. Though these codes have not been verified, users may use them at their convenience.

1. FEHPLTR is a postprocessor program for FEHMN. It uses output information from FEHMN in the file FE.HIS. The program organizes information found in the file FE.HIS for plotting time histories of the variables temperature, pressure, enthalpy, flow rate, concentration, and capillary pressure. The user input is found in file HIS.INS.

Group 1 - HEADER - 80 character title

Group 2 - NNODE - number of input nodes. This must correspond to the number of print-out nodes specified in the input file for FEHMN.

Group 3 - ITYPE, IPLOT (I), II=1, NNODE ITYPE - variable designator = 1, enthalpy plot = 2, flow rate plot = 3, temperature plot = 4, pressure plot = 5, capillary pressure plot = 6, concentration plot IPLOT(I) - designates if the Ith node is to be plotted on the current plot. IPLOT(I) $\neq 0$ then the Ith node will be plotted. IPLOT(I) = 0 then the Ith node will not be plotted.

- Group 4- A parameter to scale the plot variable according to the formula P* = A(P-B)
 - **B** parameter to scale the plot variable according to the formula given in the last description
 - C parameter to scale the time variable according to the formula t* = C(T D)
 - **D** parameter to scale the time variable according to the formula given in this last description

Note: If 0,0,0,0 is entered, no action is taken (i.e., P = p)

Group 5 - XLEN, YLEN

XLEN - physical plot horizontal dimension in inches

- YLEN physical plot vertical dimension in inches
- Group 6 AXIS
 - AXIS plot type
 AXIS < 0 time axis is a log axis and the variable axis is linear
 AXIS = 0, both axes are linear
 AXIS > 0, both axes are log scales

Group 7 - DAYMIN, DAYMAX, DAYTIC, NTIC

DAYMIN	-	minimum limit for time axis
DAYMAX	-	maximum limit for time axis
DAYTIC	-	increment for time axis
NTIC	-	tic marks per increment for the time axis

Group 8 - VMIN, VMAX, VTIC, NIY

VMIN	- minimum limit for variable axis
VMAX	- maximum limit for variable axis
VTIC	- increment value for variable axis
NIY	- tic marks per interval for the variable axis

Group 9 - TITLE

TITLE - 30 character (max) heading for top of plot

Group 10 - TITLX TITLX - 30 character (max) heading for time axis Group 11 - TITLY

TITLY - 30 character (max) heading for the variable axis

Group 12 is entered only if ITYPE = 6 is chosen and a concentration plot is generated. Since several (up to 10) concentration profiles can be plotted, the species number to be plotted must be specified. Group 12 provides this information.

Group 12 - [ISPT (II) II=1, NSPECI]

ISPT(II) - plot designator for the IIth specie

 \neq 0 then that specie is plotted

= 0 then that specie is not plotted

NOTE: the variable NSPECI is obtained by the code from the file FE.HIS. Groups 3-12 may be repeated for additional plots.

2. FECPLTR. The computer code FECPLTR is the postprocessor code for FEHMN which makes contour plots. Its input file is the unformatted file FE.CON generated by FEHMN. The plot instruction commands are given in the file CON.INS. The input lines are described below and are in free format except where noted.

Group 1 - ICHOS

ICHOS - dimensionality parameter

= 2, 2 dimensional contour plots are generated

 \neq 2, 3-dimensional contour plot information is provided

NOTE: the form of the input that follows is not implemented as yet for the value of ICHOS = 3.

Group 2 - HEADER Header - title (80 characters maximum)

Group 3 - NCI, IGRID

- NCI contour label interval NCI = 0, no labels are drawn on contours, contours are given different line types (dash, solid, etc.) and identified on the side of the plot NCI ≠ 0, the contours are labeled on the contour line
- IGRID grid parameter

= 0, no grid drawn with contours

 \neq 0, grid is drawn with contours

Group 4- AX, BX, AY, BY

- AX minimum x coordinate for problem (m)
- BX maximum x coordinate for problem (m)

- AY minimum y coordinate for problem (m)
- BY maximum y coordinate for problem (m)

Group 5- VLENM, VRMAX

VLENM - length of maximum vector (in grid dimensions) VRMAX - size of maximum vector (m/s)

Group 6- XWIN, YWIN

XWIN - physical size of the x direction of plot window (in)

YWIN - physical size of the y direction of plot window (in)

- Group 7- IVLP, CNTRT, CNTRP, CNTRC, SCALE
 - IVLP plot phase parameter IVLP < 0, vapor phase only plots will be drawn.
 IVLP > 0, liquid phase only plots will be drawn
 - CNTRT contour interval for temperature (liquid region) or saturation (vapor region)
 - CNTRP phase pressure contour interval
 - CNTRC phase contour interval for species transport
 - SCALE scaling parameter for velocity vectors. No vectors will be plotted for vectors of magnitude less than VRMAX * SCALE (see Group 5).

Note: If CNTRT, CNTRP, CNTRC are < 0, then the contour values are provided in a user supplied list. (Group 8 is used.) If they are > 0 then Group 8 is not used.

Group 8 - NV, (CVAL(I), I = 1, NV)

NV - number of contour values
 CVAL(I) - contour value (can be temperature, saturation pressure, or concentration

If multiple contour plots are desired, the user may provide additional data sets for each plot (i.e., Groups 1-7). Alternatively, the user may specify the same parameter set for each plot by not providing additional sets in the data file CON.INS. This way all the plot sets output by FEHMN and in FE.CON will be plotted.

D. Example Input Files And Output Files

This section contains three example problem runs with FEHMN. Input files and output files are provided. Other examples may be found in the FEHMN software verification report (Zyvoloski and Dash, 1991).

1. Heat Conduction. This 3-D problem demonstrates the code performance on a purely conductive problem. It is useful in showing the numerical accuracy of the finite elements and providing the user with an example of 3-D input. While we give only the $4 \times 4 \times 4$ mesh input and output, accuracy results are presented for the $4 \times 4 \times 4$, $8 \times 8 \times 8$, and $12 \times 12 \times 12$ meshes. Table VIII shows the parameters used in the computer runs. Figure 8 depicts the problem geometry (due to symmetry only a quarter of the cube is depicted). Basically the cube is initially at 200°C and a boundary condition of 100°C is applied on all sides. Table IX gives the coordinate positions for the various error sampling points as well as defining the runs. As can be seen from Table X even the crudest grid produced errors of less than 9%. Other grids produced much better results. For the 4 x 4 x 4 grid, the input to the preprocessor GENMSH is shown in Fig. 9. The plot produced by GENMSH is given in Fig. 10. The input file for FEHMN is provided in Fig. 11. It is worth noting here that the part of the file from the macro command COOR to the end was produced by GENMSH (file GEOM.DAT) and appended to the other macro commands with a text editor. Figure 12 gives the output for the 4 x 4 x 4 run. The user

TABLE VIII. Input Parameters for the 3-D Heat Conduction Proble								
Parameter	Symbol	Value						
Rock thermal diffusivity	*ĸ							
Rock thermal conductivity	κ_r	2.7 W/m K						
Rock density	ρ_r	2700 kg/m^3						
Rock specific heat	C_r	1000 J/kgK						
Width	a	0.5 m						
Length	Ь	0.5 m						
Depth	с	0.5 m						
Initial temperature	T_0	200°C						
Surface temperature	T_s	100°C						
for all $x, y, z = 0.5$ m	-							

													_
T	ABLE	VIII.	Input	Paran	neters	for th	ne 3-D	Heat	Con	ductio	n Pr	oblem	

 $\kappa = \frac{\kappa_r}{\rho_r C_r}$

Problem	3-D Mesh Elements
1 2 3 4 5	$4 \times 4 \times 4$ brick $8 \times 8 \times 8$ brick $12 \times 12 \times 12$ brick $8 \times 8 \times 8$ prism $8 \times 8 \times 8$ mixed brick and prism
Comparison coordinate positions	$ \begin{array}{l} x = 0.000 \ y = 0.000 \ z = 0.000 \\ x = 0.000 \ y = 0.125 \ z = 0.250 \\ x = 0.125 \ y = 0.250 \ z = 0.375 \\ x = 0.375 \ y = 0.375 \ z = 0.375 \end{array} $

TABLE IX. Sample Problems for 3-D Heat Conduction

			Maximu	m Error (%	6)
Coordinate position	1	2	3	4	5
z = 0.000 y = 0.000 z = 0.000	2.139	0.710	0.427	0.718	0.570
= 0.000 y = 0.125 z = 0.250	1.784	0.572	0.339	0.560	0.572
x = 0.125 y = 0.250 z = 0.375	3.546	1.382	0.862	1.372	1.382
x = 0.375 y = 0.375 z = 0.375	8.517	3.544	2.301	3.379	3.544

TABLE X. Comparison of Analytical and Model Results for 3-D Heat Conduction

instruction file for the postprocessor FEHPLTR is shown in Fig. 13. The plot produced by FEHPLTR is given in Fig. 14.

