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Abstract

A fractured porous medium is often modeled as a dual porosity system. The subsystems of
fractures and matrix pores are assumed to provide two flow continuums. This is especially true
when considering solute transport through such a system. Coupling terms are then required
to enable the calculation of the exchange of solute between the two subsystems. The coupling
terms for solute transport through a fractured medium are derived in this report. This report
then investigates the need for the dual porosity models for solute transport. It is shown that the
complexity of a dual porosity model is required in some cases to accurately represent the solute
motion. However, it is also shown that some situations can be well represented by approximate
single porosity models if certain criteria are met. A single porosity model allows the use of
analytical solutions. Sample calculations are presented using parameter values representative
of Yucca Mountain tuffs. These calculations show that a dual porosity model is not required to
model solute transport at Yucca Mountain if the water fluxes are as low as currently believed.

3



Contents

1 INTRODUCTION .... . . . .. 5

2 DEVELOPMENT OF A DUAL POROSITY MODEL . . . . . . . . 6

3 COUPLING TERMS . . . . . . . . . . . . . . . . . ... 7

3.1 Coupling Term Derivation . . . . . . . . . . . . . . . . 8

3.2 Coupling Term Demonstration . . . . . . . . . . . . . . 11

3.3 Discussion of the Coupling Term . .. . . . . . . . . . . . 14

3.4 Conclusions for the Coupling Term . .. . . . . . . . . . . 14

4 MOMENT ANALYSIS . . .. . . . . . . . . . . . . . . . 15

4.1 Derivation of the Moments . .. . . . . . . . . . . . . . 16

4.2 Discussion of the Moment Analysis . .. . . . . . . . . . . 21

4.3 Verification of the Moment Analysis . .. . . . . . . . . . 22

4.4 Conclusions for the Moment Analysis . .. . . . . . . . . . 27

5 SAMPLE CALCULATIONS USING YUCCA MOUNTAIN PROPERTIES 28

6 CONCLUSIONS .... . . . . ..... . . . . 32

7 REFERENCES .... . . . . ..... . . . . . . . . 34

Appendix A. Reference Information Base . . . . . . . . . . . . . 37

4



1 INTRODUCTION

A dual porosity model includes two flow fields through the porous medium. In regions
with significant fracture flow, the solute can bypass much of the retention capabilities of
the matrix pore system. This can result in solute traveling faster than the average water
velocity (based upon the total porosity).

The earliest dual porosity (or dual velocity) models were introduced in the field of
chemical engineering (Lapidus and Amundson, 1952; Glueckauf, 1955). These models
described the transport of ions in ion exchange columns. The ions may reside in one
of two systems. The first is the flowing fluid, and the second is the ion exchange resin
(typically a non-flowing system of spherical beads). Coupling terms are proposed for the
exchange of ions between the two systems.

A second dual porosity model is the dead-end pore model for solute transport in
geologic media (Deans, 1963; Coats and Smith, 1964). In this model the pore space of
a geologic medium is divided into two distinct sets. The first set is interconnected and
contains a flowing fluid. This fluid exchanges solute with a stagnant fluid contained in a
second set of pores (dead-end pores).

Of most importance to the Yucca Mountain Project is a dual porosity system that
represents a fractured porous medium. This was first analyzed by Barenblatt, et al.
(1960) and Warren and Root (1963). In these models a liquid saturated, fractured,
geologic system is analyzed. The fracture system provides a transport path for the
solute. The matrix pores of the rock between the fractures is modeled as a (typically)
non-flowing system that can remove (or replenish) solute from the fracture system. This
type of model can be extended to a partially liquid-saturated, fractured medium if the
liquid in the matrix pore system is allowed to have a convective velocity (Dykhuizen,
1987). Further studies on saturated systems have been performed by numerous authors
(e.g., Fogden et al., 19S8; Grisak and Pickens, 1980; Neretnieks and Rasmuson, 1984).

Pigford et al. (19S0) introduced a model to describe the non-equilibrium sorption of
solutes onto a geologic medium. This is not usually considered a dual porosity system,
but may be cast into that general form. One system is the flowing fluid, which interacts
with a non-flowing medium. Solute may reside in the flowing fluid, or be fixed on the
non-flowing medium. Typically, a proportionality constant (kd) is used to describe the
mass balance of the solute in the two systems. The introduction of a time constant
to describe the approach to this equilibrium yields the dual porosity model equations.
This non-zero time constant could be due to a slow surface reaction rate, or due to the
diffusion of the solute to a discrete set of locally reactive minerals (Casey, 1987; Rubin,
1983).

Zanotti and Carbonell (1984a) introduce a model of two-phase flow in a geologic
medium. In this model both subsystems have a non-zero velocity. The solute may reside
in both of the phases. Again, an equilibrium constant is introduced to describe the
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equilibrium partition of the solute between the phases. A time constant is introduced to
describe the approach to equilibrium.

2 DEVELOPMENT OF A DUAL POROSITY MODEL

The following are the governing equations solved for the dual porosity model of a
fractured system (presented in a single dimension for simplicity):

(Om, +pakd) 8C- +Vm -- D_ - a ] = W(Cx-Cm)+ -A(Om +pjkd)Cm,at azJZ a
(1)

At az Tz[ az](2

where

Cm is the matrix pore solute concentration,
Cf is the fracture solute concentration,
C. is the cross flow solute concentration,
D is the diffusion/dispersion coefficient,
kd is the distribution coefficient,
v is the infiltration flux (positive downward),

IVt is the cross flow rate,
z is the coordinate in the flow direction,
A is the radioactive decay constant,
0 is the moisture content,

p, is the bulk rock density, and
T is the cross diffusion rate.

