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On the Infiltration of a Liquid Front in an Unsaturated, Fractured
Porous Medium*

John J. Nitao and Thomas A. Buscheck

Earth Sciences Department
Lawrence Livermore National Laboratory

ABSTRACT

The unsaturated zone at Yucca Mountain, Nevada, is currently under scientific investigation as a

proposed site for the permanent storage of high-level nuclear waste. The Topopah Springs unit, in

which the proposed repository is to be located, as well as most of the other adjacent units, consists pri-

marily of fractured tuffaceous rock. A deeper understanding of fracture-matrix interaction is needed for

the prediction of water movement around and in the repository. For certain idealized fracture systems

that are dominated by fracture flow, we show that the liquid front movement can be classified into phy-

sically interpretable, distinctive flow regimes. Asymptotic solutions for the front movement are given

for each flow period and comparisons with numerical solutions are made. In addition to applications in

nuclear waste storage, the results of our study is relevant to hazardous waste disposal, petroleum

recovery, and flow in soil macropores.

* Work performed under the auspices of the U.S. Department of Energy by the Lawrence livermore National Laborato-
ry under contract number W-7405-ENG-48. The authors gratdully acknowledge the support fron the Yucca Mountain
Project and the IAwrence livermore National Laboratory Institutional R & D Program.
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Introduction

The unsaturated zone at Yucca Mountain, Nevada, is a proposed site of the national high-level

nuclear waste repository. The various geological units consist primarily of tuffaceous rock with many

of the units being highly fractured [Montazer and Wilson, 1984; Klavetter and Peters, 19861. The

mechanics of water infiltration into unsaturated fractured rock is, therefore, of significant practical

importance. In particular, the assessment of waste package performance and radionuclide transport in

the host rock require knowledge of fluid movement in the near-field environment. Moreover, the inva-

sion of drilling and mining water used during repository construction will impact on-site data gathering

[Buscheck and Nitao, 1988a], particularly at the exploratory shaft testing facility. Characterizing the

repository site will require the identification of physical parameters and the analysis of the fundamental

processes governing infiltration and transport in fractured porous rock.

Understanding multiphase fluid processes in fractured porous media is important in other fields of

study as welL The secondary recovery of petroleum from naturally fractured reservoirs through water

flooding is a prominent example. Our work is also applicable to heterogeneous unsaturated systems

where there is a sharp contrast in permeability between two types of materials. For example, the flow

in a thin layer of high-permeability rock that is sandwiched between two low-permeability layers is also

treatable by our analysis. Another area of study related to our work is the flow of water in soil macro-

pores (Beven and Gennann, 1982].

The flow of water in a real-life fractured rock system is complicated by the complex geometry of

the fractures and their spatially varying apertures. In general, the path of water may form sinuous chan-

nels, or rivulets, of fluid as it flows through a fracture. In the unsaturated zone, further complications

arise from the interaction between the fluid in the fractures and the surrounding matrix. Flows res-

tricted to the matrix may possibly travel across fractures by way of contact points [Wang and

Narasimhan, 19851. Before considering these more complicated aspects of fracture flow it would be

wise to investigate the simpler problem of flow due to the introduction of liquid at one end of a single

fracture. We, therefore, consider a single fracture in an initially unsaturated porous medium intersecting

a planar exposed face of the rock mass (Figure 1). Suppose that water is allowed to enter into the
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opening of the fracture with some type of flux or head boundary condition that is uniform across the

opening of the fracture. The resulting flow of water in the fracture and the matrix is the focus of our

treatment. Note that a sufficient amount of water is assumed to be present at the opening in order to

maintain the boundary condition while, at the same time, guaranteeing a continuous slug of water. For

example, in the case of constant pressure at the opening equal to a value above ambient conditions, a

pond of water must exist at the fracture opening.

Under certain conditions the flux into the fracture may be sufficiently low that most of the water

will be absorbed through matrix imbibition close to the entrance before any significant fracture flow can

occur. Movement of the liquid front, if any, in the fracture will be small and will lag behind the front

in the matrix, leading to what we have termed matrix-dominated flow. In other cases, the flux will be

sufficiently high such that the fracture flow along the longitudinal direction of the fracture will advance

ahead of that in the matrix, a situation we will call fracture-dominated flow. In this latter case, the

speed of the front will be governed by an interaction between the driving forces in the fracture and the

suction forces in the matrix. Relatively high fluxes are necessary for this case to occur, such as, if there

is ponding of water at the entrance to the fracture. A real fracture system existing in the field will have

significant spatial variabilities, and it is possible that these different types of flow conditions may occur

simultaneously at different locations. Future work will also have to consider matrix-dominated flows as

well as the transition between the two types of flow.

In our treatment we are interested only in fracture-dominated flow. We treat the idealized prob-

lem of one-dimensional flow in a planar fracture with uniform aperture. In spite of these simplifications

it will be seen that the analysis yields interesting results that may lead, in some cases, to techniques for

performing bounding calculations of water movement for more complicated systems as well as an

understanding of some fracture flow processes.

In actual field applications the physical parameters that characterize the flow in a fractured system

are often difficult to measure and vary significantly in space. Therefore, their values will have a high

degree of uncertainty and variability. Thus, from a practical point of view, what can be realistically

achieved is to understand the various physical processes present in the system and, it is hoped, to bound
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the problem. With these goals in mind we have been able, under a class of assumptions, to reduce the

governing equations into a single equation of motion describing the movement of the liquid front in the

fracture. With this equation we are able to determine the asymptotic behavior of the flow. These solu-

tions are invaluable in revealing various flow processes and flow regimes that may occur and in deter-

mining the dependency of the flow on various physical parameters.

Most theoretical work in fracture flow has been restricted to saturated conditions and, until

recently, relatively little has been done in unsaturated fracture flow. Travis et al. [1984] have

presented analytic solutions to the problem of a single slug of finite length traveling down a fracture in

an unsaturated porous medium with the flux into the matrix assumed to be a constant in time. Numeri-

cal solutions were given for more realistic time-varying matrix flux condition. Martinez [1988] has also

performed numerical calculations for a continuous slug of water and has performed parameter studies

applied to Topopah Spring tuff.