2. Toronyi Two-Phase Example. This problem is a model of a two-phase, highly permeable geothermal reservoir originally proposed by Toronyi and Farouq Ali (1977) and solved by a number of authors (Mercer and Faust 1975, Thomas and Pierson 1978). The model reservoir is shown in Fig. 15. The input for the problem is presented in Table XI. As with Thomas and Pierson, time steps of 10 days with an initial time step of 8.3 days were used. The final state corresponds to 19% of the original water mass removed. Figure 15 also shows the results obtained in this study using quadrilateral elements compared with the results obtained by Thomas and Pierson. Good agreement is evident. This is somewhat surprising considering the elements have a length/width ratio of 10. The input for the GENMSH preprocessor is shown in Fig. 16. The input file is given in Fig. 17. The part of the input file from the macro **COOR** was generated by GENMSH and inserted in the input file using a text editor. Output for the first computer run is shown in Fig. 18.

TABLE XI. Parameters for Toronyi Example					
Parameter	Symbol	Value			
Reservoir permeabilty	k	$9.869 \ge 10^{-13} \text{ m}^2$			
Reservoir porosity	ϕ	0.05			
Rock thermal conductivity	ĸr	1.73 W/m · K			
Rock density	ρ_r	2500 kg/m^3			
Rock specific heat	C_r	1000 J/kg · K			
Aquifer length		1828 m			
Aquifer width		182.8 m			
Initial water saturation	s_{ij}^0	0.2			
Aquifer discharge	q_m	0.05 kg/m · s			
Initial Pressure	P_{ij}^0	4.4816 MPa			

3. DOE Code Comparison Project, Problem 5, Case A. This problem involves multiphase flow in a 2-D horizontal reservoir. The problem is characterized by a moving two-phase region, i.e., the fluid produced at the production well is replaced by cold water recharge over one of the outer boundaries. The problem parameters are given in Table XII and the geometry and boundary conditions are shown in Fig. 19. Of particular note is the variable initial temperature field and the prescribed pressure and temperature boundary. This problem shows that two-phase coding as well as the phase change algorithm are working properly, since numerical difficulties can occur as nodes go from two-phase fluid to compressed water.

There is no analytical solution for this problem, but six researchers produced results for the DOE code comparison project (Molloy, 1980). The reader is referred to this reference for a more detailed discussion of this problem and the code comparison. Results from this problem are compared to those from the other codes, obtained from Molloy (1980) as a check on FEHMN. The results for the outlet temperature, shown in Fig. 20, are in excellent agreement with the other codes. The results for the outlet pressure, Fig. 21, and pressure at an observation well 125 m distant, Fig. 22 are also in good agreement with the other codes.

The input for the preprocessor GENMSH is given in Fig. 23. The input to FEHMN is given in Fig. 24. The printout for the computer is provided in Fig. 25. The part of the input file from the macro COOR was generated by GENMSH. A contour plot of temperature was also generated for this problem. The user generated input file CON.INS is shown in Fig. 26. The contour plot is given in Fig. 27.

Parameter	Symbol	Value	
Reservoir permeabilty	k	$2.5 \ge 10^{-14} \text{ m}^2$	
Reservoir porosity	ϕ	0.35	
Rock thermal conductivity	κ_r	$1 \text{ W/m} \cdot \text{K}$	
Rock density	ρ_r	2500 kg/m^3	
Rock specific heat	Ĉ _r	1000 J/kg · °C	
Reservoir length	\boldsymbol{x}	300 m	
Reservoir thickness	y	200 m	
Liquid residual saturation	Slr	0.3	
Gas residual saturation	s _{gr}	0.1	
Reservoir discharge	q_m	$0.05 \text{ kg/m} \cdot \text{s})$	
Initial Pressure	Po	3.6 MPa	
Production well coordinates:	$\mathbf{x} = 6$	2.5 m, y = 62.5 m	
Observation well coordinates:	$\mathbf{x} = 16$	2.5 m, y = 137.5 m	
Initial temperature distribution	n:		
$T(x, y, 0) = \begin{pmatrix} 240\\ 240 - 160\\ 160 \end{pmatrix}$	$\left[\frac{r-100}{200}\right]^2$	$+80\left[\frac{r-100}{200}\right]^4$ C	$r \le 100 \ m$ $100 < r < 300 \ m$ $r \ge 300 \ m$
where $r = \sqrt{x^2 + y^2}$			

TABLE XII. Input Parameters for the DOE Code Comparison Project, Problem 5, Case A

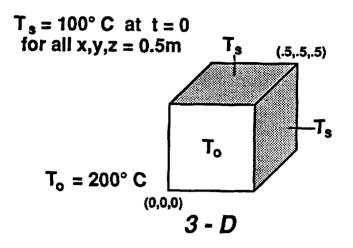


Fig. 8. Schematic diagram of the 3-D heat conduction problem.

Fig. 9. Input for preprocessor GENMSH for 3-D heat conduction example.

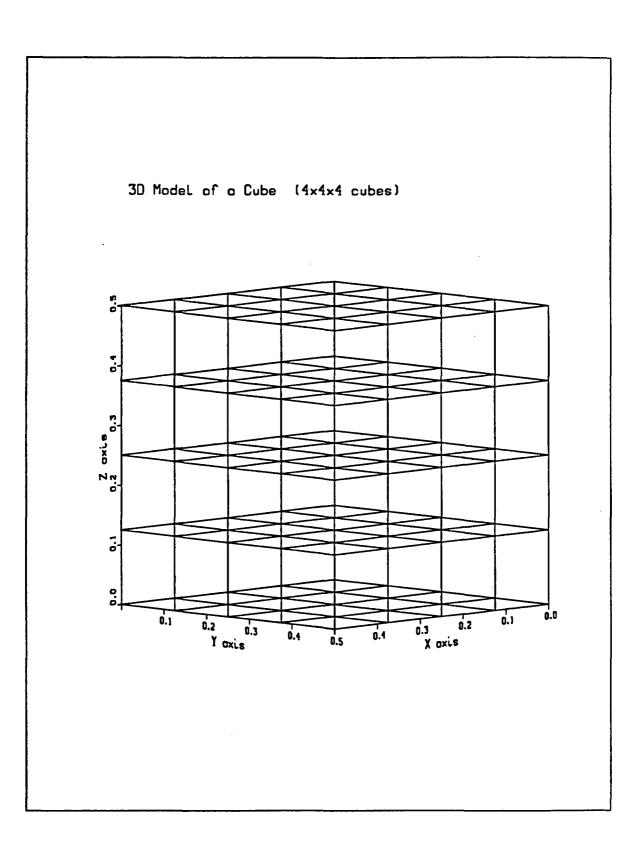


Fig. 10. Grid for 4 x 4 x 4 heat conduction problem.

***** 3-D Heat Conduction Model (4X4X4 cubes) ***** node 8 094 001 056 087 025 002 125 005 rlp 2 0. 0. 0. 0. 0 1 125 1 1 0 0 0 0 sol -1 -1 init Ο. 200. 0. 10. 0. 200. Ο. 0. rock 1.0 2700. 1000. Ο. 125 1 1 0. 0 0. 0. 0. 0 0 cond 2.7e-00 2.7e-00 2.7e-00 125 1 1 0. 0 0 Ο. 0. 0 perm 1.e-30 1.e-30 1.e-30 Ο. 0. 0. 125 1 1 0. 0. Ο. 0. 0. 0 0 0 0. flow -100.00 10.00 1.e03 101 125 1 125 25 10.00 -100.00 1.e03 5 -100.00 10 125 25 10.00 1.e03 15 125 25 10.00 -100.00 1.e03 10.00 -100.001.e03 20 125 25 -100.00 10.00 1.e03 25 125 25 125 25 10.00 -100.00 1.e03 21 10.00 22 -100.001.e03 125 25 -100.00 1.e03 125 25 10.00 23 25 10.00 -100.00 1.e03 125 24 0. Ο. 0 0 0 0. time 1000 1000 1989 04 0.005 3.00 0. 0. 0. 0 ctrl 40 1.e-04 08 125 1 1 1 0 0 0 0 0.0 1.0 1.0 0.00005 0.005 10 1.0 0 0 coor 125 0.00000 0.00000 0.00000 1 0.00000 0.00000 2 0.12500 0.00000 3 0.00000 0.25000 0.00000 0.00000 4 0.37500 0.00000 0.00000 5 0.50000 0.00000 6 0.00000 0.12500 0.00000 7 0.12500 0.12500 0.00000 8 0.25000 0.12500 0.00000 9 0.37500 0.12500 0.00000 10 0.50000 0.12500 0.00000 0.25000 0.00000 11 12 0.12500 0.25000 0.00000 13 0.25000 0.25000 0.00000

Fig. 11. Input file for FEHMN for 3-D heat conduction example.

