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CHAPTER 6
THREE-DIMENSIONAL SINGLE-REALIZATION
SIMULATIONS OF SATURATED FLOW IR RANDOM POROUS MEDIA

6.1 Scope, Model Problems, and Methodology

This Chap'ter is devoted to the physical interpretation
and statistical analysis of large realizations of steady state
saturated flow fields in three-dimensional random porous media.
In the single-realiiation approach, the hydraulic conductivity
K(x) is génerated as a particular replica of a statistically
homogeneous random field in 3D space. In view of reproducing a
relatively wide range of natural conditions, two main ;:ypes of
model problems (is;atropic/anisotropic) were selected, with
different subcases corresponding to various degrees of
conductivity variability. In all cases, tﬁe random field
conductivity was assumed locally isotropic, although the spatial
structure could be statistically anisotropic as well as

isotropic. This will be explained in more detail shortly.

[a] Model Problems.

THe single-realization flow problems to be examined in
this Chapter are listed in Table 6.1, with a summary of numerical
and statistical input data in each case (problems A, B, E and F,

to be analyzed in Sections 6.3, 6.2, 6.4, respectively).
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IMPERVIOUS ¢ PIXED HEAD
BOUNDARY BOUNDARY

Figure 6.1 Schematic representation of flow domain geometry
and boundary conditions used for single-realization
simulations of steady-state saturated flow.
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as part of the solution. However, there was no provision to do’
this in the saturated flow simulator developed in this work. To
be fair, note that the flow simulator could also be run in the
partially saturated mode to simulate unconfined flow, provided
~ that the vadose zone above the water table be included in the
flow domain. However, we have not tried this cumbersorﬁe
approach. Instead, the case of unconfined flow could be
approximtéd in the purely saturated flow regime by assuming a
fixed, horizontgl water table, through which some distributed
recharge flux could be prescribed. The regional hydraulic
gradient should be taken horizontal, and equal to the mean slope
of the water table as measured in the field. In our view, the
simulated flow fields obtained in this way could be fairly
representative of natural unconfined groundwater flow systems, at
least far enough below the water table. Thus, the model flow
problem of Figure 6.1 could be interpreted alternatively as a
confined flow system or as an unconfined flow system with zero

recharge at the water table.

Let us now discuss our particular choice of boundary
conditions (Figure 6.1) in the context of the single-realization
approach to stochastic flow. We have indicated earlier that the
flow was assumed to be driven at the large scale by some regional

hydraulic gradient. This type of condition was modeled in an
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indirect fashion by prescribing constant head conditions on two
opposite faces of the flow domain, and zero flux conditions on

all other lateral faces.

As a consequence, the regional or "mean" hydraulic
gradient will be approximately aligned with the horizontal axis

X,, which also coincides exactly with the mean flow direction.

This property can be expressed more precisely by
defining "regional” or "mean"” quantities as three-dimensional

spatial averages, e.g.:

R SRS S | i Y-: S
Mean Hydraulic Gradient: Ji C.L, f”‘ axi dx

(6.1)

1
oy .U Q & .

Mean Flux:

oA

Due to the particular geometry and boundary conditions
(impervious lateral boundaries), the mean transverse flux
components necessarily vanish (Q; = Q; = 0) and the mean flow is
exactly horizontal. On the other hand, a simple manipulation of
the triple volume integral defining '.'I'1 shows that the

longitudinal component 3-1 is exactly equal to:
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- Hy-Ho
l L= T | (6.2)

and the other gradient components are expected to vanish for -
sufficiently large domains (;fz = '-Ta =~ 0). Note that the boundary
conditions are such that the transverse components of the mean
hydraulic gradient are only approximately null in a heterogeneous
medium, wheyeas the mean transverse flux components are exactly
zero by construction. It does not seem possible to ensure both
conditions exactly with a consistent set of boundary conditions.
Attempts to do so will lead to an ill-posed boundary value

problem.

Equation (6.2) defiries in =a simple manner the
longitudinal "mean" hydraulic gradient 1mpos;ed on the flow in
terms of the prescribed heads H, and H, at' the left and right
boundaries. One may conceptually relate this quantity to the
ensemble mean hydraulic gradient that would obtain by taking L1
infinite while (H, - Hg)/L, remains constant. Furthermore, we
have seen that the average flux over the flow domain is
necessarily aligned with the horizontal axis (x,), since all
lateral boundaries are impervious. This property of the
finite~domain flow field is consistent with the predictions of
the infinite domain spectral theory in the special case where tixe

log-conductivity field 1s statistically isotropic or has its

1
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principal axis of anisotropy aligned with the mean gradient

(horizontal axis x,).

Accordingly, the anisotropic model problems listed in
Table 6.1 (E and F) were restricted to the case of horizontally
stratified aquifers, with a zero dip e;ngle between the mean flow
and the principal axis of statistical anisotropy of the
log-conductivity field. In the more general case of a non-zero
dip angle (sloping s'tratifiwtion) the mean flux will not be
al. igned with the mean hydraulic gradient in general. Future work
on this complex case should focus on the design of boundary
conditions compatible with the infinite domain and ergodicity
assumptions of | the spectral theory. Briefly, there are at least
two different ways in which a global flow condition can be
prescribed over a finite domain of rectangular shape with a dip
angle. A regional hydraulic gradient can be ascribed by assuming
a linear head variation outside the computational domain (i.e.,
on all sloping boundaries). Alternatively, a regional discharge
rate vector can be ascribed by assuming a constant discharge rate
outside the computational domain. The first of these approaches
is a generalization of the boundary conditions chosen in this
work for the case of {isotropic or horizontally stratified
formations. It is not clear at this point which one of the two
approaches will be the most advantageous for the simulation of

groundwater flow in sloping stratified formations: we leave this
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problem for future research.

[b] Random Conductivity Fields:

The random log-conductivity field used for each
single-realization problem was e normally distributed
three—dimens ional Markov field. In short hand notation, the

probability distribution function of &n K(x) can be defined as:

pdf = X(¢n K;,02) (6.32)

where N indicates the standard normal distribution, ) KG is the

geometric mean conductivity:

K

c = exp<én KO (6.3b)

and af is the variance of the log-conductivity perturbation f:

£(x) = & (K()/Kg)
(6.3c)

az

I3 = (f(K)z).

The spectral density Sff(k) of the Markov field was given in
Table 3.1 of Chapter 3 under the designation "3D Ellipsoidal
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Markov”. The covariance function of this random field is

exponential, of the form:

Rff(i) = <f(¥)°f(’_‘+£) >

= a§~exp(—~12 §IN3 (6.3d)
1

where Ei is the separation vector, and )\1 is the integral ;
correlation scale of the log-conductivity along the principal

axis x, (i = 1.2,3). In the special isotropic case (A;=N=A\;).

the covariance function takes the simple form:

. -EA
Rff(i) = a‘? e

(6.3.e)
where § 1is the separation distance, and A the isotropic
correlation length (same in all directions). For illustration,
we show in Figure (6.2) a contour map of a three-dimensional
isotropic Markov log-conductivity field in a two—d:lmensional‘
slice. Only the low contour values (from K = KG to K = KG/IOO) | L
are represented. The size of the slice is about 43 correlation
scales in each direction, the grid resolution is one third of the
correlation scale, and there are 129 nodes on each side (about
16,600 grid points on the slice). Note the large number of very
small regions of extreme conductivity. The areas devoid of

contour lines indicate high permeability "pathways” for the flow:
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Figure 6.2 Typical high-resolution contour map of

three-dimensional isotropic Markov log-conductivity
field in & square two dimensional slice. Only the
low contour values K/KG = 1 to 1/100 are

represented (v:rf =1., Axi/}\i = 1/3, L1A1= 43)
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there is no preferential direction for these pathways since the

field is statistically isotropic in this example.

It 1s important to note that the log-conductivity field
just defined is, by construction, statistically homogeneous and
ergodic in the strict sense. In other words, all n-point moments
up to arbitrary order are statistically invariant by translation.
Ergodicity guarantees the equivalence of infinite-domain spatial

average with the ensemble means. For instance, the fact that:

ltm R

NE ll-x» g0 =0

suffices to guarantee ergodicity in‘ the first and second order
moments (cf. Yaglom, 1962, 1.4). This is a desirable property to
have in the context of the single-realization approach. In
essence, ergodicity guarantees that, for sufficiently large
domains (Li » 7\1) a single spatial realization of the
log-conductivity field will carry almost all the information
contained in an infinite number of replicas of the random field
obtained in ensemble space. This will be {llustrated later, by
comparing in a specific case the ensemble and spatial moments of
the input log-conductivity fields generated by the Turning Band

Method (problem A, section 6.3).
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[c] Statistical Analysis Methodology -

Our methodology for estimating the statistical
properties (moments) of single realizations of random fields was
based on standard spatial average estimators applicable under the
assumptions of spatial homogeneity and ergodicity. The précise
procedure we used was not exactly the same for different types of
random f ields (input log-conductivity, output hydraulic head and
6utput flux vector). The exact procedure used in each case is

explained in more detail below.

The spatial moments of the preséribed
homogeneoué/ergodic log=-conductivity field were computed by using
standard unbiased estimators. Let £n(K1' j.k) be the discrete
realization of the log-conductivity field over the grid. The
mean and variance were computed by three-dimensional discrete

averages as follows:

Mean: én ﬁG = fli- . 2 én K1 5.k (6.42)
i1.§.k
Perturbation: fi.J.k = én (Ki.J.k/KG) (6.4b)
Variance: o2 =i 2 (f )2 (6.4c)
e f N 1.5.k
1.5.k

where N 1is the total number of nodes on the grid (N = n;nzn;).
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The two-point covariance f{functions along each of the axes
{x1.X2.X3) were computed for discrete values of the separation
distance (§; = i;4x,, §a2 = {24x;, §3 = 134x3) in a similar
fashion. Note however that the fully three-dimensional function
Rff(f,,fz.fa) was not directly computed. For example, the

unidirectional covariance along x, was evaluated by:

Ree(1:,0.0) = griy ) fldiedando) F(dimtaidanda) (6.4d)
V Ji-J:-J:

where N(i,) represents the number of pair of points with

separation vector £ = (i{,4x,,0,0) on the grid, that is:
N(i,) = (n;~1,) * nz°nq

Note that O i, { n,~1. The triple index (J;.J2.js) in equation
(6.4d) was from (1,1,1) through (n,-i,,n;,n;). The formulas used
to compute the covariance func;tion in the other directions are

analogous.

For the particular single-realization problems examined
in this work, it was found that the spatial moments (6.4) of the
log—conductivity fields generated by the Turning Band Method were
fairly close to the prescribed ensemble moments. More details
will be given in later sections. Let us just mention here that

the agreement was particularly good for the isotropic flow
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problem A which had the finest resolution (Axiﬂ\1 = 1.3) and the
largest sample size (1.1/7\1 >~ 33.). The reader is referred to
Tompson, Ababou, and Gelhar (1987) for an evaluation of the
capabilities of the Turning Band ra.ndom_ field generator and a
systematic comparison of .ensemble'versus spatial moments in a

variety of cases.

_The statistical properties of the simulated flow field
(H(z).Qi(;)) were evaluated in a similar fashion, for comparison
with the ensemble moments predicted by the spectral theory. Note
that the spectral theory 1itself is only sapproximate. In
particular there is no guarantee that the variables H and Qi
describing the f lovw share the properties of homogeneity and
ergodicity satisfied by the input log-conductivity field.
Indeed, the hydraulic head field is obviousiy not homogeneous in

the mean, since there is a non-vanishing mean head gradient in

the longitudinal direction. Moreover, the zero-mean head
perturbation:
h=H-<dH

may not be second order stationary/ergodic as the spectal theory
assumes, except perhaps asymptotically as cif = 0 (Chapter 4,
Section 4.1). Finally, the correlation range of the head

perturbation appears to be significantly larger than the
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conductivity correlation scale A (Chapter 3). As a consequence,
to obtain a statistically meaningful realization of the hydraulic
head field may require a domain much larger than what is needed
for a representative realization of the conductivity field. The
effect of boundary conditions renders this problem even more
accute, as the deterministic cons.traint on the head near a

boundary will tend to propagate towards the interior, in

proportion to the correlation range of the hydraulic head.

Accordingly., our strategy for evaluating the
statistical properties of the flow field was based on the premise
that the flow variables of interest are not necessarily fully
homogeneous in three-dimensionAl space. More precisely, we have
found empirically that the preferential direction of spatial
inhomogeneity for the finjte-domain hydraulic head f ield was the
longitudinal direction parallel to the mean flow. It should not
be surprising that the flow be more nearly homogeneous in the
direction transverse to the driving force. This was confirmed
directly from the numerical solutions by examining the spatial
variations of the cross-flow average of- the head field as a

function of the longitudinal coordinate.
- ’ 1
H(xy) = {4 HH(K) dxadxa (6.5a)
ala

This function exhibited a few large scale fluctuations around the
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theoretical linear mean H = - Ji*xs, with a wavelength typically
on the order of the full domain length: see Figure 6.3 for

illustration.

A zero-mean head perturbat.:ion h was then obtained by
detrending the numerical head field with the nonlinear mean
H(x,):

h(x) = H(x) - H(x,) (6.5b)

This quantity was assumed to be statistically homogeneous in all
three space directions in the interior of the domain. Therefore,
the head variance (aﬁ) and covariance function (R.hh) were
computed by using the standard spatial averaginé procedure as
described previously for the case of the log-conductivity field
(replace f by h in equations 6.4c and 6.4d). The domain of
integration was wusually taken slightly smaller than the
computational flow domzin in order to avoid including data

located near the boundaries.

The ©procedure wused to analyze the statistical
properties of the flux vector Q 1 (x) was similar, however with
one essential difference. By construction, the cross-flow

average:

8 x) = o - [Jo,0 - axaes (6.78)
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Figure 6.3

(b) (c) .

Illustration of the spatial averaging procedures
used to detrend. the hydraulic head field and the
flux vector field: (a) Cross-flow averaging,

(b) Nonlinear trend H(x,), and (c¢) Approximately
constant mean Q,
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is in principle independent of the longitudinal coordinate x,,
and the transverse mean flux components Q,.Q; should vanish
since all lateral boundaries are impervious. In actual practice,
the "one-dimensional" conservative nature of the mean flow was
not exictly satisfied by the numerical flux field due to the
discrete naturé of the solution (numerical errors) leading to
slightly inaccurate mass balance. We have found that these
discrepancies were sufficiently small to be neglected,
particularly for the highest resolution problem A of Table 6.1.
Thus Q, was approximately constant along x,, which Jjustified
using a three-dimensional average to evaluate the ‘constant mean
flux as follows:

- 1
Q = T.L., ‘J]. Qq (x4.%X2,X3) dx,dxzdxs

and similarly for Q, and Q;. The ratios 6{6,(1:2.3) were
used to evaluate the relative mass balance error of the numerical

solution (ideally Q. = Q; = 0).

In practice, the flux-integral above was converted into
a discrete sum, and the fluxes were evaluated by a finite
difference approximation of Darcy equation at mid-nodal locations
( staggered grid (i{,+1/2, {5, 13) ) as explained in Chapter 5,
- equations (5.4) and (5.7). In certain ‘cases (problem B), the
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fluxes were evaluated as local cell-averages of neighboring
mid-nodal fluxes, in order to obtain a tractable representation
of the random velocity field for use in a particle-tracking
simulator of solute transport (ongoing research by Gelhar and

co-workers at MIT). Finally, the zero-mean flux perturbation:
q,(x) = Q(x) - Q (6.7b)

was assumed to be statistical ly homogeneous in three-dimensional

space. Consequently, the variances a; and covariance functions
i

Rq q (§) were evaluated, for each flux component (1=1,2.3).' by
i%1

the standard three-dimensional spatial averaging procedure
described in equations (6.4c) an (6.4d), with f replaced by
q;- A similar procedure was also applied to the head gradient

field Gi = <'3H/6xi (replace Qi by Gi in equations 6.7).

Last, but not least, the effective conductivity in the
longitudinal direction was simply evaluated by:

~ 61
Kii = _—

(6.8)
A
where J, 1s the prescribed mean hydraulic gradient (6.2), and

Q; the computed mean flux defined by (6.7a). In the special case
of statistically isotropic log-conductivity field, equation (6.8)

gives in fact the value of the effective conductivity along any
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direction (problems A and B of Table 6.1). On the other hand, in
the case of statistically anisotropic log-conductivity (with
principal axis x; aligned with the méan flow) the transverse
components ﬁii (i = 2,3) remain unknown. An additionzl flow
simulation with the mean gradient oriented perpendicularly to the
x; axis would be needed to determine the effective condu;:tivity

perpendicular to stratification.

[d] Einite Size Effects on Estimated statistics

At this point, it may be instructive to examine the
possible inaccuracies that may arise from the sampling of =a
single finite-domain realization of the flow field. We have
already pointed out in particular that the hydraulic head field
is inherently non-stationary in the mean (ideally linear) and has
a larger correlation range than the input conductivity field.
Therefore we expect that the computed mean and second order
moments of the hydraulic head could be affected by finite-siie
sampling errors. We propose a simple evaluation of the
"equivalent number of independent -samples” (sample size) for
evaluating sampling errors. Let Y(x) be a random field with
constant mean, )-‘y its correlation scale, and L the size of the
domain of averaging used to estimate its moments. Intuitively,
it seems reasonable to define the equivalent sample size as the

size of the averaging domain expressed in correlation scale
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units, that ist

= (= : 6.9
Ny = (%) (6.9)

where m is the dimensionality of the averaging domain
(m =1,2,3 for 1D, 2D, 3D averaging). According to standard
sampling theory. (Appendix 2A), the sampling errors on the mean

and on the standard deviation are of the form:

o2

Ny

oy
Var(oy) = g

Y

Var(Y) =

to leading .order in NY' This gives a rough estimate for the
relative sampling errors (&) in terms of the sample size (NY) as

follows:

(6.10)

Let us now illustrate the implications of (6.9) and
(6.10) for the 1 million node single-realization problem A of
Table 6.1 (Axi/7\:l =1/3 and Lin\i ~ 33.3). According to
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equation (6.9), the sample size of the log-conductivity field is
about 37,000 samples in 3D space. From equation (6.10), this
implies that the sampling error on the mean (én Kc) ‘and the
standard deviation (af) should be on the order of 1% or less. On
the other hand, for the hydrauliéihead field. the spectral theory
predicts that the head correlation scales in the longitudinal

(i=1) and transverse (i1=2,3) directions are:

{=1: ){IU ~ 3.0
i =23 "x({i) = 7.5\

Therefore, the three-dimensional size of the hydraulic head field
is only about 230 independent samples. Moreover, in a 2D
cross-section such as the one shown in Figure (6.3), the sample

size drops to just about 20 independent head samples!

We may now apply equation (6.10) to evaluate, the
sampling errors on the cross-sectional mean H(x,) and on the
standard deviation Oy At each given location x,, the mean
trend H(x,) was evaluated by a 2D average as defined in equation
(6.52). Therefore, the sampling size is only 20 and the relative

error on the mean will be quite large:

e(f(x,)) = L_z 20%
430
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For the head standard deviation, the averaging domain is
three-dimensional. Applying equation (6.10) with sample size 220
gives:

1
e(o,) = —— x 5%.
3@

The relatively large sampling error on thé mean H(x,) reflects
the fact that, in any given cross-section Xy, the number of
independent samples of the head field is quite low. To reduce
the error e(ﬁ) . to 5% would require increasing the lateral side
of the domain by a factor of 4 in each transverse direction.
This would lead to a grid size of 16 million nodes if the
resolution Ax/A = 1/3 is kept f{ixed! | Unfortunately, the
truncation error analysis of Chapter 5 (Section 5.2) showed that
a grid resolution on the o;der of 1/3 or less was required to
obtain a reasonable numerical accufacy on the f:omputed flux
vector field, which has a much smaller corfelation range than the
head (typically on the order of A). The inherent disparity in
the fluctuation scales of the flux and head fields is therefore

the main cause of trouble in the single-realization approach, as

will be seen.

In summary, we have found that the soundness of the
single-realization approach depends on the competing requiremen'ts
of large domain size (in order to obtain a large number of
samples of the hydraulic head in space), and fine grid resolution

(in order to capture the short range fluctuations of the
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conductivity and flux vector). The situation will be even more
severe in  the case of statistically anisotropic
log-conduétivities. as will be seen later (section 6.4). Our
particular choices of domain size and grid resolution (Table 6.1)
usuzally tended to sacrifice san.xple size for' resolution. The
sampling errors dqe to modest domain size relative to the long
range éorrelation of the hydraulic head, were alleviated in part
by using the "ad hoc” detrending procedure of the head field as

explained in equations (6.5) above.

In the sequel, we will rely on the methodology Jjust
~ described for analyzing the single-realization flow simulations
listed in Table 6.1 above. The table also indicates the section
where ezach particular f low simulation 1is being analyzed.
Section 6.2 treats the medium-size isotropic problem B
(130,000 nodes) and emphasizes some of the most obvious physical
features of the flow field. The preliminary statistical analysis
there does not include correlation functions. Section 6.3
develops a more comprehensive statistical analysis of the flow
field for the isotropic problem A (1 million nodes), including a
systemtié comparison to spectral solutions 1in terms of
single-point and two-point moments. Finally, Section 6.4 focuses
on preliminary results obtained with the anisotropic problems E
and F (220.000vnodes). The key results of these analyzes are

summarized and discussed in the last section 6.5.
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6.2 Preliminary Analysis of 3D Isotropic Flow Simulations
(130,000 Nodes) :

In this section, we analyze in some detail the
numerical flow fields obtained for the isotropic problem (B) of
Table 6.1 for two different values of the log-conductivity
standard deviation (af = 1.0 and op = 2.3). The statistical
analysis will be limited here to single-point moments, due to the
relatively modest size of the grid. On the other hand. we have
chosen in this example to emphasize physical interpretation
rather than statistical analysis, by using visual represen;ations
of the hydraulic head and flux vector fields. Some of the
results discussed in this section were reported in a recent paper

by Ababou et al. (1987).
[a] Flow field visualization:

The method used here to visualize the three-dimensional
flow fields relies heavily on "two-dimensional plots” showing
contour lines in selected slices, and occasionally on
"one-dimensional plots” of the solution along selected transects.
In all cases, the slices and transects were selected at locations

coinciding with the geometric center of the flow domain. For the
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"isotropic” Qimulations at hand, the domain was a cube. Figure
6.4 shows the location and orientation of three different slices
of interest. It is worth noting that the flow patterns in the
horizontal slice parallel to flow (top) and in the verticél slice
parallel to flow (centerpiece) should be statistiélly
indistinguishable in the "isotropic” case. The flow pattern in
the cross-flow slice (bottom) should look quite different, since
the mean hydraulic gradient should be approximately zero in that

plane.

In addition, we have included visual representations of
the input conductivity fields in the form of 2D contour lines
and, occasionally, 3D contour surfaces. Ve recognize that a
three-dimensional reiaresentation of the flow fields could be also
of interest, possibly in the form of contour surfaces of the
hydraulic head and/or stream-surfaces of the flux vector field.
This however was not attempted here. Nevertheless, we will see
that a number of 1interesting features emerge from a visual

inspection of low-dimensional plots of the random flow fields.

[b] Qualitative Analysis of the Flow Pattern

Let us now discuss the numerical solutions obtained for
the isotropic problem “B" of Table 6.1. This flow problem was

solved for two different values of the log-conductivity standard
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deviation (c:lf = 1.0 and op =.2.3025) on a cubic grid of size
N =~ 130,000 nodes. Recall that the boundary conditions were
fixed heads on two opposite faces, and zero fluxes on all other
boundaries (Figure 6.1). We have seen that this is equivalent to
imposing a large;scale hydraulic gradient aligned with the mean
flow direction. The vﬁlue chosen for the hydraulic gradient (J,
= 0.004) is typical for natural groundwater flow systems. The
random conductivity field was obtained from a single replica of
the 3D isotropic Markov field, generated by the Turning Band

Method. The grid resolution Ax /)\1 was taken equal to one half,

i
and the cubic do'main size was 25 correlation scales in each
direction. About one hundred line processes were used in the
Turning Band generator, with a random distribution of lines in
space according to a unifdrm spherical distribution (see
Chapter 2 and Tompson et al., 1987). The resulting 2n K field is
Gaussian, with an isotropic exponential covariance function in 3D
space, as explained in the previous section. Note that the same

replica was used for the two sub-problems gp = 1.0 and

g = 2.3025, by rescaling the ¢&n K field i'n the obvious way.

Figure 6.5 shows the low and high conductivity regions
(respectively black and white patches) in a two-dimensional slice
for the case oy = 2.3. The contouring routine we used for this

and all other contour plots in this work was the Gconmap program
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-y

Sketch of the two-dimensional slices used for
contour plots of the three-dimensional flow fields.
The mean flow direction is x,. From top to
bottom: (a) Horizontal slice parallel to flow,
(b) Vertical slice parallel to flow, and’
(c) Vertical slice orthogonal to flow
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20

13

10

Figure 6.5 Two—dimensional excursion regions of the 3D random
conductivity field in a slice (problem B with op =
2.3025). The black and white patches indicate
regions vwhere K/KG € 0.1 and K/KG 2 10,

respectively.
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(Dennis McLaughlin). TheA contours correspond to regions where
the conductivity is one ‘order of magnitude larger or one order of
magnitude smaller than the geometric mean (KG = 1). For
f ~ 2.3, about 30X of the whole space 1s occupied by such
regions, equally distributeci among low and high wvalues (15%
each). Note that some of the patches appear to be significantly
larger than the correlation length (A = 1). As expected, they

seem isotropically oriented in space.

Figure 6.6 shows an attempt at representing the
corresponding high conductivity ~ contour surfaces in
three-dimensional space. Here, we have represented only those
excursion regions where the conductivity is one order - of
magnitude larger than th.e geometric mean. The smallest excursion
regions had to be filtered .out in' order to obtain a clearer
representation. This was done by applying a linear filter based
on a weighted local average of nearest neighbors. Even with this
artificial de\;ice. the picture remains somewhat misleading: thé
excursion regions seem to crowd the page, although they really
occupy only 15X of the three-dimensional cube. In order to give a
feeling of the technical difficulty, we also show in Figure 6.7
a similar plot for the excursion regions corresponding
approximately to K/KG > 3. It may be hard to believe ‘that these

regions only occupy about 30¥ of the cubic domain. The "hidden
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Three-dimensional the 3D

excursion regions of
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lines algorithm” of the package we used (Graf Kit), did not seem
able to handle properly such a contorted, random-like function of
space. More advanced 3D contouring sof twares should be used in

these difficult cases.

Figure 6.8 displays the contour lines of the computed
hydraulic head in a horizontal slice parallel to the mean flow,
for op 2.3. Low conductivity contours are also shown in the
background. The white areas, devoid of background conductivity
contours, correspond to regions where the conductivity is greater
than about 30X the geometric mean value (pathways for flow). It
"is worth noting that the head gradient steepens near local minima
of the conductivity fields, and becomes flatter in -the white
areas corresponding to larger condu;:tivities. This interesting
behaviour could perhaps be deduced from the one-dimensional Darcy

equation:
dH
q = - K(x) x (constant)

However, the genefalizat:lon to three-dimensional flow is far from
obvious. The observed one-dimensional behavior could be
explained by the fact that the flow field in this example is
globally one-dimensional, since all lateral boundaries are

impervious. Incidentally, note that the head contour lines are
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orthogonal to the lateral boundaries (as they should). The
influence of such artificial boundaries on the fluctuations of
the head in the interior does not seem overly important: see for
instance how the left-most head contour line of Figure (6.8)

joins the two lateral boundaries.

Figure 6.9 compares the hydraulic head contours for
gp = 1.0 and o, = 2.3 in the same horizontal slice as
Figure (6.8). The influence of the log-conductivity variability
(af) is quite dramatic: both the small scale and large scale
fluctuations (wiggles and smooth undulatiops) of the head contour
lines are significantly amplified when o increases from 1.0
(top) to 2.3 (bottom). Note that the same replica of the
log-conductivity field was used, so that the pattern of
fluctuations of én K was the same for the top and bottom
pictures of Figure (6.9). Another remarkable feature that
emerges from these pictures is that the hydraulic head contours
are relatively smooth compared to the noisy input conductivity.
The typical fluctuations scale of rthe head contour lines in the
cross-flow direction seems to be much larger than the A-scale of
conductivity. This feature is indeed predicted by the spectral

theory.
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0P

o=1

0= 2’43

Figure 6.9 Comparison of hydraulic head contours in =a
horizontal slice parallel toc flow for g = 1(top)

and op = 2.3025 (bottom) (Problem B). These are 21

contour lines of equally spaced head values,
including the right and left boundaries.
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More precisely. recall from Chapter 3 that the head
correlation function predicted by the spectral theory has a
larger correlation range than the input log-conductivity fields,
about 7.5A in the transverse direction and 3.0A in the mean flow
direction (see Figure 3.1). Our preliminary calculations of the
head covariance function, based on the spatial averaging method
outlined in the previous section (equations 6.4 and 6.6), showed
approximatéely the same behaviour for the case of moderate
vax;iability o = 1. However, the head covariance functions
obtained for the case of higher variability did not agree with
the spectral theory, probably due to the limited size of the
domain and, perhaps, to the relatively coarse grid resolution

(see problem B data in Table 6.1).

Nevertheless, it turns out that the computed head
standard deviations matched to within 10X the values predicted by
the spectral theory (equation 3.21) for both cases of querate
and high variability, o, = 1.0 and o, ~ 2.3. Figure (6.10
shows the slowly fluctuating nonlinear trend around which the
head variance was computed; a hypothetical linear mean head
profile is superimposed for comparison (top picture). The bottom
part of the figure displays a typical transect of the head

process around the nonlinear trend. It is important to note that

the computed head deviation would have been much larger than the
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predicted spectral value if the hypothetical linear mean had been
used instead. In our view, the head variance obtained in this
way would be meaningless, since the whole method is based on the
premise that the second order moments of the flow field are

spatially homogeneous.

It is rather encouraging that our detrending technique
leads to a .close agreement between the theoretical (spectral) and
numerical standard deviations of the head field, even for the
relatively modest size problem at hand. This was confirmed for a
number of other cases, 1sotro§ic and anisotropic, as will be seen

in later sections.

[c] Statistical Analysis of Sinﬁle-goint Moments

A more complete set of single—ﬁoint moments of the
numerical flow field is given in Table 6.2. The table lists the
values of the head and flux vector standard deviations, as well
as ‘the effective conductivities, obtained by the spatial
averaging téchniques described in the previous.section (equations
6.1-6.8). For comparison, the values predicted by the spectral
theory are also listed in the same table (in parénthesis). The

spectral formulas used to compute o, Keff' and aq . were given
i

in equations (3.21), (3,23) and (3.26) of Chapter 3. Note that



TABLE 6.2

OOMPARISON OF NUMERICAL AND SPECTRAL THEORY STATISTICS FOR THE
"ISOTROPIC” FLOW FROBLEM B OF TABLE 6.1 (N =~ 130000 NODES).
THE SFECTRAL THEORY STATISTICS ARE SHOWN IN PARENTHESIS.

af =1.0 af = 2.3025
df .002510 .005901
(.002309) (.005317)
%, .003820 .04630
((.003451)) ((.01628))
%, .001299 .01959
((.001220)) ((.00576))
%, .001313 .02148
((.001220)) ((.00576))
aqa/aqz .344 .464
(.354) (.354)
Q, .00527 .01604
(.00472) ( .00968)
Q./Q, .054 .161
(.000) (.000)
Q./Q; -.066 .011
(.000) (.000)
Koce 1.318 4.010
(1.181) (2.420)
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the flux standard deviations aq shown in double parenthesis
i

were computed from a modified version of the spectral theory of
Gelhar and Axness (1983), as explained in Section 4.3 of Chapter
4. The conclusions to be drawn from Table 6.2 are summarized

below.

The most encouraging result from Table 6.2 is that all
the statistics computed from the simulated flow field in the case
of moderate variability (¢:rf = 1.0) agree with the spectral
theory with a 10X margin of error. On the other hand, in the
case of large variability (af ~ 2.3), there is a serious
discrepancy for most of the statistics related to the flux
vector. The most robust statistics appear to be the head
standard deviation (UH) and the ratio of transverse to

longitudinal flux standard deviations (o /o_ ):
t U

1

{3
g
r_o1
% 8

It is remarkable that the ratio aq /aq ., which indicates the
T L

relative variability of the transverse-versus-longitudinal flux
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Figure 6.13 Transverse flux component Q; along a transect X;
transverse to the mean flow (isotropic Problem B,
op = 2.3025)
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components, does not depend on O This particular property of
the flow field predicted by the spectral theory, is approximately

verified by the numerical solutions.