We note here that one of the problems analyzed in our treatment (pressure boundary condition) is

mathematically identical to that considered by Philip [1968] who looked at the infiltration process in

aggregated media However, his treatment did not include the effect of gravity on the flow in the

macropores (corresponds to fractures, in our study), and, moreover, we are able to show that for frac-

tures there exists an "intermediate" flow period in addition to the two found by Philip. We also exam-

ine the effect of fracture capillarity on the solutions, and examine the effect of non-equal fracture spac-

ing. Therefore, we believe that much of our work is new. We also mention here that Davidson [19871

has recently considered infiltration from a fracture of finite length that is initially saturated.

Related work has been done in obtaining solutions for contaminant transport in saturated fractured

porous media (for example, see [Sudicky and Frind, 19821 and references therein). However, the

governing equation for transport in the fracture for those types of problems is the linear convective-

diffusive equation. This equation is not adequate for describing the frontal movement of water in an

unsaturated fracture. As pointed out by Philip [19681, the equation describing frontal movement is

equivalent to a non-linear diffusion equation with a diffusivity that is a delta function centered at unit

saturation.
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Another area where theoretical work in multiphase fracture flow has been active is the secondary

recovery of petroleum reservoirs through water flooding. There, workers have been interested in the

imbibition of water into a naturally fractured oil-bearing formation. Van Golf-Racht [19821 summarizes

the work in this area. Previous analyses in the petroleum literature, however, have not given the

behavior of the solutions, nor have they elaborated on the various time constants and length scales

important to the front movement process.

Assumptions

We consider the flow resulting from the introduction of a liquid into one end of an initially dry

planar fracture with constant aperture. The flow inside the fracture is treated as a one-dimensional slug

with a capillary pressure drop across the leading meniscus. The fracture aperture is assumed to be

small enough that at each point of the fracture front liquid completely fills the space between the rock

walls. The partially saturated rock is assumed to be at uniform initial saturation. In some cases it will

be necessary to assume that the matrix diffusivity for capillary imbibition can be approximated by a

constant. We will restrict ourselves to the time span of flow until the slug reaches the end of the frac-

ture. The fracture is assumed to have no intersections with other fractures.

The arrival of the liquid front in the fracture at any given point on the fracture face will result in

a capillary driven flux into the matrix at that point. The flow field in the matrix as a result of these

fluxes will, in general, be multidimensional. However, if the flow in the system is high enough that it

is fracture -dominated, as defined earlier, most of the flow lines in the matrix will be primarily orthog-

onal to the fracture plane. Thus, the flow into the matrix at each point on the fracture can be uncou-

pled and treated individually as that of flow into a one-dimensional sub-system. Because the permeabil-

ity of the matrix is believed to be many orders of magnitude less than the fractures [Klavetter and

Peters, 1986], this treatment is applicable to the various tuffaceous units found at Yucca Mountain.

This assumption was also used by Travis et al. [1984] and Martinez [1988], and has been confirmed by

our numerical simulations which will be presented in a future report.
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Our analysis will not consider the effect of pressure gradients along the length of the fracture

upon the imbibition rates into the matrix. This effect will be small if the magnitude of the initial suc-

tion pressures in the matrix are large relative to the overpressure in the fracture. We will also assume

that the initial suction forces in the matrix are large enough that for the time span of interest the

influence of gravity on the matrix flow (but not on the fracture flow) can be neglected.

In applying the solutions covered in our treatment one must be careful that the boundary condi-

tions are such that the resulting flow does not violate the above assumptions. In many cases the asymp-

totic solutions can be used to give guidance concerning whether they are satisfied. Future work will

have to be done to derive these conditions and confirm them through numerical simulations and,

perhaps, laboratory experiments. An example of when the boundary conditions may be inappropriate is

in the case of a constant flux boundary condition at the fracture opening. If this flux is too low, one

may violate the condition of fracture-dominated flow, or the slug in the fracture may be stretched by

gravity and may separate into more than one piece.

The Problem

Matrix Imbibition Flux

We now briefly discuss the form of the imbibition flux into the matrix after passage of the liquid

fracture front. The reader is referred to Figure 2 for the coordinate system that is used. Suppose that

the matrix has a uniform initial saturation distribution. The equations describing the saturation field in

the matrix are

aaS = V ;Kk,VV(I

S(x,y,t=O) = Si

S(x=Oyt) = S., for y < h(t)

S(x=O,y,t) = S, for y > h ()

The notation is defined in the nomenclature section at the end of the paper.
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At a given point y for y • h(t) the volumetric flux into the matrix along a single face of the

fracture is given by

q . at x =O (2)

In general, this flux depends on location, time, and the past history of the liquid fracture front h (v)

where r • t thatis,

q = q(yt;h(r),¶•:) (3)

Under the assumptions described in the previous section, the imbibition flux q at a point y on the frac-

ture face will depend only on the time when the front first passes by; that is,

q(y,t) =O t • LI(y) (4)

q(yt) = q,(t -(y)) t > Q (y) (5)

where 0(y) denotes the time when the fracture front first reaches the point y. Here, q (y,t) is the

matrix imbibition flux into only one fracture wall.

Fracture Flow

The flow of the liquid in the fracture will be treated as being a slug except with a constant capil-

lary pressure drop at the leading meniscus. The one-dimensional fracture is assumed at any given point

to be either completely filled with liquid or completely dry. Let h (t) denote the location of the fracture

front with respect to the entrance of the fracture. We assume that the liquid in the fracture and matrix

is incompressible. Let X (y, t) be the liquid velocity at depth y and time t and let b equal to the con-

stant half-aperture of the fracture. From material balance considerations

= -a -q(yI) (6)

Now, let p (yt) be the liquid phase pressure head in the fracture. Assuming Darcy's law for flow in

the fracture, we have
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r(Yt) = -Kf( ( ap) (7)

where Kf is the fracture hydraulic conductivity and P is the cosine of the angle of inclination of the

fracture from the vertical. The fracture can be oriented either horizontally or inclined downward rela-

tive to its opening. The fracture penetration depth h (t) must satisfy the equation

dh(t) = u (h (t), t) (8)
dt

Note that the function 0(y) is related to h (t) through the relationship

LI( (t)) = t (9)

and, hence, is the inverse function of h (Q).

