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EXTENDED ABSTRACT:

The effective macroscale hydraulic conductivity of heterogeneous and
stratified geologic formations can be identified by ad hoc inverse methods, or by more
generic, direct methods such as homogenization. We propose here a direct approach
based on a simple homogenization relation expressing the effective conductivity
tensor of randomly heterogeneous flow systems under certain conditions of statistical
homogeneity and statistical anisotropy, given the microscale conductivity field
K(x ,x 2 ,x 3). Imperfectly stratified and anisotropic geologic structures are described by
means of directional fluctuation scales, while other features such as degree of
variability, bimodality, etc, are conveyed by a probability distribution. The
dimensionality of the flow system is also an important factor. We discuss below the
general case of a D-dimensional flow system (D = 1, 2, or 3).

The proposed homogenization relation expresses the principal
components of the fl-dimensional effective conductivity tensor by means of a
tensorial power-average operator:

Pi I/pi
K.. = < K > (i=1,...,D) (1)

where the angular brackets < > designate the operation of averaging. In this
equation, the pi's are directional averaging exponents. They are expressed in terms of
the directional fluctuation scales li, as follows:

Pi = 1-IT T (i=1,...,D) (2)

here IH is the f-dimensional harmonic mean fluctuation scale:

the = [ C1 (3)

Note that the averaging exponents are constrained to lie within the interval [-1,+1],
and that they sum up to unity. To summarize, equations (1)-(3) give an analytical
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relationship for the D-dimensional effective conductivity tensor in terms of the
single-point probability distribution, the principal directions, and the directional
fluctuation scales of the microscale log-conductivity field. Note that the microscale
data required for implementation of equations (1)-(3) are all of a statistical nature.
For technical reasons, we prefer to use here the statistics of log-conductivity rather
than conductivity.

The power-average effective conductivity tensor (1)-{3) can be
expressed in closed form for several usual types of log-conductivity distributions,
such as gaussian, binary, etc. In the case of a "gaussian medium" with normally
distributed enK, applying equations (1)-(3) leads to:

Kii = Kg exp{T [1 - IT z] ) (i=1,...,D) (4)

when ay2 is the log-conductivity variance, and K is the geometric mean
conductivity. This relation was initially developed by Ababou (1988, Vol. 1, Eq. 4.48)
in the equivalent form:

K = (Ka) I (Kh) 1-Q (i1,...,D) (5)

where ai = (D-h/1i)/D, and Ka and Kh represent the arithmetic and harmonic mean
conductivities, respectively. Another case of interest is that of a binary medium,
made up of a mixture of two distinct conductive phases a and Ai, present in the
proportions (p) and (1-p) respectively. For instance, phase a could be a sandstone
matrix, and phase fi a set of shale lenses or shale clast inclusions (Desbarats 1987,
Bachu and Cuthiell 1990). The conductivity distribution of such a composite medium
is of the form:

Prob{K(xbx2 ,x3)=K,} = p

Prob{K(xb~x2 ,x 3)=Kfl} = 1-p (6)

As before, we assume in first approximation that the spatial anisotropy of the random
structure can be defined by three fluctuation scales 41,12,13. Specializing equations
(1)-(3) for the binary distribution (6) gives:

P. p- l/p-
K { pK ' + (1 -p)Kj 1"} ' (i=1,...,D) (7)

with averaging powers (pi) are as given previously in equation (2). In the case of a
three-dimensional isotropic binary medium, let D = 3 and 11 = I2 =13. This yields
Pi = 1/3 (i=1,2,3) in equation (7). In the case of a two-dimensional isotropic binary
medium, let 11 = t2 for horizontal isotropy, and D = 2 for restriction to
two-dimensional space, or equivalently D = 3 with 3 -4 +cD for two-dimensional
horizontal flow through a vertically homogeneous medium. Either case yields pi -4 0
for i = 1 and 2. Inserting this in (7) and using Taylor developments leads to:

Kii = (Ka)P (Ki) 1 P (i=1 and 2) (8)
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where p represents the concentration of phase a, and 1-p the concentration of phase
f.

Although the general form of the effective conductivity model (1)-{3)
remains conjectural at this stage, many specialized forms of this relation appear to be
confirmed by other results. We are exploring the range of validity of the model in
several ways: firstly, by comparison with exact bounds and with available
homogenization solutions in cases of lower dimensionality, statistical isotropy,
symmetric distribution, binary distribution, etc; secondly, by comparison with
analytical solutions based on linearized and/or perturbation approximations; and
thirdly, by comparison with direct numerical simulations of flow in randomly
heterogeneous porous media. The preliminary results of such analyses are
encouraging. Some of the relevant effective conductivity results used for comparisons
can be found in Ababou (1988), Ababou et al. (1989), Desbarats (1987), Gelhar and
Axness (1983), Kohler and Papanicolaou (1982), and Matheron (1967), among others.

Finally, let us briefly indicate some of the possible applications of the
tensorial power-average conductivity model in the area of parameter estimation.
First, the model can be used as a convenient tool for. direct identification of the
effective conductivity tensor, given reasonable estimates of the microscale
conductivity distribution, principal axes, and fluctuation scales. Unlike other
approaches to inverse problems, the present approach does not require numerical
procedures. Furthermore, the model can also be used to estimate geostatistical
parameters from large-scale flow tests. To illustrate this second type of application,
we implemented a parameter identification procedure previously developed for the
Oracle fractured granite site by Neuman and Depner (1988). Their goal was to
estimate the conductivity correlation scales (which play an important role in
contaminant macrodispersion) based on a combination of "microscale" single-hole
packer tests and "macroscale" cross-hole tests. The principal axes of macroscale
anisotropy, as inferred from the cross-hole data, appeared to be directly related to
the orientations of major fracture sets. Now, given the measured macroscale
conductivity tensor and an independent estimate of vertical correlation scale, the
remaining correlation scales of the Oracle site can be identified by inverting the
effective conductivity model (1)-{3). Again, this is feasible without recourse to
numerical optimization procedures.
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