14	0.37500	0.25000	0.00000
15	0.50000	0.25000	0.00000
16	0.00000	0.37500	0.00000
17	0.12500	0.37500	0.00000
18	0.25000	0.37500	0.00000
19	0.37500	0.37500	0.00000
20	0.50000	0.37500	0.00000
21			
	0.00000	0.50000	0.00000
22	0.12500	0.50000	0.00000
23	0.25000	0.50000	0.00000
24	0.37500	0.50000	0.00000
25	0.50000	0.50000	0.00000
26			
	0.00000	0.00000	0.12500
27	0.12500	0.00000	0.12500
28	0.25000	0.00000	0.12500
29	0.37500	0.00000	0.12500
30	0.50000		
		0.00000	0.12500
31	0.00000	0.12500	0.12500
32	0.12500	0.12500	0.12500
33	0.25000	0.12500	0.12500
34	0.37500	0.12500	0.12500
35	0.50000		
		0.12500	0.12500
36	0.00000	0.25000	0.12500
37	0.12500	0.25000	0.12500
38	0.25000	0.25000	0.12500
39	0.37500	0.25000	0.12500
40	0.50000		
		0.25000	0.12500
41	0.00000	0.37500	0.12500
42	0.12500	0.37500	0.12500
43	0.25000	0.37500	0.12500
44	0.37500	0.37500	0.12500
45	0.50000	0.37500	0.12500
46	0.00000	0.50000	0.12500
47	0.12500	0.50000	0.12500
48	0.25000	0.50000	0.12500
49	0.37500	0.50000	0.12500
50	0.50000		
		0.50000	0.12500
51	0.00000	0.00000	0.25000
52	0.12500	0.00000	0.25000
53	0.25000	0.00000	0.25000
54	0.37500	0.00000	0.25000
55	0.50000		
		0.00000	0.25000
56	0.00000	0.12500	0.25000
57	0.12500	0.12500	0.25000
58	0.25000	0.12500	0.25000
59	0.37500	0.12500	0.25000
60	0.50000	0.12500	0.25000
61			
	0.00000	0.25000	0.25000
62	0.12500	0.25000	0.25000
63	0.25000	0.25000	0.25000
64	0.37500	0.25000	0.25000
65	0.50000	0.25000	0.25000
66			
	0.00000	0.37500	0.25000
67	0.12500	0.37500	0.25000
68	0.25000	0.37500	0.25000
69	0.37500	0.37500	0.25000
70	0.50000	0.37500	0.25000
71			
	0.00000	0.50000	0.25000
72	0.12500	0.50000	0.25000
73	0.25000	0.50000	0.25000

Fig. 11. (Continued)

.

	74		0.37			0.50			0.25000
	75		0.50			0.50			0.25000
	76		0.00			0.00			0.37500
	77		0.12			0.00			0.37500
	78		0.25			0.00			0.37500
	79		0.37			0.00			0.37500
	80		0.50			0.00			0.37500
	81		0.00			0.12			0.37500
	82 83		0.12			0.12			0.37500 0.37500
	84		0.25			0.12			0.37500
	85		0.50			0.12			0.37500
	86		0.00			0.25			0.37500
	87		0.12			0.25			0.37500
	88		0.25			0.25			0.37500
	89		0.37			0.25			0.37500
	90		0.50			0.25			0.37500
	91		0.00			0.37			0.37500
	92		0.12	2500		0.37	500		0.37500
	93		0.25	5000		0.37	500		0.37500
	94		0.37			0.37			0.37500
	95		0.50			0.37			0.37500
	96		0.00			0.50			0.37500
	97		0.12			0.50			0.37500
	98		0.25			0.50			0.37500
	99		0.37			0.50			0.37500
	100		0.50			0.50			0.37500
	101		0.00			0.00			0.50000
	102 103		0.12			0.00			0.50000
	103		0.25			0.00			0.50000 0.50000
	104		0.50			0.00			0.50000
	105		0.00			0.12			0.50000
	107		0.12			0.12			0.50000
	108		0.25			0.12			0.50000
	109		0.37			0.12			0.50000
	110		0.50			0.12			0.50000
	111		0.00			0.25			0.50000
	112		0.12	2500		0.25			0.50000
	113		0.25	5000		0.25	5000		0.50000
	114		0.37			0.25			0.50000
	115		0.50			0.25			0.50000
	116		0.00			0.37			0.50000
	117		0.12			0.37			0.50000
	118		0.25			0.37			0.50000
	119		0.37			0.37			0.50000
	120		0.50			0.37			0.50000
	121		0.00			0.50			0.50000
	122		0.12			0.50			0.50000
	123 124		0.25			0.50			0.50000 0.50000
	124		0.50			0.50			0.50000
	0		0.00			0.00			0.00000
elem	v		0.00			0.00			0.00000
	64,	0							
1	1	2	7	6	26	27	32	31	
2	2	3	8	, 7	27	28	33	32	
3	3	4	9	8	28	29	34	33	
4	4	5	10	9	29	30	35	34	
5	6	7	12	11	31	32	37	36	

Fig. 11. Continued

6	7	8	13	12	32	33	38	37
7	8	9	14	13	33	34	39	38
8	9	10	15	14	34	35	40	39
9	11	12	17	16	36	37	42	41
10	12	13	18	17	37	38	43	42
11	13	14	19	18	38	39	44	43
12	14	15	20	19	39	40	45	44
	16	17	22	21	41	42	47	46
13						42	48	
14	17	18	23	22	42			47
15	18	19	24	23	43	44	49	48
16	19	20	25	24	44	45	50	49
17	26	27	32	31	51	52	57	56
18	27	28	33	32	52	53	58	57
19	28	29	34	33	53	54	59	58
20	29	30	35	34	54	55	60	59
21	31	32	37	36	56	57	62	61
22	32	33	38	37	57	58	63	62
23	33	34	39	38	58	59	64	63
24	34	35	40	39	59	60	65	64
25	36	37	42	41	61	62	67	66
26	37	38	43	42	62	63	68	67
27	38	39	44	43	63	64	69	68
						65	70	69
28	39	40	45	44	64			
29	41	42	47	46	66	67	72	71
30	42	43	48	47	67	68	73	72
31	43	44	49	48	68	69	74	73
32	44	45	50	49	69	70	75	74
33	51	52	57	56	76	77	82	81
34	52	53	58	57	77	78	83	82
35	53	54	59	58	78	79	84	83
36	54	55	60	59	79	80	85	84
37	56	57	62	61	81	82	87	86
38	57	58	63	62	82	83	88	87
39	58	59	64	63	83	84	89	88
40	59	60	65	64	84	85	90	89
41	61	62	67	66	86	87	92	91
42	62	63	68	67	87	88	93	92
	63			68	88	89	94	93
43		64	69					93
44	64	65	70	69	89	90	95	
45	66	67	72	71	91	92	97	96
46	67	68	73	72	92	93	98	97
47	68	69	74	73	93	94	99	98
48	69	70	75	74	94	95	100	99
49	76	77	82	81	101	102	107	106
50	77	78	83	82	102	103	108	107
51	78	79	84	83	103	104	109	108
52	79	80	85	84	104	105	110	109
53	81	82	87	86	106	107	112	111
54	82	83	88	87	107	108	113	112
55	83	84	89	88	108	109	114	113
56	84	85	90	89	109	110	115	114
57	86	87	92	91	111	112	117	116
58	87	88	93	92	112	113	118	117
59	88	89	94	93	113	114	119	118
60	89	90	95	94	114	115	120	119
61	89 91	90 92	95 97	94	116	117	122	121
62	92	93	98	97	117	118	123	122
63	93	94	99	98	118	119	124	123
64	94	95	100	99	119	120	125	124
0	0	0	0	0	0	0	0	0
top								

stop

.

Fig. 11. Continued

fehm.4.0 12/10/90 ***** 3-D Heat Conduction Model (4X4X4 cubes) ***** output file, wt tape, rd tp, user call parameter 11 44 0 0 storage for geometric coefficients 726. in common(nr) 48000 storage for geometric coefficients 726. In common pressures and temperatures set by gradients storage needed for ncon 851, available 80000 storage needed for nop 851, available 100000 storage needed for a matrix 725, available 300000 storage needed for b matrix 725, available 720000 storage needed for gmres 1125, available 187200 time for reading input, forming coefficients 7.49 **** analysis of input data on file fe.chk **** time step 1 1 2.0 125.0 0.137e-04 days 0.5000000e-02 ts size years 5.000e-03 0.3677e-01 total time e(mj) 1 sat temp(cpu sec for step 0.7310e-01 p(mpa) node temp(c) well dis dis ent r eat r ea2 200.000 199.929 197.313 ò.00 0.000e+00 0.000 0.3e-12 0.3e-03 10.000 0.000 1 0.000 0.000 0.000e+00 0.4e-07 0.7e-01 56 10.000 0.00 87 10.000 0.00 0.000e+00 0.28-06 0.3e+01 0.000e+00 10.000 0.00 0.000 192.518 0.000 -0.68-07 0.7e+01 94 100.000 100.000 199.998 0.000 0.1e+03 0.00 5 10.000 0.000e+00 0.000 -0.2e-09 0.000 -0.2e-09 0.000 0.8e-09 0.000 0.000e+00 0.1e+03 0.2e-02 10.000 0.00 25 0.00 0.000e+00 10.000 0.000 2 10.000 0.00 100.000 0.000e+00 125 0.000 0.000 -0.2e-09 O. 1e+03 kg vap mass0.000000 res mass0.000000 kq energy-55.8459 mj net discharge 0.00000 kg net energy discharge 0 0.00000 energy 0.00000 0.00000 mj conservation errors:mass this time step discharges : ,mass,enthalpy,power 0.000e+00 kg 0.000e+00 mj 0.000e 0.000e+00 mw cumulative discharges : ,mass,enthalpy,avg power 0.000e+00 kg 0.000e+00 mj 0 number of region changes this time step 0 0.000a+00 kg 0.000e+00 mw

Fig. 12. Computer output for the 3-D heat conduction example.

