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On the Movement of a Liquid Front in an Unsaturated, Fractured
Porous Medium, Part L

John J. Nitao and Thomas A. Buscheck

Earth Sciences Department
Lawrence Livermore National Laboratory

ABSTRACT

If a high-level nuclear waste repository is to be built at Yucca Mountain,

Nevada, a better understanding of the fracture flow dynamics occurring within unsa-

turated, fractured rock is needed for its design and licensing. In particular, possible

water flow in the rock and fractures will affect waste package design, performance

assessment, in-situ testing, and site characterization. Most of previous work in frac-

ture flow applies only under saturated hydrological conditions, whereas the Yucca

Mountain site is in the unsaturated zone. In this series of papers, as part of the Yucca

Mountain Project (YMP), we present an analytical and numerical study of the liquid

front movement in a single idealized fracture in an unsaturated porous medium.

The flow of liquid in the fractures is restricted to one dimension and has a pro-

perty which we have termed fracture-dominated flow. This property occurs when

the liquid flux in the fracture is sufficiently high that the fracture liquid front advances

ahead of the liquid front in the rock. (Sufficient amounts of liquid are assumed to be

present at the fracture entrance such that a constant boundary condition is maintained.)

Another type of flow, which we call matrix-dominated, occurs when the flux into the

fracture is low enough that the fracture front lags behind the front in the matrix.

These papers will concentrate only on fracture-dominated flow. Matrix-dominated

flow will be the subject of future work. We should state here that the issue of when,

if, and where these types of flows actually occur at Yucca Mountain has not, at this

time, been established and is not the subject of this paper. It is important to note that
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fracture-dominated flows will be associated with relatively high fluxes such as when a

pond of liquid exists at the fracture entrance.

The primary aim of this paper is to present approximate analytical solutions of

the fracture flow which gives the position of the liquid fracture front as a function of

time. These solutions demonstrate that the liquid movement in the fracture can be

classified into distinctive time periods, or flow regimes. It is also shown that when

plotted versus time using a log-log scale, the liquid fracture front position asymptoti-

cally approaches a series of line segments. Two-dimensional numerical simulations

were run utilizing input data applicable to the densely welded, fractured tuff found at

Yucca Mountain in order to confirm these observations.

This work aids understanding of many physical parameters that affect the flow

of water in a fractured unsaturated porous medium and, in particular, to some possible

hydrological mechanisms occurring at Yucca Mountain. The results could be useful in

future analyses requiring the estimation of water movement and in the verification of

numerical computer models. Other areas of hydrological study in which our work has

direct impact are hazardous waste disposal, petroleum recovery, and flow in soil

macropores.

.
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Nomenclature

Greek Symbols

p the cosine of the angle of inclination of the fracture from the vertical

X kr dW/dS
X fracture storativity ratio, the initial unsaturated pore volume of the matrix

relative to the volume of the fracture
t2 function fl(y) denoting the time at which the fracture front

first reaches point y
* matrix porosity
v matrix capillary pressure head
a matrix diffusivity, or effective matrix diffusivity
Xt dimensionless time equal to t / tb

¶a ta I tb

rcjkb / tb , = 1, 2
IT dimensionless transition time from boundary dominated flow to

flow dominated by gravity and matrix capillary forces

Roman Symbols

a one-half the distance between adjacent parallel fractures
b one-half the fracture aperture width
db matrix imbibition penetration depth
h distance of liquid front leading edge from the fracture entrance
K1 fracture-saturated hydraulic conductivity
K, matrix-saturated hydraulic conductivity
k, matrix relative permeability function
Lb length that the fracture front would travel during time t,

if there were no matrix imbibition
p pressure in units of liquid head along the fracture
P, capillary pressure head at liquid fracture front meniscus

Po pressure in units of liquid head at the fracture entrance
Pa dimensionless pressure head at the fracture entrance
q specific volumetric flux into the matrix
qi specific imbibition volumetric flux function into the matrix
qp specific volumetric flux of water onto to pond located at fracture entrance
qf specific volumetric flux at the fracture entrance

Q. cumulative specific volumetric flux into the matrix
s dummy variable of integration
S liquid saturation in the matrix



-5-

Si initial liquid saturation in the matrix
I time
t, fracture interference time constant, approximate time for matrix front to reach

the no-flow boundary

tb fracture storadvity time constant, approximate time for cumulative matrix imbibition

flux to become comparable to the volume in the fracture

u liquid velocity along the fracture
uo liquid velocity at the fracture entrance
x coordinate distance normal to the fracture

y coordinate distance longitudinal to the fracture

Z flow region length
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1. Introduction

The unsaturated zone at Yucca Mountain, Nevada, is currently being investigated as the possible

site for a national high-level nuclear waste repository. The various geological units consist primarily of

tuffaceous rock with many of the units being highly fractured [Montazer and Wilson, 1984; Klavetter

and Peters, 1986]. The mechanics of water infiltration into unsaturated fractured rock is, therefore, of

significant practical importance. In particular, near-field radionuclide transport calculations and waste

container design analyses require water influx rates as input parameters. The travel time of water from

the waste package to the immediate environment is of primary concern to the overall perfonnance

assessment Characterizing the repository site will require knowing which physical parameters are criti-

cal to the flow of water. In turn, this knowledge will depend on the fundamental processes occuring

during infiltration into fractured rock. The invasion of drilling water used in construction will be

important with regard to the on-site data gathering process in assessing the effects on the in situ

environment [Buscheck and Nitao, 1988a].

Understanding multiphase fluid processes in fractured porous media is important in other fields of

study as well. The secondary recovery of petroleum from naturally fractured reservoirs through water

flooding is a prominent example. Our work is also applicable to heterogeneous unsaturated systems

where there is a sharp contrast in permeability between two types of materials. For example, the flow

in a thin layer of high-permeability rock that is sandwiched between two low-permeability layers is also

treatable by our analysis, while another area of study related to our work is the flow of water in soil

macropores [Beven and Germann, 1982].

The flow of water in a real-life fractured rock system is complicated by the complex geometry of

the fractures and their spatially varying aperture sizes. In general, the path of water may form sinuous

channels, or rivulets, of fluid as it flows through a fracture. In the unsaturated zone, further complica-

tions arise from the interaction between the fluid in the fractures and the surrounding matrix. Flow res-

tricted to the matrix may possibly occur across fractures by way of contact points [Wang and

Narasimhan, 19851. Before considering these more complicated aspects of fracture flow it would be

wise to investigate the simpler problem of flow after the introduction of liquid at one end of a single

fracture. We, therefore, consider a single fracture in an initially unsaturated porous medium intersecting

a planar exposed face of the rock mass (Figure 1). Suppose that water is allowed to enter into the

opening of the fracture with some type of flux or head boundary condition that is uniform across the

opening of the fracture. The rsulting flow of water in the fracture and the matrix is the focus of this
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paper. Note that a sufficient amount or water is assumed to be present at the opcning in order to main-

tain the boundary condition while, at the same time, guaranteeing a continuous front of water. For

example, in the case of constant pressure at the opening equal to a value above ambient conditions, a

pond of water must exist at the fracture opening.

