

Water, Waste & Land, Inc. CONSULTING ENGINEERS & SCIENTISTS

July 31, 1986

Nuclear Waste Consultants, Inc. 8341 So. Sangre de Cristo Road Suite 6 Littleton, Co 80127 Attention: Mr. Adrian Brown, Project Director Re: Data Management Report, Subtask 1.2 Dear Mr. Brown:

This letter serves as our semi-annual update of the report for Subtask 1.2, Data Inventory and Management, as required by our subcontract with Nuclear Waste Consultants. After your review of this report, please forward it to Jeff Pohle at the US Nuclear Regulatory Commission.

BACKGROUND

Nuclear Waste Consultants (NWC) is a prime contractor for NRC Project RS-MNS-85-009 entitled "Technical Assistance in Hydrology - Project B - Analysis." Water, Waste and Land, Inc. (WWL) is a subcontractor to NWC and is responsible for review of hydrogeologic investigations of the Nevada Nuclear Waste Storage Investigations Project (NNWSI). Part of the contract requires submission of a letter report updating the Data Inventory and Compiled Database six months after submitting the first report.

DATA BASE DESCRIPTION

The overall database has been divided into two components:

1) Data Inventory

2) Summarized Data

The data inventory summarizes the draft or final reports and published papers which have been made available to WWL. A computerized data base is utilized for the management of the library of available information. The database contains pertinent bibliographic information (title, author, date, document number). This information is shown in Attachment A. As each document is reviewed, additional information is added to the database (key words, key data, general comments, and summary). This information, for documents reviewed to date, is shown in Attachment B.

Two formats have been chosen for the presentation of the summarized data. The first is by well charts, which enables the data to be presented as a function of depth. In this format, well construction, intervals cored, drilling data, lithologic logs, hydrologic logs, permeability, porosity, saturation, etc., can be presented for each drill hole as a function of depth. The spatial coordinates and ground surface elevation at the well makes threedimensional relationships between structure and physical characteristics possible. The currently initiated well logs are shown in Attachment D.

The second format for the presentation of summarized data is by computer data base. The data base contains information obtained from the test wells at and around Yucca Mountain. Information contained in the computer data base has been obtained by either core analysis or from well tests. Information includes porosity, permeability, storage coefficient, depth of core, well test interval, and the document and page number from which the data was obtained. The

information is contained in a LOTUS 123 data file, called NRCDATA, which allows for easy transfer and manipulation. This format enables the large statistical capabilities of LOTUS 123 to be utilized for data analysis.

DATA BASE STATUS

Data Inventory

The bibliographic information for 228 documents have currently been entered into the computerized database (Attachment A). Informal summaries of 70 documents are presented in Attachment B. Summaries will continue to be added to the data base on a priority based upon information provided by the project officer and other project requirements (e.g., numerical analyses).

Summarized Data

Summary well charts have been initiated for seven wells. The following wells have had well charts prepared: USW G-1, USW G-3/GU-3, USW G-4, USW H-3, USW H-4, USW H-5, and UE25a-6. Well USW H-1 and the UZ wells are the next priority for well sheet preparation. The UZ wells are relatively new and little information has been published about them.

The LOTUS 123 data base contains physical data from six wells: USW G-4, USW H-1, USW H-3, J-13, UE-25b#1, and UE-25a#1. The data entered thus far represents eleven hydrogeologic units. The units and their abbreviations used in the data base are:

TCw.....Tiva Canyon welded PTn.....Paintbrush Tuff nonwelded TSw.....Topopah Spring welded CHnv.....Calico Hills nonwelded vitric CHnz.....Calico Hills nonwelded zeolitic PPw.....Prow Pass welded CFn....Crater Flat BFw.....Bull Frog welded Tram....Tram Older.....Older Tuff LR....Lithic Ridge

A plus (+) after an abbreviation indicates that a well test included one or more underlying units. A complete printout of the NRCDATA data base file is presented in Attachment C.

SUMMARY

The data management techniques which have been developed and implemented will allow the WWL team to continue to efficiently review data relative to the NNWSI Project. As new data becomes available during site characterization, the data bases can quickly be updated and utilized for analysis purposes.

If you have questions or if we can in any way be of assistance to you during your review of this report, do not hesitate to contact us.

Sincerely,

WATER, WASTE AND LAND, INC.

tyle a

Lyle A. Davis, P.E. Project Manager

LAD:dm1

Attachments as noted

ATTACHMENT A

NEVADA NUCLEAR WASTE STORAGE INVESTIGATION HYDROGEOLOGY BIBLIOGRAPHY WATER, WASTE & LAND, INC. DATA BASE

July 30, 1986

Attachmer July 30,		A-1	NNWSI Bibliography WWL #4001
1.	,	, Department of Energy, Nevad Investigations Project Monthly Report Aug	
2.	9	, Department of Energy, Nevad Investigations Project Monthly Report Sep	
3.	2	, U.S. Department of the Int and University of Nevada System Deser Long-Range Hydrologic Program, 1973 WWL#	t Research Institute,
4.	•	, Department of Energy, Nevada Investigations Project, Monthly Report, Ja	a Nuclear Waste Storage an, 1985 WWL#: 209
5.	,	, Department of Energy, Nevada Investigations Project, Monthly Report, De	
6.	,	, Department of Energy, Nevad Investigations Project, Monthly Report, O	
7.	,	, Department of Energy, Nevad Investigations Project, Monthly Report, N	
8.	,	, Department of Energy, Nevad Investigations Peer Review, Aug, 1981 WW	
9.	,	, Materials Testing Laborat Physical Properties of Core Samples from Oct, 1983 WWL#: 225	
10.	,	, Ann Arbor Science, Scott, H Geologic Character of Tuffs in the Unsa Mountain, Southern Nevada, 1983 WWL#: 20	aturated Zone at Yucca
11.	,	, Ann Arbor Science Pub Spengler, R. W., Diehl, S., Lappin, A. Geologic Character of Tuffs in the Unsa Mountain, Southern Nevada, 1983 WWL#: 9	R., and Chornack, M., aturated Zone at Yucca
12.	AT (2	9-1)789, Tyler, L. D., Evaluation of Tuf [.] Medium, ? WWL#: 181	f as a Waste Isolation
13.	CGS/	8116R028, Reade, M. T., and McKay, E. D., of Yucca Mountain and Vicinity, Nevada WWL#: 75	
14.	CONF	-791016, Gardiner, D. A., and Truett, T., DOE Statistical Symposium, Sep, 1980 WWL	
15.	D0E/	NV/10295-1, Quade, J., and Tingley, J. V., the Nevada Test Site, and Portions of Nel Range, Southern Nye County, Nevada, Sept,	lis Bombing and Gunnery

- 16. DOE/RW-0012, DOE Office of Civilian Radioactive Waste Management, Draft Environmental Assessment Yucca Mountain Site, Nevada Research and Development Area, Nevada, Dec, 1984 WWL#: 76
- 17. ERDA-1551, Energy Research & Development Administration, Final Environmental Impact Statement Nevada Test Site Nye County, Nevada, Sept, 1977 WWL#: 39
- Golder Associates, Golder Associates, Resaturation by Vertical Porous Media Flow Through Unflawed Geology, WWL#: 207
- 19. IAEA-SM-243/37, Erdal, B. R., Bayhurst, B. P., Crowe, B. M., Daniels, W. R., Hoffman, D. C., Lawrence, F. O., Smyth, J. R., Thompson, J. L., and Wolfsberg, K., Underground Disposal of Radioactive Wastes Proceedings of a Symposium on the Underground Disposal of Radioactive Wastes Jointly Organized by the International Atomic Energy Agency and the OECD Nuclear Energy Agency and Held at Otaniemi, Finland, 2-6 July 1979 Volume II, 1980 WWL#: 117
- 20. LA-09174-PR, Blacic, J., Carter, J., Halleck, P., Johnson, P., Shankland, T., andersen, R., Spicochi, K., and Heller, A., Effects of Long-Term Exposure of Tuffs to High-Level Nuclear Waste Repository Conditions: Preliminary Report, ? WWL#: 102
- 21. LA-09706-MS, Levy, S. S., Petrology of Samples From Drill Holes USW H-3, H-4, and H-5 Yucca Mountain, Nevada, WWL#: 95
- 22. LA-10003-MS, Warren, R. G., Byers, F. M., Jr., and Caporuscio, F. A., Petrography and Mineral Chemistry of Units of the Topopah Spring, Calico Hills and Crater Flat Tuffs, and Older Volcanic Units, with Emphasis on Samples from Drill Hole USW G-1, Yucca Mountain, Nevada Test Site, June,1984 WWL#: 54
- 23. LA-10154-PR, Crowe, B. M., and Vaniman, D. T., Research and Development Related to the Nevada Nuclear Waste Storage Investigations January 1 - March 31, 1984, Feb, 1985 WWL#: 46
- 24. LA-10177-M, Lane, L. J., Surface Water Management: A User's Guide to Calculate a Water Balance Using the CREAMS Model, Nov,1984 WWL#: 144
- 25. LA-10188-MS, Ogard, A. E., and Kerrisk, J. F., Groundwater Chemistry Along Flow Paths Between a Proposed Repository Site and the Accessible Environment, Nov, 1984 WWL#: 48
- 26. LA-10242-MS, Lane, L. J. and Nyhan, J. W, Water and Contaminant Movement: Migration Barriers, Nov,1984 WWL#: 145
- 27. LA-10263-MS, Perkins, B, Travis, B., and DePoorter, G., Validation of the TRACR3D Code for Soil Water Flow Under Saturated/Unsaturated Conditions in Three Experiments, Jan,1985 WWL#: 161

- 28. LA-10297-PR, Rundberg, R. S., Ogard, A. E., and Vaniman, D. T., Research and Development Related to the Nevada Nuclear Waste Storage Investigations April 1 - June 30, 1984, May,1985 WWL#: 52
- 29. LA-10299-PR, Ogard, A. E., and Vaniman, D. T., Research and Development Related to the Nevada Nuclear Waste Storage Investigations July 1 - September 30, 1984, May,1985 WWL#: 53
- 30. LA-10414-MS, Kerrisk, J. F., An Assessment of the Important Radionuclides in Nuclear Waste, Oct, 1985 WWL#: 204
- 31. LA-10415-MS, Carlos, B. Arney, Minerals in Fractures of the Unsaturated Zone from Drill Core USW G-4, Yucca Mountain, Nye County, Nevada, May, 1985 WWL#: 47
- 32. LA-8110-MS, Vine, E. N., et al., Sorption-Desorption Studies on Tuff II. A Continuation of Studies with Samples from Jackass Flats, Nevada and Initial Studies with Samples from Yucca Mountain, Nevada, Jan, 1980 WWL#: 185
- 33. LA-8139-MS, Sykes, M. L., Heiker, G. H., and Smyth, J. R., Mineralogy and Petrology of Tuff Units from the UE25a-1 Drill Site, Yucca Mountain, Nevada, Nov, 1979 WWL#: 45
- 34. LA-8747-MS, Wolfsberg, K., et al., Sorption-Desorption Studies on Tuff III. A Continuation of Studies with Samples from Jackass Flats and Yucca Mountain, Nevada, May, 1981 WWL#: 190
- 35. LA-8840-MS, Carroll, P. R., and Waters, A. C., Preliminary Stratigraphic and Petrologic Characterization of Core Samples from USW-G1, Yucca Mountain, Nevada, Nov, 1981 WWL#: 44
- 36. LA-9000-MS, Carroll, P. I., Caporuscio, F. A., and Bish, D. L., Further Description of the Petrology of the Topopah Spring Member of the Paintbrush Tuff in Drill Holes UE25A-1 and USW-G1 and of the Lithic Rich Tuff in USW-G1, Yucca Mountain, Nevada, Nov,1982 WWL#: 43
- 37. LA-9021-MS, Bish, D. L., Detailed Mineralogical Characterization of the Bullfrog and Tram Members in USW-G1, with Emphasis on Clay Mineralogy, Oct,1981 WWL#: 42
- 38. LA-9328-MS, Daniels, W. R., et al., Summary Report on the Geochemistry of Yucca Mountain and Environs, Dec, 1982 WWL#: 116
- 39. LA-9332-MS, Norris, A. E., et al., Geochemistry Studies Pertaining to the G-Tunnel Radionuclide Migration Field Experiment, Nov, 1982 WWL#: 158
- 40. LA-9471-MS, Walter, G. R., Theoretical and Experimental Determination of Matrix Diffusion and Related Solute Transport Properties of Fractured Tuffs From the Nevada Test Site, Oct, 1982 WWL#: 49

Attac	:hmer	nt A	
July	30,	1986	

- 41. LA-9667-MS, Travis, B. J., TRACR3D: A Model of Flow and Transport in Porous/Fractured Media, May, 1984 WWL#: 88
- 42. LA-9912-MS, Kerrisk, J. F., Reaction-Path Calculations of Groundwater Chemistry and Mineral Formation at Rainier Mesa, Nevada, Dec, 1983 WWL#: 50
- 43. LA-9995-MS, Kerrisk, J. F., Solubility Limits on Radionuclide Dissolution at a Yucca Mountain Repository, May, 1984 WWL#: 51
- 44. LA-UR-81-3141, Erdal, B. R., Wolfsberg, K., Rundberg, R. S., Daniels, W. R., Fortney, D. L., Erickson, K. L., Friedman, A. M., Fried, S., and Hines, J. J., Nuclide Migration Field Experiments in Tuff, G Tunnel, Nevada Test Site, Nov,1981 WWL#: 118
- 45. LA-UR-84-332, Bish, D. L., Ogard, A. E., and Vaniman, D. T., Mineralogy-Petrology and Groundwater Geochemistry of Yucca Mountain Tuffs, 1984 WWL#: 101
- 46. LA-UR-84-40 , Travis, B. J., Hodson, S. W., Nuttall, H. E., Cook, T. L., and Rundberg, R. S., Preliminary Estimates of Water Flow and Radionuclide Transport in Yucca Mountain, 1984 WWL#: 85
- 47. LA-UR-86-680, Fuentes, H. R., Polzer, W. L., and Essington, E. H., Effects of Sorption and Temperature on Solute Transport in Unsaturated Steady Flow, 1985 WWL#: 228
- 48. LASL , Rundberg, R. S., Thompson, J. L., and Maestas, S., Radionuclide Migration: Laboratory Experiments With Isolated Fractures, Nov, 1981 WWL#: 164
- 49. LBL-18473, Wang, J.S.Y. and Narasimhan T.N., Hydrologic Mechanisms Governing Fluid Flow in Partially Saturated, Fractured, Porous Tuff at Yucca Mountain, Oct. 1984 WWL#: 1
- 50. MRSSP-v.26, McVay, G. L., Scientific Basis for Nuclear Waste Management VII Symposium held November 1983 in Boston, Massachusetts, U.S.A., 1984 WWL#: 94
- 51. NNWSI/OCRWM/OGR, NVO/NNWSI, Presentation for the OGR: An Issues Hierarchy Approach to Site Characterization and Regulatory Compliance (Viewgraphs), May, 1985 WWL#: 203
- 52. NRC-04-81-224, Kilbury, R. K., Water Intake at the Atmosphere-Earth Interface in a Fractured Rock System, Nov, 1984 WWL#: 84
- 53. NUREG/CR-2782, Thomas, S. D., Ross, B., and Mercer, J. W., A Summary of Repository Siting Models, July, 1982 WWL#: 78
- 54. NUREG/CR-3680, Schrauf, T. W., and Evans, D. D., Relationship Between the Gas Conductivity and Geometry of a Natural Fracture, April, 1984 WWL#: 79

- 55. NVO-196-22, United States Department of Energy, Geologic and Hydrologic Investigation of Yucca Mountain Peer Review Documentation, April, 1981 WWL#: 193
- 56. NVO-196-23, Department of Energy, Radionuclide Migration in Tuff and Granite Peer Review Documentation, Nov, 1985 WWL#: 213
- 57. NVO-196-24 (Rev. 5), NVO, Bibliography of the Published Reports, Papers, and Articles on the Nevada Nuclear Waste Storage Investigations, by Nevada Operations Office, (original, rev. 1 (81/11), rev. 2 (82/06), rev. 3 & 4 (84/05), Jan, 1985 WWL#: 195
- 58. NVO-269, Bowen, J. L., and Egami, R. T., Atmospheric Overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada, Nov, 1983 WWL#: 80
- 59. NVO-283, French, R. H., Elzeftawy, A., and Elliot, B., Hydrology and Water Resources Overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada: Annotated Bibliography, June, 1984 WWL#: 82
- 60. NVO-283, Department of Energy, Hydrology and Water Resources Overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada: Annotated Bibliography, Jun, 1981 WWL#: 224
- 61. NVO-284 , French, R. H., Elzeftawy, A., Bird, J., and Elliot, B. , Hydrology and Water Resources Overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada, June, 1984 WWL#: 74
- 62. NVO-284, Department of Energy, Hydrology and Water Resources Overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada, Jun, 1981 WWL#: 223
- 63. Proceedings of the NWWA Conf., Montazer, Parviz, Weeks, E. P., Thamir, F., Yard, S. N., and Hofrichter, P. B., Monitering the Vadose Zone in Fractured Tuff, Yucca Mountain, Nevada, Nov, 1985 WWL#: 219
- 64. SAIC, Science Applications International Corporation, Meteorological Monitoring Plan for the Nevada Nuclear Waste Storage Investigations Project Yucca Mountain Site, Nov, 1984 WWL#: 177
- 65. SAND79-1197C, Iman, R. L., Davenport, J. M., Waddell, R. K., Stephens, H. P., and Leap, D. I., Sensitivity Study of the Parameters of the Regional Hydrology Model for the Nevada Nuclear Waste Storage Investigations, ? WWL#: 134
- 66. SAND80-0201, Hadley, G. R. and Turner, J. R., Jr., Evaporative Water Loss From Welded Tuff, Apr, 1980 WWL#: 130

- 67. SAND80-1464, Johnstone, J. K. and Wolfsberg, K., Evaluation of Tuff as a Medium for a Nuclear Waste Repository: Interim Status Report on the Properties of Tuff, July, 1980 WWL#: 135
- 68. SAND80-1625C, Tyler, L. D., Thermal/Mechanical Modeling for a Tuff Repository, ? WWL#: 182
- 69. SAND80-2137, Lappin, A. R., Thomas, R. K., and McVey, D. F., Eleana Near-Surface Heater Experiment Final Report, April, 1981 WWL#: 143
- 70. SAND80-2639, Langkopf, B. S., Thermal Analysis of Nuclear Waste Emplacement in Welded Tuff, Aug, 1982 WWL#: 67
- 71. SAND81-1058, Waymire, D. R. and Duimstra, C. O., In Situ Tuff Water Migration/Heater Experiment: Instrumentation Design and Fielding, Apr, 1982 WWL#: 187
- 72. SAND81-1059, Waymire, D. R. and Duimstra, C. O., In Situ Tuff Water Migration/Heater Experiment: The Data Acquisition and Playback System, Oct, 1981 WWL#: 186
- 73. SAND81-1253, Erickson, K. L. and Fortney, D. R., Preliminary Transport Analysis for Design of the Tuff Radionuclide-Migration Field Experiment, 1981 WWL#: 119
- 74. SAND81-1768, Zimmerman, R. M., Conceptual Design of Field Experiments for Welded Tuff Rock-Mechanics Program, Oct, 1982 WWL#: 218
- 75. SAND81-1918, Johnstone, J. K., Hadley, G. R., and Waymire, D. R., In Situ Tuff Water Migration/Heater Experiment: Final Report, Mar, 1985 WWL#: 138
- 76. SAND81-1970, Connolly, J. R., Mansker, W. L., Hicks, R., Allen, C. C., Husler, J., Keil, K., Lappin, A. R., Petrology and Geochemistry of the Grouse Canyon Member of the Belted Range Tuff, Rock-Mechanics Drift, U12g Tunnel, Nevada Test Site, Apr, 1983 WWL#: 106
- 77. SAND81-2584, Rechard, R. P. and Schuler, K. W., Permeability Change Near Instrumentation Holes in Jointed Rock, June, 1982 WWL#: 163
- 78. SAND81-7210, Klasi, M. L., Russell, J. E., and McClain, W. C., Far-Field Thermal Analysis of a High Level Waste Repository in Tuff, July, 1982 WWL#: 63
- 79. SAND82-0170, Johnson, R. L., Thermal Analyses for a Nuclear Waste Repository in Tuff Using USW-G1 Borehole Data, Oct, 1982 WWL#: 137
- 80. SAND82-1043, Hadley, G. R., Water Transport Through Welded Tuff, Aug, 1984 WWL#: 65

- 81. SAND82-1164, Moss, M., Koski, J. A., Haseman, G. M., and Tormey, T. V., The Effects of Composition, Porosity, Bedding-Plane Orientation, Water Content and a Joint on the Thermal Conductivity of Tuff, Nov, 1982 WWL#: 61
- 82. SAND82-1277, Hunter, R. L., Barr, G. E., and Bingham, F. W., Scenarios for Consequence Assessments of Radioactive-Waste Repositories at Yucca Mountain, Nevada Test Site, March, 1983 WWL#: 89
- 83. SAND82-1434, Lappin, A. R., and Nimick, F. B., Bulk and Thermal Properties of the Functional Tuffaceous Beds in Holes USW G-1, UE-25a#1, and USW G-2, Yucca Mountain, Nevada, April, 1985 WWL#: 64
- 84. SAND82-2203, Lappin, A. R. and Nimick, F. B., Thermal Properties of the Grouse Canyon Member of the Belted Range Tuff and of Tunnel Bed 5, G-Tunnel, Nevada Test Site, Aug, 1985 WWL#: 142
- 85. SAND82-2207, Sinnock, S., Geology of the Nevada Test Site and Nearby Areas, Southern Nevada, Oct,1982 WWL#: 71
- 86. SAND82-2212, Connolly, J. R., Hicks, R. T., Emmanuel, K. M., Cappon, J. P., and Sinnock, Scott, Bibliography With Abstracts of Geological Literature Pertaining to Southern Nevada With Particular Reference to the Nevada Test Site, May, 1983 WWL#: 214
- 87. SAND82-2441, Sinnock, Scott, and Easterling, R. G., Empirically Determined Uncertainty in Potassium-Argon Ages For Plio-Pleistocene Basalts From Crater Flat, Nye County, Nevada, Apr, 1983 WWL#: 216
- 88. SAND82-2771, Eaton, R. R., Martinez, M. J., Wilson, R. K., and Nunziato, J. W., Code Development in Support of Nuclear Waste Storage Investigations for a Repository in Tuff, Mar,1983 WWL#: 69
- 89. SAND82-2772, Eaton, R. R., Gartling, D. K., and Larson, D. E., SAGUARO - A Finite Element Computer Program for Partially Saturated Porous Flow Problems, June, 1983 WWL#: 68
- 90. SAND83-0280, Mondy, L. A., Hydrology of Sealing a Repository in Saturated Tuff, March, 1983 WWL#: 155
- 91. SAND83-0372, Johnstone, J. K., Peters, R. R., and Gnirk, P. F., Unit Evaluation at Yucca Mountain, Nevada Test Site: Summary Report and Recommendation, June, 1984 WWL#: 57
- 92. SAND83-0757, Mondy, L. A., Wilson, R. K., and Bixler, N. E., Comparison of Waste Emplacement Configurations for a Nuclear Waste Repository in Tuff IV. Thermo-Hydrological Analysis, Aug, 1983 WWL#: 62