0.0 1 125.0 0.821e-02 days 0.3000050e+01 ts size or step 0.3268e-01 total time 0.302 years 5.000e-05 cpu sec for step 0.3021e+02 p(mpa) 10.000 temp(c) node e(mj) 1 sat well dis dis ent r eq1 r eq2 0.000 0.000 0.000 0.000 -0.5e-11 0.1e-04 0.000 0.2e-12 0.9e-05 1 0.00 100.107 0.000e+00 10.000 100.070 0.000e+00 100.027 0.000e+00 56 0.00 0.3e-05 0.8e-06 87 0.00 0.000 -0.7e-12 94 10.000 0.00 0.000 100.006 0.000e+00 0.000 -0.3e-12 0.000 -0.3e-12 0.8e-00 0.000 -0.4e-12 -0.4e-12 0.000 -0.8e-25 -0.2e-26 0.000 0.5e-14 0.1e-04 0.000 0.0e+00 0.1e-38 100.000 100.000 100.099 100.000 0.000e+00 0.000e+00 0.000e+00 5 10.000 0.00 0.000 25 10.000 0.00 0.000 2 10.000 0.00 0.000 125 0.00 0.000 0.000e+00 10.000 res mass0.000000 kg vap mass0.000000 kq energy-33.7589 mj kg net energy discharge 0.00000 energy 0.00 net discharge 0.00000 0.00000 mj 0.00000 conservation errors:mass this time step discharges : ,mass,enthalpy,power 0.000e+00 kg 0.000e+00 mj 0.000e+00 mw cumulative discharges : ,mass,enthalpy,avg power 0.000e+00 kg 0.000e+00 mj 0.000e+00 mw number of region changes this time step 0 simulation ended: days 3.000e+00 timesteps 601

contour plt:fe.con , history plt:fe.his total newton-raphson iterations= 601

601

time step

Fig. 12. Continued

91

temp plot 08 3 i 1 1 1 1 1 1 1 0 0 0 0 5.5 6.5 0 0 3. .5 2 0 200.0 20.0 2 temperature vs time in cube days temperature(deg c)

Fig. 13. Instruction file (HIS.INS) for postprocessor FEHPLTR for the heat conduction problem.

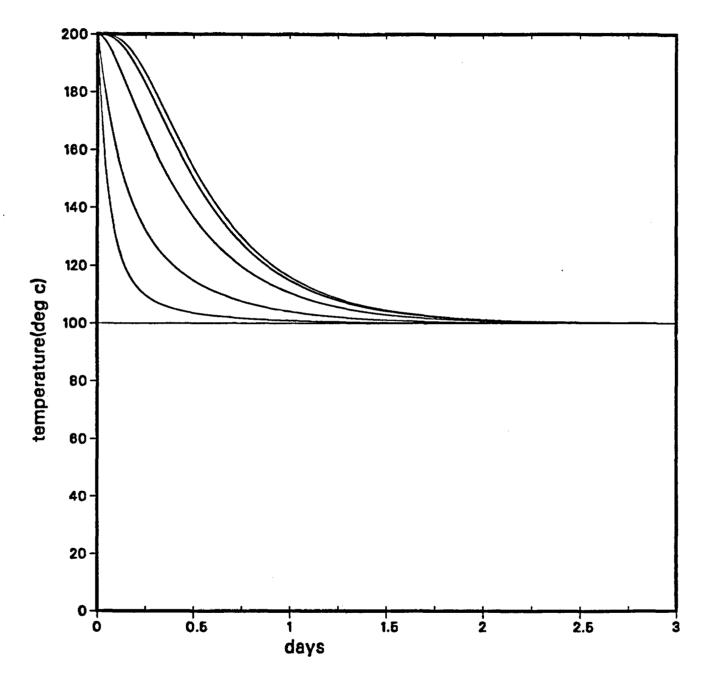


Fig. 14. History plot for the heat conduction problem.

93

(0,182.8)	<u></u>	·			r	(1828,182.8)
0.183	0.173	0.152	0.119	0.148	0.164	
0.183	0.1828 0.173	0.1732 0.152	0.1523 0.119	0.1192 0.148	0.1487 0.164	0.1639
0.183	0.1828 0.173	0.1732 0.152	0.1523 0.117	0.1186 0.148	0.1487 0.164	0.1639
0.183	0.1828 0.173	0.1732 0.152	0.1523 0.119	0.1172 0.148	0.1487 0.164	0.1639
0.183	0.1828 0.173	0.1732 0.152	0.1523 0.120	0.1193 0.149	0.1488 0.164	0.1639
0.183	0.1828 0.173	0.1732 0.152	0.1523 0.121	0.1206 0.149	0.1488 0.164	0.1639
	0.1828	0.1732	0.1524	0.1213	0.1488	0.1639
(0,0)		1	1	<u>1</u>	<u> </u>	(1828,0)
	TP			discharge	L	
		FEHMN	-		node	-

Fig. 15. Solution domain and results for the Toronyi example.

```
2D Model of a Rectangle
4 1 4 0 2 1 0
1 1 2 3 4
0. 1828. 1828. 0.
0. 0. 182.8 182.8
1 07 07 1
.5 1 1 1 1 1 .5
.5 1 1 1 1 1 .5
```

Fig. 16. Input for GENMSH for the Toronyi example.

```
**** toronyi example ****
node
   36
10
   11
       12
          13 14 15
      20 21
28 29
36 37
                 23
31
18
   19
              22
   27
             30
26
34
   35
             38 39
42
   43
      44 45
             46
                 47
50 51 52 53 54
                 55
501
        - 1
    1
init
       4.3000
                   000.
                               250. 0. 0. 250. 0. 0.
r1p
2 0.05 0.05 1.0 1.0
Ő
1 64 1 1
0000
pres
1 64 1 4.3000 .2 2
0000.0.0
rock
        64
               1
                      2563.
                                  1010.
                                            0.0500
                                                        1.0000
  0
     0
           0. 0.
        0
                    0.
                         ο.
cond
        64
              01
                  1.73e-00
                              1.73e-00
                                           0.0e-00
     1
                 0. 0.
  0
     0
        0
            0.
perm
       64
               1
                   9.869e-13 9.869e-13 0.e-00 0. 0. 0.
     1
0
  0 0 0. 0. 0. 0. 0. 0.
flow
  029 029
                1 0.082011 -025.
                                      0.
 0 0 0 0. 0. 0
time
8.3 78.3 0009
8.3 10. 1.0 10
0. 0. 0. 0
                       10 1985
                                   07
ctr1
   40
            1.e-8
                      08
        64
               1
                     1
     1
 0000
        1.0 0.0 0.75
             1.00 0.0001
   40
                               010.00
1 0
coor
  €4
                                                        0.00000
                     0.00000
                                    182.80000
           1
                  152.33333 457.00000
          2
3
                                                        0.00000
                                     182.80000
                                                        0.00000
                                     182.80000
          4
                  761.66667
                                     182.80000
                                                        0.00000
                 1066.33333
1371.00000
                                     182.80000
                                                        0.00000
          567
                                     182.80000
                                                        0.00000
                  1675.66667
                                     182.80000
          89
                  1828.00000
                                     182.80000
                                                        0.00000
                     0.00000
                                     167.56667
                                                        0.00000
                   152.33333 457.00000
          10
                                     167.56667
                                                        0.00000
         11
                                     167.56667
                                                        0.00000
         12
13
                  761.66667
                                     167.56667
                                                        0.00000
                  1066.33333
                                     167.56667
                                                        0.00000
         14
                  1371.00000
                                     167.56667
                                                        0.00000
         15
                  1675.66667
                                     167.56667
                                                        0.00000
                  1828.00000
                                     167.56667
         16
                                                        0.00000
                  0.00000
152.33333
457.00000
         17
18
                                     137.10000
                                                        0.00000
                                     137.10000
                                                        0.00000
                                     137.10000
                                                        0.00000
         19
         20
21
                                     137.10000
                   761.66667
                                                        0.00000
                  1066.33333
                                     137.10000
                                                        0.00000
         22
23
                  1371.00000
                                     137.10000
                                                        0.00000
                                                        0.00000
                  1675.66667
                                     137.10000
         24
25
                  1828.00000
                                     137.10000
                                                        0.00000
                     0.00000
                                     106.63333
                                                        0.00000
```

Fig. 17. Input file for FEHMN for Toronyi example.

