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ERRATUM:

Vol. 1. p.2 Abstract):

Second sentence of last paragraph of p.2 should read:

"Porous medium heterogeneity inferred from borehole conductivity data is

represented by self-Similar random fields. The flow equation is solved for small

scale fluctuations" (etc....).

Vol. 1. p.3 8 6 (Table 5.4):

On the row corresponding to values of the relaxation parameter o, the first value is

0.25, not 2.5.

Vol. 1. p. 3 8 9 (Eq. 5.110 and below):

The term C 1 2 should be replaced by C0 +" 2 in eq. (5.110). In addition, C' 2

should be replaced by C- 112 two lines below eq. (5.110); the convergence rate r is

proportional to C 1 2 , not C0 112.

Vol. 2. Chap. 7. Figures 7.13-14-15 pp.6 6 2 -665):

The contour labels on Figure 7.13, Figure 7.14, and bottom plot of Figure 7.15 are

erroneous. These labels should be ch-nged as follows:

(1) 70 - 125

(2) 60 - 100

(3) 50 - 90

(4) 40 e 80

(5) 30 - 70

The positive numbers indicate suction head in centimeters (not pressure head).
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TEREE-DfMENSIOaL FLOW

fl RANDOM POROUS MEDIA

by

Rachid Ababou
Lynn W. Gelhar

Dennis McLaughlin

Large scale subsurface flow in heterogeneous porous formations
is studied using a three-dimensional (3D) random field representation
of local hydraulic properties, assuming for the most part that the
medium is homogeneous/ergodic. Both analytical and numerical methods

are used to characterize the physical behaviour of 3D flow fields,

based on the statistical properties of solutions of stochastic partial

differential equations.
The first order spectral theory is applied to the case of flow

in stratified aquifers, revealing a nearly isotropic head correlation
structure in vertical planes, in contrast with the anisotropy of
conductivity and velocity. Thus, the infinite domain spectral

solutions may only be applicable to aquifers much deeper than the
vertical head correlation scale, say tens of horizontal conductivity
scales. Also, non-perturbative spectral equations derived from mass
conservation and statistical symmetries relate the flux and head

spectra for isotropic media, independently of small parameter
expansions. The new relations are satisfied by the current spectral

solutions in any dimension. In the 2D case, we establish a

statistical identity between head gradient and flux, or head and
stream function (statistical conjugacy). Other results in the
literature inspired a simple conjecture for the effective conductivity
tensor with arbitrary 3D anisotropy of the random conductivity field,
which fits all results known to be exact. Finally, a modified flux
spectrum is developed using an approximate spectral solution of
equations governing the flux instead of head. The new expressions for

velocity variance and solute macrodispersivity appear to follow more

realistic behaviours at high variability.
The conceptual approach of "spectral conditioning" is developed

to describe finite size effects, particularly for evolving subsurface

phenomena. Porous medium heterogeneity inferred from borehole
conductivity data is solved for small scale fluctuations up to domain
scale, conditioned on larger scale fluctuations (effective variability
versus uncertainty). Closed-form results for D flow show that the

uncertainty of finite domain statistics, such as effective
conductivity and head variance, decreases with domain size.

Preliminary results also indicate the scale dependence of the 3D
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effective conductivity and macrodispersivity of a growing contaminant

plume.
Direct numerical simulations are developed for single

realizations of homogeneous/ergodic random medium properties, using

the 3D turning band method for random field generation, and a special
purpose numerical code for solving 3D finite difference saturated and
unsaturated flow equations, with spatially variable and nonlinear
coefficients. In the case of stochastic groundwater flow, a novel
method of truncation error analysis shows that the discrete solution

is a consistent approximation of the exact one, however with a lower
order of accuracy if the random coefficients are noisy rather than
smooth. The root-mean-square errors on head and velocity are

respectively proportional to the powers 3/2 and 1/2 of the mesh-
correlation scale ratio in the noisy case (exponential covariance).
The convergence of the iterative "strongly implicit procedure" solver
is studied, and the nonlinear stability of transient unsaturated flow
systems is analyzed (Peclet number condition).

The single realization approach is applied to the following flow
problems, using a Cray2 supercomputer for the largest simulations:

steady groundwater flow in statistically isotropic or anisotropic
media (up to 1 million nodes); transient strip source infiltration and
steady rainfall infiltration in unsaturated soils with random
conductivity-pressure curves (up to 30,000 nodes). The simulated flow
fields are statistically analyzed by spatial averaging methods under
weak assumptions of homogeneity. For groundwater flow, the results

compare favourably with spectral solutions, especially for the head

variance, effective conductivity, and velocity correlation tensor, up
to large standard deviation of the natural logarithm of conductivity
(2.3). The numerical velocity variances agree with the spectral
theory at moderate variability (isotropic case), but increase faster

with conductivity variance. The discrepancy is milder for the new
flux-based spectral theory. Numerical head correlations tend to be
smaller than theoretical ones due to finite size effects, particularly
for shallow stratified aquifers.

For unsaturated flow, simulation results indicate sensitivity of
flow behaviour depending on the variability and anisotropy of the
random soil. In the case of transient strip source

infiltration/drainage in a statistically anisotropic soil, there is a
pronounced lateral spreading of the edges of the moisture plume. This
behaviour is in qualitative agreement with available spectral
solutions. The case of steady "rainfall" infiltration shows a

quantitative agreement with the head variance and vertical unsaturated
effective conductivity from the spectral theory. Some questions

remain open, notably concerning the range of validity of the
homogeneity and ergodicity hypotheses for highly nonlinear and
evolving flow systems.
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CEAFrER 1: INTRODUCTION

1.1 Subsurface Contamination and Field Heterogeneity

There has been significant progress during the past

decade in our conceptual understanding of the physics of flow and

mass transport in naturally heterogeneous or random porous media.

Stochastic concepts were introduced to represent the natural

variability of porous (non-fractured) subsurface formations and

soils, leading to new mathematical formulations of the classical

equations describing subsurface flow and transport phenomena,

which in turn influenced current stochastic approaches to data

collection.

This area of research has gradually grown into a field

of its own, known as "stochastic subsurface hydrology". The

basic ingredients of this approach are, on the mathematical side,

the theory of random functions of multidimensional space (random

fields) and of stochastic partial differential equations; the

concept of "effective" transport coefficients (macro-scale

conductivity and dispersitivity); and advanced linear

estimation/optimization theory for the collection of noisy field

data. Similar concepts have been used in the past, notably in

the statistical theory of homogeneous turbulence (random velocity

fields) and in the mathematical theory of "homogeneization",
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where nterest focuses on the existence and uniqueness of

effective transport properties for a variety of physical

problems.-.

The field of stochastic subsurface hydrology has become

an active area of research for applications to toxic and

radioactive waste contamination, with the increasing public and

governmental awareness of the gravity and ubiquity of the toxic

waste problem (North America and Western Europe). Because water

is the main carrier of toxic species underground, e.g.. in

dissolved form, the study of subsurface water flow is an

essential preliminary step towards a better understanding of

toxic solute transport in complex environments.

The complexity of natural subsurface flow systems can

be reduced somewhat by considering separately two distinct types

of flow regimes: purely saturated flow with positive water

pressures (aquifers), and purely unsaturated flow with negative

water pressures below atmospheric pressure (unsaturated soils and

vadose zone). In this work, we will be mainly concerned with the

physics of water flow under these two distinct regimes, with

particular emphasis on the effects of random-like heterogeneities

of the porous medium.
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[a] Subsurface contamination:

It may be useful to consider briefly how research on

heterogeneous flow systems relates to actual field contamination

problems. Low-level radioactive or toxic chemicals are usually

disposed of above the ground or buried at shallow depths.