We ©believe that the discrepancies between the
theoretical and | numerical values of the flux deviation and
effective conductivity obtained for op x 2.3 are due to the
combined effects of insufficient domain size (Keff)' insufficient

grid resolution (t:rq and Keff)’ and perhaps inaccurate first
i

order spectral solution in cases of high variability (small ae
assumption). The unsufficient grid resolution (1/2) could be at
the origin of the.mass balance error indicated by the non-zero
ratio Q,/Q, (11.6% for o = 2.3): this significant error could
also be explained by the fact that the fluxes were computed in
this case as local "cell averages” of mid-nodal values, which
might not be the best strategy. At any rate, the questions
raised above motivated our subsequent use of supercomputing
capabilities to simulate stocha-stic flow problems on larger and
finer grids (1 million nodes); this will be examined separately

in a forthcoming section. In comparison, récall that the grid

size for the flow problem at hand was "only” 130,000 nodes.
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[d] Qualitative Analvsis of Flux Vector Field

In spite of the insufficient grid resolution, we found
that the flow problem at hand was sufficiently representau.ve to
justify a preliminary qualitative analysis of the simulated flux

vector field. Figures (6.11) to (6.15) depict the spatial

variability of various flux components in the case op = 2.3.
The first three figures show the fluctuations of Qi(z) along
selected transects, and the next two figures display the pattern
of Qi(x) in selected slices. In Figure (6.11), the longitudinal
flux component Q, 1is plotted along the mean flow direction x,:
the mean trend Q:(x,) is also displayed for comparison. Observe
the sharp peaks of Q,(x;) at local maxima, compared to' the smooth
local minima near zero. This behaviour indicates = pc;sitively
skewed distribution, as would be the case for a positive
log-normally distributed random function: see for inst_ance the
plot K(x) given in Figure 2.3 of Chapter 2. In contrast, the
transverse flux components Q; and Q, depicted in Figure (.6.12)
and Figure (6.13) appear to fluctuate symmetrically around their
zero mean value, as expected, due to the absence of a mean

driving force in the transverse directions.
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Figure 6.12 Transverse flux component Q: along a transect
parallel to the mean flow direction x; (isotropic
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Figure 6.14 Contour lines of the longitudinal flux component

Q; in a vertical slice transverse to the mean flow
(isotropic Problem B, g, = 2.3025). The isovalues

are equally spaced, from Q; = O up; the -black
patches correspond to high values of Q, well above

the mean Q,
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Usion 0] -

Figure 6.15 Same as Figure 6.14, except that the Q,-contour
lines are shown in a horizontal slice parallel to
the mean flow (isotropic Problem B, o, = 2.3025).

The isovalues are equally spaced, from Q; = O up:
the black patches correspond to high values of Q,

well above the mean Q.
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Finally, let us comment on two more figures shbwing
equally spaced isovalue contours of the longitudinal flux
component Q; in selected slices. Figure (6.14) shows Q,(x) in
a vertical plane transverse to the mean flow, i.e., such that the
mean flow is orthogonal to the sh;zet of paper, pointing towards
it. The regions of high "velocity" are highlighted in black: one
might think of a sieve, with the black patches corresponding to
holes or preferential pathways for flow. Two notable features
emerge from this picture. First, it appears once again that
local maxima (black patches) are much narrower than local minima
(vhite areas). Second, the excursion regions of Q; (e.g.. the
black patches) are more or less isotropically oriented in the
cross-flow plane, as expected. However . note the
quasi-recténgular shape of somé of the smaller patches. This is
probably due to insufficient grid resolution: the orthogonal
geometry of the grid induces an artificial anisotropy of the flow

field at the scale of .the mesh.

It may be interesting to compare the near isotropic
pattern of excursion regions of Figure (6.14) to those shown in
the last Figure (6.15). In the latter case, the selected slice
was in a horizontal plane parallel to flow (water moves from left
to right in the plane of the sheet). The high excursion regions

of Q, appear to be elongated in the longitudinal direction.
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This indicates that the longitudinal flux is more strongly
correlated in the mean flow direction than across the flow. This
property is indeed in agreement with the findings of the spectral
theory (Figure 3.2 of Chapter 3). A direct comparison of
numerical and theoretical flux correlation functions for the
larger simulation (1 million node problem "A") will confirm these

qualitative observations.

[e] Summary of Findings

In summary, we have found that the relatively modest
size .flow simulation at hand (130,000 nodes) produced a flow
pattern in accordance with the findings of the spectral theory
for a number of features, such as the head variance and, for
moderate variability, the flux variance and the effective
conductivity. The spatial structures of the hydraulic head and
the longitudinal flux component were qualitatively in agreement
with the behavior predicted by the spectral theory. It is
remarkable that meaningful information could be obtained from a
single realization of the flow field small enough to be produced

on 2 minicomputer (Microvax 2).
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However, we have also found some significant
discrepancies between the spectral theory and the numerical
solutions at high variability, particularly concerning the flux

standard deviations aq , and the effective conductivity Ke
i

The observed discrepancies could be due to a combination of

ff’

truncation errors (insufficient resolution), sampling errors
(finite size effects), and possibly to the increasing inaccuracy
of the spectral theory as o increases. This latter
possibility may be indicated by the fact that the longitudinal
flux component appeared to have a positively skewed distribution.
This behavior seems to make sense intuitively, as the Darcy
equation shows that Q; can be expressed by Darcy’'s equations:

Q. (x) = K(x).J. - K(x)* 5—‘,’:;

where the first term is a log-normally distributed random field.
Now, the first order spectral theory obviously cannot take this
kind of third order effect into account, since third order

moments are ignored.

In order to try to resolve the questions of the

‘accuracy of the spectral theory as o, increases, we proceed to

s
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analyze in the next section a series of larger flow realizations

on a 1 Million node grid.

6.3 Statistical Analysis of 3D Isotropic Flow Simulations
(1 Million Rodes)

[2] Preliminary Considerations

The large single-realization flow problem to be
analyzed here (problem A of Table 6.1) is similar to the previous
one except for the finer grid resolution (Axiﬂ\i = 1/3 instead of
1/2) and larger domain size (Lin‘i = 33 instead of 25). It may
be instructive to begin by comparing how the difference in size
could affect the statistical representativity of the 'flow field.
For this purpose, let us use the simplified analysis of sampling
errors outlined in section 6.1 (see equation 6.10 cmd'the example
below it). Thus, the sampling error on the mean hydraulic head
H(x,) was evaluated as the inverse square-root of the n_umber of
head samples available in a cross-section transverse to the mean

flow direction. This number is 20 for the problem (A) at hand,
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compared to 10 for the previous problem (B). The relative
sampling error on the mean ﬁ(xt). according to equation (6.10),
would then be about 20X for problem A, compared to about 30% for
problem B. Thus, we expect that the fluctuations of the
nonlinear trend H(x,) will be less pronounced for the larger
problem A. In addition, we also expect a better accuracy on the
flux variance due to the finer grid resolution. This point will

be discussed in more detail later.

We focus now on the three single~-realization flow
fields (af = 1.0, 1.732, 2.3025) corresponding to the isotropic
problem (A) of Table 6.1. On the numerical side, let us mention
that thé iterative solution of these 1 Million node problems was
fu;ly analyzed in Chapter 5 (Section 5.3, Table 5.4 ‘and
'accompanying figures). Recall in particular that the three
subproblems were solved 1in sequence \on a Cray 2 machine,
requiring a total of about four hours of CPU time. ‘Finally. if
may be worth notfng that a single replica of the log-conductivity
field was used for the three subproblems. This was done by
rescaling &n K(x) in the obvious way to accommodate different

values of the log-conductivity standard deviation O
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[b] Conductivity Field Generation and Analvsis:

The conductivity field was generated. as before, by the
three-dimensional Turning Band generator of Tompson, Ababou and
Gelhar, 1987. For‘ the case at hand, a three-dimensional
isotropic Markov field én K(x) was generated over the 101 x 101 x
101 cubic finite difference grid. The particular data used in
the Turning Band generator were as follows: 1000 _lines
distributed randomly in space ("turning band”), 300 harmonics per
line for the generatiion of each line spectrum. and a few hundred
points per line (up to 500) for the generation of the
corres_ponding line 'processes. Thus, the spatial resolution on
each line was about 1/5 relative to the mesh ;ize. The
resolution in .Fourier space was Ai = 173, and the high
wavenumber cut-off was imax = 100 (E is & normalized wavenumber
equal to Ak). According to the empirical rules developed by
Tompson et al. 1987, these parameters are quite conservative and

should lead to statistically meaningful results as far as the

conductivity field is concerned.

It may also be important to note that the random number
generator we used was slightly different from Tompson et al.
1987. Ve took advantage of the fact that the largest integer on
the 64-bit words Cray 2 machine is very large (N = 263 =~ 9 1018).

In these conditions., our literature review indicated that one of
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the most reliable random number generators available to date was
the "Type 2" congruent method of Fishman and Moore (1986) as
defined below. Let R be a random number uniformly distributed

in [0,1]. Then a sequence of pseudo-random numbers Rk is

obtained by:

Ny =L-N, (mod . M)
(6.11a)

Ry, = Float (N )/Float(H)

where the modulus (M) and the multiplier (L) are, respectively:

M =23l -1 = 2,147,483,647

(6.11b)
L = 950,706,376

and the initial seed No can be any number less than M (e.g..
N =1). The advantage of this particular random number
generator is that it is equidistributed and has a very large
cycle length M -1, i.e., about 2 billion numbers. The
multiplier L given above was among the "best” in a series of

tests developed by Fishman and Moore (1986).

To {llustrate the soundness of the random field

generator, we show in Table 6.3 a comparison bhetween the
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TABLE 6.3

COMPARISON OF THEORETICAL (ENSEMBLE) MOMENTS AKD COMPUTED
(SPATIAL) MOMENTS, FOR THE SINGLE REPLICA OF THE ISOTROPIC
3D MARKDV LOG-CONDUCTIVITY FIELD CENERATED BY THE
TURNING BAND METHOD (1 NILLION NODE FLOW FROBLEN)

INPUT OUTPUT RELATIVE ERROR
Theoretical Values | Computed Values
<F> 0 0.1966 +2 X
o, 1.0 0.9983 -0.2%
R”U\.0.0) 0.3679 0.3860 +5 X
R”(O.)\.O) 0.3679 0.3785 + 3
R”(0.0.k) 0.3679 0.3781. J +3x
thc: The relative error on the estimated mean was defined eas (f-(f))/_cvf. In this

particular case, afsl and !':en(K/KG) is a zero-mean Gaussian random field with isotropic

correlation function e‘fn‘. At separation distance fxA, the correlation is e"l = 0.3679.
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prescribed ensemble moments of the log-conductivity field and the
computed spatial moments obtained by the spatial averaging method
described previously (equations 6.4). Note that the relative
errors on the mean and standard deviation are very small; the
error on the covariance function at separation distance A is also
quite small. This excellent agreement indicates that the turning
band generator can produce statistically accurate realizations of
random fields at reasonable costs: the 1 million node realization
at hand required only 10 minutes of CPU time on the Cray 2
machine (without the wuse of Fast Fourier Transforms).
Furthermore, this also illustrates in a concrete way the
equivalence of ensemble and spatial moments for large
realizations of homogeneous-ergodic fields. In other words, the
particular log-conductivity realization at hand appears to be
fairly representative of the whole ensemble of possible

realizations.

(c) Visual representation of the head field

The three flow realizations obtained by numerical
simulation for the cases op 1.0, 1.7, 2.3 were statistically
analyzed by using the same spatial averaging procedures described

in the methodology section (6.1). This will not be repeated
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here: the reader is referred to equations (6.4)-(6.8). In order
to illustrate concretely the spatial structure of the head field,

we show in Figure 6.16, (a),(b).(c) the contour lines of the

hydraulic head in a horizontal slice parallel to the mean flow,
for each of the three cases o¢ ~ 1.0, 1.7, and 2.3. Note that
each slice contains about ten thousand mesh points. The spatial
structure of the head does not seem to differ much from the
similar pictures obtained previously for a smaller flow problem

(Section 6.2).

In addition, Figures 6.17 (a),(b),{c) show the

fluctuations of the hydraulic head along a transect parallel to
the mean flow. The nonlinear trend H(x,) obtained by cross-flow
averaging was superimposed for comparison. It should be noted
that the nonlinearity of H(x,) seems milder than it was for the
smaller flow realizations analyzed previously: compare
figure 6.17a to figure 6.10. This finding is in accordance with
our previous evaluation of finite size sampling errors, at least
qualitatively. The improvement seems to be even better than
expected, due to the fact that boundary effects were not included

directly in the aforementioned analysis of finite size effects.
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Figure 6.16

(a)

Contour lines of the three-dimensional
hydraulic head field in a horizontal slice
parallel to the mean flow (pointing right).
There are 11 iso-value contours including the
left and right boundaries (equally spaced
values). Flow problem A with 1 Million
nodes: (a) case op = 1.0.
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Figure 6.16 © (b) Same as (a), with o, = 1.732.

f
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Figure 6.16 (c) Same as (a), with o, = 2.305.

f
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Figure 6.17 (a) One-dimensional representation of the head
field (sample function H(x;)., and nonlinear

trend H(x,)) along a transect parallel to the
mean flow direction. Flow problem A with 1
Million nodes: (a) Case op = 1.0.
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-The flux vector field was not processed for graphic
representations due to technical reasoﬂs. However, the reader is
referred to the ;isual representations of the longitudinal flux
component Q,(x) obtained for the smaller flow realization of
Section 6.2 (Figures 6.11-6.15). At any rate, it will be more
informative to analyze the behavior of the flow fields in

statistical terms. This is now examined.

[d] Single Point Statistics of the Flow Field.

The result's of statistical analysis of the flow fields
(H(x). Qi(g)) obtained for different values of o, are presented
in the form of tables (for single-point statistics) and figures
(for correlation functions). In each case, we develop a
systematic comparison with the results of the infinite-domain
spectral theory. For convenience the analytical results of the
spectral theory concerning the single-point moments of the flow

field are summarized in Table 6.4 below.

The numerical values of the single-point moments of the

flow fields obtained in the cases ~ 1.0, 1.7, and 2.3, are

9
summarized in a compact form in Table 6.5. The values predicted
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TABLE 6.4

SUMMARY OF ANALYTICAL EXPRESSIONS FOR VARIOUS STATISTICS
FROM THE FIRST ORDER (-) AND HIGHER ORDER ((+)) SPECTRAL
SOLUTIONS, TO BE USED AS A REFERENCE FOR TABLES 6.5 AND 6.6

(CASE OF ISOTROPIC 3D MARKOV LOG CONDUCTIVITY)

Statistics Expression Equation Number Other Refercnces |
{o0,) or J4A Equation (3.21) Bakr et. al 197%
H v
: 1- 05&::2
((oH)) ——. aFJ, Equation (4.2) Gelhar (pers. cor.),
Dagan (19S53)
(o, ) 1=1 L o
¢, — o)
v5
Equation (3.22) Appendix 3.B
1
=223 —o.J
vis® T
s |
=1 | ke
(aq ) Equation (3.24) Appendix 3.B
i
i= 2,3 J 1
15 Keop)s
. i= 1: J gg Q,
((G'q )) Equation (3.26) Chapter 4
i
(section 4.3)
i= 2,3: J }? UF 1
(6}) 1 =1 Kol Equation (3.14) Gelhar-Axness 1983
122,3:0

(Kegy)

Ko exp(a"/ﬁ)

Eqs. (3.19).(3.23)

Gelhar 1984
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TABLE 6.5
SUMMARY OF COMPUTED STATISTICS OBTAINED FOR THE 1 MILLION RODE FLOW
SIMULATIONS (PROBLEM “A™ WITH THREE VALUES OF LOG-CONDUCTIVITY
STANDARD DEVIATION), AND COMPARISON TO SPECTRAL THEORY (IN PARENTHESIS).
THE STATISTICAL QUANTITIES ARE DEFINED IN THE TEXT

g, = 2.3025

Statistics o = 1.0 g = 1.732

.002050 .003579 .004774
oy (.002309) ( .004000) (.005317)
((.002241)) ((.003635)) ((.004425))
% .001558 .002711 .003625
(.001789) (.003098) (.004119)
%, .000S79 .001817 .002569
(.001033) (.001789) (.002378)
o .000975 .001793 .002518
? (.001033) (.001789) (.002378)

o .003779 .01103 .02516
((.003451)) ((.00834)) ((.01628))

o .001435 .005075 .01328

2

((.001220)) ((.002550)) ((.00576))

% .001476 .005285 .01381
((.001220)) ((.002850)) {(.00576))

aq:,/aq . 3906 .4791 .5489

1

((.3538)) ((.3538)) ((.3536))
Q. .004856 .006889 .01004
(.004725) (.006595) (.00968)

8./Q, .004 .009 .013
(.000) .000 {.000)

Q,/q, .013 .024 .033
((.000)) ((.000)) ((.000))

Keps/Kg 1.214 1.722 2.510
(1.181) (1.645) (2.420)
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by the spectral theory are shown in parenthesis immediately below
the numerical value. The values in single parenthesis (°) were
obtained from the standard first order spectral theory of .Bakr
et. al. (1978) and Gelhar and Axness (1983). On the other hand,
the values in double parenthesis represent some higher order or
improved spectral solutions, as defined in Table '6.4. In

particular, note that the flux standard deviations ((a‘:l })) were

calculated from the improved spectral solutions developed in this
work (Chapter 4, Section 4.3). The statistical quantities listed
in Table 6.5 are as follows: standard deviations of the head

(aH), head gradient (aG ): ratio of transverse/longitudinal flux
i

deviations (aq /c::q ); mean longitudinal flux component (Q,):
3 1
relative mass balance errors (Q,/Q, for 1=2,3); and effective

conductivity (Keff) .

In order facilitate the comparison between numerical
and spectral results, we also show in Table 6.6 the relative

error on the spectral solutions for oy and crq . relative to the
1 .
numerical solutions %y and aq . Our choice here has been to.
i

use the numerical solutions rather than the spectral solutions as
a reference. Thus, the relative errors listed in the table were

defined as:

~

Y

_<Q

e(o,) = ==
Y
%
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TABLE 6.6
COMPARISON OF FIRST ORDER () AND HIGHER ORDER ((-)) SPECTRAL SOLUTIONS
WITH NUMERICAL RESULTS. THE NUMBERS IN PARENTHESIS GIVE
THE RELATIVE ERROR ON oy AND o, WITH
1
RESPECT TO THE VALUES OBTAINED BY NUMERICAL SIMULATION

op = 1.0 op = 1.732 op = 2.3025

e(aH) (+ 13%) (+12X) (+11X)

((+ sX%)) ({(+ 2x)) ((- 7X))
oo, ) (- 23%) (-54) (-73%)

((- S%X)) ((-24x}) ((-35%))
e(o,) (-25%) (-65%) (-82%)

((-15%)) ((-42%)) ((-57%))
e(o, ) (-30%) (-66%) (-83%)

((-17X)) {(-44X)) - (-882)) |

Note: The relative error e(aY) is defined as the ratio (aY—t;Y)/;Y where Oy corresponds to

the spectral theory, and ;Y is the value obtained from the numerical simulation. See nlso
Table (6.4). ’
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In addition, Table 6.6 allows for a direct comparison between the
standard first order spectral solutions (single parenthesis) and
higher order or modified spectral solutions ((double

parenthesis)). The analytical form of each of these spectral

solutions was given in Table 6.4 above.

Our observations based on Tables 6.4, 6.5 and 6.6, can

now be summarized as follows:

(i) The most robust statistics are Oyye Gi. and Keff' For

these quahti ties, the values obtained with the spectral
theo'ry ﬁatch the numerical results wi!:hin 10% (5% for
the effective conductivity)., for the whole range of
log-conductivity variability. The ratio of transverse
to longitudinal flux standand deviations (e.g.,.
aqalaq,) is also relatively robust, although the
spectral result is off the numerical value by (-35X) in
the case of highest variability (af ~ 2.3). Note that
these comparisons are based on the modified spectral

solutions for the flux statistics.
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(iii)

(iv)
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At moderate variability (af = 1.0), all the
single-point statistics predicted by i:he spectral
theory match the numerical results to within 15X, or
10X if the transverse flux deviations (crqz.qqa) are
excluded. Again. these comparisons are based on the
modified spectral solutions for the flux statistics.

However, there are some significant discrepancies
between the spectral theory and the numerical
simulations concerning the values of the flux standa.ra
deviations at higher variability (cxf 2 1.7). In the
case of highest variability (t:vf = 2.3) the error on the

spectral results aq is quite high relative to the
. i

numerical results, particularly concerning the
transverse flux standard deviations (-50X with the
modified spectral theory, and as much as -83X% with the

standard spectral theory).

The modified spectral theory proposed in this work for
the flux spectrum (Chapter 4, Section 4.3) produces

values of aq that are in closer agreement with the
i

numerical simulations, than the standard spectral

theory. The improvement is uniform over the whole
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range of conductivity variability (crf = 1.0, 1.7, 2.3),
and is particularly significant for the longitudinal
flux component (Um)'

Finally, the Gelhar-Dagan second order spectral
solution for Oy does not uniformly improve the
standard spectral result over the whole range of
conductivity variability. The agreement with the
numerical results is not significantly better with the
second order solution, except for a pa;.rtic_ular value of
o¢ (crf ~ 1.7). At any rate, the standard spectral
solution oy was already quite close to the numerical

values within the whole range o = 1.0-2.3.

These observations lead us to the conclusion that the

(modified) spectral theory and the numerical single-realization

simulations produced nearly identical results for most of the

single-point moments of the flow field, within a wide range of

log-conductivity variability (up to o, = 2.3). However, 1t

should also be recognized that the predictions concerning the

degree of variability of the flux components (aq ) were not in

i

such a good agreement for medium to large .log-conductivity
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variability (af ~ 1.7 or larger). Nevertheless, the aq 's
i

obtained from the modified spectral solutions developed in this
work were significantly closer to the numerical results than
those predicted by the standard spectral theory. It is also
interesting to note that the second order spectral solution of
Gelhar-Dagan for the standard deviation of the head did not
significantly improve on the standard spectral solution relative
to the numerical results. We conclude that the most important
"high order effects™ concern the degree of variability of the
flux vector. This may have important implications for solute
transport in a stochastic 'velocity field, and needs to be

discussed further.

The observed discrepancy on the degree of variability
(standard deviation) of the flux vector raises a question about
the accuracy of the spectral theory and/or the numerical
single-realization solution. The problem can be narrowed down

further by observing that, for moderate variability o, = 1.0, the

f
discrepancy between the two methods is on the same order as the
estimated accuracy of the numerical solution (truncation error)
when the modified spectral theory is used. This can be seen by
comparing directly Table 6.6 to Table 5.2 of Chapter 5

(Section 5.2) for o, = 1.0 and Ax/A = 1/3, as will be explained

f
below.
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The result of this comparison is shown in Table 6.7.
It is important to note that the standard spectral theory is off
the numerical solution by an amount too large to be explained
solely by numerical truncation errors. On the other hand, the
modified spectral theory is close enough to the numerical
solution that the discrepancy could be due solely to numericgl
truncation errors (for Op = 1.0). Note that the relative
truncation error approximates the relative error between the

exact and numerical values of o . Indeed, recall that the
i

relative truncation error on the flux was defined as:

g
qu
[+

qy

vhere qu is the truncation error on the flux:

q is the numerical solution while Q4 is the exact (unknown)

solution. Therefore, it is not difficult to see that:
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TABLE 6.7

TRUNCATION ERROR AND DISCREPANCY BETWEEN THE SPECTRAL AND

NUMERICAL SOLUTIONS, FOR THE FLUX STANDARD DEVIATIONS aq
i

(1 Million node problem A o, = 1.00 and /N = 1/73).

(1) (2) (3)
Relative truncation error Relative error Relative error
{exact/ numerical) {(modified spectral/num.) (standard spectral/num.)...
e(a‘:l ) - 17X - 9% - 23%
1
e(aqz) - 14% - 15X - 28X
11-(:7q ) - 14X - 17X - 30%
3

Note: (1) Reclative truncation error on the flux in the root-mean-square norm,
approximating the relative error between the exact and numerical o
i

(2) Relative error between the modified spectral result and the numerical aq .

(3) Relative error between the standard spectral result and the numerical aq
i
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Oq. =%, * 2 <q,*5q> + 02&11

Now, it seems reasonable to assume that the random error Gq
' i

will be generally proportional to q;- This yields:
By using also the known fact that:

c
bqi « crq1

we obtain finally the approximate relation:

g =-C (]
9 93 by
~ -

o
q U

(6.12)

where the left term is the relative error listed in column (1) of
Table 6.7, and the right term is just the relative truncation

error of Chapter 5 (Table 5.2) with the sign reversed.

Thus, the result of Table 6.7 indicates that the‘values

of aq obtained by the modified spectral theory are
i

statistically indistinguishable from the numerical values, in the
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case of op = 1.0. (This does not hold when the standard spectral
theory is used instead.) On the other hand, recall that all the
other single-point statistics predicted by the spectral theory

were quite close to the numerical results for o, = 1.0 (and for

f
larger variability as well). We conclude tha.;. at least for
mdoerate variability (af ~ 1), both the modified spectral théory
and the numerical simulations must be quite close to the unknown
exact solution of the infinite-domain stochastic flow problem, as

far as single-point moments are concerned (standard deviations of

head and flux, and effective conductivity).

This encouraging conclusion seems justified if we
reject the possibility of a mere chance coincidence, given the
fact that the two methods are based on different kinds of

approximations, as shown below:

Spectral Theory Single-realization Similations:

- Infinite domain - Finite domain

- Small parameter expansion - Finite difference discretization
(o)

- First or second order - Approximate factorization and
approximations iterative solution

- Ensemble moments - Spatial moments
(Fourier integrals) (physcial space summation)

On the other hand, the discrepancy between the aq's
predicted by the (modified) spectral theory and the numerical

simulations become statistically significant as op increases over
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unity (o = 1.7 and 2.3). Indeed, Table 6.6 shows that the
relative error between the two solutions increases with Oge
vhile we know from Chapter 5§ (Section 5.2) that the relative
truncation error does not increase with o¢ as a first
app{oximatiori (i.e., to first order in af). If the results of
the truncation error anzlysis are to be trusted, this implies
that the modified spectral theory significantly underest.imates
the degree of variability of the flux vector as op increases,
say for f > 1-1.5. It is also clear from Table 6.6 that the

standard spectral theory leads to even more severe discrepancies,

as noted previously.

Based on these remarks, we have .obtained empirical

expressions for the flux standard deviations (aq) that fit
- ) i R

extremely well the numerical results for the three values of o
tested in this work (af « 1.0, 1.7, 2.3). These conjectural
expressions are simple and take a form similar to the spectral

solutions, as follows:

- og/4
» 8
% AR nke

(6.132)

Equivalently, by using the relation between the arithmetic and
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geometric mean conductivities (KA = Kcexp (a;/2)). these

relations can be expressed as:

e [

. (6.13b)

=

1
aqz'aq:, - JTS- i KG Js

Equations (6.13) agree with the numerical results listed in
Table 6.5 within a margin of error of 3X (0. ) and 6X (o ,0_ )

q: dz2 4qs
for the whole range of conductivity variability up to op = 2.3.
These equations may be viewed as an empirical correction to the
spectral. theory to compensate for "unmodeled” high order effects

in the case of large O It seems clear, at least from all our

previous observations that the exact values of o_ must lie
i

between the values predicted by the modified spectral theory
(Table 6.4) and the empirical relations (6.13) - presumably very

close to the latter.

To complete our analyzis of single-point moments of the
flow field, let us recall form the previous section 6.2 that the
longitudinal flux component was found to be positively skewed,
based on a visual inspection of Q, along selectled transects and
slices (Figures 6.11, 6.14, and 6.15). This, in our view, is

another manifestation of high order effects not taken into
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account by the spectral theory as it stands now. Thus, it should
not be surprising that similar high 6rder effects can contribute
to the variance of the flux vector. The j:roposed correction
(6.13) indicates that the effect of the high order terms, ignored
by the spectral theory, is exponential 1in a? . With this

correction, the aq and all other single-point statistics
i

predicted by the spectral theory agreed well with the numerical
results up to large conductivity variability (0 ¢ of < 2.3). It
will be interesting in the future to evaluate quantitatively the
entire probability distribution of the flux components from the
numerical results. Another key feature of the flow field is its
spatial structure, which will be investigated next 1n. connection

with the predictions of the spectral theory.

[e] Spatial structure (two point correlations):

In the framework of the spectral theo}y. the spatial
structure of the flow field can be described by the
three-dimensional two-point correlation functions of the flow
variables H(x) and Q,(x). Although we have seen that this
information may not be sufficient (Q,(x) has a skewed
distribution, requiring three-point correlation functions), it
will nevertheless be instructive to determine the two-point
correlation functions of the numerical flow field and compare

with the results of the spectfal theory.
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In the present case, we have evaluated the

unidirectional correlation functions:
R(§:) = R(§,., 0. 0)
R(§2) = R(0. §2. 0)

R(§3) = R(0. 0, §3)

for each of the flow variables:

— hydraulic head H
-- flux vector components Q,.. Q;. Q;

-— (head gradient components G;, G, Gj)

In actual practice, we computed first the covariance functions by
using the spatial averaging procedure explained previously in
equations (6.4, 6.5, 6.7) of Section (6.1). The correlation
functions were then simply obtained by dividing the covariances

by the variances (covariances at lag zero). Thus, we obtained

the correlation functions RHH(EJ). RQiQi(EJ). and Rcici(fj) for

i=1,2,3and j =1, 2, 3. Note that we use here the notation
R(fj) to denote unidirectional correlation functions (equal to
unity at lag zero), although the notation R({) was used elsewhere

to designate covariance functions.
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Figures (6.18) and (6.19) show the correlation

structurtja of the hydraulic head field and a comparison with the
head correlation functions predicted by the spectral theory (see
Chapter 3, Section 3.3, Figure 3.1). The wunidirectional
correlation functions from the numerical head field are shown in
Figures 6.18(a). (b). (c) for the cases af-= 1.0, 1.7, ‘2.3.
respectively. In all three cases, the head correlation structure
appears to be nearly isotropic in the cross-flow plane, as it

should, i.e.:

R.m{(O. §2, 0) = R}m(oco-fa)

In addition, the head correlation range 1is larger in the
cross-flow plane than in the longitudinal direction §, parallel
to the mean flow. This feature is indeed predicted by the

spectral theory.

However, the agreement with the spectral theory is only
qualitative, as can be seen from the comparison of numerical and
spectral head correlations show in Figure (6.19) for the case
op = 1.0. It is clear frqm this figure that the numerical result
underestimates the correlation range of the head field with
respect to the spectral result, particularly in the cross-flow

directions. This is presumably due to the limited size of the

flow domain, as can be seen by examining the number of available
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Figure 6.18 (a) ' Numerical head correlation functions along
three directions, for the 1 Million node
"isotropic” problem A (af = 1.0).
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(b)

Same as (a). with o

f

= 1.732.




566

o0 220

L0 1600

a.00 000 1290

= 2.3025.

Figure 6.18 (¢c) Same as (2): with O¢
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Comparison of numerical and theoretical (spectral)
head correlation functions in the longitudinal and
transverse directions §, and £, (1 Million node

isotropic Problem A, with op = 1.0).
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"head samples” along the three axes. The transverse sample size

is:

L

— 0N

.S\

8
w
R
»
o0

-~
-]
)

while the longitudinal sample size is:

L 33.
0.8 " 3.0 = 11-

ojWw

Therefore, it 1is not surprising that the numerical head
correlation functions obtained by finite-domain averaging differ
somewhat from the results of the infinite-domain spectral theory,
parti;ularly in the transverse direction where the equivalent
number of head samples is so small. See Appendix 2A for more

rigorous statements on sampling uncertainty.

It may be also instructive to compare directly the head
correlations in terms of correlation scales. Table 6.8 compares
the e-correlation scales of the head field for the spectral and
numerical solutions (af = 1.0, 1.7, 2.3). The e-correlation
scale was defined as the distance at which the correlation drops
to el 0.3679. Note that this definition coincides with the
integral correlation length in the mé. of the Markdv

log-conductivity field (but not for other random fields such as
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TABLE 6.8

- CORRELATION SCALES OF THE HYDRAULIC HEAD FIELD ALONG THREE DIRECTIONS:
COMPARISON OF SPECTRAL SOLUTION WITH THE NUMERICAL RESULTS OF TIIE
1 MILLION NODE "ISOTROPIC" FLOW PROBLEM A.

Correlation Spectral theory Numerfcal Results
Function for o (o,.=10) (0,=1.7) (0,=2.3)
f f f f
RHH(Eg) 3.0 2.5 2.7 3.0
RHH(Ez) 7.5 5.1 5.0 4.9
RHH(fa) 7.5 4.6 4.6 4.6

Note: The numbers give the e-correlation scale 7\‘;. defined by

R(J\e)' = e'-1 ~ 0.3679.Since the e-correlation scale A of the log-
conductivity was unity, the numbers can also be viewed as dimensionless
ratios ()\eﬂ\).
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the hydraulic head). This table shows that, depending on o.., the

£
longitudinal head correlation length obtained numerically is
oX - 15X 'smaller than the spectral theory predicts. For the
transverse head correlation length, the numerical value is about
40X smaller than predicted by the spectral theory. Although this
is a serious discrepancy, the spatial structure of the numerical
head field is qualitatively similar to that predicted by the
spectral theory. Incidentally, it may be surprising that the
numerical head correlation lengths appear to increase with Teo
thus getting closer to the spectral values as o¢ increases.
The reason for this behavior is not all clear, and might result
from complex interactions between .different kinds of sampling

errors in the . numerical approach (finite domain effects,

nonhomogeneous head field, empirical detrending).