We wili consider two separate types of boundary conditions at the entrance to the fracture: pres-

sure head po(t) and flux uo(). The pressure head at the leading edge of the front in the fracture is

assumed to be at zero datum. Since the equations involve only gradients in head, a non-zero constant

capillary drop -p. across the leading edge of the front can be included by adding P& to po. We must,

however, be careful that the magnitude of the resulting value of po is much smaller than the initial suc-

tion pressures in the matrix. Otherwise, significant pressure gradients would occur along the length of

the fracture that would couple with the imbibition flux, in violation of one of our basic assumptions.

Likewise, the flux boundary condition uo(t) must not be so large that excessive pressures develop in

the matrix. It also must not be so small that it can not meet the the flow demanded by the suction and

gravity forces in the fracture; otherwise, the slug will become discontinuous violating one of our

assumptions. The question of at which critical values of uo will these conditions take place will be

considered in a later section.

Integro-Differential Equations

It will be shown in a future report that the above governing flow equations can, for each of the

two types of boundary condition, be reduced to a single integro-differential equation in h(t). These

equations arc given as
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Flux-type boundary condition

A (t) = UOMf - 1 q (ts) A ds (10)

Pressure-type boundary condition

h~t)Aill = Kf (hdh)p + p0(t)) A b (11)
dt bK,(hQ s h(s - d

where the solution must satisfy the initial condition

h (O) = 0

Fracture Geometry

In our treatment we will consider an infinite array of parallel fractures with the same aperture

equal to 2b (see Figure 3). The spacing between these fractures alternates between distances of 2a,

and 2a2. The no-flow symmetry lines in the matrix are therefore a, from one side of the fracture and

a2 from the other. The matrix blocks can also alternate, not only in their size, but also in their material

properties, porosity Xk and diffusivity <a (k = 1, 2), as well as the initial and maximum saturations Sit

and S,,, k.

This geometry includes several special cases, such as the case of a single fracture between two

semi-infinite matrix blocks (aI = a2 = eo), the case of an infinite array of equally spaced fractures

(a, = a2 ), and the case of two parallel fractures with a finite matrix block in between

(a, =finite, a2 = -o)-

In the analysis we will assume constant matrix diffusivities. We will show in a future report that

for the case of semi-infinite matrix blocks this assumption is unnecessary and the diffusivity can be a

non-constant function of saturation.

Flow Periods
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Depending on whether we have a constant pressure-type or a constant flux-type boundary condi-tion, we can show that the flow in the fracture undergoes various flow regimes, or time periods, withrespect to its interaction with the matrix. During each of these periods the function h (t), whichdescribes the position of the front, can be shown to tend asymptotically toward approximate solutions,which on a log-log scale form a series of line segments giving the general location of the actual solu-tion curve. But first we wish to introduce some relevant time constants and dimensionless groups. As aconvention, we will label the two matrix blocks forming the two sides of the fracture as k = I andk = 2. Each matrix block can have its own material properties such as porosity Oh and effectivediffusivity a . (in our notation the diffusivity function is given by a = (K, krlO) dxVIdS. Here, we willuse a constant "effective diffusivity' that will be defined in a report currently under review.) The initialand maximum saturations Sit and S.,, can also be different The fracture spacing ak was defined inthe previous section. From these parameters we define the following relevant time constants
Fracture storativity tine constant, tb

12b/ (S.t - Si&)OkIN 
(12)

Average fracture storativity time constant, tb

= -I 1 
(13)

Ftb N'tb I ia 7

Fracture interference time constant talk

ta - Ok 

(14)

A special case of particular interest is when the fractures are uniformly spaced (al a2) and thematerial properties together with the initial saturation of the two matrix blocks are the same. Theparameters that are subscripted with respect to the matrix blocks are not required. From (12) to (14)one has

lb= [bi (S. _ S,)) 2

(15)CT
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a2
tg = v (16)

We will see later that the solutions can be characterized entirely by the time constants together

with the conductivity and fracture orientation. To understand the physical meaning of these time con-

stants, consider a control volume that is a slab of unit thickness that is oriented orthogonal to the frac-

ture. Suppose that imbibition is allowed to occur into only one of the matrix blocks. If the saturation

along the length of the imbibition front is taken as being approximately equal to unity, the length given

by L = 2b 1(S,, - Sik)~k, is the distance travelled by the front when the cumulative flux into the

matrix block equals the volume of the fracture lying within the slab. The approximate time at which

this distance is reached is the fracture storativity time constant tbk given above. If we consider imbibi-

tion into the two matrix blocks simultaneously, tb is the approximate time at which the sum of the two

cumulative imbibition fluxes leaving the two walls of the fracture is comparable to the specific fracture

volume. Note that tb in (15) does not have the factor of two multiplying b that is present in tbk since

each of the two matrix blocks share one-half of the fracture volume. The other time constants t. are

simply the approximate times at which the imbibition front in matrix k reaches the no-flow symmetry

line with the respective neighboring fracture. It is interesting to note that although the definition of the

time constants assumes a constant or almost constant matrix diffusivity, their definitions in physical

terms remain valid even when the diffusivity is a function of saturation, and are, therefore, applicable

even when this assumption does not hold.