- 93. SAND83-1327, Schwartz, B. M., Grain Density Measurements of Ash Flow Tuffs: An Experimental Comparison of Water Immersion and Gas Intrusion Pycnometer Techniques, Aug, 1985 WWL#: 176
- 94. SAND83-1778, Fernandez, J. A., Freshley, M. D., Repository Sealing Concepts for the Nevada Nuclear Waste Storage Investigations Project, Aug, 1984 WWL#: 220
- 95. SAND83-1912, Church, H. W., Freeman, D. L., Boro, K., and Egami, R. T., Meteorological Tower Data for the Nevada Nuclear Waste Storage Investigations (NNWSI) Quarterly Report, July-September, 1982 Yucca Alluvial (YA) Site, Jan, 1984 WWL#: 105
- 96. SAND83-2465, Freshley, M. D., Dove, F. H., and Fernandez, J. A., Hydrologic Calculations to Evaluate Backfilling Shafts and Drifts for a Prospective Nuclear Waste Repository in Unsaturated Tuff, June, 1985 WWL#: 121
- 97. SAND83-2593, Nimick, F. B., and Williams, R. L., A Three-Dimensional Geologic Model of Yucca Mountain, Southern Nevada, Oct, 1984 WWL#: 70
- 98. SAND83-7132, The MITRE Corporation, Nevada Nuclear Waste Storage Investigations Environmental Area Characterization Report, July, 1984 WWL#: 151
- 99. SAND83-7466, Rice, W. A., Preliminary Two-Dimensional Regional Hydrologic Model of the Nevada Test Site and Vicinity, Aug, 1984 WWL#: 60
- 100. SAND83-7475, Thompson, F. L., Dove, F. H., and Krupka, K. M., Preliminary Upper-Bound Consequence Analysis for a Waste Repository at Yucca Mountain, Nevada, Aug, 1984 WWL#: 180
- 101. SAND84-0175, Mansure, A. J. and Ortiz, T. S., Preliminary Evaluation of the Subsurface Area Available for a Potential Nuclear Waste Repository at Yucca Mountain, Dec, 1984 WWL#: 147
- 102. SAND84-0192, Braithwaite, J. W., and Nimick, F. B., Effect of Host-Rock Dissolution and Precipitation on Permeability in a Nuclear Waste Repository in Tuff, Sept, 1984 WWL#: 55
- 103. SAND84-0369, Mondy, L. A., Baker, B. L., and Eaton, R. R., Vadose Water Flow Around a Backfilled Drift Located in Tuff, July, 1985 WWL#: 156
- 104. SAND84-0440/2, Eglinton, T. W., and Dreicer, R. J., Meteorological Design Parameters for the Candidate Site of a Radioactive-Waste Repository at Yucca Mountain, Nevada, Dec, 1984 WWL#: 72
- 105. SAND84-0637, Barr, G. E., Reduction of the Well Test Data for Test Well USW H-1, Adjacent to Nevada Test Site, Nye County, Nevada, May, 1985 WWL#: 66

- 106. SAND84-0747, Martinez, M. J., FEMTRAN A Finite Element Computer Program for Simulating Radionuclide Transport Through Porous Media, Jan, 1985 WWL#: 146
- 107. SAND84-0878, Hadley, G. R., PETROS -- A Program for Calculating Transport of Heat, Water, Water Vapor and Air Through a Porous Material, May, 1985 WWL#: 131
- 108. SAND84-0996, Hayden, N. K., Benchmarking NNWSI Flow and Transport Codes: Cove 1 Results, June, 1985 WWL#: 58
- 109. SAND84-1007, Sandia National Laboratories, The Potential Effect of Water Influx on the Dissolution Rate of UO2 in Spent Fuel at the Yucca Mountain, Nevada Site, Dec, 1985 WWL#: 208
- 110. SAND84-1076, Ortiz, T. S., Williams, R. L., Nimick, F. B., Whittet, B. C., and South, D. L. , A Three-Dimensional Model of Reference Thermal/Mechanical and Hydrological Stratigraphy at Yucca Mountain, Southern Nevada, Oct, 1985 WWL#: 91
- 111. SAND84-1076, Ortiz, T. S., Williams, R. L., Nimick, F. B., Whittet, B. C., and South, D. L., A Three-Dimensional Model of Reference Thermal/Mechanical and Hydrological Stratigraphy at Yucca Mountain, Southern Nevada, Oct, 1985 WWL#: 221
- 112. SAND84-1327, Church, H. W., Freeman, D. L., Boro, K., Egami, R. T., Meteorological Tower Data for the Nevada Nuclear Waste Storage Investigations (NNWSI) Tri-Quarterly Report, October 1982 - June 1983 Yucca Alluvial (YA) Site, Dec, 1984 WWL#: 109
- 113. SAND84-1471, Peters, R. R., Klavetter, E. A., Hall, I. J., Blair, S. C., Heller, P. R., and Gee, G. W., Fracture and Matrix Hydrologic Characteristics of Tuffaceous Materials from Yucca Mountain, Nye County, Nevada, Dec, 1984 WWL#: 56
- 114. SAND84-1492 , Sinnock, Scott, Lin, Y.T. and Brannen Joseph P. , Preliminary Bounds on the Expected Postclosure Performance of the Yucca Mountain Repository Site, Southern Nevada, Dec. 84 WWL#: 2
- 115. SAND84-1643, Langkopf, B. S., Satter, B. J., and Welch, E. P., Version 1 of the Users Manual for the Tuff Data Base Interface, April, 1985 WWL#: 59
- 116. SAND84-2057, Bixler, N. E., NORIA A Finite Element Computer Program for Analyzing Water, Vapor, Air, and Energy Transport in Porous Media, Aug, 1985 WWL#: 96
- 117. SAND84-2668 , Tien, P. L., Siegel, M. D., Updegraff, C. D., Wahi, K. K., and Guzowski, R. V., Repository Site Data Report for Unsaturated Tuff, Yucca Mountain, Nevada , Nov, 1985 WWL#: 198
- 118. SAND84-7103, The Robbins Company, Small Diameter Horizontal Hole Drilling - State of Technology, Nov, 1984 WWL#: 165

A-9

- 119. SAND84-7202, Wang, J. S. Y., and Narasimhan, T. N., Hydrologic Mechanisms Governing Fluid Flow in Partially Saturated, Fractured, Porous Tuff at Yucca Mountain, April, 1985 WWL#: 73
- 120. SAND84-7212, Jacobson, E. A., Freshley, M. D., and Dove, F. H., Investigations of Sensitivity and Uncertainty in Some Hydrologic Models of Yucca Mountain and Vicinity, Oct, 1985 WWL#: 194
- 121. SAND85-0854C, Peters, R. R., Gauthier, J. H., and Dudley, A. L., The Effect of Percolation Rate on Water-Travel Time in Deep, Partially Saturated Zones, 1985 WWL#: 227
- 122. SAND85-0855, Klavetter, E. A. and Peters, R. R., Fluid Flow in a Fractured Rock Mass, 1985 WWL#: 226
- 123. State of Nevada, McNeely, J. G., Jr., Forcasts for the Future-Agriculture, 1974 WWL#: 191
- 124. TEI-838, Schoff, S. L. and Moore, J. E., Chemistry and Movement of Ground Water, Nevada Test Site, 1964 WWL#: 179
- 125. TEI-843, McKay, E. J. and Williams, W. P., Geology of Jackass Flats Quadrangle, Nevada Test Site, Nevada, Dec, 1963 WWL#: 150
- 126. UCID-19081, Thomas, R. and Springer, J., Fracture Mapping for Radionuclide Migration Studies in the Climax Granite, May, 1981 WWL#: 183
- 127. UCID-19405, Raber, E., Lord, D., and Burklund, P., Hydrologic Test System for Fracture Flow Studies in Crystalline Rock, May, 1982 WWL#: 162
- 128. UCID-20289, Ramirez, A. L., and Daily, W. D., Preliminary Evaluation of Alterant Geophysical Tomography in Welded Tuff, Dec, 1984 WWL#: 40
- 129. UCRL-15620, Moore, D. E., Morrow, C. A., and Byerlee, J. D., Changes in Permeability and Fluid Chemistry of the Topopah Spring Member of the Paintbrush Tuff (Nevada Test Site) When Held in a Temperature Gradient: Summary of Results, June, 1984 WWL#: 153
- 130. UCRL-15667, Moore, D. E., Morrow, C. A., and Byerlee, J. D., Permeability and Fluid Chemistry Studies of the Topopah Spring Member of the Paintbrush Tuff, Nevada Test Site: Part II, March, 1985 WWL#: 152
- 131. UCRL-53130, Pawloski, G. A., Water Contents of Samples from the Nevada Test Site: Total, Free (Natural State to 105 C), and More Tightly Bonded (105-700 C), May, 1981 WWL#: 160
- 132. UCRL-53138, Murray, W. A., Geohydrology of the Climax Stock Granite and Surrounding Rock Formations, NTS, May, 1981 WWL#: 154

Attachment A July 30, 1986	A-11	NNWSI Bibliography WWL #4001
133. UCRL-	-53230, Corynen, G. C., Stop: A Fast Pr Computation of the Performance of Complex P Jan, 1982 WWL#: 108	
134. UCRL-	-53442, Oversby, V. M. and Knauss, K. G., Tuff with J-13 Well Water at 90 C and 150 159	
135. UCRL-	-53552, Oversby, V. M., Reaction of the Top J-13 Well Water at 90 C and 150 C , May, 19	opah Spring Tuff with 184 WWL#: 92
136. UCRL-	-53574, Oversby, V. M., Reaction of the Top J-13 Water at 120 C, July, 1984 WWL#: 199	opah Spring Tuff With
137. UCRL	-53576, Knauss, K. G. and Beiriger, W. E Hydrothermal Alteration Studies of Topopah J-13 Water at 150 C, Aug, 1984 WWL#: 136	
138. UCRL	-53602, Lin, W., and Daily, W., Transport Spring Tuff, Oct, 1984 WWL#: 41	Properties of Topopah
139. UCRL	-86722, Trimmer, D., Laboratory Measu Permeability of Geologic Materials, Aug, 19	
140. UCRL	-91464, Wilson, C. N. and Oversby, V. M., from PWR Fuels in a Reference Tuff Rep March, 1985 WWL#: 189	Radionuclide Release ository Groundwater,
141. USGS	82-4085, Waddell, R. K., Two-Dimensional, Ground-Water Flow, Nevada Test S Nevada-California, 1982 WWL#: 9	
142. USGS	84-4193 Weeks, E. P., and Wilson, W. E., F of Hydrologic Properties of Cores of Unsatu USW H-1, Yucca Mountain, Nevada, 1984 WWW	urated Tuff, Test Well
143. USGS	84-4197, Robison, J. H., Ground-Water Leve Potentiometric-Surface Maps, Yucca Mounta County, Nevada, 1984 WWL#: 12	l Data and Preliminary lin and Vicinity, Nye
144. USGS	84-4248, Craig, R. W., and Robison, J. H., Penetrated by Test Well UE-25p#1, Yucca County, Nevada, 1984 WWL#: 14	Geohydrology of Rocks a Mountain Area, Nye
145. USGS	84-4253, Lahoud, R. G., Lobmeyer, D. H., Jr., Geohydrology of Volcanic Tuff Pene UE-25b#1, Yucca Mountain, Nye County, Neva	etrated by Test Well
146. USGS	84-4267, Waddell, R. K., Robison, J. H., K., Hydrology of Yucca Mounta Nevada-CaliforniaInvestigative Results T WWL#: 11	in and Vicinity,

- 147. USGS 84-4272, Thordarson, W., Rush, F. E., and Waddell, S. J., Geohydrology of Test Well USW H-3, Yucca Mountain, Nye County, Nevada, 1985 WWL#: 15
- 148. USGS 84-4328, Spaulding, W. G., Robinson, S. W., and Paillet, F. L., Preliminary Assessment of Climatic Change During Late Wisconsin Time, Southern Great Basin and Vicinity, Arizona, California, and Nevada, 1984 WWL#: 8
- 149. USGS 84-4344, Czarnecki, J. B., Simulated Effects of Increased Recharge on the Ground-Water Flow System of Yucca Mountain and Vicinity, Nevada-California, 1984 WWL#: 7
- 150. USGS 84-4349, Czarnecki, J. B., and Waddell, R. K., Finite-Element Simulation of Ground-Water Flow in the Vicinity of Yucca Mountain, Nevada-California, 1984 WWL#: 6
- 151. USGS Report 54, Rush, F. E., Regional Ground-Water Systems in the Nevada Test Site Area, Nye, Lincoln, and Clark Counties, Nevada, 1971 WWL#: 83
- 152. USGS-OFR-83-0475, Byerlee, J., Morrow, C., and Moore, D., Permeability and Pore-Fluid Chemistry of the Bullfrog Tuff in a Temperature Gradient: Summary of Results, 1983 WWL#: 103
- 153. USGS-1543-1, Hodson, J. N. and Hoover, D. L., Geology and Lithologic Log for Drill Hole UE17a, Nevada Test Site, 1978 WWL#: 132
- 154. USGS-1543-2, Hodson, J. N. and Hoover, D. L., Geology of the UE17e Drill Hole, Area 17, Nevada Test Site, Mar, 1979 WWL#: 133
 - 155. USGS-1543-3, Dinwiddie, G. A. and Weir, J. E., Jr., Summary of Hydraulic Tests and Hydrologic Data for Holes UE16d and UE16f, Syncline Ridge Area, Nevada Test Site, 1979 WWL#: 113
- 156. USGS-1543-4, Weir, J. E., Jr., and Hodson, J. N., Geohydrology of Hole UE-17a, Syncline Ridge Area, Nevada Test Site, 1979 WWL#: 188
- 157. USGS-1543-6, Maldonado, F., Muller, D. C., and Morrison, J. N., Preliminary Geologic and Geophysical Data of the UE25a-3 Exploratory Drill Hole, Nevada Test Site, Nevada, ? WWL#: 149
- 158. USGS-83-4001, Squires, R. R. and Young, R. L., Flood Potential of Fortymile Wash and its Principal Southwestern Tributaries, Nevada Test Site, Southern Nevada, 1984 WWL#: 171
- 159. USGS-83-4032, Rush, F. E., Thordarson, W., and Pyles, D. G., Geohydrology of Test Well USW H-1, Yucca Mountain, Nye County, Nevada, 1984 WWL#: 26
- 160. USGS-83-4171, Thordarson, W., Geohydrologic Data and Test Results From Well J-13, Nevada Test Site, Nye County, Nevada, 1983 WWL#: 87

- 161. USGS-84-4345, Montazer, P., and Wilson, W. E., Conceptual Hydrologic Model of Flow in the Unsaturated Zone, Yucca Mountain, Nevada, 1984 WWL#: 3
- 162. USGS-85-4066, Erickson, J. R., and Waddell, R. K., Identification and Characterization of Hydrologic Properties of Fractured Tuff Using Hydraulic and Tracer Tests--Test Well USW H-4, Yucca Mountain, Nye County, Nevada, 1985 WWL#: 86
- 163. USGS-OFR-449, Whitfield, M. S., Jr., Thordarson, W., and Eshom, E. P., Geohydrologic and Drill-Hole Data for Test Well USW H-4, Yucca Mountain, Nye County, Nevada, 1984 WWL#: 29
- 164. USGS-OFR-74-176, Carr, W. J., Summary of Tectonic and Structural Evidence For Stress Orientation at the Nevada Test Site, 1974 WWL#: 107
- 165. USGS-OFR-79-1244, Spengler, R. W., Muller, D. C., Livermore, R. B., Preliminary Report on the Geology and Geophysics of Drill Hole UE25a-1, Yucca Mountain, Nevada Test Site, 1979 WWL#: 37
- 166. USGS-OFR-80-126, Daniels, J. J., and Scott, J. H., Borehole Geophysical Measurements for Hole UE25a-3, Nevada Test Site, Nuclear Waste Isolation Program, 1980 WWL#: 5
- 167. USGS-OFR-80-1263, Hagstrum, J. T., Daniels, J. J., and Scott, J. H., Analysis of the Magnetic Susceptibility Well Log in Drill Hole UE25a-5, Yucca Mountain, Nevada Test Site, 1980 WWL#: 128
- 168. USGS-OFR-80-466, Anderson, L. A., Bisdorf, R. J., and Schoenthaler, D. R., Resistivity Sounding Investigation by the Schlumberger Method in the Syncline Ridge Area, Nevada Test Site, Nevada, 1980 WWL#: 98
- 169. USGS-OFR-80-569, Winograd, I. J., and Doty, G. C., Paleohydrology of the Southern Great Basin, With Special Reference to Water Table Fluctuations Beneath the Nevada Test Site During the Late(?) Pleistocene, 1980 WWL#: 24
- 170. USGS-OFR-80-817, Glanzman, V. M., Bibliography of Reports by U.S. Geological Survey Personnel Pertaining to Underground Nuclear Testing and Radioactive Waste Disposal at the Nevada Test Site, and Radioactive Waste Disposal at the Waste Isolation Pilot Plant Site, New Mex, 1980 WWL#: 124
- 171. USGS-OFR-80-826, Sass, J. H., Lachenbruch, A. H., and Mase, C. W., Analysis of Thermal Data from Drill Holes UE25a-3 and UE25a-1, Calico Hills and Yucca Mountain, Nevada Test Site, 1980 WWL#: 172
- 172. USGS-OFR-80-929, Spengler, R. W. and Rosenbaum, J. G., Preliminary Interpretations of Geologic Results Obtained From Boreholes UE25a-4, -5, -6, and -7, Yucca Mountain, Nevada Test Site, 1980 WWL#: 174

- 173. USGS-OFR-80-941, Hagstrum, J. T., Daniels, J. J., and Scott, J. H., Interpretation of Geophysical Well-Log Measurements in Drill Hole UE25a-1, Nevada Test Site, Radioactive Waste Program, 1980 WWL#: 129
- 174. USGS-OFR-80-942, Hoover, D. L. and Morrison, J. N., Geology of the Syncline Ridge Area Related to Nuclear Waste Disposal, Nevada Test Site, Nye County, Nevada, 1980 WWL#: 127
- 175. USGS-OFR-80-963, Christensen, R. C. and Spahr, N. E., Flood Potential of Topopah Wash and Tributaries, Eastern Part of Jackass Flats, Nevada Test Site, Southern Nevada, 1980 WWL#: 112
- 176. USGS-OFR-81-1220, Lachenbruch, A. H., Temperature Effects of Varying Phase Composition During the Steady Vertical Flow of Moisture in Unsaturated Stratified Sediments, 1981 WWL#: 141
- 177. USGS-OFR-81-1336, Daniels, J. J. and Scott, J. H., Interpretation of Hole-to-Surface Resistivity Measurements at Yucca Mountain, Nevada Test Site, 1981 WWL#: 115
- 178. USGS-OFR-81-1337, Anderson, L. A., Rock Property Analysis of Core Samples from the Calico Hills UE25a-3 Borehole, Nevada Test Site, Nevada, 1981 WWL#: 100
- 179. USGS-OFR-81-1338, Anderson, L. A., Rock Property Analysis of Core Samples from the Yucca Mountain UE25a-1 Borehole, Nevada Test Site, Nevada, 1981 WWL#: 99
- 180. USGS-OFR-81-1349, Spengler, R. W., Byers, F. M., and Warner, J. B., Stratigraphy and Structure of Volcanic Rocks in Drill Hole USW-G1, Yucca Mountain, Nye County, Nevada, 1981 WWL#: 25
- 181. USGS-OFR-81-1350, Smith, C., Ross, H. P., and Edquist, R., Interpreted Resistivity and IP Section Line W1 Wahmonie Area, Nevada Test Site, Nevada, 1981 WWL#: 175
- 182. USGS-OFR-81-389, Daniels, J. J., Scott, J. H., and Hagstrum, J. T., Interpretation of Geophysical Well-Log Measurements in Drill Holes UE25a-4, -5, -6, and -7, 1981 WWL#: 114
- 183. USGS-OFR-81-615, Daniels, J. J., Scott, J. H., and Hagstrum, J. T., Interpretation of Geophysical Well-Log Measurements in Drill Holes UE25a-4, -5, -6, and -7, Yucca Mountain, Nevada Test Site, 1981 WWL#: 215
- 184. USGS-OFR-81-892, Glanzman, V. M., Bibliography of Reports by U.S. Geological Survey Personnel Pertaining to Underground Nuclear Testing and Radioactive Waste Disposal at the Nevada Test Site, and Radioactive Waste Disposal at the Waste Isolation Pilot Plant Site, New Mexico, 1981 WWL#: 123
- 185. USGS-OFR-81-980, Flanigan, V. J., A Slingram Survey at Yucca Mountain on the Nevada Test Site, 1981 WWL#: 122