At any rate, it seems very likely that the observed
differences in the head correlation structure are due to the
limited size of the domain with respect to the head correlation
range, as explained above. Due to this limitation, we can only
conclude here that the numerical results do not invalidate the
predictions of the spectral theory concerning the infinite-domain
correlation structure of the hydraulic head. In practice
however, the spectral theory may not be applicable to flow
systems of limited size. In the case of a confined aquifer. for

instance, our results suggest that the depth of the aquifer must
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be several tens of conductivity correlation scales (say 50-100)
in order to satisfy approximately the assumption of infinite
domain. This kind of limitation will be discussed again with the

anisotropic flow simulations presented in the next section.

Let us now focus on the correlation structure of the
flux vector field, which has important implications for solute
transport macrodispersion. Figures (6.20) through (6.28) show
various components of the numerical flux correlation tensor along
three directions. Each of these figures includes also =a
comparison with the results -of the spectral theory. But first,
it may be useful to provide some background on the method used to

represent the flux correlation structure.

For a vector field like the flux, the correlation
structure is defined by the tensor function Rij(f) of the log
vector £ in 3D space. The more restricted subset of correlation
functions discussed below corresponds to the diagonal components
of this tensor, with separation vectors parallel to any of the
three principal " axes (x:.X2.X%3): unidirectional functions
Rii(fj)‘ The physical meaning of these correlation functions can
be better apprehended by examining Figure (6.20). For instance,
the function R, (f;) is the longitudinal flux correlation in t}'xe
longitudinal direction, while the function '~ Rzz(£3) 1is the

transverse flux correlation in the other transverse direction.
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Figure 6.20 Subset of vector-vector correlation functions,
restricted to the diagonal components of the
correlation tensor and to separation vectors
parallel to the principal axes.
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Figure 6.22 Flux correlation functions (§,) for o, = 1.0
2Q2"" ] £

(solid lines: spectral theory; crosses; numerical
simulation).



575

g.
g
8.
s
e 9
d
LS|
d

A |

‘;:fﬁ::-‘ﬁléﬁ_:._.g__‘_g:b::.

*-Q—Q_Hd——rv‘ L mas Bumn au s aues e suns asne mm SN

#0.20  0.00

o o abo  sto 400 st ebo 7.t0 e.to o 10.00
x2

Figure 623 Verification of statistical symmetries on the
numerical flux correlation functions (a = 1.0):
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Verification of statistical symmetries of the
numerical flux correlation functions (af = 1.0):
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Figure 6.25 Verification of statistical symmetries on the
numerical flux correlation functions (of = 1.0):

quqz(fa) & ROJQ:)(Ez) = Rthl(E‘).
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Figure 6.28 Numerical flux correlation function RQ Qz(fa). for
2
op 1.0, 1.7, and 2.3. The.solid line corresponds

to the result of the spectral theory, independent
of o,.
f
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These functions satisfy a number of symmetry relations which were

discussed in Chapter 4 (Section 4.2).

With this in mind, let us now focus on the results
obtained for the flux vector correlation functions. For moderate
variability o = 1.0, Figures 6.21 and 6.22 show a surprisingly
good agreement between the flux correlation function obtained
numerically and those predicted by the spectral theory
(Chapter 3, Section 3.3, Figures 3.2 and 3.3). 'There is in
particular an exc_:ellent agreement for the correlation functions
of the longitudinal flux component in any direction (RQ:Qa(EJ) in
Figure 6.21). The agreement is also excellent for the
correlation functions RQ2Q2(E1) 'and RQZQz(fz) shown in Figure
(6.22). Finally, note that the numerical solution slightly
underestimates the correlation RQzQz(E‘-') with respect to the

spectral theory, although the agreement is still fairly good.

Furthermore, it is also important to note that the
correlation structure of the numerical flux vector field appears
to satisfy the symmetry relations implied by the statistical
isotropy of the input log-conductivity field (Chapter 4, Section
4.2). This can be verified by assembling on the same plot the
numerical correlation functions that should be identical. in
theory. The results of these comparisons are shown in Figures

6.24), and (6.25) for the case o, = 1.0. The theoretical
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symmetry identities (listed below) are indeed satisfied quite

accurately by the numerical results:

Figure (6.23): Rqul(fz) = RQ,Q,(g"’)

Figure (6.24): Rquz(fz) = quqz(fz)

= RQQQQ(E‘)

= RQ;Q:,(E:')
Figure (6.25): RQzQz(Ea) = RQSQG(EZ)

Overall, these encouraging results lead us to conclude
that the correlation structure of the flux vector field preglicted
by the spectral theory must be fairly close to the exact result
in the case op = 1.0. This conclusion is "warranted if one
rejects the possibility of a mere chance coincidence between the
spectral solutions and the numerical single-realization
simulations. The reliability of the numerical flux correlations
does not seem questionable, in view. of the fact that they
satisfied fundamental symmetry relations with excellent accuracy.
Thus, our simulation results confirm the validity of the
Gelhar-Axness spectral theory (Gelhar and Axness, 1983)
concerning the correlation structure, or shape of the f{lux
spectrum, at least for moderate variability (¢7f $ 1). Note that
the same remark applies to the modifted spectral solutions

developed in this work, since the proposed modification (Chapter
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4, Section 4.3) did not affect the shape of the flux spectrum,

" but only the flux variances.

Let us now focus on the effect of increasing
log-conductivity variability on the correlation structure of the
flux vector field. First of all, note that the flux correlations
obtained from the spectral theory are independent. of O Now,
this appears to be approximately satisfied by the numerical flux

correlation functions RQQ (Ej)‘ except for one particular
i1

correlation function RQzQa(Ea)' as shown in Figures (6.26),
(6.'27). and (6.28). In each figure, the numerical correlation
functions obtained for the three cases gp = 1.0, 1.7, 2.3 were
. superimposed. It seems clear that the only significant departure
from the spectral theory concerns the "correlation of the
transverse flux component in the other transverse direction”,
RQzQz(f")' as depicted in Figure (6.28). Nevertheless, the other
flux correlation functions appeared to be relatively stable with

respect to Ops in accordance with the spectral theory.

Again, these results suggest that the spectral theory
of Gelhar and Axmess (1983) is remarkably robust as far as the
flux correlation structure or shape of the flux spectrum is
concerned. The agreement between the numerical and "spectral”
flux correlation functions was reasonably good within the whole °

range of log-conductivity variability up to op = 2.3. This can
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be seen more directly by inspection of Table 6.9, where the
correlation scales of various flux correlation functions are
compared to those predicted by the spectral theory. However,
this kind of comparison does not fully reflect the good agreement
obser.ved from the plots. In our view, the only major point of
concern here is the behavior of the flux correlation RQzQz(E:')'
and its identical “twin” RQaQa(Ea)' The reason for' the
discrepancy on this particular correlation is not clear to us at
this point, although the theoretical results of Chap'ter 4 might

provide a clue for future investigation.

Finally, it might also be of interest to mention,
.without going into details, that the correlation functfons of tﬁe
head gradient (Gi) were also in good agreement with the spectral
theory. At .large variability, there was a closer Agreement
between the numerical and spectral correlations of the head
gradient than between the numerical and spectral correlations of
the flux. Since we also found that the standard deviations of
the head gradient predicted by the theory were quite close to the
numerical results for all values of Op. we conclude that the
head gradient field is not affected much by high order effects.
This finding might be useful for further refinement of the

spectral theory.
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TABLE 6.9

CORRELATION SCALES OF THE FLUX VECTOR COMPONENTS ALONG THREE DIRECTIONS
(RQioi(fj)): COMPARISON OF SPECTRAL SOLUTION WITH THE NUMERICAL

RESULTS OF THE 1 MILLION NODE "ISOTROPIC™ FLOY PROBLEN A

Correlation Spectral theory Numerical Results
Function for =all o (ale.O) (ale.‘l) (af‘=2.3)

RQ,Q,(E’) 1.70 1.75 1.41 1.16

Rozqz(fa) 1.70 1.26 0.71 0.53

RQaQa(Ez) 1.70 1.33 0.77 0.55

R (£2) 0.80 0.83 0.65 0.54
QxQx

Ra,0, (E3) " 0.80 0.85 0.64 0.52

R, ~ (E:) 0.72 0.72 0.58 0.49
Q:Q2

R {(£z2) 0.72 0.81 0.71 0.63
Q2Q.

RQ Q (E,) 0.72 0.78 0.60 0.51
J%I

RQ,Q,(E") 0.72 0.85 0.76 0.66

Note: The numbers give the e-correlation scale )\e defined by R(Ac) =e

1. 0.307.

The correlation scale of the log-conductivity field was equal to unirty.
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[f] Summary of results:

The single~-realization results obtained in this section
confirmed many aspects of the spectral theory previously
developed by Bakr et al. (1978) and Gelhar and Axness (1983).
Our arguments to accept (or reject) the single-realization
simulation results were based on a number of criteria:
evaluation of sampling errors for the head field, truncation
errors for the flux field, symmetry relations for the flux
correlation functions, and, last but not least, agreement with

spectral theory.

Some of our conclusions in particular seem beyond doubt
in view of the close agreement with the spectral theory for a
wide range of conductivity variability. Thus, it seems that the
standard spectral theory gives essentially exact solutions for
the standard deviations of the head (aH) and head gradient

(aG ). as well as the effective conductivity (Keff)' up to large
i

variability o, = 2.3. Furthermore, the results also indicate
that the flux correlation structure predicted by the spectral
theory 1is very accurate at op = 1.0, and remains still fairly
reliable up to large conductivity variability (af > 2.3) except

perhaps for one particular flux correlation function.

On the other hand, our analysis suggested that the
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standard spectral theory significantly underestimates the degree

of variability of the flux vector (aq) even in the case of
i

moderate variability (af = 1.0 and larger). When the modified
spectral theory developed in Chapter 4 (Section 4.3) was used

instead, the theoretical values of aq became closer to the
i

numerical ones. However the discrepancy was still larger than
the allowable margin of error (numerical truncation error on the
flux) in the case of large variability o 2 1.7. New analytical

expfessions (6.13) were proposed for the oq in order to
. i

compensate for unmodeled high order effects. It may be more than
a coincidence that these expressions, which involve combinations
of arithmetic and geometric mean conductivities, fit the
numerical results w}th very good accuracy for op = 1;0. 1.7 and
2.3 as well. Ve thpreforé éonclude that it may be important to
consider higher order spectr;l solutions of the flux vector (such
as those proposed in this work) for applications to groundwater

flow and transport in highly heterogeneous aquifers (say

op = 1-1.5 or larger).

In addition, we have found that the spatial structure
of the head field could be significantly different from that
predicted by the spectral theory in the case of finite size flow
domains, although the magnitude and anisotropy of the head
correlations were qualitatively in accordance with the spectral

theory. For the isotropic flow problem at hand, our analysis of
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finite size effects suggests that the “infinite domain"
assumption of the spectral theory will hold in cases where the
longitudinal size is on the order of 25-50A, and the transverse
size 50-100A. This might be important for applications involving

confined aquifers with finite thickness.

Apart from the above reservations concerning the £ lux
standard deviations and the head correlations, it seems that all
other large scale flow properties predicted by the spectral
theory are reasonably accurate within a wide range of

Iog—conductivity' standard deviations, say up to o, = 2 or so.

6.4 Summary Analysis of 3D Anisotropic Flow Simulations
(220,000 Nodes)

This section is devoted to the analysis of
single-realization flow simulations in the case of a
statistically anisotropic log-conductivity field (3D Markov
ellipsoidal) with principal axis parallel to the mean hydraulic
gradient. The "anisotropic™ flow problems E and F of Table 6.1
were designed to mimick the case of horizontal groundwater flow
in a horizontally "stratified” aquifer, with anisotropy ratio
e = 174 (ratio of vertical to horizontal correlation scales of
log-conductivity). Observe that the variability of the

log-conductivity field is the same for both problems (r.rf = 1.0)
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but the geometry of the discrete grid differs.

For Problem E, the grid resolution was taken to be
one-half with respect to the conductivity correlation scales in
each direction (Axi/)\i=1/2),. On the othgr hand, for problem F,
the grid resolution in the vertical was much coaser (Ax3/Ay=4)
but, as a result, the vertical size of the domain was much
larger. The total number of nodes was the same for both problems
(220,000 nodes). These problems were designed to test the
applicability of the single-realization approach in the case of
statistically anisotropic media, a.pd notably to evaluate the
numerical requirements implied by anisotropy. These prelimtnary
results are presented here because of their relevance for
practical applicatioﬂs. in vie;r 'of the fact that most natural
formations exhibit some kind of stratification (see Figure 2.3.
of Chapter 2 for a comparison of the anisotropic Markov
conductivity with field measurements). However, there will be no
attempt here at obtaining an exhaustive statistical description
of the flow field, as was done in the case of 1isotropic
conductivities. The reasons for the limited scope of this study

may become clearer in the sequel.

In what follows, it will _be convenjent to designate the
anisotropic problem (E) as the "shallow strattfied aqu.tfer;" flow

problem, and the anisotropic problem (F) as the “deep stratified
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aquifer” flow problem. Indeed, it can be seen from Table 6.1
that the aquifer thickness is just 7.5 units in the first case,
compared to 60 units in the second case, in units of the
horizontal correlation scale A of the log-conductiv;ty field. By
the same token, recall that PToblem'E (shallow aquifer) has a
much finer grid resolution than problem F (deep aquifer),
particularly in the vertical direction. Despite these
differences, recall that the size of the grid was the same for

each case, comprising 61 nodes in each direction (220,000 nodes).

With this distinction in mind, we now proceed to
develop a succinct analysis of the simulated flow fields, limited
to the study of spatial variability of the hydraulic head. The
spatial variation of the head is depicted'gfaphically in Figures

(6.29), (6.30), (6.31) along selected slices (respectively:

horizontal parallel to flow, vertical parallel to flow, and
vertical transverse to flow). Each of these figures shows the

numerical head fields obtained for:

(a) -— the.“shallow stratified aquifer™ problem (E)

(b) -- the "deep stratified aquifer” problem (F)

Figures 6.31(a), (b) in particular seem to indicate that the

pattern of hydraulic heads in the cross-flow plane perpendicular

to stratification is more anisotropic for the "shallow stratified
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Figure 6.29 (a) Hydravlic head contours in a horizontal slice
parallel to the mean flow, for a "shallow
stratified aquifer” (Problem E)
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Figure 6.29 (b) Same as (a)., for a "deep stratified aquifer”
(Problem F)
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Figure 6.30 (a)  Hydraulic head contours in a vertical slice
parallel to the mean flow, for a "shallow
stratified aquifer” (Problem E)
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Figure 6.30 (b) Same as (a), for a "deep stratified
aquifer” (Problem F).
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Figure 6.31 (a) Hydraulic head contours in a vertical slice
transverse to the mean flow, for a "shallow
stratified aquifer” (Problem E)
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Figure 6.31 (b) Same as (a), for a "deep stratified aquifer"”
(Problen F).
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aquifer” (a), than for the "deep stratified aquifer” (b). It may
be preposterous to draw any definite conclusions from such
limited observations, however we will see shortly that the aBove

conclusion is confirmed by statistical analysis.

The standard deviation and correlation functions of the
head were computed in each case by using the same longitudinal
detrending technique as in the previous sect:lon; (see section 6.1
on methodology). Figure (6.32) shows in each case (a) and (b) a
typical sample function of the head H(x;) along the mean flow
direction, superimposed on the cross-flow average H(x;) as
defined in equation (6.5). These pictures suggest that the head
variability around the nonlinear trend is smaller for the shallow

aquifer (a) than for the deep aquifer (b).

Indeed, Table 6.10 (top) shows that the head standard
deviation for (a) iS significantly smaller than for (b). The
infinite-domain spectral theory (equation 3.28 of Section 3.4,
Chapter 3) gives the same value of Oy in both cases.
Furthermore, it appears that the value predicted by the spectral
theory lies in between the numerical solutions of (a) and (b).
This might be explained by the fact that, in (a), the flow domain
was too small to allowv for fully three-dimensional fluctuations
of the hydraulic head whereas in (b), the grid resolution was

coarse enough to generate significant numericzl noise that may
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flow, and cross flow average H(x,): case of
the "shallow aquifer” Problem E.
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TABLE 6.10

" COMPARISON OF PRELIMINARY "ANISOTROPIC FLOW SIMULATIONS™

WITH THE RESULTS OF THE SPECTRAL THEORY:

HEAD STANDARD IEVIATION AND CORRELATION SCALES

(220,000 RODE FLOW FROBLEMS E AND F, o

= 1.0and & = 174).

f
Normalized Spectral Theory | (a): Shallow Aquifer | (b): Deep Aquifer
Head Standard {Problem E) (Problem F)
Deviation
aH/J, 0.3100 0.2654 0.3678
a,~C
i -—- -14x +18%
o
H
Correlation Llongitudinal |[Transverse Horizontal |Transverse Vertical
Scales (i=1) (1 =2) (1 =3)
Aen K 1.00 1.00 0.25
)‘H (spectral) 3.0 7.5 7.0
(a):)\H(Problem E) 2.2 3.7 2.6
(b):)\.H(Problem F) 2.2 5.7 3.7
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have contributed to the standard deviation of the head. Thus, Oy
was underestimated in the first case and overestimated in the
second case, with respect to the spectral result. Note that Oy
~ was normalized by the mean head gradient, which was not the same

in the two simulations.

Let us now focus on the statistical correlation
structure of the simulated hydraulic head fields. It may be
instructive to examine first the correlation structure of the
single realization log-conductivity fields generated in each

case. igures 6.33 (a2) and (b) show the computed

log-conductivity correlation functions along the three principal
directions, respectively for the ”shailow aquifer problem” (a)
and the "deep aquifer problem” (b). It is interesting to note
that, in the latter case, the én K-correlations along the
vertical axis are not very well captured due to the coarse grid
resolution Axj3/A;=4. Nevertheless, in both cases (a) and (b).
the computed correlations agree with the theoretical anisotropic
Markov correlation function. In addition, the computed standard
deviation of én K were in each case very close to the

theoretical value af=l.0. with a 2X margin of error.

The unidirectional head correlation functions were
computed from the detrended head fields according to the

procedure outlined in Section 6.1 (same procedure used for
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Figure 6.33 (a) Computed log-conductivity correlation
: . functions for the single-realization

anisotropic Problem E (shallow aquifer, fine
grid)
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Figure 6.33 (b) Computed log-conductivity correlation
functions = for the single-realization

"anisotropic Problem F (deep aquifer coarse
grid)
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analyzing the isotropic flow problems in previous sections). The
numerical head correlation functions corresponding to the
"shallow” and "deep"” aquifer problems (a) and (b) are shown in

Figures 6.34(a) and (b). For comparison., the correlation

functions obtained from the spectral theory (Chapter 3,

section 3.4) are also displayed in Figure 6.34(c).

As expected, it appears that the head correlation
structure obtained for the "shallow stratified aquifer” (a)
disagrees more strongly with the infinite-domain spectral theory
than the correlations obtained for the "deep stratified
aquifer” (b). This can be also seen by comparing directly the

head correlation scales 7\}(!1). as shown in Table 6.10 (bottom).

Thus the simulation results at hand confirm our
previous conclusions about the applicability of the spectral
theory in the case of stratified aquifers (Chapter 3,
section 3.5). It seems clear that the spatial structure of the
head field in the case of the shallow strafified aquifer could
not be adequatelf modeled by the infinite-domain spectral theory,
since the aquifer thickness (7.5 A) was on the same order as the
vertical correlation range of the head field (about 7.0 A
according to the spectral theory, or 2.0 A according to the
finite domain simulation). In these conditions, the hydraulic

head field obtained for the shallow case (a) may not be
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representative of the ensemble of possible flow realizations, and

the stochastic single-realization approach becomes meaningless.

On the other hand, the head correlations obtained for
the "deep stratified aquifer” case (b) agree more closely with
the infinite—-domain spectral theory. This leads us to believe
that the predictions of the spectral theory (near-isotropy of the
head in the vertical and horizontal directions tranévérse to the
mean flow) could be confirmed more conclusively with a larger

flow domain and improved geometry/resolution of the grid.

To obtain also an accurate statistical representation
of the flux vector field, however, the grid resolutioﬂ may have
to be fine in proportion to the smallest correlation scale of the
input- conduct;vity field (A;=A/4). Indeeci. our previous
discussion of stratified flow systems (Chapter 3, sections 3.4
and 3.5) suggested that the correlation scales of the transverse
flux components could be only a fraction of the geometric mean of
horizontal and vertical conductivity scales (RG = Jm). The
reader is referred in particular to Figures (3.5) to (3.7) and
equation (3.22). The latter equation can be used to evaluate the
fluctations scales A corresponding to the flux correlations

ii
RQ Q (Ei)' For the case at hand, this yields:
i1 :
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Ay =X =)
Azz ~ 0.15 = 0. 15R2
A33 2~ 0.30A = 1.20A3

In comparison, remember that the finest mesh size in the
simulations at hand was Axi = 0.5)\1 ("shallow aquifer” problem E
of Table 6.1). Thus, it appears that the grid resolution was
probably much too coarse in the horizontal cross-flow
direction (x2) to be able to capture the fluctuations of the
transverse flux Qz(x). Moreover, the grid resolution used for

the "deep aquifer” problem was even coarser.

For "anisotropic” media, w¢; conclude that the grid size
may have to be exceedingly - large in order to obtain a
statistically representative flow realization (hydraulic head H)
vhile capturing the finest fluctuations of the flow field
(transverse flux component Qz).' The severe requirements of the
single realization approach for stratified flow systems could
possibly lead to prohibitive grid sizes in regard to current
numerical/computing capabilities (i.e., well above 1-10 million
nodes). This question could_be examined further in the future by
analyzing the numerical flux vector fields for the currently
available "modest size™ flow realizations (220,000 nodes), or
perhaps from new simulations with improved gr"id résolution and

éeome try.
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6.5 Summary and Discussion:

The stochastic flow simulations analyzed in this
chapter were aimed at evaluating the range of wvalidity of the
spectral theory in the case of groundwater flow in finite
(but large) realizations of random porous formations. The
assumptions of the spectral theory, infinite domain and
homogeneity-ergodicity of the flow field, were not required in
the direct simulation approach. Thus, the simulated flow fields
were statistically analyzed by using spatial averaging and
detrending techniques very much like those frequently used to
analyze field data. Furthermore, the small parameter expansions
in the log-conductivity standard deviation (ai:) required in the
spe.ectral theory, .were not needed in .the direct numerical
simulation approach. Admittedly. the latter approach introduces
new kinds of errors, such as truncation errors, solution errors
due to approximate factorization of the matrix system and
incomplete convergence of i{terations, and round-off errors.
However, these were presumably kept under control by using
various tools from numerical analysis and by numerical
experimentation (Chapter 5). In contrast, the accuracy of the
spectral solutions was essentially unicnown before the present
research was initiated, except for a few special cases where
exact solutions were available (effective conductivities for

one-dimensional, and two-dimensional isotropic, random media).
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The most significant results in this chapter were those
obtained from large flow simulations with statistically tsotropic
log-conductivities (3D Markov field with exponential covaﬂance)
in section 6.3. The numerical flow fields obtained on a large
three-dimensional grid (1 million nodes) were conxparéd to the
spectral solutions, via statistical analysis, for a wide range of
conductivity variability (1 ¢ o¢ < 2.3). There was =a
sixrprisingly good agreement for the effective conductivity (Keff)
and the degree of variability of the hydraulic head (standard
deviation oy around the empirical trend) for all values of O
On the other hand, the degree of variability of the flux vector

field Q was significantly underestimated by the spectral

i
theory for large variability (t:tf > 1-1.7). In addition, our
visual observations fo the flux field (séction 6.2) strongly‘
suggested that the probability distribution of the longitudinal
flux Q, was significantly skewed positively. Both these effects

are presumably due to high order interactions not taken into

account by the first order spectral theory.

Nevertheless, the flux standard deviations aq
i

predicted by the modified (higher order) spectral solutions of
Chapter 4 (section 4.3) were more closely in agreement with the
numeriéal results, than the standard spectral theory of Gelhar
and Axness (1983). A’ further empirical modification. of the

spectral theory to account for high-order effects at large values
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of o¢ finally produced a near-perfect fit with the numerical

results. The empirical analytical expressions for aq were given
i

in equations (6.13), to be compared to the standard and modified

spectral solutions listed in Table 6.4.

On the other hand, the flux correlation functions
(related to the shape of the flux spectrum) obtained from the
Gelhar-Axness spectral theory agreed remarkably well with the
numerical flux correlations in the case of moderate variability
(af = 1.0). Even for higher variability, there was still a fair
qualitative agreement between the spectral and numerical flux
correlation structures, except for one particular component of
the flux correlation tensor, quqa(fa) . These results are
particularly important for applications to stochastic solute
transport. For instance, Gelhar (1987) shows that the
macrodispersivity of a solute convected in a random Qelocity
field Q;(x) 1is proportional to the integrated velocity
covariance (see for instance equations 4.64~4.65 of Chapter 4).
Overall, our results strongly suggest that the flux covariance
predicted by the spectral theory will be accurate for a wide
range of conductivity variability, provided the use of high-order
corrections for the flux variance as explained above. The
Gelhar-Axness theory of macrodispersion may have to be modified

accordingly, especially for cases of large variability.
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The hydraulic head correlation functions obtained
numerically did not agree so well with the spectral results, even
for moderate conductivity varisbility. In view of the very good
agreement observed for the flux correlation functions, we
conclude that the discrepancies concerning the spatial structure
.of the head field were mainly dl.le to the large fluctuation scales
of the head relative to the size of the flow domain. Thus, we
conjectured from a simplified analysis of sampling errors that
the infinite-domain spectral theory 1ideally requires a domain
size on the order of 25-50 correlation scales in the mean flow
direction, and &s much as 50-100 correlation scales in the
transverse directions, in order to be applicable to practical
field situations (tsatropic case). In fact, the spatial
structure of .the head 'fiéld obtained on a domain of size (33A)3
still agreed reasonably well with the spectral theory, at least
qualitatively. Thus, in the isotropic case, the numerical head
field appeared to be sta..tistimlly anisotropic as predicted by
the theory, although the numerical correlation ranges were

systematically smaller.

For the antsotropic case 6n the other hand, the
restrictions on the range of applicability of the spectral
solutions seemed to be more severe (see Section 6.4). First of
all, it appeared that even for fairly large size flow problems

(the "deep aquifer” case), there was still a significant
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finite-size effect, resulting in smaller head correlations and
more pronounced head anisotropy than predicted by the spectral
theory (see Figures 6.34). Furthermore, we conjectured that a
severe restriction on the mesh size may have to be satisfied in
order to obtain a meaningful numerical solution for the flux
vector field. The strict résolution requirement is due to the
very small fluctuation scales of the transverse flux in the case
of a stratified aquifer (small vertical/horizontal anisotropy
ratio). Overall, the requirements of large domain .size and very
fine grid resolution may lead to discrete systems too large to be
handled with current machine capabilities and/or with the class
of numerical methods considered in this work. At any rate, the
numerical simulations of Section 6.4 cbncerning the cases of
“deep” and "shallow™ stratified 'aquifers, seem to confirm our
previous concerns about the possible inapplicability of the
three-dimensional anisotropic spectral solutions in the case of

confined aquifers of moderate thickness (Chapter 3, section 3.5).

Note finally that these possible limitations of the
spectral theory concern only the correlation structure of the
hydraulic head, not its global variability. Thus, we have found
that, for all domain sizes and in all cases of anisotropy and

variability, the head standard deviation calculated by

H
empirical detrending of the numerical solution, matched to within

10-15X the spectral result. The fact that this worked also for
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the case of the "shallow” stratified .a.quifer indicates that the
spectral solution for oy can be quite robust, i.e., unaffected
by finite size -effects and/or domain scale inhomogeneities,
- provided that appropriate detrending techniques be used to smooth
out the observed inhomogeneities. More generally, our results
strongly suggest that the spectral theory provides an essentially
correct description of the correlation structure of the flow in
sufficiently large flow domzins (deep aquifers), provided that
the effects of domain scale or large scale inhomogeneities be
smoothed out by detrending the observed hydraulic head field. In
actual practice, such inhomogeneities could be caused by tiue
presence of natural boundaries (or artificial boundaries in a
numerical model), and/or distributed sources, and/or inherent
inhomogeneities of the porous formation at the scale of the
domain or larger. This should be taken into account in
particular in the solution of the inverse problem based on field
measurements of conductivity (or transmissivity) and of hydraulic

head.

In summary, our direct simulations of
single-realization stochastic flow problems in finite domains
have helped defining the range of applicability of the
infinite-domain spectral perturbation solutions (Gelhar and
Axness, 1983, and this work, Chapters 3 and 4). Some of the

limitations of the spectral theory may have implications for the




616

solution of inverse flow problems (correlation structure of the
head field), and for the theory of stochastic solute transport
{macrodispersion of a solute convected in a random velocity
field). Our results show that the restrictions of the spectral
théory. large domain and small variability, may be loosened
greatly by using appropriate detrending techniques to evaluate
the spatial structure of the head perturbatioﬂ;. and by using
higher order approximations for the flux variance as proposed in
this work. More research will be needed to evaluate the
applicability of the Gelhar-Axness theory for stratified
aquifers, particularly in the case of a dip angle between the
mean flow and the principal axis of statistical anisotropy, which

was not explored in this work (see indications in Section 6.1).
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CHAPTER 7: THREE-DIMENSIONAL SINGLE-REALIZATION SIMULATIONS
OF UNSATURATED INFILTRATION IN RANDOM SOILS

7.1 Scope and Objectives

This chapter is devoted to the numerical simulation and
interpretation of large scale realizations of stochastic
unsaturated flow in random soils: The principle of the
single-realization approach was explained in Chapter 2, and the
related numerical issues were discussed in Chapter 5. The
statistical aspects of the method were 1illustrated quite
concretely in Chapter 6 for the case of steady state groundwater

flow under a given regional hydraulic gradient.

However, here, a new difficulty arises due to the
severe nonlinearity and inhomogeneity of the infiltration
problem. For example, the preliminary infiltration experiments
presented in Chapter 5 (section 5.4.3) clearly demonstrated the
strongly inhomogeneous nature of the pressure field during the
early stages of infiltratior? from a local strip source (evolving
wetting front). Vhen strong nonlinearity dominates the flow
process, the assumptions of the linearized spectral theory of
‘Mantoglou and Gelhar {1987) may be too constraining to warrant a

precisel quantitative comparison between the ensemble moments



618

obtained by the theory, and the spatial moments obtained from the
numerical solutions. Therefore, unlike the case of groundwater
flow, we do not have here the support of a robust analytical
theo;'y to guide our numerical experiments. For instance, little
is known about the behavior of the wetting front in the presence
of random heterogeneities. The reader is referred to Mantoglou
(1984) and the above-quoted work, for a detailed account of the
assumptions of homogeneity and the various linearization and
"small parameter” approximations involved in their spectral

solutions of transient unsaturated flow.

In addition, there is another difficulty inherent to
the single-realizat;ion approach when dealin‘é with localized and
.inhomogeneous transient flow processes, as occurs during
infiltration from a local source. In such cases, the actual size
of the flow domain (evolving wet zone) is regulated by the
physics and depends on the time scale of interest. Thus, a
single realization solution may not Dbe statistically
representative of the ensemble of possible realizations unless

the time scale is large and/or the size of the source is large.

Our choice of strip—-source infiltration problems was
motivated in part by this kind of limitation. In the
strip-source case, the source and the flow domain can be taken

a.rbitrarily large in the longitudinal direction parallel to the
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strip, at least within the limits imposed by computing
capabilities. By symmetry arguments, we expect the flow field to
be statistically homogeneous in the longitudinal diret;tion. as
illustrated in Figure 7.1. By sampling the solution along the
longitudinal axis, one may obtain a representative picture of the
effects of spatial variability from a single realization of the

strip-source flow.

Accordingly, the next two sections will be devoted to
the study of transient strip-source infiltration {n random
soils. In section 7.é. ve investigé.te specifically the influence
of the variability of the unsaturated conductivity curve on the
flow pattern for a statistically isotropic soil. In section 7.3,
we analyze one very large realization of strip-source
infiltration in a statistically anisotropic soil, designed to
mimick an on-going experiment at the Las Cruces experimental farm
of the University of New Mexico. In either case, however, direct
statistical analysis of the p.ressure field will not be attempted,

due to the limitations mentioned above.

In addition, Section 7.4 1is devoted to a class of
infiltration problems where the solutit.m is expected to be
statistically homogeneous in all three space directions. Thus,
we have chosen to'study the case of ;steady state infiltration

from a uniform plane source of constant intensity (uniform
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P O I R N
loeeeornroeececvneveee

MOVING BOUNDARY

Figure 7.1 Illustration of a strip-source infiltration problem
having one spatial direction of statistical
homogeneity (longitudinal direction).
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"rainfall”). Some preliminary statistical analysis will be
briefly presented, for comparison with the results of the steady
state linearized spectral theory of Yeh et al. (1985), later

extended by Mantoglou and Gelhar (1987).