In some situations the resulting flux into the fracture may be sufficiently low that most of the

water will be absorbed through matrix imbibition close to the entrance before any significant fracture

flow can occur. Movement of the liquid front, if any, in the fracture will be small and will lag behind

the front in the matrix, leading what we have termed in this paper as matrix-dominated flow. In other

cases, the flux will be sufficiently high that the fracture flow along the longitudinal direction of the frac-

ture will advance ahead of that in the matrix, a situation we will call fracture -dominated flow. In this

latter case, the speed of the front will be governed by an interaction between the driving forces in the

fracture and the suction forces in the matrix. Relatively high fluxes are necessary for this case to occur,

such as, if there is ponding of water at the entrance to the fracture. A real fracture system existing in

the field will have significant spatial variabilities, and it is possible that these different types of flow

conditions may occur simultaneously at different locations in the same fracture. Future work will also

have to consider matrix-dominated flows as well as the transition between the two types of flow.

In this series of papers we are interested in fracture-dominated flow. We treat the idealized prob-

lem of one-dimensional flow in a uniform aperture, planar fracture. In spite of these simplifications it

will be seen that the analysis yields interesting results that may lead, in some cases, to techniques for

performing bounding calculations of water movement for more complicated systems as well as an

understanding of some fracture flow processes.

In actual field applications the physical parameters that characterize the flow in a fractured system

are often difficult to measure and vary significantly in space. Therefore, their values will have a high

degree of uncertainty and variance. Thus, from a practical point of view, what can be realistically

achieved is to understand the various physical processes present in the system and, it is hoped, to bound

the problem. With these goals in mind we have been able, under a class of assumptions, to reduce the

governing equations into a single equation of motion describing the movement of the liquid front in the

fracture. With this equation we are able to determine the asymptotic behavior of the flow. These solu-

tions are invaluable in revealing various flow processes and flow regimes that may occur and in deter-

mining the dependency of the flow on various physical parameters.

Most theoretical work in fracture flow has been restricted to saturated conditions and, until

recently, relatively little has been done in unsaturated fracture flow. Travis et al. [1984] have
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presented analytic solutions to the problem of a single slug of finite length traveling down a fracture in

an unsaturated porous medium with the flux into the matrix assumed to be a constant in time. Numeri-

cal solutions were given for more realistic time-varying matrix flux condition. Martinez 19881 has also

performed numerical calculations for a continuous front of water and has performed parameter studies

applied to Topopah Spring tuff.

We note here that one problem analyzed in this paper is mathematically identical to that con-

sidered by J.R. Philip [19681 who looked at the infiltration process in aggregated media. However,

most results presented in this paper are believed to be new. Moreover, we are able to show in the con-

text of fracture flow that for the same mathematical problem treated by Phillip there exists an "inter-

mediate' flow period in addition to the two periods found by Philip for flow in aggregated media. We

also mention here that Davidson [1987] has recently considered infiltration from a saturated fracture of

finite length.

Another area where theoretical work in multiphase fracture flow has been active is the secondary

recovery of petroleum reservoirs through water flooding. There, workers have been interested in the

imbibition of water into a naturally fractured oil-bearing formation. Van Golf-Racht [1982] summarizes

the work in this area Previous analyses in the petroleum literature, however, have not given the

detailed behavior of the solutions, nor have they elaborated on the various time constants and length

scales important to the front movement process.

2. Assumptions

We consider the flow resulting from the introduction of a liquid into one end of an initially dry

planar fracture with constant aperture. The flow inside the fracture is treated as a one-dimensional front

with a capillary pressure drop across the leading meniscus. The fracture aperture is assumed to be

small enough that, at each point of the fracture front, liquid completely fills the space between the rock

walls. The partially saturated rock is assumed to be at uniform initial saturation. In some cases it will

be necessary to assume that the matrix diffusivity for capillary imbibition can be approximated by a

constant. We will restrict ourselves to the time span of flow until the front reaches the end of the frac-

ture. The fracture is assumed to have no intersections with other fractures.
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The arrival of the liquid front in the fracture at any given point on the fracture face will result in

a capillary driven flux into the matrix at that poinL The flow field in the matrix as a result of these

fluxes will, in general, be multi-dimensional. However, if the flow in the system is high enough that it

is fracture-dominated, as defined earlier, most of the flow lines in the matrix will be primarily orthog-

onal to the fracture plane (except in the immediate vicinity of the leading edge of the front). Thus, the

flow into the matix at each point on the fracture can be uncoupled and treated individually as that of

flow into a one-dimensional sub-system. Because the permeability of the matrix is believed to be many

orders of magnitude less than the fractures [Klavetter and Peters, 1986], this treatment is applicable to

the various tuffaceous units found at Yucca Mountain. This assumption was also used by Travis et al.

[1984] and Martnez [1988], and has been confirmed by our numerical simulations.

Our analysis will not consider the effect of pressure gradients along the length of the fracture

upon the imbibition rates into the matrix. This effect will be small if the magnitude of the initial suc-

tion pressures in the matrix are large relative to the overpressure in the fracture. We will also assume

that the initial suction forces in the matrix are large enough that for the time span of interest the

influence of gravity on the matrix flow (but not on the fracture flow) can be neglected.

In applying the solutions covered in this paper one must be careful that the boundary conditions

are such that the resulting flow does not violate the above assumptions. In many cases the asymptotic

solutions can be used to give guidance concerning whether they are satisfied. Future work will have to

be done to derive these conditions and confirm them through numerical simulations. An example of

when the boundary conditions may be inappropriate is in the case of a constant flux boundary condition

at the fracture opening. If this flux is too low, one may violate the condition of fracture-dominated

flow, or the front in the fracture may be stretched by gravity and may separate into more than one

piece.
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3. The Problem

Matrix Imbibition Flux

We now briefly discuss the form of the imbibition flux into the matrix after passage of the liquid

fracture front. The reader is refeired to Figure 2 for the coordinate system that is used. Suppose that

the matrix has a uniform initial saturation distribution. The equations describing the saturation field in

the matrix are

GaS = V-KkVV (3.1)

S(x,y,t=O) = Si

S(x=O,y,:) = 1.0 for y S h )

S(x=Oy.t) = S for y > h(t)

where

t = time

x = normal distance from fracture

y = longitudinal distance along fracture from fracture entrance

S = liquid saturation

K. = matrix-saturated hydraulic conductivity

It, = relative permeability

v = capillary pressure head

* = porosity

S, = initial saturation

h (t) = penetration distance of liquid front in fracture

At a given point y for y h(t) the volumetric flux into the matrix along a single face of the

fracture is given by

q = -K at x = (3.2)

In general, this flux depends on location, time, and the past history of the liquid fracture front h (T)

wheret t that is,

q = (3.3)(3.3)
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Under the assumptions described in the previous section, the imbibition flux q at a point y on the frac-

ture face will depend only on the time when the front first passes by; that is,

q (yt) = 0 f L (y) (3A)

q (ye) = qQ - (y)) > I(y) (3.5)

where 0(y) denotes the time when the fracture front first reaches the point y. Here, q (y,t) is the

matrix imbibition flux into only one fracture wall.

Fracture Flow

The flow of the liquid in the fracture will be treated as being a front except with a constant capil-

lary pressure drop at the leading meniscus. The one-dimensional fracture is assumed at any given point

to be either completely filled with liquid or completely dry. Let h (t) denote the location of the fracture

front with respect to the entrance of the fracture. We assune that the liquid in the fracture and matrix

is incompressible. Let u (y,t) be the liquid velocity at depth y and time t and let b equal to the con-

stant half-aperture of the fracture. From material balance considerations

1 = (. t) (36)

Now, let p (y,t) be the liquid phase pressure head in the fracture. Assuming Darcy's law for flow in

the fracture, we have

u (y,t) = -Kf(@- ) (3.7)

where Kf is the fracture hydraulic conductivity and is the cosine of the angle of inclination of the

fracture from the vertical. The fracture can be oriented either horizontally or inclined downward rela-

tive to its opening. The fracture penetration depth h (t) must satisfy the equation

d h = u ( (t), t) (3.8)

Note that the function L (y) is related to h (t) through the relationship

L(h ()) = t (3.9)

and, hence, is the inverse function of h ().