_

- 186. USGS-OFR-82-1043, Senterfit, R. M., Hoover, D. B., and Chornack, M., Resistivity Sounding Investigation by the Schlumberger Method in the Yucca Mountain and Jackass Flats Area, Nevada Test Site, Nevada, 1982 WWL#: 173
- 187. USGS-OFR-82-1044, King, K. W., A Study of Surface and Subsurface Ground Motions at Calico Hills, Nevada Test Site, 1982 WWL#: 140
- 188. USGS-OFR-82-182, Smith, C. and Ross, H. P., Interpretation of Resistivity and Induced Polarization Profiles with Severe Topographic Effects, Yucca Mountain Area, Nevada Test Site, Nevada, 1982 WWL#: 170
- 189. USGS-OFR-82-409, Monfort, M. E. and Evans, J. R., Three-Dimensional Modeling of the Nevada Test Site and Vicinity From Teleseismic P-Wave Residuals, 1982 WWL#: 157
- 190. USGS-OFR-82-457, Carr, W. J., Volcano-Tectonic History of Crater Flat, Southwestern Nevada, As Suggested by New Evidence from Drill Hole USW-VH-1 and Vicinity, 1982 WWL#: 111
- 191. USGS-OFR-82-765, Jones, Blair F., Mineralogy of Fine Grained Alluvium From Borehole U11G, Expl. 1, Northern Frenchman Flat Area, Nevada Test Site, 1982 WWL#: 217
- 192. USGS-OFR-82-973, Sass, J. H., and Lachenbruch, A. H., Preliminary Interpretation of Thermal Data from the Nevada Test Site, 1982 WWL#: 35
- 193. USGS-OFR-83-141 , Rush, F. E., Thordarson, W., and Bruckheimer, L. , Geohydrologic Data For Test Well USW H-1 Yucca Mountain Area, Nye County, Nevada, 1983 WWL#: 33
- 194. USGS-OFR-83-321, Muller, D. C., Kibler, J. E., Commercial Geophysical Well Logs From The USW G-1 Drill Hole, Nevada Test Site, Nevada, 1983 WWL#: 4
- 195. USGS-OFR-83-401, Ellis, W. L. and Swolfs, H. S., Preliminary Assessment of In-Situ Geomechanical Characteristics in Drill Hole USW G-1, Yucca Mountain, Nevada, 1983 WWL#: 120
- 196. USGS-OFR-83-478, Glanzman, V. M., Bibliography of Reports by U.S. Geological Survey Personnel Pertaining to Underground Nuclear Testing and Radioactive Waste Disposal at the Nevada Test Site, and Radioactive Waste Disposal at the Waste Isolation Pilot Plant Site, New Mex, 1983 WWL#: 125
- 197. USGS-OFR-83-535, Spaulding, W. G., Vegetation and Climates of the Last 45,000 Years in the Vicinity of the Nevada Test Site, South-Central Nevada, 1983 WWL#: 36

- 198. USGS-OFR-83-542, Claassen, H. C., Sources and Mechanisms of Recharge for Ground Water in the West-Central Amargosa Desert, Nevada--A Geochemical Interpretation, 1983 WWL#: 110
- 199. USGS-OFR-83-732, Maldonado, F. and Koether, S. L., Stratigraphy, Structure, and Some Petrographic Features of Tertiary Volcanic Rocks at the USW G-2 Drill Hole, Yucca Mountain, Nye County, Nevada, 1983 WWL#: 148
- 200. USGS-OFR-83-768, Katzer, T., Moosburner, O., and Nichols, W. D., Investigations and Research in Nevada by the Water Resources Division, U.S. Geological Survey, 1982-83, 1984 WWL#: 139
- 201. USGS-OFR-83-853, Bentley, C. B., Robison, J. H., and Spengler, R. W., Geohydrologic Data For Test Well USW H-5 Yucca Mountain Area, Nye County, Nevada, 1983 WWL#: 34
- 202. USGS-OFR-83-854 ,Benson, L. V., Robison, J. H., Blankennagel, R. K., and Ogard, A. E., Chemical Composition of Ground Water and the Locations of Permeable Zones in the Yucca Mountain Area, Nevada, May, 1984 WWL#: 93
- 203. USGS-OFR-83-855, Lobmeyer, D. H., Whitfield, M. S., Jr., Lahoud, R. R., Bruckheimer, L., Geohydrologic Data for Test Well UE-25b#1 Nevada Test Site, Nye County, Nevada, 1983 WWL#: 28
- 204. USGS-OFR-83-856, Craig, R. W., Reed, R. L., and Spengler, R. W., Geohydrologic Data For Test Well USW H-6 Yucca Mountain Area, Nye County, Nevada, 1984 WWL#: 32
- 205. USGS-OFR-84-063, Bentley, C. B., Geohydrologic Data for Test Well USW G-4 Yucca Mountain Area, Nye County, Nevada, 1984 WWL#: 27
- 206. USGS-OFR-84-142, Waddell, R. K., Jr., Hydrologic and Drill-Hole Data For Test Wells UE-29a#1 and UE-29a#2, Fortymile Canyon, Nevada Test Site, 1984 WWL#: 18
- 207. USGS-OFR-84-149, Thordarson, W., Rush, F. E., Spengler, R. W., and Waddell, S. J., Geohydrologic and Drill-Hole Data for Test Well USW H-3, Yucca Mountain, Nye County, Nevada, 1984 WWL#: 17
- 208. USGS-OFR-84-273, Moore, D. E., Morrow, C. A., and Byerlee, J. D., Changes in Permeability and Fluid Chemistry of the Topopah Spring Member of the Paintbrush Tuff (Nevada Test Site) When Held in a Temperature Gradient: Summary of Results), 1984 WWL#: 200
- 209. USGS-OFR-84-356, Shaw, H. R. and Gartner, A. E., Empirical Laws of Order Among Rivers, Faults and Earthquakes, 1984 WWL#: 166
- 210. USGS-OFR-84-450, Craig, R. W., and Johnson, K. A., Geohydrologic Data for Test Well UE-25p#1, Yucca Mountain Area, Nye County, Nevada, 1984 WWL#: 21

- 211. USGS-OFR-84-491, Scott, R. B., and Castellanos, M., Stratigraphic and Structural Relations of Volcanic Rocks in Drill Holes USW GU-3 and USW G-3, Yucca Mountain, Nye County, Nevada, 1984 WWL#: 20
- 212. USGS-OFR-84-494, Scott, R. B. and Bonk, J., Preliminary Geologic Map of Yucca Mountain Nye County, Nevada With Geologic Sections, 1984 WWL#: 178
- 213. USGS-OFR-84-552, Anderson, L. A., Rock Property Measurements on Large-Volume Core Samples From Yucca Mountain USW GU-3/G-3 and USW G-4 Boreholes, Nevada Test Site, Nevada, 1984 WWL#: 22
- 214. USGS-OFR-84-567, Scott, R. B., Bath, G. D., Flanigan, V. J., Hoover, D. B., Rosenbaum, J. G., and Spengler, R. W., Geological and Geophysical Evidence of Structures in Northwest-Trending Washes, Yucca Mountain, Southern Nevada, and Their Possible Significance to a Nuclear Waste Repository in the Unsaturated Zone, 1984 WWL#: 19
- 215. USGS-OFR-84-649, Muller, D. C., and Kibler, J. E., Prelimimary Analysis of Geophysical Logs From Drill Hole UE-25p#1, Yucca Mountain, Nye County, Nevada, 1984 WWL#: 31
- 216. USGS-OFR-84-672, Healey, D. L., Clutsom, F. G., and Glover, D. A., Borehole Gravity Meter Surveys in Drill Holes USW G-3, UE-25p#1 and UE-25c#1, Yucca Mountain Area, Nevada, 1984 WWL#: 30
- 217. USGS-OFR-84-788, Swadley, W. C., Hoover, D. L., and Rosholt, J. N., Preliminary Report on Late Cenozoic Faulting and Stratigraphy in the Vicinity of Yucca Mountain, Nye County, Nevada, 1984 WWL#: 168
- 218. USGS-OFR-84-789 , Spengler, R. W. and Chornack, M. P. , Stratigraphic and Structural Characteristics of Volcanic Rocks in Core Hole USW G-4, Yucca Mountain, Nye County, Nevada, 1984 WWL#: 169
- 219. USGS-OFR-84-792, USGS, A Summary of Geologic Studies Through January 1, 1983, of a Potential High-Level Radioactive Waste Repository Site at Yucca Mountain, Southern Nye County, Nevada, 1984 WWL#: 192
- 220. USGS-OFR-84-848, Moore, D. E., Morrow, C. A., and Byerlee, J. D., Permeability and Fluid Chemistry Studies of the Topopah Spring Member of the Paintbrush Tuff, Nevada Test Site: Part II, 1984 WWL#: 201
- 221. USGS-OFR-85-363, Glanzman, V. M., Bibliography of Reports by U.S. Geological Survey Personnel Pertaining to Underground Nuclear Testing and Radioactive Waste Disposal at the Nevada Test Site, and Radioactive Waste Disposal at the Waste Isolation Pilot Plant Site, New Mex, 1985 WWL#: 126

- 222. USGS-OFR-85-475, Carr, W. J. and Parrish, L. D., Geology of Drill Hole USW VH-2, and Structure of Crater Flat, Southwestern Nevada, 1985 WWL#: 104
- 223. USGS-OFR-85-484, Benson, L. V. and McKinley, P. W., Chemical Composition of Ground Water in the Yucca Mountain Area, Nevada, 1971-84, 1985 WWL#: 196
- 224. USGS-OFR-85-540, Rosholt, J. N., Bush, C. A., Carr, W. J., Hoover, D. L., Swadley, W. C., and Dooley, J. R., Jr., Uranium-Trend Dating of Quaternary Deposits in the Nevada Test Site Area, Nevada and California, 1985 WWL#: 205
- 225. USGS-PP-712-C, Winograd, I. J., and Thordarson, W., Hydrogeologic and Hydrochemical Framework, South-Central Great Basin, Nevada-California, With Special Reference to the Nevada Test Site, 1975 WWL#: 23
- 226. USGS-PP-927, Dudley, W. W.,Jr., and Larson, J. D., Effect of Irrigation Pumping on Desert Pupfish Habitats in Ash Meadows, Nye County, Nevada, 1976 WWL#: 10
- 227. USGS-WRI-85-4030, Whitfield, M. S., Jr., Eshom, E. P., Thordarson, W., and Schaefer, D. H., Geohydrology of Rocks Penetrated by Test Well USW H-4, Yucca Mountain, Nye County, Nevada, 1985 WWL#: 197
- 228. WRR Vol. 20, No. 7, Moench, A. F., Double-Porosity Models for a Fissured Groundwater Reservoir With Fracture Skin, June,1985 WWL#: 202

ATTACHMENT B

NEVADA NUCLEAR WASTE STORAGE INVESTIGATION HYDROGEOLOGY DOCUMENT SUMMARY SHEETS WATER, WASTE & LAND, INC. DATA BASE

July 30, 1986

Attachment B July 30, 1986	B-1	NNWSI Document Summaries WWL #4001
WWL Document Number:	NRC DOCUMENT DATA	BASE Document Summary
	Mechanisms Governing Flui Porous Tuff at Yucca Moun	d Flow in Partially Saturated, tain
AUTHOR: Wang, J.S.Y	. and Narasimhan T.N.	
Document Number: LBI Requested From: NRG Received From: NRG		Publication Date: Oct. 1984 Request Date: Oct. 85 Receipt Date: Nov. 85
	oor to 10=excellent): 8 (general, specific, etc. itials): TLS,LAD,DBM	
KEY WORDS: Fracture 1	Flow, Unsaturated Flow, C	onceptual Model, Numerical Model
KEY DATA: Fracture	Inclination	
COMMENTS: The paper	has received a formal re	view.
fractures that sepa incorporates a model expressions for fract of matrix-fracture drainage of a fract model. The values observations of fra Mountain, measurement samples and indirect simulations of the d	arate partially saturat for estimating fracture ture saturation, fracture flow as functions of pr ured tuff column was sin for parameters in th cture spacings and ori its of pressure-saturation ty derived fracture-se	b describe flow along and across ed matrix blocks. This theory aperture distributions and yields permeability, and effective areas essure. With these expressions, sulated using the TRUST numerical e expressions are deduced from entations in samples from Yucca on relationships of matrix core urface characteristics. In the vertical and horizontal fractures taken into account.

Attachmen July 30,		B-2		NNWSI	Document	t Summaries WWL #4001
WWL Docum	ent Number: 2	NRC DOCUMENT	DATA BASE		Documer	nt Summary
	Preliminary Bounds Yucca Mountain Rep				rmance (of the
AUTHOR:	Sinnock, Scott, Li	n, Y.T. and Bi	rannen Joseph	Ρ.		
Requeste	Number: SAND84-14 d From: NRC From: NRC	92		Request	Date:	Dec. 84 Oct. 85 Nov. 85
Document	Rating (1≃poor to Description (gener Read By (Initials)	al, specific,		iew		
KEY WORDS	: Conceptual Model Time, Solubility					
	Release					
KEY DATA:	Matrix Propertie Inventory, Water				es, Rad	ionuclide
COMMENTS:	The report gives characteristics			on to th	e perfo	rmance
flux resp exceed 10 releases would be retardati to ground In combin no release years aft release o	ual model is devel ults in groundwat 000 years and may of waste from the well within the on by sorption and water flow by fact ation, these site ses to the accessi er repository clo f wastes to the ac o the EPA's limits	er travel tim exceed 100000 waste packages allowable re diffusion wi ors of hundred conditions pr ble environme sure. Even ccessible envi	nes to the wa years. The s; the corresp leases set b ll slow radio ds to thousand ovide a high nt will occur if rapid frac	ater ta low flu onding y the nuclide s for m degree during ture fl	ble tha ux will release: NRC. G movemen any was of confi of confi the fi ow were	t probably also limit s of curies Geochemical nt relative te species. idence that irst 10,000 to occur,

NNWSI	Document	Sum	naries
		WWL	#4001

NRC DOCUMENT DATA BASE 3 WWL Document Number: Document Summary TITLE: Conceptual Hydrologic Model of Flow in the Unsaturated Zone, Yucca Mountain. Nevada AUTHOR: Montazer, P., and Wilson, W. E. Document Number: USGS-84-4345 Publication Date: 1984 Request Date: Oct. 85 Requested From: NRC Received From: NRC Receipt Date: Nov. 85 Document Rating (1=poor to 10=excellent): 9 Document Description (general, specific, etc.): general Document Read By (Initials): TLS, LAD, DBM KEY WORDS: Hydrologic Model, Fracture Flow, Unsaturated Flow, Capillary Barrier, Hysteresis, Vapor Transport, Ground Water Flow, Perched Water

- KEY DATA: Hydrologic properties
- COMMENTS: The conceptual flow model presented is based on many assumptions which the data may or may not support. Generally a good paper to read.

SUMMARY:

Attachment B July 30, 1986

A conceptual model describing the flow of fluids through the unsaturated zone at Yucca Mountain is proposed. The proposed model considers the following flow phenomena in the unsaturated region: flow through fractured rock, capillary barriers, infiltration into fractured rock, lateral movement, and capillary fringe. The proposed model gives a representation of the flow in the hydrogeologic units and structural pathways at Yucca Mountain. Areas needing further investigation are identified.

Attachmer July 30,			В	-4	NNWSI	Documen	t Summaries WWL #4001
WWL Docum	nent Numb		NRC DOCUM	ENT DATA BAS	E	Docume	nt Summary
TITLE:		al Geophysi e, Nevada	ical Well	Logs From Th	e USW G-1 Dr	ili Hol	e, Nevada
AUTHOR:	Muller,	D. C., Kibl	ler, J. E.				
Requeste	Number: ed From: i From:		33-321			Date:	1983 Oct. 85 Nov. 85
Document	Descript	1=poor to 1 ion (genera (Initials):	ll, specif	nt): 7 ic, etc.):	Specific		
KEY WORDS				, SP Log, Re Porosity Lo		og, Neuti	ron Log,
KEY DATA:	: Summar	y of drill	hole USW	G-1 logging	operations.		
COMMENTS	Refere	nced plates	s #1 and #	2 are not co	ntained with	n the re	port.
correlat is that	ions with the phys	n welding in Sical prope	n the tufi rties of	c indicato f. The major the tuffs a ic Ridge are	r conclusion bove the Tr	that ca am Unit	an be drawn are quite

is that the physical properties of the tuffs above the Tram Unit are quite variable, while Tram and tuff of Lithic Ridge are more uniform and predictable. Future work should include borehole gravimetry for surface gravity modeling, IP logs to determine sulfide mineral content, magnetometer logs for stratigraphic correlation and for paleomagnetic models, and magnetic susceptibility logs.

Attachmen July 30,			B-5	I	NNWSI Docur	nent Summaries WWL #4001
WWL Docum	ent Numb		NRC DOCUMENT DA	TA BASE	Doci	ument Summary
			l Measurements Isolation Prog		5a-3, Nevad	da Test
AUTHOR:	Daniels,	J. J., and	Scott, J. H.			
Requeste	Number: d From: From:		0-126	R		e: 1980 e: Oct. 85 e: Nov. 85
Document	Descript		O=excellent): 1, specific, et TLS	7 c.): Specif	ic	
KEY WORDS			stivity Log, Ga Magnetic Susce			og, Induced
KEY DATA:	None					
COMMENTS:						
truck are density, and magn correlati the dril	e present normal r letic su ons with l hole i	ed. Well esistivity, sceptibili the core ndicate the	ments made in d logs are presen gamma ray, ner ty measurement lithology. Hol presence of t be related to	ted in this utron-neutron ts. These e-to-surface two resistive	paper for n, induced data are measureme bodies a	dual-detector polarization, analyzed for ents made from

NNWSI	Document	Sumr	naries
		WWL	#4001

Document Summary

NRC DOCUMENT DATA BASE

WWL Document Number:

Attachment B July 30, 1986

TITLE: Finite-Element Simulation of Ground-Water Flow in the Vicinity of Yucca Mountain, Nevada-California

AUTHOR: Czarnecki, J. B., and Waddell, R. K.

6

Document Number: USGS 84-4349 Requested From: NRC Received From: NRC Publication Date: 1984 Request Date: Oct. 85 Receipt Date: Nov. 85

- Document Rating (1=poor to 10=excellent): 7 Document Description (general, specific, etc.): Overview Document Read By (Initials): TLS
- KEY WORDS: Conceptual Model, Parameter Estimation, Mesh Design, Boundary Conditions, Transmissivities, Fluxes, Sensitivity Analysis, Traveltime, Model Residuals, Hydraulic Head
- KEY DATA: Transmissivity, Flux, Sensitivity Analysis, Hydraulic Head

COMMENTS:

SUMMARY:

A finite element model was developed using parameter estimation techniques to simulate steady-state ground water flow in the vicinity of Yucca Mountain. Model residuals for simulated versus measured hydraulic heads range from -28.6 to 21.4 meters; most are less than (+,-) 7 meters. The overall agreement between measured and simulated heads is good. Exceptions occur in areas where vertical flow components and/or steep hydraulic gradients occur. The model results also indicate areas where additional studies are needed. The presence of barriers in the model greatly affects the orientation of ground-water flow vectors. Few data are available regarding the shape , orientation, and extent of the barrier north of Yucca Mountain. The traveltime estimation procedure used to determine a possible range in traveltimes provides a means of comparing traveltimes resulting from different values of porosity and thickness. Although changing the anisotropy ratio in western Jackass Flats to achieve greater y-transmissivity versus x-transmissivity did produce faster traveltimes, it also led to larger error variance.

Attachmer July 30,			B-7	NNWSI	Document		aries #4001
		NRC DO	CUMENT DATA BASE	E		:	
WWL Docum	ent Numbe	er: 7			Documen	it Sum	mary
TITLE:		d Effects of Incr f Yucca Mountain				Flow	
AUTHOR:	Czarneck	i, J. B.					
Requeste	Number: ed From: 1 From:				Date: Date: Date:	Oct.	
Document	Descript	1=poor to 10=exce ion (general, spe (Initials): TLS		Overview			
KEY WORDS		tual Model, Groun Water Model	d Water Flow, Re	echarge, Fir	nite Elen	nent	
KEY DATA:	Hydrau	lic Head Map, Pre	cipitation				
COMMENTS	:						

SUMMARY:

The report assesses the potential effects of changes in future climatic conditions on the ground-water system in the vicinity of Yucca Mountain. The study was performed by simulating the ground water system using a 2-D, finite element ground water flow model. The simulated position of the water table rose as much as 130 meters near the primary repository area at Yucca Mountain for a simulation involving a 100-percent increase in precipitation compared to modern-day conditions. Despite the water table rise, no flooding of the potential repository would occur at its current proposed location. Simulated directions of ground water flow paths near the potential repository area generally would be the same for the baseline (modern day climate) and the increased recharge simulations, but the magnitude of flow would increase by 2 to 4 times that of the baseline simulation flux.

Attachme July 30,			B-8		NNWSI	Document	: Summaries WWL #4001
WWL Docu	ment Numb	er: 8	NRC DOCUMENT	DATA BASE		Documen	it Summary
TITLE:			ment of Climat at Basin and V				
AUTHOR:	Spauldin	g, W. G.,	Robinson, S. W	., and Paille	et, F. L		
Request	Number: ed From: d From:		328	Publ	Request	n Date: : Date: : Date:	Oct. 85
Document	Descript		10=excellent): ral, specific, : TLS		ific		
KEY WORD	S: Climat	e, Precipi	tation, Vegeta	tion			

s 1

COMMENTS:

SUMMARY:

A period of wetter conditions in the southern Great Basin during the latest Wisconsin may have incorporated increased precipitation during both the summer and winter, and lower temperatures during the winter, relative to the present. Resurgence of closed lakes in the southern Great Basin between 12000 and 10000 radiocarbon years before present and the persistance of exophytic vegetation where desert now exists are explicable phenomena in accordance with a proposed latest Wisconsin pluvial event. The climate of this pluvial event was much different from that of the preceding full glacial episode. Its general nature is consistent with what would be expected from current models of astronomically induced climatic changes.

Attachment B July 30, 1986	B-9	NNWSI Document Summarie WWL #400
WWL Document Number:	NRC DOCUMENT DAT 9	A BASE Document Summary
	l, Steady-State Model Vicinity, Nevada-Cali	of Ground-Water Flow, Nevada fornia
AUTHOR: Waddell, R. K.		
Document Number: USGS Requested From: NRC Received From: NRC	82-4085	Publication Date: 1982 Request Date: Oct. 85 Receipt Date: Nov. 85
Document Rating (1=poor Document Description (g Document Read By (Initi	eneral, specific, etc	7 .): Overview
	lodel, Geology, Ground ties, Sensitivity Ana	Water Basin, Numerical Model, lyses,
KEY DATA: Hydrologic l	Inits, Transmissivity,	Gradient, Flux
COMMENTS:		

SUMMARY:

A 2-D, steady-state, finite-element model of the ground water flow system of the Nevada Test Site and vicinity was developed using parameter-estimation techniques. The model simulates flow in an area underlain by clastic, carbonate and volcanic rocks. Sensitivities of fluxes derived from simulated heads and head sensitivities were used to determine the parameters that would most affect predictions of radionuclide transport from a hypothetical nuclear repository in the southwest quadrant of the NTS. The important parameters for determining flux through western Jackass Flats and Yucca Mountain are recharge to and underflow beneath Pahute Mesa; and transmissivities of the Eleana Formation, clastic rocks underlying the Groom Range, tuffs underlying Fortymile Canyon, and tuffs beneath Yucca Mountain. In the eastern part of Jackass Flats, the important parameters are transmissivities of the Eleana Formation and recharge or discharge terms for Pahute Mesa, Ash Meadows, and the Sheep Range.