In the above, it is assumed that the solute is not retarded while flowing through
the fracture subsystem. However, if data are available, this can easily be included. Note
that the model of retardation assumes that chemical equilibrium is instantly obtained
between the sorbed and dissolved states of the solute.

The sub-model for ID is described in Section 3. This accounts for the diffusional
exchange of solute between the two flow systems.

A model was constructed to obtain the diffusion/dispersion coefficient. This model
is presented by Freeze and Cherry (1979).

D = OD + av , (3)
Tr
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where

r is the tortuosity,
a is the dispersivity, and

Do is the molecular diffusion coefficient of the solute in water.

The tortuosity is often considered to be a function of the saturation level of the
geologic material, with increasing tortuosity resulting from a decrease in the moisture
content. A model from Burdine (1953) was used to describe this effect,

T (asS,)] 2X

(I-S.)

where

i-8 is the saturated tortuosity,
S is the saturation level, and

S. is the residual saturation level.

In this model for solute transport the microscopic wetted surface of the porous
material is assumed to be independent of the saturation level. This needs to be established
from experiments. However, the assumption results in a distribution coefficient (kd) that
is independent of the saturation level.

The cross flow solute concentration (Cr. which is used in the advection between the
two subsystems) is determined from the direction of the flow between the two subsystems.
The advected flow rate (Iit) is obtained from a simple mass balance. The cross flow
submodel is presented in Dykhuizen (19S7).

3 COUPLING TERMS

To close the dual porosity model presented above the coupling term needs to be
evaluated. In this section a model for the coupling term is developed. This model is based
upon the work presented in Dykhuizen (1990). Most models initially consider a system
of parallel fractures that align with the flow direction (Figure 1). A tortuosity factor
must be included in the fracture flow equations when the fractures are not parallel or
aligned with the flow direction. Unequal spacing of the fractures needs to be considered,
although it will be assumed here that a single representative fracture spacing is suitable.

The dual porosity solute transport equation set is repeated here. The solute is
assumed to be stable, so the decay term is deleted. The overbar placed over the matrix
concentration is to emphasize that this concentration is an average over the matrix pore
block between fractures. No such distinction is made for the fracture flow system because
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Flow Direction -.

2

Figure 1. Simplistic parallel fracture geometry.

the fractures are typically so narrow, and diffusion so rapid, that the local value is very
close to the average value:

(0Cn +Pjkd) + Vm C - a [Dm a -w (C:-G ) +'1 , (5)at~ a:z_ -Z az

f act + 8ac -1 a [D 8 'Vf +W (C. -C,) - T i (6)at+V az az I a

The integral approximation method will be used to derive the coupling term. Classi-
cal works providing foundations for the integral approximation are found in Pohlhausen
(1921) and Goodman (1964). Later classic applications of this method include Eckert and
Drake (1986) and Schlichting (1968). A recent paper Zimmerman and Bodvarsson (1989)
uses the integral method to calculate unsaturated flows of fluid in a porous medium.

3.1 Coupling Term Derivation

In implementing this method, it is assumed that the fractures form a parallel set of
planes in the direction of the flow, and the existence of perpendicular fractures does not
affect the results. It is further assumed that the flow conditions are such that the flow in
the matrix pores is negligible compared to the flow in the fractures. Also, the transport
of solute in the matrix pores is primarily perpendicular to the fractures.

A submodel for the matrix pores between the fractures is now considered. For the
above assumptions, the following equation applies in the matrix pores where the fractures
are in planes of constant y and the flow is in the z direction:

(0Gm+ P. kd) j Cm(ziyt)dy= Tm a mjt (7)
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where y = 0 is midway between fractures, and 2t is the fracture spacing. The overbar
does not appear in Equation 7 since the matrix concentration is not averaged over the
volume between the fractures here. The left hand side of Equation 7 represents the rate
of increase in the solute content in the matrix pore system. This is set equal to the
incoming flux of solute at the fracture surface.

In the above equation, a concentration profile in the matrix pore system must be
assumed. The accuracy of the solution is strongly affected by the accuracy of the assumed
profiles. In this section, two separate profiles will be used: one will be used for early times
and one for late times. This division is not arbitrary, and justifications will be offered
for both the choice of the functional form and switch-over time. The late time solution
derivation will be shown first, because its choice determines many of the parameters for
the early time solution.

First assume that the fluid concentration in the fractures which surround the matrix
pore system is a known function of time. (The coupling of the two systems will be
presented later.) Because the fluid concentration will be continuous, the matrix pore
fluid concentration at the fracture edge (y = t) will be the same as the fracture fluid
concentration:

Cm(Z I ti ) = Cf(z i) . (8)

Assuming that the fracture fluid concentration varies smoothly and monotonically
at large values of time, the fundamental mode of the matrix solution will be dominant
(Carslaw and Jaeger, 1978). The fundamental mode is the one with the largest time
constant. Therefore, the following functional form is proposed:

Cm(ZYt) = (Cf(zt) Cm.) [1 -f(z t) Cos 2t] + Cmo, (9)

where f(zt) is function of time and position, and Cm, is an assumed constant initial
matrix concentration level. It will be shown that the function f(z, ) will not have to be
determined, for it will be eliminated via the integral method.