We will consider two separate types of boundary conditions at the entrance to the fracture: pres-

sure head po(t) and flux uo(t). The pressure head at the leading edge of the front in the fracture is

assumed to be at zero datum. Since the equations involve only gradients in head, a non-zero constant
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capillary drop -pc across the leading edge of the front can be included by adding p, to po. We must,

however, be careful that the magnitude of the resulting value of po is much smaller than the initial suc-

tion pressures in the matrix. Otherwise, significant pressure gradients would occur along the length of

the fracture that would couple with the imbibition flux, in violation of one of our basic assumptions.

Likewise, the flux boundary condition u0 (t) must not be so large that excessive pressures develop in

the matrix. It also must not be so small that it can not meet the the flow demanded by the suction and

gravity forces in the fracture; otherwise, the front will become discontinuous violating one of our

assumptions. The question of at which critical values of uo will these conditions take place will be

considered in section 6.4.

Integro-Differential Equations

It can be shown [Nitao, 1989] that the above governing flow equations can, for each of the two

types of boundary condition, be reduced to a single integro-differential equation in h(t). These equa-

tions are given as

Flux-type boundary condition

At = -(r) I (q,( s) dhds (3.10)
dt ds

Pressure-type boundary condition

h(t) dh) Kr(h(t)p + po(t)) - bo - d ds (3.11)

where the solution must satisfy the initial condition

h(0) = 0

Here, the variable s is a dummy variable of integration.

Fracture Geometry

In this paper we will consider an infinite array of parallel fractures with the same aperture equal

to 2b (see Figure 3). The spacing between these fractures alternates between distances of 2aI and 2a2.

The no-flow symmetry lines in the matrix are therefore a, from one side of the fracture and a2 from

the other. The matrix blocks can also alternate, not only in their size, but also in their material proper-

ties, porosity 4* and diffusivity ak (k = 1, 2), as well as initial saturation Sik.
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This geometry includes several special cases, such as the case of a single fracture between two

semi-infinite matrix blocks (a = a2 = o), the case of an infinite array of equally spaced fractures

(a = a2), and the case of two parallel factures with a finite matrix block in between

(a 1 =finite, a2 =e).

In the analysis we will assume constant matrix diffusivities. In [Nitao, 1989] we show that for

the case of semi-infinite matrix blocks this assumption is unnecessary and the diffusivity can be a non-

constant function of saturation.

4. Flow Periods

Depending on whether we have a constant pressure-type or a constant flux-type boundary condi-

tion, we can show that the flow in the fracture undergoes various flow regimes, or time periods, with

respect to its interaction with the matrix. During each of these periods the function h(t), which

describes the position of the front, can be shown to tend asymptotically toward approximate solutions,

which on a log-log scale form a series of line segments giving the general location of the actual solu-

tion curve. But first we wish to introduce some relevant time constants and dimensionless groups. As a

convention, we will label the two matrix blocks forming the two sides of the fracture as k = 1 and

k = 2. As mentioned, each matrix block can have its own material properties such as porosity k and

effective diffusivity a. (In the notation of section 3 the diffusivity function is given by

a = (K. 40) dV/IdS. Here, we will use the constant "effective diffusivity" defined in Nitao [19891)

The initial saturation S can also be different. The fracture spacing ak was defined in the previous

section. From these parameters we define the following relevant time constants

Fracture storativity time constant, t*

tbk - [2b (1 - Sik)k ]2 (4.1)

Average fracture storativity time constant, tb

1 - 1 1 - (4.2)

Fracture interference time constant t k

ak 2
ta - k (43-

ask
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A special case of particular interest is when the fractures are uniformly spaced (a = a2) and the

material properties together with the initial saturation of the two matrix blocks are the same. The sub-

scripts in the parameters with respect to the matrix blocks can be dropped. In this case we have

bk - [2b/ (- S,)] 2z (44)

for each block so that from (4.2) one has

tb= [b ( S) ]2X 45

and from (4.3),

ta = a it (4.6)

We are able to show that the solutions can be characterized entirely by the time constants

together with the conductivity and fracture orientation. A rigorous derivation is given in [Nitao, 1989],

but in this paper we wish to provide some physical motivation behind these time constants. The basis

for our discussion follows from the fact that the time t required for a diffusive front to travel a distance

L is given approximately by

L 2t - (4.7)

where a is the diffusivity constant. Since matrix imbibition is primarily a diffusive process, albeit a

non-linear one, we expect such a relationship to hold, assuming that we are able to define a characteris-

tic diffusivity constant. Returning to the general case where matrix properties can be different, suppose

that imbibition from the fracture is allowed to occur into only one of the matrix blocks. Consider a

control volume oriented orthogonal to the fracture (Figure 4) having contact area A with the fracture.

Let L be the length of the matrix imbibition front at some given instant of time, and suppose that the

saturation along the length of this front is approximately equal to unity. The total volume of the liquid

in the front is given by L A with the portion due to the initial saturation being given by L A N Si.

Subtracting these two volumes, we obtain that the volume V of liquid absorbed from the fracture by the

control volume is given by

V = L A jt ( -Sit) (4.8)

The portion of the fracture inside the control volume has volume equal to 2 A. When V is equal to

this volume we, therefore, have
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LA k(I-Sit) = 2bA

L = 2bklAk(1-Sk)

From (4.7), the time at which these volumes are equal is given by the expression for tbt, except for the

factor of x that arises from the rigorous mathematical derivation. Thus, tbk may be interpreted as the

approximate time at which the cumulative matrix imbibition from the fracture becomes comparable to

the stored volume of the fracture. Although these arguments are heuristic, it is substantiated by

rigorous analysis, and gives a useful framework in interpreting the mathematical solutions that will be

presented later.

If we now consider imbibition into the two matrix blocks simultaneously, tb is the approximate

time at which the sum of the two cumulative imbibition fluxes leaving the two walls of the fracture is

comparable to the specific fracture volume. Note that tb in (4.5) does not have the factor of two multi-

plying b that is present in tbk since each of the two matrix blocks share one-half of the fracture

volume. The other time constants t, are simply the approximate times at which the imbibition front in

matrix k reaches the no-flow symmetry line with the respective neighboring fracture. It is interesting to

note that although the definition of the time constants assumes a constant or almost constant matrix

diffusivity, their physical definitions remain valid even when the diffusivity is a function of saturation,

and are, therefore, applicable even when this assumption does not hold.

We define the following ratios:

Matrix-to-fracture storativity ratio, *

t k ak(l - S) (4.