	222233333333344444444455555555555666666 2223333333334444444445555555555556666666	$\begin{array}{c} 152.33333\\ 457.00000\\ 761.66667\\ 1066.33333\\ 1371.00000\\ 1675.66667\\ 1828.00000\\ 0.00000\\ 152.33333\\ 457.00000\\ 761.66667\\ 1066.33333\\ 1371.00000\\ 1675.66667\\ 1828.00000\\ 0.00000\\ 152.33333\\ 457.00000\\ 761.66667\\ 1066.33333\\ 1371.00000\\ 1675.66667\\ 1828.00000\\ 0.00000\\ 152.33333\\ 457.00000\\ 761.66667\\ 1828.00000\\ 0.00000\\ 152.33333\\ 1371.00000\\ 157.66667\\ 1828.00000\\ 0.00000\\ 152.33333\\ 1371.00000\\ 157.66667\\ 1828.00000\\ 0.00000\\ 152.33333\\ 1371.00000\\ 761.66667\\ 1066.33333\\ 1371.00000\\ 152.33333\\ 1371.00000\\ 761.66667\\ 1828.00000\\ 0.00000\\ 152.33333\\ 1371.00000\\ 152.6667\\ 1828.00000\\ 0.00000\\ 152.66667\\ 1828.00000\\ 0.00000\\ 152.66667\\ 1828.00000\\ 0.00000\\ 152.83333\\ 1371.00000\\ 152.66667\\ 1828.00000\\ 0.00000\\ 152.83333\\ 1371.00000\\ 152.80000\\ 152.8000\\ 152.80000\\ 152.8000\\ 152.80000\\ 152.80000\\ 152.8000\\ 152$		76. 76. 76. 76. 76. 76. 76. 76. 76. 76.	3333 3333 3333 3333 3333 3333				
€lem 4,	49,1 23,4 567890112345678901222222222222222222222222222222222222	0 9 10 11 12 13 14 15 17 18 19 20 21 22 23 25 26 27 28 29 30 33 34 35 36	.00000 10 11 12 13 14 15 16 18 19 20 21 223 24 26 27 28 29 30 31 32 34 35 36 37	2 3 4 5 6 7 8 10 11 12 13 14 15 16 8 9 0 1 2 2 3 2 2 6 7 8 9 2 1 2 2 3 4 2 6 7 8 9 2 1 2 2 3 4 2 6 7 8 9 2 1 2 2 3 4 2 6 7 8 9 2 1 2 2 3 4 2 6 7 8 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9	1 2 3 4 5 6 7 9 10 1 1 2 3 4 5 6 7 9 10 1 1 1 2 3 1 4 5 7 9 2 1 2 2 3 2 5 6 7 8 2 2 7 8 2 6 7 8 2 7 7 8 2 7 8 2 7 7 7 7	0.00000			

Fig. 17. (Continued)

267 289 301 333 3567 890 123 412 344 444 45	33344444445555555555555555555555555555	339023456780123456890 55555555555555555	33333333333333333333333333333333333333	290 333 335 335 338 345 357 3891 423 445 467 951
46	60	61	53	52
47	61	62	54	53
48	62	63	55	54
49	63	64	56	55
0	0	0	0	0

.

stop

.

Fig. 17. Continued.

.

fehm.4.0 12/11/90

******** toronyi example ********

output file, wt tape, rd tp, user call parameter 12 44 0 0

storage for geometric coefficients 218, in common(nr) 48000 pressures and temperatures set by gradients storage needed for ncon 353, available 80000 storage needed for nop 353, available 100000 storage needed for a matrix 1152, available 300000 storage needed for b matrix 1152, available 720000 storage needed for gmres 1152, available 187200

time for reading input, forming coefficients 6.94

**** analysis of input data on file fe.chk ****

time step

3

8.0 64.0

1

years	0.227e-			0e+01 ts		00e+00		
	for step		+00 total		.2091e+00	 .	-	-
node	p(mpa)	e(mj)	1 sat	temp(c)	well dis (r eq1	r eq2
10	4.300	1.27	0.200	254.600	0.000e+00		-0.3e-12	
11	4.299	1.27	0.199	254.585	0.000e+00		-0.2e-12	
12	4.293	1.28	0.196	254.507	0.000e+00		-0.2e-11	
13	4.265	1.29	0.182	254.123	0.000e+00	0.000		-0.7e-12
14	4.293	1.28	0.196	254.506	0.000e+00	0.000	0.4e-11	0.2e-11
15	4.298 4.300	1.27 1.27	0.199 0.200	254.580	0.000e+00		-0.9e-12 -0.1e-11	
18 19	4.299	1.27	0.199	254.600 254.585	0.000e+00		-0.4e-12	
20	4.293	1.27	0.199	254.507	0.000e+00 0.000e+00		-0.6e-11	
21	4.293	1.20	0.198	254.101	0.000e+00	0.000	0.3e-12	0.2e-12
22	4.293	1.29	0.196	254.506	0.000e+00	0.000	0.2e-12	0.2e-12 0.9e-11
23	4.298	1.20	0.199	254.580	0.000e+00		-0.3e-11	
26	4.300	1.27	0.200	254.600	0.000e+00		-0.1e-11	
27	4.299	1.27	0.199	254.585	0.000e+00		-0.2e-12	
28	4.293	1.28	0.196	254.507	0.000e+00	0.000	0.7e-11	0.4e-11
29	4.261	1.29	0.179	254.055	0.820e-01		-0.4e-12	0.2e-11
30	4.293	1.28	0.196	254.506	0.000e+00	0.000	0.8e-11	0.4e-11
31	4.298	1.27	0.199	254.580	0.000e+00		-0.5e-11	
34	4.300	1.27	0.200	254.600	0.000e+00		-0.1e-11	
35	4.299	1.27	0.199	254.585	0.000e+00	0.000	0.8e-13	0.1e-12
36	4.293	1.28	0.196	254.508	0.000e+00	0.000	0.2e-10	0.8e-11
37	4.265	1.29	0.182	254.118	0.000e+00	0.000	0.4e-13	0.2e-12
38	4.293	1.28	0.196	254.507	0.000e+00		-0.8e-11	
39	4.298	1.27	0.199	254.580	0,000e+00		-0.5e-11	
42	4.300	1.27	0.200	254.600	0.000e+00		-0.1e-11	
43	4.299	1.27	0.199	254.585	0.000e+00		-0.3e-12	
44	4.293	1.28	0.196	254.508	0.000e+00	0.000	0.7e-11	0.4e-11
45	4.268	1.29	0.183	254.158	0.000e+00	0.000	0.2e-12	-0.6e-12
46	4.293	1.28	0.196	254.507	0.000e+00	0.000	-0.1e-10	-0.6e-11
47	4.298	1.27	0.199	254.580	0.000e+00	0.000	-0.5e-11	-0.3e-11
50	4.300	1.27	0.200	254.600	0.000e+00	0.000	-0.7e-12	-0.4e-12
51	4.299	1.27	0.199	254.585	0.000e+00	0.000	-0.4e-12	-0.2e-12
52	4.293	1.28	0.196	254.509	0.000e+00	0.000	-0.6e-11	-0.3e-11
53	4.269	1.29	0.104	254.178	0.000e+00	0.000	-0.2e-12	-0.5e-12
54	4.293	1.28	0.196	254.508	0.000e+00	0.000	-0.7e-11	-0.3e-11
55	4.298	1.27	0.199	254.580	0.000e+00	0.000	-0.3e-11	-0.2e-11
res mass(0.287727e+0	7 kg vap m	mass 2900	27. k	q energy0.2	12729e+()9 mj	
	_							
net disc) conservat	harge 5 tion errors	8812. :mass -(nergy dis 08 energy	charge 0 -0.66939	.16422e ⁴ e-08	⊦06 mj	
this time step discharges : ,mass,enthalpy,power 5.881e+04 kg 1.642e+05 mj 2.290e-01 mw								
cumulative discharges : ,mass,enthalpy,avg power 5.881e+04 kg 1.642e+05 mj 2.290e-01 mw								
	of region				AC AT WM			

Fig. 18. Output for the Toronyi example.

time step

.