Examples of hazardous waste sites of this type are landfills,

surface impoundments (e.g. lined evaporation ponds), and uranium

mill tailings buried at shallow depths. Another situation of

interest concerns the case of potentially harmful chemicals

applied over large surfaces at relatively small concentrations,

such as may occur in irrigated areas (fertilizers dissolved in

irrigation water). In these cases, contaminant transport will

presumably take place in the unsaturated flow regime when a leak

occurs. Except for controlled experiments, leakage is usually

not detected until after the contaminant has reached a major.

extensively monitored groundwater system, or until it has caused

major damage (e.g. contamination of local commmunities via

drinking water).

Large-scale controlled experiments of contaminant

migration through the vadose zone are scant (see the extensive

review of elhar et. al. 1984). One notable exception is the

experimental study of an evaporation pond by Trauntwein et. al.

(1983) and Kent et. al. (1982). These authors found that, after
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20 years of leakage in the unsaturated zone, water reached a

depth of 100 meters. and extended laterally over a distance of 2

kilometers. The surprisingly large lateral spread could be

explained by the presence of horizontal clay lenses, leading

perhaps to the formation of perched water zones (Gelhar et. al.,

1984). The flow system in this case is complex and inherently

three-dimensional in nature.

Another type of application concerns the case of

high-level radioactive wastes. Currently, a number of options

are being (re)considered for their disposal, particularly in the

United States. One of these options is the deep burial of sealed

cannisters into saturated formations of very low permeability,

such as unfractured basalt, tuff, or granite. Another option

which has been proposed, but not yet implemented to our

knowledge. is the burial of radioactive wastes into very dry

unsaturated porous formations located in arid (and poorly

populated) regions. Winograd (1981). one of the proponents of

this option. discusses the possibility of burying high-level

wastes at depths of 15 m to 85 m in valley-fill deposits inside

the man-made Sedan crater at Yucca Flat. Nevada. In that

particular environment -the annual rainfall is only 125 mm/year (5

inches/year) and the water table is 600 meters deep. Winograd

estimated that the downward percolation rate (velocity) through



- 31 -

the unsaturated valley-fill could be roughly on the order of 2

mm/year. i.e., 200 meters per hundred thousand years.

Incidentally, this gives also an idea of the large time scale of

interest for high-level, slowly decaying radioactive wastes. In

this case of very slow flow and extremely dry conditions, it is

not at all clear what the effect of local heterogeneities could

be on the overall pattern of dispersion of a contaminant at the

scale of thousands to several hundred thousand of years.

Of more immediate concern is the potential hazard from

existing waste facilities. For instance, a major leak was

detected in 1973 beneath one of the tanks located at the storage

facility of Hanford. Washington state. The total amount that

leaked into the vadose zone was evaluated as one fifth of the

500.000 gallons (2000 m3) of high-level radioactive liquid waste

initially contained in the tank. The contaminant movement at

this site is now being extensively monitored. In 1978.

significant radionuclide concentrations were detected as far as

30 meters in depth. and 25 meters from the edge of the tank,

laterally (Rouston, et. al., 1979).

Considering all the possible options and scenarios of

subsurface contamination, it is always possible that, in case of

a leak, the contaminant will eventually reach a major (regional)

groundwater flow system, where transport takes place in the
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saturated flow regime. There have been intense monitoring of

contamination plumes in a number of groundwater systems

worldwide. However, the groundwater velocities are generally not

directly accessible to measurements. Thus, to predict the fate

of contaminants in groundwater flow systems requires a priori a

reliable modelization of groundwater velocities based on other

types of information more accessible to measurement. The current

practice is a subtle and complex combination of numerical

modeling and model fitting, e.g.. from measurement of hydraulic

heads and concentrations on the site. For unsaturated flow and

transport, however, there have been very few observations of the

flow and contamination patterns at the large scale. The report

by Gelhar et. al. (1984) contains a comprehensive review and

interpretation of field data for both types of flow/transport

problems, saturated and unsaturated. A major conclusion from

their review is that models based on a simple extrapolation of

small scale data often fail to predict phenomena occurring over

large space-time scales.

[b] Field heterogeneity and implications:

One essential feature of subsurface formations, on

which we have chosen to focus in this dissertation, is spatial

variability. With the increasing body of literature devoted to

the measurement and identification of various properties of
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natural formations. it appears clear that heterogeneities occur

at many scales, from "grain size" up to large geological

structures. For most practical purposes, the micro-scale or

"grain size" variations of a discontinuous nature can be filtered

out. The formation is then viewed as a porous continuum, whose

bulk properties reflect mplicitly the granular nature of the

medium (e.g. porosity, storage capacity. conductivity, and

coefficient of mechanical dispersion of tagged fluid particles).

It should be recognized, however, that this simplified

view may not always be realistic for soils with fissures or

macropores. for fractured rocks. or for karstic formations. Such

irreducibly discontinuous media will be ignored in this work. On

the other hand, there is now ample evidence that the bulk

properties of natural porous media, even without the presence of

fractures or other large scale discontinuities, may vary quite

erratically in space. It has been progressively recognized that

such variability plays a major role in phenomena like solute

dispersion at the large scale (macrodispersion).

Figure (1.la) from elhar (1976) depicts the vertical

variation of the log-saturated conductivity measured from small

cores taken from a borehole. The conductivity fluctuates,

apparently at random, over four orders of magnitude. It is
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Figure 1.1: Examples of log-conductivity records'en K(x) in one
spatial dimension: (a) data from vertical borehole
(Gelhar, 1976), (b) Synthetic realization of a one-
dimensional auss-Markov process with exponential
covarlance function.
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instructive to compare these data to the generated random

function depicted in Figure (1.1b). The variance and correlation

scale of the synthetic random function in (b) were adjusted to

f it 'those of the observed record in (a). In many other cases as

well, random functions appear to be adequate models of natural

variability. Relevant data for aquifers can be found for example

in papers by Freeze (1975), Delhomme (1979). and Hoeksema and

Kitanidis (1985). Their work indicates that the log-saturated

conductivity (nK) is normally distributed, with standard

deviations ranging from 0.5 to 3.5 (see review in Chapter 2).

The hydraulic properties of unsaturated soils also

exhibit seemingly random variation in space. In this case.

however, spatial variability is more difficult to characterize

because unsaturated soil conductivity and moisture content are

functions of soil water pressure. These functional relations are

usually measured either on small soil samples in the laboratory,

or on small field plots (1-10 m2. with a vertical resolution of J

10-20 cm). Parameters such as porosity, saturated conductivity.

and shape factors appear to be log-normally distributed whenever

variability is high enough to distinguish a skewed distribution.

Experimental evidence supporting this assertion can be found in

Nielsen t. al. (1973). Warrick et. al. (1977), Sharma et. al.

(1980), Gelhar et. al. (1982). and Russo (1983). A review of
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available field data will be presented in Chapter 2.

In summary. there is ample evidence of seemingly random

variations of hydraulic properties in space. Moreover, data like

those shown in'Figure (1.1) seem to exhibit a definite spatial

structure (scale of fluctuation) that could be identified as the

correlation length of a stationary random function. We recognize

however that the correlation scale may not be uniquely

identifiable in practice. In some experimental studies, the

correlation scale was found negligible (or ignored altogether, as

in Nielsen et. al.. 1973). In others, it was found almost as

large as the region under investigation, i.e. statistically

meaningless. Finally, studies like those of Scisson and Wierenga

(19S1), Gajem et. al. (1981). and others, seem to indicate

sensitivity of the observed variance and correlation scale with

respect to the scale of measurement and size/spacing of

measurement network. This, we feel, is an mportant Issue that

deserves a more thorough discussion. The topic will be touched

upon at other places in this work.

1.2 Scope and Objectives:

[a] Motivation and background:

The present work Is based, for the most part, on the
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premise that a realistic description of naturally heterogeneous

porous media can be achieved by representing the local hydraulic

properties in the form of statistically homogeneous random fields

in three-dimensional space. Previous research under this

assumption have led to useful statistical characterizations of

the global behavior and spatial structure of heterogeneous flow

and solute transport. In particular. the spectral theory

developed by elhar and co-workers (Celhar, 1984 and 1987; elhar

and Axness, 1983) has led to closed form relations describing in

a compact form the statistical behavior of heterogeneous

groundwater flow systems, including the cases of statistically

isotropic and statistically anisotropic (stratified) aquifers.