Total storativty ratio, 

X= ) + X2 (4.10)

The dimensionless constants Xt are the ratios of the initial unsaturated pore volume of the kth

matrix to the volume of the fracture while A is the ratio of the total initial pore volume in the matrix to

the fracture. When the fractures are spaced uniformly and the matrix properties are the same, we have

from (4.9) and (4.10) that A reduces to

-= i a(l - S)4.1
\ t. b
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In order to simplify the discussion, suppose that the matrix blocks on both sides of the fracture

have the same flow properties and that we have a system of parallel fractures with equal spacing. With

this assumption we have ta = t = 2. Analyses presented in Nitao [1989] show that with constant-

time boundary conditions, there will generally be three major time periods for the movement of the

liquid fracture front. These time periods can be shown to arise from the three stages of matrix imbibi-

tion that can occur at any given point on the fracture face. Let us focus our attention on a single slice

of infinitesimal thickness that is orthogonal to the fracture (Figure 5). Suppose that the fracture front

has just reached this slice, and imbibition begins. Stage A for this slice occurs when the cumulative

volume of liquid that has imbibed is less than the fracture volume inside the slice. Stage B is when the

imbibed volume in the matrix has increased to an amount greater than the fracture volume, but before

the matrix front reaches the no-flow symmetry boundary of the matix block due to neighboring frac-

tures. Stage C occurs after the front reaches the matrix no-flow boundary. The matrix can, therefore,

be divided into three zones depending on the stage of imbibition (Figures 6 and 7) with zone I

corresponding to those points that lie on slices undergoing stage A, zone II corresponds to stage B, and

zone I to stage C. These zones propagate with the liquid front as it proceeds into the fracture with

zone I occuring near the tip of the fracture liquid front, followed by zone II, and, then, by zone III.

Which time period is occuring depends on which of the zones is the largest. At early times,

t t, most or all of the fracture front lies in zone I, and the flow in the fracture is, therefore,

influenced only weakly by matrix imbibition and is, instead, dominated by the fracture boundary condi-

tion and gravity. As the fracture front proceeds, a significant part of the matrix is in zone II, i.e.

cumulative imbibition fluxes are comparable to the fracture volume, and the front is slows down. Dur-

ing this second flow period, tb t < t , there is a balance between (1) matrix suction forces and

(2) gravity and, possibly, (3) fracture flow boundary conditions. Finally, as the matrix imbibition front

approaches the no-flow symmetry planes, the imbibition flux begins to decline, and we enter the third

flow period, ta t when most of the matrix is in zone III.

We are also able to treat other cases: when the matrix blocks do not have the same material and

initial properties, and when the fractures are not evenly spaced. In general, we then have t * t2-

(In the rest of the paper we can assume, without loss of generality, that t a 2 t 1 Otherwise, the

indices 1 and 2 are interchanged in what follows.) The only difference from the equal fracture spacing

case is that the third flow period is split into two sub-periods Ila and Ib because matrix k = 1 enters

flow period III while matrix k = 2 is still in period II. In particular, there is a period

tat t S t, 2 corresponding to when only matrix block k = I is in flow period III. For later

times, a2 t :, matrix block k = 2 is also in flow period III. (These flow periods apply if
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tb :S .. 5 t.2, which will be true in most cases. Other less likely orderings of the time constants

will lead to other flow periods.)

To summarize, the ow periods are:

Flow period I (boundary and gravity dominated)

t S tb (4.12)

Flow period 11. (balanced)

Ib 5 t S9 ta 1 (4.13)

Flow period lla (reduced matrix suction in a single matrix block)

ta I t 5 2 (4.14)

Flow period Ifb (reduced matrix suction in both matrix blocks)

ta 2 5 t (4.15)

If a flow period has upper and lower time limits that are comparable or if the upper becomes less

than the lower, that particular flow period will not be present. For example, when tb is comparable to,

or greater than t 1, flow period II is non-existent.

In some situations, special degenerate cases can occur depending on how the time constants are

ordered. For example, suppose that one of the matrix blocks bounding the fracture is much larger than

the other but with their diffusivities being equal. That is, a2 >> a and c = Y. It can then be seen

that t 1 < t. Moreover, suppose that the initial unsaturated pore volume of matrix block k = 1 is

much smaller than the fracture pore volume, which in turn is much smaller than the initial unsaturated

pore volume of matrix block k = 2. We then have the situation where t << t << ta 2. While in

flow period I the total imbibition flux into block k = I will start to decline relatively early because of

the small matrix volume of this block and and will then go into flow period lL. This transition will

happen before the flux into block k = 2 has become significant enough to go into flow period II. The

flow in the fracture will revert to being boundary- or gravity-dominated, and instead of

Flow period IIla we have two periods which we call Ila. 1 and Illa. 2.

Flow period lla.) (revert to boundary or gravity dominated)

ta I < t < t 2 (4.16)

Flow period lla.2 (partially reduced suction)
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tb2 S ta2 (4.17)

In order for this situation to occur we must have t, • t b2 5 ta2- It is obvious that there are

other orderings of the time constants that can lead to special flow periods not covered by those given

here. However, in most situations, such as when both matrix sides of the fracture have nearly identical

matrix properties and initial saturations, the three periods we have given in (4.12) to (4.15) are the only

major ones. The other subcases can be treated, if desired, by using the techniques in Nitao [19891.

S. Dimensionless Groups

It will be seen later that a convenient definition of dimensionless time is obtained by taking time

to be relative to the time constant tb. Therefore, let us denote by X the dimensionless time given by

X t I/t (5.1)

It will also be convenient to normalize the other time constants relative to tb:

Tak = tak Itb (5.2)

Tbk = tbk / tb (5.3)

The index k = 1, 2 refers to the matrix blocks bounding the fracture. In terms of normalized time the

flow periods are given as follows.

Flow period I (fracture flow boundary and gravity dominated)

T 1 (5.4)

Flow period ! (balanced)

Tb < T S Ta (5.5)

Flow period Iila (reduced matrix suction in a single matrix block)

Ta I S T Ta 2 (5.6)

Flow period Ilib (reduced matrix suction in both matrix blocks)

Ta2 S T (5.7)

The fracture penetration length, h, can be made dimensionless h by dividing by Lb, which is

defined to be the distance that would be traveled by the fracture front at time t = tb if no imbibition
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into the matrix were present. These "imbibition-free" length scales Lb can be easily derived for the

various combination of boundary conditions and are given in Table I. For example, in the case of

po = 0 with gravity, liquid will travel down the fracture flow at a constant speed equal to Kf P. Thus,

at time b it will have traveled a distance equal to Lb = K P tb. To understand further the meaning

of Lb, note that the gravity and boundary pressure forces including fracture capillarity will dominate

over matrix imbibition when the fracture penetration is less than Lb since the imbibition into the matrix

is relatively unimportant for < tb. In Table I, the last row corresponds to a pressure boundary con-

dition with gravity. There, the value of the length scale Lb is computed based on the value computed

due to gravity and with the boundary pressure p set to zero.

Table I. Fracture Penetration Length Scale Lb

Boundary Condition 4

flux b.c. c 4

pressure b.c T12Kf pot&
no gravity I

pressure b.cK tb
with gravity

In some cases we will also need to define a dimensionless boundary pressure head obtained by

normalizing with respect to K f 2tb

Po = polKf 132tb (5.8)

Note that the normalization of po has a factor of 32 instead of the single factor of 1 that is present in

the normalization of h given above. Without going into a detailed mathematical analysis at this point,

it suffices to say that a natural normalization of the pressure head is with respect to the gravity head P h

of the liquid column in the fracture. In order to make h dimensionless, this expression can be rewritten

as J3Lb Kf = K p2 lb A, which has the factor of 02, in addition to the other factors, in (5.8). We would

also like to point out, here, that any capillary head drop -pc across the leading edge of the fracture

front can be included into po by adding pc; thus, the dimensionless pressure includes the dimensionless

fracture capillary pressure.
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6. Asymptotic Behavior

6.1 Penetration Depth

The asymptotic solutions to (3.10) and (3.11) are derived in Nitao [19891 for the cases where the

o 0st) or po boundary conditions are constant in time. The solutions for flow periods I and II holds for

general diffusivity functions, while in the mathematical analysis for flow period III it was necessary to

assume that the matrix diffusivity is approximately constant. In developing a solution for the pressure

boundary case, (3.11), it was convenient for the purposes of exposition to split the problem into (1) the

case without gravity (i.e., i = 0) and (2) the case with gravity. At early time for the latter case, one

must also distinguish whether po is zero or non-zero relative to ambient head.