Attachmen July 30,			B-10		NNWSI	Document	: Summaries WWL #4001
WWL Docum	ent Numbe		NRC DOCUMENT	DATA BASE		Documer	it Summary
			Data and Prel Vicinity, Nye			ic-Surfa	ace Maps,
AUTHOR:	Robison,	J. H.					
Requested	Number: d From: From:		97		Request	Date: Date: Date:	Oct. 85
Document	Descripti	=poor to 1 on (genera [Initials):	O=excellent): 1, specific, TLS	7 etc.): Speci	fic		
KEY WORDS	: Ground	Water Leve	I, Potentiome	tric Surface	Мар		
KEY DATA:	Well De	epths, Well	Altitudes, W	later Levels			
COMMENTS:							

SUMMARY:

The report contains data on ground water levels and preliminary maps of the potentiometric surface beneath Yucca Mountain and adjacent areas. The water level surface shown on the maps generally represents unconfined conditions. West of the crest of Yucca Mountain, water level altitudes are about 775 meters above sea level. Along the eastern edge and southern end of Yucca Mountain, the potentiometric surface generally is nearly flat, is about 728 to 730 meters above sea level, and has a southeastward slope.

Attachment July 30, 19			B-11	NNWS I	Documen	t Summarie WWL #400	
WWL Documen	t Number:		CUMENT DATA BASE		Docume	nt Summary	,
		v of Volcanic lin, Nye Count	Tuff Penetrated b y, Nevada	oy Test Wel	1 UE-25	b#1,	
AUTHOR: La	houd, R. (., Lobmeyer,	D. H., and Whitfi	ield, M. S.	., Jr.		
Document Nu Requested Received	From: NRC	;	F		Date:	1984 Oct. 85 Nov. 85	
Document De	scription	oor to 10=exce (general, spe itials): TLS		Decific			
		, Fracture Ana , Hydrochemis	lysis, Geophysica try	al Logs, Hy	drologi	с	

COMMENTS:

SUMMARY:

Test well UE-25b#1 located on the east side of Yucca Mountain was drilled to a total of 1220 meters and hydraulically tested. The composite hydraulic head for aquifers penetrated by the well was 728.0 meters above sea level, with a slight decrease in hydraulic head with depth. Average hydraulic conductivities for stratigraphic units determined from pumping tests, borehole flow surveys, and packer injection tests ranged from less than 0.001 meter per day for the Tram Member of the Crater Flat Tuff to 1.1 meters per day for the overlying Bullfrog Member of the Crater Flat Tuff. Chemical analysis indicated that the water is a soft sodium bicarbonate type, slightly alkaline, with large concentrations of dissolved silica and sulfate. Uncorrected carbon-14 age dates of the water were 14,100 and 13,400 years.

Attachment B July 30, 1986	B-12	NNWSI Do	ocument Summaries WWL #4001
WWL Document Num	NRC DOCUMENT		Ocument Summary
	cology of Rocks Penetrated in Area, Nye County, Nevad		l, Yucca
AUTHOR: Craig,	R. W., and Robison, J. H.		
Document Number Requested From Received From	NRC	Publication [Request [Receipt [Date: Oct. 85
Document Descrip	<pre>(1=poor to 10=excellent): otion (general, specific, v (Initials): TLS</pre>		
KEY WORDS: Well	Tests, Water Chemistry		
KEY DATA: Well	Construction, Well Tests	s, Transmissivity	
COMMENTS:			

SUMMARY:

Test well UE-25p#1 was drilled to a total depth of 1805 meters. The composite static water level was approximately 381 meters below land surface for the Tertiary section and 361 meters for the Paleozoic section. The likely confining layer is a conglomerate near the bottom of the Tertiary section in the depth interval from 1138 to 1172 meters. In the Tertiary section, an interval of less than 30 meters in the upper part of the Prow Pass Member has an apparent transmissivity of 14 meters squared per day. Composition of water from the Tertiary section was similar to water from other wells in the Yucca Mountain area.

Attachment July 30, 1			B-13	NNWSI	Document	: Summaries WWL #4001
WWL Docume	ent Number: 15		UMENT DATA BAS	SE	Documer	nt Summary
TITLE: 0	Geohydrology of	Test Well	USW H-3, Yucca	a Mountain, I	Nye Count	cy, Nevada
AUTHOR: 1	Thordarson, W.,	Rush, F. 8	., and Waddel	1, S. J.		
	Number: USGS 8 d From: NRC From: NRC	34-4272			n Date: t Date: t Date:	Oct. 85
Document I	Rating (1=poor Description (ge Read By (Initia	eneral, spec		Specific		
KEY WORDS:	: Well Data, We	ell Tests				
KEY DATA:	Well Construc	tion, Fract	ture Distribut	ion, Well Te	sts	
COMMENTS:	Well test dat	a was not a	analyzed in th	is report		
of rocks lithology	t presents dat penetrated in , borehole geo tests for the	n test wel physics, hy	1 USW H-3. drologic moni	Data on dr toring, pump	illing o	perations,

NNWSI	Document	Sum	naries
		WWL.	#4001

Attachment B July 30, 1986

B-14

NRC DOCUMENT DATA BASE

WWL Document Number: 16

Document Summary

TITLE: Preliminary Evaluation of Hydrologic Properties of Cores of Unsaturated Tuff, Test Well USW H-1, Yucca Mountain, Nevada

AUTHOR: Weeks, E. P., and Wilson, W. E.

Document Number: USGS 84-4193 Requested From: NRC Received From: NRC Publication Date: 1984 Request Date: Oct. 85 Receipt Date: Nov. 85

- Document Rating (1=poor to 10=excellent): 8 Document Description (general, specific, etc.): Specific Document Read By (Initials): TLS
- KEY WORDS: Moisture Tension, Hydraulic Conductivity, Moisture Characteristic Curves, Relative Permeability, Matrix Flux, Mercury Porosimetry Test, Core Volumetric Moisture Content
- KEY DATA: Density, Porosity, Volumetric Moisture Content, Moisture Tension, Hydraulic Conductivity, Moisture Characteristic Curves, Saturation-Tension Curves

COMMENTS:

SUMMARY:

Analyses were made on 19 core samples of unsaturated tuff from test well USW H-

1. No direct measurements were made of moisture tension and hydraulic conductivity at ambient moisture content. Moisture char. curves relating saturation and moisture tension were developed from results of mercury injection tests. Ambient moisture tension estimated from these curves generally was 100 to 200 kPa. Values of relative permeability ranging from about 0.002 to 0.1 were determined by fitting an analytical expression to eight of the moisture char. curves, and then integrating to solve for relative permeability. These values of relative permeability were applied to values of saturated hydraulic conductivity of core from a nearby test well to obtain effective hydraulic conductivities of about 8E-12 to 7E-10 cm/sec. If a unit hydraulic head gradient is assumed, these values convert to a vertical flux through the tuff matrix of 0.003 to 0.2 mm/yr.

NRC DOCUMENT DATA BASE WWL Document Number: 17 TITLE: Geohydrologic and Drill-Hole Data for Test W Mountain, Nye County, Nevada AUTHOR: Thordarson, W., Rush, F. E., Spengler, R. W. Document Number: USGS-OFR-84-149 Requested From: NRC Received From: NRC Document Rating (1=poor to 10=excellent): 7 Document Description (general, specific, etc.): Spec	NNWSI Document Summar WWL #4
TITLE: Geohydrologic and Drill-Hole Data for Test W Mountain, Nye County, Nevada AUTHOR: Thordarson, W., Rush, F. E., Spengler, R. W. Document Number: USGS-OFR-84-149 Pub Requested From: NRC Received From: NRC Document Rating (1=poor to 10=excellent): 7	
Mountain, Nye County, Nevada AUTHOR: Thordarson, W., Rush, F. E., Spengler, R. W. Document Number: USGS-OFR-84-149 Requested From: NRC Received From: NRC Document Rating (1=poor to 10=excellent): 7	Document Summa
Document Number: USGS-OFR-84-149 Pub Requested From: NRC Received From: NRC Document Rating (1=poor to 10=excellent): 7	lell USW H-3, Yucca
Requested From: NRC Received From: NRC Document Rating (1=poor to 10=excellent): 7	, and Waddell, S. J.
Received From: NRC Document Rating (1=poor to 10=excellent): 7	Nication Date: 1984 Request Date: Oct. 85
	Receipt Date: Nov. 85
Document Read By (Initials): TLS	ific
KEY WORDS: Geohydrologic Data, Drill Hole Data	

KEY DATA: Water Levels, Hydraulic Tests, Fracture Distribution, Lithologic Log, Geophysical Well Logs, Injection Test, Pumping Test, Radioactive Tracer Flow Survey

COMMENTS:

SUMMARY:

The following data is presented for test well USW H-3: Bit and casing data, Lithologic log, Geophysical Well Logs, Lineations, Distribution of out of gage hole, Fracture distribution, Water Levels, Drilling Fluid Use, Pumping test data, injection test data, Recovery data, Radioactive tracer flow survey

Attachment B July 30, 1986	B-16	NNWSI Document Summaries WWL #4001			
WWL Document Number: 18	NRC DOCUMENT DATA BA	ASE Document Summary			
	Drill-Hole Data For Test on, Nevada Test Site	t Wells UE-29a#1 and UE-29a#2,			
AUTHOR: Waddell, R. K.,	, Jr.				
Document Number: USGS-C Requested From: NRC Received From: NRC	DFR-84-142	Publication Date: 1984 Request Date: Oct. 85 Receipt Date: Nov. 85			
Document Description (ge	Document Rating (1=poor to 10=excellent): 7 Document Description (general, specific, etc.): Specific Document Read By (Initials): TLS				
KEY WORDS: Well Data, We	ell Tests				
KEY DATA: Lithologic Lo	og, Water Chemistry, Well	l Test Data, Water Levels			
COMMENTS: Well test dat	ta was not analyzed in th	he report.			
abandonment of UE-29a#1 of drilling of UE-29a# pumping tests were per series of tests in UE- performed in UE-29a#1;	; drilling problems and #2 before the desired f formed, and water samp 29a#1. Two short term,	Drilling difficulties caused the a rig accident caused cessation total depth was reached. Six bles were collected during two , slow pumping rate tests were ected in a subsequent period of ed.			

Attachmer July 30,		B-17	NNWSI Document Summar WWL #4		
WWL Docum	nent Number: 21	NRC DOCUMENT DATA E	BASE Document Summa	ry	
TITLE:	Geohydrologic Data County, Nevada	l for Test Well UE-25	5p#1, Yucca Mountain Area, Nye	2	
AUTHOR:	Craig, R. W., and	Johnson, K. A.			
Requeste	Number: USGS-OFR- ed From: NRC 1 From: NRC	·84-450	Publication Date: 1984 Request Date: Oct. 85 Receipt Date: Nov. 85		
Document Rating (1=poor to 10=excellent): 7 Document Description (general, specific, etc.): Specific Document Read By (Initials): TLS					
KEY WORDS	5: Well Completion,	Well Tests, Water C	Chemistry		
KEY DATA:	: Lithologic Log, Analysis	Well Construction, W	Water Levels, Well Tests, Wate	٢	
COMMENTS	: The well test da	ita was not analyzed.	•		
1,805 me following of boreh	ters the rock is o g data for the test ole geophysical l	dolomite of Paleozoi : well: drilling ope	h of 1,805 meters. From 1,244 ic age. The report presents erations, lithology, availabil water chemistry, pumping tes ts.	the	

Attachmer July 30,		B-18	NNWSI	Document	: Summaries WWL #4001
WWL Docur	NRC DOC Nent Number: 22	UMENT DATA BASE		Documer	nt Summary
TITLE:	Rock Property Measurements Mountain USW GU-3/G-3 and				
AUTHOR:	Anderson, L. A.				
Request	Number: USGS-OFR-84-552 ed From: NRC i From: NRC		Request	Date: Date: Date:	
Document	Rating (1=poor to 10=excel Description (general, spec Read By (Initials): TLS		ific		
KEY WORDS	5: Core Analysis				
KEY DATA:	Density, Porosity				
COMMENTS					
following	ples from USW GU-3/G-3 an ; electrical resistivity isity, and compressional so	, induced polariza	es were ition, p	analyze orosity	ed for the , bulk and

NRC DOCUMENT DATA BASE

WWL Document Number: 23

Attachment B July 30, 1986

Document Summary

- TITLE: Hydrogeologic and Hydrochemical Framework, South-Central Great Basin, Nevada-California, With Special Reference to the Nevada Test Site
- AUTHOR: Winograd, I. J., and Thordarson, W.

Document Number: USGS-PP-712-C Requested From: NRC Received From: NRC Publication Date: 1975 Request Date: Oct. 85 Receipt Date: Nov. 85

- Document Rating (1=poor to 10=excellent): 9 Document Description (general, specific, etc.): General Document Read By (Initials): TLS
- KEY WORDS: Geology, Aquifers, Aquitards, Ground Water Movement, Ground Water Basins, Ground Water Chemistry, Recharge, Precipitation, Ground Water Velocity
- KEY DATA: Hydrogeologic Map, Well Test, Permeability, Fracture Transmissibility, Porosity, Hydraulic Gradients, Water Analysis
- COMMENTS: A good overview of the regional ground water systems.

SUMMARY:

Strata in the Nevada Test Site are divided into 10 hydrogeologic units. Three of these-the lower clastic aquitard, the lower carbonate aquifer, and the tuff aquitard- control the regional movement of ground water. Synthesis of hydrogeologic, hydrochemical, and isotopic data suggests that an area of at least 4500 square miles is hydraulically integrated into one ground water basin, the Ash Meadows basin, by interbasin movement of ground water through the widespread carbonate aquifer. Discharge from this basin-a minimum of about 17000 acre-feet annually-occurs along a fault-controlled spring line at Ash Meadows in east-central Amargosa Desert. Within the Nevada Test Site, ground water moves southward and southwestward toward Ash Meadows.

July 30,	nt B 1986	B-2	-	Document Summar WWL #4
		NRC DOCUMEN	T DATA BASE	
WWL Docu	ment Numb	er: 24		Document Summa
TITLE:	to Water	rology of the Southern Table Fluctuations Be Pleistocene		
AUTHOR:	Winograd	, I. J., and Doty, G.	с.	
Document	Number:	USGS-0FR-80-569		n Date: 1980
	ed From: d From:			t Date: Oct. 85 t Date: Nov. 85
	Descript	1=poor to 10=excellent ion (general, specific (Initials): TLS		
	Read By	(Interars). its		

KEY DATA: Water Level Change

COMMENTS:

SUMMARY:

The distribution of calcitic veins in alluvium and lakebeds, and of tufa deposits, between the Ash Meadows spring discharge area and the NTS suggests that discharge from the regional Paleozoic carbonate aquifer during the Late(?) Pleistocene occurred at distances as much as 14 kilometers northeast of Ash Meadows and at altitudes up to 50 meters higher than at present.

Attachment B July 30, 1986	B-21	NNWSI Document Summaries WWL #4001
WWL Document Number	NRC DOCUMENT DATA : 25	BASE Document Summary
	hy and Structure of Volcani tain, Nye County, Nevada	ic Rocks in Drill Hole USW-G1,
AUTHOR: Spengler, I	R. W., Byers, F. M., and Wa	arner, J. B.
Document Number: U Requested From: N Received From: N	RC	Publication Date: 1981 Request Date: Oct. 85 Receipt Date: Nov. 85
	poor to 10=excellent): 8 n (general, specific, etc.) nitials): TLS	
KEY WORDS: Well Com	pletion, Stratigraphy, Core	e, Fractures
KEY DATA: Fracture	Frequency, Well Completion	n Data, Lithologic Log
COMMENTS:		
SUMMARY:		

Drill hole USW-G1 was cored from 292 to 6000 feet. Examination of core for structural features revealed the presence of 61 shear fractures, 528 joints, and 4 conspicuous fault zones. Shear fractures mainly occurred in the TSw, flow breccia, and near fault zones. Conspicuous fault zones, arbitrarily defined by their disruption of more than 5 feet of core, were recognized by the concentration of shears coupled with the presence of fault breccia, clay gouge, and granulated core. A coincidence occurs between joint development and the degree of welding. Nearly 88 percent of shear and joint surfaces show evidence of coatings. Approximately 40 percent of the fractures were categorized as completely healed.

Attachmer July 30,				B-22	NNWSI		t Summaries WWL #4001
WWL Docum	nent Numbe	er: 2		MENT DATA BAS	E	Docume	nt Summary
TITLE:				ISW H-1, Yucca	Mountain, N		•
AUTHOR:	Rush, F.	E., T	hordarson, W.	, and Pyles,	D. G.	· ·	
	Number: ed From: I From:	NRC	83-4032			Date:	1984 Oct. 85 Nov. 85
Document	Descripti	ion (g	to 10=excell eneral, speci als): TLS	ent): 9 fic, etc.): :	Specific		
KEY WORDS	Density	, Mat Injec	rix Porosity, tion Tests, C	ivity, Hydrau Pore Saturat onceptual Mod	ion, Geophys	ical Log	js, Pump
KEY DATA:	Water L	evels	, Pump Test D	Pore Saturat ata, Transmis emical Analys	sivity, Hydr		uctivity,
COMMENTS:	A very	good	report.				
surveys, interpret Spring M unsaturat	, hydrol tations; lember ge ted; (2) Pass Mem	ogica (1) Si neral The wa ber.	l monitorin tratigraphic ly are inter iter table is In the inter	sts, 6 inject g, core ana units from th sively fract at a depth o rval from 448	lysis, and le surface t ured, relat of 572 m, in to 572 m,	geophy hrough f ively p the upp the rock	sical log the Topopah orous, and per part of is nearly

saturated, probably with a perched saturated zone from 448 to 458 m. Water seeps were observed at many depths with a TV camera log; (3) For the Bullfrog Member, the average horizontal matrix hydraulic conductivity is about twice the magnitude of the avg. vertical matrix hydraulic conductivity; (4) Four zones showed temperature gradient reversals and four zones showed large increases in the temperature gradient. Hydrological conditions which may be related to the

zones are above the water table; (5) During drawdown and recovery tests, a slight drawdown occurred in well USW G-1, 430 m northwest; (6) Hydraulic head in the zone 688 to 741 m below surface was 730 m above sea level. Deeper zones

All eight

geothermal conditions have not been identified for this report.

had hydraulic heads of 781 meters above sea level or higher, indicating an upward component of groundwater flow at the site; (7) Based on results of the pumping tests, nearly all the permeable rock penetrated by this well is in the Prow Pass Member above a depth of 688 m.

Attachment July 30, 1	-	B-24	NNWSI D	ocument Summaries WWL #4001
WWL Docume	ent Number: 27	NRC DOCUMENT DATA BAS		Document Summary
	Geohydrologic Data County, Nevada	a for Test Well USW G-4	4 Yucca Mounta	lin Area, Nye
AUTHOR: 1	Bentley, C. B.			
Requested	Number: USGS-OFR 1 From: NRC From: NRC	-84-063		Date: 1984 Date: Oct. 85 Date: Nov. 85
Document [10=excellent): 7 ral, specific, etc.):): TLS	Specific	
KEY WORDS:	: Drilling Operat Water Level, Wat	ions, Lithology, Pumpin ter Chemistry	ng Tests, Inje	ction Tests,
KEY DATA:		on, Water Levels, Pump [.] on Test, Water Chemisti		hole Flow
COMMENTS:		ection Test Data is gra ery vs. time, and head		
	The data has no	t been analyzed.		
SUMMARY: This rep		t been analyzed. .ta on drilling oper	ations. lit	nology, borehol

This report presents data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, core analysis, water chemistry, pumping tests, and packer-injection tests for test well USW G-4. Test well USW G-4 was drilled to a total depth of 915 meters. Depth of water in the well during drilling and testing ranged from 538 to 544 meters below land surface. Drawdown in the well was about 3 meters after test pumping more than 5,000 minutes at a rate of 16 liters per second. A borehole flow survey indicated that almost all water withdrawn from the well was contributed by a zone between a depth of about 865 and 915 meters below land surface. A composite water sample collected after well completion contained 216 mg/liter of dissolved solids, with relatively large concentrations of silica, sodium and bicarbonate.

Attachment July 30, 19		6-	25	NNWSI	Documen	t Summaries WWL #4001
WWL Docume	ıt Number: 28		INT DATA BASE		Docume	nt Summary
TITLE: GO	eohydrologic D ounty, Nevada	ata for Test W	/e11 UE-25b#1 Ne	vada Tes	st Site,	Nye
AUTHOR: Lo	obmeyer, D. H.	, Whitfield, N	l. S., Jr., Laho	ud, R. F	R., Bruc	kheimer, L
	From: NRC	FR-83-855	Pub	Request		1983 Oct. 85 Nov. 85
Document Do		to 10=exceller neral, specifi ls): TLS	t): 7 c, etc.): Spec	ific		
KEY WORDS:	Well Completi	on, Core, Well	Tests			
KEY DATA:			Logs, Water Lev on, Permeability			

COMMENTS:

SUMMARY:

Data on drilling operations, lithology, core analyses, borehole geophysics, hydrologic monitoring, hydraulic testing, and ground water chemistry for test well UE-25b#1 are contained in this report.

.

.