Using Equation 9, Equation 7 becomes

dt 7m(Om + pkd )2P2''AX101Cf(Yx0)-Co I (10)

1 iCwhere Cm(yst) = if G m(z~yt)dy * (11)
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Using Equations 9 and 11 to relate f (z, t) to the mean matrix and fracture system
fluid concentrations the following is obtained:

Cm = C- [C(y, t)-Cm - C.-] fz, ) (12)7r

Equation 12 is used to eliminate the function f (x, t) in Equation 10. This yields the
governing equation for large times,

dCm OmD-/Tm ( (C (Yt).m(Y t)) (13)
dit =om, +p, kd\2e

Equation 13 was also derived by Laplace transform methods (Wilson and Dudley,
1987) or series expansion (Dykhuizen, 1987) for the quasi-steady approximation.

It is desired to match the above solution, which is appropriate for late times, to a
solution that will yield accurate simulations for early times. Obviously, at early times
the assumed profile (Equation 9) does not apply. In fact, a boundary layer is formed that
travels from the fracture towards the center of the matrix block. Therefore, the following
profile will be assumed:

Cm(Z y, 0) = C,,o + (Cf(x, t) - CGo) [1 - cos r(Y - 6(z' ))] for y > 5(zt)I ~~2(t - b(z, t))J

Cm(Zyt) = Ci,. for y < 6(z,t),
(14)

where 6 represents the distance to the boundary layer from the center of the matrix block.
Initially 6 would be equal to e (the half fracture spacing).

Using Equations 7 and 11 in a manner similar to that above, the governing equation
for early times is obtained:

dCO _Dm /Tm [Cf(z't)]2 (7r/2-1) (15

dT .a + P, kd I e I ZCZ(Z' t)

The choice of the switch-over time now becomes clear. When the boundary layer is
equal to the half fracture spacing the two profiles will be identical (f(z, t) will be unity at
the transition and 6(z, t) will be zero). This condition makes the numerical value of the
coupling term the same, since the flux at the boundary will be identical. This continuity
will assure a smooth transition. The condition can be found by using the transition
profile in Equation 11 to obtain the following:
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C,( z ) = [Cf(z,t) - Cm.] (1 - 2/7r) + Cm,,(, . (16)

3.2 Coupling Term Demonstration

Before using this model to simulate a coupled transient flow in a fractured porous
medium, some simple test problems were computed to evaluate how this model compares
to the quasi-steady model. To accomplish this, a non-dimensional time is introduced,

O M-mD t
- Tm(Om + pkd)t2 ((17)

Two test problems were run. The first shows the response of the average matrix
fluid concentration to a step change in the fracture fluid concentration. Figure 2 shows a
comparison of the exact solution, the quasi-steady solution, and the new model presented
here. As shown, the new model results in a significant improvement. The new model
resulted in a switch-over from the early (high) coupling term to the quasi-steady coupling
term at a non-dimensional time of 0.23. The switchover yields a smooth transition, and
no discontinuity in either the value or the slope of the matrix concentration results.

a

C

0.0 02 0.4 0.0 0.8
TIME

1.0

Figure 2. Comparison of models for a step change in the fracture fluid concentration.
(Time non-dimensionalized via Equation 17.)

The second test is to calculate an example problem where the two solute concen-
trations are actually coupled. The following equation set is postulated here to simulate

11



solute transport in a dual porosity medium:

AC, vf aCf Df a2C _ -T
Ait +0 1 z 0 z 2 ( 18)

The model for the coupling term is obtained from Equation 15 for early times and
Equation 13 for late times. Therefore, using the above definitions for conductivities and
capacitances, the following is obtained:

T OmD*(7r/2 -1)CJ if Cm,,< Cf (I - 2/7r),
TmeZ Cm

Om,,D* r 2 (19)
=! 2Tmf D.T(C C-.) if C C ( -2/7r)(

This equation set (18 and 19) will yield averaged fracture and matrix solute con-
centration as a function of distance and time. Note that convection and diffusion along
the flow direction are assumed to be negligible in the matrix pores. For this problem,
the fracture concentration is of primary interest because transport in the fractures is
dominant. Therefore, the fracture concentration results will be presented.

The quasi-steady model uses the late time formulation for the coupling term at all
times. At early times this approximation underestimates the extent of the coupling. In
fact, in the limit of infinite fracture spacing, the coupling term goes to zero in both the
fracture and the matrix governing equations. However, if the early time choice is used,
the coupling remains finite in the fracture system equation. This term remains finite
because the matrix concentration and the fracture porosity will both scale inversely with
the fracture spacing.

The governing equations (Equation set 18) were solved numerically by the method
of lines. The mesh contained 35 nodes 0.3333 cm apart. Table 1 presents the parameters
used. The results from both the quasi-steady model and the new model are presented in
Figure 3, as is an analytical solution to a similar problem for comparison. The analytical
solution corresponds to the same equation set, except that there is no axial diffusion in the
fracture flow system and it uses an infinite fracture spacing (Carslaw and Jaeger, 1978).
The time in Figure 3 is scaled by the fracture travel time and is, thus, non-dimensional.
The following equation defines the time scaling for Figure 3:

= Vf' t (20)xof
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where X is 10 cm, the output position.

Table 1. Parameters for Calculating
Example Solute Transport Problem.

V1 = 1. E-10 m/sec
Of = -1.E-4 -

dGm = .1 -

Do = 1.E-10 mn2/sec
-rm = 10. -

TY = - 10. -

I = 0.075 m
oy = I0 m

lb

-d

-4

10
Z.-
<0

P-'

U' 0

10
I4

10L ic id 10
TIME

10

Figure 3. Comparison of breakthrough curves for 10 cm depth (fracture
concentration; Time non-dimensionalized via Equation 20.)