The strip-source and the steady uniform infiltration
problems of Sections 7.3 and 7.4 were solved for the same large
realization of a statistically anisotropic random soil, over a
grid of size 300,000 nodes. To run these two problems required a
CPU time on the order of 10 hours on a Cray 2 machine, including
trial and errors for adjusting the time steps. Note that the
steady state infiltration problem of section 7.4 was in fact
solved by way of tra.n;ient simulation up to a relatively iarge
time of infiltration (3 months), and required about 3 CPU hours
on the Cray 2 machine. In contrast, the preliminary strip-source
infiltration problems presented in section 7.2 were solved on
relatively "modest” grid sizes (25,000 nodes) using the
Microvax 2 minicomputer. It should be néted that the purposes of
the three. sets of simul'ations (sections 7.2, 7.3, 7.4) vwere
somevhat different: The contents of each section are summarized

below for convenience.

Section 7.2 (25,000 nodes/transient):

Preliminary simulations of transient strip-source
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infiltration on statistically isotropic soils for relatively
small time and length scales (3 days of infiltration, 1.4 x 4 x 4
meters domain). Test of different assumptions concerning the
variability of the 2n K(h) curve, and qualitative interpretation

of simulation results.

Section 7.3 (300,000 nodes/transient):

Single-realization simulation of transient strip-source
infiltration and drainage on a statistically anisotropic soil for
relatively large time and length scales (20 days of infiltration
and drainage, 5 x 15 x 15 meters domain). The geometry. boundary
conditions, hydraulic properties, and spatial variability data
were selected to mimick the oﬁ-gbing "trench” experiment at Las

Cruces. Qualitative interpretation of simulation results.

Section 7.4 (300,000 nodes/steady):

Single-realization simulation of steady state
infiltration from a plane source of constant intensity (uniform
rainfall). Same geometry, grid size, and soil data as in the
previous strip-source "experiment”. Qualitative interpretation
and preliminary statistical analysis of pressure head variability

and effective conductivity. Comparison with linearized spectral

solutions.
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A i"ew additional comments may be useful to complete
this summary. In all cases, the unsaturated conductivity curve
was assumed to vary randomly in space (one different curve for
each node: of the grid), while the water retention curve was
assumed to be the same at all locations (deterministic). The
unsaturated conductivity-pressure relation was assumed to be
exponential, and the water retention curve was represented by the
Van Genuchten functicen, .as explained in Chapter 5
(section 5.1.3). The precise data and the assumed stochastic
properties of the conductivity curve will bé given in more detail
in the sequel: see in particular the next section (7.2)
concerning the method used to generate random conductivity
parameters. On the whole, the single realization solutions
- presented in this chapter constitute, as far as we know, the
largest high-resolution representations of heterogeneous

three-dimensional unsaturated flow systems available to dafe.

7.2 Strip Source Infiltration in Statistically Isotropic Soils
(25,000 nodes):

7.2.1 Model problems and input data

The nonlinear conductivity and water retention curves
adopted in the sequel are, respectively, the exponential and the

Van Genuchten functions (see Chapter 5):
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K (%) exp (a(x)h) 1f h < O

K(h.x) = (7.1)
X, (%) ifh20
8, - 6,
8(h) = 8, + - (_Bh)n)l-lln (7.2)

Both parameters Ks(g) and a(x) of the mutumtﬁ conductivity
curve (7.1) are assumed to be random functions of
three-dimensional space. On the other i:and, we assume that the
water retention curve (7.2) is deterministic, i.e., the same at
all spatial locations. This simplifying assumption was motivated
‘by the findings of Mantoglou (1984) and Mantoglou and Gelhar
(1987), whose linearized spectt.'al results sugéest that the
variabilify of 6(h.x) plays a minor role compared to the
variability of K(h,x). Their results aiso indicate that the
statistical properties of the flow will be quite sensitive to the

mean and variance of a(x).

The parameter a corresponds to the slope of the
log-conductivity cﬁrve. obtained by differentiating &n K(h,.x)
with x fixed. Various physical interpretations of a were
discussed in Chapter 5 (section 5.4.2), e.g. inverse height of
the capillary fringe, pore size distribution index, or

convection/diffusion ratio. Field data concerning the

variability of the conductivity curve were discussed in
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Chapter 2 (section 2.3.2, ta:ble 2.2). It should be pointed out
that the degree of correlation between Ks(g) and a(x) remains
unknown. On the other hand, the linearized spectral solutions of
Mantoglou and Gelhar (1987) seem to be fairly sensitive to the
assumed correlation between these two random field parameters
(correlated/uncorrelated) and very sensitive to the degree of

variability of the a-parameter in particular.

In the present section, we propose to investigate
directly the effect of variability of the a-parameter and of the
correlation between a and Ks' by way of numerical simulations of
strip-source infiltration for relatively modest time and length
scales. The relevant input data used in these simulations are
summarized in Table 7.1 below. Three types of variability were

assumed for the random conductivity curve of equation (7.1):

Case (1): Ks(g) random, o constant. .
Case (2): (Ks(g). a(x)) random and perfectly correlated.
Case (3): (Ks(x). a(x)) random and perfectly uncorrelated.

In each case, the parameters &énK and/or ¢&éna were
assumed to be statistically {isotropic Markov random fields in
three-dimensional space, with &a constant-mean Gaussian
distribution. Thus, defining KG and oo the geometric means of
Ks(g) and a(x), we used the turning band method (Chapter 2 and
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TABLE 7.1

: SUMMARY OF INPUT DATA FOR THE SINGLE-REALIZATION
SIMULATIONS OF STRIP-SOURCE INFILTRATION IN STATISTICALLY ISOTROPIC SOILS

(25.000 NODES)
Type of Data Description Yalue
Domain Vertical domain size L, =21.40nm
Geometry, Transverse horizontal domain size L =4.00m
Boundary Transverse longitudinal domain size Ly =4.00m
Conditions, Strip source width 's =1.10m
and Initial Flux at the surface of the strip q, = 2 cm/day
Conditions Condition at the bottom boundary q: = - K(h)
Initial pressure head hln = - 150 cm
Space-Time Time step Variable
Discretization Mesh size Axi (1=1,2,3) Axi=0.10 ™
Unidirectional number of nodes ng n= (5. 41, 41)
Total number of nodes of 3D grid N = 25215
‘|Exponential Geometric mean saturated conductivity Kc = 541 cm/d
Conductivity Standard deviation of én Ks g, = 0.7
Curve (Random) Geometric mean of the &n K-slope ag = 0.09 t:m"1
Standard deviation of &n a o, = 0.3
Isotropic correlation scales 7\i J\i =0.20m
Van-Genuchten Saturated moisture content Bs = 0.38
Water retention | Residual moisture content Br = 0.07
Curve Scaling parameter B =0.05 en )
(Deterministic) | Shape factor (real number) ns= 2.00_
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Chapter 6) to generate the zero-mean Gaussian random fields:

£(x) = en(K_(x)/K,)
(7.3)

a(x) = en(a(x)/ag)

with isotropic exponential covariance function. The
corresponding spectral density can be found in Table 3.1 of
Chapter 3 (special case of ellipsoidal Markov-spectrum, with

equal correlation lengths in all three directions).

Note that we assumed the log-normality of the
a-parameter. This differs from the assumption of normality
implicit in the theoretical work of Mantoglou and Gelhar (1987).
In our opinion, the log-normal behavior of a makes sense in view
of thé fact that this parameter, like Ks. is necessarily positive
for all usual types of rigid porous media. This 1is =also
supported by the experimeﬁtal observations discussed in the data
survey section of Chapter 2. In particular, Russo (19é3) found
that a(x) followed a log-normal distribution with skewness;
coefficient equal to 1.36 (similarly, Ks(g) was log-normal with
skewvness 2.49). Now, equations (2.19-2.21) can be used to relate
the mean and variance of a log-normal variable (Y) to the
geometric mean (YG) and the variance of &énY. These equations

also show that the skewness of & log-normal variable is always
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positive and increases rapidly with its coefficient of variation.
On the other hand, in the case of mild variability (aenY«l) the
skewness of Y becomes negligible, the standard deviation of 2nY

becomes approximately equal to the coefficient of variation
(UY/?)' and the geometric mean (YG) becomes close to the mean

(?). These simple observations may help compare our simulation

data to other data or theories 'published in the literature.

A few single-realizations of the log-normal random
fields Ks(g) and a(x) were produced in order to simulate the
three cases outlined above. In case (1), only I(s was random.
The turning band method was used to generate one realization of a
Gaussian random field, say u,(x), and the desired Ks-field was
obtained by rescaling u,(x) and applying an exponential transform
in the obvious way. In case (2), where En!(s and Znx were
perfectly correlated random fields, the same realization u,(x)
was used to obtain both Ks(g) and a(x) after rescaling and
exponentiating. Finally, in case (3), two independent
realizations u,;(x) and uz(X) were used to obtain Ks(a_c) and a(x)
independently from each other. The procedures just described are
summarized below for convenience, along with a possible
generalization to handle the case of imperfect correlation, as

may be needed in the future when more data become available.
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Case (1):
K (x) = Kg » exp (op°ui(x)) (7.4)
a(x) = a
Case (2):
K (x) = Ky + exp (0g°uy(x)) (7.5)

a(x) = ag * exp (0,u,(x))

Case (3):
K (x) = Ky - exp (0°u;(x)) (7.6)

a(x) = ag * exp (0, °uz(x))

General case (imperfect correlation):

K (%) = Kg exp(ogu,(x)) (7.7)

a(x) = ag exp {0 (p us(x) + 1-p% uz(x)))

" In the latter case, p designates the correlation
\ coefficient between f(x) and a(x) (-1 { p { 1). More preciseiy.
the covariance tensor of the jointly Gaussian random fields

(a(x). f(x)) is of the form:

Raa(i) Raf(f ) oz/c; po, /o,

Rea (D) Ree(®) po /o
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Accordingly. case (1) obtains by taking o, = 0. case (2) by
taking p =1, and case (3) by taking p = 0. The two special
cases p=1 and p = 0 were motivated by the observation that
(a.l(s) should be positively correlated (O { p { 1) since both

a and Ks generally increase with soil coarseness, and decrease

with clay content.

Figure 7.2 illustrates the two extreme assumptions of
perfect correlation and perfect independence (p =1 and p = 0)
corresponding to cases (2) and (3)}. The ¢&n K(h) functions were
plotted schematically for different spatial locations. The
log-conductivity curves shown in the top part of Figure 7.2 have
perfectly correlated slope and intercept (én a and én Ks). Their
envelope has the sﬁape of a ‘hyfperbole. On the bottom part of the'
figure, the case of perfect independence between &n a and ¢én Ks
is represented in the same fashion. There is no well-defined
envelope in this case. Figure.(2.2) of Chapter 2 suggests that a
reasonable descriptioﬂ'of natural conductivity variability stands
somewhere between these two casé‘s. Admittedly, more work is
needed to refine these simplified representations of unsaturated

soil variability (see discussion of field data in Chapter 2).

Let us now comment briefly on our choice of some of the
other data of Table 7.1, in relation with numerical and

statistical issues. First of all, observe that the statistical
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InK ' (a)

(b)

Schematic representation of unsaturated
log-conductivity variability in two cases. On top,
the parameters ¢n Ks and ¢én a are perfectly

correlated (Case 2 in the text). On bottom, they
are perfectly uncorrelated (Case 3 in the text).
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resolution of the grid is moderate:

|5

>
[}
o=

and isotropic in space (same in all directions). Second, note

that the Peclet number constraint:
Pe = adx, ¢ 2

which arose as a "nonlinear stability condition” in Chapter 5
(section 5.4.2, equation 5.128) seems to be satisfied if a is
replaced by its geometric mean, value an- Thus, we obtain for the

o of Table T7.1:

Pe = aG-Ax‘ = 0.9 € 2.

The procedure used to control the size of “the variable
time step was described in Chapter 5 (section 5.4.3). In no case
was the time step allowed to grow at a rate faster than
At /At = 1.25. The initial time step size was

n+tl" " n
Atin = 0.003 day (4mm 20 sec). Infiltration lasted for about
3 days, after which the similation was halted. The results shown
in this section were obtained with a fixed domain size, but

similar results were also obtained by using the variable domain

size algorithm (see Figures 5.11-5.13 of Chapter 5). Finally, it
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is worth noting that the size of the domain is relatively small:
the "sample size” Lin‘i is 7 in the vertical, and 20 in both
horizontal directions. The infiltration experiment was stopped
at t =3 days ‘because the flow domain was too small to
approximate a "semi-infinite” medfum for larger times. The
selected output times were t = 0.5, 1.0, 2.0 and 3.0 days. The
resulting three-dimensional pressure head fields are being

analyzed below.

7.2.2 Simulation results

We now discuss the simulation results (pressure head
fields) obtained for the three cases of unsaturated conductivity
variability described above (equations 7.4, 7.5, 7.6 and
Figure 7.2). The geometry and boundary conditions were
illustrated in Figure 7.1, and the complete set of input data was
given in Table 7.1. Recall in particular that the initial

was =150 cm.

pressure h in

res 7.3, 7.4 and 7.5 give three-dimensional views

of a single pressure contour surface obtained after two days of
infiltration. -These figures show essentially the shape of the
wet 2zone (h 2 -90 cm) in perspective view. Figure 7.3
corresponds to Ks random and a constant (case 1), Figure 7.4

to énK and ¢nc random but perfectly correlated (case 2),
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1 1 1 17/

Figure 7.3: Two perspective views of the pressure contour

surface h = - 90 cm at t = 2 days for strip-source
infiltration in a statistically isotropic soil with

initial pressure hin = - 150 cm (Case 1: X

random, a constant)
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Figure 7.4 Two perspective views of the pressure contour
surface h = - 90 cm at t = 2 days for strip-source
infiltration in a statistically isotropic soil with
initial pressure hin = - 150 em (Case 2: Ks and a

random, perfectly correlated).
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Figure 7.5
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Two perspective views of the pressure contour
surface h = - 90 cm at t = 2 days for strip-source
infiltration in a statistically isotropic soil with
initial pressure hm = - 150 cm {Case 3: Ks and a

random, perfectly independently).
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and Figure 7.5 to ¢&n Ks and éna random and perfectly

uncorrelated (case 3).

Comparing figures 7.3 and 7.4 (cases 1 and 2) clearly
shows that the variability of the log-conductivity slope (a)
plays a more important role than the variability of the saturated
conductivity (Ks). Despite the relatively small variability of
a 1in Figure 7.4 (aen c = 0.3) the shape of the wet zone is much
more contorted than in Figure 7.3 where onlyl Ks is variable

(aenK = 0.7). Furthermore, comparing figures 7.4 and 7.5
s

(cases 2 and 3) indicates that the spatial variability of the wet
zone 1is increased further when a is allowed to vary
independently from Ks(g), In the latter case (Figufe 7.5) the
wet zone at t = 2 days appears to be extremely contorted, and
even disconnected. This indicates that soil heterogeneity can
induce the creation of local wet regions entirely surrounded by

dryer regions, at least in the transient flow regime.

Some of t-hese observations are also 1illustrated by
Figure 7.6, which depicts the pattern of pressure head contours
in a vertical plane transverse to the strip-source for the three
cases discussed above. the the separation of the wet plume in
two distinct plumes on the bottom part of Figure 7.6 (case 3,
Ks(x) and a(x) independent). The two "halves™ of the wet plume

could perhaps reconnect at a later time. Incidentally, our



Figure 7.6 Pressure head contour lines in a vertical plane
transverse to the strip source for cases (1), (2),
(3) as in Figures (7.3), (7.4). (7.5). The
pressure contours are labelled every 10 cm, e.g.,

contour #6 corresponds to - 60 cm, and contour #9
to - 90 cm.
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choice of the value h = =90 cm to represent the 3D presshre
surfaces in the previous plots, was motivated by the fact that
this value corresponds fairly well to the wetting fronts
appearing in the 2D contour maps of Figure 7.6. The wetting
fronts are sharply defined in all three cases, as could be
expected for early times of infiltration in a relatively dry

soil.

Overall, these pictures clearly show that the pressure
field becomes increasingly variable and “chaotic” as the
log-conductivity slope a(x) becomes more variable and independent
of Ks(g). Whep a is constant, the variability of Ks(x)
produces only mild variability of the unsaturated pressure field.
When a(x) 1is variable, the unsat;xrated plume develops
mushroom-shaped regions oriented downwards, especially in the
longitudinal direction (as can be seen from Figures 7.4 and 7.5),
but also in the transverse direction (Figqre 7.6 bottom). The
size of these "mushrooms” seems to be on the order of 0.6-1.0 m,

or about 3-5 correlation scales (A = 0.2 m).

These observations lead us to think that the typical
scale of fluctuation of the pressure field could be on the order
of 1 meter, or 5 correlation scales. However, the pressure
fluctuations are too large, and the domain too small, to permit a

meaningful statistical analysis in the case of random a(x).
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Furthermore, it is not clear how the iength and width of the
strip ‘influence the flow pattern at early times. It seems
possible that the width of the strip imposes a definite length
scale to the fluctuating pressure field, both in the longitudinal
and transverse directions (in the present case, the strip width
is 1.1 m, or 5.5 correlation scales). At any rate, the influence
of the strip source width could be considerably reduced for large.
times of infiltration and large wet zones, as far as the

fluctuation scales are concerned.

To verify these conjectures would require simulations
on larger domains, and for larger times of infiltration. The
transverse size of the donla:in should be takén larger in order to
avoid interactions between the wet zone and the lateral (no-flow)
boundaries as the unsaturated plume' evolves. In addition, the
length of the strip should be taken much larger than the typical
fluctuation scale of the pressure field in order to obtain
meaningful spatial moments by longitudinal averaginé (i.e., by
averaging in the direction of statistical homogeneity as
illustrated in Figure 7.1). It seems reasonable to require that
the strip length be at least 10%-10° pressure correlation scales.
For a grid resolution Ax/A equal to one-half. and assuming a
pressure fluctuation_ scale on the order of SA, this would lead to
10°-10* mesh points in the longltudinal direction. In

comparison, there were only 41 nodes along the strip length in
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the case at hand, and a total of 25,000 nodes in 3D space. To
obtain statistically meaningful large-time solutions (in the
sense defined above) would therefore require a three-dimensional
grid size of at least 1-10 million nodes for the isotropic case

at hand, and probably even more for the anisotropic case.

In this discussion. we assumed implicitly that a mesh
size equal to one-half the correlation scale of input hydraulic
properties provided adequate resolution. It may be instructive
to examine the grid resolution problem more closely here.
. Inspection of the pressure contours shown in Figure 7.6, suggests
.that the 10 cm mesh was perhaps too coarse to resolve the
smallest scales of fluctuations of the pressure field (see the
rectangular and straight-line shapes of the pressure. contour
fluctuations at the small scale). This is even more apparent in
the pressure contour plot of Figure 7.7, which represents the |
pressure field in 'the vertical plane coinciding with the
longitudinal axis of the strip source (case 1: ¢&n Ks and én a
perfectly correlated). This indicates that grid resolution may
have to be refined further, especially in view of analyzing the
flux vector field and the related convection-dispersion pattern

of a contaminant carried in the flow.

On the other hand, the chosen grid resolution of one

half was perhaps‘ fine enough to obtain a reasonably accurate
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Figure 7.7

Pressure head contour lines in a vertical plane
parallel to the strip source for case (2) as in
Figure (7.4). The pressure contours are labelled
every 10 cm, e.g., contour #5 corresponds to -60
cm, and contour #9 to -90 cm.
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picture of pressure variability. The numerical experiments of
Chapter 5 with uniformly layered soils showed that the mesh size
could be taken equal to layer thickness witho;xt distorting the
overall pattern of the pressure fields (see Figures 5.23, 5.24
and .5.25 of Chapter 5, section 5.4.3). There is also the
remaining constraint of a low Peclet number, or small vertical
mesh size, that must be satisfied in order to avoid
instabilities. There were no particular instability problems in

the case at hand.

7.3 Strip Source Infiltration in a Statistically Anisotropic
Soil (300,000 nodes)

7.3.1 Model problem and input data
[a] - Overview of data

In this section, we present the results of =a
single-realization simulation of strip source infiltration in a2
more realistic case than before. The soil data, geometry, and
boundary conditions were chosen to mimick an on-going "trench
experiment” at the New Mexico State University College Ranch of
Las Cruces, New Mexico (Wierenga, Gelhar et. al. 1986, and
Wierenga, Porro et. al. 1986). The major differences with the

simulations of the previous section are the following:
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-~ the strip source does not span the whole length of
the computational domain-

— the soil is statistically anisotropic, with a larger
correlation scale in the horizontal than in the
vertical.

—— the space-time scales of simulation are relatively
large (5 mx 15 m x 15 m and 20 days)

-- both the infiltration phase and the natural drainage
after the end of inftltration are being simulated
(10 days of infiltration followed by 10 more days of

drainage). .

Figure 7.8 shows a schematic representation of the
computational flow domain in perspective viéw. Its size is S m
in the vertical, and 15 m in both horizontal directions.
However, note that the strip source only extends over a length of
9.8 m in the longitudinal direction (4 m in width). The vertical
plane in the forefront represents the face of the trench in the
experimental set-up of Wierenga et al. (1986). This was
approximated as a "no-flow” boundary in our simulation, despite
evidence that some evaporation actually occured in the field
experiment. The other vertical faces of the domain were assumed
also to be "no-flow" boundaries; they did not seem to interfere
with the infiltration and drainage processes at the time scale of

the simulation. The bottom boundary. however, was not deep
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Ax X z=1,1,0.25m
Lxlylz=15,15,5
Y " / Y=18m
/ /
220 — Y= 9.6m
|~ J A
/ Y=4.6m
Y= 2m
i=5m =0
X==7.5m X=0 X=7.5m
Figure 7.8 Schematic representation of the flow domain

geometry for the 300,000 node simulation of strip-
source infiltration in a statistically anisotropic
soil ("trench experiment”). The numerical solution
was sampled along certain slices (Y = 2, 4.8, 9.8m
and X = 0).
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enough to avoid interactions with the evolving wet zone during
the last part of the drainage phase (more on this later). The
flux at the surface of the strip was 2 cm/day during
infiltration, and zero during the redistribution phase. A zero
flux was imposed over the remaining part of the soil surface at

all times.

Table 7.2 summarizes the input data used for the
simulated "trench experiment” just described, including geometry,
initial and boundary conditions, space-time discretization, and
hydraulic properties of the hypothetically random soil. Some of
these data were chosen in accordance with available field
observations or were impoﬁed by the experimental set-up (the
infiltration‘ experime‘nt' at the Las Cruces site was iﬁ fact
designed in part for purposes of comparison with mathematical
models like ours). However, some of the other data of Table 7.2
were only in_directljr rélated to field observations, or were
imposed by numerical constraints. The rationale behind the
selected inputs shown in Table 7.2 is explained in more detail

below for each category of data.

[b] Space-time discretization and computational issues

The three-dimensional mesh size was chosen as a

compromise between the numerical constraints (Peclet number
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TABLE 7.2

INGLE-REALIZATION SINULATION OF STRIP-SOURCE

INFILTRATION. IN A STATISTICALLY ARISOTROPIC SOIL ("TRENCH EXPERIMENT")

Type of Data Description VYalue

Domain Vertical domin size . L, =650m

Geometry, Transverse horizontal domain size L; =15.0

Boundary Transverse longitudinal domain size Ly =150 m

Conditions, Strip source width W‘ =4.0nm

and Initiel Strip source length L‘ =98.9m

Conditions Flux at the surface of the strip q, = 2 em/day
Cond{tion &t the bottom boundary q; = - K(h)
Inftial pressure head hin = - 150 em

Space-Time Time step Variable

Discretization Mesh size Axi (i=1.2.3) Axic 0.10,0.20.0.20 m
Unidirectional number of nodes n, n = 82, 76, 76
Total number of nodes of 3D grid N = 300352

Exponential Geometric mean saturated conductivity KG = 100 ca/d

Conductivity  Standard deviation of én l(‘ o, = 0.6083

Curve (Random) Ceometric mean of the &n K-slope o = 0.0494 cm.l

’ Standard deviation of én a o, = 0.2202

Anisotropic correlation scales )‘i Xi £0.25,1.0,1.0m

Van-Genuchten Saturated moisture content e' = 0.368

Retention Curve | Residual moisture content Gr = 0.102

(Deterministic)

Scaling parameter
Shape factor (real number)

P = 0.0334 e’}
n=1.982
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constraint adx, << 2 in the vertical, and statistical resolution
requirement Axin‘i «1 in all three directions) and
computational feasibility (total number of nodes on the order of
105-106 at most). In addition, we rejected any solution that
would have resulted in a large discrepancy between Ax,, Ax,., Ax,
by a factor of more than 2. Our choice Axi = (10 cm,20 cm,20 cm)
seems to satisfy approximately all these requirements. Note that
the statistical resolution of the grici in the vertical direction
(2/5) is coarser than in the horizontal directions (1/5). There
are 52 nodes in the vertical, and 76 nodes in each horizontal

direction. resulting in a total of about 300,000 nodes in three

dimensions.

On the other hand, the time-step was variable,
;:ypically on the order of 5 minutes initially, up to several
hours towards the end of the drainage phase (t = 20 days). As a
consequence, the computational work was mostly consumed by the
early stages of the infiltration phase. For example, the
simulation of the first quarter of the infiltration stage., from
t=0 to 2.5 days, consumed 1.5 hour of CPU time on a Cray 2
machine (NASA Ames Research Center). For the whole infiltration
phase, t = 0 to 10 days, the computational work was about 4 CPU
hours. Only one additional hour was consumed in the simulation
of 10 days of nétural drainage after the end of infiltration

(t =10 to t =20 days). Therefore, the total computational
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“work was about 5 hours of Cray 2 CPU time for the whole 20 day

simulation.

[c] Soil properties and spatial variability

As before, we assumed that the water retention curve
6(h) was deterministic, i.e. independent of spatial location.
The 6(h) curve was assumed to follow the Van Genuchten relation
(equation 7.2 in the previous section). The "mean" parameters of
6(h) were obtained by fitting the Van Genuchten function to a set
of measured values 91“‘1) obtained from samples taken within the
upper soil layer (0-75 cm). Figure 7.9 shows the data points and
the fitted "mean” 6(h) curve, from Wierenga, Porro et al. (i986)

and D. Polmann (personal communication).

The unsaturated conductivity was assumed to be an
exponential funct.ion of pressure, as in equation 7.1 in the
previous section, with random saturated conductivity Ks(;) and
random slope a(x) of the &n K(h) curve. Furthermore, a(x) and
Ks(g) were assumed to be statistically independent (i.e.
uncorrelated). This corresponds to "case 3" of the previous
section (see bottom part of Figure 7.2), which produced a greater
variability of the flow pattern than the case of perfect
correlation. The standard deviations of &n Ks was evaluated from

field measurements and, indirectly, by relating the spatial
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Figure 7.9 Water retention curve (tension versus volumetric

mofisture content) for the soil of the strip-source
simulation ("trench experiment”, Wierenga, et. al.,
1986). '
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variability of K(h) to that of 6(h) through a conceptual model
(Mualem-Van Genuchten). The latter procedure was also used to
evaluate the standard deviation of éna, sincé direct measurements
of éna were not available. In addition'. _the geometric. means KG
and a, were evaluated indirectly by fitting =a tangent
straight-line . to the Mualem-Van Genuchten log-conductivity
function at K = 2 cm/day (value of the infiltration flux at the
strip source) as shown in Figure 7.10. Note that the unsaturated
conductivity values predicted by the two models are roughly in
agreement (same order of magnitude) within the range of pressures

=150 em { h { ~-50 en.

The én a and ¢én Ks random fields were assumed to be
independent Markov fields with anisotropic correlation lengths
Ay =0.25m, Ay =275 = l.m. These values were chosen based in
part on variograms of &n Ks measured in the field (Wierenga et
al., personal communication). However, note that the same
anisotropic correlation scales were used for &na, for which no
data were available. Although there is a great part of
subjectivity in this choice, it seems reasonable to assume the
same anisotropy ratio (A;/A; = 1/4) for both parameters of the
conductivity curve. The turning band method was used to
generate two independent realizations of the 3D anisotropic
Markov random fields &én Ks and eﬁ a over the 300,000 node .grid.

In actual practice, two isotropic fields were generated, and the
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Figure 7.10 Mean unsaturated conductivity curve K(h) for the
’ soil of the strip-source "trench experiment”: the
straight line corresponds to the exponential model
actually used in the numerical simulation; the
other curve 1is the Mualem-Van Genuchten model
indirectly fitted to field data by Wierenga et.

al., 1986.
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desired anisotropy was obtained by rescaling the three coordinate

axes (see Chapter 2, equation 2.18).

[d] Initial conditionms:

Selecting an adequate initial condition in agreement
with field observations proved to be a major difficulty, due to
the restricted range of applicability of the exponential
conductivity model wused - in the flow simulator. Field
observations based on direct measurements .of in-situ moisture
contents suggested that the soil was initially very dry, near its
residual moisture content (negative pressures on the order of
104 cm). However, preliminary numerical experiments with an
initial 'pressure hin = - 300 cm, corresponding to

-5

Kin =310

restriction on the time step size in order to avoid divergence of

cn/day in the mean, showed that there was a severe

the nonlinear system solver (nonlinear SIP, based on Picard
iterations foxf linearization). The initial pressure was finally
revised to a higher value hin = - 150 cm, corresponding to
Kin = 0.06 cm/day in the mean.

For further reference, we give below a list of
numerical values of some "mean"  hydraulic properties

corresponding to the initial state of the soil:
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~— Pressure: hin = =150 cm

. _ -3
Relative conductivity: K:ln/KG =0.6 10
— Conductivity/flux ratio: Kin/qo = 0.03
— Moisture content: ein = 0.155
9n = 9
— Degree of saturation: S, = —3——— = 0.20.
. in Bs - 91_

Note that the soil is relatively dry. since only 20% of the
porosity 1is initially filled with water. In addition, the
following parameters may help evaluate, in different ways, the

downward velocity of the wet zone:

— Maximum pressure at the source: hmx = =-79.2 cm
== Maximym fnoisture content at the source: emax = 0.198
—- Downward velocity (mass balance):

vV = Wb

)
max

g = 20.2 cm/day
in
— Downward velocity (wetting front}):

dK
v = (ﬁ)in = 8.8 cnw/day

The so-called maximum pressure hmax was evaluated by solving the

equation:

K(h

max) = 9o

and the velocity v was evaluated by using the following
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identities:
K
dh < ®n
vs=E ( ) = (K TV =
de { de 1 Cm

1

In the case at hand, a =0.0494 cm ~, K, = 0.06 cm/day, and

in

Cin = 0.00034 cm.l. The result for v, éiven above, follows
immediately. These relations are only intended to provide "order
of magnitude” estimates of the downward velocity of the wet zone

for mean values of the hydraulic parameters of the soil.

[e] Boundary conditions:

As stated earlier, all lateral boundaries were assumed
impervious (including the face of the trench). The boundary
conditions at the soil. surface were a fixed flux (q = qo on the
strip source, and q = O elsewhere). Dur:lﬁg infiltration the
source flux was qg = 2 cm/day. The condition at the bottom
boundary was variable. During the early stages of infiltration,
the moving boundary algorithm was wused (see Chapter S5,
section 5.4.3, Figure 5.11). However, this procedure proved to
be inefficient, as the artificial bottom boundary moved rapidly
downwards to reach the maximum prescribed depth (5m). After that

time, a zero pressure gradient was imposed at the fixed bottom

boundary:
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dh
3z = 0 - q=-K(h)
Since the initial conductivity = was quite small

(Kin = 0.06 cm/day, compared to qg = 2 cm/day) the downward flux
through the bottom boundary was essentially negligible as long as
the wet zone had not reached that boundary (infiltration phase
and part of the drainage phase). The influence of the
zero-pressure gradient boundary .diu'ing the passage of the
downward moving wet zone wiil be discussed later, based on visual

inspection of the simulated pressure field.
7.3.2 Simulation Results

[a] Infiltration Phase:

The simulated infiltration phase lasted for 10 days, at
a specific discharge rate of qo = 2 cm/day over the strip source.
Given the width and lehgth of the strip (4 m x 9.9 m) the total
quantity of water applied to the soil was about 7.9 m® (2100
gallons). A simple calculation s;hows that, if this amount of
water was distributed uniformly beneath the strip-source (without
lateral spread) over a 4 meter dee;; layer, the increase in
volumetric soil moisture in that region would be 0.05, which
approximately; brings the moisture content to its potential

maximum (emax) as evaluated in the previous sub-section. The
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corresponding degree of saturation in that region of soil would
be 40%, compared to 20% initially, still a moderate amount.
These preliminary considerations may give an idea of the meaning
of the term "wet zone"” in. this case of relatively slow-rate
infiltration. Indeed, the so-called "wet zone"” will presumably
be only moderately wet, 1.e..—quite drier than the saturation
point on average. This should be kept in mind when the terms

"wet zone"” and "wetting front” are being employed in the sequel.