In Table II we have summarized the leading terms of the asymptotic expansion for the dimension-

less fracture penetration depth for the different types of boundary conditions and for the different

flow regimes. The dimensionless variables used here are described in the previous section. The higher

order terms are derived and presented in Nitao [1989]. Note that all expansions are powers of the

dimensionless time r. When the value of the upper limit of a time period is less than the lower, that

particular flow period is not present (e.g., if 'r. < 1, then flow period II is not observed, and if

Ca2 h, 1 then Illa is not).

The expansions in column 2 of Table II for the pressure boundary condition case with no gravity

(i.e., = 0) is a special case of the general expansion given in column 4 and corresponds to the case

of a horizontal fracture. Note that during flow period II, for this particular case, the fracture penetration

goes as the one-quarter power in time, which is slower than the one-half power movement of the matrix

saturation front in the direction longitudinal to the fracture. Hence, the matrix front will eventually

overtake the fracture front unless flow period III, with its faster one-half power behavior begins

sufficiently early. In his theoretical study of aggregated soils Philip [1968] derived asymptotic solutions

equivalent to those in flow periods I and III (column 2 of Table II) but he did not consider the inter-

mediate flow period II, probably because this period is not of significant duration for aggregated soils

which, because of their relatively small granules, have corresponding time constants with tb comparable

to t 

The fixed pressure boundary condition with po = 0 given in column 3 of Table II pertains to the

case when the pressure head at the fracture entrance is held at ambient. It is a special case of the solu-

tion given in column 4, which includes the general boundary condition in pressure. We have included
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Table II. Leading Term of Expansion for Dimensionless Penetration i

If 1 l 2 l 3 4

flow period flux pressure b.c pressure b.c pressure b.c
(range of high no gravity Po =0, gravity POat 0, gravity

accuracy) = & = h h- = h A =
g o 4OKt KfN Kfl Ntt 

I C s V~ gir~ , t<p,

(z << 1) 3 a, r>>po > 0
3

_____________ ?~~, PO =0

II x ~ 1I1 4 1J 41M 1i2 24I *, <<,, 2

(1 << rC << em) (2p-1) >> p2
_____________ __________ ~~~~~~~ ~ ~~(-2) 

-2al (C 2 m 2/ * Io

(T., < T << % 2) (tb2 )ln+ ( 2 ;- *>>POl)b2

Mb 1+ 1 ,rmI 1 It
1,,'.

2Po+^@C z<<Po(1+X)

1 [+'+. A >> 6o(1+X)(%2 ')

A 2 XI 1%I 12s2 + 2j

column 3 in the table because of its simplicity relative to the more general case in column 4. The

situation is complicated in column 4 by the interplay between gravity and the pressure boundary condi-

tion. For each of the flow periods in column 4 there are two possible expansions, one pertaining to the

time period during which the boundary pressure dominates fracture flow and one for when gravity and

matrix imbibition dominates; the applicable expansion is detennined by the relationship of the dimen-

sionless transition time T* and the limits of the respective flow period. If r is less than the lower

limit, the second expansion applies over the entire interval. If of is greater than the upper limit, the first

expansion is applicable, and if T* is between the limits, the first expansion applies for T * and the

second for ¶z > of. The value of ac depends on the flow period and is a function of the dimensionless

boundary pressure head 00,and the matrix-fracture storativity ratio A. From Table II we see that it is

equal to po, po2p 62/ 'b2, POX for flow periods I, II, MIla, and Ib, respectively. With one exception,

the value of id for a given po and x can be shown to lie in only one of the flow periods, and, hence,

the transition occurs only once. The exception is f C.a2 < 0 < 4 'a2Cb2; in which case, the transi-

tion time is in both flow periods Ilia and 111b. Thus, in period Ia there can be a transition from

i+

$0( + )]
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boundary dominated to matric capillary-gravity, and, then, reversion to boundary dominated at the

beginning of period 11Tb, and, finally, a return to matric capiflary-gravity dominated flow.

As we mentioned earlier, if t << b 2 << t 2 , then flow period lla is replaced by lla. I and

IIIa.2. The expansions for these two subperiods are given in Table III.

Table m. Leading Term of Expansion for Dimensionless Penetration h (special subcase)

11 1 1 2 1 3 1 4

flow period pressure b.c.
(range of high Po $ 0, gravity

accuracy) Ai h
K1

m~a.1 'rI 12 1 1II~al1+ Al 1 g1Q1 + sXI3 

,,2 X3
2 +2, a(I+ I 1(TV << < < ) 3 2 ('r 1 l)j ]

IIIa.2 same as for
period Illa
of Table II

same as for
period Hla
of Table II

same as for
period IIIa
of Table II

same as for
period I1a
of Table II(4 2 <<.2)

The special case, ra = T and Tb, = b2, is of interest because of its relative mathematical

simplicity, and since it includes the equal fracture spacing case with the matrix blocks having the ident-

ical properties. The expressions in column four of Table II can be reduced to this case by first remov-

ing flow period HIa, changing flow period Hlb to III, and making the following substitutions:

1 = 2 = X/2, 'a. = 4 2 = r.. Table IV shows the dimensionless fracture penetration for this

case with gravity and non-zero boundary pressure conditition. As will be shown later, the dimension-

less transition time from boundary to matric capillary-gravity dominated flow lies in only one of the

time periods, and, therefore, the transition occurs only once.
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Table IV. Leading Term of Expansion for Dimensionless Penetration h

when Cal = Ta2 andTb = Tb 2

flow period pressure b.c.
(range of high po * 0, gravity

accuracy) = h
IK, Otb

W

I T1I2,F2Jo, << Po

(T<< 1) 2-s T.' >>,PO
3
_ _, o = 0

II 24T]° M, sC<<cpO2

(1 << << S.) _2 + (2P °-2) .' >> pot

m T'm T<<«po(l+)

(so~~~ =< 2 + 2p (1 m X
A = 1 B

6.2 Effects of Fracture Capillarity

We saw earlier that the boundary condition po can include the capillary pressure across the lead-

ing meniscus of the fracture front by adding the magnitude of the capillary head p, to the entrance

pressure. Let us consider the case where the fracture entrance is kept at ambient pressure so that p is

equal to &. For a vertical fracture system ( = 0), we ask the question: When is fracture capillarity the

dominant driving force ? Let us assume that the fractures have equal spacing and identical matrix pro-

perties so that the results of Table IV hold. From that table the transition time a from boundary dom-

inated (in this case fracture capillary pressure) to matric capillary-gravity dominated flow is seen to

occur in flow period I if p Lb << 1, flow period if << P, ILb << , and flow period if

X << p Lb. Here, we used the fact that; = 2 and po = pLb. Note that these three condi-

tions on p0 are mutually exclusive so that the transition occurs at a single point in time and no rever-

sion to fracture capillary dominated flow occurs once it starts. It is also interesting to note that the

fracture penetration h at time = can be shown to be approximately equal to p. Thus, the transi-

tion out of the fracture capillarity regime occurs when the hydrostatic head of the liquid in the fracture



-24-

becomes comparable to the fracture capillary head.