Attachment B July 30, 1986	B-26	NNWSI Document Summaries WWL #4001				
WWL Document Number: 32	NRC DOCUMENT DATA	BASE Document Summary				
TITLE: Geohydrologic Da County, Nevada	ta For Test Well USW	H-6 Yucca Mountain Area, Nye				
AUTHOR: Craig, R. W., Re	ed, R. L., and Spengl	er, R. W.				
Document Number: USGS-OF Requested From: NRC Received From: NRC	R-83-856	Publication Date: 1984 Request Date: Oct. 85 Receipt Date: Nov. 85				
Document Description (gen	Document Rating (1=poor to 10=excellent): 7 Document Description (general, specific, etc.): Specific Document Read By (Initials): TLS					
KEY WORDS: Well Completio	n, Well Tests, Water	Chemistry				
KEY DATA: Water Level, W	ell Test Data, Water	Analysis				
COMMENTS: The well test	data was not analyzed	!∙				
penetrated are predominan 1126 meters. The compo- below land surface. The was about 18 meters after 12 meters after pumping f flow survey showed that	itly ash flow tuffs. site static water le well was pumped durin pumping for 4822 min for 2,226 minutes at 2 91 percent of the wa	depth of 1220 meters. Rocks Lava was encountered from 877 to evel is approximately 526 meters ng two periods. Maximum drawdown utes at 28 liters per second, and 27 liters per second. A borehole ter withdrawn from the well came rs, and from 777 to 788 meters.				

•

.

•

	it B 1986		B-27	NNWSI Docume	WWL #40
WWL Docum	nent Numb		MENT DATA BASE	Docum	nent Summar
TITLE:	Geohydro County,		Well USW H-1 Yucca	Mountain Ar	ea, Nye
AUTHOR:	Rush, F.	E., Thordarson, W.	, and Bruckheimer, I	L.	
		USGS-OFR-83-141 NRC	R	cation Date: equest Date:	0ct. 85
Document Document	Descript	1=poor to 10=excell		eceipt Date: 1	. NUV. 05
KEY WORDS	Radioa	ictive Tracer Flow S	ologic Log, Core Sa urveys, Water Level Tests, Chemical Ana	s, Drilling	
,					. Danudau
KEY DATA:		y Data, Lithologic L Recovery Data, Inje		Water Levels	5, Urawaowi

of rocks penetrated in test well USW H-1. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, core analysis, ground water chemistry and pumping and injection tests are contained. All data tables presented were compiled by the authors except where otherwise noted.

Attachment B July 30, 198		B-28	NNWSI	Document Summaries WWL #4001
WWL Document		NRC DOCUMENT DA	TA BASE	Document Summary
	hydrologic Data nty, Nevada	For Test Well U	SW H-5 Yucca Moun	tain Area, Nye
AUTHOR: Ben	tley, C. B., Rob	ison, J. H., an	d Spengler, R. W.	
Document Num Requested F Received F		3-853	Reques	n Date: 1983 t Date: Oct. 85 t Date: Nov. 85
Document Des	ing (1=poor to 1 cription (genera d By (Initials):	1, specific, et	7 c.): Specific	
KEY WORDS: L	ithology, Pumpin	g Tests, Inject	ion Tests	
			g, Water Levels, vey, Injection Te	
COMMENTS: B	uildup, Drawdown	, and Injection	Test Data has no	t been analyzed.
geophysics, pumping test drilled to a of ash-flow meters below level. Draw 3000 minutes that about between 707 samples coll liter of di dissolved an	water-level mo is, and packer in total depth of tuff. Depth to and surface, a w-down in the we at a rate of 12 90 percent of t and about 820 lected after wel issolved solids nion and cation wer liter in both	nitoring, core njection tests (1219 meters thr water in the at an approxima ell exceeded 6 20 liters per so the water in the meters below 1 1 completion co . Sodium and . The concent	analysis, groun for test well USW ough volcanic roc well ranged betwe te altitude of 77 meters after test econd. Borehole- ne well is contr land surface. T ontained 206 and bicarbonate wer ration of dissol	thology, borehole d water chemistry, H-5. The well was k consisting mostly een 703.8 and 707.2 74 meters above sea t pumping more than flow surveys showed ibuted by the zone wo composite water 220 milligrams per re the predominate lyed silica was 48 large concentration

Attachment B July 30, 1986

WWL Document Number: 37

Document Summary

TITLE: Preliminary Report on the Geology and Geophysics of Drill Hole UE25a-1, Yucca Mountain, Nevada Test Site

NRC DOCUMENT DATA BASE

AUTHOR: Spengler, R. W., Muller, D. C., Livermore, R. B.

Document Number: USGS-OFR-79-1244 Requested From: NRC Received From: NRC Publication Date: 1979 Request Date: Oct. 85 Receipt Date: Nov. 85

Document Rating (1=poor to 10=excellent): 8 Document Description (general, specific, etc.): Specific Document Read By (Initials): TLS

KEY WORDS: Geology, Stratigraphy, Core, Geophysical Logs

KEY DATA: Joint Inclination, Shear Fracture Inclination, Porosity, Saturation

COMMENTS:

SUMMARY:

Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five fault zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members, Restricted log coverage to the lower half of the drill hole. WWL Document Number: 47

Document Summary

TITLE: Minerals in Fractures of the Unsaturated Zone from Drill Core USW G-4, Yucca Mountain, Nye County, Nevada

NRC DOCUMENT DATA BASE

AUTHOR: Carlos, B. Arney

Document Number: LA-10415-MS Requested From: NRC Received From: NRC Publication Date: May,1985 Request Date: Oct. 85 Receipt Date: Nov. 85

Document Rating (1=poor to 10=excellent): 7 Document Description (general, specific, etc.): Specific Document Read By (Initials): TLS

KEY WORDS: Minerals, Devitrified, Zeolitized, Fracture, Static Water Level

KEY DATA: Mineral Analysis

COMMENTS:

SUMMARY:

The mineralogy of fractures in drill core USW G-4, from a depth of nearly 800 feet to the static water level (SWL) at 1770 feet, was examined to determine the sequence of deposition and the identity of minerals that might be natural barriers to radionuclide migration from a nuclear waste repository. The unsaturated zone below 244 meters was divided into three rock types: devitrified, glossy, and zeolitized host rock. Fracture-lining zeolites for each of these three rock types differ in mineralogy and morphology. Similarities between fracture mineralogy and host-rock alteration in the nonwelded zeolotic units of the Topopah Spring Member suggest that this zone was once below the water table. Nonwelded glass shards present in the host rock above the zeolite-mineral transition in the fractures indicated that the water table was never higher than the lithic-rich base of the Topopah Spring Member in the vicinity of USW G-4.

WWL Document Number: 48

Document Summary

TITLE: Groundwater Chemistry Along Flow Paths Between a Proposed Repository Site and the Accessible Environment

NRC DOCUMENT DATA BASE

AUTHOR: Ogard, A. E., and Kerrisk, J. F.

Document Number: LA-10188-MS Requested From: NRC Received From: NRC Publication Date: Nov,1984 Request Date: Oct. 85 Receipt Date: Nov. 85

Document Rating (1=poor to 10=excellent): 7 Document Description (general, specific, etc.): Specific Document Read By (Initials): TLS

KEY WORDS: Ground Water Chemistry, Solubility

KEY DATA: Water Analysis, Radionuclide Solubility

COMMENTS:

SUMMARY:

The groundwater from all pumped wells in and near the site has been sampled and analyzed; the results are reported in this document. The speciation and solubility of nuclear waste elements in these ground waters have been calculated using the EQ3/6 computer code. Estimates have also been made of the pH and Eh buffering capacity of the water/rock system of Yucca Mountain.

Attachment B July 30, 1986	B-32	NNWSI Document Summaries WWL #4001
WWL Document Number: 51	NRC DOCUMENT DATA	BASE Document Summary
TITLE: Solubility Limit Repository	ts on Radionuclide Dis	solution at a Yucca Mountain
AUTHOR: Kerrisk, J. F.		
Document Number: LA-9999 Requested From: NRC Received From: NRC	5-MS	Publication Date: May,1984 Request Date: Oct. 85 Receipt Date: Nov. 85
Document Rating (1=poor 1 Document Description (gen Document Read By (Initia	neral, specific, etc.)	: Specific
KEY WORDS: Water Chemist	ry, Solubility, Concep	otual Model
KEY DATA: Water Analysis	s, Radionuclide Solubi	ility, Repository Inventory
COMMENTS:		
a number of important ra simple dissolution models a Yucca Mountain reposit the water flowing throug	dionuclides from spen s were used for calcul ory. A saturation li h the repository is a	y in limiting dissolution rates of t fuel and high level waste. Two lations that are characteristic of mited dissolution model, in which assumed to be saturated with each t it over estimates dissolution

waste element, is very conservative in that it over estimates dissolution rates. A diffusion limited dissolution model, in which element dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time.

Attachment B July 30, 1986	B-33	NNWSI	Document Summaries WWL #4001
WWL Document Number: 56	NRC DOCUMENT DATA B/	ASE	Document Summary
TITLE: Fracture and Mat Materials from Y	rix Hydrologic Characto ucca Mountain, Nye Cou		ffaceous
AUTHOR: Peters, R. R., K P. R., and Gee,		I. J., Blair,	S. C., Heller,
Document Number: SAND84- Requested From: NRC Received From: NRC	1471	Request	Date: Dec,1984 Date: Oct. 85 Date: Nov. 85
Document Rating (1=poor t Document Description (gen Document Read By (Initial	eral, specific, etc.):	Specific	
KEY WORDS: Core Analysis,	Fracture Analysis,		
KEY DATA: Matrix Permeab	ility, Fracture Permea	bility	

COMMENTS:

SUMMARY:

The primary purpose of this document is to provide a compilation of the testing procedures used and the hydrologic data obtained. The results of testing indicate the following; (1) There are wide variations in water retention characteristics for the tuffaceous materials tested. (2) The measured saturated hydraulic conductivities for welded tuff samples were low, ranging from 10E-10 to 10E-14 m/s. The fracture saturated conductivity was significantly higher than the matrix conductivity on all samples tested and flow through all fractured and unfractured samples was reduced at elevated pressure.

Attachment B July 30, 1986	B-34	NNWSI Docume	nt Summaries WWL #4001
WWL Document Number: 5	NRC DOCUMENT DATA	—	ent Summary
TITLE: Unit Evaluation and Recommenda		evada Test Site: Summa	ry Report
AUTHOR: Johnstone, J.	K., Peters, R. R., and	Gnirk, P. F.	
Document Number: SAND8 Requested From: NRC Received From: NRC	3-0372	Publication Date: Request Date: Receipt Date:	Oct. 85
Document Rating (1=poor Document Description (g Document Read By (Initi	eneral, specific, etc.		
KEY WORDS: Conceptual N	lodel, Numerical Model,	Ground Water Flow	
KEY DATA: Stratigraphy	, Hydraulic Head Distr	ibution, Recharge	
COMMENTS:			
SUMMARY: Pacific Northwest La conditions, and calibra model of the NTS and model boundary contrib	tion of a two dimension vicinity. Underflow t	nal, finite difference from areas north and	, hydrologic east of the

conditions, and calibration of a two dimensional, finite difference, hydrologic model of the NTS and vicinity. Underflow from areas north and east of the model boundary contribute a significant flux to model input; however, water balances within the model boundary are in good agreement with published values. The major discharge flux from the model occurs along the Death Valley perimeter. If future hydraulic head data and aquifer tests were identified with hydrostratigraphic units, a two layer, three dimensional model could be constructed, which would more accurately simulate the physical system.

Attachment B July 30, 1986	B-35	NNWSI Document Summaries WWL #4001
WWL Document Numbe	NRC DOCUMENT DAT	TA BASE Document Summary
		Functional Tuffaceous Beds in -2, Yucca Mountain, Nevada
AUTHOR: Lappin, A	. R., and Nimick, F. B.	,
Document Number:	SAND82-1434	Publication Date: April,1985
Requested From: Received From:		Request Date: Oct. 85 Receipt Date: Nov. 85
	<pre>=poor to 10=excellent): on (general, specific, etc [Initials): TLS</pre>	
	ensity, Porosity, Frequence Conductivity, Thermal Exp	cy Distributions, Mineralogy, bansion, Dehydration
KEY DATA: Grain D	ensity, Porosity, Thermal	Conductivity, Thermal Expansion

SUMMARY:

COMMENTS:

The objective of this report is to document bulk and thermal property data used in evaluating the Tuffaceous Beds of Calico Hills. Only data received as of March 15, 1982 are included. A Functional Unit is defined using zeolitization as a prime characteristic. The Functional Unit includes portions of the overlying and underlying tuffs. Thermal conductivity measurements on zeolitized ashflow tuffs are relatively consistent, indicating a zero porosity conductivity of 1.95 W/m*K. Internal complexity of the functional Tuffaceous Beds is apparent in thermal expansion behavior. On cooling, the expansion behavior of these strongly zeolitized tuffs depends on the availability of water. If the tuffs are not rehydrated, they will contract continuously to ambient temperature, resulting in net contraction if they are dewatered on heating.

Attachment B July 30, 1986	B-36	NNWSI	Document	t Summaries WWL #4001
WWL Document Number: 65 TITLE: Water Transport	NRC DOCUMENT DATA BASE Through Welded Tuff	·	Documei	nt Summary
AUTHOR: Hadley, G. R.				
Document Number: SAND82- Requested From: NRC Received From: NRC	1043 Pi	ublication Request Receipt	Date:	
Document Read By (Initia)	eral, specific, etc.): sp		anor Pro	:

KEY WORDS: Imbibition, Evaporation Front, Capillary Forces, Vapor Pressure Gradients, Gamma Ray Densiometry, Saturation Profiles

KEY DATA: Porosity, Saturation Profiles

COMMENTS: The report presents an interesting method for determining the saturation profile in a rock sample by the use of gamma ray attenuation.

SUMMARY:

The direct measurement of saturation profiles in tuff cores during drying and imbibition is discussed. Much information on the experimental procedures and apparatus is given. The results of the experiments showed that the shapes of the saturation profiles in the 0.15 meter long core of welded tuff depend on the presence and direction of the sample temperature gradient. The profiles indicate that drying takes place simultaneously throughout the sample, and not from an isolated region, such as an evaporation front.

 Attachmer July 30,			E	3-37	NNWSI	Documen	t Summaries WWL #4001
WWL Docum	nent Numb	er: 66	NRC DOCUM	IENT DATA BAS	E	Docume	nt Summary
TITLE:			Well Test (, Nye County	Data for Test y, Nevada	Well USW H	-1, Adja	cent to
AUTHOR:	Barr, G.	Ε.				·	
	Number: ed From: d From:	NRC	0637			n Date: t Date: t Date:	Oct. 85
Document		ion (gen	o 10=excelle eral, specif s): TLS		Specific		
KEY WORDS				ts, Hydraulic y Analysis, B			
KEY DATA:			, Pumping Ra Storativity	ite, Injectio	n Rate, Hyd	raulic	
COMMENTS	: Contai	ns comput	ter code use	ed for data r	eduction		
by a com source/ i the sens location infiltra necessary of K and the obso penetrato in WWLNU tests di relative with som	puter pro boundary itivity o of possi tion occu y to assu S can be erved da erved da erved da erved da erved by ffer by ffer by ly high h e indicat	gram to condition f the re ble wate urs and me start ta. Th n of the cush et.a a factor hydraulic	determine h ns. The co sults due t r sources o that the m ing values which give e integrat saturated 1, using gr of 10 for conductivi fracture cor	ry tests, and oydraulic com- mputer code f o changes in r barriers. nedium is ve for K and S. and approx. f ed total hy zone is essen raphical meth- r K. The up ties, in the nnectivity. y several ord	ductivity,s PUMP, allow K and S an The model rtically ho By tria fit between vdraulic co ntially the ods. Howev oper zone range of Below this	torativi s invest d of the assumes mogeneou l and er the cal nductiv same as er, some is chara LE-4 to zone, t	ty, and any igations of subsurface no vertical us. It is ror, values culated and ity of the determined individual cterized by 1E-5 m/sec,

Attachmer July 30,		B·	38	NNWSI		Summaries WWL #4001
WWL Docum	nent Numbe		NT DATA BASE		Documen	it Summary
TITLE:		ic Mechanisms Govern i, Porous Tuff at Yu		Partia	ally Satu	irated,
AUTHOR:	Wang, J.	S. Y., and Narasimh	un, T. N.			
Document	Number:	SAND84-7202	Publ	icatio	n Date:	April,198
	ed From: d From:				t Date: t Date:	
Document	Descript	l=poor to 10=excelle lon (general, specif (Initials): TLS,LA	ic, etc.): Gener	al		
KEY WORD		ogic Model, Fracture r, Hysteresis, Vapor		d Flow	, Capilla	ıry

KEY DATA: Hydrologic properties of Hydrogeologic Units

COMMENTS:

SUMMARY:

A conceptual model describing the flow of fluids through the unsaturated zone at Yucca Mountain is proposed. The proposed model considers the following flow phenomena in the unsaturated region; flow through fractured rock, capillary barriers, infiltration into fractured rock, lateral movement, and capillary fringe. The proposed model gives a representation of the flow in the hydrogeologic units and structural pathways at Yucca Mountain. Areas needing further investigation are identified.

NRC DOCUMENT DATA BASE

WWL Document Number: 74

Document Summary

TITLE: Hydrology and Water Resources Overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

AUTHOR: French, R. H., Elzeftawy, A., Bird, J., and Elliot, B.

Document Number:NVO-284Publication Date:June,1984Requested From:NRCRequest Date:Oct. 85Received From:NRCReceipt Date:Nov. 85

Document Rating (1=poor to 10=excellent): 7 Document Description (general, specific, etc.): Overview Document Read By (Initials): TLS

KEY WORDS: Groundwater, Paleoclimatology, Hydrometeorology

KEY DATA: Water Analysis, Water Usage, Precipitation

COMMENTS:

SUMMARY:

This report summarizes the literature and available unpublished data regarding hydrology and water resources utilization in the NTS area.

Attachment B July 30, 1986	B-40	NNWSI I	Document	Summaries WWL #4001
WWL Document Number: 75	NRC DOCUMENT DATA I	BASE	Documen	t Summary
TITLE: Geology and Hydr e	ology of Yucca Mounta	in and Vicinity	, Nevada	Test Sit
AUTHOR: Reade, M. T., an	d McKay, E. D.			
Document Number: CGS/811 Requested From: NRC Received From: NRC	.6R028		Date: Date: Date:	Oct. 85
Document Rating (1=poor t Document Description (gen Document Read By (Initial	neral, specific, etc.)	: Overview	·	
KEY WORDS: Geology, Regio	onal Hydrology			

KEY DATA: Porosity, Permeability, Fracture Properties

COMMENTS:

SUMMARY:

This report provides a summary of the geology and hydrology from available studies of the NTS region for the purpose of allowing application of the Sandia risk assessment methodology to a realistic geologic system in which volcanic tuffs are the candidate disposal medium. The probability and consequences of the occurrence of several scenarios are considered.

Attachmen July 30,		E	3-41	NNWSI Docume	nt Summaries WWL #4001
WWL Docur	nent Number: 7		IENT DATA BASE	Docum	ent Summary
TITLE:		nental Assessme nt Area, Nevada		ain Site, Nevada	Research
AUTHOR:	DOE Office of	Civilian Radio	active Waste M	anagement	
Request	Number: DOE/I ed From: NRC d From: NRC	RW-0012	Ρ	ublication Date: Request Date: Receipt Date:	Oct. 85
Document	Rating (1=poor Description (Read By (Init	general, specif	ent): 7 fic, etc.): Ov	erview	
KEY WORD		Meteorology, Dı		issolution, Eros Exploratory Sha	
KEY DATA		r travel time, aps, Bibliograg		s, Water Chemist	ry, Cross
COMMENTS	: The Departmo	ent of Energy's	s Evaluation of	the Yucca Mount	ain Site
suitabili a reposi given in much of and of i have bee condition data on availabi determin downward areas wh related of water mo values f	ity of Yucca M tory. The cri Chapter 6. S the current de the southern N en pointed ou ns may lead to stratigraphic e to model t ed if the ge flow of water ich still need ground water f ves in densely for hydraulic	ountain for si ux of the eval Since the char scription draw levada region. It by the DOE an increase 1 c, structural, the site with ohydraulic un r beyond the 1 d to be invest lux through the y welded, frac	te characteriza uation and sub acterization of s heavily from Potential ge include the n the level of and hydrolog reasonable co it above the imits of the igated are: unsaturated z	y the DOE to ation and for de osequent recomme f the site is n previous studie ohydrological in following: cyc the water table ical features ertainty; it ha host rock will emplaced wastes. the amount of re one, the mechani unsaturated); re contents of va	velopment as ndations are ot complete, s of the NTS npacts which lic pluvial ; sufficient are not yet as not been divert the The major echarge, the sms by which presentative

transversed by ground water, and effective porosities.

July 30, 1	: B .986		В-	-42	NNWSI	Document	Summaries WWL #4001
WWL Docume	nt Number	[.] : 81	NRC DOCU	JMENT DATA E	BASE	Documen	t Summary
	levada Nuc lugust 198		Storage	Investigati	ions Project	Monthly	Report
AUTHOR: D	epartment	; of Energy					
	lumber: From: N From: N					Date: Date: Date: I	Oct. 85
Document D	escriptio	poor to 10= on (general, initials):	, specifi	nt): 7 ic, etc.):	Update		
KEY WORDS:	Monthly (Report					
KEY DATA:							
COMMENTS:							
SUMMARY: The report	; provides	; a general	review -	for the man <u></u>	y projects wh	lich are	underway.

Attachmer July 30,			B-43		NNWSI	Documen	t Summaries WWL #4001
WWL Docun	nent Numbe		NRC DOCUMENT D	DATA BASE		Docume	nt Summary
TITLE:	Storage		Resources Ove ons, Nevada Te phy				
AUTHOR:	French, F	R. H., Elzen	ftawy, A., and	i Elliot, B.			
Requeste	Number: ed From: 1 From:	NRC			Request		June,1984 Oct. 85 Nov. 85
Document	Descript		D≖excellent): 1, specific, e TLS		iew		
KEY WORDS	5: Bibliog] raphy			· ·		
KEY DATA:	: Bibliog	graphy					
COMMENTS	The rep	port lists (344 references	s which perta	lin to t	he NNWS:	Ι.
SUMMARY:							

The bibliography is organized in alphabetical order and the citation format is that recommended by the American Society of Civil Engineers. It should be noted that, in isolated cases, annotations were extracted from other annotated bibliographies and the actual publication was not examined by the authors.