The simulated three-dimensional pressure head fields
(300,000 nodal values) were saved at times 1.0, 2.5, 5.0, 7.5,
10, 15, and 20 days. A post-processor code was used to sample
the three—dimension‘al pressure fields along certain slices (2D)
and transects (1D). The location of some of the selected slices
was outlined in Figure 7.8 above. ™ Three vertical slices
transverse to the strip source, and one vertical slice coinciding
with the longitudinal axis of the strip, were selected in order
‘to display the transverse and longitudinal pressure field
patterns at different times of infiltration and drainage. Iﬁ
addition, certain transects were selected along these slices in
order to glisplay in a single graph the time evolution of
unidirectional pressure profiles. Occasionally, we will also
show the pressure pattern in a horizontal slice or alo;ig a

horizontal transect located at a given depth. For clarity of
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exposition, let us define below our terminology concerning the

sampled slices and transects (sée Figure 7.8):

X, Y, Z coordinates:

X

lateral coordinate (horizontal, transverse to
strip)
Y = longitudinal coordinate (horizontal, parallel

to strip)

N
[}

vertical coordinate (depth below soil surface)

- "Transverse"” slices:

Vertical slices transverse to the strip source:

Y =2 m (near trench face)
Y = 4.8 m (mid-point along the strip)
Y = 9.8 m (free edge of the strip)

— Vertical transect:
Vertical transect located in the transverse slice
Y = 4.8 m, and passing approximately through the
géometrib center of the strip |

(X=0, Y=4.8m)

-- "Longitudinal” slice:

Vertical slice parallel to the strip and coinciding

with its longitudinal axis of symmetry (X=0)
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— "Longitudinal” transect:

Horizontal transect lying in the horizontal slice

X = 0, at some specified depth Z.

— "Transverse"” transect:
Horizontal transect lying in the transverse slice
Y = 4.8 m, at some specified depth Z.

—— Horizontal slice:
Horizontal slice located at some specified depth Z

(Z = 0.5 m: "shallow"; Z = 2.0 m: “"deep”).

A fairly representative | picture of the
three-dimensional pressure vf ield can be obtained by looking at
the pressure contours in three different "transverse slices” on
the same page. This is shown in Figures 7.11, 7.12, 7.13, and
7.14 at times t =5 days. t=10 days, t =10 + 5 days, and
t = 10 + 10 days, respectively. A general observation that can
be made is that the lateral edges of the wetted zone have a
propension to spread laterally (see the contour line h = -125 cm
during infiltration, or h = -70 cm during drainage). In
contras-t. there are some isolated (disconnected?) wet regions of
high pressure which seem to be quite stable throughout the
process of infiltration and drainage. A localized region of high

pressure can be observed just beneath the center of the source
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125

Figure 7.11 Contour lines of pressure head in three

vertical-transverse slices during the simulated
strip-source experiment af ter 5 days of

infiltration (t=5 days). From top to bottom:
Slices Y=2m, Y = 4.8m, Y = 9.8m.



Figure 7.12 Contour lines of pressure head in three
vertical-transverse slices during the simulated
strip-source = experiment after 10 days of
infiltration (t = 10 days). From top to bottom:
slices Y=2m, Y = 4.8m, Y = 9.8m.



Figure 7.13 Contour lines of ©pressure head in three
vertical-transverse slices during the simulated
strip-source experiment after 10 days of
infiltration and 5 days of drainage (t = 15 days).
From top to bottom: slices Y = 2m, Y = 4.8m,
Y = 9.8m. :
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Figure 7.14

Contour lines of pressure head in three
vertical-transverse slices during the simulated
strip-source experiment after 10 days of
infiltration and 10 days of drainage (t = 20 days).
From top to bottom, slices Y = 4.8 mand Y = 9.8m.
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(approximately 2 m deep) in the bottom. parts of figures 7.11
through 7.14. Overall, these pictures leave the impression that
the stratified structure of the soil (i.e., the statistical
anisotropy of the conductivity curve) produces a differentiated
anisotropy of the wetted zone, with a more pronounced lateral
spreading of soil moisture in marginally wet regions than in the

core of the wetted zone.

The evolution of the wetted zone can be followed by
looking at a single "transverse slice”™ at successive times, as
depicted in Figure 7.15. The pressure contours are shown at
times t = 5 days, t = 10 days, and t = 10 + 5 days (from top to
bottom) for the "transverse slice” located near the free edge of
the strip source (Y = 9.8 m). During infiltration. the flow
pattern beneath the strip source seems to be quasi-one
dimensional down to a depth of approximately one meter, below
which lateral spreading takes place. The same feature can also
be observed at other locations along the strip (see previous
figures 7.11-7.14). During the drainage phase, the 'wet region
just beneath the strip source moves downward, and diffuses away

laterally as well.

It may be also instructive to examine the evolution of
the wetted zone in a longitudinal slice. This 1is shown in

Figure 16 at three different times during infiltration and
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Figure 7.15

Contour lines of opressure head in the
vertical-transverse slice located near the free -
edge of the strip (Y = 9.8 m) at three different
times. From top to bottom: t = 5 days, t = 10

days, and t = 15 days (10 days infiltration + 5
days drainage).
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Figure 7.16

Contour lines of pressure  head in the
vertical-longitudinal slice (X= O0) at three
different times. From top to bottom: t = 5 days, ¢t
= 10 days, and t = 15 days (10 days infiltration
and 5 days drainage).
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drainage, for the vertical-longitudinal slice coinciding with the
axis of symmetry of the strip . This figure illustrates the
complex three-dimensional nature of the flow systenm. In a
homogeneous soil, the flow pattern along the strip (from left to
right on Figure 7.16) would be quasi uniform, except for a
possible edge effect on the free end of the strip (right part .of
theA graphs). This edge effect, i.e., diffusion of moisture away
from the free edge of the strip, seems to be minimal during
infiltration, but more pronounced during natural drainage. In
any case, the influence of vertical/horizontal anisotropy appears
once again to be quite important, as can be seen from the
elongated shape of pressure contour lines below the strip. Not?
that the lenéth of the strip is only ten times larger than the
horizontal correlation scale A of ¢&n K; and én a, 1i.e. much
too short for a statistical analysis of the (presumably

homogeneous) longitudinal fluctuations of pressure.

To complete our visual representation of the

three-dimensional pressure pattern, we show in

Figure 7.17 (a) and {(b) the pressure contour lines in two

horizontal slices, located respectively at depth Z = 0.5 m and
Z = 2.0 m, during the drainage phase (time t = 15 days). These
figures should be compared to the vertical-longitudinal pressure
map of Figure 7.16 at the same time t = 15 days. The horizontal

pressure map obtained at shallow depth Z = 0.5 m (Figure 7.17z2)
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Figure 7.17 (a) Contour lines of pressure head in a horizontal
slice at shallow depth Z = 0.5 m. Time t = 15
days (10 days of infiltration and S days
drainage).
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Figure 7.17 (b) Same as (a), for a horizontal slice at &
larger depth Z = 2.0m.
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is not surprising in view of the previous figure. For the larger
depth Z = 2.0 m (Figure 7.17 b), the horizontal pressure map
reveals previously unnoticed features: non-symmetric spreading
of the relatively "dry” part of the moisture plume in the
transverse direction, compared to the nearly axi-symmetric

pattern of "wet™ pressure contours. It is not clear whether
these features are due to a three-dimensional edge effect. or
merely to the particular soil heterogeneity below the free edge

of the strip at that depth.

Finally, it 1is also instructive toA examine the
evolution of pressure profiles along selected transects in the
vertical, transverse, and longitudinal directions. This is shown
in the following figures: vertical pressure profiles during the
infiltration phase (Figure 7.18) and the drainage phase
(Figure 7.19): horizontal-transverse pressure profiles during
the drainage phase at depth 0.5 m and 2.0 m (Eigure 7.20
(a) and (b)); and horizontal-longitudinal pressure profiles

during the drainage phase at depths 0.5 m and 2.0 m (Figure 7.21
(a) and (b)).

The vertical pressure profiles of Figure 7.18 depict
the downward movement of the local "wetting front” at that
particular location. A simple calculation shows that the

.downward velocity of the front decreased with time, from
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Figure 7.18 Pressure head profiles in the vertical direction

. during infiltration (times t = 1.0, 2.5, 5.0 and

L 10 days). The vertical transect is located near
the geometric center of the strip (X=0,Y=4.8m).
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Figure 7.19 Pressure head profiles in the vertical direction
during drainage {times t = 10, 15 and 20 days).
The vertical transect is located near the geometric
center of the strip (X = 0. Y = 4.8m).
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Figure 7.20 (a) Pressure head profiles in the horizontal-
transverse direction during drainage (times
t = 10, 15 and 20 days). The transect is
located at depth Z = 0.5 m beneath the
strip source.
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(b) Same as (a), for a larger depth Z = 2.0m.
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Figure 7.21 (a) Pressure head profiles in the horizontal-
longitudinal direction during drainage (times
t = 10, 15 and 20 days). The transect is
located at depth Z = 0.5m,
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Figure 7.21 (b) Same as (2), for a larger depth Z = 2.0m.
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1.5 m/day during the first day, to 1.1 m/day during the next 1.5
days, then 0.3 m/d during the next 2.5 days, and finally
0.2 m/day during the last 5 days of infiltration. The latter
value coincides with our previous estimate (V) based on mass

balance:

but is still higher than the asymptotic velocity (v) of the

wvetting front, previously evaluated as:
dK
v = ('cﬁ')in >~ 0.1 m/day.

At any rate, it seems that the pressure profiles of Figure 7.18
tend to & quasi-steady downward translation as time evolves
(compare t = 2.5, 5.0, and 10.0 days). This, however, could be
particular to the soil region traversed by the vertical transect
located at the center of the strip. The seemingly
one-dimensional behavior of the transient wetting front along
that transect could be perhaps explained by the large width of
the strip source, on the same order as the total depth of the

flow domain (4 m compared to 5 m).

The remaining figures (7.19, 7.20, 7.21), shown Just

above, depicted the evolution of pressure profiles during the
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drainage phase. Figure (7.19) shows that the soil was constantly
drying above depth 3.5-4.0 m, and wetting below 4.0 m depth. The
"gravity-driven” flow condition imposed at the bottom boundary
(q = K(h) at depth Z = 5.0 m) allowed water to cross that
boundary downward as natural drainage took place. Figure (7.20)
clearly sh_ows the persistent effect of the strip-source
infiltration phase during drainage: the soil remains wetter
beneath the strip source during the whole drainage period,
particularly at shallow depth Z = 0.5 m (Figure 7.20 (a)). At
larger depth Z = 2.0 m, the contrast of pressures beneath and
away from the strip is milder due to lateral spreading
(Figure 7.20 (b)). However, this kind of effect is not observed
in the longitudinal direction parallel to the strip
(Figure 7.21): the longitudinal wetting front near the free edge
of the strip does not seem to smooth out with depth and/or with
time. The dimensions of the strip are such that there is little
lateral diffusion at the edge of the strip (apparently no more
than 1 m). See however Figure (7.17 b) for a two-dimensional

picture of edge effects.

Some other observations on the statistical nature of
pressure variability can be made, in view of the one-dimensional
pressure profiles just discussed. The vertical profiles of
Figure (7.18) display quasi-homogeneous pressure fluctuations

over several meters (below the wetting front for t = 1 day, and
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above the wetting front for t = 10 days). It can be seen by
visual inspection that the amplitude of pressure fluctuations is

larger on average for dryer soil:

Ah =2 25 em for Ez-ISOcm

Ah = 5-10 em for E = -80 cm.

This observation agrees qualitatively with thé findings of the

linearized spectral theory of Mantoglou and Gelhar (1987).

Incidentally, it is also interesting to note that the

mean pressure h = -80 cm (t = 10 days) coincides with our
previous estimate of the maximum asymptotic pressure hmax‘ This
implies that the "mean"” conductivity of the wetted soil beneath
the center of the strip becomes about equal to the infiltration
flux at the surface of the strip, after a sufficiently large time
of infiltration. Note that the mean conductivity is defined here
at the deterministic K(h) curve corresponding to geometric mean
parameters Kc and s Now, the fact that the mean vertical
pressure gradient is zero (Figure 7.18 at t = 10 days) suggests
that the "mean”" conductivity coincides with the large-scale

effective conductivity in the vertical, i.e.:
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I‘Eu(;;) = KG * exp (ac'g).

Finally, it should also be noted that the pressure
fluctuations in the vertical appear to have a relatively smll
length scale (on the order of A; = 0.25 m) whenever a relatively
constant mean pressure can be identified (Figure 7.18). In
contrast, the pressure fluctuations in the hofizonta.l directions
appear to have a more complex structure, with a superposition of
small and large scales of fluctuations: see in particular
Figure (7.20 a) and Figure (7.21 a). The largest scale of
fluctuations of préssure (é.pparently several meters) may reflect
the large horizontal correlation scale of the anisotropic soil
{1 m). However, these large scale fluctuations could also be due
to a phenomenon of ".-;cale selection” in relation to the size of

the strip source itself (4 m x 9.8 m).

The ensemble of observations presented just above will
be summarized in the last section of this chapter (section 7.5:
summary and discussion). Before this, we present below the
results of another large infiltration simulation on the same

random soil, but for a Qery different type of flow conditions.
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7.4 Steady "Rainfall™ Infiltration in a Statistically
Anisotropic Soil (300,000 nodes)

7.4.1 Model problem andlinput data:

In this section, we present the results of a large
single-realization of steady state infiltration from a uniform
planar source with constant flux. The geometry of the flow
domain as well as the random soil properties are the same as in
the previous section. In particular, we use here the same
realization of a statistically anisotropic random conductivity

curve on the 300,000 node grid, as previously. See

" subsection 7.3.1, Figure 7.8, and Table 7.2 concerning input data

(except for boundary conditions)l..

The steady state solution was obtained by running the
flow simulator in the transient regime until a steady state was
reached beyond "reasonable doubt™. The boundary condition over
soil surface was a uniform constént flux qo = 0.060517 chay.
approximately equivalent to a mean "rainfall” rate of 213 mm per
year (arid climate). The condition at the bottom boundary (Z =

5m) was a zero pressure gradient, i.e., by Darcy equation:
q = =K(h. x).

The initial condition was a uniform pressure:
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hin = =150 cm.
Note that qg and hin were chosen in such a way that the final

solution should be close to the "initial guess” (hin) on average:

9 = K; exp (az hy ) = K(h, ).
All lateral boundaries were assumed impervious (zero flux).

The transient simulation was conducted in several

pieces, w.ith intermediate solutions saved at times:
t = 4.92, 14.44, 44.03, 64.33, 74.31, and 114.00 days

The flow had clearly reached a nearly steady state regime by the
time t ~ 114 days (approximately 4 months of infiltration). This
was attested by the insignificant changes of inressure observed
along a selected transect, beyond the first 2 weeks of
infiltration. An example is shown in Figure 7.22 for a vertical
transect locatéd,at the geometric center of the domain. The
pressure profiles at times t = 44, 64, 74 and 114 days were
almost indistinguishable (only the last of these is represented
in the figure). Moreover, the mass balance routine (Chapter 5,

section 5.4.3) was used to monitor the global convergence of the
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Figure 7.22

Vertical pressure head profiles obtained at
different times during the transient simulation
towards & steady state solution of the "rainfall
infiltration" problem. Times t = 4.9 day, 14.4 day
and 114 day: the crosses indicate the quasi-steady
solution at t = 114 days. The vertical transect is
near the center of the domain.
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solution towards a steady state. The relative mass balance

error:

was only about +2X at time t = 114 days. Thus, it seems beyond
doubt that a steady state flow regime was actually reached, at

least in a mean sense.
7.4.2 Simulation Results and Statistical Analysis:

The steady-state three-dimensional pressure field was
sampled along selec;ed slices and transects, all traversing the
geometric center of the flow domain. Figure 7.23 depicts the
pressure head contour lines in a vertical slice and located
midway between lateral boundaries, and Figure 7.24 shows the
pressure contours in a horizontal slice located at mid-distance
between the top and bottom boundaries. In both cases, the
pressure contour values are equally spaced and range from -110 cm
to -190 cm (recall that hin = =150 cm). The contour values were
not shown on these figures; some comments will help clarify their

meaning.

The most striking feature in the vertical slice of

Figure 7.23 is the presence of narrow-elongated "fronts"” (nearly
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Figure 7.23

Pressure head contour lines in a vertical slice for
the steady state "rainfall” {infiltration in e
statistically anisotropic soil (300,000 nodes).
The slice approximately crosses the geometric
center of the domain (Y'= 7.4m).
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Figure 7.24 Pressure head contour lines in a horizontal slice
for the steady state "rainfall” infiltration in a
statistically anisotropic soil (300,000 nodes}.
The slice is approximately located at the mid-point
between soil surface and bottom boundary (z =
2.5m).



687

black on the picture) separating two regions of local maxima of
pressure, above and below. Inspection of contour values reveals
that in most cases, the regions just above the horizontal fronts
have a local maximum of pressure (relatively wet), and those
below have a local minimum of pressure (relatively dry). See for
instance the two zones marked "W"” and D" ("wet” and "dry”) in
Figure 7.23. The important role of statistical anisotropy of the
soil parameters is quite evident. In its downward movement
driven by gravity, water tends to accumulate above elongated
lenses of low unsaturated conductivity, and spreads laterally

from there by a kind of "diffusion” process.

On the other hand, the horizontal slice of Figure 7.24
displays a fairly isotropic pattern of pressure heads. as could
be expected due to the horizontal isotropy of the soil and the
horizontal unifor.mity of boundary conditions. The labels "W" and
D" were used here again to designate regions of maximum pressure
(vet) and minimum pressure (dry). It seems that most of the
relatively "wet"” regions are larger and have smoother pressure
gradients than the locally "dry"” 2zones. This may indicate an
assymmetry in the probability distribution of pressure, with
negative skewness. Equivalently, the tension ¥ = - h could
perhaps be represented by a log-normal random function having

positive skewness. Another possible interpretation of the

observed assymmetry (?) of the pressure field around the value
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hin = =150 cm could be that the actual mean h was in fact

higher (wetter) than the initial state.

In_ order to obtain a more synthetic characterization of
the steady pressure field, we have attempted a summary
statistical analysis of h(x) based on the assumption of
statistical homogeneity of first and second moments in all three
spatial directions. This was also complemented by a second

statistical analysis of h(x), assuming that the perturbation:

h'(x) = h(x) - h(x,)

is homogeneous in 3D space. The spatially variable meaﬂ h(x,)
intervening in this expression was obtained enrpiricaliy by
averaging the pressure in the horizontal plane at each different
depth x,. The results ob;:a.ined by the two methods were fairly
close, as shown in Table 7.3. However, the empirical mean h(x,)

was quite variable with depth.

Interpreting the statistical results of Table 7.3 to
their face value, it appears that the pressure head standard
deviation was about 20 cm around the constant mean
h = h, =-150 cm.  Furthermore, it turns out that h(x) was

negatively skewed (or ¢ = -h positively skewed) as conjectured

earlier based on pressure contour maps. Finally, it appears that
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TABLE 7.3
SINGE-POINT MOMENTS AND CORRELATION FUNCTION
OF THE PRESSURE HEAD FIELD FOR THE
SINGLE-REALIZATION "RAINFALL INFILTRATION™
SINULATION ON A STATISTICALLY ANISOTROPIC SOIL
(300,000 KODE GRID)

Pressure h'(x) = h(x) - & h'(x) = h(x) - h{x,)
Moments h = 3D average R(x,) = 2D average
Mean b - 147.5 em . —
Stand. Dev. L 15.1 em 17.9 em
Skewness " - 0.27 0.22
Kurtosis “n + 0.30 0.22
e(1.6n,) + 0.352 0.311
Te(1.6x2) + 0.386 0.298
p(1.615) + 0.381 0.287

Note: p(l.G)\i) indicates the value of the pressure correlation function at lag
£,=1.6A, along the x, exis (A, = 0.25 m vertically, and A; = A3 = 1 ® horizontally). '
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the correlation scales of pressure in the vertical and horizontal
direct'ions are proportional to the soil parameter correlation
scales. Thus, if }\}; designates the e-correlation scale of
pressure (such that the correlation drops to e-l >~ 0.37), then we

have from Table 7.3:

7\}: =~ O0.4m vertically

i 7\h =« 1.6m horizontally

i

These results seem to be confirmed in part by the

behavior of the fluctuating pressure head along ‘selected
transects. Figure 7.25 displays the vertical pressure profile
along the transect located at the center of the domain, and
Figure 7.26 shows two perpendicular transects in the horizontal

plane. The degree of variability of pressure along these

transects seems to agree with the computed standard deviation -

(amplitude of oscillations about * 20 cm around the local mean).
However, the spatial pattern of pressure along these transects
does not seem to quite agree with the computed correlation
scales, 0.4 m in the vertical and 1.6 m in the horizontal. There
are apparently some very long range fluctuations of pressure
along the selected transects. More work is needed before
definite conclusions can be drawn regarding the anisotropic

correlation structure of the steady pressure field.

LS
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Figure 7.25 Pressure head profile in the vertical direction for
the steady state "rainfall” infiltration
simulation. The transect is located near the
geometric center of the domain (X = 0, Y = 7.4m).
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(a) Pressure head profile in the horizontal
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infiltration simulation. The transect
crosses the center of the domain and is
oriented in the “transverse” direction
(Y =7.4m, Z = 2.5m).

15

% 00



693

Y

-23.00 O.00

H
150,00 -125.00 -100.00 -75,00 -30.00

e
]

#200.00 -175.00

bo 1500 80,00 45.00 ©0.00 7500 ©0.00 10500 120,00 18500 1%0.00
X3#10€ 1

Figure 7.26 (b)‘ Same as (a), for another horizontal transect
crossing the center of the domzin and oriented
in the "longitudinal” direction (X=0, Z=2.5m).
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On the other hand, a preliminary estimate of the
effective unsaturated conductivity in the vertical direction was
obtained by assuming a zero mean pressure gradient vertically.
Using a "large scale Darcy equation”, this gives the simple

equation:
K::(H) == ;a-

The mean downward flux q, was evaluated by using the boundary
flux calculations generated by the mass balance subroutine of the
flow simulator (q, = -0.059974 cm/day). This eventually leads to

an effective unsaturated conductivity of the form:
Kll(H) - 0.88 K(H)

where the so-called "mean"” unsaturated conductivity K 1is the

deterministic function:
K(h) = Kc°exp(aGF)

Now, Mantoglou and Gelhar (1987c) obtained the steady
state effective conductivity as a solution of linearized spectral
equations. In the case of independent (Ks.a) parameters and
extremé anisotropy (e = A;/A = 0) they obtained a relation for

12,,(-1;) in the form of an expression that depends on soil
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variability, multiplied by the deterministic conductivity K(h)
defined above. Using their equation (34.b) with J, =L, =1,
corresponding to a zero mean pressure gradient, we obtain the

theoretical relation:

N

l?.“('l;) = exp [—

For the case at hand, the single-point moments of f = én Ks and
a = &én a were given in Table 7.2 of the previous section (shown

below for convenience):

Op =0 Ks = 0.6083; KG = 100 env/d

. _ -1
o = Opn a = 0.2202; o = 0.049%4 cm

By using also some previously established identities (equations

2.19-2.21 of Chapter 2) we obtain:

o = 0.01128 cn '

@ = 0.0506 cm }

With A, = 25 cm, and h = ~147.5 cm (after Table 7.3 just above),

this gives the theoretical result:
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K, (B) = 0.62 R(h)

Now, according to the previous numerical result, the coefficient
0.62 becomes 0.88. This can be regarded as a mild discrepancy
between the theoretical and numerical effective conductivi;ies,
given the many assumptions that were made. In fact, we expected
a theoretical value smaller than the numerical one, since we
assumed € - 0 for the spectral solution (asymptotic case of
perfectly stratified soils), whereas the numerical simulation was
carried out for a finite anisotropy ratio e = 1/74 (imperfectly
stratified soil). The vertical conductivity must indeed be

smallest in a perfectly stratified soil.

Similarly, the pressure head standard deviation
(crh >~ 20 cm in Table 7.?) can be compared to the steady state
spectral solution obtained by Mantoglou and Gelhar
[1987b, equation (28)]:

With the data at hand, this gives the theoretical value:

o, = 26.2 cm.

Again, this compares very well with the numerical result
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oy = 20 cm; the slightly higher value of predicted by the

%h
theory could be due again to its asymptotic character (limit of
perfectly stratified soil e =2 0, compared to & = 1/4 in the

numerical simulation).

We conclude that the numerical single-realization
solution of steady state rainfall infiltration was large enough
to be statistically meaningful as far as the single-point moments
of the pressure field are concerne:d. Indeed, we presume that the
relatively good agreement between the spectral theory and the
single-realization statistics could not be purely coincidental
(mean pressure gradient and mean flux, intervening in the
effective conductivity, a;'xd standard deviation of pressure).
Hoviever. there remains a gray zone concerning the correlation
structure of the pressure field. Tile flow domain may have been
two small, despite the large size of the grid (300,000 nodes), to
accurately represent the spatial structure of pressure in free |
space. More work is needéd here in order to eiraluate the
statistical representativity of the observed spatial structure of
the pressure field (A’; ~ 1.6 )\i?). Our results also showed that
the probability distribution of tension head (¢ = -h) was
positively skewegi: it seems likely that the skewness would
increase with increasing wvariability and/or mcreasing mean
tension head. This complication reflects the complexity of

stochastic unsaturated flow systems due to highly nonlinear
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coefficients.
7.5 Summary and Discussion:

It may be useful to summarize the main results of the
different single-realization simulations of unsaturated flow
systems presented in this Chapter. The modest size simulations
of strip-source infiltration in statistically isotropic soils
(section 7.2) were intended to explore the sensitivity of the
solution to different hypotheses of conductivity variability. It
was clear, from the three hypothesis tested, that the spatial
variability of the wetted zone was extremely sensitive to the
degree of variability of the slope. a of the log—éonductivity
‘curve &n K(h).. In addition, the degree of correlation between
én Ks and 2n a also had an importaht effect. .For early times of
infiltration (t = 2 days) it was found that the 3D wetted zone
was sharply defined (steep wetting front), and was extremely
heterogeneous and contorted in theA case of statistically

independent parameters Ks and a (with Ok = 0.7, and
s

o = 0.3).

éna

These findings suggest that future research on large
scale flow and solute transport in thg vadose zone should focus
on the development of practical methods and/or conceptual models

for determining the spatial variability of the nonlinear
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conductivity curve. For instance, it c.ould be useful to search
for possible correlations between the slope of &n K(h) and other
hydraulic soil parameters (saturated conductivity, pore size
distribution, etc.) or by using certain similarity assumptions

(relation between 6(h) and K(h)). .

In the case of isotropic soils, reviewed Jjust above,
the heterogeneity of the wet zone was manifested by the
appearance of mushroom-shaped bulbs that evolved more or less
independently, at least until reconnection occured. The spatial
pattern of the wet zone for a statistically anisotropic,
imperfectly layered soil was visually quite different, as shown '
in section 7.3. Indeed, the large single-realization solution
obtained for 20 days of strip source infiltration and draina:ge
(300,000 node simulation) exhibited pronounced lateral spreading
of the edges of the wet zone. After a few days of infiltration,
there appeared also several isolated wet regions of ellipsoidal
shape. The vertical/horizontal aspect ratio of the marginally
vet periphery of the unsaturated plume was much smaller than the
aspect ratio of high moisture regions. This seemed to confirm
the findings of Mantoglou and Gelhar (1987) concerning the
pressure-dependent anisotropy of the effective conductivity for

stochastic unsaturated flow systems.
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Some other features of the heterogeneous flow system of
section 7.3 seemed to be more specific to the particular boundary
conditions and the geometry of the strip source, which were
chosen to mimick an on-going field experiment. For instance, it
appeared that the flow pattern beneath the center of the
strip~-source was fairly "one-dimensional™ during the infiltration
phase. The pattern of lateral diffusion around the free edge of
the strip was also discussed. See subsection 7.3.2 for a
detailed presentation of the 3D pressure field sampled at various

locations of the 300,000 node grid during the 20 day simulation.

For applications to vadose 2zone contamination (say,
resulting from the leak of a buried radicactive waste) it may be
important to examine the possible effects of anisotropy over much
larger time and length scales than those considered in our
numerical simulations. The results obtained in section 7.3
suggest that the downward movement of the core of the unsaturated
plume may continue to slow down indefinitely during the
redistribution phase, while the marginally wet edges of the plume
diffuse laterally and the mean moisture content of the plume
decreases. This simplified “picture” may also indicate the
possible behaviour of a contaminant carried in the unsaturated
moisture plume. However, to simulate this type of phenomenon
over three-dimensional length scales on the order of 100 m and

time scales on the order of months or years may be too
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prohibitive with the numerical single-realization approach
adopted in this work, unless some new simplifying assumptions are

adopted.

In addition, there is also the need for investigating
the sensitivity of the wetting/drainage pattern with respect to
initial conditions. In particular, the interpretation of our
transient simulation results was somewhat obscured by the fact
that a uniform pressure was prescribed initially. This
simplifying assumption should be revised, as it ignores the past
history of the heterogeneous flow system under natural
conditions. Nevertheless, despite the limitations Jjust
discussed, the 20 day simulation of section 7.3 provided; for the
first time, a detailed picture of a relati'vely large transient
unsaturated flow system (5m x 15m x 15m) with highly variable
nonlinear soil properties (random curve K(h,,x)) and an
unusually high grid resolution in 3D space (52 x 76 x 76 =
300,000 nodes). The results of this direct simulation could

serve as a proving ground for future conceptual models.

In section 7.4, we showed more concretely how the
single realization approach could be used to test current
theories of spatially variable unsaturated flow. _The
statistically anisotropic soil of the previous section (7.3) was

used to simulate a steady state infiltration under a uniform
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constant flux at soil surface (uniform "rainfall™). The inherent
statistical homogeneity of this type of infiltration problem
Justified our attempt at a direct statistical comparison with
available spectral solutions (Mantoglou and Gelhar, 1987). The
standard deviation of the pressure head and the effective
unsaturated conductivity of the vertical infiltration system
agreed with the spectral solutions within a margin of error of

20%.

This agreement is quite encouraging, but needs to be
confirmed for a wider range of conditions, i.e., for other flow
rates or mean pressure head values. Our results also suggested
that the probability distribution of tension head (¥ = -h) was
positively skewed. If the hypothesis of a log-normal
distribution of the tension head was retained, the skewness would
increase rapidly with the coefficient of variation of tension
head (equation 2.19 of Chapter 2), which itself is known to
increase with mean tension (spectral theory of Mantoglou and
Gelhar, 1987). Therefore, it is possible that, for very dry
soils, a second order moment description of tension head
variability will not be sufficient to completely characterize the
actual distribution of tensions. A log transform could be used,

but third order moments may eventually be required.



703

Finally, it should be emphasized that the correlation
scales of the pressure head random field were found to be
proportional to the 7\i scales of the random soil parameters
(7\1;l ~ 1.6 )\i). However, this result may not be representative of
truly "infinite domain" pressure fluctuations, given the limited
size of the flow domain with respect to the computed pressure
correlation scales (about 10 7\1; in each direction). Note that
the total CPU time required to solve this steady state problem on
a Cray 2 machine was not overly prohibitive. In spite of the
large 300.000 node grid, only 3 CPU hours were required to
.convergé to a steady solution (in 85 time steps or 114 days of
infiltration). It seems feasible to simulate such statistically
homogeneous unsaturated flow systems over larger grids, on the
order of 1 million nodes or more.

In conclusion, the application of the numerical
single-realization approach to stochastic unsaturated flow
problems provided a means of direct visualization of plausible
heterogeneous pressure fields in three-dimensional space, with a
degree of detail unattainable by current field measurement
techniques. A few numerical experiments unveiled the complex
nature of unsaturated flow systems. One of the most striking
features of the transient strip-source inf {1tration problem was

its great sensitivity to the degree of variability of the

conductivity curve (particularly its slope a) and to statistical
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anisotropy. The complex interactions between the homogeneous
random field fluctuations of hydraulic properties and the
evolving nonlinear wetting front (and drying front) seem to defy
current stochastic analyses. However, the good agreement
obtained between the linearized spectral theory and the numerical
solution of steady state "rainfall” infiltration suggests that a.
simplified conceptual model like the spectral theory can provide
reliable predictions of unsaturated flow variability in certain
cases. The encouraging results obtained in the steady state case
may possibly be extrapolated (confirmed) for transient flow
systems after sufficiently large times and/or in the absence of

sharp wetting fronts.
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CHAPTER 8: CONCLUSIONS

A number of approaches were developed in this work for
the characterization of three-dimensional flow fields in randomly
heterogeneous porous media. For the most part, this problem was
tackled under the assumption that mnaturally heterogeneous
subsurface formations can be realistically modeled in the form of
statistically homogeneous random functiéns of space. Our focus
on a fully three-dimensional rer;vresentation of subsurface flow
phenomena was motivated by experimental as well as theoretical
evidence on thf: artificial character of lower dimensional
representations. Most of our results confirm indeed that, in the
general case, fluid pathways are 1nherenth three-dimensional in
heterogeneous porous media. On the other hand, experimental
evidence supporting the assumptions of randomness and statistical

homogeneity of the hydraulic properties of natural porous

formations was discussed in the data survey section of Chapter 2.