1

1.0 64.0

9

years 0.21			000e-04				
cpu sec for ste	p 0.5129e-01 total	time 0.1539e+01					
node p(mpa		temp(c) well dis	dis ent req1 req2				
10 4.26		254.151 0.000e+00	0.000 0.3e-13 0.4e-14				
11 4.24	9 1.30 0.173	253.895 0.000e+00	0.000 -0.2e-13 -0.2e-14				
12 4.20	9 1.32 0.153	253.336 0.000e+00	0.000 0.2e-12 -0.5e-14				
13 4.14	6 1.37 0.12 0	252.441 0.000e+00	0.000 0.4e-13 0.5e-16				
14 4.20	3 1.32 0.149	253.242 0.000e+00	0.000 0.7e-13 -0.3e-14				
15 4.23		253.650 0.000e+00					
18 4.26		254.151 0.000e+00					
19 4.24		253.895 0.000e+00					
20 4.20		253.336 0.000e+00					
21 4.14		252.421 0.000e+00					
22 4.20		253.242 0.000e+00					
23 4.23		253.650 0.000e+00					
26 4.26		254.151 0.000e+00					
27 4.24		253.895 0.000e+00					
28 4.20		253.336 0.000e+00					
29 4.14							
30 4.20							
31 4.23							
		253,650 0.000e+00					
34 4.26		254.151 0.000e+00					
35 4.24		253.895 0.000e+00					
36 4.21		253.337 0.000e+00					
37 4.14		252.439 0.000e+00					
38 4.20		253.243 0.000e+00					
39 4.23		253.650 0.000e-00					
42 4.26		254.151 0.000e+00					
43 4.24		253.895 0.000e+00	0.000 0.1e-13 0.6e-14				
44 4.21		253.338 0.000e+00					
45 4.14		252.477 0.000e+00	0.000 -0.7e-13 0.4e-15				
46 4.20		253.243 0.000e+00	0.000 0.5e-13 0.4e-14				
47 4.23	2 1.31 0.164	253.650 0.000e+00	0.000 0.1e-12 -0.5e-14				
50 4.26		254.151 0.000e+00	0.000 -0.2e-13 -0.8e-15				
51 4.24	9 1.30 0.173	253.895 0.000e+00	0.000 0.8e-13 -0.1e-14				
52 4.21) 1.32 0.153	253.339 0.000e+00					
53 4.15) 1.37 0.122	252.496 0.000e+00	0.000 0.4e-13 0.5e-14				
54 4.20	1.32 0.149	253.244 0.000e+00	0.000 -0.1e-12 -0.4e-15				
55 4.23		253.650 0.000e+00	0.000 -0.7e-13 -0.7e-15				
res mass0.2381270	2+07 kg vap mass 2984	27. kg energy0.2	211341e+09 mj				
	5	1	····· ·				
net discharge	0.55481e+06 kg net e	nergy discharge ().15518e+07 mj				
conservation erro		08 energy -0.43337					
this time step d:	scharges : ,mass,ent	halpy,power					
7.086e-01		2.295e-01 mw					
cumulative discharges : ,mass,enthalpy,avg power							
5.548e+05 kg 1.552e+06 mj 2.294e-01 mw							
number of region changes this time step 0							
		· · · ·					

.

simulation ended: days 7.830e+01 timesteps 9 contour plt:fe.con , history plt:fe.his total newton-raphson iterations~ 19

Fig. 18. (Continued)

99

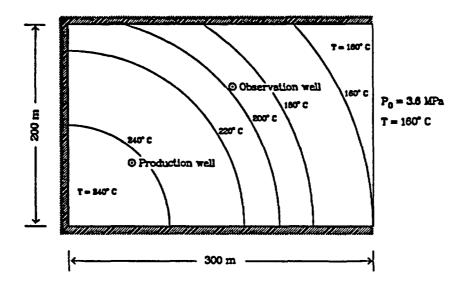


Fig. 19. Schematic diagram of the geometry and boundary conditions for the DOE code comparison project problem.

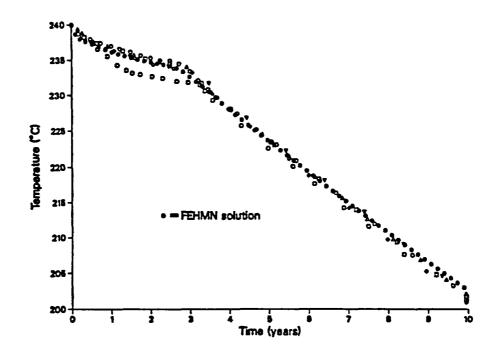


Fig. 20. Comparison of FEHMN production well temperatures with results from other codes.

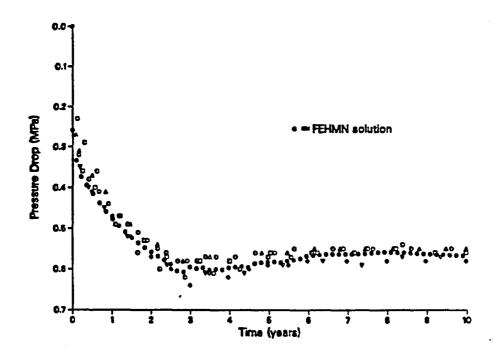


Fig. 21. Comparison of FEHMN production well pressure with results from other codes.

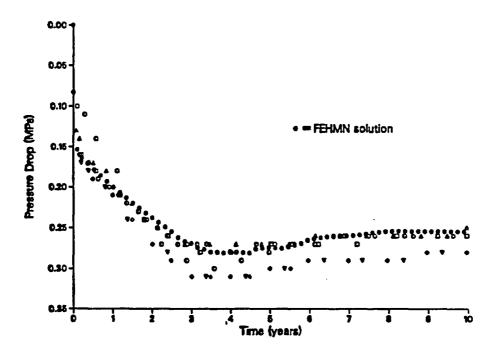


Fig. 22. Comparison of FEHMN observation well pressure with results from other codes.

DOE Code Comparison Project, Problem 5, Case A 8 1 8 0 2 1 0 1 1 2 3 4 5 6 7 8 0. 150. 300. 300. 300. 150. 0. 0. 0. 0. 0. 100. 200. 200. 200. 100. 1 13 9 1 .5 1 1 1 1 1 1 1 1 1 1 .5 .5 1 1 1 1 1 1 1 .5

Fig. 23. Input for GENMSH for the DOE example.

node 2)E Code	Compari	ison Proje	ct, Pro	blem	5, Case A	***	
88 50								
sol 1	1							
init	Ŧ							
	6000	0.00	240.	0.	Ο.	240.	0.	0.
rlp .		0.00	240.	•••	•••	210.	•.	•••
2	0.3	0.1	0.0	0.0				
0	•••							
1 140	1 1							
000	0							
rock								
1	140	1	2563.	1010	•	0.3500		
0	0	0	0.	0	•	0.		
cond		_						
1	140	1	1.00e-00					
0	0	0	0.00e-00	0.00e	-00	0.00e-00		
perm	1 40		0 50. 14	0 50.		0 00- 00		
1	140	1	2.50e-14					
0	0	0	0.00e-00	0.00e	-00	0.00e-00		
flow	00	٦	0 050	25		^		
88	88 140	1	0.050	-25.		0.		
14 0	140	14 0	3.600 0.	-160 0.	.0	1. 0.		
U	U	U	υ.	υ.		υ.		

Fig. 24. Input for FEHMN for the DOE example.

time 30.0 3650 1.0 -1.2 1.0 100 0. 0. ctrl 40 1.e-7 1 140 0 0 1.0 0.0 40 1.2 1 0 coor		1000 1989	10
140			
coor 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	0.00000 12.50000 37.50000 87.50000 112.50000 112.50000 137.50000 122.50000 237.50000 237.50000 262.50000 27.50000 37.50000 12.50000 37.50000 12.50000 12.50000 12.50000 12.50000 12.50000 12.50000 12.50000 12.50000 12.50000 12.50000 12.50000 12.50000 37.50000 12.50000 37.50000 12.50000 37.50000 12.50000 37.50000 12.50000 37.50000 12.50000 37.50000 12.50000 37.50000 12.50000 37.50000 12.50000 37.50000 12.50000 37.50000 12.50000 37.50000	$\begin{array}{c} 200.00000\\ 200.00000\\ 200.00000\\ 200.00000\\ 200.00000\\ 200.00000\\ 200.00000\\ 200.00000\\ 200.00000\\ 200.00000\\ 200.00000\\ 200.00000\\ 200.00000\\ 200.00000\\ 200.00000\\ 187.50000\\ 162.50000\\ 162.$	0.00000 0.00000
41	287.50000	162.50000	0.00000
42	300.00000	162.50000	0.00000
43 44 45	0.00000 12.50000 37.50000	137.50000 137.50000 137.50000	0.00000 0.00000 0.00000

Fig. 24. (continued)

46	62.50000	137.50000	0.00000
47	87.50000	137.50000	0.00000
48	112.50000	137.50000	0.00000
49	137.50000	137.50000	0.00000
50	162.50000	137.50000	0.00000
51	187.50000	137.50000	0.00000
52	212.50000	137.50000	0.00000
53	237.50000	137.50000	0.00000
54	262.50000	137.50000	0.00000
55	287.50000	137.50000 .	0.00000
56	300.00000	137.50000	0.00000
57	0.00000	112.50000	0.00000
58	12.50000	112.50000	0.00000
59	37.50000	112.50000	0.00000
60	62.50000	112.50000	0.00000
61	87.50000	112.50000	0.00000
62	112.50000	112.50000	0.00000
63	137.50000	112.50000	0.00000
64	162.50000	112.50000	0.00000
			0.00000
65	187.50000	112.50000	
66	212.50000	112.50000	0.00000
67	237.50000	112.50000	0.00000
68	262.50000	112.50000	0.00000
69	287.50000	112.50000	0.00000
70	300.00000	112.50000	0.00000
71	0.00000	87.50000	0.00000
72	12.50000	87.50000	0.00000
73	37.50000	87.50000	0.00000
74	62.50000	87.50000	0.00000
75	87.50000	87.50000	0.00000
76	112.50000	87.50000	0.00000
77	137.50000	87.50000	0.00000
78	162.50000	87.50000	0.00000
79	187.50000	87.50000	0.00000
80	212.50000	87.50000	0.00000
81	237.50000	87.50000	0.00000
82	262.50000	87.50000	0.00000
83	287.50000	87.50000	0.00000
84	300.00000	87.50000	0.00000
		0.100000	
85	0.00000	62.50000	0.0000
86	12.50000	62.50000	0.00000
87	37.50000	62.50000	0.00000
88	62.50000	62.50000	0.00000
89	87.50000	62.50000	0.00000
90	112.50000	62.50000	0.00000
91	137.50000	62.50000	0.00000
92	162.50000	62.50000	0.00000
	187.50000	62.50000	0.00000
93			
94	212.50000	62.50000	0.00000
95	237.50000	62.50000	0.00000
96	262.50000	62.50000	0.00000
97	287.50000	62.50000	0.00000
98	300.00000	62.50000	0.00000
99	0.00000	37.50000	0.00000
100	12.50000	37.50000	0.00000
101	37.50000	37.50000	0.00000
102	62.50000	37.50000	0.00000
TUZ	02.30000	57.50000	0.00000