We define the following ratios:

Matrix-to-fracture storativity ratio, 4k

4 - tak ak(Smk2 - Sik)k (17)

Total storativity ratio,

X= XI + X2 (18)
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The dimensionless constants Xt are the ratios of the initial unsaturated pore volume of the kth

matrix to the volume of the fracture while A is the ratio of the total initial pore volume in the matrix to

the fracture. When the fractures are spaced uniformly and the matrix properties are the same, we have

from (17) and (18) that. Areduces to

a (S. - Sj)(
L= - (19)
-Ctb ~~b

In order to simplify the discussion, suppose that the matrix blocks on both sides of the fracture

have the same flow properties and that we have a system of parallel fractures with equal spacing. With

this assumption we have t. = fl = t. . Analyses which will be given in a future report show that with

boundary conditions which do not vary with time, there will generally be three major time periods for

the movement of the liquid fracture front. These time periods can be shown to arise from the three

stages of matrix imbibition that can occur at any given point on the fracture face. Let us focus our

attention on a single slice of infinitesimal thickness that is orthogonal to the fracture (Figure 4). Sup-

pose that the fracture front has just reached this slice, and imbibition begins. Stage A for this slice

occurs when the cumulative volume of liquid that has imbibed is less than the fracture volume inside

the slice. Stage B is when the imbibed volume in the matrix has increased to an amount greater than

the fracture volume, but before the matrix front reaches the no-flow symmetry boundary of the matrix

block due to neighboring fractures. Stage C occurs after the front reaches the matrix no-flow boundary.

The matrix can, therefore, be divided into three zones depending on the stage of imbibition (Figures 5

and 6) with zone I corresponding to those points that lie on slices undergoing stage A, zone II

corresponds to stage B, and zone III to stage C. These zones propagate with the liquid front as it

proceeds into the fracture with zone I occuring near the tip of the fracture, followed by zone II, and,

then, by zone III.

Which time period is occuring depends on which of the zones is the largest. At early times,

t < t,, most or all of the fracture front lies in zone I, and the flow in the fracture is, therefore,

influenced only weakly by matrix imbibition and is, instead, dominated by the fracture boundary
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condition and gravity. As the fracture front proceeds, a significant part of the matrix is in zone II, i.e.

cumulative imbibition fluxes are comparable to the fracture volume, and the front slows down. During

this second flow period, tb s t < t, 1, there is a balance between (1) matrix suction forces and (2)

gravity and, possibly, (3) fracture flow boundary conditions. Finally, as the matrix imbibition front

approaches the no-flow symmetry planes, the imbibition flux begins to decline, and we enter the third

flow period, t, S t when most of the matrix is in zone Iml. The front velocity during this flow

period approaches a constant.

We are also able to treat other cases: when the matrix blocks do not have the same material and

initial properties, and when the fractures are not evenly spaced. In general, we then have t. I * t, 2.

(In the rest of this work we can assume, without loss of generality, that t42 > ta1. Otherwise, the

indices 1 and 2 are interchanged in what follows.) The only difference from the equal fracture spacing

case is that the third flow period is split into two sub-periodsf la and lb because matrix k = enters

flow period I while matrix k = 2 is still in period I. In particular, there is a period

s. I t S 1.2 corresponding to when only matrix block k = 1 is in flow period HI. For later

times, t 5 t, matrix block k = 2 is also in flow period III. (These flow periods apply if

lb :5 1 I t0 2, which will be true in most cases. Other less likely orderings of the time constants

will lead to other flow periods.)

To summarize, the flow periods are:

Flow period I (boundary and gravity dominated)

t < tb (20)

Flow period 11. (balanced)

t4 t I ta 1 (21)

Flow period lla (reduced matrix suction in a single matrix block)

la t 5 tI 2 (22)

Flow period IlMb (reduced matrix suction in both matrix blocks)



14

td 2 _ t (23)

If a flow period has upper and lower time limits that are comparable or if the upper becomes less

than the lower, that particular flow period will not be present. For example, when tb is comparable to,

or greater than t, 1, flow period II is non-existent

In some situations, special degenerate cases can occur depending on how the time constants are

ordered. For example, suppose that one of the matrix blocks bounding the fracture is much larger than

the other but with their diffusivities being equal. That is, a2 >> al and al = cr2. It can then be seen

that t I c c t. 2. Moreover, suppose that the initial unsaturated pore volume of matrix block k = 1 is

much smaller than the fracture pore volume, which in turn is much smaller than the initial unsaturated

pore volume of matrix block k = 2. We then have the situation where t, I < < tb < < t 2. While in

flow period II the total imbibition flux into block k = 1 will start to decline relatively early because of

the small matrix pore volume of this block and and will then go into flow period III. This transition

will happen before the flux into block k = 2 has become significant enough to go into flow period II.

The flow in the fracture will revert to being boundary- or gravity-dominated, and instead of

Flow period lla we have two periods which we call Illa. 1 and Illa. 2.

Flow period Hlla.l (revert to boundary or gravity dominated)

ta I !5 t _< tb 2 (24)

Flow period Ilfa.2 (partially reduced suction)

tb 2 5 1. 2 (25)

In order for this situation to occur we must have ta 1 tb 2 5 t. 2 It is obvious that there are

other orderings of the time constants that can lead to special flow periods not covered by those given

here. However, in most situations, such as when both matrix sides of the fracture have nearly identical

matrix properties and initial saturations, the three periods we have given in (20) to (23) are the only

major ones. The other subcases can be treated, if desired, by using the techniques that will be
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presented in a report currently under review.

Dimensionless Groups

It will be seen later that a convenient definition of dimensionless time is obtained by taking time

to be relative to the time constant tb. Therefore, let us denote by r the dimensionless time given by

T = t/tb (26)

It will also be convenient to normalize the other time constants relative to ti:

Tak = takItb (27)

Tbk = tb1 / 1b (28)

The index k = 1, 2 refers to the matrix blocks bounding the fracture. In terms of normalized time the

flow periods are given as follows.

Flow period I (fracture flow boundary condition and gravity dominated)

T < 1 (29)

Flow period ! (balanced)

1 S t (3 )a I

Flow period lla (reduced matrix suction in a single matrix block)

Ta. I5 T a 2 (31)

Flow period IlMb (reduced matrix suction in both matrix blocks)

'e2 < X (32)

The fracture penetration length, h, can be made dimensionless A by dividing by Lb, which is

defined to be the distance that would be traveled by the fracture front at time t = tb if no imbibition

into the matrix were present. These 'imbibition-free" length scales Lb can be easily derived for the

various combination of boundary conditions and are given in Table I. For example, in the case of
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po = 0 with gravity, liquid will travel down the fracture flow at a constant speed equal to Kf P3. Thus,

at time tb it will have traveled a distance equal to Lb = Kf B tb. To understand further the meaning

of Lb, note that the gravity and boundary pressure forces including fracture capillarity will dominate

over matrix imbibition when the fracture penetration is less than Lb since the imbibition into the matrix

is relatively unimportant for t < tb. In Table I, the last row corresponds to a pressure boundary con-

dition with gravity. There, the value of the length scale Lb is computed based on the value computed

due to gravity and with the boundary pressure po set to zero.