This scaling results in the solute front arriving at the output location at a dimensionless
time of unity, if the coupling is deleted from the model.

As can be seen in Figure 3, the quasi-steady model indicates little delay of the solute
transport for this problem. This is because the coupling term is almost zero in the quasi-
steady model of this problem. The new model provides a much better estimate of the
solute transport.
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3.3 Discussion of the Coupling Term

The parameters used in these calculations were chosen to illustrate the large dif-
ferences between the two models. These differences arise when the quasi-steady model
time-constant (see Equation 17) for diffusion into the matrix material is large (three or-
ders of magnitude larger in this case) compared to the fracture travel time. This resulted
in the new model primarily using the early time coupling term. The early time coupling
is much larger and resulted in an order-of-magnitude increase in the amount of solute
diffusing into the matrix pores (although the average matrix concentration still remains
two orders of magnitude below the fracture concentration). Therefore the arrival of the
solute is shown to be significantly delayed in the new model.

The difference between the new model and the analytical result can be attributed to
four causes. The largest source of error is numerical diffusion present in the solution of
the finite-differenced equations. The slope of the breakthrough curve of the new model
at low concentrations is very sensitive to numerical diffusion. The calculation presented
was performed with very small node spacings and central differences to minimize the
effect of numerical diffusion. Other calculations with larger node spacings and upwind
differences resulted in a more gradual rise in the breakthrough curve. However, the region
between dimensionless concentrations of 0.1 and 1.0 was hardly affected. The second
cause of a difference is the treatment of the fracture spacing. The analytical solution
corresponds to a fluid flow of the same velocity as the new model but with infinite
fracture spacing. Therefore, the analytic model did not include the effect of solute from
a neighboring fracture. Because this does happen in the new model solution near the
top of the simulation region, the new model resulted in a somewhat earlier arrival of
the solute downstream. The last two causes for the differences result in relatively minor
errors. The new model includes axial diffusion, which was determined to be very small
in this case but was not included in the analytical solution. Finally, the approximations
in the integral method result in some disagreement with the analytical solution.

It is interesting to note that this coupling term has been investigated for many years
in the Chemical Engineering literature. Glueckauf (1955) reviews a series of approximate
forms for the coupling term in the analysis of spherical ion-exchange-column particles.
These proposed forms include one that is identical to the late time form presented here.
Another one of the proposed forms for the coupling term was very similar to the early
time form presented here; however, it included a second term to prevent overshoot of the
equilibrium condition. It is felt that this analysis presents the first attempt at using two
different forms of the coupling term to enable accurate simulation of both the early and
late behavior.

3.4 Conclusions for the Coupling Term

A new model has been derived for the coupling of two flow systems in a dual poros-
ity model. The new formulation eliminates the quasi-steady approximation in deriving
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the coupling term. This approximation has been described as a major shortcoming by
Berkowitz, et al. (1988). The only extra calculation required is a choice in the coupling
term based upon a switch-over relation. This model can be used for the transport of
fluid, heat or solute by simply switching the potential used in the formulation.

The model is best applied to the flow of heat or solute where the governing differ-
ential equation for the matrix submodel is linear. For the transport of heat or solute in
the matrix subsystem, a linear governing differential equation is typically assumed, and
therefore, the assumed profiles will be very good. The flow of groundwater in a saturated
or nearly saturated medium will also be linear. However, application of this method to
the nonlinear flow of a highly unsaturated medium may require different functional forms
for the matrix pore system profiles, Zimmerman and Bodvarsson (1989). Also, the model
relies on functional shapes that are appropriate only for monotonically varying transient
concentration. Use of the model for oscillatory boundary conditions will not yield good
results.

The new coupling term is nonlinear. This makes the solution somewhat more difficult
than the quasi-steady model (which is linear), but numerical solutions are typically always
used. Because of the decreased stiffness of the model equations, the new model can often
take orders-of-magnitude less computer time for completion. Example problems were
presented which show improved predictions of solute transport with the new model.

4 MOMENT ANALYSIS

In this section, asymptotic solutions are obtained for solute transport in the dual
porosity system. These are obtained via the analysis of the moments of particular solu-
tions. From this analysis, non-dimensional parameters will be found that will enable one
to determine when a dual porosity model is required. In some situations the coupling
is very strong, and one can assume that the matrix and fracture solute concentrations
are locally in equilibrium. In some cases an asymptotic condition can be approached
where an effective single continuum exists, resulting in a single system with an increased
dispersion.

For the convection-diffusion equation set for two coupled pore systems, a linear
coupling time constant, i7, is assumed to be known from experiments, or from a more
basic model. As shown in the previous section, a linear coupling term is only valid for
the long time portion of the coupling. To account for the increased coupling in the
earlier time of the transient, a linear coupling of increased magnitude over the long time
response should be used here. Parker and Valocchi (1986) provide an excellent discussion
on obtaining this time constant for a fractured system that allows preservation of the
actual moments. Van Genuchten (1985) also shows a derivation of an effective linear
coupling term for use over all times. This increased linear coupling is less than a factor
of two over the long time linear coupling term derived in the previous section.
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The governing equations presented as Equations 1 and 2 are simplified for this anal-
ysis to form the following equation set:

19c" 19C. O2C. (Cb _C.)01 ala + v. -a _ (21)2 8t ~~Z Z2 '1

Because we are concerned with two interacting pore sets, there are two such equations,
one for the conservation of the solute in the a set, and the other for conservation of the
solute in the b set. The equations, as formulated here, are always symmetric so only the a
equations will be presented. The corresponding b equation can be obtained by replacing
all of the a subscripts by b, and vice versa.