6.3 Fracture Influx Rate

The specific volumetric influx rate qf is defined to be the flux per fracture flow area into the en-

trance to the fracture, and hence, is equal to the liquid velocity into the fracture. The first-order asymp-

totic expansions for the influx rate are given in Table V for the constant pressure boundary value prob-

lem, with and without gravity.

Table V. Leading Term of Expansion for Fracture Inflow Velocity, Pressure B.C.'s

flow period no gravity gravity, p = 0

42 Kf po tb a}

V-l~a Po -laI ~~2 (mUs2 X . I << to

1.0, Z>>po

II < r({14) rl/4 1 r(l/4) [ 4Z , 1 1

ag >>p 2

r(3/4) 2 r(3/4) PX
- ¶»>Po2%2

r(314)(tb~t) 2 r(3b4 2

IIb 21a

1.0, >>P0(l+X)

t < <Po(l+X)

These expressions were obtained by applying Laplace transform techniques [Nitao, 19891. Note

that the flux decays as a power of time for the no-gravity case. The gravity case decays in a similar

fashion until the transition time c* is reached. For times greater than T' the specific influx rate for the

gravity case becomes, to the first order, approximately a constant in time, varying within the relatively

narrow range of Kf to Kf j/2. Influx rates determined by the numerical solutions to the integro-

differential equation with no capillarity confirm this fact (see Figure 8). This observation is also corro-

borated by the fact that when we substitute the expression for qf from Table V, column 2, for u in



-25-

Table II, column 1, we obtain the same leading order term for h as in Table II, column 3.

Note that the influx rate for the no-gravity case varies with respect to time as t-Q2 for early and

late times, as in a typical imbibition process for homogeneous media. But, for intermediate times a

higher rate 1-114 is seen to occur, unlike homogeneous media. Upon integrating these expressions with

respect to time, the cumulative imbibition flux into a highly fractured horizontally oriented core with

longitudinal fractures varies as 12 at early and late times but has an intermediate period where the

cumulative flux picks up and goes approximately as t14. A qualitatively similar effect is expected to

occur for a heterogeneous porous media with two highly separated modal distribution of pore sizes.

Although for early or late times the imbibing fractured medium can be considered to behave as a single

effective homogeneous porous medium, we see that during the intermediate flow period this conclusion

is not valid.

6A Front Continuity and the Drainage Capacity of Fractures

We now apply the results of the previous subsection to the question of front continuity and

drainage capacity for a pond, or pool, of water drained by a fracture. Suppose that the pond is charged

solely by a constant volumetric flux qp of water (this flux as many of those in this paper are specific

fluxes relative to the transverse width of the fracture). Gravity is present, and we assume that initial

depth of the pond is negligible so that the resulting hydrostatic head at the fracture entrance is approxi-

mately zero relative to ambient. We restrict ourselves here to sufficiently late times when fracture

capillarity is not important.

If the pond is of finite extent, the flux into the pond must equal that which drains into the frac-

ture, i.e., qp = 2 b qf, in order that a constant level is maintained. As before, qf is the specific flux

into the fracture. Obviously, if the flux into the pond exceeds the fracture flux, the pond will rise while

if the flux is less, the pond wili sink, and the front of water will no longer be continuous from the frac-

ture entrance to the leading front. Since Figure 8 gives the fracture flux, we can deduce when these

events occur. If qp 2b K S 1, we must have qf /K f 5 1 in order to maintain a constant pond

level. But, since the fracture flux is seen in Figure 8 to always lie above this value the pond level will

decrease, and the fracture liquid front will separate. Under these conditions the fracture is able to drain

the pond. If qp 2b Kf p ic /2, we have qf Kf 0 2 c/ 2. From Figure 8, the fracture flux always

lies below this value so that the pond level will rise, and the fracture is not able to drain the pond. In
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between these two flux values, the pond will drain for early and late times but will rise at intermediate

times.

6.5 Matrix Flow Regions

In section 4 we showed that matrix saturation field can be classified by depth into various zones,

or flow regions, based on the flow periods. In general, the division of the two matrix blocks into zones

will be different on each side of the fracture. For simplicity, consider the situation where the matrix

blocks have similar properties so that their zones are the same. Table VI lists asymptotic approxima-

tions of the lengths of zones I and II which were derived for times t >> 2t., based on the asymptotic

expansions of Table II. They are made dimensionless through dividing by Lb which would be the frac-

ture penetration distance at time tb if no matrix imbibition occurred. Note that for the influx boundary

condition and gravity-driven cases (columns I and 3 in Table VI) the dimensionless length of zone 11

approaches a constant equal to X - 1 at infinite time. Hence, in the limit, the matrix imbibition front

lags behind the fracture front by a fixed amount. Several theoretical and experimental investigations

have reported this result Bokserman, et al., 1964; Marle, 1981]. To our knowledge, this paper is the

first to mathematically derive an expression for this length. Recall that X is the ratio of the initial unsa-

turated pore volume in the matrix to the fracture. In many cases this ratio will be much greater than

one, and therefore, X - 1 L Hence, in such cases, the dimensionless distance that the matrix lags

the fracture front is equal to the ratio of the initial pore volume in the matrix to the fracture volume,

which is the same value for the lag length as given in the above references.

For the pressure boundary condition with no gravity (column 2), the lengths of zones I and II

approach zero at infinite time. Hence, in the limit, the matrix front catches up with the fracture front.

The disappearance of zones I and is indicative of equilibrium being attained between the fracture and

matrix saturation fields along the entire wetted interval of the fracture.

Table VI. Expansions for Flow Region Lengths, > > 2, X 1

11 I 1 2 1 3
dimensionless flux b.c. pressure b.c pressure b.c

length no gravity gravity, po = 0

Z,/Lb 1 /( +)I I l+X)11/(1 + X)

Z2/Lb - 1 _ I I 2 - ,- 1
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7. Asymptotic Fracture Penetration Profiles

It is an interesting fact that the first-order terms of all of the asymptotic expansions are powers in

time - TM and, when plotted on a log-log scale, will form a series of straight line segments with a

corresponding slope m for each flow period. In Figures 9 to 13 we have drawn the generic "penetration

profiles" for the three types of boundary conditions that were considered. The line segments are labeled

with their respective slopes. For simplicity, we have restricted ourselves in these diagrams to the case

when the fracture spacings are equal. Note that in figures 9 and 10 there is a single family of dimen-

sionless curves parameterized with respect to X. For figures 11 to 13 the curves are characterized by X

and pO. Recall that the parameter pO is the ratio of the drop in pressure head across the front (due to

boundary head at the entrance and the capillary head at the meniscus) to PLb (also recall that

Lb = K ftb). Figure 11 corresponds to the case when Po < 1. The first line segment on the left

corresponds to the flow period during which the pressure drop is small relative to the hydrostatic head.

For the case in Figure 12 when 1 < Po : , the pressure drop is larger than the imbibition-free head

so that the the boundary pressure dominated regime extends past ' = 1 into the time period II,

1 <; . Figure 13 corresponds to the case where X S Po and is boundary pressure dominated

until T = OX in period II, < T.

These plots have the potential to become useful calculational tools, and are particularly helpful in

visualizing the dependence of the asymptotic solutions on the various parameters.

8. Parameter Variation

We now consider the effect of parameter variation on the fracture penetration for a particular

geometry. Consider a vertical fracture with the boundary pressure at the entrance kept at ambient con-

ditions. Such a boundary condition would occur if a shallow pond was present at the entrance.