The global/statistical properties of interest for applications

are the effective conductivity, the macrodispersion of a

convected solute, and the degree of variability and spectral

content of the random head and velocity fields. Parallel results

have also been obtained by other stochastic approaches, which

will be reviewed in Chapter 2.

The spectral theory provides particularly simple

results due to the assumptions of infinite-domain and statistical

homogeneity/ergodicity of the solutions of the stochastic flow

and transport equations. These key assumptions, by reducing

further the complexity of the problem, permitted to obtain

approximate expansion solutions of the stochastic groundwater
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flow equation (similar to a "heat equation" with random

conductivities) and of the solute transport equation

("convection-diffusion equation" with a random velocity field) in

terms of spectral densities in Fourier space. These spectral

solutions give all the information there needs to know about the

couartnce structure of the variables of Interest (hydraulic head

and groundwater velocities). However, the validity of the

approximations involved in the spectral theory has yet to be

ascertained for a wide range of field conditions. The same

remark holds for other analytical stochastic theories proposed in

the literature. In general, the available stochastic solutions

(spectral or other) rely on some kind of small parameter

expansion, where the small parameter corresponds to the degree of

variability of the underlying porous formation (e.g., standard

deviation-of the random log-conductivity field). In the case of

the spectral theory, the accuracy of the small parameter

expansion and the validity of the homogeneity/ergodicity

hypothesis need to be checked for realistic situations.

Moreover, the application of stochastic concepts to the

case of unsaturated flow -in heterogeneous porous media has

encountered serious difficulties, both technical and conceptual,

due to the highly nonttnear nature of the hydraulic properties of

unsaturated media (moisture capacity and hydraulic conductivity

functions of water pressure). Although the results obtained by
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the linearized spectral approach (Yeh et al. 1985, Mantoglou et.

al. 1987) are qualitatively appealing, it is not at all clear yet

what the range of applicability of their results could be. In

view of our poor understanding of the complex interactions

between nonlinear effects and spatial variability, there is a

strong motivation for investigating the operational range of the

linearized spectral theory of unsaturated flow in the vadose

zone, notably concerning the predicted shape, anisotropy. and

hysteresis of the unsaturated conductivity tensor as a function

of mean water pressure. Even a more qualitative description of

actual or stmutlted heterogeneous unsaturated flow patterns could

be useful.

At the present date, the available data concerning the

large scale pattern of heterogeneous unsaturated flow sytems are

too scant (as noted previously) to allow for a verification of

the linearized spectral results, except perhaps in a very

qualitative and speculative fashion. On the other hand, there

are now enough experimental observations to indicate that the

findings of the spectral theory, among other stochastic

approaches, may provide. an adequate description of the

variability of certain groundwater flow systems and its effect on

contaminant macrodispersion (Gelhar, 1986). However, these

indications still remain subjective, as too many undetermined

parameters enter into play, notably the three-dimensional
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correlation structure, fluctuation scales, and statistical

anisotropy of-the hypothetically random log-conductivity field.

Therefore. there arises the need for an independent

verification of the analytical results of the spectral theory in

more closely controlled situations, where the actual spatial

variability of the underlying porous medium is known with

reasonable accuracy.

[b] Present approach and objectives:

In this work, we aim at obtaining accurate solutions of

the equations governing flow in hypothetically random porous

media, based on the Postulate" of statistical homogeneity of the

hydraulic properties of saturated or unsaturated media.' In the

case of saturated groundumter flow n particular, we will seek to

refine and extend further the analytical results previously

obtained by the first order spectral theory of Gelhar et al.

There are several new approaches involved in the proposed

refinements. In one instance, we explore higher order and

non-perturbative solutions of the stochastic flow equation, while

still retaininrgthe infinite domain/ergodicity hypothesis. In

another. we extend the spectral theory further to treat

explicitly the influence of domain size on the statistical

behavior of the flow system at some finite scale. However, the
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latter approach will require the same approximation of "small

variability" as in the infinite-domain approach.

On the other hand, we also develop and apply a

numertcal solution method in view obtaining, as accurately as

possible, the solution of the three-dimensional saturated flow

equation for finite discrete realizations of random medium

properties. When the size of the domain is sufficiently large,

the numerical solution of this equation should have the same

statistical properties as predicted by the spectral theory if the

latter was correct. Moreover, only one large single realization

of the random medium should suffice to represent the ensemble

statistics of the flow field, if the homogeneity/ergodicity

hypothesis of the spectral theory holds true. Therefore, the

numerical/single realization approach should provide an

independent check of the accuracy of infinite-domain spectral

solutions, and of its applicability in practical cases where the

domain of investigation is necessarily finite.

Finally, the same numerical approach will be used to

treat the case of three-dimensional unsaturated fow systems in

random soils. i.e., with random coefficients.intervening in the

nonlinear constitutive properties (random unsaturated

conductivity-pressure curve as a function of space). However,

in this case, the approximations involved in the linearized
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spectral theory are too severe, and the numerical requirements on

the discrete grid size are too constraining, to allow for a

precise statistical comparison between the spectral and

single-realization approaches. Nevertheless, the large numerical

experiments discussed in this work will appear useful for a

preliminary screening of the complex behavior of heterogeneous

unsaturated flow systems.

In summary, this dissertation focuses on the

mathematical description of subsurface flow fields under the

postulate that the natural variability of hydraulic properties

can be characterized in the form of statistically homogeneous

random fields in three-dimensional space. For the case of

saturated flow, the variety of techniques that were used to solve

the stochastic flow equation may reflect our attempts at

minimizing the set of postulates and approximations required to

achieve tractable results. On the other hand, our rather

empirical approach of stochastic unsaturated flow reflects the

difficulty of developing truly nonlinear yet tractable analytical

models of heterogeneous flow systems in that case. Whenever

possible, we have used the indications of the linearized spectral

theory for interpretation. Finally, it may be relevant here to

emphasize thati as in the case of turbulent flows, exact

solutions to the saturated and unsaturated stochastic flow

equations are not known. Thus, even approximate indications on
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the robustness of existing theories can be extremely valuable.

1.3 Thesis Preview:

This dissertation was broken down into eight chapters,

including this introductory part. The next chapter. Chapter 2,

contains a brief literature review, a survey of available field

data, and a general presentation of the single-realization

approach, particularly in relation with the hypotheses of the

spectral theory of stochastic flow. This chapter provides a

background for subsequent developments. Chapters 3 and 4 are

exclusively devoted to the obtention of tractable solutions of

stochastic ground water flow by analytical means. Chapter 5

focuses on numerical issues related to the single-realization

approach. This Chapter develops at length the various aspects of

a saturated-unsaturated flow simulator, to be used as a tool in

Chapters 6 and 7. The results of large saturated flow

simulations in randomly heterogeneous media are presented in

Chapter 6. The emphasis there is on the statistical analysis of

the numerical flow fields for comparisons with the predictions of

the spectral theory. Chapter 7 presents in a more qualitative

fashion the results of large unsaturated flow simulations in

random soils. The overall conclusions of this work are given in

Chapter 8.
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Because' the amount of material presented in Chapters

3 - 7 s quite large,' we have found it convenient to summarize

the -contents of each of these chapters in a compact form as

shown below:

Chapter 3:

The first order spectral theory of Gelhar and Axness

(1983) is used to obtain a more complete picture of the

statistical properties of the flow. Some new analytical results

are derived 'by integrating the spectra to obtain ensemble

moments, such as some closed form expressions for the variances

of the flux vector components in the case of extreme anisotropy.