The above assumes no advective coupling between the subsystems, and no radioac-
tive decay. It also assumes that the saturation and material properties are homogeneous
over space and time, and no sorption of the solute. Solute sorption can be included in this
derivation, however, it was omitted for ease of presentation. The equations are slightly
more complex when a retention coefficient is included. The fluid velocities are considered
steady.

Solutions of the above equation set for arbitrary initial and boundary conditions are
difficult to obtain. However, moments of the solution can be constructed and evaluated
analytically. This was first done for solute transport in one-dimensional pulsed flow
by Taylor (1953), and later improved upon by Aris (1956). A coated tube with solute
exchange between the fluid and the coating was the first examination of a coupled system
(Westhaver, 1942). Other coupled conditions were examined by Golay (195S) and Aris
(1959). Zanotti and Carbonell (19S4b) provide a connection between the various results
of Taylor, Aris, Westhaver and Golay.

4.1 Derivation of the Moments

Various moments are derived in the following subsections. The results will yield
insights into solute transport in dual porosity systems.

Zeroth Moment

The zeroth moment of a pulsed system is obtained by integrating Equation 21 over
all values of z. Given that the concentrations are zero at plus and minus infinity, the
following is obtained:

dAf 0o -1 (Ao b (22)

where
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M = j 0 Ca dz.
ow

The addition of the two zeroth moment equations (Equation 22) for the two pore
sets shows that solute is conserved:

d(AMf0 + Afbo) = o (23)
dt

By dividing the zeroth moment equations by their respective porosities, and then sub-
tracting one from the other, the following differential equation is obtained:

d(M00/000 - Mb. 0I6) = /0+ Ob_..MU
d (Aol~aAtoOb) (fV0A) (ao M 6 9A .(24)

di 71 O a~b 0. Oba 6

By a simple substitution of variables,

4 = .- ao _ Mbo (25)

a single ordinary differential equation for 64 results. A solution is easily found:

64 = 60(O) ezp ( .' + 0) (26)

Equation 26 indicates that, as time goes to infinity, 4 goes to zero. So

M., Al60 (27)
06 O

when i >> it = 0.t)
(0.± 06)'

This shows that chemical equilibrium, in a global sense, is approached. However, this
does not mean that local chemical equilibrium is established everywhere. Consider the
case of fractured-medium flow. At the front of the flowing pulse, the solute concentration
is higher in the fracture. Therefore, solute diffuses from the fractures into the rock
matrix. However, after the pulse passes, the concentration is higher in the matrix pores
and diffuses back into the fractures. Yet globally, the solute is distributed proportionally
to the capacitance of the two systems.

When the result for 64 is put back into the original moment Equations 22, it is shown
that the zeroth moments approach a constant value for each system.
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First Moment

The first moment of the solute distribution in the pulsed system yields some insight
into the spatial distribution and velocity of the solute in each of the two pore sets.
If Equation 21 is multiplied by z, and integrated over all z, the following equation is
obtained:

dM., -vaM.o I (M. 1 _

-dtl _: -O
MAl)

O7b )
(28)

where

= J:o zOC Cadz

The mean position of the pulse is defined as

Pa = A1. Iai/Aia (29)

Noting that Ma0 was determined to be a constant for large times, and is related to
AlIo by Equation 27, the following differential equation is obtained:

dila Va H Pa - Plb
_dt a Oar7

(30)

If SI is defined to be the difference between the two mean positions,

1 = Pa - jib , (31)

the following exponential solution is found:

SI 7(ObL'a - OaVb)
(O + 06) { 1 - a[oab?] } + [1 (°) exp [ 00b ] (32)

Note that this solution has the same time constant as found for 6,. A steady-state
value for El is obtained as

61 = (ObVa - O0aVb)7 for t >> +MMb)
(Oa +Ob)(O Ob

(33)
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This solution was also found empirically through computer simulations and via a
dimensional analysis for the fractured media application. Substitution of this solution
(Equation 33) into the governing equations for the mean position (Equation 30) yields:

dp. dpb V. V+Vb
dtl a dtl o v, + Db (34)

Therefore, the total volumetric flux divided by the total capacity gives the asymp-
totic velocity of the pulse in both pore sets. From this, we might expect that the dual
velocity medium can be treated as a single effective medium at large times. Wfe also see
that for large times, the pulse in the 'faster" pore set (the one with the larger value of
v/0) will lead the pulse in the 'slower" pore set by a constant amount.

Second Moment

Finally, we will investigate the second moment of the pulsed system to enable cal-
culation of the dispersion of the combined pore sets. Einstein (1905) showed that the
change of the variance with respect to time yields the diffusion (or in this case the diffu-
sion/dispersion) coefficient. The variance, of course, can be calculated from the second
moment,

a w_ P 2 1(35)

where a is the variance and w is the reduced second moment.