Attachmen July 30,			B-44	NNWSI	Document	Summaries WWL #4001
WWL Docur	nent Number:		IMENT DATA BAS	E	Documen	t Summary
TITLE:	Regional Grou Lincoln, and	und-Water Syste Clark Counties	ems in the Nev s, Nevada	ada Test Sit	e Area,	Nye,
AUTHOR:	Rush, F. E				•	•
Request	Number: USG ed From: NRC d From: NRC	·		Publication Request Receipt	Date:	
Document	Rating (1≃po Description Read By (Ini	or to 10=excel (general, spec tials): TLS	lent): 6 ific, etc.):	Overview		
KEY WORD	S: Geology, C	limate, Ground	Water Basin			
KEY DATA	: Precipitat	ion, Recharge				
COMMENTS	:					

SUMMARY:

Three regional interbasin ground water flow systems have been identified: The Ash Meadows system in the eastern two-thirds of the area, the Pahute Mesa system in the western third, and the Sarcobatus Flat system west of the study area and including Cactus Flat.

Attachmen July 30,		B-	45	NNWSI Documer	t Summaries WWL #4001
WWL Docum	ent Numb		NT DATA BASE	Docume	ent Summary
	Prelimin Yucca Mo	ary Estimates of Wate untain	r Flow and Radior	nuclide Transp	oort in
	Travis, Rundberg	B. J., Hodson, S. W., , R. S.	Nuttall, H. E.,	Cook, T. L.,	and
Document Requeste Received	d From:		1	ication Date: Request Date: Receipt Date:	Oct. 85
Document	Descript	1=poor to 10=excellen ion (general, specifi (Initials): TLS		fic	
KEY WORDS		er Code, Fracture Flo tion, Relative Permea			iionuclide
KEY DATA:		uclide Retardation Fa ve Permeability	ctors, Radionucl	ide Diffusivi	ty,
COMMENTS:					
SUMMARY: The report water flo	t looks w and r	at the effect of li adionuclide transport	thology and the ; in Yucca Mounta	presence of f ain. Two com	ractures on oputer codes

The report looks at the effect of lithology and the presence of fractures on water flow and radionuclide transport in Yucca Mountain. Two computer codes were used in the analysis: (1) TRACR3D, which computes saturated and unsaturated two phase flow in fractured porous media, and (2) WAFE, which computes water, air, vapor, and energy movement in porous media. Plots of crack width vs. depth reached by a water slug for various matrix saturations and diffusion coefficients were generated. Migration histories for ten radionuclides through four stratigraphic units (Topopah Spring, Bedded Tuff, Calico Hills, Prow Pass) are presented. Some of the conclusions stated: (1) Significant fracture flow can occur above the water table, but only through high-saturation, low permeability tuff (2) Diffusion into the matrix and adsorption have a profound effect on transport. None of the radionuclides considered reaches the accessible environment in less than 10,000 years. (3) Heat load in partially saturated tuff can result in a dry, steam-filled region extending several meters above and below a repository with recharge during cooldown phase.

Attachmen July 30,		B-46	NNWSI	Document Summaries WWL #4001
WWL Docum	NR NR Number: 86	C DOCUMENT DATA BA	SE	Document Summary
	Identification and Ch Fractured Tuff Using Yucca Mountain, Nye C	Hydraulic and Trac		
AUTHOR:	Erickson, J. R., and	Waddell, R. K.		
Requeste	Number: USGS-85-4066 d From: NRC I From: NRC	i	Request	Date: 1985 Date: Oct. 85 Date: Nov. 85
Document	Rating (1=poor to 10= Description (general, Read By (Initials):	specific, etc.):	Specific	
KEY WORDS	: Injection Tests, Tr	acer Tests, Fractu	ire Distributi	on
KEY DATA:	Fracture Intervals, Porosity	Flow Intervals, T	emperature Su	rvey, Fracture

COMMENTS:

SUMMARY:

Intrawell bore flow velocities were measured at & locations using a short duration radioactive tracer. Other fractures were identified using temperature and borehole flow surveys. The fractures were correlated with an acoustic televiewer log, which showed that 86.2% of the identified fractures in the saturated zone have strikes ranging from N10W to N55E, with dips ranging from 50 to 86. A TV camera log showed some fractures with strikes from N15W to N55W. Radioactive tracer flow surveys indicate that less than 21% of the total saturated section contributed measurable quantities of water to the well bore. The flow points identified from the temperature log during pumping correlated with the location of fractures. However, the majority of the fractures had no detectable flow. The results of the fracture analysis indicate that water was produced predominately from northeast trending fractures. In general, good correlation exists between zones determined to be permeable by different techniques, however, no single technique was capable of producing sufficient information to characterize distribution of permeability and direction of movement within the borehole. The results presented indicate that in detail, the ground water flow characteristics of the fractured tuff at Yucca Mountain are complex.

Attachme July 30,		B~4		I Documen	t Summaries WWL #4001
WWL Docu	ment Numb		IENT DATA BASE	Docume	nt Summary
TITLE:		logic Data and Test Re e County, Nevada	sults From Well J-13	, Nevada	Test
AUTHOR:	Thordars	on, W			
Request	Number: ed From: d From:			on Date: st Date: pt Date:	Oct. 85
Document	Descript	1=poor to 10=excellent ion (general, specific (Initials): TLS			
KEY WORD	S: Geolog	y, Lithology, Well Tes	ts, Water Chemistry		
KEY DATA		Construction, Litholog Well Test Data, Water		turation,	Water
COMMENTS	-				

Well J-13 was drilled to a depth of 1063.1 meters by using air hydraulic rotary drilling equipment. The Topopah Spring unit was found to be the principal aquifer. Below the TSw unit, tuff units are confining beds; transmissivities range from 0.1 to 4.5 meters squared per day. A static water level of approximately 282.2 meters was measured for the various water bearing tuff units above a depth of 645.6 meters. Below a depth of 772.7 meters, the static water level was slightly deeper. The apparent age of the ground water, derived from carbon-14 age dating, is 9,900 years.

Attachmer July 30,		B-48	NNWSI Documen	t Summaries WWL #4001
WWL Docur	nent Number: 90	NRC DOCUMENT DATA B		nt Summary
TITLE:	Nevada Nuclear September, 1985	Waste Storage Investiga 5	tions Project Monthly	Report
AUTHOR:	Department of E	Energy		
	Number: ed From: NRC 1 From: NRC		Publication Date: Request Date: Receipt Date:	Oct. 85
Document	Rating (1=poor Description (ge Read By (Initia	to 10=excellent): 7 eneral, specific, etc.): als): TLS	General	
KEY WORDS	5:			
KEY DATA	:			
COMMENTS	: Presents the NNWSI.	current status for the	various projects rela	ting to
SUMMARY:				

. .

Attachment B July 30, 1986	B-49	NNWSI Document Summaries WWL #4001
WWL Document Number: 9	NRC DOCUMENT DATA	BASE Document Summary
		ce Thermal/Mechanical and ountain, Southern Nevada
AUTHOR: Ortiz, T. S., South, D. L.	Williams, R. L., Nimick	k, F. B., Whittet, B. C., and
Document Number: SAND8 Requested From: NRC Received From: NRC	4-1076	Publication Date: Oct,1985 Request Date: Oct. 85 Receipt Date: Nov. 85
Document Rating (1=poor Document Description (g Document Read By (Initia	eneral, specific, etc.)	
	Density, Porosity, X-ra	ace, Stratigraphy, ay, Logs, Zeolite, Units, Tuff, Water Table, Vitrophyre
KEV DATA. Croce Section	na Taanaah Nana Naha	- Tabla Surface Fault Angles Die

KEY DATA: Cross Sections, Isopach Maps, Water Table Surface, Fault Angles, Dip

COMMENTS:

SUMMARY:

A 3-D model of the thermal/mechanical and hydrological reference stratigraphy at Yucca Mountain has been developed for use in performance assessment and repository design studies involving material properties data. The reference stratigraphy defines units with distinct thermal, physical, mechanical, and hydrological properties. The model is a collection of surface representations, each surface representing the base of a particular unit. The reliability of the model was evaluated by comparing the generated surfaces, existing geologic maps and cross sections, drill hole data, and geologic interpretation. Interpolation of surfaces between drill holes by the model closely matches the existing information.

July 30, 1	; B .986			B-50		NNWSI	Documen	t Summarie WWL #400
WWL Docume	ent Numbe	er: 92	NRC DO	CUMENT DATA E	BASE		Docume	nt Summary
	leaction 150 C	of the	Topopah Sı	oring Tuff w	ith J-13	Well W	ater at	90 C and
AUTHOR: C)versby,	V. M.						
Document N Requested Received	I From:	NRC	552		1	Request		May,1984 Oct. 85 Nov. 85
Document R		ion (gen	eral, spec	llent): 7 :ific, etc.):	: specin	fic		
		(Initial	3). 163					
Document R	lead By (Topopal	h Spring	· Tuff, J-1	13 Well WAter :y, Steady St				lity,
Document R KEY WORDS:	Read By (Topopal Anion,	h Spring Cation,	Tuff, J-1 Alkalinii		tate, Wat	ter Che	mistry	
Document R KEY WORDS:	Read By (Topopal Anion, Water (h Spring Cation, analysis	Tuff, J-1 Alkalinii	y, Steady Si well water	tate, Wat	ter Che	mistry	

The reaction of Topopah Springs Tuff (Tpt) with J-13 well water was conducted using Tpt collected from Fran Ridge, which is several miles east of Yucca Mountain. The Tpt samples were crushed and combined with J-13 well water in Teflon lined reaction vessels, in four rock to water weight ratios. The experiments were run at 90 C and 150 C for reaction times up to 72 days. None of the experiments reached steady state solution concentration. Long term experiments were in progress to determine the steady state chemistry. However, an estimated water chemistry at steady state for 90 C and 150 C is given in Table 54.

NRC DOCUMENT DATA BASE

WWL Document Number: 93

Document Summary

TITLE: Chemical Composition of Ground Water and the Locations of Permeable Zones in the Yucca Mountain Area, Nevada

AUTHOR: Benson, L. V., Robison, J. H., Blankennagel, R. K., and Ogard, A. E.

Document Number:USGS-OFR-83-854Publication Date:May,1984Requested From:NRCRequest Date:Oct. 85Received From:NRCReceipt Date:Nov. 85

Document Rating (1=poor to 10=excellent): 5 Document Description (general, specific, etc.): specific Document Read By (Initials): TLS

KEY WORDS: Water chemistry, cation, anion, carbon-14, tracer, flow survey, permeable zones

KEY DATA: Well construction, flow surveys, water level, water chemistry

COMMENTS: Poorly written paper.

SUMMARY:

Ten wells on or near Yucca Mountain were sampled for chemical analysis including carbon-14 dating. Significant differences were found in uncorrected carbon-14 age and in inorganic and stable isotope composition. A lithium tracer was used with the drilling fluids to measure the extent of infiltration. The majority of the water samples contained less than about 0.4 percent drilling fluid. The source for drilling water on all but one well was J-13. Borehole surveys were conducted using an injector type tool with 131 I as the tracer. Pump rates while the surveys were being performed are not given. The only wells listed where the Tpt lies below the water table are J-12 and J-13. On these wells, water injection tests using packers indicated most of the production comes from the Tpt.

Attachment B July 30, 1986	B-52	NNWSI Document Summaries WWL #4001
WWL Document Number: 99	NRC DOCUMENT DATA BA	SE Document Summary
	liysis of Core Samples la Test Site, Nevada	from the Yucca Mountain UE25a-
AUTHOR: Anderson, L. A.		
Document Number: USGS-OFR Requested From: NRC Received From: NRC	2-81-1338	Publication Date: 1981 Request Date: Oct. 85 Receipt Date: Nov. 85
Document Rating (1=poor to Document Description (gene Document Read By (Initials	eral, specific, etc.):	Specific

KEY WORDS: Core Analysis

KEY DATA: Porosity, Permeability

COMMENTS:

SUMMARY:

Core samples from the Yucca Mountain UE25a-1 borehole were measured for bulk density, porosity, resistivity, induced polarization, compressional sonic velocity, permeability, magnetic susceptibility, and remanent magnetization as part of a large scale site evaluation program. There is no direct correlation between porosity and permeability; the latter varying widely and often decreasing with time as unconsolidated particles within the pore network are repositioned so as to impede the continued flow of water through the rock.

Attachme July 30,			B-53	NNWSI	Document	Summaries WWL #4001
WWL Docu	ment Numb	••••	RC DOCUMENT DATA	BASE	Documen	t Summary
TITLE:		of Drill Hole tern Nevada	e USW VH-2, and S	tructure of Cra	ter Flat	•
AUTHOR:	Carr, W.	J. and Parri	ish, L. D.			
Request	Number: ed From: d From:		-475		Date:	
Document	Descript	1=poor to 10= tion (general, (Initials):	, specific, etc.)	: Specific		
KEY WORD	S: Well C	construction,	Stratigraphy, Li	thology		
KEY DAT/	: Lithol	ogic Log				
COMMENTS	5:					
SUMMARY	neter dri	anic rocks,	ater Flat shows and penetrates	the absence of a section of ter Flat Tuffs	Timber	Mountain,

-

Attachmen July 30,			B-54	ļ	NNWSI	Document	Summarie WWL #400
WWL Docum	ent Numb	er: 110	NRC DOCUMENT	DATA BASE		Documen	t Summary
				urge for Ground LA Geochemica			
AUTHOR:	Claassen	, H. C.					
Requeste	Number: d From: From:		-83-542		Request	Date: Date: Date:	
Document	Descript			: 7 etc.): Gener	al		
KEY WORDS	: Ground	Water Geo	ochemistry				
KEY DATA:	Water .	Analysis					
COMMENTS:							
primarily channels, north. support t much of t of ground that eit	/ by ove rather Geochemi hese fin he recha water i her cli ter velo	rland flo than by s cal argum dings. C rge in th recharged matic co ocities we	ow of snowme subsurface fl nents, includ arbon-, hydro e area occurr prior to late nditions wer	argosa Desert It in or near ow from highla ing reaction gen-, and oxyg ed during late Pleistocene they transport	the p nd reci mechan en-isot Wiscor Is cons e for	resent o harge are isms, ar ope data isin time idered t recharge	lay strea eas to th e used t show tha . Absenco o indicat e or tha

Attachmer July 30,			B-55	NNWSI	Documen	t Summaries WWL #4001
WWL Docum	nent Numbe	er: 116	NRC DOCUMENT DA	ATA BASE	Docume	ent Summary
TITLE:	Summary N	Report on	the Geochemistry	y of Yucca Mountair	n and En	ivtrons
AUTHOR:	Daniels,	W. R., et	t al.			
Requeste	ed From:	LA-9328-N NRC NRC	1S		t Date:	Dec,1982 Oct. 85 Nov. 85
Document	Descript		10=excellent): ral, specific, ei): TLS	8 tc.): Specific		
KEY WORDS	5: Ground	Water Geo	ochemistry, Retar	rdation, Modeling		
KEY DATA:	Capaci	ty, Permea		, Petrology, Catior y, Fracture Flow Pr		
COMMENTS	An exte	ensive rep	port.			
resolve repositor propertie natural geochemi retardati by tuff tuff/grou condition	geochemic ry in tu es and se barrier stry of ion proces , physic indwater ns, trans	cal issue ff at Yu tting of to migra tuff is sses. Th cal and chemistry	s pertinent to cca Mountain. the host tuff b tion of waste being investig is report addres chemical makeu , waste element cesses involved	of work at Los Ala siting a high-le It is necessary because this rock elements from a gated with partic sses the various a up of tuff, diff chemistry under e in porous and f	vel nuc to unde provide reposi cular e spects fusion expected	clear waste erstand the s the first tory. The mphasis on of sorption processes, repository

Attachment B July 30, 1986		B-56	NNWSI	Document	Summaries WWL #4001
WWL Document I		COCUMENT DATA BA	SE	Documen	t Summary
TITLE: Prel Dril	minary Assessment Hole USW G-1, Yu	; of In-Situ Geome icca Mountain, Nev	chanical Char ada	acterist	ics in
AUTHOR: Ellis	, W. L. and Swolf	s, H. S.			
Document Numbe Requested Fro Received Fro		01		Date: Date: Date:	Oct. 85
Document Desci	g (1=poor to 10=e iption (general, By (Initials): T	specific, etc.):	Specific		
KEY WORDS: Geo	logy, Borehole Ob	oservations, Fract	ure		
KEY DATA: Dr	lling Fluid Loss,	, Fracture Frequen	cy,		
COMMENTS:					

SUMMARY:

Substantial drilling fluid losses, and the occurrence of drilling induced fracturing, are understandable in terms of the low, minimum horizontal stress magnitudes interpreted from six hydraulic-fracturing stress measurements conducted between hole depths of 640 and 1300 meters. Although not confirmed directly by the hydraulic fracturing data, other observations suggest that the minimum stress magnitudes in the more densely welded and brittle tuff layers may be even smaller than in the less welded and more ductile rocks.

Attachment B July 30, 1986	B-57	NNWSI Docume	nt Summari WWL #40
WWL Document Number:	NRC DOCUMENT DATA		ient Summar
Pertaining to Disposal at	of Reports by U.S. Geo o Underground Nuclear Te the Nevada Test Site, an olation Pilot Plant Site	esting and Radioactive nd Radioactive Waste Di	Waste
AUTHOR: Glanzman, V.	Μ.		
Document Number: USG Requested From: NRC Received From: NRC	S-OFR-81-892	Publication Date: Request Date: Receipt Date:	Oct. 85
Document Read By (Ini	(general, specific, etc tials): TLS		
KEY WORDS: Bibliograp	ny		
KEY DATA: Bibliograp	hy		
COMMENTS:			
and December 31, 1980 on underground nuclea	s reports released to t), by personnel of the ar testing and waste m jects at the WIPP site,	USGS. Reports include anagement projects at	informati

NRC DOCUMENT DATA BASE

Document Summary

TITLE: Bibliography of Reports by U.S. Geological Survey Personnel Pertaining to Underground Nuclear Testing and Radioactive Waste Disposal at the Nevada Test Site, and Radioactive Waste Disposal at the Waste Isolation Pilot Plant Site, New Mexico.

AUTHOR: Glanzman, V. M.

WWL Document Number: 124

Document Number:	USGS-0FR-80-817	Publication Date:	: 1980
Requested From:	NRC	Request Date:	: Oct. 85
Received From:	NRC	Receipt Date:	: Nov. 85

Document Rating (1=poor to 10=excellent): 7 Document Description (general, specific, etc.): Overview Document Read By (Initials): TLS

KEY WORDS: Bibliography

KEY DATA: Bibliography

COMMENTS:

SUMMARY:

This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the USGS. Reports include information on underground nuclear testing and waste management projects at the NTS and radioactive waste projects at the WIPP site, New Mexico.

	Attachment B July 30, 1986	B-59	NNWSI	Document Summari WWL #400
	WWL Document Numb	NRC DOCUMENT D	ATA BASE	Document Summary
	Pertaini Disposal	raphy of Reports by U.S. G ing to Underground Nuclear at the Nevada Test Site, te Isolation Pilot Plant S	Testing and Radioa and Radioactive Wa	active Waste
	AUTHOR: Glanzman	n, V. M.		
	Document Number: Requested From: Received From:	NRC		n Date: 1983 : Date: Oct. 85 : Date: Nov. 85
		1=poor to 10=excellent): ion (general, specific, e (Initials): TLS	7 tc.): Overview	
.]	KEY WORDS: B1b110	ography		
	KEY DATA: Biblio	graphy		
	COMMENTS:			
	between January 1 underground nucl	v lists reports by personn , 1981, and December 31, lear testing and waste n e projects at the WIPP site	1981. Reports incl management project	lude information of
}				
: : :				
_				

NRC DOCUMENT DATA BASE

Document Summary

Attachmen July 30,			B-	-60	NNWSI	Documen	t Summaries WWL #4001
WWL Docur	nent Numb	er: 126	NRC DOCUME	ENT DATA BASI	E	Docume	nt Summary
TITLE:	Pertaini Disposal	ng to Unde at the Ne	erground Nuc evada Test S	lear Testing	al Survey Pe g and Radioa dioactive Wa w Mex	ctive Wa	aste posal at
AUTHOR:	Glanzman	, V. M.					
Request	Number: ed From: i From:		-85-363			Date:	1985 Oct. 85 Nov. 85
Document	Descript		10=excellen al, specifi): TLS	t): 7 c, etc.): (Overview		
KEY WORDS	5: Biblio	graphy					
KEY DATA:	Biblio	graphy					
COMMENTS	:						
between undergro	January 1 und nucl	, 1983, ar ear testi	nd December	31, 1984.	e USGS relea Reports incl ent project Mexico.	ude info	ormation on

-

Attachment B July 30, 1986		B-61	NNWS	I Documen	t Summaries WWL #4001
WWL Document	Number: 148	NRC DOCUMENT	DATA BASE	Docume	nt Summary
Volc	atigraphy, Stru canic Rocks at ity, Nevada	cture, and Som the USW G-2 Dr	e Petrographic Fea ill Hole, Yucca Mo	tures of untain, N	Tertiary ye
AUTHOR: Maid	ionado, F. and	Koether, S. L.			•
Document Numb Requested Fr Received Fr	oer: USGS-OFR- rom: NRC rom: NRC	83-732		st Date:	
Document Desc	ing (1=poor to cription (gener 1 By (Initials)	al, specific,	7 etc.): Specific		
KEY WORDS: St	tratigraphy, Co	ore Analysis, W	ell Completion		
KEY DATA: We	ell Completion,	, Stratigraphy,	Fracture Analysis	, Lithold	ogic Log
COMMENTS:					
predominately material in v drill hole.	y open and hig various combin	h angle. The ations. Numer in the lithoph	ed in tabulation fractures were fi ous fault zones we ysal zone to the T ills.	lled or re penetr	coated with ated by the

Attachmen July 30,				B-62	NN	WSI	Document	t Summarie WWL #400
WWL Docur	nent Numi	per: 1		DOCUMENT DAT	A BASE		Documer	nt Summary
TITLE:			Waste Sto on Report	orage Invest	igations Envi	ronn	nental An	rea
AUTHOR:	The MIT	RE Corp	oration					
	Number: ed From: d From:	NRC	3-7132		Req	uest	n Date: t Date: t Date:	July,1984 Oct. 85 Dec,1985
Document	Descrip	tion (g	to 10=exc general, sp als): TLS	pecific, etc	6 :.): Overview			
KEY WORD	S: Atmos	phere,	Climate, I	Energy Reson	ırces, Water S	upp'	lies	
KEY DATA	: Preci	pitatio	on, Hydrold	ogic Units,	Water Use,			
COMMENTS	:							
SUMMARY: The repo	Nevada. 🛛	a poten	tial locat	tion for a g	ner of the N geologic repos mmarizes repo	ito: rts	ry for a	high-lev by Sand

. •-

July 30,	nt B 1986	B-63	NNWSI	Document	Summari WWL #40
WWL Docur	nent Numb	NRC DOCUMENT DATA er: 152		Documen	t Summar
TITLE:		lity and Fluid Chemistry Stuc f the Paintbrush Tuff, Nevada			ng
AUTHOR:	Moore, D	. E., Morrow, C. A., and Byer	lee, J. D.		
Document	Number:	UCRL-15667	Publication	Date:	March,19
Request	Number: ed From: d From:	NRC	Request	Date:	Oct. 85
Request Receive Document Document	ed From: d From: Rating (Descript	NRC	Request Receipt	Date:	-

KEY DATA: Water Analysis, Reaction States

COMMENTS:

SUMMARY:

A series of permeability experiments has been conducted to model the flow of groundwater away from canisters heated by radioactive decay at a nuclear waste disposal site in tuffaceous rock. The purpose of the study was to determine the effects of localized heating around the canisters on the repository rock and associated groundwater. Studies concentrated on two tuff units from the NTS : the Bullfrog Member of the Crater Flat Tuff, and the Topopah Spring Member of the Paintbrush Tuff. This paper reports the permeability and groundwater chemistry results for the Topopah Spring Member and compares those results with the previous work on Bullfrog.