Fig. 24. (continued)

	10	3	87	.50000	37.	50000	0.00000
	10		112	.50000	37.	.50000	0.00000
	10	5	137	.50000	37.	.50000	0.00000
	10		162	.50000	37.	.50000	0.00000
	10			.50000		.50000	0.00000
	10			.50000		. 50000	0.00000
	10			.50000		.50000	0.00000
	11			.50000		.50000	0.00000
	11			.50000		.50000	0.00000
	11			.00000		.50000	0.00000
	11			.00000		.50000	0.00000
	11 11			.50000 .50000		.50000 .50000	0.00000
	11			.50000		.50000	0.00000
	11			.50000		. 50000	0.00000
	11			.50000		. 50000	0.00000
	11			.50000		50000	0.00000
	12			.50000		50000	0.00000
	12			.50000		50000	0.00000
	12			.50000		50000	0.00000
	12		237	.50000	12	.50000	0.00000
	12		262	.50000	12	50000	0.00000
	12			.50000		.50000	0.00000
	12			.00000		.50000	0.00000
	12			.00000		.00000	0.00000
	12			.50000		.00000	0.00000
	12			.50000		.00000	0.00000
	13			.50000		.00000	0.00000
	13 13			.50000 .50000		.00000 .00000	0.00000
	13			.50000		.00000	0.00000
	13			.50000		.00000	0.00000
	13			.50000		.00000	0.00000
	13			.50000		.00000	0.00000
	13			.50000		.00000	0.00000
	13			.50000		.00000	0.00000
	13	9	287	.50000		.00000	0.00000
	14		300	.00000		00000	0.00000
_		0	0	.00000	0	.00000	0.00000
elem		•					
4	117	0	16	16	2	-	
	2		15 16	16 17	2 3	1	
	2		17	18	3 4	2	
	1 2 3 4		18	19	5	2 3 4	
	5		19	20	5 6		
	6		20	21	7	5 6	
	7		21	22	8	7	
	6 7 8		22	23	9	7 8	
	9		23	24	10	9	
	10		24	25	11	10	
	11		25	26	12	11	
	12		26	27	13	12	
	13		27	28	14	13	
	14		29	30 31	16	15	
	15		30 31	31	17	16	
	16		31	32	18	17	

Fig. 24. (continued)

17 19 22 22 22 22 22 22 22 22 22 2	32 33 35 37 39 41 44 44 44 45 55 55 55 55 56 61 23 45 66 66 66 66 66 77 77 77	33 33 33 33 33 40 42 44 44 44 44 45 55 55 55 55 56 61 23 45 66 66 66 66 66 66 77 77 77	19 22 22 22 22 22 22 22 22 22 22 22 22 22	18901223456790123345678901134456789012334557890
51	68	69	55	54
53	71	72	5,8	57
			59 60	
56	74	75	61	60
57 58	75 76	76 77	62 63	61 62
59	77	78	64	63
60 61	78 79	79 80	65 66	64 65
62	80	81	67	66
63 64	81 82	82 83	68 69	67 60
65	83	84	70	68 69
66 67	85 86	86 87	72	71 72
68	87	88	73 74	73
69 70	88	89	75	74
70 71	89 90	90 91	76 77	75 76
72	91	92	78	77
73	92	93	79	78

Fig. 24. (continued)

74	93	94	80	79
75	94	95	81	80
76	95	96	82	81
77	96	97	83	82
78	97	98	84	83
79	99	100	86	85
80	100	101	87	86
81	101	102	88	87
82	102	103	89	88
83	103	104	90	89
84	104	105	91	90
85	105	106	92	91
86	106	107	93	92
87	107	108	94	93
88	108	109	95	94
89	109	110	96	95
90	110	111	97	96
91	111	112	98	97
92	113	114	100	99
93	114	115	101	100
94	115	116	102	101
95	116	117	103	102
96	117	118	104	103
97 98	118	119	105	104
98 99	119 120	120 121	106 107	105
100	120	121	107	106 107
101	121	122	108	107
101	122	123	110	108
102	123	125	111	110
104	125	126	112	111
105	127	128	114	113
106	128	129	115	114
107	129	130	116	115
108	130	131	117	116
109	131	132	118	117
110	132	133	119	118
111	133	134	120	119
112	134	135	121	120
113	135	136	122	121
114	136	137	123	122
115	137	138	124	123
116	138	139	125	124
117	139	140	126	125
0	0	0	0	0
q				

stop

٠

1

Fig. 24. (continued)

fehm.4.0 12/11/90

*** DOE Code Comparison Project, Problem 5, Case A *** output file, wt tape, rd tp, user call parameter 44 13 storage for geometric coefficients 170, in common pressures and temperatures set by gradients storage needed for ncon 1261, available 80000 storage needed for nop 1261, available 100000 storage needed for a matrix 4480, available 300000 storage needed for b matrix 4480, available 720000 storage needed for genera 2520 available 187300 in common(nr) 48000 storage needed for gmres 2520, available 187200 time for reading input, forming coefficients 7.31 **** analysis of input data on file fe.chk **** time step 1 4 16.7 140.0 0.274e-02 days 0.1000000e+01 ts size years 1.000e+00 cpu sec for step 0.7846e+00 total time 0.8199e+00 e(mj) 1 sat temp(c) well dis dis ent r eq1 r eq2 1.04 0.999 239.971 0.500e-01 1.037 -0.2e-09 0.5e-10 1.04 1.000 239.993 0.000e+00 0.000 0.4e-11 -0.8e-12 node p(mpa) 46 3.341 92 3.529 res mass0.170833e+08 kg vap mass 5.06828 kq energy0.418642e+08 mj kg net energy discharge 0.20321 energy 0.2 net discharge 2633.7 3335.4 mj Ŏ.24829 conservation errors:mass ,mass,enthalpy,power 78e+03 mi 5.183e-02 mw this time step discharges : 4.320e+03 kg 4.478e+03 mj cumulative discharges : ,mass,enthalpy,avg power 4.320e+03 kg 4.478e+03 mj 5.183e-02 mw number of region changes this time step 0 time step 63 3 10.3 140.0 0.999e+01 days 0.3650000e+04 ts size 3. or step 0.4888e+00 total time 0.3765e+02 p(mpa) e(mj) 1 sat temp(c) well dis 3.015 1.02 0.783 234.252 0.500e-01 2.101 160 0.000e-01 years 3.796e+01 cpu sec for step p(mpa) 3.015 node well dis dis ent sent req1 req2 1.016 0.3e-11 -0.6e-11 0.000 0.1e-11 0.4e-10 234.252 0.500e-01 218.169 0.000e+00 46 92 3.353 0.93 1.000 res mass0.169256e+08 kg vap mass 19184.9 kq energy0.360994e+08 mj net discharge 0.16031e+06 kg net energy discharge conservation errors:mass 0.54996e-04 energy 0.6 0.57681e+07 mj 0.67599e-04 this time step discharges : ,mass,enthalpy,power 1.640e+05 kg 1.667e+05 mj 5.082e-02 mw cumulative discharges : ,mass,enthalpy,avg power 1.577e+07 kg 1.634e+07 mj 5.182e-02 mw number of region changes this time step 0 simulation ended: days 3.650e+03 timesteps 63 contour plt:fe.con , history plt:fe.his total newton-raphson iterations= 211

Fig. 25. Output from FEHMN for the DOE problem.

2 temp contours for doe problem 0 0 0 300 0 200 0 0 6.5 6.5 1 -1. 0.0 0.0 0.0 8 160. 180. 200. 210. 220. 225. 230. 235.

Fig. 26. Instruction file (CON.INS) for the postprocessor FECPLTR for the DOE problem.