A remarkable result concerns the near isotropy of the head field

in statistically anisotropic media. The implications of these

findings are discussed (shallow/deep stratified aquifers and

finite size effects). The role of the low wavenumber

fluctuations of the conductivity field is also briefly examined.

The discussion focuses on the physical meaning and possible

limitations of the spectral solutions.

Chapter 4:

In this chapter are developed several new analytical

approaches related to the standard spectral theory of saturated

flow in stochastic porous media. A new non-perturbative analysis
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of the stochastic flow equation is developed independently of the

"small variability" approximation of the spectral theory. In the

restricted case of statistically isotropic conductivity, it is

shown that the spectral theory of elhar and Axness (1983)

satisfies all the fundamental conservation and symmetry

properties of the flow in any number of dimensions. These

properties lead to an exact statistical identity between the flux

and head gradient vectors in the 2D isotropic case (statistical

conjugacy). In the 3D isotropic case, the flux-head gradient

relation contains a few undetermined functions. In the more

general case of 3D anisotropic media, an extrapolation of

previous results by Matheron (1967) and Gelhar and Axness (1983)

leads to a simple closed form expression for the anisotropic

effective conductivity tensor. A modification of the

Gelhar-Axness spectral solutions to include higher order terms in

the flux spectrum is developed, by using a stochastic system of

equations governing the flux vector rather than the hydraulic

head. Finally, we propose a generalization of the spectral

approach to take into account the effects of finite domain size.

The generalization is based on the new concept of "spectral

conditioning", used to quantify explicitly the relative amounts

of uncertainty and spatial variability with respect to the scale

of the problem. The method combines ideas related to the concept

of self-similarity (Mandelbrot. 1983), renormalization group

methods (Wilson, 1975), and spectral solution method (elhar,
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1984). Closed form results are obtained in particular for

one-dimensional saturated flow. Some implications for

three-dimensional flow and solute transport are also discussed in

view of preliminary results.

Chanter 5:

This chapter is devoted to the development and analysis

of a numerical method for solving large single realizations of

saturated and unsaturated flow in three-dimensional random porous

media. In the linear case, a new approach for evaluating finite

difference truncation errors with stochastic coefficients is used

to show that the classical centered finite difference scheme is

consistent, at least in the mean-square sense. For the flux

vector, the order of accuracy is equal to one for a smooth

conductivity field, but drops to one half for a noisy field. The

leading order terms of- the head error and flux error are

explicitly evaluated as functions of grid resolution for

different kinds of random conductivity fields. We then focus on

the practical implementation of an iterative matrix solver (SIP).

Numerical experiments are presented for large random flow

problems on the order of 0.1-1 million nodes (convergence rate

analysis). An upper bound for the true solution error is given as

a function of convergence rate and final residual error. The

convergence rate appears proportional to the inverse square-root
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of the condition number. Finally, we also develop a nonlinear

system solver for unsaturated flow problems (nonlinear SIP).

Preliminary numerical simulations of infiltration in some uniform

and heterogeneous soil systems are used to demonstrate the

problem solving capabilities of the unsaturated flow simulator.

The conclusions regarding the numerical feasibility of the single

realization approach are quite favorable in the saturated flow

case. However, we also conclude that there could be some severe

restrictions on the mesh size (Peclet number condition) and/or

time step size in the case of transient unsaturated flow,

particularly for dry heterogeneous soils.

Chapter 6:

This chapter is devoted to the interpretation and

statistical analysis of large single realization simulations of

three-dimensional saturated flow in random porous formations.

The random conductivity fields are generated on the finite

difference grid of the flow simulator by using the 3D turning

band method. We begin with a preliminary analysis of "medium

size" flow problems (130,000 nodes) in the case of statistically

isotropic conductivities, with emphasis on the qualitative

features of the head and flux fields. and some comparisons with

the predictions of the spectral theory. We then move on to a

-more extensive statistical analysis of large flow simulations on
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a 1 million node grid. again with statistically isotropic

conductivities. The comparison with spectral results is quite

favorable for a wide range of log-conductivity (nK) standard

deviations, up to = 2.3. The discrepancies observed for the

flux variances are analyzed, and a further modification of the

spectral solution is proposed to account for high order effects

on flux variability. - The agreement is quite good for other flow

characteristics (head variability, flux correlation structure.

effective conductivity) but the numerical head correlation ranges

appear shorter due to finite size effects. We also investigate

finite size-effects for the case of statistically anisotropic

media. The covariance structure of the head field is analyzed

for two flow simulations mimicking the case of shallow and deep

stratified aquifers with moderate anisotropy (grid size 220,000

nodes). The chapter ends with a summary of findings and

conclusions on the range of validity of spectral solutions of

stochastic-groundwater flow.

Chapter 7:

This chapter presents a qualitative analysis of large

single realization simulations of three-dimensional infiltration

in random unsaturated soils. The random field coefficients of

the exponential conductivity-pressure curve were generated by the

turning band method. A preliminary analysis of strip source
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infiltration for modest size realizations of statistically

isotropic soils (25,000 nodes) revealed the effect of the

variability of the slope of the conductivity-pressure curve and

of its correlation with the saturated conductivity. Maximum

variability of the moisture patterns was observed when both these

parameters were random. and uncorrelated. We then moved on to

the case of infiltration in statistically anisotropic soils. An

unusually large single realization of strip source infiltration

was simulated (300,000 node grid), under conditions similar to an

on-going field experiment. Both the slope and the saturated

value of the conductivity curve were taken random. Thus, a

different conductivity curve was generated at each node of the

grid. A detailed inspection of the pressure head field, sampled

along transects and slices during 10 days of infiltration and 10

days of natural drainage, seemed to confirm some of the

predictions of the linearized spectral theory (enhanced lateral

spreading and pressure dependent anisotropy). Finally, we

developed a more quantitative analysis for another large

simulation in the case of steady "rainfall" infiltration on the

same random soil realization (300.000 nodes). Spatial averaging

estimates of pressure variability and unsaturated effective

conductivity appeared fairly close to linearized spectral

solutions. The chapter ends with a "summary and discussion"

section, including a discussion of the current limitations and
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future prospects of numerical and analytical approaches in the

case of complex nonlinear flow systems.

This ends our description of the contents of chapters

3, 4 5, 6, and 7. In summary, this dissertation was organized

in three main topics: analytical/spectral approaches (Chapters 3

and 4). numerical analysis (Chapter 5). and statistical/physical

interpretation of numerical simulations of random flow problems

(Chapters 6 and 7). The conclusive Chapter 8 focuses on the

implications of our findings for practical subsurface flow and

contamination problems, and discusses some of the contributions

of this work towards our conceptual understanding of stochastic

flow and mass transport in heterogeneous porous media.
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CHAPTER 2: REVIEW OF STOCELASTIC APPROACHES TO SUBSURFACE FLOW

2.1 Overview of Past and Current Approaches to Field Problems

2.1.1 Empirical models:

In view of the complexity of subsurface flow systems,

most predictions were and still are based on empirical model

calibration. Practitioners in the field of subsurface hydrology

use numerical models based on local mass conservation, Darcy's

law, and Fick's law. These are distributed-parameter models,

usually two or three dimensional. Most frequently, natural

variability is partially taken into account by dividing the flow

domain into a few subdomains. with different conductivities.

Layering within each block is also implicitly taken into account

by specifying anisotropic conductivities, with a larger

conductivity in the direction parallel to natural stratification,

most often horizontal. The hydraulic and dispersive properties to

be used in the model are further adjusted for a best fit between

numerical and measured values (heads, concentrations). This

calibration process has proved most expedient for addressing

specific problems, but rather limited in scope. The typical

situation is that accurate answers are obtained only for the

particular conditions under which the model was calibrated.
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Predictions made for hypothetical environmental conditions

(different from those prevailing at the time of calibration)

appear to be of limited value.

The limitations of current engineering practice are

even more drastic concerning solute transport predictions.