These assumptions were at the basis of most of the
conceptual approaches pursued in this work. For instance,
statistically homogeneous (and ergodic) random hydraulic
properties were postulated in most of the analytical
contributions of chapters 3 and 4, except in the spectral
conditioning approéch. In a certain sense, the postulate of a

homogeneous/ergodic porous medium was also used for the numerical
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simulations of single-realization flow fields in chapters
. 6 and 7. With this in mind, we now proceed to summarize and
discuss the interrelated results obtained in different parts of
this work.Aas well as some practical consequences in the area of
subsurface hydrology. The discussion will be followed by a
"summary of contributions”, and a brief epilogue presenting a
more general assessment of the outlook for stochastic approaches

to subsurface flow and contaminant transport.
[a] Discussion of results:

One of the main motivations of this work was to assess
the range of validity of the specfral solutions of stochastic
" subsurface flow developed by Gelhar and others during the past
decade (Bakr-et al. 1978; Gelhar and Axness 1983; Mantoglou and
Gelhar 1987; Gelhar 1986). The spectral theory of stochastic
flow (and mass transport) relies on the postulate of statistical
homogeneity of the random flow field (hydraulic or pressure head
perturbation, and water flux or velocity vector). In addition,
this approach implicitly assumes the existence of ergodic
solutions, since it purports to characterize unique "effective”
transport properties for infinite-domain realizations of the flow
field. Finally, the spectral solution method also requires small
parameter expansions and vari&us linearization approximations, in

order to arrive at tractable closed-form solutions of the
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governing stochastic partial differential equations. Let us
point out that simil#r approximate expansions were also required
in other analytical and numerical stochastic approaches published
in the literature (see review in Chapter 2).

The existing “spectral theory"” developed by the
above-mentioned authors was expounded in detail in Chapter 3 for
the case of stochastic groundwater flow. . The approximate nature
of the spectral solutions was made clearer by using o-expansions,
vhere o is the standard deviation of the random log-conductivity
field. The modern formalism of.Fourier space representations of
statistically homogeneous random fields was heavily used, and
served as a background for subsequent developm;nts. Some
particular restrictions on the properties of the log-conductivity
spectrum were discussed, in view of previous results obtained in
the literature. In particular; we concluded that, in order to
obtain a statistically homogeneous hydraulic head solution around
its linear mean, the random conductivity field must be taken more
nearly "periodic” as the degree of freedom of flow decreases,
from fully three-dimensional and isotropic formations to the
extreme case of one-dimensional flow, with all the conceivable
intermediate cases corresponding to various configurations of

stratified flow systems.

Furthermore, some new closed form results were inferred
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by applying the spectral solution method to a variety of specific
cases, in particular for horizontally stratified aquifers. Our
findings regarding the correlation structure of the flow field
led us to restrict the range of validity of the infinite-domain
spectral solutions (aquifer thickness must be much larger than
the horizontal fluctuation scales of the conductivity field). For
stratified aquifers, the hydraulic head field was found to be
nearly isotropic in vertical planes, and only moderately
anisotropic in horizontal planes. An approximate analysis also
suggested that the flux or velocity vector was much more strongly
anisotropic in 3D space than the head field. These previously .
unknown results were confirmed in part by subsequent numerical

experiments.

However, we recognize that more work will be needed in
order to fully characterize the correlation structure of the
velocity field in the case of stastically anisotropic aquifers.
This may have important consequences regarding the validity of
two—dimensional representations of groundwater flow and transport
phenomena commonly used in engineering practice. In addition, we
expect that stringént grid resolution constraints will be
required for the numerical simulation of strongly anisotropic
flow systems due to the disparity of fluctuation scales involved.
Moreover, note that the analytical results just discussed were

obtained within the framework of the spectral theory, based on
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"small parameter” approximations, and on the assumption of
statistical homogeneity of the input conductivity and the output

flow field.

In contrast, we have developed in Chapter 4 new
stochastic solutions of the groundwater flow equation without
some of the limiting assumptions of the spectral theory (see
discussion in section 4.1). Thus, the "small parameter”
approximation was dropped altogether in section 4.2, devoted to
the development of non-perturbative spectral solutions. In
- addition, we obtained in section 4.3 an "improved" spectral
solution for the groundwater velocity spectrum, by linearizing
the e;luations for the velocity components rather thanv that for
head. Finally, the assumptions of ‘infinite domain and
statistical homogeneity of the flow field were abandoned in
section 4.4, where a new "spectral conditioning" approach was
developed to treat the case of finite size flow and transport
phenomenza. It may be worthwhile to recapitulate here on some of
the main results obtained by these alternative spectral

approaches.

The non-perturbative spectral relations obtained in
section 4.2 were derived from fundamental statistical symmetries
and other "exact" properties of the flow field in the case of

statistically isotropic and homogeneous random conductivity. In
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the 3D case, mass conservation and sfatistical axial symmetry
were used to infer relations on the covariance or spectral
structure of the flow field. A special conjugacy relation was
found in the 2D case, leading to a statistical identity relating
the head gradient and velocity fields. It was found that the
previous first order spectral solutions (e.g. Gelhar and Axness,
1983) were consistent with these statistical identities in any
number of dimensions (for isotropic media). However, a close
inspection of the first order spectral solutions also revealed
that the degree of variability of groundwater velocity was
probably underestimated in the 3D case. A new, presumably
"improved” spectral approximation, was developed in Section 4.3
for arbitrary conductivity spectrum. The new spectral solution,
although not exact, turned out to a2gree better with.subsequent
numerical results, and was also consistent with the previous
non-perturbative spectral relations for 3D isotropic media. Some

of the implications of these results will be discussed shortly.

In the general case of statistically anisotropic
aquifers, exact statistical identities of the type mentioned just
above were not obtained, due to the lack of symmetry of the flow
pattern. In any case, recall our previous finding that the
infinite-domain spectral theory may not be directly applicable to
shallow aquifers unless their thickness is much greater than the

horizontal fluctuation scales of natural heterogeneities. Some
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of the numerical experiments, to be discussed later in this
chapter, suggested indeed that the aquifer thicknes; must be on
the order of several tens of horizontal fluctuation scales for
the spectral theory to be applicable. When this is the case, the
spectral results of Gelhar and Axness (1983) can be used to infer
the effective conductivity of the groundwater flow system at the
large scale. These authors showed in particular that, as a first
order approximation in o, the effective conductivity is a second
rank symmetric tensor whose degree of anisotropy depends (in a
seemingly complex position) on the variance and statistical
Ianisotrdpy of ‘the underlying random conductivity field. Their
result takes the .form of complicated Fourier integrals, although
some simplifications‘ occur in assymptotic cases of perfect
stratification (infinitely small or infinitely large énisotropy
ratio) and in the 1isotropic case (anisotropy ratio equal to

unity).

In contrast, we proposed in this work a simple
analytical expression for the effective conductivity 1in the
general anisotropic case, based on an empirical generalization of
a previous conjecture by Matheron (1967). This author observed
that, for isotropic formations, the effective conductivity seems
to depend in =a simple fashion on spatial dimension. Our
generalization by way of i{nduction, led to an expression relating

the effective conductivity component Kii to the log-conductivity
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variance o2, the correlation scale A and the geometric and

g
arithmetic averages of the three correlation scales (A;,A2.A3).
as shown in equations (4.48-4.49) of Chapter 4., section 4.2.6.
For 1illustration, let us use an example taken from a field
contamination study discussed in Gelhar (1986). The three
correlation scales, in the same order as above.. were
60 mand 15 m (horizontal) and 1m (vertical), and the
log-conductivity variance was 4.2. By using the Gelhar-Axmess
formula, Gelhar (1986) was able to evaluate the anisotropy ‘ratios
of the effective conductivity (horizontal/vertical: K,,/Kj;;
horizontal/horizontal: K,,/Ka3). His values were 47 and 1.3,
respectively. By using instead the simple relation propqsed in
his work, the conductivity anisotropy ratios are found to be
45 and 1.2, very close to the values predicted by the
Gelhar-Axness first order spectral theory. The proposed relation
also coincides with t.he effective conductivity result of Bakr et
al. (1978) in the 3D isotropic case. In addition, this relation
coincides with all results known to be exact, such as the
arithmetic and harmonic means for flow parallel and orthogonal to

perfect stratification, and the geometric mean for

two-dimensional isotropic media).

Some of the new analytical results established in this
work may have direct implications for the study of solute

transport in randomly heterogeneous groundwater flow systems. If
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molecular diffusivity is neglected, the pathways of nonreactive
solutes convected in the flow are the same as those of tagged
fluid particles. Therefore, the variability and spatial
sfrupture of the groundwater velocity field determine entirely
the overall transport  properties of the flow, like
"macrodispersivity”. Furthermore, assuming for convenience that
the porosity of the aquifer is approximately constant, ‘the
groundwater velocity is simply proportional to the Darcy flux.
The two vector fields, ve.locit'y and flux, are therefore
equivalent if one ignores the constant of proportionality. With
this in mind, let us examine more specifically some of the
consequences of our analytical results in the area of groundwater

solute transport.

Approximate spectral. solutions of stochastic
groundwater solute transport were developed by Gelhar and: Axness
(1983) and others. Subsequently, Gelhar (1987) pointed out that
the asymptotic or "largé time” longitudinal m.crodispersivity
(Ayy) was proportibnal to the correlation scale of the
longitudinal velocity component in the longitudinal direction.

The factor of proportionality was the longitudinal velocity

" variance divided by the square of the mean velocity. By plugging

in this relation the Gelhar-Axness spectral solutions of
stochastic groundwater flow, one obtains a simple closed form

expression for A,, in the 3D isotropic case. Surprisingly, it
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turns out that the resulting macrodispersivity has a maximum at
some moderate value of the log-conductivity variance (¢? = 3) and
tends to zero as o goes to infinity. Now, this seemingly
unphysical behavior disappears when the "improved” velocity
spectrum proposed in this work (section 4.3) is used instead of
the Gelhar-Axness spectrum. For 3D isotropic formations in
particular, the large time macrodispersivity obtained with the
higher order solution takes the simple form A,, .= o3\, where X is
the integral correlation scale of the :lsbtropic log—condixctivity

field.

It is particularly instructive to note that the product
of o2\ is invariant under local averaging of i:he underlying
conductivity field. Thus, Vanmarcke (1983) observed that the
pfodgct ";rariance—correlation scale” quan'tif ies the {intrinsic
amount of uncertainty carried by a homogeneous random field,
independently of the scale of measurement. Our result concerning
macrodispersivity suggests a parallel interpretation. The 1arge
time longitudinal macrodispersivity of a solute, convected over
infinite distances in a statistically homogeneous groundwater
velocity field, quantifies in effect the intrinsic variability of
the porous formtiop independently of the scale at which this

variability is "measured”.

However, it should be emphasized that these results on
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contaminant macrodispersion rely on quite stringent hypotheses:
the large time and infinite domain assumptions, the postulate of
a statistically homogeneous porous formation, and the first order
perturbation apﬁroximations of the solute transport equation.
Intuitively, the "large time” assumption means _ that thé
contaminant plume must have encountered a large number of
conductivity fluctuations or formation heterogeneities. Assuming
that the formation is statistically. homogeneous, this becomes
equivalent to requiring that the size of the plume or the mean
travel distance (L) be much larger than the formation’s
correlation length (A). In actual practice however, there may
not exist a uniquely defined correlation length valid for a
sufficiently large range of plume sizes or travel d:.lsta.nces. It
is this particular probleﬁx that was addressed in section ;1.4 of
Chapter 4 (Finite sizé effects: band-pass self-similar spectré..

spectral conditioning and uncertainty).

The "spectral conditioning” approach was
developed in order to characterize finite-size and evolving
phenomena in stochastic flow and transport problems. This
approach avoids the elusive concepts of correlation scales,
infinite domdains, and statistical homogeneity, while still
retaining some of the analytical simplicity of the spectral
solution méthod. By applying first the standard spectral solution

method in conjunction with a band-pass self-similar model of
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random field heterogeneity, based on data published in the
literature, we evaluated explicitly the dependence of statistical
properties on domain size (1- and 3-dimensional head variance,
effective conductivity, and macrodispersivity). This motivated
further development of the spectral conditioning approach for a
consistent characterization of the effects of domain size on the
mean, variance, and effective conductivity of the flow field. In
particular, the uncertainty on these parameters_ was shown to be
directly related to domain size, i.e. to the typical length scale
of the phenomenon of interest. Although closed form solutions
were limited to the case of one-dimensional flow. it seems that a
similar spectral conditioning approach could be developed in
order to quantify the effective transport coefficients an;i the
uncertainty of evolving contaminant plumes in three-dimensional
groundwater flow systems. Some of our preliminary results
suggest that, for statistically isotropic 3D formations, both the
macrodispersivity and the effective conductivity will grow with
plume size, while the uncertainty on these coefficients will
decrease (at least up to a certain cut-off scale many times
larger than the largest size of geological heterogeneities).
With some further refinements, it seems that this approach could
provide an analytically tractable model of the process of
evolving macrodispersion with only minimal assumptions on the

random nature of the underlying porous formation.
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Much of the remaining part of this work was devoted to
the development and application of a numerical approach to
saturated as well as unsaturated stochastic flow,' under the
postulate of statistically homogéneous random field properties of
the porous medium. The proposed approach required solving
numerically the governing flow equation for a single realization
of random field properties in a large but finite domain, with
approximate boundary conditions. Observe that no assumption
whatsoever was made on the nature of the flow at the solution
stage. The motivation behind this numerical "single-realization™
approach was two-fold. First of all, oﬁr expectation was that
the single-realization flow fields obtained numerically could be
statistically analyzed by using standard detrending'and spatial
averaging methods under some weak assﬁmptions of statist‘ical
homogeneity (section 6.1 of Chapter 6). In this way, the
numerical simulations could be compared directly to available
spectral results (second order moments of the flow field, and
effective conductivity) like the Gelhar-Axmess groundwater flow
spectral solutions and the unsaturated flow spectral solutions of
- Mantoglou and Gelhar (1987). Moreover, Dbecause the
single-realization method does not entail any a priori
assumptions concerning the random nature of the simulated flow
field, it lends itself naturally to an empirical evaluation of
the validity of the homoéeneity/ergodicity assumptions of the

spectral theory. As will be seen, these assumptions may not be
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justified in certain cases, but the single-realization approach
can still be used as a means of obtaining, by way of direct
numerical solution, a plausible realization of the detailed flow

pattern in a typical heterogeneous or random porous formation.

To be successful, the proposed numerical approach must
obviously take 1into account the specific nﬁmerical issues
associated with the discrete solution of highly variable,
random-like flow equations on large three-dimensional grids with
fine mesh resolution. The saturated/unsaturated flow simulator
developed and tested in Chapter 5 was designed specifically for
that purpose ("Bigflo™ code). An efficient finite difference
system solver (the "strongly implicit procedure” or SIP method)
was used to solve the saturated (linear) as well as unsaturated
(nonlinear) flow equations, for large realizations of random
hydraulic coefficients on three-dimensional grids as large as one
million nodes. The largest simulations of Chapter 6 (saturated
flow) and Chapter 7 (unsaturated flow) required the use of the
Cray 2 supercomputer, with typical CPU times of a few hours per
simulation. However, a number of meaningful "medium size"

simulations were also obtained on a Microvax 2 minicomputer.

Typically, a "medium size” numerical problem in this
work could involve a grid size of tens of thousands of nodes for

unsaturated flow, and up to two hundred thousand nodes for steady
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saturated flow. The largest numerical problems involved grid
sizes of several hundred thousand nodes for unsaturated flow, and
one million nodes for saturated flow. To obtain meaningful
numerical solutions for such large random flow p;roblems required
a certain amount of numerical analysis and experimentation, the
results of which are now being discussed. However, the reader is
referred to Chapter 5 for details. See in particular Appendix 5D
for an abstract of the "Bigflo” simulator used to generate all

the numerical solutions analyzed in this work.

One important new result of numerical analysis
concerned the question of consistency and accuracy of finite
difference approximations of stochastic partial differential
equations. This theoretical problem was tackled by .developing a
spectral method of truncation error analysis, leading to closed
form exp.ressions for the root-mean-square finite difference error
in the ése of stochastic groundwater flow with a statistically
isotropic three-dimensional random conduétivity field. More
precisely, the Fourier-space spectrum of the stochastic error
(difference between the discrete solution and the exact solution
of the continuous equation) was explicitly evaluated - at least
to the leading order of a double expansion in terms of the mesh
size (Ax) and log-conductivity standard derivation (o). The

relative root-mean-square error was def ined as the ratio of

standard deviations of the error to that of the variable itself
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(the variables of interest were the hydraulic head and the flux
vector). It was found that the relative error was in general
proportional to a fractional power (p) of the mesh resolution
ratio (Ax/A), where A 1is some fluctuation scale or correlation
scale of the conductivity field. The exponent p defines the
order of accuracy of the finite difference scheme in a

mean—-square sense.

For the hydraulic head, the order of accuracy was 2 for
a "smooth" log-conductivity field but dropped to 3/2 for a
"noisy™ log-conductivity field (respectively Hole-Gaussian and
Markov three—dimensional spectra). For the flux or groundwater
velocity vector, the order of accuracy was 1 in the' "smooth”
case, and only 1/2 in the "noisy” case. These previously unknown
results show that the seven point centered finite difference
scheme yields a consistent approximation of the exact hydraulic
head and flux vector for a wide range of random log-conductivity
fields, including the case of the "noisy” three-dimensional
Markov field (non-differentiable in the mean-square sense). The
specific résults obtained for the 1isotropic Markov field
indicated that a good accuracy on the hydraulic head, and a
reasonable accurécy on the flux vector, could be obtained with a
statistical grid resolution (Ax/A) on the order of 1/3. Note
however that these results may hold only for moderate

conductivity variability (presumably for o not much greater than
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unity). These indications were used in Chapter 6 to design the
numerical simulations of stochastic groundwater flow, and to
evaluate confidence intervals on the numerical solutions for

comparison with the results of the spectral theory.

In addition, we also developed in Chapter 5 a
particularly cautions approach for estimating the error due to
the approximate iterative solution of the finite difference
system (SIP solver, based.on approximate factorization of the
coefficient matrix and Picard 1iterations). Thus, we used
standard results of linear algebra to show that the Euclidian
norm of the residual error may significantly underestimate the
true root-—mean—squar:e solution error.. particularly in cases of
slow convergence. An approximate upper bound on the true error '
was evaluated in fems of the .residual error and mean convergence
rate of the iterative solver. Numerical experiments for steady
state stochastic groundwater flow (similar to a "random heat
equation”) were conduéted for values of o up; to 2.3 and grid
sizes on the order of 100,000 to 1 million nodes, using a Cray 2
machine for the largest problems. Briefly, these experiments
indicated that the convergence rate of the SIP solver was roughly
proportional to the unidirectional size of the grid, a number
presumably related to the square-root of the condition number of
the random conductivity matrix. For the degree of varié.bility

and the problem sizes investigated, it was concluded that the
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matrix system could be solved with 1X relative accuracy on the
hydraulic head with ' a few hundred to a thousand underrelaxed

iterations.

Overall, these results of truncation error analysis and
iterative solver convergence lead us to believe that the
stochastic groundwater flow simulations presented in Chapter 6
were generally quite accurate, particularly concerning the
largest simulations with statisticaily isotropic conductivity
(1 fnillion nodes, with grid resolution 1/3). Likewise, the
. "turning band method” used to generate discrete realizations of
random conductivities seemed adequate, since the spatial
statistics of large conductivit:v realizations aﬁpeared to be very
close to the prescribed ensemble statistics. These indications
appear quite useful in view of the fact. that there is no known

exact solution to the stochastic groundwater flow equation.

Some aspects of the numerical/statistical metﬁodology
adopted in this work could be quite useful in other contexts.
For example, our numerical'approach and results on stochastic
groundwater flow could be extended to other physical problems
involving random conduction phénomena (thermal and electrical
conduction 1in composite materials, and random resistance
networks). In additio.n. our spectral analysis of stochastic

truncation errors could perhaps be extended to other
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discretization methods (weighted residuals and pseudo-spectral)
and to other stochastic equa.tions (convection-diffusion in random
media). This may be particularly important for assessing the
feasibility of direct numerical simulations of solute transport

in random porous media. -

Other numerical contributions of this work concerned
the numerical solution of randomly heterogeneous unsaturated flow
systems, involving highly nonlinear and spatially wvariable
hydraulic coefficients. In the transient case, a fully implicit
time discretization scheme was used.  The method used to solve
the resulting nonlinear finite difference syftem was basiéally
the same as for linear flow prdblems. however with an additional
outer Picard iterationlloop to sequentially linearize t};e system
{nonlinear SIP solver). A heuristic stability analysis of the
nonlinear finite difference equations | Suggested that a severe
constraint on the time step (At/Ax®) may be required, unless a
grid Pechet humber condition be satisfied at each node of the
grid (adx; £ 2, where a is the slope of the unsaturated
log-conductivity function of pressure, and Ax, the vertical mesh
size). However, any 'truly rigorous statements on numerical
requirements were precluded by the compléxity of the spatially

variable unsaturated flow equation.

In view of these difficulties, the problem solving



724

capabilities of the transient unsaturated flow simulator were
tested in an empirical fashion by way of numerical .
experimentation (comparisons with analytical solutions, mass
balance checks, and other tests). In the process, some
instructive observations were made on the physics .of
two-dimensional strip source infiltration in uniformly stratified
soils with horizontal or vertical layers (cf. last section of
Chapter 5). More importantly, some truly large simulations of

three—dimensional infiltration in "random soils” were analyzed at

length, in Chapter 7.

From a numerical viewpoint, the most difficult random
infiltration problem was the case of transient stri;:; source
infiltration in a statistically stratified soil, with a different
unsaturated conductivity curve defined at each mesh point of the
300,000 node grid in three-dimensional space. It may be of
interest here to recall some of the details of this numerical
experiment (see Chapter 7). About 5 CPU hours of Cray 2 time
were consumed in the simulation of 10 days of infiltration and
10 subsequent days of drainage in a moderately dry soil, with
initially small but increasing time step size. The exact size of
the time step at initial time and at a few intermediate times,
was set empirically by trial and error, although an automatic
adjustment was also made by the code during simulation. Overall,

our experience with this numerical experiments indicates that a
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very severe constraint on the time step could be required for
convergence of the nonlinear iterations in the case of dry soils.
In the case at hand, the initial degree of saturation was only

moderately low, about 20%.

Thus, it may be questioned whether a fully implicit
finite difference method such as used in this work is truly
adapted to the simulation of extremely sharp infiltration fronts
in "air dry” soils, particularly in the presence of random
heterogeneities. On the other hand, the extreme nonlinearity of
the exponential conductivity-jaressure relation assumed in this
work may also be called into éuestion. In any case, it should be
kept in mind 'that. in spite of these difficulties; the flpw code
was efficient enough to simulate soﬁze rather large and.highly
heterogeneous unsaturated f low systems, with grid sizes on the
order of tens of thousands of nodes (Microvax 2) fo several
hundred thousand nodes (Cray 2)... in reasonable amounts of CPU
time. Some of the most important results of stochastic flow
simulations will now be discussed, both for saturated and

unsaturated flow.

The large high-resolution simulations of stochastic
groundwater flow and unsaturated flow in random media were
thoroughly analyzed and discussed in Chapter 6 and Chapter 7,

respectively. Each of these chapters included a "summary and
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discussion” section., of which some essential points are recalled
here. Starting with the case of groundwater flow in
statistically isotropic aquifers, it should be emphasized that a
remarkably good agreement was found between the
single-realization simulations and the spectral solutions,
particularly concerning the effective conductivity and the head
variance. For the latter quantities, the | agreement between
simulations and theory was quite good up to large conductivity
variability ( o0 = 2.3, vwhere o is the standard deviation of
én X). However, the single-realization head variance was
computed about a slightly nonlinear trend of hydraulic head in
the mean flow direction, in contrast with the linear mean head
assumed by the first order spectral theory. There was some
evidence that the discrepancy in the mean head was due to the
"modest size"” of the flow domain relative to the large
correlation range of the hydraulic head. As a consequence, the
computed head correlations were systematically smaller than the
theoretical ones, although there was a broad agreement concerning
the three-dimensional structure of the head field. On the other
hand, a similar but more pronounced discrepancy was observed in
two cases involving statistically anisotropic conductivities
("shallow” and "deep” stratified aquifers). In the case of a
shallow stratified aquifer, the spatial structure of the
simulated head field did not agree with the infinite domain

spectral result. This confirms our previous discussion

[ S
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concerning potential restrictions on the range of applicability

of the spectral theory.

With these results in mind, it might be useful at this
point to discuss some implications for practical issues like the
solution of inverse flow problems, or other questions where the
spatial structure of thé hydraulic head field (measured or
predicted) may intervene. Broadly speaking, our numerical
results indicate that the spectral theory is essentially correct
for the head variance, and to & lesser degree the head
correlation structure, provided that the effects of large scale
inhomogeneities be removed by empirical detrending of measured
hydraulic heads. In actual .practice. statistical inhomogeneity
can be equated to the nonlinearity of the obse‘rved mean head
field. Ve expect that the head covariance function predicted by
the spectral theory be relatively accurate when this nonlinearity
is mild. In the case of shallow aquifers however., the predicted
head covariance function may not be realistic if 'aquifer
thickness is on the order of ten horizontal correlation scales or
less. These indications may be particularly useful for the
solution of inverse flow problems, where prior knowledge of the
cross-correlation between heads and log-conductivities will be

required.

The case of statistically anisotropic log-conductivity
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fields is important for applications, as most natural geological
formations appear to be stratified. In the case of horizontal
stratification, the theoretical (spectral) results obtained in
Chapter 3 suggested that the groundwater velocity vector was
strongly anisotropic in proportion with the degree of anisotropy »
of the porous formation. However, recall that the hydraulic head
appears to be only mildly anisotropic, independent of the
formation’'s anisotropy (from theoretical and simulation results).
Thus, it can be inferred that the hydraulic head carries little
information about the covariance structure of groundwater
velocities, which ultimately determines the fate of contaminants
(dispersion). Now, since detailed measurements of groundwater
velocities are rarely feasible vin practice, it seems x-:articularly
important to ascertain the validity of the spectral results
concerning the cprrelation structure of the flux or velocity
field. This q.uestion remains open in the case of stratified
aquifers; however, encouraging results were obtained in the
special case of statistically isotropic aquifers as explained

below.

In the case of statistically isotropic aquifers, the
groundwater velocity correlation functions (tensor) obtained
numerically agreed very closely with the spectral results of
Gelhar and Axmness (1983) for moderate log-conductivity

variability (o = 1), and were still in reasonable agreement for
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higher variability (up to o = 2.3). However, tﬂe Gelhar-Axness
solutions appeared to underestimate the .velocity variances,
especially for high variability (o0 > 1). The discrepancy was
milder for the "improved” velocity spectrum proposed in this
work, although still significant. The numerical values obtained
for the velocity variances suggested that the high order terms
neglected in the standard and 'fimproved" spectral solutions grow
exponentially with the log-conduci:ivity variance. Equations 6.13
give empirical expressions fitted to the numerical velocity
variances. Finally, a visual inspection of the numerical
velocity vector field also revealed that the longitudinal
component had a positively skewed probability distribution,

possibly close to a lognormal distribution.

These findings s};ould motivate future research towards
a higher order characterization of the random groundwater
velocity field, as this may have consequences for stochastic
solute transport. .Our finding that the ﬂrst order spectral
solutions underesfinate the velocity variance with respect to
numerical solutions, also imply that contaminant
macrodispersivity (over large time scale) will be higher than
predicted by the spectral theory. Admittedly, more work is
needed in‘order to assess more precisely the accuracy of our
numerical evaluation of the variances of groundwater velocity.

The effect of numerical noise was taken into account in our
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comparisons of numerical/spectral solutions by using the previous
results of truncation error analysis. It seems also important to
evaluate the possible effects of the shape of the input
log-conductivity (a Markov spectrum was used in the case at
hand). The influence of the log-conductivity spectrum on
stochastic flow and transport solutions was discussed in
section 3.2 of Chapter 3 ("infrared” and ‘"ultraviolet"” -
divergences of Fourier integrals). At aﬁy' rate, the simulation
results of Chapter 6, section 6.3. clearly show that the
"improved” spectral theory provides a reasonably accurate
approximation of the groundwater velocity cpvariance for a wide
range of conductivity variability, at least for the specific case
of an isotropic Markov log-conductivity field with exponential

covariance.

Overall, we may conclude that the single-realization
approach to stochastic groundwater flow led to statistical
results similar to those obtained by the infinite-domain spectral
theory, at least for a choice of domain size and boundary
conditions that guaranteed the approximate statistical
homogeneity of second order moments of the flow field (after
empirical detrending). This encouraging result seems to confirm
the operational character of the homogeneity/ergodicity
hypothesis on wh:lch‘ the spectral theory depends, at least for

steady state groundwater flow in sufficiently deep aquifers and
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approximately constant "regional” hydraulic gradient. On thé
other hand, the limitations of the homogeneity/ergodicity
hypothesis appeared to be much more severe in the case of complex
nonlinear flow systems, such as infiltration in randomly
heterogeneous unsaturated soils (Chapter 7). . The nur;nerical
single-realization solutions of infiltration are now being

discussed.

In the case of transient infiltration from localized
(strip) source in moderately dry random soils, it seemed quite
obvious that no large three—dimensiona.l flow region of
approximate statistical homogeneity develtzped during the time
scales of simulations (on the order of days or weeks).
Nevertheless, visual inspection of the t 1l;1e—dependent
three-dimensional pressure fields revealed some global féatures
of evolving unsaturated plumes in heterogeneous soils. It was
observed that maximum variability of the pressure field occured
when the level and the slope of the unsaturated log-conductivity
curve were both random and statistically independent. In the
case of statistically isotropic soil, the shape of the wetted
zone at early times of strip-source infiltration appeared to be
extremely contorted in 3D space, but with little lateral
spreading. On the other hand, there was a pronounced lateral
spreading away from the strip source in the case of statistically

stratified soils (vertical/horizontal anisotropy ratio equal to
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1/4). Based on the spatial pattern of pressure contours observed
during infiltration and drainage, the anisotropy of the flow
field appeared to be pressure-dependent, with a more pronounced
lateral spreading of the edges of the moisture plume (marginally
wet) than inside the core of the plume (wet). 'l'h{s is
qualitatively similar to the behavior predicted by Mantoglou and
Gelhar (1987) based on their linearized spectral solutions of
transient unsaturated flow (the anisotropy of the wetting
effective conductivity_ is more pronounced in dry regions than in

wet regions).

In spite of the large size of the grid (300,000 nodes)
it seemed preposterous to attempt a quantitative .sta.tistical
analysis of the above strip-source experiment, as the unsaturated
plume remained too small to sample a sufficiently large
"spectrum” of soil heterogeneities. Indeed, some of the features
of the simulated moisture pattern seemed to be specifically
related to the idiosyncracies of the heterogeneous environment
(the particular random field realization of hydraulic parameters)
and to boundary and initial conditions (strip width, input flux
and initial pressure head). In view of these limitations, it may
be useful to examine from a more general point of view the
possibility of obtaining statistically meaningful realizations of

transient unsaturated flow in typical situations.
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The case of the accidental spill of a radiocactive
liquid at the Hanford site can be used here for illustration (see
Chapter 1, and the report by Rouston et al. 1979 for details).
As a first approximation - although admittedly a crude one - let
us assume that the contaminant plume can be equated to the
unsaturated plume. The source located near soil surface, can be
assimilated to a disc with a diameter of a few meters. Due to
the axi-symmetry of the source, we expect that the moisture or
contamination pattern be more nearly statistically homogeneous
tangentially around the axis of the source than along any other
direction (“"axi-symmetric hbmogeneity"). Finally, note that the
time and length scales of interest could be a few decades and
several tens or hundreds of meters, or perhaﬁs much more. In
comparison, the natural fluctuation scales of the Aformation
heterogeneities could be on the order of a fraction of a meter or

perhaps several meters.

The key question is whether the statistical properties
of the three-dimensional unsaturated plume (real or simulated)
will converge to some stable quantities as time goes on.
Unfortunately, it seems clear from our example that a direct
numerical simulation similar to the highly detailed simulations
of strip source infiltration obtained in this work, will be
extraordinarily prohibitive given the time and length scales of

interest: perhaps tens of millions of mesh points, and hundreds
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of hours of supercomputer time on a Cray 2 machine). Thus our
hypothetical example leads us to conclude that some of the
features of the current single realization approach may have to
be altered before a meaningful and accurate characterization of
evolving unsaturated plumes can be achieved for the very large
time and length scales of interest. Essentially the same remarks
apply to the similar problem of evolving éontaminant plumes in
groundwaters. To our knowledge, there exists at present no
satisfactory simulation (high resolution — large time scale) of
these types of phenomena that could be used for testing existing

analytical theories.