The second moment is obtained multiplying Equation 21 by z2 and integrating over
all z:

dAI 2 2 v0A 0ll 2 DaAAl., 1 Ma2 Ab2 (36)
dt Va . V V )3Ob

where

,+00

A1a2 = j z2 O0C.dz

We note here that for the pulsed system Mao is constant at large times. Therefore,
by dividing Equation 36 by AL., the following differential equation is obtained:

dw. 2 VaPa. 2 Da 1 W a MO2 (37)
Oa (Oa- 7 1aOfao X
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where

Wa = Ala 2/Ma. -

Using Equation 27, which is applicable for large times, Equation 37 simplifies to

dw'-' 2 Vapa + 2 Da 1 (Wa _ Wb . (38)

The time derivative of the variance is found from Equations 27, 30, 35, and 38 where,
at large times,

da _ 62 + 2Da _ (aa -ub)

dt -TOa Ofa 77(a

From the two equations described above (one for each subsystem) the following can
be formed:

d62 = 61 (O ob 29 (Da Db\ (Oa + Ob" 62 (40)
dti 1 OaO&kaOb Oa 0b OaJb 7 7

where

S;2 = ala- Ub -

Again, an exponential solution is obtained with the same time constant as before.
The variable, 62, exponentially approaches the following steady value:

1 (Ob -Oa) (DaOb - DbOa

2 a + Ob ',. Oa+ 0 b ) (41)

when t >> 7OaOb7when I »(Oa + 06),

When this solution is substituted into Equation 39, a constant increase in the vari-
ance occurs for both pore sets. This translates to the same effective dispersion coefficient
for both systems:

1 da_ 62/q+ Dao+ Db
De = dl - I aO (42)
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Here, it is seen that the coupling term adds to the effective dispersion of the combined
pore sets. Solute is stored in the slower pore set, and then returns into the faster pore set
after the pulse has passed. This result reduces to the same as that derived by DeSmedt
and Wierenga (1984) for their special case of a dead end pore system.

4.2 Discussion of the Moment Analysis

Analysis of the moments of the solutions for the dual velocity solute transport equa-
tions has determined a very simple asymptotic behavior. For large times, the solute
motion can be described by a single effective velocity and dispersion coefficient. Thus,
a single governing equation can be written for the solute motion in the combined pore
sets:

80 8~a eaC =20
-- +V -- D -- 0 , (43)

where

e Da + V6 D,/ + Da + Db fort > Obl)

The solution will yield the effective solute motion. If extra detail is required, the
distance between the solute pulses in the two pore sets can be determined as

t,( 0a Ob) (44)

When bl is written in this form, it is shown to be the product of the equilibrium time
and the difference between the two averaged microscopic velocities.

The applicability of the results obtained in this paper are dependent upon the accep-
tance of the assumptions implied by Equation 21. The linear form of the coupling term
is shown not to be acceptable when considering very early time behavior (Dykhuizen,
1990). However, this lower limit on time will typically be significantly less than the
equilibrium time constant presented here.

The choice of a constant diffusion/dispersion coefficient always generates controversy,
especially if the medium is considered heterogeneous. This constant diffusion/dispersion
assumption is often acceptable when considering asymptotic solutions. In this case, the
dispersion is often modeled to approach a constant limiting value (de Marsily, 1986).

Finally, for the asymptotic solution to have any meaning, the transient to be modeled
has to last longer than the equilibrium time, and the medium has to be larger than 6,.
This distance is often very large when considering a fractured media application.
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4.3 Verification of the Moment Analysis

To quantify the errors involved in the approximation, the effective equation solution
is compared to a solution of the actual dual porosity model. It is important that the
comparison be made between analytical solutions for each model. In this way there is no
concern about errors introduced from a numerical solution. Numerical diffusion can be
significant in the solution of solute transport models, and the dispersion of the solute is
of great interest.

A solution for solute transport in a simple dual velocity system is presented here.
This dual velocity system has a zero convective velocity for one of the subsystems and
ignores any diffusion-dispersion within either of the subsystems. Thus, the result presents
a simple test for the effective dispersion caused by the coupling term. The governing
equations (Equation set 21) are rewritten here for this application as

O° a + vaCa= -(C,- a) sand (45)

OCb - (Ca C=) (46)

These equations can be non-dimensionalized by introducing the following variables:

t zOt
r = t - a ,and (47)

710b VaObV1

: Z (48)

This results in the same non-dimensional equations as obtained by Pigford, et al.
(1980),

a = Cb-Ca ,and (49)

ac =Ca-Cb * (50)

Pigford, et al. were able to solve the equations using Laplace transforms for the
following initial and boundary conditions:

Ca(P,O) =Cb(,O) = 0 < < o and (51)
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C.(O,r) = 6() T > ° ,( (52)

where 6(T) is the Dirac delta function. This results in:

C.(f3,7) = [2p exp (-T-A/) I + 6(T) exp (--A-)] ah(T) X (53)

where h(r) is the step function,

h(T) = .1 Tr>O.
(54)

h(7r) =O T <O.

and 1, is the modified Bessel function of the first kind and of order 1.

It will be instructive to comment on the meaning of the above solution. First, a
large spike enters the domain at the origin. This spike travels with the fracture velocity
on the characteristic r = 0. The amount of solute in the spike decreases with time due
to the coupling with the b subsystem. The second term in Equation 53 represents the
motion of this spike. As can be seen, when this spike passes location 8, it is decreased
in amplitude by exp (-By).

For large values of time the solution in the traveling spike has negligible concentra-
tion; the first term in the solution represents the majority of the solute in the flowing
subsystem. This wave travels on the characteristic T = 8. This translates to a dimen-
sional velocity of

V' = t + , (55)

which is consistent with the result from the previous sections.