Dispersion coefficients obtained by way of model calibration

appear much greater than those measured on small samples in the

laboratory. Furthermore, they are found to increase as the

contaminant spreads and more, concentration data are made

available for new calibrations. This inadequacy may be due to

the fact that the velocity field predicted from the flow model.

is much smoother than indicated by field observations

(conductivity variability). Ignoring the small scale

fluctuations of the flow field leads to inadequate prediction of

the mechanical dispersion of convected species. Overall, it

would seem that empirical calibration of these models does not

allow for reliable predictions of contaminant migration over

large time and length scales.

These remarks apply as well to black-box or

zero-dimensional models. Jury et. al. (1982, 1986) proposed this

type of model for the transport of solute in unsaturated soils.

Briefly, their model isolates a soil unit (the black-box) and

seeks to characterize a transfer-function that relates input and
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output for that particular unit. This is analogous to the "Unit

Hydrograph" method used in surface hydrology. Unfortunately, the

data presented by Jury et al. (1982) indicate that the transfer

functions calibrated for certain conditions do not extrapolate to

other conditions, time scales, and length scales (see discussion

in Gelhar et al. 1984).

2.1.2 Probabilistic models without spatial correlation:

There have been also a number of attempts at modelling

unsaturated flow and transport by using the idea of independent

soil columns. These approaches can be viewed as

distributed-parameter models in one dimension. They take into

account the horizontal variability of soil properties through a

few random parameters, such as a random scaling factor in Warrick

and Amoozegar (1979). Sharma et al. (19SO). and Vauclin (1982);

or the random saturated conductivity in the work by Dgan and

Bresler (1983). These authors all assumed in effect that

horizontal fluctuations of velocity were unimportant

(one-dimensionality). The soil properties were assumed

uncorrelated in the horizontal (statistically independent

columns) but perfectly correlated in the vertical (homogeneous

soil columns). However, other results obtained for fully three

dimensional random properties indicate that dmenstonattty and

correlatton scales have a crucial influence on the overall
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features of the flow field. The reduced dimensionality of the

models mentioned above mplies a smaller degree of freedom for

the movement of fluid particles, whereas natural heterogeneities

create fluid pathways that are inherently three-dimensional. In

addition the assumption of statistically independent soil columns

does not seem to make sense for columns of diameter smaller than

the observed correlation scales. In fact, because of these

simplifying assumptions the adequate inputs to be used in such

models are difficult to evaluate. What are the average or

effective parameters for each column? How are they related to

small scale measurements?

2.1.3 Stochastic models with spatially correlated fields:

In view of the difficulties Just mentioned, approaches

based on the theory of random functions have been developed in an

attempt to capture the essential features of flow and transport

processes in heterogeneous media. In these stochastic

approaches, local properties such as the hydraulic conductivity,

or the storage coefficient are viewed as homogeneous random

functions of space, with translation-invariant means, variances,

and correlation functions, determined from field data. In

actual practice, the data need only be approximately homogeneous.

For instance. Ababou et al. (1985) argue that a statistically

meaningful identification of a log-conductivity field must
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satisfy a requirement of the type << L << . where X is the

correlation length or fluctuation scale, L is the size of the

measurement network, and T is some scale of inhomogeneity (for

instance S = denKGdx characterizes the length scale of

inhomogeneity in the mean). In this framework, the governing

equations (local ass conservation, Darcy's law, Fick's law) have

stochastic solutions which can be characterized, in principle, in

terms of their ensemble statistics (e.g. first and second order

moments of heads, velocities and concentrations).

The infinite-domain spectral theory developed by Gelhar

and others aims specifically at obtaining a large-scale

characterization of spatially variable flow and concentration

fields. By using ergodic arguments, they assume the equivalence

between ensemble expectations and spatial averages. Their final

results include close-form expressions for the head variance,

velocity variance, effective conductivity and macrodispersion in

a variety of situations (Bakr et al. 1978; elhar and Axness

1983; elhar 1984, 1986. and 1987). The "effective" transport

properties were defined in connection with the "large scale"

Darcy and Fick laws, relating mean fluxes to mean gradients

(similar to the Onsager relations used in thermodynamics). The

validity of these phenomenological equations have been

traditionally investigated at the small scale only. What is

emphasized here is that these equations may be extrapolated to
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describe large scale phenomena, but with different coefficients.

The effective conductivity and macrodispersion coefficients

obtained from the spectral theory directly incorporate the

spatial structure of the observed heterogeneities, in terms of

the variance and correlation structure of the local hydraulic

conductivities.

Other methods for solving stochastic flow and transport

equations include the approximate Green's function method (Dagan,

1982). the direct numerical solution of approximate equations for

first and second.order moments (Townley, 1983: McLaughlin. 1985),

and direct Monte-Carlo simulations (Freeze. 1975, Smith and

Freeze 1979, Delhomme 1979. Ma et al. 1987). These methods apply

in particular to the case of flow in bounded domains, and in the

presence of local sources or sinks such as pumping wells. In the

latter case, the ensemble moments of the stochastic flow field

are to be interpreted in a Bayesian framework, .e., they

represent the uncertainty among many possible realizations or

locations, rather than the large scale spatial variability of a

single flow system (variance of heads near a pumping well at an

unspecified location). This view was sometimes Implicitly

adopted, e.g. in the "well problem" treated by Dgan (1982). The

case of semi-infinite aquifers was tackled by aff and Vecchia

(1986) through a combination of Green's function and spectral

representation.
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Some authors used Monte-Carlo simulations for checking

analytical or other solutions. In most cases, comparisons were

limited to fairly small conductivity variance (Freeze. 1975;

McLaughlin. 1985). Indeed the number of realizations needed to

obtain accurate answers could be prohibitive for the large

conductivity variances observed in certain field sites, requiring

the numerical solution of perhaps 10.000 or more flow problems in

three dimensions (see discussion in McLaughlin, 1985). On the

other hand, there are also questions about the range of validity

of the perturbation-based solution methods just discussed

(Celhar. 1984; Dagan. .1982; McLaughlin, 1985): these are all in

some sense "first order approximations", which are only valid

asymptotically as the input variability becomes small. Even

approximate indications on the robustness of these approximations

would be extremely valuable, since exact solutions are not known.

2.2 The Single-Realization Approach:

2.2.1 Objectives and method:

In this section. we define briefly the

single-realization approach which will be used in conjunction

with a numerical solution method (Chapter 5) to obtain
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representative solutions of stochastic flow problems (Chapters 6

and 7). It is relevant here to discuss in more rigorous terms

what a "representative" solution means. The idea of the

single-realization approach Is that the statistical properties of

the flow field can be evaluated by computing the spatial moments

of one large realization of the flow, rather than the ensemble

moments across a large number of realizations. The

single-realization and ensemble approaches should be-conceptually

equivalent if the single solution is obtained on a sufficiently

large domain, and if the ergodic hypothesis holds, as assumed in

the spectral theory of Gelhar and others (see Chapter 3).