Attachment B July 30, 1986	B-64	NNWSI Document Summari WWL #40
WWL Document Number: 1	NRC DOCUMENT DATA E	BASE Document Summar
TITLE: Reaction of Bu	allfrog Tuff with J-13 We	ell Water at 90 C and 150 C
AUTHOR: Oversby, V. M.	. and Knauss, K. G.	
Document Number: UCRL- Requested From: NRC Received From: NRC	-53442	Publication Date: Sept,198 Request Date: Oct. 85 Receipt Date: Dec,1985
Document Rating (1=poor Document Description (Document Read By (Initi	general, specific, etc.):	: Specific
KEY WORDS: Reaction Che	emistry	
KEY DATA: Water Analys	s1s	
COMMENTS:		
reaction between the	Bullfrog Member of the	termine the nature and extent e Crater Flat tuff and natur e experiments were conducted

groundwater from well J-13 at the NTS. The experiments were conducted on crushed tuff at 90 and 150 degrees C and on core wafer samples at 150 degrees C. The paper presents the data for a number of ions in solution and for the pH of solutions. Additionally, it outlines the various experimental conditions used to determine the effects of different sample weights relative to solution volume, length of reaction time, presence and nature of highly soluble components, filtration of samples, agitation of samples during reaction, and method of sample preparation.

Attachment B NNWSI Document Summaries July 30, 1986 B-65 WWL #4001 NRC DOCUMENT DATA BASE WWL Document Number: 162 Document Summary TITLE: Hydrologic Test System for Fracture Flow Studies in Crystalline Rock AUTHOR: Raber, E., Lord, D., and Burklund, P. Publication Date: May,1982 Document Number: UCID-19405 Requested From: NRC Request Date: Oct. 85 Received From: NRC Receipt Date: Dec,1985 Document Rating (1=poor to 10=excellent): 7 Document Description (general, specific, etc.): Specific Document Read By (Initials): TLS KEY WORDS: Fracture **KEY DATA:** None COMMENTS: SUMMARY: A hydrologic test system has been designed to measure the intrinsic permeabilities of individual fractures in crystalline rock. This system is used to conduct constant pressure-declining flow rate and pressure pulse hydraulic tests. The system is composed of four distinct units: (1) The Packer System, (2) Injection System, (3) Collection System and (4) Electronic Data Acquisition System. The apparatus is built in modules so it can be easily transported and re-assembled. It is also designed to operate over a wide range of pressures (0-300 psig) and flow rates (0.2 - 1.0 gal/min).

Attachment B July 30, 1986	NNWSI Document Summarie B-66 WWL #400
NRC WWL Document Number: 164	OCUMENT DATA BASE Document Summary
TITLE: Radionuclide Migration: Fractures	Laboratory Experiments With Isolated
AUTHOR: Rundberg, R. S., Thomps	n, J. L., and Maestas, S.
Document Number: LASL Requested From: NRC Received From: NRC	Publication Date: Nov,1981 Request Date: Oct. 85 Receipt Date: Dec,1985
Document Rating (1=poor to 10=ex Document Description (general, s Document Read By (Initials): TL	ecific, etc.): Specific
KEY WORDS: Fracture Flow, Radion	clide Transport
KEY DATA: Breakthrough Curves	
COMMENTS:	
cm in length. The hydraulic flow effective apertures. Traced so flowed through fractures in Clim	run on fractures ranging in size from 1 to 2 in these fractures was studied to provide th lutions containing Strontium and Cesium wer a Stock granite and welded tuff. The result agree with the matrix diffusion calculation

of the elutions through granite agree with the matrix diffusion calculations based on independent measurements of Kd. The results of the elutions through tuff, however, agree only if the Kd values used in the calculations are lower than the Kd values measured using a batch technique. This trend has been previously observed in chromatographic column experiments with tuff.

Attachmen July 30,		B-67		Document Summaries WWL #4001
WWL Docur	nent Numbe	NRC DOCUMENT	DATA BASE	Document Summary
TITLE:	Stratigra Core Hole	phic and Structural Cha USW G-4, Yucca Mountai	iracteristics of Volc in, Nye County, Nevad	anic Rocks in la
AUTHOR:	Spengler,	, R. W. and Chornack, M.	, P.	
Request	Number: ed From: d From:		Request	Date: 1984 Date: Oct. 85 Date: Dec,1985
Document	Descripti	=poor to 10=excellent): on (general, specific, [Initials): TLS		
KEY WORDS		ng History, Stratigraphy Sical Logs	, Fractures, Oriente	ed Core,
KEY DATA:	: Geologi Frequer	c Units, Fracture Incli acy	nation, Fracture Str	ike, Fracture
COMMENTS	;			
southwes character Calico Hi units occ are domi dominanti densely w occurs be percent w densely w decreases Strike d	st of the ristics of ills vary curs below nantly d ly vitric welded zon welded zon svelded zon ssignific lirections	4 was cored from 13m ne proposed site of f ash-flow tuff member in thickness from 0.8m w a depth of 434.2m. A evitrified, and non- . Three obvious litho ne of the Topopah Sprin pths of 143m and 207m, i percent of the fract ies of the Tiva Canyon a cantly below the densel of fractures identif	the exploratory rs and within the t to 17.0m. Zeolitic Above this depth, den to moderately welde physae-bearing inter ng Member. The most and commonly conta tures identified in and Topopah Spring Me ly welded zone of th fied from downhole	shaft. Welding uffaceous beds of alteration of rock nsely welded units ad tuff units are vals occur in the t conspicuous zone ins from 11 to 20 core occur in the mbers. Fracturing television camera

observations in the Tiva Canyon Member suggest an absence of any preferred orientation. In the densely welded zone of the Topopah Spring Member and the upper part of the tuffaceous beds of Calico Hills most fractures strike between N30W and N60E.

Attachment July 30, 19		B-68	NNWSI	Document	Summaries WWL #4001
WWL Documen	it Number:	NRC DOCUMENT D	ATA BASE	Documen	tSummary
	eliminary (ologic Seci	Geologic Map of Yucca tions	Mountain Nye Count	y, Nevad	a With
AUTHOR: Sc	ott, R. B.	and Bonk, J.			
					• .
Requested	mber: USGS From: NRC From: NRC	5-0FR-84-494		Date:	
Document De	scription (or to 10=excellent): (general, specific, e tials): TLS	7 tc.): General		
KEY WORDS:	Description	n of Map Units			
KEY DATA:	Description	n of Map Units, Geolog	gic Sections		
COMMENTS:					
1 is a prel 2 has geo	iminary ge logic sect	f a description of ma ologic map of Yucca M tions. The cross s important to hydrol	ountain with geolog sections emphasiz	jic secti	ons, Sheet

,

Attachmen July 30,		B-69	NNWSI	Document	Summario WWL #400
WWL Docur	nent Numbe	NRC DOCUMENT DATA	A BASE	Documen	t Summary
TITLE:	Evaluatio	on of Tuff as a Waste Isola	tion Medium	· · ·	
AUTHOR:	Tyler, L.	. D.			,з
Request	Number: ed From: d From:			Date: Date: Date:	Oct. 85
Document	Descript	L=poor to 10=excellent): ion (general, specific, etc (Initials): TLS	÷		

COMMENTS:

SUMMARY:

The properties of the rock are discussed and compared with other isolation media. The favorable and unfavorable aspects are presented. Also, unresolved issues are discussed along with the investigative program for addressing these issues. Tuff is of interest for use as an isolation medium for high heat producing wastes because it provides highly sorptive minerals and suitable thermomechanical properties.

NRC DOCUMENT DATA BASE

WWL Document Number: 198

Document Summary

TITLE: Repository Site Data Report for Unsaturated Tuff, Yucca Mountain, Nevada

AUTHOR: Tien, P. L., Siegel, M. D., Updegraff, C. D., Wahi, K. K., and Guzowski, R. V.

Document Number:SAND84-2668Publication Date:Nov,1985Requested From:NRCRequest Date:Oct. 85Received From:NRCReceipt Date:Dec,1985

Document Rating (1=poor to 10=excellent): 8 Document Description (general, specific, etc.): Overview Document Read By (Initials): TLS

- KEY WORDS: Regional Setting, Stratigraphy, Petrology, Mineralogy, Geologic Structure, Geochemistry, Ground Water Hydrology, Thermomechanical Properties, Recommendations for Future Work
- KEY DATA: Sorption Data, Stratigraphic Descriptions, Lithologic Descriptions,

Porosity, Saturation, Fracture Densities, Effective Porosity, Relative Permeability, Fracture Hydraulic Conductivity, Hydraulic Conductivity

COMMENTS:

SUMMARY:

Geochemical, hydrologic and thermomechancial data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. The report is divided into nine major sections: (1) Regional Setting, (2) Stratigraphy, (3) Petrology and Mineralogy, (4) Geologic Structures, (5) Geochemistry, (6) Ground Water Hydrology, (7) Thermomechanical Properties, (8) Recommendations for Future Work, (9) Data. Specific recommendations for future work which pertain to hydrology are: (1) Collection of in-situ pressure head data for air and liquid phases. (2) Obtain data for relative air and liquid hydraulic conductivities vs. pressure head. (3) Collection of degree of saturation vs. pressure head data. (4) Determination of how much recharge enters the unsaturated zone by way of fractures and how much enters by way of pore space. (5) Determination of the fracture network in the tuffs and the possibility that fracture flow may dominate pore flow in the unsaturated zone. Other recommendations are: Detailed correlation from hole to hole of the subsurface distributions of the tuff units is impossible. More subsurface data are needed to adequately model the site.

ATTACHMENT C

•

NEVADA NUCLEAR WASTE STORAGE INVESTIGATION HYDROGEOLOGY DATA BASE WATER, WASTE & LAND, INC. DATA BASE

July 30, 1986

Attachment C July 30, 1986

]

I

I

NNWSI Data WWL #4001

ĺ

1 1

Woll #	Formation	Core test or Well test	Porosity	Permeability (saturated) m/s	Storage Coef.	Depth meters	Depth (Second) meters	wwi. #	page num.
U5WG4	TCw	C	0.08	9.70E-12		13.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	56	23
USWG4	PTn	C	0.27	2.60E-11		37.8		56	23
USWG4	PTn	C	0.65	2.40E-06		63.4		56	23
usw-g4	TSw	C	0.03	8.60E-13		75.3		56	23
usw-g4	TSw	C	0.09	2.20E-11		263.3		56	23
usw-g4	TSw	C	0.16	3.90E-11		263.3		56	23
USWG4	TSw	C	0.11	1.90E-11		353.0		56	23
USWG4	TSw	C	0.11	9.20E-12		370.3		56	23
USW-G4	TSw	C	0.10	1.30E-11		382.8		56	23
usw-g4	TSw	C	0.06	1.50E-11		389.5		56	23
USWG4	TSw	C	0.09	4.50E-10		395.9		56	23
usw-g4	TSw	C	0.04	3.00E-12		403.6		56	23
USW-G4	CHnv	C	0.21	8.00E-11		414.2		56	23
USW-G4	CHnz	С	0.41	3.00E-12		428.2		56	23
USW~G4	CHnz	С	0.28	2.00E-11		471.8		56	23
USWG4	CHnz	C	0.33	5.10E-11		472.7		56	23
USW-G4	Chnz	С	0.30	4.24E-12		513.9		56	23
USW-G4	CHnz	С	0.22	2.50E-11		526.7		56	24
USW-G4	CHnz	С	0.24	2.50E-11		529.4		56	24
usw-g4	CHnz	C	0.26	2.30E-12		539.2		56	24
USW-G4	CHnz	C	0.25	6.50E-12		541.9		56	24
USWG4	CHnz	С	0.28	2.30E-11		541.9		56	24
USWG4	CHnz	С	0.28	1.60E-10		544.7		56	24
USWG4	PPw	C	0.24	1.40E-08		578.8		56	24
uswG4	CFn	C	0.29	2.00E-11		611.4		56	24
USWG4	CFn	C	0.19	4.40E-10		640.4		56	24
USW-G4	BFw	C	0.24	2.30E-09		731.8		56	24
usw-g4	BFw	С	0.27	6.30E-09		733.7		56	24
usw-H1	PPw	W Drawdown		1.672-05	5.00E~01	572.0	688.0	66	· 22
usw-H1	PPw	W Recovery		3.30E-05	3.00E-01	572.0	688.0	66	22
USW-H1	PPw +	W Injection		3.50E-07	2.90E-05	687.0	697.0	66	22
usw-H1	PPw +	W Drawdown		5.00E-08	2.00E-04	687.0	1829.0	66	22
USW-H1	PPw +	W Recovery		1.50E-07	1.00E~05	687.0	1829.0	66	22
USW-H1	PPw +	W Recovery		1.67E-07	5.00E-07	687.0	1829.0	66	22

I

NNWSI Data WWL #4001

Woll 🖡	Formation	Core test or Well test	Porosity	Permeability (saturated) m/s	Storage Coef.	Depth meters	D o pth (Second) meters	WWL #	page num.
 USW-H1	BFw +	W Injection		4.06E-10	2.905-05	811.0	1829.0	66	22
USW-H1	Tram	W Injection		1.35E-10	2.90E-04	926.0	1829.0	66	22
USW-H1	Older	W Injection		1.17E-09	5.90E-05	1200.0	1829.0	66	22
USW-H1	Older	W Injection		1.76E-10	5.90E-05	1407.0	1829.0	66	22
USW-H1	Older	W Injection		1.17E-10	2.905-05	1621.0	1829.0	66	22
USW-H3	Trom +	W Pumping		1.255-08		754.0	1219.0	17	13
USW-H3	Trom +	W Pumping		9.95E-09		754.0	1219.0	17	13
USW-H3	Trom +	W Pumping		2.92E-08		822.0	1219.0	17	13
USW-H3	Trom	W Injection		3.50E-08	4.00E-06	792.0	850.0	17	13
USW-H3	Trom	W Injection		3.51E-09		851.0	917.0	17	13
USW-H3	Trom	W Injection		5.69E-09		911.0	972.0	17	13
USW-H3	Trom	W Injection		1.14E-08	6.00E-06	911.0	972.0	17	13
USW-H3	Trom +	W Injection		4.69E-09	7.00E-06	972.0	1219.0	17	13
usw-H3	Trom +	W Injection		1.40E-09		972.0	1219.0	17	13
USW-H3	Tram +	W Injection		5.69E-09		1063.0	1124.0	17	13
USW-H3	Trom +	W Injection		1.90E-08	7.00E-06	1063.0	1124.0	17	13
USW-H3	LR	W Injection		1.25E-09		1126.0	1219.0	17	13
USW-H3	Tram +	W Swabbing		2.995-08		792.0	1219.0	17	13
USW-H3	Tram +	W Swabbing		1.90E-08		1063.0	1124.0	17	13
J-13	TSw	W Pumping		1.16E-05		303.6	422.5	87	23
J-13	CHn	W Injection		1.74E-06		471.2	502.0	87	23
J-13	CHn	W Swabbing		1.09E-06		471.2	502.0	87	23
J-13	Clin	W Swabbing		1.50E-06		471.2	502.0	87	23
J-13	CHn +	W Injection		1.50E-07		501.1	562.1	87	23
J13	CHn +	W Swabbing		3.01E-07		501.1	562.1	87	23
J-13	CHn +	W Injection		6.60E-08		505.4	565.7	87	23
J-13	CHn +	W Swabbing		7.18E-08		505.4	565.7	87	23
J-13	CHn +	W Swabbing		1.50E-07		471.2	612.6	87	23
J-13	Chin +	W Swabbing		1.10E-07		471.2	661.4	87	24
J-13	PP +	W Injection		1.04E-07		584.6	645.6	. 87	24
J-13	BF	W Injection		3.365-08		639.8	670.3	87	24
J-13	BF	W Injection		1.85E-07		668.7	669.2	87	24
J-13	BF +	W Injection		3.82E-08		719.3	749.8	87	24
J-13	Tram	W Swabbing		6.48E-08		772.7	803.1	87	24

E .

۰,

•••

ſ

•

•

I

NNWSI Data WWL #4001

Woll #	Formation	Core test or Well test	Porosity	Permeability (saturated) m/s	Storage Coef.	Depth meters	Depth (Second) motors	ww. 🗜	page num.
J-13	CHn +	W Swabbing		1.02E-07		471.2	912.9	87	24
J-13	Tram +	W Swabbing		3.01E-08		819.9	1063.1	87	24
USW H-1	PTn	C	0.45			33.5		16	8
USW H-1	TSw	C	0.22			128.0		16	8
USW H-1	TŚw	C	0.23			129.1		16	8
USW H-1	TSw	C	0.21			134.9		16	8
USW H-1	TSw	C	0.19			136.6		16	8
USW H-1	TSw	C	0.17			142.5		16	8
USW H-1	TSw	C	0.15			143.3		16	8
USW H-1	TSw	C	0.17			219.2		16	8
USW H-1	TSw	C	0.28			221.4		16	8
USW H-1	TSw	C	0,18			222.1		16	8
USW H-1	TSw	C	0.16			390.4		16	8
USW H-1	TSw	C	0.16			390.6		16	8
USW H-1	TSw	C	0.14			397.9		16	8
USW H-1	TSw	C	0.10			398.7		16	8
UE-25b#1	TSw	C	0.12	9.61E-12		225.7		13	13
UE-25b#1	CHn	C	0.25	1.97E-09		479.3		13	13
UE-25b#1	PP	C	0.24	7.64E-10		625.8		13	13
UE-256#1	PP	C	0.10	9.61E-12		679.5		13	13
UE-250#1	BF	C	0.23	7.64E-09		752.7		13	13
UE-255 # 1	BF	C	0.21	7.64E-10		788.9		13	13
UE-256#1	BF	C	0.22	5.79E~10		814.1		13	13
JE-25b # 1	BF	C	0.23	9.61E-11		843.5		13	13
UE-255#1	Trom	C	0.19	3.24E-10		923.9		13	13
UE-250#1	Tram	C	0.19	2.08E-10		948.8		13	13
UE-256#1	Tram	С	0.15	3.36E-09		1141.4		13	13
UE-256#1	Trom	С	0.13	3.24E-09		1171.0		13	13
Æ−25b # 1	Tram	С	0.11	1.27E-09		1201.8		13	13
UE-255#1		W Injection		4.98E-07		514.0	579.0	13	20
JE-255 ∦ 1		W Injection		5.21E-07		505.0	579.0	13	20
UE-250#1		W Injection		4.05E-07		477.0	579.0	13	20
JE-255#1		W Injection		4.05E-07		491.0	505.0	13	20
UE-250#1		W Injection		1.39E06		477.0	491.0	13	20

THE FOR THE FO

`.

•

•

ſ

NNWSI Data WWL #4001

Well #	Formation	Core test or Well test	Porosity	Permeability (saturated) m/s	Storage Coef.	Dopth motors	Depth (Second) meters	WWL #	page num.
UE-256#1	<u></u>	W Injection		1.13E-09	**********	1005.0	1220.0	13	20
UE-25b # 1		W Injection		1.27E-06		792.0	1220.0	13	20
UE-256 # 1		W Injection		3.82E-06		820.0	860.0	13	20
UE-255 # 1		W Injection		1.15E-05		779.0	819.0	13	20
UE-25b#1		W Injection		2.89E-08		743.0	783.0	13	20
UE-256 # 1		W Injection		5.32E-08		703.0	743.0	13	20
UE-25b#1		W Injection		1.06E-05		581.0	621.0	13	20
UE-256 # 1		W Injection		4.05E-07		504.0	544.0	13	20
UE-255 # 1		W Injection		6.13E-07		621.0	661.0	13	20
UE-256 # 1		W Pumping		5.21E-06		471.0	1220.0	13	20
USW H-1	PP	C	0.28	1.16E-09		640.0		26	10
USW H-1	PP	C	0.29	8.10E-10		641.0		26	10
USW H-1	PP	C	0.29	6.94E-10		641.0		26	10
usw H-1	BF	C	0.27	3.47E-10		709.0		26	10
USW H-1	8F	C	0.32	3.47E-09		709.0		26	10
USW H-1	BF	C	0.34	9.26E-09		710.0		26	10
USW H-1	BF	C	0.20	1.16E-09		713.0		26	10
USW H-1	BF	C	0.28	1.16E-08		764.0		26	10
USW H-1	BF	C	0.25	6.94E-09		772.0		26	10
USW H-1	BF	C	0.19	4.63E-10		790.0		26	10
USW H-1	BF	C	0.20	8.94E-10		791.0		26	10
USW H-1	BF	C	0.22	8.10E-10		792.0		26	10
JSW H-1	BF	C	0.25	4.63E-10		830.0		26	10
USW H-1	Trom	C	0.26	1.165-09		833.0		26	10
JSW H-1	Trom	C	0.26	2.31E-10		840.0		26	10
USW H-1	Tram	C	0.21	4.63E-11		844.0		26	10
JSW H-1	Tram	C	0.21	4.63E-09		1031.0	•	26	10
JSW H-1	Tram	C	0.23	3.47E-09		1031.0		26	10
JSW H-1	Trom	C	0.22	2.31E-09		1032.0		26	10
JSW H-1	Tran	C .	0.18	1.16E-09		1039.0		26	10
JSW H-1	Tram	C	0.18	2.31E-09		1039.0		26	10
USW H-1	Trom	C	0.21	5.79E-10		1040.0		26	10
JSW H-1	FB	С	0.07	9.26E-12		1201.0		26	10
USW H-1	Older +	C	0.17	6.94E-10		1569.0		26	10

÷.,

....