In some cases we will also need to define a dimensionless boundary pressure by

po= poIK[ p2 tb (33)

Recall, that since any capillary head drop -p, across the leading edge of the fracture front can be

included into po by adding pa, this dimensionless pressure includes the fracture capillary pressure.

Asymptotic Behavior

Penetration Depth

In a report currently under review, we derive the asymptotic solutions to (10) and (11) for the

cases where the uO(t) orpo boundary conditions are constant in time. The solutions for flow periods I

and II hold for matrix diffusivities that are general functions of saturation while in the mathematical

analysis for flow period HII it was necessary to assume that the diffusivity is approximately constant in

saturation. In developing a solution for the pressure boundary case, (11), it was convenient for the pur-

poses of exposition to split the problem into (1) the case without gravity (i.e., JB = 0) and (2) the case

with gravity. At early time for the latter case, one must also distinguish whether po is zero or non-zero

relative to ambient head.

In Table II we have summarized the leading terms of the asymptotic expansion for the dimension-

less fracture penetration depth h for the different types of boundary conditions and for the different

flow regimes. The dimensionless variables used here are described in the previous section. Higher

order terms can also be derived. Note that all expansions are powers of the dimensionless time T.
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When the value of the upper limit of a time period is less than the lower, that particular flow period is

not present (e g., if % I < 1, then flow period II is not observed, and if % 2 5 SO, then Ema is not).

The expansions in column 2 of Table II for the pressure boundary condition case with no gravity

(i.e., f = 0) is a special case of the general expansion given in column 4 and corresponds to the case

of a horizontal fracture. Note that during flow period II, for this particular case, the fracture penetration

goes as the one-quarter power in time, which is slower than the one-half power movement of the matrix

saturation front in the direction longitudinal to the fracture. Hence, tlpe matrix front will eventually

overtake the fracture front unless flow period m, with its faster one-half power behavior begins

sufficiently early. In his theoretical study of aggregated soils Philip (1968] derived asymptotic solutions

equivalent to those in flow periods I and m (column 2 of Table II) but he did not consider the inter-

mediate flow period II, probably because this period is not of significant duration for aggregated soils

which, because of their relatively small granules, have corresponding time constants with tb comparable

to ta.

The fixed pressure boundary condition with po = 0 given in column 3 of Table II pertains to the

case when the pressure head at the fracture entrance is held at ambient. It is a special case of the solu-

tion given in column 4, which includes the general boundary condition in pressure. We have included

column 3 in the table because of its simplicity relative to the more general case in column 4. The

situation is complicated in column 4 by the interplay between gravity and the pressure boundary condi-

tion. For each of the flow periods in column 4 there are two possible expansions, one pertaining to the

time period during which the boundary pressure dominates fracture flow and one for when gravity and

matrix imbibition dominates. Each flow period has a dimensionless transition time a', which we will

define shortly. The applicable expansion is determined by the relationship of r to the upper and lower

limits of the respective flow period. If ad is less than the lower limit, the second expansion applies

over the entire interval. If ar is greater than the upper limit, the first expansion is applicable, and if e

is between the limits, the first expansion applies forr : t* and the second forr c> X . The value of

-r depends on the flow period and is a function of the dimensionless boundary pressure head Poand the

matrix-fracture storativity ratio X. From Table II we see that it is equal to hpO,po PO2 /rb2, pOX for
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flow periods 1, 11, lla, and 11Tb, respectively. With one exception, the value of of for a given PI and X

can be shown to lie in only one of the flow periods, and, hence, the transition occurs only once. The

exception is if 'C.2 < ho < NIT ; in which case, the transition time is in both flow periods lIla and

ITb. Thus, in period ma there can be a transition from boundary dominated to matric capillary-gravity,

and, then, reversion to boundary dominated at the beginning of period 11Tb, and, finally, a return to

matric capillary-gravity dominated flow.

As we mentioned earlier, if t. cc tb 2 <« t0 2, then flow period lIla is replaced by IIIa.I and

lIla.2. The expansions for these two subperiods are given in Table III.

The special case, A, = Naz and 'b, = 'rb2 is of interest because of its relative mathematical

simplicity, and since it includes the equal fracture spacing case with the matrix blocks having identical

properties. The expressions in column four of Table II can be reduced to this case by first removing

flow period IILa, changing flow period 11Tb to 111, and making the following substitutions:

XI = A2 = X/ 2, %aI = T. 2 = r.- Table IV shows the dimensionless fracture penetration for this

case with gravity and non-zero boundary pressure conditition. As will be shown later, the dimension-

less transition time X from boundary to matric capillary-gravity dominated flow lies in only one of the

time periods, and, therefore, the transition occurs only once.

Effects of Fracture Capillarity

We saw earlier that the boundary condition pa can include the capillary pressure across the lead-

ing meniscus of the fracture front by adding the magnitude of the capillary head pc to the entrance

pressure. Let us consider the case where the fracture entrance is kept at ambient pressure so that pa is

equal to Pc For a vertical fracture system CB = 0), we ask the question: When is fracture capillarity the

dominant driving force ? Let us assume that the fractures have equal spacing and identical matrix pro-

perties so that the results of Table IV hold. From that table the transition time ac from boundary dom-

inated (in this case fracture capillary pressure) to matric capillary-gravity dominated flow is seen to

occur in flow period I if Pc I Lb << 1, flow period II if 1 c< p pI Lb << X, and flow period Ill if
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)> << p lLb. Here, we used the fact that % = X2 and Po = polLb. Note that these three condi-

tions on p are mutually exclusive so that the transition occurs at a single point in time and no rever-

sion to fracture capillary dominated flow occurs once it starts. It is also interesting to note that the

fracture penetration h at time -c = r can be shown to be approximately equal to p-'. Thus, the transi-

tion out of the fracture capillarity regime occurs when the hydrostatic head of the liquid in the fracture

becomes comparable to the fracture capillary head.