It may be useful here to briefly examine how large must

"large" be in order to ensure the equivalence of ensemble and

spatial moments of three-dimensional flow fields (e.g. hydraulic

head or groundwater velocity vector). Consider a single finite

realization of an ergodic flow field Y(g) in three-dimensional

space. Note that we do not question here the ergodicity

hypothesis. Let us now focus on the behavior of spatial sample

moments, say mean and covariance. as the size Li' of the

three-dimensional domain varies. If i Is the correlation length

of Y(y) along xi, and if YS) is indeed statistically homogeneous

along all three directions (1=1,2.3). it seems reasonable to

define the sample size, or "equivalent number of independent

samples", as:
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LjL2L3

NY = XXX3 (2.1)

Thus, as in the case of Monte-Carlo simulations, the classical

theory of sampling errors can be used to determine the

uncertainty on the computed spatial moments due to insufficient

sample size. The relative errors on the mean and standard

deviations Y and ay are defined as:

(y (2.2)

JVar(oy)
(ory) ay

According to classical results of sampling theory (for a

population of independent normal random variables) these

quantities are both proportional to the inverse square-root of

the equivalent sample size (see for instance Kendall and Stuart,

1977):

-y 1

45 t

(2.3)

&(ay) ' 12N
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'. However, the error on the covariance function Ryy(f) will

increase with lag-distance. To evaluate this effect in a very

approximate anner, consider how the available number of samples

decreases with lag-distance along, say, the x-axis:

E (fE10,0)

Nymph) XI (L 2 X ,) 3

For an isotropic field (Xl:2=XO) and a cubic domain (L1=L2=L3),

the available number of samples that can be used to compute the

covariance function at lag-distance f is then simply:

K.) (^L _L x*(_2 (2.4)

Now, we expect that the relative error on the covariance

function:

4Var (Ryy)
f ( ) (2.5)

will behave like:

e-(Ryy(f)) (2.6)

Although these estimations of the uncertainty of sample
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statistics are very approximate, they should suffice for our

purpose here. More precise statements on sample statistics can

be found in Appendix 2A. which will be used later in this work.

Let us now illustrate these approximate relations for a

simple example: a cubic domain of size 5 correlation scales in

each direction. The relative errors on the samples mean and

standard deviation are reasonably low in this case (respectively

9% and 6). However, the relative error on the sample covariance

function increases with lag-distance: 10% at ' X. 14 at

f = 3X, and over 20% for f 4. Obviously, to obtain a reliable

evaluation of the spattl structure of the flow field from a

single realization, the flow domain must be taken much larger

than'the largest correlation scales of the variables describing

the flow. In addition, the effects of artificial boundary

conditions, anisotropic behavior, and intrinsic inhomogeneity of

the flow along certain directions (e.g. parallel to flow) may

lead to revise the size requirement up. This will be

investigated more specifically in Chapter 6. using some of the

sample statistics developed in Agendix 2A.

The requirement on the size of the single-realization

flow problem (to ensure the equivalence of spatial and ensemble

moments) is not unlike the Monte-Carlo method's requirement of a
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large number of realizations in ensemble space. However, there

is an essential difference, that has led us to favor the

single-realization approach over Monte-Carlo. In the

single-realization method, the spatial variability of a more or

less homogeneous random phenomenon is studied at the large scale,

and advantage is taken of the large size of the domain to sample

the variables of Interest over many fluctuation scales in

physical space. In the Monte-Carlo method on the other hand, the

large number of realizations required to obtain reliable ensemble

moments is, in practice, incompatible with the study of large

scale flow or transport phenomena by numerical methods. The

Monte-Carlo method seems best adapted to the study of localized

phenomena affected by uncertainty (uncertain drawdown near a

pumping well, depending on its location in a heterogeneous

aquifer). Note that our arguments are based on a two-sided

interpretation of the effects of spatial variability, depending

on the nature of the hydrologic problem and on the size of the

domain of interest. We will touch upon this subject again in

Chapter 4 (Section 4.4) with the Idea of "spectral conditioning".

- Furthermore, in cases where the ergodic hypothesis does

not hold or is only approximately satisfied, the single

realization approach can still be viewed as a dtrect stmutatton

of plausible field conditions, where only one spatial realization

of a particular heterogeneous flow system is actually available
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for observation (over a finite domain). In contrast with the

spectral theory, the numerical single realization approach does

not postulate a priori the statistical homogeneity and ergodicity

of the solution (although the assumption of a homogeneous/ergodic

random porous medium is still retained). This brings the single

realization approach closer to a realistic representation of

natural field conditions. However, the statistical

interpretation of Just one spatial replica of a flow field may

not make sense in situations where the solution appears to be

strongly inhomogeneous, as would be the case for instance in the

presence of some local source (single pumping well) or some

inherent nhomogeneity at the domain-scale (geologic structure).

A difficulty of this nature will be encountered for instance in

the single-realization simulations of transient infiltration from

a strip source (Chapter 7). In this case, the random flow

solution is inherently inhomogeneous, especially at early times

where there is a relatively well defined wetting front separating

a wet and dry region. Nevertheless, even in the case of a moving

front, the single-realization approach is still interesting

because it provides, by direct smulation, a detailed picture of

one possible flow system as may occur in natural conditions.

In summary, the numerical single realization approach

of naturally heterogeneous flow systems seems to be a natural way

to obtain, by direct simulation of the flow field, a realistic
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picture of the effects of (random) spatial variability on the

flow pattern, with a degree of detail that cannot be achieved by

direct subsurface measurements in the field. More importantly,

the simulated flow field can be statistically analyzed in space

and compared to the ensemble results of the spectral theory, in

cases where there is enough statistical homogeneity for such a

comparison to make sense. This method of analysis will be

applied systematically to the numerical solutions obtained for

steady state groundwater flow (Chapter 6), and also for a problem

of steady state infiltration (Chapter 7). As mentioned above.

the case of transient infiltration from a local source (Chapter

7) produces inherent inhomogeneities in the flow pattern, and,

precisely for this reason, a statistical nalysis will not be

attempted there. Nevertheless, some qualitative comparisons with

the results of the linearized spectral theory will be developed

based on visual observations of the spatial pattern and evolution

of the wet zone.

2.2.2 Generation of Random Fields by the Turning Band ethod:

To be useful, the numerical single-realization method

also requires the accurate generation of random field hydraulic

properties on a relatively fine three-dimensional grid. The mesh

size of the grid must be small enough that the statistical

properties of inputs (e.g. log-conductivity) and outputs (e.g.
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heads and water velocities) be preserved in the discrete

representation. Without going into details, it seems reasonable

at first sight to require that:

Ax/X << 1 (2.7)

where X is a typical fluctuation scale of the flow. This

requirement is similar to the sampling theorem in signal theory:

a temporal signal of period T must be sampled at time intervals

AT << T/2 in order to avoid aliasing. In the present case, the

fluctuation scale X plays the role of the half-period T2.

A more quantitative interpretation of the resolution

constraint (2.7) can be developed by evaluating the behavior of

the local integral of the random field of interest over the

discrete cell of size Ax. The resolution of the grid must be

fine enough that the statistical properties of the locally

integrated field Y (x) be close to the random field Y(x) defined

in continuous space. For a given value of Ax/,, there is a

reduction in variance and an increase in the correlation scale of

Y(x) compared to the point process Y(x). For instance, in the

simple case of a one-dimensional process Y(x) with exponential

covariance function, it is not difficult to see that the

statistics (a X ) of the locally integrated process:
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(X) = IY(x )dx 2(2.8)
AX d
2

are related to the (,)X) statistics of the point process Y(x)

by:

s t =~~~~~0 2 Al I AXs (I e s/)

(2.9)

Ax -

FAx

Thus, the distortion in the variance and correlation scale of

Y(x) upon local integration over a mesh of size Ax = X/4 is about

lOZ. This may give a rough idea of the quantitative meaning of

the inequality constraint (2.7): it seems reasonable to accept a

grid resolution equal to a fraction of unity, i.e not necessarily

"much smaller than' unity. A more precise analysis of the grid

resolution requirement will be developed in Capter 5 In

connection with the numerical issues pertaining to the

i. discretized solution of stochastic flow equations.

At any rate, once the mesh size has been chosen, it is

also important to be able to generate a representattue

realization of statistically homogeneous random field hydraulic
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properties with specified single-point and n-point moments. We

used for this purpose a three-dimensional version of the "turning

band" random field generator, recently developed by Tompson,

Ababou and Gelhar (1987). The idea of the turning band method

was brought up by Matheron (1973) for multidimensional

homogeneous and isotropic random fields. Its practical

implementation was developed by Mantoglou and Wilson (1982),

particularly for two-dimensional random fields. The case of

three-dimensional isotropic and anisotropic fields is treated at

length in Tompson et al. (1987). including a number of numerical

-experiments. Ababou (1986) also discusses in an unpublished

report some possible extensions of the method to treat the case

of self-statlr random fields, and Mantoglou (1987) elaborates on

the case of statistically homogeneous vector fields.