NNWSI Data WWL #4001

.

. •

USR H-1 PP N 3.00E400 572.0 597.0 25 4 USR H-1 PP N 1.00E400 616.0 252.0 26 4 USR H-1 PP N 1.00E400 616.0 652.0 26 4 USR H-1 PP N 1.00E401 652.0 26 4 USR H-1 PP N 4.00E-02 663.0 26 4 USR H-1 PP N 2.00E-02 667.0 694.0 26 4 USR H-1 PF N 1.00E-01 735.0 741.0 26 4 USR H-1 BF N 1.00E-02 741.0 756.0 28 4 USR H-1 BF N 1.00E-05 792.0 1829.0 26 4 USR H-1 BF N 1.00E-05 792.0 1829.0 26 4 USR H-1 BF N 1.00E-05 792.0 1829.0	Woll #	Formation	Core test or Well test	Porosity	Permeability (saturated) m/s	Storage Coef.	Depth motors	Depth (Second) meters	WWL #	page num.
USN H-1 PP N 1.00E400 597.0 616.0 28 44 USN H-1 PP N 1.00E400 616.0 652.0 26 44 USN H-1 PP N 1.00E400 652.0 653.0 26 44 USN H-1 PP N 4.00E-02 653.0 686.0 26 44 USN H-1 PP N 2.00E-02 667.0 694.0 26 44 USN H-1 BF N 1.00E-01 735.0 741.0 25 44 USN H-1 BF N 1.00E-02 741.0 756.0 26 44 USN H-1 BF N 1.00E-05 792.0 182.0 26 44 USN H-1 BF N 1.00E-05 792.0 182.0 26 44 USN H-1 BF + N 1.00E-05 792.0 182.0 26 44 USN H-1 BF + N 1.00E	USW H-1	Older +	C	0.09	3.475-09		1820.0	*******	26	10
USN H-1 PP W 1.00E+00 616.0 652.0 28 44 USN H-1 PP W 1.00E+01 653.0 668.0 26 44 USN H-1 PP W 4.00E-02 653.0 668.0 26 44 USN H-1 PP W 2.00E-02 667.0 684.0 26 44 USN H-1 PP W 2.00E-01 736.0 741.0 26 44 USN H-1 PF W 1.00E-01 736.0 741.0 26 44 USN H-1 BF W 1.00E-02 741.0 756.0 26 44 USN H-1 BF W 1.00E-05 792.0 1829.0 26 44 USN H-1 BF W 1.00E-05 792.0 1829.0 26 44 USN H-1 BF W 1.00E-05 792.0 1829.0 28 46 USN H-1 BF W 1.00E-	USW H-1	PP	W		3.00E+00		572.0	597.0	26	40
USW H-1 PP N 1.60E+01 652.0 653.0 26 44 USW H-1 PP N 4.00E-02 653.0 668.0 26 44 USW H-1 PP N 2.00E-02 667.0 694.0 26 44 USW H-1 PP N 2.00E-02 667.0 694.0 26 44 USW H-1 PF N 2.00E-04 696.0 736.0 26 44 USW H-1 BF N 1.00E-01 736.0 741.0 26 44 USW H-1 BF N 1.00E-02 741.0 756.0 26 44 USW H-1 BF N 1.00E-05 792.0 1829.0 26 44 USW H-1 BF N 1.00E-05 792.0 1829.0 26 44 USW H-1 BF N 1.00E-05 792.0 1829.0 26 42 1250-1 12250-1 10.016 17.7	USW H-1	PP	W		1.00E+00		597.0	616.0	26	40
USW H-1 PP W 4.00E-02 653.0 688.0 26 44 USW H-1 PP W 2.00E-02 667.0 694.0 26 44 USW H-1 PP W 2.00E-04 664.0 736.0 26 44 USW H-1 BF W 1.00E-01 736.0 741.0 26 44 USW H-1 BF W 1.00E-02 741.0 758.0 26 44 USW H-1 BF W 3.00E-04 758.0 792.0 26 44 USW H-1 BF W 1.00E-05 792.0 1829.0 26 44 USW H-1 BF W 1.00E-05 792.0 1829.0 26 44 USW H-1 C 0.06 0.188 17.7 99 2 1255 46.7 99 2 1255 125 46.7 99 2 1255 125 125 125 125 125 <	USW H-1	PP	W		1.00E+00		616.0	652.0	26	40
USW H-1 PP W 2.00E-02 687.0 694.0 26 44 USW H-1 PP + W 2.00E-04 694.0 736.0 26 44 USW H-1 BF W 1.00E-01 736.0 741.0 26 44 USW H-1 BF W 1.00E-02 741.0 758.0 26 44 USW H-1 BF W 1.00E-05 792.0 1829.0 26 44 USW H-1 BF W 1.00E-05 792.0 1829.0 26 44 USW H-1 BF W 1.00E-05 792.0 1829.0 26 44 US250-1 C 0.07 31.1 99 2 12250-1 26 46.7 99 2 12250-1 C 0.33 57.0 99 2 12250-1 C 0.53 61.6 99 2 12250-1 C 0.52 80.2 99 2 12250-1 C	USW H-1	PP	W		1.80E+01		652.0	653.0	26	40
USW H-1 PP + W 2.00E-04 694.0 735.0 26 44 USW H-1 BF W 1.00E-01 735.0 741.0 26 44 USW H-1 BF W 1.00E-02 741.0 758.0 26 44 USW H-1 BF W 1.00E-02 741.0 758.0 26 44 USW H-1 BF W 1.00E-02 741.0 758.0 792.0 26 44 USW H-1 BF W 1.00E-05 792.0 1629.0 26 44 UE25o-1 C 0.06 0.186 17.7 99 2 12250-1 C 0.06 46.7 99 2 12250-1 C 0.33 57.0 99 2 12250-1 C 0.53 64.6 99 2 12250-1 C 0.52 80.2 99 2 12250-1 C 0.52 80.2 99 2 12250-1 C <t< td=""><td>USW H-1</td><td>PP</td><td>W</td><td></td><td>4.00E-02</td><td></td><td>653.0</td><td>688.0</td><td>26</td><td>40</td></t<>	USW H-1	PP	W		4.00E-02		653.0	688.0	26	40
USW H-1 BF W 1.00E-01 736.0 741.0 25 44 USW H-1 BF W 1.00E-02 741.0 758.0 26 44 USW H-1 BF W 3.00E-04 758.0 792.0 26 44 USW H-1 BF W 3.00E-04 758.0 792.0 26 44 USW H-1 BF W 1.00E-05 792.0 1829.0 26 44 USW H-1 BF W 1.00E-05 792.0 1829.0 26 44 USW H-1 BF W 1.00E-05 792.0 1829.0 26 44 UE250-1 C 0.06 0.186 17.7 99 2 UE250-1 C 0.023 57.0 99 2 UE250-1 C 0.053 71.3 99 2 UE250-1 C 0.52 80.2 99 2 UE250-1 C 0.13 199 2 UE250-1	USW H-1	PP	W		2.00E-02		687.0	694.0	26	40
USN H-1 BF W 1.00E-02 741.0 758.0 26 44 USN H-1 BF W 3.00E-04 758.0 792.0 26 44 USN H-1 BF W 1.00E-05 792.0 1829.0 26 44 UE250-1 C 0.06 0.186 17.7 99 22 UE250-1 C 0.07 31.1 99 2 UE250-1 C 0.03 51.6 99 2 UE250-1 C 0.53 64.6 99 2 UE250-1 C 0.52 80.2 99 2 UE250-1 C 0.52 80.2 99 2 UE250-1 C 0.13 109.8 99 2 UE250-1 C 0.13 109.8 99 2 UE250-1 C 0.18 159.8 99 2 UE250-1 C 0.18 173.5 99	USW H-1	PP +	W		2.00E-04		694.0	736.0	26	40
USW H-1 BF W 3.00E-04 758.0 792.0 25 44 USW H-1 BF W 1.00E-05 792.0 1829.0 26 44 UE25a-1 C 0.06 0.186 17.7 99 22 UE25a-1 C 0.07 31.1 99 2 UE25a-1 C 0.08 46.7 99 2 UE25a-1 C 0.30 61.6 99 2 UE25a-1 C 0.53 64.6 99 2 UE25a-1 C 0.53 71.3 99 2 UE25a-1 C 0.52 80.2 99 2 UE25a-1 C 0.27 83.2 99 2 UE25a-1 C 0.13 109.8 99 2 UE25a-1 C 0.18 159.8 99 2 UE25a-1 C 0.18 159.8 99 2 <td< td=""><td>USW H-1</td><td>BF</td><td>W</td><td></td><td>1.00E-01</td><td></td><td>736.0</td><td>741.0</td><td>26</td><td>40</td></td<>	USW H-1	BF	W		1.00E-01		736.0	741.0	26	40
USN H-1 BF + W 1.00E-05 792.0 1829.0 26 4 UE250-1 C 0.06 0.186 17.7 99 2 UE250-1 C 0.07 31.1 99 2 UE250-1 C 0.08 46.7 99 2 UE250-1 C 0.23 57.0 99 2 UE250-1 C 0.30 61.6 99 2 UE250-1 C 0.53 64.6 99 2 UE250-1 C 0.52 80.2 99 2 UE250-1 C 0.52 80.2 99 2 UE250-1 C 0.22 100.0 99 2 UE250-1 C 0.13 109.8 99 2 UE250-1 C 0.18 159.8 99 2 UE250-1 C 0.18 159.8 99 2 UE250-1 C 0.1	USW H-1	BF	W		1.00E-02		741.0	758.0	26	40
UE25a-1 C 0.08 0.186 17.7 99 2 UE25a-1 C 0.07 31.1 99 2 UE25a-1 C 0.06 46.7 99 2 UE25a-1 C 0.23 57.0 99 2 UE25a-1 C 0.30 61.6 99 2 UE25a-1 C 0.53 64.6 99 2 UE25a-1 C 0.53 71.3 99 2 UE25a-1 C 0.52 80.2 99 2 UE25a-1 C 0.52 80.2 99 2 UE25a-1 C 0.22 100.0 99 2 UE25a-1 C 0.13 109.8 99 2 UE25a-1 C 0.18 173.5 99 2 UE25a-1 C 0.18 195.8 99 2 UE25a-1 C 0.18 173.5 99 2 UE25a-1 C 0.18 195.8 99 2 <td>USW H-1</td> <td>BF</td> <td>W</td> <td></td> <td>3.00E-04</td> <td></td> <td>758.0</td> <td>792.0</td> <td>26</td> <td>40</td>	USW H-1	BF	W		3.00E-04		758.0	792.0	26	40
U2250-1 C 0.07 31.1 99 2 U2250-1 C 0.06 46.7 99 2 U2250-1 C 0.23 57.0 99 2 U2250-1 C 0.30 61.6 99 2 U2250-1 C 0.53 64.6 99 2 U2250-1 C 0.53 64.6 99 2 U2250-1 C 0.53 71.3 99 2 U2250-1 C 0.52 80.2 99 2 U2250-1 C 0.22 100.0 99 2 U2250-1 C 0.13 109.8 99 2 U2250-1 C 0.18 159.8 99 2 U2250-1 C 0.18 159.8 99 2 U2250-1 C 0.18 169.9 9 2 U2250-1 C 0.18 189.9 9 2 </td <td>USW H-1</td> <td>BF +</td> <td>W</td> <td></td> <td>1.00E-05</td> <td></td> <td>792.0</td> <td>1829.0</td> <td>26</td> <td>40</td>	USW H-1	BF +	W		1.00E-05		792.0	1829.0	26	40
U256-1C 0.06 46.7 99 2 $U256-1$ C 0.23 57.0 99 2 $U256-1$ C 0.30 61.6 99 2 $U256-1$ C 0.53 64.6 99 2 $U256-1$ C 0.53 71.3 99 2 $U256-1$ C 0.52 80.2 99 2 $U256-1$ C 0.22 80.2 99 2 $U256-1$ C 0.22 100.0 99 2 $U256-1$ C 0.13 109.8 99 2 $U256-1$ C 0.15 128.4 99 2 $U256-1$ C 0.18 158.8 99 2 $U256-1$ C 0.18 159.8 99 2 $U256-1$ C 0.18 199.9 99 2 $U256-1$ C 0.11 223.5 99 2 $U256-1$ C 0.13 225.4 99 2 $U256-1$ C 0.10 248.8 99 2 $U256-1$ C 0.09 264.0 99 2	UE25a-1		C	0.06	0,186		17.7		99	23
LE250-1C 0.23 57.0 99 2 LE250-1C 0.30 61.6 99 2 LE250-1C 0.53 64.6 99 2 LE250-1C 0.53 71.3 99 2 LE250-1C 0.52 80.2 99 2 LE250-1C 0.52 80.2 99 2 LE250-1C 0.22 100.0 99 2 LE250-1C 0.13 109.8 99 2 LE250-1C 0.15 128.4 99 2 LE250-1C 0.18 159.8 99 2 LE250-1C 0.18 159.8 99 2 LE250-1C 0.18 169.9 99 2 LE250-1C 0.13 235.4 99 2 LE250-1C 0.13 235.4 99 2 LE250-1C 0.10 248.8 99 2 LE250-1C 0.09 264.0 99 2	UE25a-1		C	0.07			31.1		99	23
UE25a-1C0.3061.6992UE25a-1C0.63364.6992UE25a-1C0.63371.3992UE25a-1C0.5280.2992UE25a-1C0.2783.2992UE25a-1C0.22100.0992UE25a-1C0.13109.8992UE25a-1C0.15128.4992UE25a-1C0.18159.8992UE25a-1C0.18159.8992UE25a-1C0.18169.9992UE25a-1C0.18169.9992UE25a-1C0.13235.4992UE25a-1C0.13235.4992UE25a-1C0.10248.8992UE25a-1C0.09264.0992	UE25a-1		C	0.06			46.7		99	23
UE25a-1C0.5364.6992UE25a-1C0.6371.3992UE25a-1C0.5280.2992UE25a-1C0.2783.2992UE25a-1C0.22100.0992UE25a-1C0.13109.8992UE25a-1C0.15128.4992UE25a-1C0.18159.8992UE25a-1C0.18173.5992UE25a-1C0.18173.5992UE25a-1C0.18173.5992UE25a-1C0.18189.9992UE25a-1C0.13235.4992UE25a-1C0.10248.8992UE25a-1C0.09264.0992	UE25a-1		C	0.23			57.0		99	23
UE25a-1C0.5371.3992UE25a-1C0.5280.2992UE25a-1C0.2783.2992UE25a-1C0.22100.0992UE25a-1C0.13109.8992UE25a-1C0.15128.4992UE25a-1C0.18159.8992UE25a-1C0.18159.8992UE25a-1C0.18173.5992UE25a-1C0.18189.9992UE25a-1C0.18189.9992UE25a-1C0.13235.4992UE25a-1C0.10248.8992UE25a-1C0.09264.0992	UE25a-1		C	0.30			61.6		9 9	23
UE25a-1 C 0.52 80.2 99 2 UE25a-1 C 0.27 83.2 99 2 UE25a-1 C 0.22 100.0 99 2 UE25a-1 C 0.13 109.8 99 2 UE25a-1 C 0.15 128.4 99 2 UE25a-1 C 0.18 159.8 99 2 UE25a-1 C 0.18 159.8 99 2 UE25a-1 C 0.18 173.5 99 2 UE25a-1 C 0.18 189.9 99 2 UE25a-1 C 0.18 189.9 99 2 UE25a-1 C 0.18 189.9 99 2 UE25a-1 C 0.13 235.4 99 2 UE25a-1 C 0.10 248.8 99 2 UE25a-1 C 0.09 264.0 99 2	UE25a-1		C	0.53			64.6		99	23
UE25a-1C0.2783.2992UE25a-1C0.22100.0992UE25a-1C0.13109.8992UE25a-1C0.15128.4992UE25a-1C0.19143.6992UE25a-1C0.18159.8992UE25a-1C0.18173.5992UE25a-1C0.18189.9992UE25a-1C0.18189.9992UE25a-1C0.13235.4992UE25a-1C0.10248.8992UE25a-1C0.09264.0992	UE25a-1		C	0.53			71.3		99	23
UE25a-1C0.22100.0992UE25a-1C0.13109.8992UE25a-1C0.15128.4992UE25a-1C0.19143.6992UE25a-1C0.18159.8992UE25a-1C0.18173.5992UE25a-1C0.18189.9992UE25a-1C0.18189.9992UE25a-1C0.13235.5992UE25a-1C0.13235.4992UE25a-1C0.10248.8992UE25a-1C0.09264.0992	UE25a-1		C	0.52			80.2		9 9	23
UE25a-1C0.13109.8992UE25a-1C0.15128.4992UE25a-1C0.19143.6992UE25a-1C0.18159.8992UE25a-1C0.18173.5992UE25a-1C0.18189.9992UE25a-1C0.18189.9992UE25a-1C0.08201.2992UE25a-1C0.11223.5992UE25a-1C0.13235.4992UE25a-1C0.10248.8992UE25a-1C0.09264.0992	UE25a-1		С	0.27			83.2		99	23
UE25a-1C0.15128.4992UE25a-1C0.19143.6992UE25a-1C0.18159.8992UE25a-1C0.18173.5992UE25a-1C0.18189.9992UE25a-1C0.08201.2992UE25a-1C0.11223.5992UE25a-1C0.13235.4992UE25a-1C0.10248.8992UE25a-1C0.09264.0992	UE25a-1		C	0.22			100.0		99	23
UE25q-1 C 0.19 143.6 99 2 UE25q-1 C 0.18 159.8 99 2 UE25q-1 C 0.18 173.5 99 2 UE25q-1 C 0.18 173.5 99 2 UE25q-1 C 0.18 189.9 99 2 UE25q-1 C 0.18 189.9 99 2 UE25q-1 C 0.18 189.9 99 2 UE25q-1 C 0.08 201.2 99 2 UE25q-1 C 0.11 223.5 99 2 UE25q-1 C 0.13 235.4 99 2 UE25q-1 C 0.10 248.8 99 2 UE25q-1 C 0.09 264.0 99 2	UE250-1		C	0.13			109,8		99	23
UE25q-1 C 0.18 159.8 99 2 UE25q-1 C 0.18 173.5 99 2 UE25q-1 C 0.18 189.9 99 2 UE25q-1 C 0.18 189.9 99 2 UE25q-1 C 0.08 201.2 99 2 UE25q-1 C 0.11 223.5 99 2 UE25q-1 C 0.13 235.4 99 2 UE25q-1 C 0.10 248.8 99 2 UE25q-1 C 0.09 264.0 99 2	UE25a-1		C	0.15			128.4		99	23
UE25a-1C0.18173.5992UE25a-1C0.18189.9992UE25a-1C0.08201.2992UE25a-1C0.11223.5992UE25a-1C0.13235.4992UE25a-1C0.10248.8992UE25a-1C0.09264.0992	UE25a-1		C	0.19			143.6		99	23
UE25a-1C0.18173.5992UE25a-1C0.18189.9992UE25a-1C0.08201.2992UE25a-1C0.11223.5992UE25a-1C0.13235.4992UE25a-1C0.10248.8992UE25a-1C0.09264.0992	UE250-1		C	0.18			159.8		99	23
UE25a-1C0.18189.9992UE25a-1C0.08201.2992UE25a-1C0.11223.5992UE25a-1C0.13235.4992UE25a-1C0.10248.8992UE25a-1C0.09264.0992	UE25a-1		C	0.18			173.5		99	23
UE25a-1 C 0.08 201.2 99 2 UE25a-1 C 0.11 223.5 99 2 UE25a-1 C 0.13 235.4 99 2 UE25a-1 C 0.10 248.8 99 2 UE25a-1 C 0.09 264.0 99 2				0.18						23
UE25q-1C0.11223.5992UE25q-1C0.13235.4992UE25q-1C0.10248.8992UE25q-1C0.09264.0992										23
UE25a-1 C 0.13 235.4 99 2 UE25a-1 C 0.10 248.8 99 2 UE25a-1 C 0.09 264.0 99 2				0.11					99	23
UE25a-1 C 0.10 248.8 99 2 UE25a-1 C 0.09 264.0 99 2									99	23
UE25a-1 C 0.09 264.0 99 2										23
				0.09					99	23
									99	23

·. ·

.

ſ

ſ

[

NNWSI Data WWL #4001

.

ъ.,

.

÷

۰.

. A

Weil #	Formation	Core test or Well test	Porosity	Permeability (saturated) m/s	Storage Coef.	Depth motors	Depth (Second) meters	WWL	#	pag o num .
UE250-1	<u></u>	C	0.12	2		307.9			99	23
UE25a-1		С	0.11			317.1			99	23
UE25a-1		С	0.09)		339.0			9 9	23
UE25a-1		C	0.09	1		360.7			99	23
UE25a-1		С	0.08	l		380.8			9 9	23
UE25a-1		C	0.13	5		386.0			99	23

.

ſ

5

"DRILL HOLE DATA USW G-3/GU-3"

WITHIN THIS PACKAGE.

NOTE: Because of these page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.

"DRILL HOLE DATA USW H-4"

WITHIN THIS PACKAGE.

NOTE: Because of these page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.

"DRILL HOLE DATA USW G-1"

WITHIN THIS PACKAGE.

NOTE: Because of these page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.

"DRILL HOLE DATA USW G-4"

WITHIN THIS PACKAGE.

NOTE: Because of these page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.

"DRILL HOLE DATA USW H-3"

WITHIN THIS PACKAGE.

NOTE: Because of these page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: "DRILL HOLE DATA UE 25a-6

WITHIN THIS PACKAGE.

NOTE: Because of these page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.

"TEST WELL USW H-5"

WITHIN THIS PACKAGE.

NOTE: Because of these page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.