Asymptotic Fracture Penetration Profiles

It is an interesting fact that the first-order terms of all of the asymptotic expansions are powers in

time A - cm and, when plotted on a log-log scale, will form a series of straight line segments with a

corresponding slope m for each flow period. In Figures 7 to 11 we have drawn the generic "penetration

profiles" for the three types of boundary conditions that were considered. The line segments are labeled

with their respective slopes. For simplicity, we have restricted ourselves in these diagrams to the case

when the fracture spacings are equal. Note that in figures 7 and 8 there is a single family of dimen-

sionless curves parameterized with respect to X. For figures 9 to 11 the curves are characterized by X

and pf. Recall that the parameter po is the ratio of the drop in pressure head across the slug (due to

boundary head at the entrance and the capillary head at the meniscus) to PLb (also recall that

Lb = Kf Otb). Figure 9 corresponds to the case when po < 1. The first line segment on the left

corresponds to the flow period during which the pressure drop is small relative to the hydrostatic head.

For the case in Figure 10 when 1 < po ! A, the pressure drop is larger than the imbibition-free head

so that the the boundary pressure dominated regime extends past t = I into the time period II,

I < i !S %. Figure 11 corresponds to the case where X < Po and is boundary pressure dominated

until e = poXinperiod III, < a.

These plots have the potential to become useful calculational tools, and are particularly helpful

in visualizing the dependence of the asymptotic solutions on the various parameters.
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Parameter Variation

We now consider the effect of parameter variation on the fracture penetration for a particular

geometry. Consider a vertical fracture with the boundary pressure at the entrance kept at ambient con-

ditions. Such a boundary condition would occur if a shallow pond was present at the entrance.

Because of the vertical orientation, gravity is present. The initial saturation and material properties of

the two matrix blocks bounding the fracture are assumed to be identical. The expressions for the frac-

ture penetration h are listed in Table V and are dimensional in order to illustrate the dependence on the

various system parameters. It is important to note that this table assumes that we stay within a single

flow period as the parameters are varied. In some cases, because of large parameter changes, we may

switch into a different flow period. Although these expressions are based on first-order asymptotic

approximations, comparisons with numerical calculations indicate that they adequately represent the

proper parameter sensitivities. We have assumed that the diffusivity c can be approximated as a con-

stant. In order to separate the dependence of the diffusivity on the porosity and conductivity, we write

o = XX/+

The constant X is defined here to be some averaged value of k, d l/ dS where kr is the relative conduc-

tivity and v is the capillary head as a function of saturation. The time constants can be written as

tb 4- ) 2 K (34)

t- act (35)

In Table V we see that h depends linearly on KI for all times. We also see that the h versus K,,,

dependence is significant only during flow period II. However, from (34) and (35), we see that the time

constants which define the ranges in the flow periods, ta and tb vary as K.-. During flow period I the

fracture penetration h is insensitive to the matrix porosity 0 while it varies as 4F"2 during period II.

During period III the sensitivity to 0 becomes even more pronounced, with h varying as F1. Regard-

ing the initial matrix saturation Si, if the dependence of X on Si is weak over some range of values, we
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have that h varies as (S,,, -Si' during flow periods 11 and mll while it is insensitive to Si during flow

period I. As expected, only during flow period mI is h sensitive to the fracture spacing a. However,

the time constant t: is very sensitive to a, varying as a2.

In order to elucidate the dependence of h on the fracture half aperture b, let us suppose that the

saturated fracture hydraulic conductivity Kf varies as b2 in accordance with some form of the widely

used "cubic law" as given by Pouiselle flow theory (see, for example, Huyacom and Pinder [1983]).

Thus, the fracture penetration h varies as b2 during flow period I and as b3 during period II. During

period m the fracture penetration h varies as bP if at(S, -S,) Ca b and as b3 if a*(S. -Si) >> b. It

is, perhaps, not surprising that h is most strongly affected by the fracture aperture b. Note also that the

time constant tb is also strongly dependent on fracture aperture, varying as b2. Note that the

"hydraulic" aperture used in the cubic law need not be equal to the parameter b which is the

"volumetric" aperture. In practice, one may take the hydraulic aperture to be smaller than the

volumetric aperture.

Comparison with Numerical Solutions

In this section we give a brief overview of the comparison of the asymptotic solutions with those

obtained numerically. More details will be forthcoming in reports still under formal review.

The asymptotic expansions were compared with two separate types of numerical solutions. The

first approach involved comparison of the asymptotic solutions with numerical solutions of the integro-

differential equation (11). The first-order asymptotic solutions along with the numerical solution are

given in Figure 12 for the case of gravity-driven flow with the fracture entrance kept at ambient pres-

sure. Note that the asymptotic solutions adequately capture the behavior of the solution and except for

late times and appear to be conservative upper bounds to the fracture penetration by the liquid front.

The integro-differential equation upon which the analytical theory is based was derived under the

assumption that the flow in the matrix is orthogonal to the fracture. In actual fracture systems this

assumption may not be exactly satisfied. Moreover, under certain conditions, the flow in the fracture

may be better represented as that in a porous medium rather than a slug, as we have assumed. It is
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desirable then to compare our solutions with a two-dimensional simulation not containing these a priori

assumptions. Therefore, the second numerical approach used in our comparison involves the two-

dimensional simulation of fracture/matrix flow using a modified version of the TOUGH integrated finite

difference code [Preuss and Wang, 1985; Nitao, 1988].