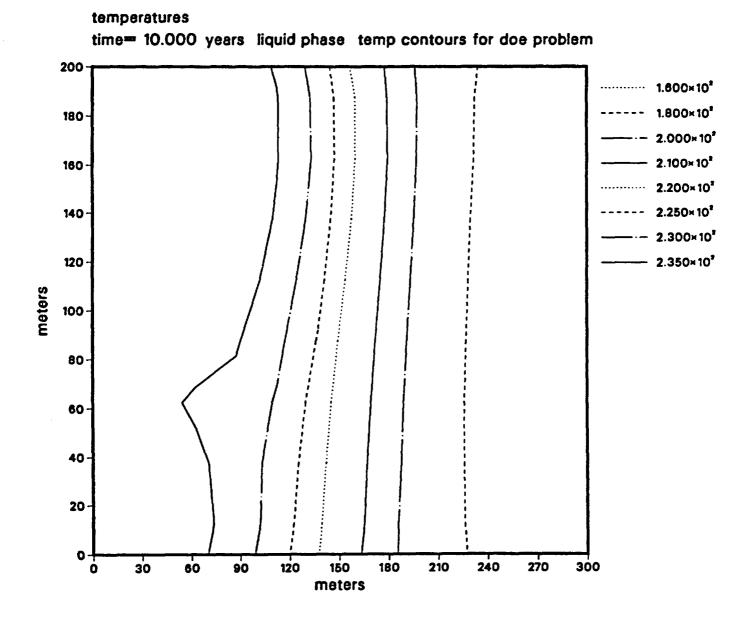


Fig. 27. Contour plot of temperature for the DOE problem.

110

ACKNOWLEDGMENTS

The authors thank Kay Coen, Kay Birdsell, and Mary Ann Olson for their contributions to this document.

DISCLAIMER

The software documented in this report was not verified, validated, or otherwise subjected to the controls of a Yucca Mountain Site Characterization Project Office-approved quality program.

REFERENCES

- Behie, A., and P. A. Forsythe, "Incomplete Factorization Methods for Fully Implicit Simulation for Enhanced Oil Recovery," SIAM, J. Sci. Stat. Comput. 5, 543-561 (1984). [NNA.910806.0004].
- Behie, A., and P. K. W. Vinsome, "Block Iterative Methods for Fully Implicit Reservoir Simulations," Soc. Pet. Eng. J. 22, 658-668 (1982). [NNA.910806.0005].
- Birdsell, K. H., K. Campbell, K. G. Eggert, and B. J. Travis, "Simulation of Radionuclide Retardation at Yucca Mountain Using a Stochastic Mineralogical/Geochemical Model," Proceedings of the First International Meeting on High Level Radioactive Waste Management, Las Vegas, Nevada, April 8-12, 1990. [NNA.900824.0091].
- Brownell, D. H., S. K. Garg, and J. W. Pritchett, "Computer Simulation of Geothermal Reservoirs," Paper SPE 5381, Proceedings of the 45th California Regional Meeting of the Soc. Pet. Eng. of AIME, Ventura, California (1975). [NNA.910806.0006].
- Corey, A. T., "The Interrelation Between Gas and Oil Relative Permeabilities," Prod. Mon. 19, 38-41 (1954). [NNA.900720.0036].
- Dalen, V., "Simplified Finite-Element Models for Reservoir Flow Problems," Soc. Pet. Eng. J. 19, 333-343 (1979). [NNA.910806.0007].
- Diaz, J. R., W. R. Jines, and T. Steihaug, "On the Convergence Criterion for Linear (Inner) Iterative Solvers for Reservoir Simulation," Paper SPE 13500 Proceedings of the Eighth SPE Symposium on Reservoir Simulation, Dallas, Texas, February (1985). [NNA.890523.0135].
- Gangi, A. F., "Variation of Whole and Fractured Porous Rock Permeability with Confining Pressure," Rock Mech. Sci. and Geomech. Abstr. 15, 249-257 (1978). [NNA.900403.0014].

- Hinton, E., and D. R. J. Owen, An Introduction to Finite Element Computations (Pineridge Press, Swansea, Wales, 1979). [NNA.910806.0008].
- Klavetter, E. A., and R. R. Peters, "Estimation of Hydrologic Properties of an Unsaturated Fractured Rock Mass," Sandia Report SAND84-2642, 1986. [HQS.880517.3118].
- Meijerink, J. A., and H. A. Van der Vorst, "An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a Symmetric M-Matrix," *Mathematics of* Computation 31, 148-162 (1977). [NNA.890523.0134].
- Mercer, J. W. and C. R. Faust, "Simulation of Water- and Vapor-Dominated Hydrothermal Reservoirs," Paper SPE 5520, Proceedings of the 50th Annual Fall Meeting of the Soc. Pet. Eng. of AIME, Dallas, Texas (1975). [NNA.910806.0009].
- Moench, A. F., "Double-Porosity Models for a Fissured Groundwater Reservoir with Fracture Skin," Water Resources Reference 20:7, 831-846 (1984). [HQS.880517.2762].
- Molloy, M. W., "Geothermal Reservoir Engineering Code Comparison Project," Proceedings of the Sixth Workshop on Geothermal Reservoir Engineering, Stanford University (1980). [NNA.910806.0010].
- Nitao, J., "Numerical Modeling of the Thermal and Hydrological Environment Around a Nuclear Waste Package Using the Equivalent Continuum Approximation: Horizontal Emplacement," Lawrence Livermore National Laboratory report UCID-21444(1988). [NNA.890317.0021].
- Pruess, K., "TOUGH Users Guide," Lawrence Berkeley Laboratory report LBL-20709 (June 1987). [NNA.890315.0010].
- Robinson, B. "Sorption Column Modeling for LiBr," Los Alamos document Group EES-4/7-88-1 (July 1988). [NNA.910806.0011].
- Saad, Y., and M. H. Schultz, "GMRES: A Generalized Minimal Residual Algorithm for Solving Non-Symmetric Linear Systems," SIAM Journal of Scientific and Statistical Computation 7(3), 856-869 (1986). [NNA.890523.0137].
- Satter, A., W. M. Shum, W. T. Adams, and L. A. Davis, "Chemical Transport in Porous Media with Dispersion and Rate-Controlled Adsorption," Soc. Pet. Eng. J. 20, 129-138, (1980). [NNA.910806.0012].
- Thomas, L. K., and R. G. Pierson, "Three Dimensional Reservoir Simulation," Soc. Pet. Eng. J. 18, 151-161 (1978). [NNA.910806.0013].

- Toronyi, R. M., and S. M. Farouq Ali, "Two-phase, Two-dimensional Simulation of a Geothermal Reservoir and Wellbore System," Soc. Pet. Eng. J. 17, 171-183 (1977). [NNA.910806.0014].
- van Genuchten, M. T. "A Closed Form Equation for Predicting Hydraulic Conductivity of Unsaturated Soils," Soil Sci. Soc. Am. J., 44, 892-898 (1980). [NNA.890522.0287].
- Warren, J. E., and P. J. Root, "The Behavior of Naturally Fractured Reservoirs," Soc. Pet. Eng. J. 3, 245-255 (1963). [NNA.890522.0276].
- Weeks, E. P., "Effect of Topography on Gas Flow in Unsaturated Fractured Rock: Concepts and Observations," Proceedings of the American Geophysical Union Symposium on Flow and Transport in Unsaturated Fractured Rock, D. Evans and T. Nicholson, Eds., Geophysical Monograph 42, AGU (1987). [HQS.880517.3217].
- Young, L. C., "A Finite Element Method for Reservoir Simulation," Soc. Pet. Eng. J. 21, 115-128 (1981). [NNA.910806.0015].
- Zienkiewicz, O. C., The Finite Element Method (McGraw-Hill, London, 1977). [NNA.910327.0066].
- Zienkiewicz, O. C., and C. J. Parekh, "Transient Field Problems: Two and Three Dimensional Analysis by Isoparametric Finite Elements," Int. J. Numer. Methods Eng. 2, 61-70 (1970). [NNA.910806.0016].
- Zyvoloski, G., "Finite Element Methods for Geothermal Reservoir Simulation," Int. J. Numer. Anal. Methods Geomech. 7, 75-86 (1983). [NNA.910806.0017].
- Zyvoloski, G., "Incomplete Factorization for Finite Elements," International Journal for Numerical Methods in Engineering 23, 1101-1109, 1986. [NNA.890523.0138].
- Zyvoloski, G. and Z. Dash, "Software Verification Report FEHMN Version 1.0," Los Alamos National Laboratory report LA-UR-91-609 (1991). [NNA.910806.0018].
- Zyvoloski, G., Z. Dash, and S. Kelkar, "FEHM: Finite Element Heat and Mass Transfer Code," Los Alamos National Laboratory report LA-11224-MS (March 1988). [NNA.900918.0013].

.

The following number is for Office of Civilian Radioactive Waste Management (OCRWM) records management purposes only and should not be used when ordering this publication.

ł

•

• • • •

•

è

;

•

÷

Accession Number NNA.910625.0038

This report has been reproduced directly from the best available copy.

It is available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. Prices are available from (615) 576-8401, FTS 626-8401.

It is available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

LOS Alamos Los Alamos National Laboratory Los Alamos, New Mexico 87545