In order to compare the dispersion that results from the coupling between the two
subsystems, an analytic solution for the effective model is needed. The solution of Equa-
tion 43 for an initial delta function of solute at the origin is given as

C(zwe t)re / (-(Z td .)) (56)

where AI = 0,fC(z, i)dz .(57)
0t
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To compare this solution to Pigford's, M and 0e need to be evaluated. The effective
moisture content is obtained from a simple examination of Equations 1 and 2 as

0e=Oa,+Ob (58)

The value of M can be obtained from the boundary condition in the Pigford solution:

= Co (dt )
Al= 0C0 ,vdt =I 0 V0CavdTr dT } = VaObtl.- (59)

Thus, if we introduce the following non-dimensional variables,

t
ay = ,

)3 = - ,and
VaIl

the effective model solution becomes:

(60)

(61)

(62)

C = 1
/ 47 -y/(I + a)

- (P -4Y/(1 + a))'
x ((34 -/(l + a)3)

(63)

The concern here is how these two profiles compare for various times (7), positions
(/3), and porosity ratios (a). To investigate this, two new variables are presented. A
position variable, y, is defined as

_ ~-y/(l + a) 3 (64)

As can be seen from Equation 63, this position will be at the peak of the traveling
wave (in the effective model) at all times.

The concentration is renormalized by

(65)
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In using these new variables, it is easily shown that the effective solution results in
the normal distribution

CN = I exp (y2) _ (66)

The two solutions can be shown to be equivalent by plotting them for various values
of the variables and parameters. The approximate solution is presented in Figures 4 and
5 by plotting CN versus y. The Pigford solution (Equation 53) is also plotted for various
values of non-dimensionalized time (').

10'~~~~~~~~~~~~~~~~~... .- =* 1---100.-
_ At .' \,',- . "*~~~~~~~- _ -- 1000._

104

10-5

10F1

-5 0 5 10 15
Position

Figure 4. Non-dimensionalized comparisons between the dual porosity model at
various times (-a) and effective single porosity model (normal distribution)
of solute transport for a = 0.001.

It is seen that as time increases, the Pigford solution asymptotically approaches the
effective solution provided by Equation 66.

The character of the two solutions is quite different at early times. The effective
model solution comes from a diffusive equation with a domain of all values of position,
from plus to minus infinity, while the Pigford solution is valid only for / > 0 and T > 0.
These limits result from the convective nature of the Pigford model. Solute cannot con-
vect upstream, and cannot convect downstream faster than the fastest velocity. However,
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after long times (large -y), the two solutions converge for significant values of concentra-
tion. Note that the non-dimensional time (-y) can be expressed in terms of the equilibrium
time (introduced with Equation- 27) as

7- t,(l + a) * (67)

The case of a = 0.001 corresponds to the model of a fractured porous medium. In
this case, the capacitance of the non-flowing matrix pore system (0b) is large compared to
the capacitance of the fracture system (O.). This result is shown in Figure 4, which shows
that for early times the effective single porosity model simulates well the movement of
the peak of the solute pulse. However, if one is concerned with the leading edge of the
traveling pulse, much larger times are required until the two models approach each other.

The case of large a, a = 1, corresponds to the Coats and Smith model of dead
end pores. In this case, the capacitance of the two systems is comparable. The better
agreement shown here is somewhat fortuitous because the first term ignored in many of
the asymptotic series contains the term a - 1.

These results indicate that the asymptotic solutions are very good. They not only
predict integrated properties (i.e., moments of the solution), but they also can be used
to show actual solute distributions in a dual porosity medium. Expansion of the approx-
imate and exact solutions into infinite series will also demonstrate that in the limit of
large times the results are identical.

4.4 Conclusions for the Moment Analysis

Many dual porosity models are governed by the same set of partial differential equa-
tions. By investigating the temporal behavior of various moments of solutions of these
transport equations, effective velocity and dispersion coefficients have been obtained.
The analysis proceeds along identical lines as the Taylor-Aris result for capillary dis-
persion. The given asymptotic solutions are valid for large times in comparison to the
time constant obtained (te), or for distances greater than 6X. Early time behavior (times
much less than it) of the solute transport can be bounded by considering only the fastest
system, without any coupling to the slower system. Only for intermediate times is the
complexity of a dual porosity model required.

Solute sorption was not included in the above derivations. If included, it would result
in a reduced effective velocity. However, it could also result in an increased effective
dispersion, causing the transport to appear more diffusive.
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5 SAMPLE CALCULATIONS USING YUCCA MOUNTAIN
PROPERTIES

Yucca Mountain is the potential repository site for high level nuclear wastes in the
United States. It is located at the western edge of the Nevada Test Site (Montazer and
Wilson, 1984). In this section the models already developed are applied using Yucca
Mountain properties. Properties for the various hydrogeologic layers were obtained from
Barnard and Dockery (1991).

The parameters derived in the moment analysis section of this report can be evalu-
ated using Yucca Mountain properties. The moment analysis requires that the saturation
level change very slowly over space. It is best applied to unit gradient flows. Because the
actual geometry of Yucca mountain consists of many finite thickness hydrogeologic layers,
unit gradients do not exist at many locations. Therefore, the local velocities required for
the analysis are a function of the local saturation and the local pressure gradient. This
makes presentation of the results difficult due to the requirement of multi-dimensional
plots. Approximate results are presented by assuming that unit gradient flows exist at
Yucca Mountain. In this way the infiltration rate uniquely determines the saturation
level and the local fluid velocities in the two subsystems. The parameters are presented
in Figures 6 to 9.

Figure 6 shows that the effective velocity (Ve from Equation 43) is linear with the
infiltration rate. That is because the porous materials considered are nearly saturated
(or completely saturated) for the range of fluxes investigated. Thus, the effective velocity
is nearly equal to the infiltration divided by the total porosity of the material.