On the other hand, in the case of a steady state
unsaturated flow (“"rainfall” infiltration), we have found a
relatively good agreement between numerical results and the
linearized spectral solutions of Mantoglou and Gelhar (1987) and
Yeh et al. (1985). The steady state pressure field obtained for
a statistically anisotropic soil was analyzed by the same spatial
averaging method used in groundwater flow simulations. assuming a
statistically homogeneous random field of pressure in all three
space directions. The pressure head standard deviation and the
vertical component of the effective unsaturated conductivity were
both within 20X of the theoretical spectral solutions. This
encouraging result is of interest for applications involving

toxic wastes buried in dry formations characterized by a very
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slow (downward?) flow of water, as in the hypothetical scenario
discussed by Winograd (1981). In such cases, the simulated
unsaturated water velocity field, if obtained on sufficiently
large high-resolution grid, could be used to simulate the
transport of a radioactive solute leal;ing from the buried source.
Note that the present "rainfall™ infiltration experiment on a
300,000 node grid involved a relatively "modest” domain size
(5m x 15m x 15m) and a relatively_ high downward flux
(213 mm/year) compared to only 2 mm/year at the Yucca Flat site
in Nevada (approximate evaluation by Winograd, 1981). The time
 scale of interest for contaminant transport could be thousands of

Years or more.

It remains to be seen whether detaiAled simulations of
very large steady state unsaturated flow fields in extremely dry
heterogeneous formations can be obtained at reasonable costs with
the present version of our unsaturated flow simulator. At any
rate, the present results strongly suggest that theA linearized
spectral solutions of Mantoglou and Gelhar (1987) may provide an
adequate characterization of pressure variability and effective
conductivity in such cases. This is in contrast with the case of
transient infiltration/drainage from localized séurces. where the

question of the validity of the homogeneity/ergodicity postulate

remains open.
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[b] Summary of contributions

It may be useful at this point to recapitulate in a
compact form the main findings of this work, with a highlight on
new approaches and results. For convenience, we follow the order
of exposition adopted in this report; analytical results of
Chapters 3 and 4, numerical analyses of Chapter 5, and
statistical analyses and interpretation of single-realization
simulations in Chapters 6 and 7. A hea.der is uéed to indicate
the nature of the results being summarized (analytical results,

numerical analysis, simulation results):

Analytical Results: Explicit characterization of the
stochastic hydraulic head and groundwater velocity
fields by using the spectral solution method of Gelhar
and Axness (1983) in the case of statistically
stratified aquifers: new results concerning the
statistical anisotropy of the flow field and the
applicability of the theory for f inite-thicknesﬁ

aquifers.

Analytical Results: Non-perturbative spectral relations
for stochastic groundwater flow in statistically
isotropic formulations. Test of first order spectral

solutions: they satisfy all the non-perturbative
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spectral relations between the flux and head spectra in
1,2,3 dimensions. In particular, an equation relating
the flux and head spectra is shown to be "exact” in the

2D case.

Analytical Result: New closed form expression for the
effective conductivity of stochastic groundwater flow
systems in the general case of 3D statistical
a.nisotropy.. This conjectural expression fits most of
previously established results (}Iathéron 1967; Gelhar

and Axness 1983), including those known to be exact.

Anal;}ttca‘.l Result: ;'Improved" spectral approximation
for the groundwater velocity spectrum based on a system

of equations .governing the velocity or flux vector.
The velocity variances and the resulting
macrodispersivity differ from the standard spectral
results of Gelhar and Axmess (.1983). The behavior of
both statistical properties appear more realistic with

the new solutions. Numerical flow simulations also

showed a better agreement with the new expressions for

velocity variance.

Analytical Results: Self-similar model of randomness
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and "spectral conditioning™ approach for the
characterization of stochastic flow and transport
phenomena over finite and time dependent length scales.
Quantification of effective flow and transport
coefficients over finite size domains, and the
uncertainty on these coefficients. For evolving
phenomena such as a growing concentration plume in a 3D
isotropic medium, the preliminary results suggest that
macrodispersivity and effective conductivity increase

while their uncertainty decreases.

Numerical Analysis: Truncation error analysis for the
finite difference approximation of stochastic
groundwater flow equation (a model of "random heat
equation”). Explicit closed form evaluation of the
root-mean—-square error on the hydraulic head potential
and on the water flux vector, for different types of
random log-conductivity fields. The order of accuracy
is fractional in the case of a "noisy” log-conductivity

field such as the non-differentiable 3D isotropic

Markov field: 3/2 for the head and 1/2 for the flux, in

terms of the mesh size resolution (Ax/A).

Numerical Analysis: Evaluation of the true solution
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error due to the approximate factorization and
iterative solution of the finite difference system with
the SIP solver. The residual error underestimate the
true error in cases of slow convergence. Applications
and numerical experiments for stochastic gxloundwater
flow systems with grid size up to 1 million nodes.

Analysis of convergence rate (inversely proportional to

. the unidirectional size of the grid).

RNumerical Analysis: Non-standard stability analysis of
the time-implicit finite difference approximation of
the nonlinear unsé.turated fl?w equation. " A Peclet
number constraint Pe { 2 is required for nonlinear
stability. Note Pe = o Ax,, where a is; the slope of
the log-conduc.tivity function of pressure, and Ax,; the
vertical mesh size. A severe constraint on the time
step size could result if this Peclet condition was not
satisfied everywhere, as may occur when a is a random

field.

Stmulation Results: Most of the spectral results of
stochastic groundwater flow were confirmed by
statistical analysis of single-realization flow fields;
with random hydraulic conductivities generated by the

3D turning band method. The limitations of the
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spectral results in the case of high variability and
finite domains (shallow aquifers) were analyzed in
detail. The simulations involved 3D grids of size
100,000 to 1 million nodes, and statistically isotropic
as well as anisotropic random log-conductivit_ies with
standard deviations from =1 up to 2.3. In the
isotropic case, both the hydraulic head and the

velocity field were thoroughly analyzed.

Stmulation Results: The case of localized infiltration
in three-dimensional heterogeneous soils with random
unsaturated conductivity curves was explored by the
single-realization approach with excep;:iona.lly fine
grid resolution (from 25,000 up to 300,000 nodes). The
wetting pattern appeared to be very sensitive to the.
variability and anisotropy of the conductivity
parameters (especially the slope of the
log-conductivity curve). The study includes in
particular a comprehensive qualitative analysis of

infiltration and drainage on a statistically stratified

soil (20 days, Sm x 15m x 15m, and 300,000 nodes).

Stmulation  Results: Steady state "rainfall”
infiltration (213 mm/year) on a statistically

stratified soil (5m x 15m x 15m, and 300,000 nodes).
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The results of statistical analysis were in agreement
with the linearized spectral solutions of Mantoglou and
Gelhar 1987 (pressure head variance, and unsaturated

effective conductivity).

[c] Outlook of stochastic approaches:

Some of the new methods and results developed in this
work, particularly the approach of "spectral conditioning” and
the results obtained by single-realization simulations, suggest
some possible modifications of current conceptual aﬁproaches of
naturally heterogeneous subsurface flow and transport phenomena.
Originally, one of the leitmotives of this. work was that such
phenomena can be représented .by single spatial ‘-replicas of
statistically homogeneous and ergo;:lic random fields. At first
sight, the single replica postulate seems to be a natural working
hypothesis for the study of randomly heterogeneous phenomena,
since events actually take place in a "single world” rather than
through some hypothetical ensemble space. Furthermore, the
l';omogeneity;-ergodicity postulate can be justified intuitively by
the observation that such physical phenomena, taking place in
heterbgeneous environments over large length scales, may become
globally homogeneous after many natural f luctug.tions have been
encountered. The idea of balanced compensation is in fact at the

root of our intuitive understanding of the concept of “chance”
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(law of large numbers: stable and equal frequencies for head or

tail in a game of coin tossing).

Accordingly, the "ergodic” or "single realization”
approach purports that spatially heterogeneous subsurface
phenomena may be characterized uniquely by a few statistical
parameters. These parameters describe s.patial fluctuations in a
synthetic manner, in the same sense that the mean, amplitude, and
wavelength characterize entirely a sinusoidal signal. In the
language of random fields, the equivalent statistical quantities
are the mean, standard deviation, and correlation lengths.
Similarly, the concept of cross-correlation between two random
fields can be related to the phase difference between two
periodic signals. This simple analogy illustrates the fact tl';at
deterministic (periodic) as well as random (ergodic) spatial
fluctuations can be characterized in terms of spatial moments
without any explicit recourse to a hypothetical ensemble space.
In summary, the ergodic "single-world” approach focuses on a
single flow/transport event, taking place in “"infinite” physical
space, and whose statistical properties déscribe uniquely the
spatial structure and global transport properties of the
phenomenon at hand.

However, the single-world approach might be challenged
on the grounds that natural flow and transport phenomena take

place over finite or evolving length scales rather than in
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infinite space. A difficulty of this nature was encountered with
some of the numerical single-realization simulations analyzed in
this work, particularly for steady groundwater flow in shallow
stratified aquifers, and for transient infiltration from
localized sources (evolving moisture plume over a time scale of
days or weeks). In the latter' case in particular, it seemed
clear that the assumptions of infinite domain, homogeneity and
ergodicity, were not operational. In view of this crucial
difficulty, it may be useful to conside;' alternative

methodologies.

Some alternative stochastic approaches proposed in the
literature do not have recourse to the postulate of
homogeneity/ergodicity of subsurface f low) transport phenomena.
Broadly s;peaking. these approaches are based on an ensemble
characterizat ion of the statistical properties of random
phenomena, and rely more or less explicitly on the notions of
uncertainty and risk. The case of stochastic groundwater flow
was tackled along these lines by Dagan (1982), Townley (1983).
McLaughlin (19é5). and Ma et al. (1987). using various
mathematical methods (approximate Green functions, numerical
solution of appr:oximate moment equations, Monte-Carlo
simulations). In these ensemble approaches, the concept of
uncertainty seems to play a major role, particularly for

phenomena of & local nature (e.g. uncertainty of drawdowns near a
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pumping well). Nevertheless, there remains some ambiguity
concerning the physical meaning of the statistical results
obtained by the proponents of the ensemble approach in some
applications (uncertainty or spatial variability ?). This
question might be clarified by a simple hypothetical example in

the area of groundwater contamination.

Consider the case of an evolving concentration plume
due to the continuous release of a contaminant from a local
source in a heterogeneous aquifer. Depending on the
configuration of local heterogeneities near the source, the plume
may initially take an extremely asymmetrical sh_a.pe. or even split
in two distinct parts. An example of plume splitting can be seen
for instance in Figure 7.6 (bottom) in the case of a moisture
plume during strip source infiltration. See also the very
different. moisture patterns observed in two distant vertical
planes along a strip source (top and bottom parts of
Figure 7.12). Now, it seems possible that some of the asymmetry
and inhomogeneity observed at early times will persist as i:ime
goes on, despite increasing homogeneization and mixing with
increasing travel distance. The peculiar features of the
evolving plume are determined by the idiosyncracies of the
heterogeneous formation in the neighborhood of the source, and
depend on the exact location of the source in situ. With these

considerations in mind, it seems clear that localized or evolving
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flow and transport phenémena can be characterized by a certain
degree of uncertainty. At the same time, the concept of
"effective” or "large scale™ transport properties (like effective
conductivity and macrodispersivity) may still be relevant,
provided that the particular length scale of interest be taken

into account.

The analytical approach of spectral conditioning,
developed in this work, may be one consistent way of combining
the ensemble and single world approaches. The ensemble viewpoint
enters into play by assigning uncertainty to the actual location’
of the contamination event in a single, randomly heterogeneous
formation. . The single world approach intervenes 1in the
definitiqn of global or effective transport properties at the
scale of interest. Along these lines, it seems possible to
design, in parallel to the spectral conditioning approach, a
numerical simulation method somewhat similar to  the
single-realization approach implemented in this work. For
instance, the fate of a contaminant released from a local source
could be studied by solving n@erimlly the flow and transport
equations in a single realization of the random formation, using
Monte-Carlo simulations to sample several possible locations of
the source with respect to the detailed configuration of the

heterogeneous porous formation.
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APPENDIX 2A:
UNCERTAINTY OF SAMPLE STATISTICS FOR RANDOM
VARIABLES AND RANDOM FIELDS

This appendix gives a brief overview of finite sample
statistics for random variables, and adds further indications in
the more general case of random fields. This may serve as a
reference for parts of chapters 2 and 6 where some of the sample
statistics are used to evaluate confidence intervals on spatial
moments of single replicas of random fields. However, the
present review is not meant to be a complete summary of available

results in the literature.

1. Random variables:

The statistics of finite size samples of a random
variable (y) are themselves random variables, whose variances
quantify the uncertainty of finite size sample statistics. In
the case where the sample size is reasonably large (say n >_50)
the sample mean and the sample variance are defined,

respectively, by:
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and follow approximately the normal distributions:

p: N (n, 02/n)
o%: N (02, 20%/m)

Moreover, the sample standard derivation o also follows
approximately a normal distribution for sufficiently large n,

as shown below:
o: N (0, 02/2n)

These results can be found in many textbooks, for 1instance
Kendall and Stuart (1977). Note that all three estimators are

unbiased and convergent.

For opractical applications, it may be useful to
quantify the uncertainty of these sample statistics by defining a
"relative error” (€) as follows:
~

€p) = va;

o ¥
€(0?) = ‘Var‘::“
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€(o) = .(_VEEL;D.%'

a

Plugging the previous results in these expressions gives the
relative errors on the sample mean, variance, and standard

deviation as follows:

€(u) = vi/n
€(02) = V&/n
€{o) = viZen

As suggested in chapters 2 and 6, these formulas can be used also
to evaluaté (crudely) the uncertainty of sample statistics of
finite size reaiizations of correlated random functions, with an
appropriate definition of the "equivalent” number of independent

samples {e.g. n = L/A for one-dimensional space).
2. Correlated random variables and random functions:

Let us point out other results of interest in the case
of correlated random functions or discrete random processes
(sequence of correlated random variables). Beginning with the
case of two correlated random variables (y;., yz2) following a
bivariate normal distribution, Kendall and Stuart (1977) show
that the variance of the sample correlation coefficient (;) is

given by:
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~ 1
Var (p) = = (1-p)?
However, Kendall and Stuart also point out .that the sampling
distribution of p tends very slowly to normality as n increases,
so that using this formula to estimate confidence intervals on

the true value (p) may be misleading.

For a discrete random process or a sequence of random

variables, the sample correlation coefficient:

p ln;JYY A3 v
1= 7 2 A 20

is unbiased for sufficiently large n, and its variance is given

by:

40

Var(si) = ,1-; 2 [pf + Py_fPiag = 4P4PyPysg * 2p';’p§]-

{=—0

The latter formula is due to Bartlett (1946).

Finally, for a stationary random function Y(x) of
one-dimexisional space (or time), the sample covariance function

could be evaluated as:
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L-§
R(E) = & (Y(x) = m)(Y(x+E)-n)dx
L
0

for lag distance § { L, where L 1is the size of the available
sample. The above estimator is unbiased. Bartlett (1946) gave
the ensemble covariance between two values of the estimated
covariance function at different lags (see also Vanmarcke, 1983).
In particular, this yields the variance of the estimated

covariance function:

- -§ L-F '
Var(R(£)) = i—z . JL JL Cov(Y(x,=E)-Y(x,).Y(x2~E)Y(xz))dx,dx,
0 0 '

Alternatively, the domain of integration (L-f) could be replaced
by (L) to obtain unbiased estimates. With this modification and )

some further manipulations, it is easily shown that:

Var(R(§)) =

+L
H 1- J%L)(R(s+f)-n(s-f) *+ R%(s))ds
-L

The latter formula gives explicitly the ensemble variance of the

estimated covariance function at any lag distance § { L. Note
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that an a-priori knowledge of the true covariance function is

required.

It may be useful to illustrate the above formula in a

simple case. Let Y(x) be a one-dimensional random function with

‘exponential covariance function:

R(f) = o2 e'IEIA

where 02 is the variance and A the integral correlation scale
of Y(x). After some tedious but straightforward integrations. we
obtained a closed-form expression for the squared relative error

defined as:

e2(£) = Var(R(E))/R(£)>.

In particular, that expression could be simplified in the case
L>NX (lérge number of equivalent independent samples). The

result i{s given below:

ez(f)z%"--[l -%—%-i—%ﬂr{-(l -5,_{)]-

At zero lag (f = O) this gives the relative error on

the estimated variance:



A 1A
62(0)=2E(I-ZE

which, by comparison with the result obtained for the estimated
variance of a single random variable (&2 = 2/n), illustrates that
for VL << 1 the number of independent samples becomes n = L/A.
For intermediate lag distances, say £ = A, the relative error is

approximately (using A << L):

>

2 ~ -
e*(A) = 4 T
Finally, at large lag distances § >> A, one obtains a large
relative error that goes to unity (100X) as § goes to L. These
simple results could probably be generalized to treat the case of

discrete finite realizations of three-dimensional fields.
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APPENDIX 3.A

CLOSED FORM EVALUATION OF THE HEAD GRADIENT VARIANCES FOR THE
3D ISOTROPIC MARKOV SPECTRUM '

Assuming for -convenience that the mean hydraulic

gradient J is aligned with the x; axis, and denoting h1 = g%- the
i

gradient of head perturbation, the spectrum of the head gradient

field is, from Section 3.1:

2
S ) = Iy B 57,0

In particular, this gives:

Yos, o 0 =Ls )
" 1By k2 fF
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Plugging this expression in the 3D Markov isotropic spectrum, one

obtains:
027\ J,
i i (1+A%k2)2
Using spherical coordinates, this gives:
2 2, . L2
Ea; - Jz J‘ co0s20 sin®y * kZsing 4o do dk
1 i (1+A2k2)2
=0 ¢=0 k=0
6=2r =7 k=+»
a? A3J% K2
= —— cos26 deo sin%¢ de¢ —  dk
1,.2 (14'7\21{2)2
8=0 ¢=0 k=0
4 O3
=3

u3
— 4
T ,[ (1+u?) .

The integral above, is equal to /4, whence the final result:

Jahiwh;aha = \/—_3 afJ

On the other hand, the transverse head gradient variance can be
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obtained direcfly as follows:
2 —
ahz = J\‘”‘ shzhz(k) dk
2y 2
-3 J J M s (0 a
k‘ ff

Plugging the 3D isotropic Markov spectrum above and integrating
yields finally:

2 2__1_2
Oh,* %h, = 15 9% OF

. The longitudinal head variance obtains readily from previous

results, using the fact %, = %, by symmetry. Whence:
2 3

= -3 g2]2
= 55 0°J
> |02 =0z 2
h, =5 °f




770

In summary, the head gradient standard deviations are:

o. -—laJand o =0 -—laJ
hl\gf h, hy mf
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APPENDIX 3.B

CLOSED FORM EVALUATION OF FLUX VARIANCES AND CROSS-COVARIANCES
AT LAG ZERO, FOR THE 3D ISOTROPIC MARKOV SPECTRUM

In order to evaluate Rc; q (0), we use the flux spectrum
173

of the standard first order spectral theory, given by equation

(3.18):

kik

: ] [5.11 - m] Sg (k)

s, . (k) = K2 JZ [511 - L

where Sff is the 3D isotropic Markov speétrum:

02 3
Seelk) = LA
72 (18A%3)2

and k is the radial wavenumber:
k2 = kf + kg + k%.

The cross-covariances are given by

40
oa @ = [[[ S0,0,0 a6 1e1.2:3 s0a 3u1.2.2
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By using certain symmetry properties of the flow as explained in

Section 4.2, only the following spectra need to be integrated:

S (k)-szcﬁ[l-ﬁ]z._ﬁ—
qQ,qy =7 T KG R § K2 1,2(14,7\21{2):

k.k
. 2 kz, 17§ A2
iz I s‘hq(k)=xé'ﬁ f[ - ]. [. ] 21,242
J 12 (1+A2k3)

2 3
(k) = K2 J3 o7 ilzka R

Ex 22(1a22)2

2
M e
k' a2(1+A%3)2

J=#1: S, (k) =Kg J} o}

1. Transverse Flux Variance:

2

o> =R__ (0) (4 = 2.3):
ST 9
o2 *
- i JJ i T dk, dk, dk,
KgJio? k' r3(14A%2)32
k4 2r +»
A3 '
ces = D J dk d9 d¢ * k3sine.
=
¢=0 06=0 k=0
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sin®p cos? 0 * sin®p sin26

(1422 k2)2
T 2r
AS 3
cee = = sin“¢de ° cos26 sin%6 do - _—dk
L o (1+A2k?)2
¢=0 6=0 k=0
cee 2N 16 7 T
17.2 5 4 03
see = 1—. => 02 -— _1_ Kz Jz az
15 qT 15 "¢ Yt °f

2. Longitudinal Flux Variance:

o2 =R (0):

Kz

G ( 1+).2k2 ) 2

Jj (1-k3/2)® dk, dk, dk,
f 1r2

T 2r +o

e = A2 J‘ J J [1 - sinZp cos20]? » —K-5102_ g 4o go.
vz (1+A2k2)2
¢=0 ¢=0 k=0

Expanding:

(1-sin%p cos26)2 ¢ sing E sing - 2 sin%p cos26 + sin®p * cos*6
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and plugging this in the integral gives:

2r T 2w ' 4
3 . )
ceez A, {J de x I sinpedp - 2 Jcoszede x J sin®pdy
wz
0 0 0 0 .

2 T
2
+ | cos*8do x Jsirﬁpd«p x ‘[-—k-—- dk
(1+)\2k2)2
0

0

3r _ 16 T
{2‘7)‘2-27(#)(4/34--—4)(-1—5-})({?}

15

o—

L]

[ ]

*

I
1%

w

3. Cross—Covariances Between Different Flux Components at Lag
Zero:

These cross-variances vanish due to the fact that the
spectral integrand is odd. Precisely, Rq,q3(0Q) vanishes since
S (k) is odd in k; and ki;:; similarly, R (0) vanishes
9293 q192

because Sq qz(1.5) is odd in k, and k,. Whence the result:
i

R (Q) is O for i # jJ.
94,
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APPENDIX 3.C
CLOSED FORM EVALUATION OF CERTAIN CORRELATION

FUNCTIONS OF THE FLUX AND HEAD GRADIENT VECTORS, FOR THE 3D
ISOTROPIC MARKOV SPECTRUM

1. Transverse Flux Correlation Function

Here, we focus on the correlation of the transverse
flux component q, along the other transverse direction xj.

This correlation function is defined as:

~ R (0.0.35)
- 9292
quqz(fs) = " .
qz

From (3.18) and (3.24) we have:

K,k

11 i1
Sqiqj(k) = KeJi [611 B ] [6.11 T e ] See(k)
o2 = .1_;(3 oz J

qz 15

which gives for the correlation function:

k3k3
B = 1587 Jkafs 12
Fonaa(®0) = 2 [[] ™o = seeaas
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Plugging the 3D isotropic Markov spectrum:

3
o N 1

1rz (1+k2k2)2

Sff(k) =

in the integral above yields:

k2?k2
15)\ JkaEs 172 1 .
(§ 3 ) e ul_(_ .
Q2Qz . x* (1 +>\zkz)

Using spherical coordinates we obtain finally

double-integral:

i

k2cos(kEscosy)

3 3

0, (§9) = 15)‘ sin®p dy r : dk.
0 0 (1+A2%k2)2

Equivalently, by letting u = Ak and a = §3/\ this gives:

uzcos(.ua cosy) _
(&) = sin®p de r du

Q2Qz o (1+u2)2

the

Finally, taking symmetries into account and letting v = sing or

cosy, and Jl-v’ = cOSy 6r sing, with O { ¢ { 7/2, we obtain:

1 2
15 u®cos(uv a)
qz(fa) =57 J; (1-v2)2 av J: ——EI:;;;;——'du

From Gradshtein and Rhyzik (3.728.3), we have for the inner
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integral:

J x?cosAX 4 _ E-(I-A)e.A .
o (1+x%)2

Note that as A - O the result above converges to n/4 as expected

(good check). Plugging this result in the double-integral above

yields:

1

<15 90249203 eyt —avS1a—BY
quqz(fa) =5 Io[l-av 2v2+2avi+vi-av®le - dv

vhere a = F3/A is the dimensionless separation distance.

integration, this gives:

Razqa(e) = 22 {i{l-e‘a) ve (1 ) - 2

+2e-a'[l+.2_.+ 2—] - —
B g2 g2 a®

-2e-a[1+.3_+§_+.6_]+
& gz g

12

a:!

-2 [l+.‘1_+.12+2_4+2.i]+.2.‘.1.
a8 2 3 4 6 8.5

a a a a

—e® [l+§+_2_o_+§g+120+120]_120}
a

a a2 a®> a* 2°

Af ter
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This expression finally reduces to:

> . 15 1 12 -a 5 12 12
R 0.0, = e (= — e (1 = == + ==
0202 (0:0:80) = 22 {; - e® g aa)}

where a = §3/A. It can be checked that this correlation function
goes to one as a + 0, as it should. This can be shown by using

a Taylor development of e 2 up to fifth order.
2. Head Gradient Correlation Functions:

The correlation functions Rh h (§E) for the head
173

gradient® vector hi = &‘311/axi can be obtained similarly by

integrating the spectrum Sh h (k) given in Chapter 3. It turns
1

out that some of the directional correlations thus obtained are
identical to certain flux correlations. In particular, we

obtain:

By b, (0.0.83) = R __ (0.0.53).

A more general closed form expression for R4 (E) could be
1
obtained directly by differentiating the known head correlation

.Ehh(ﬁ) as explained in Chapter 3:



By carrying out differentiation with respect to §, and to

rs= Jgg + £Z, one obtains equation (4.14) in the text. The final
closed form result, not reproduced here, would obtain by plugging

th(f) of equation (3.22) into equation (4.14).
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APPENDIX 3.D
HEAD OOVARIANCE FUNCTION FOR THE 3D ANISOTROPIC
MARKOV SPECTRUM (INDICATIONS FOR NUMERICAL INTEGRATION)

In this appendix, we explain how the head covariance
functions shown 1in Figure 3.4 were “obtained for arbitrary
anisotropy ratio, in the form of double Fourier integrals to be

integrated numerically.

Assume &, = &, = & and let € = £,/2 be the arbitrary,
anisotropy ratio in the 3D anisotropic Markov spectrum of

log-conductivity S (Table 1 of Chapter 3). The relation

ff
between the head and log-conductivity spectra is:

k?
shh(‘k) = J? k—" Sff(k)

The head covariance function is just the Fourier Transform of

Shh:

R, (8) = m s (k) a

which finally leads to an expression of the form:
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| R, (E) = 502 J% e85  I(E)

wvhere I{£) is the triple integral:

+0

T K cos(k )
1) = &) ”w[

0724124k 3+e2k3 ]2

¥e now express I(£) by using spherical coordinates in

Fourier space:

k= ldagag 0gkg+a
k, = k cosb sin¢ 0<¢ £ 2r
ke = k sinf sin¢ . VA IR
ks = k cosé.

The Jacobian of the transformation (from Cartesian to spherical

coordinates) is:

a(kl -kz-ka) 2
W = k* o sin¢.

After some manipulations, this gives:
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27
I(E) = (12r_§ . ‘[ cos?8-do I sin°¢d¢_[ —Mdk
0

k23=+e ]z
where:

A(9,¢) = (E, cosO + £, sinb) sing + £, ° cosd

B(¢) = Jsinzcﬁ + &2 « cos?s.

Generalizing a formula given by Gradshteyn and Rhyzik (3.729.1)

we obtained for the k-integral above:

J' cos§k° ) dk = c C
[k2B2+e" ]2 42

where:

=1, A
C=2¢ IBI.

This leads to the expression given in the text:
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T
I(E) = —f . I cos26+ d6 J F(6.¢)d¢
0

T

1+C(6.¢ -C(6.¢
F(6,¢) = sin3¢ - —B-(Lﬂ—l] e (6.¢)

which was finally ;ntegrated numerically as explained in the

text.

The head variance in particular obtains by letting the

separation vector go. to zero:

O’; = th(g) .

In this case, the integral I(Q) above comes much simpler:

2r w .
100) = -2 . _[ cosze-de‘J sin"¢ d¢
L (0] (o] Jsin2¢+ez'cosz¢

This integral (or another equivalent integral) has already been
evaluated by Naff and Vecchia (1986). The resulting head

variance is given in close form in the text (equation 3.26).
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APPENDIX 3.E

QUAST-ANALYTICAL EVALUATION OF THE HEAD COVARIANCE
th(0.0.fa) FOR THE 3D ANISOTROPIC MARKOV SPECTRUM WITH -

SMALL ANISOTROPY RATIO

In this appendix, we compute the vertical head
covariance function in the anisotropic case with small anisotropy
ratio (& << 1), in order to; check the more general results
obtained by numerical integration. The result given in Section

3.4 for the 3D anisotropic Markov spectrum was:
Ryn(E) = §of J* 225°1(8)
where I(£) had to be evaluated numerically.

In the case e <{ 1, we let € =0 in I(£) and restrict
the analysis to the case of a vertical separation vector

(0.0.§3). This gives a more tractable integral as shown below

(for §5 2 0):
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2” .
J cos26-df.
0

w/2
ES ES
. J sin%¢ - [1 + - cotg ¢] exp[- 7 cotg ¢]d¢
0

/2 .
§a §s
+ J sinZ¢ - [1 + g cotg ¢] exp[- 3 cotg ¢]d4> .
/2

Now, let:

t cotg ¢

[~
L]

[+
"

§a/8

Af ter some manipulations, we obtain:

4 {J:m e Mgy ‘[+°° ue o }
I = - — . —— d
(Fa) =7 o (1+u?)? : o (1+u?)? .

where a = £3/8 is the dimensionless separation distance in the
vertical. We now use & result from Gradshteyn and Rhyzik

(3.355.1 and 2):
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3 e 2Ydu 1 |
J = — = 35 {ci(a)*sin(a) - si(a)-cos(a)
o (1+u?)?
-a*[ci(a)+cos(a)+si(a)+sin(a)]}
3 e 23du 1
[ s .1 f1arfet(a) sin(a) - si(a)-cos(@)])
o (1+u?)?

The special functions si(x) and ci(x) are the sine and cosine

integrals:
@© X
si(x):-J —snt‘td't=-’2'-+f —-(—)s“:t dt
x 0

© X
ci(x) = - J‘ 29%—3 dt = C+ énx + J; cos{t) - 1 dt
x .

where C 1is the Euler constant:

C = 0.577215¢ -

Using a Table of sine-cosine integrals (Korn and Korn,

1968, Appendix F.6) we obtain in particular:
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]
[\ -4

1(0.0.F,) = % . 0.6717 for £,

7e.

1(0,0.£4) = 2 « 0.2520 for £,

Plugging these values into the relation given on top of this
appendix gives the head correlation for two different separation

distances in the vertical:

th(o.o.e)

2
%

=~ 0.8552

R, (0.0.7¢)

2 L ]
%h

~ 0.3220.

The results obtained by numerical integration agreed closely with

these analytical values (see Figure 3.4 with e << 1).
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"~ APPENDIX 3.F

CQLOSED FORM EVALUATION OF THE FLUX VARIANCE FOR THE 3D
ANISOTROPIC MARKOY SPECTRUM WITH SMALL ANISOTROPY RATIO

In this Appendix, we compute the variance of the flux
vector components for a small anisotropy ratio (e << 1), using
the 3D anisotropic Markov spectrum of Table 3.1 (Chapter 3). For
completeness, we also compute the macrodispersivity according to

Gelhar and Axness (1983), for arbitrary anisotropy ratio.

The flux spectrum obtained by the standard first order
spectral theory is given generally by equation (3.18) in the

text. For the case at hand, we define for convenience a rescaled

flux spectrum as follows:

~ 228, .
S =S _/{ 2 J2}.
qiqi qiqi 72 f KG

The resulting expression for the rescaled flux spectrum is:

k11‘1]3 1

S (k) = [511- .
K2 [1+22(k2+k2+e2k2)]?

Qua;

where e = 83/ is the (small) anisotropy ratio. The flow

statistics of interest can now be expressed as:
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;:li = IH gqiqi(k) %

_”s (O.kz,ks) dk, dk,

o) |=|

where a2
9y

macrodispersivity for solute transport at large times in the

is a scaled flux variance, and Zii a scaled

absence of local dispersion (see Gelhar and Axmess, 1983, and
Gelhar, 1985).

Using spherical coordinates in Fourier space (see for
instance Appendix 3.D), we obtain the scaled flux variances in

the form:

Z==J JB(9¢)d¢J 2 dk
qy [1+82(sin2¢+e cosznp)k’]2

. The k-integral can be worked out by using a formula given in

Gradshtein and Rhyzik (3.241.5):

-]

2
J x“ dx _ _ /4.
0 (1+x3)2

This gives finally:



790

w
02 = Lo de_[ B, (6. 4)d¢
G 422 Yo 0

where the integrand Bi takes the form:

i=1: B,(68.4) = (1-2 cos?0 sin®¢ + cos8*sin* ¢) sin¢ 5
(sin®¢+e3cos?¢)
s
i=2: B.(0.¢) = cos?0 + sin?¢ sin”¢ =5
(sin?¢+e3cos?¢)
3
i=3: B5(6.¢) = cos?6 + cos?¢ sin”¢ 575
(sin?¢+e3cos?¢)

‘For e <{ 1, it turns out that the approximation ¢ = O
can be used in the integrals involving B; and B,, but not in
the integral involving B, (this would lead to an indeterminacy
of the type  "zero divided by =zero"). Beginning with the
components i = 2, and { = 3, we plug € 2 O in B, and B,to obtain,

after some simple integrations:

3

P
2 328
3
02 = I— (e = 0)
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For the longitudinal flux component, we obtain after

integrating over 6 and keeping € # O in some of the intermediate

expressions:
/2
2 LT sin¢ d¢ _13
%, * 3{47.[ 24420241372 372'
4¢ (sin®¢+e®cos?¢)

However note that we used ¢ > O to evaluate an intermediate

expression (¢-integral) that resulted in the term 1372/8 .