Let us briefty describe the principle of the turning

band method in the case of a statistically homogeneous random

field f(x) having a zero-mean Gaussian distribution, and an

isotropic or ellipsoidal covariance function in three-dimensional

space. The method relies on the representation of f(x) in

Fourier space (see Chapter 3):

f() f e dZ )

Rff(j) =Jzeikx Sf f(dk (2.10)
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where Rff(Ul is the covariance function. dZf(k) the complex

Fourier-Stieltjes increment, and Sff(k) the spectral density of

f(S) defined by:

Sff(k) * dk IdZf(k)12> (2.11)

In particular, in the 3D isotropic case, the covariance function

in (2.10) can be expressed directly in terms of a radial spectrum

as follows (Adler, 19S1):

Rff(f) 2 sinkF) E(k) dkk

(2.12)

E(k) = I S(k)da(h) = 4rk2 S(k)
Lnk)

where the integral defining the radial spectrum E(k) is taken

over the sphere of radius k in RD. Note that k and f are the

radtat wavenumber and separation distance, respectively.

The idea of the turning band method is that it is

possible to find a one-dimensional process fl(x) generated

independently along lines having many different orientations in

space:
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L

f(X) = iML i f-lU(x (2.13)

Each line () is defined by its direction vector u-i and ()

is the sample function of process f generated along line (i) as

illustrated in Figure 2.lL The ID sample functions are

generated independently of each other, and the line direction

vectors are drawn from a random unit vector having a uniform

distribution on the sphere (see Tompson et al. 1987). In these

conditions, it is not difficult to see that the covariance

function of the 3D field defined by (2.13) takes the form:

L

Rff(£) = lim R,(JMi)' (2.14)

where R(j) is the covariance function of the ID process f(x).

With additional assumptions of homogeneity and ergodicity on

which we do not elaborate here, the sum in (2.14) can be replaced

by an ensemble average over all possible realizations of the

random direction vector u as follows:

Rff(f) = R(E*!j)> (2.15)

Finally, with a uniform distribution of on the sphere, equation
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Figure 2.1: Turning band method: projection of the I-th line

process f1i)(x) onto an arbitrary point in
-- three-dimensional space (from Tompson, Ababou,

Gelhar, 1987).
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(2.15) leads to an explicit relation between the covariance

function of the line process and the desired covariance function

of the isotropic random field to be generated:

Rff(f) = d R (I cost) sin dO

o o

-e ff R(s)ds

0

whence:

|R1(f) =d ( Rff(f))I (2.16)
Equation (2.16) gives explicitly the covariance of the

line-process such that the projection operator (2.13) yields the

desired 3D isotropic covariance Rff(E). asymptotically as the

number of lines L goes to infinity. The method used in the

turning band algorithm to generate each line process is the

spectral decomposition method of Shinozuka and Jan (1972).

Details are given in Tompson et al. (1987). In actual practice,

the number of lines need not be very large to obtain relatively

accurate single-realizations as far as first and second moments

are concerned. In particular, it seems that the number of lines
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L required to be consistent with the resolution of the grid may

only grow like some fractional power of the total number of nodes

of the grid. This empirical observation seems to be confirmed by

the results of Tompson et al. 1987. and those obtained in this

work: see Chapter 6 (Section 6.3) for a realization of the

log-conductivity field on a 1 million node grid using the turning

band generator with 1000 lines.

Finally, the case of ettpsoidal anisotropic random

fields does not require any modification of the above method.

For any isotropic field with covariance function Rff(E) and

fluctuation scale X. an ellipsoidal field can be constructed by

rescaling the three coordinates as follows:

'X i = 2~ fi(2.17)
i

Thus, the new ellipsoidal covariance function RE) with

fluctuation scales (Xi) is simply given by:

Rjf(f) = Rff(dJ (I l)' (2.18)

This simple relation was used in Chapters 6 and 7 to obtain

single-realizations of statistically anisotropic (ettipsotdat)

random hydraulic properties. For other applications such as
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those involving space-time processes, more general classes of

anisotropic random fields may be needed. Tompson et al. (1987)

discussed this case as well, and Sivapalan and Wood (1986) used

the 3D turning band generator to simulate anisotropic space-time

rainfall intensity fields.

2.3 Brief Survey of Field Data

2.3.1 Hydraulic properties of heterogeneous aquifers

In the case of groundwater flow, the local hydraulic

properties of interest are the saturated conductivity K (m/s) and

the specific storativity S (m ). or their two-dimensional

equivalents, the transmissivity T (m 2Is) and the storage

coefficient or specific yield S (dimensionless).

The spatial variability of hydraulic conductivity and

transmissivity have been the object of intensive experimental

studies in the recent past, in an effort to characterize their

variability in a statistical rather than purely descriptive

fashion. Gelhar (1986) reviews some of the available field data.

Most experimental studies of aquifer variability actually focused

on the horizontal variability of the transmissivity or of some

depth-averaged conductivity determined from well pumping tests

(Delhomme 1979. Binsariti 1980. Devary and Doctor 1982. Hoeksema
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and Kitanidis 1985). Their results could be summarized as

follows: the standard deviation of log-transmissivity (enT)

ranged between 0.6 (sandstone aquifer of Hoeksema and Kitanidis)

to 2.3 (limestone aquifer of Delhomme), with correlation ranges

on the order of 1 km to several tens of kilometers. The domain

sizes were on the order of 5 km to several hundred kilometers.

Other studies concerned the local hydraulic

conductivities obtained from small scale measurements, usually

along vertical boreholes (Bakr 1976, Hufschmied 1985, Sudicky

1986). In these three studies of aquifer variability, the

standard deviation of log-conductivity (nK) ranged from 0.6 to

2.2, with correlation ranges on the order of 0.1 to 1.0 meters in

*the vertical. The length of the vertical transects (boreholes)

was 20 to 100 meters. The studies of Hufschmied (1985) and

Sudicky (1986) are particularly remarkable because these authors

actually determined, by different methods, the three-dimenstonat

variability of the log-conductivity field. Hufschmied used a

relatively sophisticated flowmeter measurement of conductivities

in 16 wells, for twenty 1 meter thick layers in each well. The

statistics of the point process enK(E) in the vertical were then

obtained by using statistical identities relating the point

process to the local average process. Information obtained among

different wells was used indirectly to infer the horizontal

covariance structure of nK(g). On the other hand, Sudicky
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(1986) measured the conductivities from small core samples along

a number of vertical boreholes organized along two perpendicular

planes. This particular choice allowed them to estimate the

covariance structure of enX in three-dimensional space.

The statistical results obtained by Hufschmied (1985)

and Sudicky (1986) are summarized in Table 2.1. In addition.

Figure (2.2) (top) shows the log-conductivity contours obtained

by Sudicky (1986) along the vertical plane aligned with the

natural hydraulic gradient at the Borden site. For comparison.

the bottom part of Figure (2.2) displays an artificially

generated anisotropic random field obtained by the turning band

method described previously. Note that both Hufschxied and

Sudicky's data show a significant statistical anisotropy between

the horizontal and vertical directions.

The data reviewed above indicate that the

conductivities and transmissivities can vary over several orders

of magnitudes in natural formations. In addition, the work of

Hufschmied (1985) and Sudicky (1986) clearly shows that the

conductivities follow a log-normal probability distribution more

closely than a normal distribution. Finally, it is also clear

that in most cases, there is a relatively strong anisotropy in

the vertical/horizontal correlation scales of the

log-conductivity (Table 2.1). However, it is also possible that
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TABLE 2.1: STATISTICAL FROPERTIES OF MEASURED 1R-DIENSIOKAL
LOG-C- lnrIES (InK) IN SAMThRA IO TIONS. FROK HUFSDIED (195)

AND SEDICKY (1986)

Hufschmied (1965) Sudicky (1986)

Site Aeflingen. Switzerland Borden site. Ontario

Formation 20 thick. sand and gravel Outwash sand

Covariance Anisotropic exponential Anisotropic exponential

KG (6 10-3 /s) 7.17 10 5 Wns

a f 1.92 0.54 - 0.62

Xs - 15 - 20 2.8 

AX . 15 - 20. 2.8. 