Because of the vertical orientation, gravity is present. The initial saturation and material properties of

the two matrix blocks bounding the fracture are assumed to be identical. The expressions for the frac-

ture penetration h are listed in Table VII and are dimensional in order to illustrate the dependence on

the various system parameters. It is important to note that this table assumes that we stay within a
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single flow period as the parameters are varied. In some cases, because of large parameter changes, we

may switch into a different flow period. Although these expressions are based on first-order asymptotic

approximations, comparisons with numerical calculations indicate that they adequately represent the

proper parameter sensitivities. We have assumed that the diffusivity a can be approximated as a con-

stant. In order to separate the dependence of the diffusivity on the porosity and conductivity, we write

a = K X

The constant X is defined here to be some averaged value of k, d v l dS where k, is the relative conduc-

tivity and v is the capillary head as a function of saturation. The time constants can be written as

(= 4 (8.1)

[a = xa 2§ (8.2)

Table VII. Dependence of Fracture Penetration on Parameters (po = 0, equal matrix properties)

Flow Period 1. h - KfR 
0_ _ t b 

Flow Period II. h K bI

tb < t < t.

Flow Period III. h - 1+ a
I aOI- Si)lb

t t - K b if a (1 -Si) >> b
a O(1-Si)

- K t if a (1 -Si) << b

In Table VII we see that h depends linearly on Kf for all times. We also see that the h versus

K. dependence is significant only during flow period II. However, from (8.1) and (8.2), we see that the

time constants which define the ranges in the flow periods, t and t
b vary as K,,-'. During flow period

I the fracture penetration h is insensitive to the matrix porosity 0 while it varies as C112 during period

II. During period III, if a O(1 - Si) >> b, the sensitivity to ¢ becomes even more pronounced, with h

varying as C1. Regarding the initial matrix saturation Si, if we neglect the dependence of X on Si, we

have that h varies as (-Si)-' during flow periods II and III while it is insensitive to Si during flow

period I. As expected, only during flow period I is h sensitive to the fracture spacing a. However,

the time constant t is very sensitive to a, varying as a2. In order to elucidate the dependence of h on

the fracture half aperture b, let us suppose that the saturated fracture hydraulic conductivity Kf varies
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as b2 in accordance with some form of the widely used cubic law" as given by Pouiselle flow theory

(see, for example, Huyacom and Pinder 1983]). Thus, the fracture penetration h varies as b2 during

flow period I and as b3 during period H. During period HI the fracture penetration h varies as b2 if

a*(l-Si) << b and as b3 if a (l-Si) >> b. It is, perhaps, not surprising that h is most strongly

affected by the fracture aperture b. Note that the time constant t is also strongly dependent on frac-

ture aperture, varying as b2. Note that the "hydraulic" aperture used in the cubic law need not be equal

to the parameter b in this report which is the "volumetric" aperture. In practice, on may take the

hydraulic aperture to be smaller than the volumetric aperture.

A detailed examination of the first order asymptotic approximations of the fracture penetration h

in column 3 of Table II reveals a strictly monotonic relationship between h and the parameters Kf1 , t b,

and t throughout the various flow periods. During all flow periods h varies linearly with Kf. With

respect to the time constants tb and t, the fracture penetration h varies as tb during flow period H

and as (tbIt.)11 during period III if (tb/t) 1 << 1. Based on reasonable estimates of Kf, t , and t, it

is possible to obtain an upper bound approximation of h throughout flow periods I and II. For later

flow periods, the asymptotic approximations of h are not conservative, in the sense of being an upper

bound to fracture penetration, but are seen to compare reasonably well with the numerical solutions. In

performing calculations that are to be conservative with respect to fracture penetration depth, one

should therefore overestimate t and underestimate t. Comparisons with numerical solutions suggest

that the asymptotic approximation is generally a strict upper bound for t < t and a reasonably close

approximation to the solution for t > t . Of course, these conclusions rely on the assumptions in our

theory.

The dependence of the fracture penetration on t and t has a firm physical interpretation.

Increasing tb or decreasing t corresponds to decreasing the matrix imbibition flux. Hence, a greater

fraction of the liquid remains in and continues to flow down the fracture, resulting in an increase in the

fracture penetration rate. This physical reasoning applies even for situations with spatial variations in

matrix properties.

An upper bound to the fracture penetration h can be estimated by choosing conservative values of

t. and t . This approach applies even for situations in which the matrix properties vary with respect to

longitudinal position along the fracture. However, the asymptotic approximations were derived under

the assumption that matrix properties do not spatially vary transverse to the fracture. Any spatial varia-

tions in matrix properties, such as reduced permeability in a region near the fracture, would require that

a new imbibition function be derived, either analytically or numerically, which will conservatively
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underbound the local imbibition flux for all longitudinal locations along the fracture. This new imbibi-

tion function would then be used to rederive the asymptotic approximations through the use of the tech-

niques described in Nitao [19891.

9. Comparison with Numerical Solutions

In this section we give a brief overview of the comparison of the asymptotic solutions with those

obtained numerically. The asymptotic expansions were compared with two separate types of numerical

solutions. The first approach involved comparison of the asymptotic solutions with numerical solutions

of the integro-differential equation (3.11). The method of solution is given in Nitao [19891. The first-

order asymptotic solutions along with the numerical solution are given in Figure 14 for the case of

gravity-driven flow with the fracture entrance kept at ambient pressure. Note that the-asymptotic solu-

tions adequately capture the behavior of the solution and except for late times, appear to be conserva-

tive upper bounds to the fracture penetration by the liquid front.

The integro-differential equation upon which the analytical theory is based was derived under the

assumption that the flow in the matrix is orthogonal to the fracture. In actual fracture systems this

assumption may not be exactly satisfied. Moreover, under certain conditions, the flow in the fracture

may be better represented as that in a porous medium rather than a front, as we have assumed. It is

desirable then to compare our solutions with a two-dimensional simulation not containing these a priori

assumptions. Therefore, the second numerical approach used in our comparison involves the two-

dimensional simulation of fracture/matrix flow using a modified version of the TOUGH integrated finite

difference code [Preuss and Wang, 1985; Nitao, 19881. The code simultaneously solves three balance

(continuum) equations for three components: air mass, water mass, and energy. (Although the energy

balance was solved in our simulations, it is extraneous since our simulations were under isothermal con-

ditions.)

The properties of the fracture used in the two-dimensional simulation are the same as those used

by Buscheck and Nitao [1988a]. The model represents one out of an infinite set of fractures that are

vertical and uniformly spaced. By symmetry, we need only model half the fracture and the matrix that

is on one side; a lateral no-flow boundary is placed down the center of the fracture, and another down

the center of the matrix block to represent the symmetry line with the neighboring fracture. The frac-

ture is represented by a vertical column of grid blocks with porous media properties considered to be
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characteristic of variably saturated flow in a fracture with a nominal aperture of 100 pm. The absolute

permeability of the fracture is based on the cubic law" for flow between parallel plates as given by

Pouiselle flow theory. The fracture relative permeability curve is estimated by Wang and Narasimhan

[1985] based an a simple conceptual model of fracture flow. The suction pressure versus saturation

curve for the fracture was extrapolated, using the Young-Laplace equation [Adamson, 19821, from a

curve which Wang and Narasimhan [19851 estimated on the basis of a simple conceptual model of frac-

ture flow. One run was made with this suction curve while another run was made with suction set

identically to zero in the fracture to see the effect of fracture capillary. In order to facilitate the

interference between neighboring fractures to occur early in time a small fracture half-spacing of a =

2.26 cm is assumed.