To evaluate the remaining ¢-integral above, let us
take u = cos ¢ as the new variable of integration and use a
result by Gradshtein and Rhyzik (2.271.5). This yields for the

¢-integral above:

w/2 1
du
see d¢ = ——
‘[0 o (1-(1-e2)u? )3/2

1
u

~]1-(1-.s=~’)uz 0

i
M=

This leads finally to a close form expression for the scaled
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longitudinal flux variance:

02

Tl 13,
Q1—es € 32

Finally, the flux variances are readily obtained by

observing that:

2 2 1209 - 13
aqi_aikc J2(1 35 7€)
0?2 =~ g2 2J217 e

e =% Ko Jt 33

Q
N
R
b
&%
Sy
-8
ojs
m

provided that € << 1. This result was given in equation 3.31.

Note that oq tends to a non~zero constant value as € =» 0, while
1

o and g vanishas e =0.,.
&) 93

o

The scaled macrodispersivity Ai { defined at the

beginning of this appendix is easily computed for arbitrary

values of the anisotropy ratio (e { 1). as shown below:
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460

A dkz dkj; .

[
o neezkzeeas) 2

O ,=4

2
1

This gives immediately:

For the longitudinal component of macrodispersing, let us use

circular coordinates in the transverse plane (k;.kj):

X
N
'

= kgcos8
ka = kosine
Jacobian = kg
This yields:

5

~. ko dkgo
Ay = —_— Javde ‘I‘D ——————
@ Yo Jo[1me)ET

B(B) = £2+[1-(1-e2)sin?6] 2 O

The kb-integral is easily worked out by using the variable of
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integration:
W =1+ B(8)°k2

We obtained after integration:

/2
A I —d8
QG

- 2
0 1-v+sin“0

e
Ay =

S

where + = 1 - &2 (O £ » < 1). From Gradshtein and Rhyzik

(2.562.1) we get for 6-integral:

X

J- o ____ 1 arctg (1= tg x) .

1-v sin%0 1=7

This gives: -

Ay = 2 r. % . [arctg(e tg x)]glz.

e @

After rescaling A,,, we obtain finally the dimensional
macrodispersivity:

It is worth mentioning that a correction to the
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standard first order spectral method was proposed in Section 4.3
of this work. Accordingly, -the term (KGJ) should be replaced by
(Q;) in all the results obtained in this Appendix. In

particular, the macrodispersivity becomes

A11=U§°e

The major difference between this and the previous
expression is that A;, increases monotonously with o in the
modified result just above. In addition, note that A,, is
independent of the_ anisotrc;py r&tio (0O { e £1). However, A,

becomes indeterminate if € = O.
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APFENDIX 3.G
CLOSED FORM EVALUATION OF THE HEAD VARIANCE AND COVARIANCE
FUNCTION FOR THE 3D HOLE-MARKOV SPECTRUM
( ISOTROPIC AND ANISOTROPIC CASES)

In this Appendix, we evaluate the head variance for the
Hole-Markov spectrum with arbitrary anisotropy ratio. In
addition, we also evaluate in closed form the head correlation
function along the vertical direction (in the isotropic case
only). These results are used in the text for comparison with
the standard Markov spectrum without a "hole”. - Note that the
effect of the "hole” is to decrease the low-wavenumber content of

the log-conductivity spectrum.

The head covariance th(ﬁ) is proportional -to a certain
triple Fourier integral I(E)., given in Section 3.6. By using
spherical wavenumber coordinates as in Appendix 3.D, we obtain

after some manipulations:

R (€) = (5 03J7225)-1(E)

+0 w

0 0 [sinZ®¢+e3cos?¢]?
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K(8.¢) = J*o k2 cos(ak)dk
0 (k2+b%)2

m
[}

|(§, cos@ + £, sinB) sin¢g + £, cos¢|

1

e-Jsin2¢+ezcosz¢

By using a number of intermediate results
from Gradshteyn and Rhyzik (3.737.1) we obtained & closed form
expression for the K(6,¢) integral as shown below. First, let us

define a class of integrals of the form:

J = J*m cos(ak)dk
Yo (k2+p2)"

Then we have:
K(6.¢) = J2 = b2 *Js

On the other hand, the Jn integrals are known in closed
form:
-ab n-1 k
J = T € . {2n-k-2)!(2ab)
n 2n-1_, k!(n-k-1)!
(2b) (n-1)! k=0

Plugging Jn into K finally leads to
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2 -
K(6.9) = 1% * —-(-—)—l*a:; 2b)” . @b

Plugging K(68.4) in I(E) above leaves a fairly
complicated double integral to be evaluated in the general
anisotropic case with arbitrary separation vector E. To arrive
at a useful close form result for the correlation function, let
us focus on the isotropic case, and let £ be a vertical
separation vector (0,0,f;). The anisotropic case will also be

considered later for variance calculations.

1. Isotropic Case: Covariance th(0.0.Ea):

Letting € = 83/2 =1 and §, = £, = 0, the expression

for the I(£) integral reduces to:

I(§a) =5+ (3)° * _[:' cos?8+d0 -L(£a)

1
2 I (1-u?) (1+sju-(s;3-u)?) e 2"du
0

L(Es)

where s, = £5,/8 is the dimensionless separation distance in the
vertical. Note that the integral L was obtained after changing
a variable of integration (u = sing). This integral can be

worked out without difficulty (the details are tedious and will
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not be shown here):

Eventually, we find that the head covariance can be related

directly to L(§;) via:

6
Rn(0.0.80) = Is(3) oF J2€*-L(Ea)

In particular, taking £33 = O gives the head variance in the
isotropic case. The value of L(0) can be found by using a Taylor

development of 'L(E3) as §3 = O; the result is:
L(0) = 4/3.

This gives immediately the head variance for the isotroplc case:

oz = L% o2 22 | (es1)
h = 133 * % =

The head correlattion function in the vertical direction can now

be expressed as:



300

S3

o a2 ) e

where s3 = £3/78 . These two equations, taken togethe'r. give in
closed form the head covariance in the cross-flow direction for

the isotropic Hole-Markov spectrum.

2. Anisotropic Case: Head Variance aﬁ:

In the general anisotropic case, the head variance
obtains by taking £ = O in the general expression given for I(£)
at the beginning of this appendice. The integral K(6.4) now
becomes more tractable since the term cos{ak) is eliminated from

the integrand:

+

K(8.9) = I — ¥
0 (kz+b2)3

Af ter Gradshetyn and Rhyzik (3.241.4) we obtain:

K(6.4) = —%
16.b°

where b is a function of ¢ alone, as defined earlier.
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Plugging this expression into the integral I(E) evaluated at zero

spearation distance gives finally:

L

)" J‘ sin3¢ d¢
o}

I1(0)
Jsin2¢+ezcosz¢

"
.
(B

N

g o? J2e2- 1(0).

It turns out that the ¢-integral above can be computed
in closed form, separately, for e > 1, e =1 and € < 1. For the
simplest case € = 1, we obtain the same head variance as already
found above (isotropic case). For e < 1, the ¢-integral can be

rewritten as:

w

1, J sin’¢ d¢

e ———
0 »]l-l-'rzsin%

where +2 = (1-e2)/e2. This integral can be evaluated from two
results of Gradshteyn and Rhyzik (2.584.7 and 2.598). We give A

below the final result for aﬁ:

of = g o2 J2ee; - 1(0)

%) 1 { € + 1_252 . arcsin(]l-ez)} (e < 1)
Jl-ez ’]1'62 1-e

I(9) =

,t:LH

For € > 1 the ¢-integral can be expressed as:
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T

I éin°¢ d¢
o} Jl-wz-sin2¢

2

where o2 = (e2-1)/e¢2. Using again a few intermediate results

of Gradshteyn and Rhyzik, we obtain finally:

of = %a? J2ee; - 1(0)

(e > 1)

10 = 3@ £- {-% N [e+Je=-1 ]

ezlez-l e-]ez-l

It is interesting to note that aﬁ tends to a non-zero

constant as &¢ = 0 if the geometric mean correlation scale eG =

{22, is held fixed. On the other hand. the last equation above

shows that 02 2 0 as ¢ = © while 2. is held fixed.

h G
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“APPENDIX 5.A

CLOSED FORM EVALUATION OF THE NUMERICAL HEAD ERROR
o(5H) FOR THE 3D MARKOV SPECTRUM OF LOG-OONDUCTIVITY

In this Appendix, we describe in some detail the
analytical integrations needed to obtain the root-mean-square
norm of then numerical head error SH(x) (truncation error) in
the case where the log-conductivity is an isotropic 3D Markov
random field. The final result was given in the text (equation
5.63 top: "noisy input"): The next appendix (5.B) presents
similar calculations in the case of a Gaussian log-conductivity
spectrum ("smooth input™). | Recall that these results vere
obtained by a stochastic analysis of the truncaturé errors
arising from the finite difference. discretization of the

groundwater flow equation.

Our starting point is equation (5.59) in the text,
which gives the variance of 6H(x) obtained by Fourier integration
of the &H-spectrum up to wavenumbers |k| = w/Ax. That equation

is reproduced below for convenience:

~ 2 2
Var(ef1) = [J; 557 I

vhere I {s the 3D integral:
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2 2.2
[ J‘ - [3k1 . (k2-k7) ]z . See(k) &
= 2 = 4k.
2 . 4 2 -
0<k¢wax K k of

3
Note that k is the radial wavenumber (ki-ki)é. and that
summation over repeated indices is iﬁplicit. unless stated

otherwise.

In the case of the isotropic 3D Markov spectrum, the

last term in the integrand of 1 takes the form:

See®) a1
o2 72 (1+4A%Kk2)2

By using spherical coordinates as' defined, for instance, in

Appendix 3D, we obtain:

where the integrals I' and I'' are respectively:
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K &
2 o (1472k2)2

w .
de - I A(6.4)dg
0 0

A(8.4) = cos26+sin®¢+[3cos?6-sin2¢ + cos*Besin‘¢ +

sin*6 - sin*¢ + cos*¢]?

Now, the first integral I' can be rewritten by using

the transformation u = Ak as follows:

AT
) 4
C— -JAXLdu.
()2 Yy (14u?)?

This integral was already computed in the text by using
identities from Gradshteyn and Rhyzik 1980 (2.174 and 2.175):
see above equations (5.61) in the text for details. The

resulting expression for the I' integral is finally:

L —l-——— . -]-'- . —L .3_ 'y Rz - .3— l
I' = - [ - +5 ~-3 R arctg (R)]
(A7) 1+R 1+R

vhere R 1is the radial grid resolution par;meter defined as:



806

Ax
IR‘F
For the second integral I'’, the integrand A(8.¢) can

be decomposed in the form:

A(8.4) = [a+tb+ctd]® = a?+b?+c?+d%+2(ab+bct+cd+da+ac+bd)

This gives A(6.4) in the form:

A(6.¢) = 9 cos®B+sin’¢ + cos'®8+sin’’¢
+ cos20-sin®0-sin' ¢+ cos®B-sin’p-cos®s
+ 6 cos®8 sin®d + 2 cos®9-sin*B-sin’?y
+ 6 cos*8-sin®¢+cos*¢+ 6 cos*0 sin'6.sin

+ 2 cos®6-sin"¢ecos?s + 2 cosze-sin‘9'51n7¢°cos‘¢

To obtain a close-form expression for the double-integral of
.A(9.¢). we used the following identities from Gradshteyn and
Rhyzik, 1980 (2.510 - 511-512-513):
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27
I cos2pe.d9 = 211' . M
0

p!2p

2r
(2n-1)!!

. I cos 6.d6
" (2n+p)(2n+p-2) - - - (p+2) 0

or
f cosTB-sin2"g-do =
0

on*1 n!
¢:d¢ = 557 * T (e3)er. (r2 1)

sin2n+1

o A

cosp¢ . sin2n+1¢-d¢ =0 (n21, podd)

S 3 S

cosP¢°sin2n+1¢'d¢ = (n21, p even)

1 . { an__ | 5 ontl, n!
2n+p+1 2n+p-1 In (2n+p-1)(2n+p-3)+++(p+l1)

In these expressions, we used the following notations:

(2n-1)!! = (20-1) (2n-3)---1

in lifn=1

0 ifn#l.

1n

Using these identities finally led to a closed form (exact)
expression for I'' = J‘ A(6,4)d6 d¢ in the form of a sum of ten

rational numbers (fractions) multiplied by the number .w. The
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approximate value of I'‘' i{s finally:
1'" =~ 3.857m = 4r.

This gives immediately the desired result for Var(éH).
Multiplying I' by I'' above and using the first equation of this
appendix gives a closed form expression for Var(&H).

Furthermore, to obtain the relative root-mean-square error:

e(oH) = 2(CH)
%H

we also need the following result already obtained in the text

(equation 3.21 or Bakr et al. 1978):
= A

o L oc. J
H ™ 3 f Y

This gives finally the desired result for the relative

root-mean-square error on the head, as follows:

o(sH) _ V3 . ax, 2

Ax
am 12 &) oG

where the function G(y) 1is defined by:

%

2

G(y) = [ L +%° l—--g-y arctg (-1-)]
l+y2 1+y*® y
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Note that, for y = % << 1 we obtain:

A —ix A
c(ﬁ)zluo & =1+0(ﬁ.

Therefore, replacing the term G(%) by one in the above result
gives the leading order term of the relative head error, as shown

in the text.
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APPENDIX 5.B

CLOSED FORM EVALUATION OF THE NUMERICAL HEAD ERROR
o(5H) FOR THE 3D HOLE-GAUSSIAN SPECTRUM OF LOG-CONDUCTIVITY

This Appendix follows a development parallel to that of
Appendix 5A, but with a Hole-Gaussian spectrum rather than é
Markov spectrum for the 3D isotropic log-conductivity field.
Therefore, we will refer to some of the notations used in
Appendix 5A in the sequel. However, let us first define the
Hole-Gaussian spectrum, since it was not used anywhere else in

this work.

The Hole-Gaussian ellipsoidal log~conductivity
spectrum, with "rational hole” of order m. was defined and used
by Vomvoris (1986) to obtain spectral solutions of stochastic
solute transport. The general form of this spectrum is:

2,828, (833)"

1
S¢p(k) = of 2 DT exp(- 3 £3k])

with implicit summation on repeated indices, and:

(2m+1)1! = 1.3.5++(2m+1).

In the particular case at hand, we used the {isotropic



811

Hole-Gaussian spectrum of order one (m = 1):

o2 o3
pp(0) = —— 375
3(2r)>/2

-p21.2
s . g2z T EK/2

Now, in order to evaluate the relative head error
o(6H)/o(H)., we need to evaluate the standard deviation o(H) of
the head solution by using the results of the spectral theory of
stochastic flow {equations 3.18 of Chapter 3). The head spectrum
is related to the log-conductivity spectrum by:

J3k
Shn(®) = 57 Spe(B)-

The head variance afl obtains by integrating the head spectrum

in Fourier space (- ® ¢ ki { + ). Plugging the Hole-Gaussian

Sf f spectrum on the right-hand side gives:

0% J2 ¢°
of = —f""s/'z * I
3(27)
40

-t
"
"—'ﬂ‘
b
|
= l Lol
N | =N
o
|
©
o
S
N
|
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The I, integral is easily worked out by using spherical

coordinates. We obtained after some manipulations:

_p21,2
I, ig--rkzeek"?dk
0 .

2
4r_ | J*m uze Y /2 du
323 o}

LA
T3pe V2

where we used the identity:

oo .
ju2n o Py _ (2ot _Jg
o 2(2p)" P

after Gradshteyn and Rhyzik 1980 (3.461.2). This gives finally
the first order spectral solution for the head variance in the
case of a Hole-Gaussian isotropic log;conductivity field in 3D

space:

Let us now evaluate the standard deviation of the head
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error, o{(6H), as in Appendix 5A. Briefly, our starting point is

the relation:

U? Jf e® sz]z I

o(6H)? =~
3(2.")3/2 24
3k3 ks(kz’kz) 2 —p21,2
I-= J — + "‘“‘]-e“"z-dk.
k3 -
0 (k ¢ v/Ax

Note that the exponential term in the integrand above resulted
from plugging the Hole-Gaussian spectrum in equation (5.59) given
in the text. Now, by using spherical coordinates, the I-integral

above takes the form: .

wvhere the I' integral is:

/A% -
-p21,2
I.=I k8. 07K/2 g
- Yo

and the.I" integral is the same as that of Appendix 5A:
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w
de J dé A(8.9) = 47
o _

For the I'-integral, we use the transformation u = k&

to obtain, after some manipulation:

[+] (-]
-1 -2
1' = i; . [ I uts e ¥ /2du - I s. u /2du]
[ e
° ix

Using again the Gradshteyn-Rhyzik identity given above, we obtain

by taking n = 3 and p = 1/2:

Now, the second integral intervening in I' 1is always positive,

and éoes to zero as the radial resolution:

goes to zero. This gives a relatively tight upper bound on the

I' integral: .
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Using intermediate results above finally leads to a

similar upper bound estimate of the variance of 6H:

502 J2e%
o(sH)* ¢ L . (4%)°
(24)

with equality in the limit as the grid resolution R goes to

2

%4

finally gives a tight upper bound for the relative error on the

zero. Combining this result with the previous equation for

head in the case of a Hole-Gaussian log~conductivity spectrum:

Q

Q

—

Z\2
I~

oof S

()

This inequality was given in the text in equation (5.63) under
the designation "smooth input”. Recall that the inequality
becomes equality asymptotically as the radial grid resolution
R = Ax/(7m8) goes to zero. In practice, approximate equality

holds for R << 1, say Ax € O0.5A.
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APPENDIX 5.C

CLOSED FORM EVALUATION OF THE NUMERICAL ERROR ON THE FLUX VECTOR
AND HEAD GRADIENT FOR THE 3D MARKOV SPECTRUM OF LOG-CONDUCTIVITY

In this Appendix, we evaluate the root-mean-squ;re
error on the flux vector q, and the head gradient Gm. using
equations (5.73) and (5.77) in the text. Recall that Appendix
5.A cevaluated the error on the hydfaulic head in the case of the
iostropic 3D Markov log-conductivity spectrum. The same spectrum

is used here to evaluate a(éqm) and a(GGm).

According to equations (5.73) and (5.77), the
expression for Var(éqm) will involve a sum of three sets of
integrals L;l). Léz). L;3). The L, integral taken alone will
also give the value of Var(écm). These integrals are
three-dimensional Fourier space integrals, with domain of
integration 0 ¢ Ikml ¢ w/Ax. For simplicity. we will approximate
this rectangular dbmain as the sphere 0 { k { w/Ax, where k is

the three-dimensional radial wavenumber.

More precisely, we have:
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K Janz 2
Var(éqm) = [——Gag-z—-——] . (Llsll) + Llslz) + L§‘3))

'
N
RN
[
——
N
3

Var (G _) =

vhere the Lél). L&z). L;3) integrals are defined as follows for

each component m = 1,2,3 of the flux or head gradient vectors:

=L [ o s0 a
¢

L) - l: ) .[.” 2. Im(g) -Sffui) dk

(no summation implied over m)

(3) 1 kik
13 L., Hj S, (k) dk

and the Im(h) terms appearing in the integrand are of the form:

3k2 s
I (k) =k k- — 2 k! /k ]
1=1,2.3

We now proceed to evaluate these integrals after plugging the 3D

isotropic Markov spectrum:
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2 A2 1
S;p(k) = 0F &= ——r .
T2 (1+A2k2)2

Let us focus first on the L;l) integral. By using
spherical coordinates, we obtained after some manipulation a
tractable expression for the first "component”™ of Lél) (i.e.,

with m = 1) as follows:
LD o g LD

Lt

LAY
X s
LO = ] ® JA u du
r2\¢ 0 (1+u®)2

m
de

[ gt
- p—
b
~
i
SR

dé + A(6.¢)

S 3

0

A(8.4) = 9 cos®B+sin$ + cos'?B-sin’?p

+ cos*0-sin®0-sin'?¢
4+ 2 cos®8 « sin'8esin'?p

+ cos'6+ sin®¢+ cos®¢

+ 2 cos”6- sin°¢-cos‘¢

+ 2 cos'® ¢« sin*8 + sin®¢s cos*s
+ 6 cos'®8 « sin't¢

+ 6 cos®@ « sin*6 - sin''$

+ 6 cos®8 » sin’¢ - cos'¢p
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For Lo, we obtained by using identities from

Gradshteyn and Rhyzik 1980 (2.174 and 2.175):

-5 -3 -1
1 [ 1 _ R 5R SR ) 4 5 arceg (R-l)]

S (5 -3 -"3F)+3

For R << 1 (say R { 0.2 or so) this gives approximately:

On the other hand, evaluating the double integral
LSI)" requires some straightforward but tedious trigonometric
integrations, similar to those developed in Appendix 5.A.

Vithout going into details, we give below the final result.

1).. 227
LS ) 27.351!’2—5—

Combining the two previous results gives finally, for a
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resolution R = Ax/(Aw) reasonably smaller than unity (say R ¢

0.2 or Ax/A < 0.5):

For m = 2, the evaluation of Lgl) requires
integrations similar to those developed above. Briefly, this

integral can be cast into the form:
R R

where L, was defined and evaluated previously, and Lgl)" is a

double trigonometric integral similar (but not identical) to the

previous le)". The final result is written below for the case

R << 1 (as explained previously):

2

m=2: Lgl) x>
15mA*R?

where we used for convenience the approximation 0.41 = 2/5.

We now focus on the second set of integrals, Léf).
Using again spherical coordinates, we obtained these integrals in

the form:
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O N )P
m m

where L, was defined (and evaluated) previously, and the Léz)"
are trigonometric integrals similar in form to the L;l)"

integrals, but simpler. They are given below:

- 2 T
m=1: LS2)"=J dej d¢
0 0
[cos®6-sin®¢ + cos'®B + sin''¢

+ cos®6-sin*0 « sin''¢ + cos®0 ¢ sin’¢ * cos*¢]

2 Lt

I 2: 1{2) 2 J; dB'J; d¢

[cos*B-sin*6 + sin’¢

+ cos®0+sin®6 + sin''¢ + cos'O - sin®8 + sin'l¢

+ cos*8+sin®6+sin’¢+cos*¢]

This gives finally:

LS2)"

R

0.84r
L{2) = 0.10w.

Multiplying by Lo and using again the approximation R =
L)

Ax/(Ar) << 1 as explained previously gives finally the n
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integrals:

For the L;3) integrals, we wuse again spherical

coordinates to obtain after some manipulations:

. |L63) 9 T s
m=1: |L =Llg * sin“¢ d¢ - cos 8+ dé
—_— 0 0
o1 832 35
3pavips 0B &
4 1
27—_”;;3- (for R <K 1)
and:
m=2: L(B) =Lo * J‘sing¢ . J cos?8 sin®0 do
2
[ d 1 L] §2 L] 5_"
- 31',2A"R3 9 35 64
~ -4-};% 1 (for R << 1)
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We have therefore obtained closed form expressions fof
the three sets of integrals L;l). L&z) and L£3) involved in the
variance of the flux error and head gradient error, as defined at
the beginning of this Appendix. Note that each set of integral
was gvaluated for the longitudinal component (m = 1) and for the

transverse component (m = 2). The result for m = 3 is identical

toms= 2 by symmetry. due to the statistical isotropy of the flow
in the cross-flow plane. The final results given in the text

(equations 5.78 - 5.79) were obtained as follows:

- Assemble the integrals above to compute Var(me) as
indicated on top'of this Appendix (Ym stands for the
components of the flux vector or of the head gradient).

- Use.the known spectral solutions Var(Ym) to evaluate

the ratio Var(GYm)/Var(Ym).

- Take the square-root of the above expression to obtain
the final result o(me)/a(Ym). vhich gives the
root-mean-square norm of the error relative to the

root-mean-square norm of the variable itself.
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APPENDIX 5.D
"BIGFLO" CODE ABSTRACT

A High Resolution, Three Dimensional, Saturated/Unsaturated
Flow Simulator

Progrém Name: BIGFLO

Auxiliary Programs:

-~ Combig (Set of common blocks for BIGFLO.)

- Flﬁproc {(Large set of Data Processing Routines)

-- Cturn or TB3 (Turning Band Generator of 3D Random
Fields)

Programming Language: Fortran 77

Computers and Operating Systems:

BIGFLO has been developed on a Microvax minicomputer

running the VMS operating system:; it was subsequently

modified to run on a Cray 2 supercomputer running the

UNICOS (UNIX) operating system, and the CFT77 Fortran

compiler. These modifications eliminated a few minor

non-standard feature#. such as instructions with more

than 20 continuation lines, and the "INCLUDE" statement

used on the Microvax to include the set of common

blocks COMBIG (same for all subroutines).
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Machine Requirements:

BIGFLO contains about 12,000 lines of instructions and
comments. Most of the storage required at execution
time is taken up by the master array ABIG defined in
the main program MAINFLO. fhe size of this array.can
be modified as needed in the main program; the
parameter LPAR located just below the dimension
statement must take exactly the same value as the
dimension (otherwise the results could be
unpredictable). No other modification will be needed
in the BIGFLO code in order to run a particular
problem.

The actual size of the master arréy requiréd to solve a
particular problem‘is pfbportional to the size (N) of
the three-dimensional grid; typically about 12 N for a
saturat?d flow pro&lem with .spatially ‘ variable
conductivity. On a Microvax 2, a practical limit for
the size of the master array is about 1 -1.5 Miilion:_
on fhe four-quadrant Cray 2, the size could be as large
as 250 Million words in principle. The code will issue
an error message and stop execution if the prescribed
ﬁize of the master array is insufficient to solve the

problem.
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Program Description:

BIGFLO 1is a three-dimensional porous medium flow
simulator, handling steady, trahsient saturated, and
partially saturated or unsaturated flow, with spatialiy
variable or randomly distributed hydraulic
coefficients.

The code is based on a finite difference approximation
of the equation governing the hydraulic head (saturated
flow) or the pressure head (partially saturated or
unsaturated flow). The governing flow equation was
obtained from the (generalized) Darcy equation and the
continuity eguation without source terms. The
computational flow domain is a three~-dimensional
parallelepiped rectangle, discretized into an
orthogonal grid of mesh points.

For transient unsaturated flow in dry soils, or any
similar evolution pfoblems. the actual size of the:
computational domain can be timé-dgpendent
(automatically controlled by the code). For one and
two-dimegsioanl problems, the size of the grid can be
shrinked to just 5 nodes (3 internal nodes and 2

boundary nodes) along the unmodeled directions.
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The boundary conditions accepted by the code are,
respectively, a fixed flux normal to the boundary, a
fixed head, or a zero head gradient. The prescribed
fluxes and " heads can vary arbitrarily over the
boundaries, as well as the type of boundary condition
(flux, head, or zero head gradient). In the case of
unsaturated or partially saturated flow, the direction
of the gravity vector with respect to the axes of.the
flow domain can be arbitrary, as prescribed by the
user.

The hydraulic properties of the porous medium required
for saturated flow problems are the saturated hydraulic
conductivity (Ks) and the specific storativity (Ss).
Both can véry' arbitrarily in space as needed. For
partially saturated or unsaturated flow, the hydraulic
conductivity (K) is‘ assumed to be an exponential
function of pressure'head (h) with a given slope (a).
up to a given bubbling pressure (hb) vhere K reaches
the saturation value Ks. All three coefficients, Ks.
and hb can be spatially variable over the 3D grid of
mesh points. The so0il moisture retenpion curve 6(h)
can be an arbitrary function with several parameters
(two of which can be spatially variaﬁle). The current

version of the code includes subroutines for 6(h)
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piecewise linear, exponential, and "Van Genuchten
function”. The soil moisture capacity is computed by a
chord slope (finite difference) differentiation of the
8(h) function. Finally, the specific storativity Ss is
taken into account in regions of positive pressures
(partially saturated flow). In this case, unlike the
case of purely saturated flow, Ss must be assumed

constant in space.

Solution Method:

The governing equation is discretized by a seven-point
centereé finite difference scheme in 3D space, and a
fully implicit backwards Fuler finite difference scheme
in time. The code -accomoda;es both transient and
steady solution algorithms for the linear saturated
flow problem: A steady state option also exists for
the nonlinear unsaturated flow problem, however the
best strategy in this_case seems to obtain the steady
state by running the transient solution algorithm for
large times.

The nonlinear flow problem is approximately linearized
by a modified Picard iteration scheme. Thus, an

approximate linear s&stem has to be solved for each
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iteration step, and this is repeated several times at
each time step.

The linear or linearized finite difference system is
solved {teratively by using a preconditioned iterative
method. For the nonlinear case, this gives a doubly
iterative loop: outef iteration loop for
linearization, and inner iteration loop for solution of
the linear system. The available matrix solvers used
in this code are variants of the Strongly Implicit
Procedure (SIP solver), based on an approximate LU.
factorization, and on a modified Picard iteration
scheme to converge to the exact solution. Other
routinesicorresponding to the IOOG solver (Incomplete
Choleski-Conjugate Gradients) have been introduced in

the code, but are not fully debugged at this time.

Problem Restrictions:
Some of the limitations of the BIGFLO simulator are

listed below:

‘=~ Geometry: The 3D domain must be a parallélepiped

rectangle.
—— Source terms: There are no source terms in the

interior of the domain.
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-~ Water table: The familiar 2D equation of
unconfined flow with a water table is not included

(use instead the partially saturated flow option).

1/0 Data Processing:

Most of the inputs/outputs of the BIGFLO code can be
processed interactively by using the companion code
FLOPROC, a special-purpose data‘processor for creating
the basic input file of BIGFLO and processing 1D, 2D,
3D data fields (including statistical analysis). The
generation of random field parameters inputs is handled
separately by using the 3D Turning Band code (CTURN or
TB3). BIGFLO can be run as a batch process
(non-iteractively). The required input files required
have the logical names INPUTj (j=1....9). The basic
input file INPUT1 contains the actual names chosen by
the user for all the other input files, as well as the
basic description of the flow problem and a number of
numerical options. INPUT1 can be cr;ated interactively
by using the data processor FLOPROC.

The numerical outputs from the BIGFLO code can be quite
large. A short file containing basic information on
"the simulation is created at the start (OUT10) as well

as a short error file named OUTBAD. The output files
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OUT11 and OUT12 contain numerical information such as
the residual iteration errors: the output file OUTI13
contains mass balance errors and other information
required at each time step (depending on options). The
three-dimensional head field (solution) is stored in a
data file named HEAD-TO for steady flow, or in several
data files named HEAD_.Tn or H_Tnnn for transient flow
problems (at selected times prescribed by the user).
The format of these files can be either ASCII
(formatted) or BINARY (unformatted). The latter option
is strongly recommended in the <case of large
simulations. However, binary data files are not easily
transportable among different operating systems. It is
fecommenéed to rename all output files after completion
of a BIGFLd.run. since the code uses always the same
file names for its outputs.

The data processor FLOPROC can be used to obtain other
information from the 3D head field, such as: 3D flux
vector field. 3D head gradient field, transects and
plane sections of three-dimensional fields, and
statistical properties (mean, variance,” covariance

functions).
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Practical Implementation:

The tasks required to execute the BIGFLO code are
summarized below:

(a) Create basic input data file INPUT1 by using the
interactive FLOPROC code.

(b) Find out which other input files are needed. The
FLOPROC processor can be used to generate the initial
condition (INPUT2) and the boundary conditions (INPUT3)
if they are spatially variable. The other input files
INPUT4-INPUTS  correspond to spatially variable
hydraulic properties. In certain simple cases. only
the INPUT1 file is required. Example: saturated or
unsaturated flow with uniform initial condition,
uniform boundary conditions, on each face of the
domain, and spatially constant hydraulic coefficients.
(c] If necessary, specify the names of the additional
input files in the basic input file INPUT 1 created
previously. - .

(d) Run BIGFLO: for complex problems, it is advised
to execute the code with the option LRUN = O as a test;
a full simulation LRUN = 1 can then be launched after

inspection of the output (OUT10) of the previous test.
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- (e) Error messages from the BIGFLO code will appear in

the output file OUTBAD in cases of abnormal

termination. Three types of errors (usually detected

after a short time of exeéution) will cause the program

to stop executing:

-— Insufficient dimension of the master array ABIG

-- Erroneous or incompatible set of data in the basic
input file INPUT 1; the error code LBAD = -n will
help locate the cause of the problem, e.g. by
scanning the source code for the string "LBAD = ".

-- Erroneous or non-existent data file INPUTJ(2{j<9):
the first digit of the error code LBAD will help
locate the problem (e.g., LBAD = - 52 indicates a

problem with INPUTS).

Author and Reference:
R. Ababou, "Three-Dimensional Flow in Random Porous
Media™, PhD Thesis, Parsons Laboratory, MIT, Cambridge,

Massachusetts, January 1988.