The properties of the fracture used in the two-dimensional simulation are the same as those used

by Buscheck and Nitao [1988a]. The model represents one out of an infinite set of fractures that are

vertical and uniformly spaced. By symmetry, we need only model half the fracture and the matrix that

is on one side; a lateral no-flow boundary is placed down the center of the fracture, and another down

the center of the matrix block to represent the symmetry line with the neighboring fracture. The frac-

ture is represented by a vertical column of grid blocks with porous media properties considered to be

characteristic of variably saturated flow in a fracture with a nominal aperture of 100 pm. The absolute

permeability of the fracture is based on the "cubic law" for flow between parallel plates as given by

Pouiselle flow theory. The fracture relative permeability curve is estimated by Wang and Narasimhan

[1985] based on a simple conceptual model of fracture flow. The suction pressure versus saturation

curve for the fracture was extrapolated, using the Young-Laplace equation [Adamson, 1982], from a

curve which Wang and Narasimhan [1985] estimated on the basis of a simple conceptual model of frac-

ture flow. One run was made with this suction curve while another run was made with suction set

identically to zero in the fracture to see the effect of fracture capillary. In order to facilitate the

interference between neighboring fractures to occur early in time a small fracture half-spacing of a =

2.26 cm is assumed.

As in Buscheck and Nitao [1988a], the matrix properties, including the characteristic curves

which are non-linear, are based on measurements made by Peters and others [19841 on sample G4-6 (a

sample of Topopah Spring densely welded tuff cored at a depth of 1158 feet within the repository inter-

val at Yucca Mountain). The matrix porosity and initial saturation are taken to be 20 and 65 percent,

respectively.

Table VI is a summary of the fracture and matrix properties used in the two-dimensional model.

The first six properties apply to the two-dimensional model. The last two, a and tb, are parameters
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required in the comparison with the asymptotic approximation. Recall that tb is the approximate time

at which the cumulative matrix imbibition flux is comparable to the specific fracture volume. For early

times t << ti, it can be shown that the first-order asymptotic approximation of the instantaneous

specific volumetric imbibition flux, q, is given in terms of tb and b by

b (36)

Integrating (36) with respect to time, we get the cumulative imbibition flux

Q.u- 2bIF7b (37)

By setting t = tb in (37), we find that

Q,,, -2b (38)

One practical way of deternining tb is as follows. From a one-dimensional matrix imbibition

model (where the upstream boundary condition is maintained at 100 percent saturation), the imbibition

penetration depth of the saturation front into the matrix, di,,b is plotted against time. The front position

can be taken to be the point where the saturation is equal to the average of the maximum and initial

saturations. The time that corresponds to d,,,b = 2bI( (S,, -Si)) is equal to tb. The effective matrix

diffusivity, a. is obtained by applying this value of tb to equation (15). We applied this procedure to

our example using the plot of log d,,b versus log : found in Buscheck and Nitao [1988a]. Another

method would be to plot the cumulative imbibition flux. The time at which the flux equals

2bI(1(S. -Si)) is tb-

In comparing the plots of log A versus log c obtained from the first-order asymptotic approxima-

tion and the two-dimensional numerical model (Figure 13), we find the two methods agreeing reason-

ably well. The figure shows two numerical solutions, one with fracture capillary, the other without.

The asymptotic solutions given for these two cases are different only for early times t << p1 when

fracture capillarity dominates. Since the two-dimensional numerical model treats the fracture flow

characteristics as a porous medium with a saturation-dependent capillary suction curve, it is not
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immediately obvious which value of capillary pressure drop p, to use in the expression for the non-

dimensional pressure drop term po (= p, l Kf tb) needed in the asymptotic expansions. In column 4 of

Table H we see that the lowest-order contribution of the suction during flow period II is a constant term

2po /(7c- 2) so that the difference between a simulation with and without fracture capillarity will enable

us to solve for this quantity. This fact was confirmed in our simulations. The value we obtained from

this procedure, pa = 0.3, was used in obtaining the asymptotic expansion for r < p0 shown in Figure

13.

During flow period II (Tb 5 T < Ib), the asymptotic approximations and the two-dimensional

model both result in a slope of m = 0.5. The small reduction in fracture penetration predicted by the

two-dimensional model relative to the asymptotic solution is primarily the result of relative permeability

effects in the fracture. It appears on the logarithmic plot as an almost constant downward shift in the

two-dimensional model curve. Recall that while the asymptotic solution assumes slug flow in the frac-

ture, the two-dimensional model utilizes a relative permeability curve for fracture flow. The 26 percent

reduction in fracture penetration corresponds to a fracture relative permeability, k, = 0.74. Based on

the fracture relative permeability curve, k, = 0.74 corresponds to a fracture saturation of 95 percent.

Accordingly, Buscheck and Nitao [1989b] found that for much of the wetted interval during flow period

II, the fracture saturation is close to 95 percent. During flow period III (Ta < T), the two methods agree

very well, with both methods yielding a slope of m = 1. Because for much of wetted interval of the

matrix is fully saturated, capillary equilibrium between the matrix and fracture (in the two-dimensional

model) results in the fracture being fully saturated (corresponding to k, = 1). Consequently, saturation

conditions in the fracture (in the two-dimensional model) result in slug flow and there is no reduction in

fracture penetration (relative to the asymptotic solution) as was observed during flow period II.

This numerical simulation with its two-dimensional description of matrix flow with gravity and

saturation dependent diffusivity function serves to confirm the validity of our basic assumptions under-

lying our simplified governing equations. Percentage deviation between numerical and approximate

analytical solutions is greatest in the transition between flow period I and II and is about 50 percent

Although using higher-order terms may decrease this figure somewhat, we recall from the previous
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section that the problem is highly sensitive to various parameters such as the fracture aperture that are

difficult to measure and are found to have high variability in the field. Thus, we feel that for most

applications it is inappropriate and of dubious value to seek more complex solutions of higher accuracy.

Conclusions

We have analyzed the various physical processes involved during one-dimensional fracture-

dominated flow conditions in an unsaturated porous medium. Such a hydrological condition

corresponds most likely to relatively high fluxes such as under ponding conditions at the fracture

entrance. For various constant boundary conditions, approximate solutions to the movement of the

liquid fracture front were derived. They show that the flow undergoes three major time periods charac-

terized by physically interpretable time constants. The first time constant tb is the time required for the

matrix to imbibe a volume equal to that of the fracture storativity. The second is the time t. for the

imbibition front to reach the no-flow symmetry line of the neighboring fracture. The first time period

occurs when t << tb, the second when tb << t << ta, and the third for t, << t. Transition

periods occur between these main periods. The flow in the matrix can be divided into zones

corresponding to the three major flow periods. In many cases it can be shown that, for sufficiently

large time, the front in the matrix lags behind the fracture front at a fixed distance. Asymptotic solu-

tions were given which show that the approximate quantitative behavior of the liquid front can be con-

veniently represented by line segments when plotted on a log-log scale. The solutions can be used to

understand the dependence on various physical parameters.