Figure 7 shows the variation of the distance the solute pulse in the fracture subsystem
leads the pulse in the matrix subsystem. For low infiltrations this distance is negligible
when compared to the total distance the solute has to travel to reach the water table.
This plot indicates that for the fluxes considered to be applicable at Yucca Mountain a
dual porosity model is not required.

Figure 8 shows the time constant obtained that is a measure of the equilibration
time between the fracture and matrix pore subsystems. This time approaches a constant
as the system saturates.

Figure 9 shows the effective dispersion of the total system. For infiltrations greater
than 10- m/sec, the added dispersion caused by the matrix and fracture systems ex-
hibiting different convective velocities dominates the other causes of dispersion. The
dispersion becomes quadratic with the infiltration rate when the extra dispersion due to
the dual system becomes dominant.

Solute transport results were calculated using the full dual porosity model. Using the
nominal flow rate of 0.01 mm/yr that was proposed to exist at the Yucca Mountain site,
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the fracture system did not transmit any flow. Therefore, the need for a dual porosity
model was not demonstrated. The same results were obtained for both dual porosity
and single porosity models. When the steady infiltration is increased to 0.5 mm/yr
the fractures begin to flow. However, the high fracture density and the low fracture
velocities result in very strong coupling between the fractures and the matrix. Again, a
dual porosity model was not required to model solute transport.

Table 2 shows the parameter values used in the models. It should be noted that
these parameter values are thought to be representative; however, experimental data
are required to verify these choices. To solve the solute transport equation, boundary
conditions have to be provided. The domain modeled was from the water table up to the
repository elevation (Barnard and Dockery, 1991), using the data from drillhole G-4. A
zero concentration was imposed at the lower boundary. This conservatively assumes that
the water table has an infinite capacity with good mixing. A pulse of solute was injected
at the upper boundary over the initial 5000 years. The solute was distributed between
the fracture and matrix subsystems in proportion to their respective groundwater flow
rates at the repository elevation. The flux boundary condition conservatively eliminates
any diffusion of the solute upward from the repository that occurs at the low infiltrations.
Figure 10 shows the distribution of Tc-99 below the repository and above the water table
after 100,000 years for the infiltration rate of 0.5 mm/yr. Tc-99 is only slightly retarded
by the geologic medium due to sorption reactions in layers near the repository. At the
0.5 mm/yr infiltration, the average solute particle does not reach the water table before
150,000 years. Therefore, the solute that does reach the water table is due to dispersion
of the solute. On the scale of this plot, the fracture and the matrix solute concentrations
are identical at any elevation. It is also shown that the assumption of a single continuum
yields the same result. This is consistent with the results obtained from the moment
analysis. This showed that for such a low flow rate the fracture concentration pulse will
only lead the matrix pulse by less than a centimeter.

Table 2

Parameter Values Used in Transport Models

matrix fracture

Ta 10 1

a 10 m 10 in

D- .10-9 m 2/S 10-9 m 2 /s
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Figure 10. Solute distribution after 100,000 years of transport

The single porosity model used to obtain results for Figure 10 can be derived by two
equivalent means. The first is by deleting the fracture flow system and increasing the
matrix subsystem conductivity by that of the fracture subsystem. The single porosity
model is also obtained by assuming an infinite coupling in the dual porosity model.
The single porosity model results were verified by comparisons to simulations using the
FEMITRAN (Martinez, 1985) code.

6 CONCLUSIONS

The inclusion of a dual porosity model can greatly increase the solute releases when
significant fracture flow exists. This is due to the solute bypassing the water volumes in
the rock matrix. However, the complexity of a dual porosity model can be avoided if one
of the following situations exist for fractured system flows.

* Dry fractures. If this is the case the matrix subsystem describes the entire flow field.
Fracture properties are not required. This situation occurs for fractured media at
low saturations. This is considered to be the current state of the Yucca Mountain
site above the water table.

* Low fracture velocity. If this case is to apply, the fracture system linear velocity is
less than that of the matrix system. Only a very limited set of conditions result in
a fracture system that has a measurable flow rate but a lower linear velocity than
the matrix system.
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* Infinite coupling. The coupling is so strong that the fracture' lead distance is so
small that the effective dispersion is equivalent to the sum of the two subsystem
dispersion terms. If this is the case, the fracture subsystem properties still have to
be incorporated into the model to allow the calculation of an effective dispersion
coefficient that will be the sum of the contributions from the two subsystems.

* Flow lengths much greater than coupling lengths. This situation allows the use of
the effective terms derived in the moment analysis section. For vertical flows this
situation is difficult to obtain for the flow distance through each individual layer
has to be at least an order of magnitude'greater than the coupling length. If one
is interested in the tails of the solute pulse, the layer has to be many orders of
magnitude greater than the fracture lead distance (Figure 4).

* No coupling. This situation can be assumed to exist if the flow distance of interest
is short when compared to the coupling length. Then only the fracture flow system
needs to be included, and the matrix pore system does not participate.

It is of course desirable to eliminate the complexity of dual porosity models. The
simplified models typically require only half of the computational time (or less) to obtain
numerical results. Also, analytical solutions and approximations are available. For the
steady flux levels considered at Yucca Mountain the dual porosity model is not required.
The moment analysis results from Section 4 can be used to numerically evaluate the
items listed above.
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Appendix A. Reference Information Base

Information from the Reference Information Base
Used in this Report

This report contains no information from the Reference Information Base.

Candidate Information for the Reference Information Base

This report contains no candidate information for the Reference Information Base.

Candidate Information for the
Site & Engineering Properties Data Base

This report contains no candidate information for the Site and Engineering Proper-
ties Data Base.
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