As in Buscheck and Nitao [1988a], the matrix properties, including the characteristic curves

which are non-linear, are based on measurements made by Peters and others [1984] on sample G4-6 (a

sample of Topopah Spring densely welded tuff cored at a depth of 1158 feet within the repository inter-

val at Yucca Mountain). The matrix porosity and initial saturation are taken to be 20 and 65 percent,

respectively.

Table VIII is a summary of the fracture and matrix properties used in the two-dimensional model.

The first six properties apply to the two-dimensional model The last two, r and tb, are parameters

required in the comparison with the asymptotic approximation. Recall that t is the approximate time

at which the cumulative matrix imbibition flux is comparable to the specific fracture volume. For early

times t << t,, it can be shown Nitao, 1989) that the first-order asymptotic approximation of the

instantaneous specific volumetric imbibition flux, q, is given in terms of t and b by

q b (9-1)

Integrating (9.1) with respect to time, we get the cumulative imbibition flux, Q.:

Q.~- 2bq~n 4(9.2)

By setting t = tb in (9.2), we get:

Q 2b (9.3)

One practical way of determining t is as follows. From a one-dimensional matrix imbibition

model (where the upstream boundary condition is maintained at 100 percent saturation), the imbibition

penetration depth of the saturation front into the matrix, drab is plotted against time. The front position
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can be taken to be the point where the saturation is equal to the average of the maximum and initial

saturations. The time that corresponds to db = 2b/((1 -Si)) is equal to tb. The effective matrix

diffusivity, cr, is obtained by applying this value of b to equation (4.5). We applied this procedure to

our example using the plot of log db versus log t found in Buscheck and Nitao [1988a]. Another

method would be to plot the cumulative imbibition flux. The time at which the flux equals

2b/(4KI -Si)) is tb -

In comparing the plots of log h versus log 'r obtained from the first-order asymptotic approxima-

tion and the two-dimensional numerical model (Figure 15), we find the two methods agreeing reason-

ably well. The figure shows two numerical solutions, one with fracture capillary, the other without.

The asymptotic solutions given for these two cases are different only for early times t << po when

fracture capillarity dominates. Since the two-dimensional numerical model models the fracture flow

characteristics as a porous medium with a saturation-dependent capillary suction curve, it is not

immediately obvious which value of capillary pressure drop p, to use in the expression for the non-

dimensional pressure drop term p0 (= p SKf Ib) needed in the asymptotic expansions. In column 4 of

Table II we see that the lowest-order contribution of the suction during flow period II is a constant term

2PoI(7r-2) so that the difference between a simulation with and without fracture capillarity will enable

us to solve for this quantity. This fact was confirmed in our simulations. The value we obtained from

this procedure, Po 0.3, was used in obtaining the asymptotic expansion for Tr f po shown in Figure

15.

During flow period II (, r < Tb), the asymptotic approximations and the two-dimensional

model both result in a slope of m = 0.5. The small reduction in fracture penetration predicted by the

two-dimensional model relative to the asymptotic solution is primarily the result of relative permeability

effects in the fracture. It appears on the logarithmic plot as an almost constant downward shift in the

two-dimensional model curve. Recall that while the asymptotic solution assumes front flow in the frac-

ture, the two-dimensional model utilizes a relative permeability curve for fracture flow. The 26 percent

reduction in fracture penetration corresponds to a fracture relative permeability, kr = 0.74. Based on

the fracture relative permeability curve, k, = 0.74 corresponds to a fracture saturation of 95 percent.

We found that for much of the wetted interval during flow period II, the fracture saturation is close to

95 percent. During flow period I (Ta < r), the two methods agree very well, with both methods yield-

ing a slope of m = 1. Because for much of wetted interval of the matrix is fully saturated, capillary

equilibrium between the matrix and fracture (in the two-dimensional model) results in the fracture being

fully saturated (corresponding to k, = 1). Consequently, saturation conditions in the fracture (in the

two-dimensional model) result in front flow and there is no reduction in fracture penetration (relative to
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the asymptotic solution) as was observed during flow period 11.

This numerical simulation with its two-dimensional description of matrix flow with gravity and

saturation dependent diffusivity function serves to confirm the validity of our basic assumptions under-

lying our simplified governing equations. Percentage deviation between numerical and approximate

analytical solutions is greatest in the transition between flow period I and II and is about 50 percent.

Although using higher-order terms may decrease this figure somewhat, we recall from the previous sec-

tion that the problem is highly sensitive to various parameters such as the fracture aperture that are

difficult to measure and are found to have high variability in the field. Thus, we feel that for most

applications it is inappropriate and of dubious value to seek more complex solutions of higher accuracy.

Table VIII. Fracture and Matrix Properties Used in the Two-Dimensional Fracture/Matrix Model

b 45 m

a 2.26 cm
K | 8.17xl' mls

K. 1.86x10'11 mis
* 20 percent
Si 65 percent
__ 41.9 s
a IIlNxO-s m1Is

10. Conclusions

We have analyzed various physical processes involved during one-dimensional fracture-dominated

flow conditions in an unsaturated porous medium. Such a hydrological condition corresponds most

likely to relatively high fluxes such as under ponding conditions at the fracture entrance. For various

constant boundary conditions, approximate solutions to the movement of the liquid fracture front were

derived. They show that the flow undergoes three major time periods characterized by physically inter-

pretable time constants. The first time constant tb is the time required for the matrix to imbibe a

volume equal to that of the fracture storativity. The second is the time ta for the imbibition front to

reach the no-flow symmetry line of the neighboring fracture. The first time period occurs when

t << t b, the second when tb << t << t, and the third for t. << t. Transition periods occur

between these main periods. The flow in the matrix can be divided into zones corresponding to the
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three major flow periods. In many cases it can be shown that, for sufficiently large time, the front in

the matrix lags behind the fracture front at a fixed distance. Asymptotic solutions were given which

show that the approximate quantitative behavior of the liquid front can be conveniently represented by

line segments when plotted on a log-log scale. The solutions can be used to understand the dependence

on various physical parameters. We noted that in the case of constant boundary pressure head at the

fracture entrance, the flux into a downward-inclined fracture under the influence of gravity was shown

to be nearly constant in value. Thus, the fracture, in this case, acts to a certain extent as a flow rate

regulating system. For a horizontal fracture the cumulative infiltration rate was shown to have an inter-

mediate period during which it has a t4 time dependence as opposed to the tIn2 encountered in imbibi-

tion into a homogeneous medium. Therefore, a fractured medium cannot always be approximated by a

single homogeneous porous medium. We also showed how the theory has implications to the drainage

capacity of a fracture and to what flux conditions under which the liquid front of water in the fracture

remains a continuous phase.

Comparison between the asymptotic and numerical solutions confirm the validity of the approach.

Our solutions have the potential for estimating the front movement in many practical applications. In

addition they present a better quantitative and qualitative understanding of the flow in a fracture in

unsaturated porous media These solutions may be helpful in the verification of numerical models of

fracture flow.

There is still much work left to be done. Some of the areas which we hope to study are listed as

follows.

1. determine the range of validity of the approximate analytical solutions

2. find what new effects are present in two-dimensional fracture flow

3. extend the analytical model, if possible, to fracture networks

In Part II, which is a companion paper [Nitao, 1989], we give the derivation of the asymptotic

solutions presented in this first part. It includes, in some cases, closed form solutions, and the time

dependent boundary value problem is also considered. Future work will present numerical simulations

of fracture flow including interpretation of the results using the theory described in this paper. The

transition point between fracture and matrix dominated flow will also be described in a future work. A

report is also being planned to discuss the implications of our analysis ncluding practical applications in

the context of nuclear waste disposal at the proposed Yucca Mountain repository site.
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