Comparison between the asymptotic and numerical solutions confirm the validity of the approach.

Our solutions have the potential for estimating the front movement in many practical applications. In

addition they present a better quantitative and qualitative understanding of the flow in a fracture in

unsaturated porous media. These solutions may be helpful in the verification of numerical models of

fracture flow.
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Further work needs to be done to determine the range of validity of the approximate analytical

solutions. We also need to find what new effects are present in two-dimensional fracture flow, and to

extend the analytical model, where possible, to fracture networks.

Notation
a one-half the distance between adjacent parallel fractures
b one-half the fracture aperture width
d,,,,b matrix imbibition penetration depth
h penetration of the liquid front into the fracture measured from the fracture entrance
Kf fracture-saturated hydraulic conductivity
Km matrix-saturated hydraulic conductivity
i, matrix relative permeability function
Lb length that the fracture front would travel during time tb

if there were no matrix imbibition
p pressure in units of liquid head along the fracture
PC capillary pressure head at liquid fracture front meniscus
Po pressure in units of liquid head at the fracture entrance
Po dimensionaless pressure head at the fracture entrance
q specific volumetric flux into the matrix
q, specific imbibition volumetric flux function into the matrix
Q., cumulative specific volumetric flux into the matrix
s dummy variable of integration
S liquid saturation in the matrix

Si initial liquid saturation in the matrix
S. maximum liquid saturation in the matrix limited by air entrainment
t time
t. fracture interference time constant, approximate time for matrix front to reach

the no-flow boundary
lb fracture storativity time constant, approximate time for cumulative matrix imbibition

flux to become comparable to the volume in the fracture
u liquid velocity along the fracture
UO liquid velocity at the fracture entrance
x coordinate distance normal to the fracture
y coordinate distance longitudinal to the fracture
Z flow region length

J the cosine of the angle of inclination of the fracture from the vertical

X k, diVIdS
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fracture storativity ratio, the initial unsaturated pore volume of the matrix
relative to the volume of the fracture
function Qf(y) denoting the time at which the fracture front
first reaches point y

* matrix porosity
matrix capillary pressure head

matrix diffusivity, or effective matrix diffusivity
dimensionless time equal to t I t,

a (ta /ltb

'tb k tb ktb /. k = 1, 2
dimensionless transition time from boundary dominated flow to
flow dominated by gravity and matrix capillary forces
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Figure 1. Idealized Fracture
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Table 1. Fracture Penetration Length Scale Lb

Boundary Condition Lb

flux b.c. Uotb

pressure b.c r2K1 pot`
no gravity I

pressure b.c
with gravity

K1 I tb

Table II. Leading Term of Expansion for Dimensionless Penetration h

1 2 3 4

flow period flux pressure b.c pressure b.c pressure b.c
(range of high no gravity Po = 0, gravity po * 0, gravity

accuracy) k h h h
UOtb h~FO=rtb Kf fkb K Ptb

I ¶ ¶2 ¶c ~IT/2 , 4 t cp< po

<<«1) 325Po°
2 , >>»Po > 0

3

II 2 C12 1~4 /4 12 2 P I/4 << p0 2

¶/k(2pa-l1) 2
(1<< << '.,) + (n-2) ' >>p2

ma 2 () 1T)2 \(Tb 2 )21' (Ch21)'2 24Po(tb2¶)4, «<<Po 2Ib2

(T4l << « << $2) (tb2X~l + (2 2o-¶ ,b ) >> -P 2______<< ___<< __________E"2 (ir- 2) ¶ P I

Mb 1 1 m12

41 + I

I
+ \IP¶+% Pol~

(T.2 << )

A = [ 2 +LI ; + 2- l +I X ))



Table HI. Leading Term of Expansion for Dimensionless Penetration h (special subcase)

1 2 3 4

flow period flux pressure b.c pressure b.c pressure b.c
(range of high no gravity po = 0. gravity po * 0, gravity

accuracy) h h h h
uotf 42ooKtb Kf O Kf fkb

Ea~~~l1~+ XI v=;; -L I + XI 1 +i tA4

1 C ~ s < < I 1<< h2)(%t)[ 3 1+A, Pot 3)]

Illa.2 same as for
period Ma
of Table II

same as for
period mlla
of Table II

same as for
period HIa
of Table II

same as for
period Ma
of Table II(b2 « <r " 2)

Table IV. Leading Term of Expansion for Dimensionless Penetration h

when Pal = Bagand bi = Tb2

flow period
(range of high

accuracy)

pressure b.c.
p *, Ogravity

kA= h
Kf P

I T122o C<<Po

(,r <<1) 2 T, ¶»>Po
3
?r, Po = 0

II 24 FO TV14. IC <Po2

U2(2P0o -l) 'r> 2(I <<r << ) 19 + (Ir-2) 0

HII

( < «C)

2fP o 1/22 T T <<,OO(1+7L)I+XN'T ,
I [.,+AtII2], T>>po(l+X)

1 + X

A = 2 )L3a + 2po (I + X) 112
13 1+X
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Table V. Dependence of Fracture Penetration on Parameters (po = 0, equal matrix properties);

Flow Period I. h - K, I
0 C t < rb

Flow Period II. h K X b X 1m

tb !S t 5 to

Flow Period m. K + a _______

t, < t h - Ka b I if ao(S. -Si) >> b

h - K: t if a(S,,, -Si) << b

Table VI. Fracture and Matrix Properties Used in the Two-Dimensional Fracture/Matrix Model

b 4 5 pm
a 2.26 cm

Kf 8.17x10-3 mi/s

K,, 1.86x1011t mls

* 20 percent
Si 65 percent
S. 100 percent
th 41.9 s
a 3.10xIO m2

1s
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