X3 0.5 0.12 
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Figure 2.2 Log-conductivity contours in a vertical plane. The
upper part is reproduced from Sudicky, 1986
(measured at the Borden tracer site). The lower
part of the figure was obtained by simulation, using
the Turning Band Method with an anisotropic spectrum.
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the anisotropy observed by these authors be due in part (or

depend in part) on the discrepancy between the horizontal and

vertical scales of the domain under investigation (12 m x 3 m in

the study of Sudicky, 1986). Indeed, some of the other studies

mentioned above suggest that the supposedly stationary

correlation structure of porous formations may not be well

defined for certain sites and/or for certain domain sizes. This

is suggested for instance by the statistical analysis of Hoeksema

and Kitanidis (1985). These authors found in a number of cases

that the correlation scale was either small (on the order of

measurement spacing) or large (on the order of domain size). In

addition, both the correlation structure and the degree of

variability may be strongly influenced by certain subjective

choices, such as empirical detrending (an example can be found in

Devary and Doctor, 1982). These difficulties show that the

measured statistical properties of supposedly homogeneous

conductivity fields may be in fact scale-dependent in certain

situations. In our view, this is not necessarily an obstacle to

the application of stochastic concepts as long as the fact is

recognized, and that adequate methods be designed to "pass" from

one- scale of analysis to another. The need for variable scale

analysis may arise for predicting contaminant migration over

large time scales. This particular question will be examined in

Chapter 4 (Section 4.4). 
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For completeness, let us mention the papers by Clifton

and Neuman (1982) and Hoeksema and Kitanidis (1985) concerning

the spatial variability of the specific storativity of aquifers.

The first authors found a positive correlation between

log-transmissivity and log-capacity, with a slope close to unity.

The specific capacity does not play a role in the present work,

since only steady state problems will be considered in our

analyzes of stochastic groundwater flow.

2.3.2 Constitutive relations of heterogeneous soils:

In this work, we will be concerned with both transient

and steady state flow problems-in unsaturated soils (Chapter 7).

To describe these phenomena, two constitutive relations need to

be determined:

- the water retention curve 9(h) relating volumetric

moisture content to pressure head.

- the unsaturated conductivity curve K(h) relating

hydraulic conductivity to pressure head.

Our particular choice of functional relationships for (h) and

K(h) will be defined in Chapter 5 (Section 5.1). However,

experimentators have used a variety of functional shapes to

describe the (h) and K(h) relationship in view of analyzing
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their spatial variability. This makes it quite difficult to

synthesize their findings in a compact form.. Nevertheless, we

have attempted to summarize in a table some of the most

significant results on natural soil variability in the

literature.

Table 2.2 gives information on the probability

distribution function and the correlation structure of the

hydraulic parameters intervening in the constitutive

relationships (h) and K(h). It should be mentioned that these

results correspond to different scales of analysis and different

schemes of data collection, so they are not always directly

comparable. However, some common features seem to emerge as a

whole. First of all, it should be emphasized that only one.

author (Russo, 1983) analyzed the correlation structure of the

whole conductivity curve K(h), including in particular the

correlation structure of the saturated conductivity K (x) as well

as-that of the shape parameter:

8Un
a(x) =

His results indicate that both a and K are log-normally

distributed, and that the correlation range of na(x) is

significantly larger than that of nKs(x).
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TABLE 2.2: SMKARY OF SOME FIELD DATA O TE SPATIAL
VAIIABILT OF UNSAThRATED SOILS FOM T LETURE

Y Y Cy _ Ref. and Remarks

K 1.96 0.71 0.64 2.49 a 38 Russo. 1983

(cm/h) A a 17n Hamra Red Mediterrnncan

Spherical K(h) = KO -ah

varlogram A 2 + 2.5 ha
a .02SG 0.43 0.41 1.36 a 51 N 25 + 6 plots

(cm1) A 72 m I plot 3 x 3m
Exponent. n = depths
variogran a range of variogram

= A integral corr. length

9s .338 0.08 0.08 (0.23) 76n Russo. Bresler 19S1

Hamra Read Mediterrancan

o .030 0.30 0.29 (0.93) 39m B-Sr wr = (9r

K 22.0 0.41 0.39 (1.2) 34m (h)
0~~~~~~~~~~~~~~~~

(cm/h)
1.160 0.68 0.62 2.35 23m A 2 + 2

A a . ha
hw -7.2 0.22 0.22 (0.7) 48 N 30 locations

(cm) n 4 depths
(depth z=0 shown here)

9s .397 0.10 0.10 (0.29) _ Nielsen et al.. 1973
Panoche soil

K 0.85 1.06 0.87 4.37 - A = 150 ha

(cm/h) N 20 plots
n 6 depths
(depth z 30 cm
shown here)

.I

.ji
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TALE 2.2: SUKYURY OF SOME FIELD DATA O TE SPATIAL
VARIABILITY OF U TSAEhRATED SOILS FROK THE L1TERAURE LDI!NflI

Y CVYy °n Y _ _ Ref. and Remarks

K Scisson. ierenga. 1981

(cm/h) A 2
3 infiltration rings:
Diameter Number

(1) 0.27 0.70 0.63 2.45 0.13m 0a a 5cm Ns = 625
(2) 0.35 0.54 0.51 1.79 _ = 25cm N2 = 125
(3) 0.36 0.22 0.22 0.68 - 3 a 127cm No = 25

K0 0.70 0.40 0.38 (1.26) 50 m Viira et al.. 1961

(cMh) (10-50m) A *_0.8 ha
N 1280 plots
160 plots/transect
55 trasects

Ko 1.46 0.60 0.56 2.02 - Sharsa et al. 1980

(cm/h) Watershed
A a 9.6 ha
N 26 plots

K 0.13 1.02 0.84 4.10 0-2 Luxmoore et a1. 19S1

(cm/h) .A 192 2
N 4 plots
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The log-normality of K , a, and other inherently

positive unsaturated soil parameters, seems to be confirmed by

other authors. For convenience, we have listed in Table 2.2 the

skewness coefficient . When indicated in parenthesis, the

skewness was computed by us based on the assumption of

tog-normattty instead of the normal distribution assumed by the

authors (references are given in the right-most column). Thus.

in all cases, the skewness -y was computed from the classical

identity:

-ry = 3 CVy + (CV) (2.19)

where CV is the coefficient of variation of the log-normal

random variable Y. In addition, we also used the following

identities:

2 2f 
(Y) 2 = (aenY) l (2.20)

Y(, exp (y2) (2.21)

where Y is the geometric mean defined by:

.

YG exp (tnY). 
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These relations (2.19 - 2.21) can be found for instance in

Vanmarcke (1983). They were used to compute the nY-statistics

in Table 2.2, when not provided by the authors themselves.. It

appears that a number of authors adopted the normality assumption

precisely in those cases where the variability was too mild to be

able to distinguish a normal from a log-normal distribution.

Overall, we conclude that all the parameters listed in the table

were in fact more or less positively skewed, and are presumably

better represented by log-normal distributions. Figure (2.3)

illustrates the difference between a normal and a log-normal

random function (artificially generated for illustration). Note

the sharp maxima and smooth minima typical of a postively skewed

process.

Another feature that emerges from Table 2.2 is that the

unsaturated conductivity curve seems n general to have greater

variability than the water retention curve (although this is not

always verified for a given site). The coefficient of variation

of Ks was larger than unity in four cases, whereas the

coefficient of variation of parameters involved in the (h)

relation was always below or at most equal to 0.6.

The data of Table 2.2 do not contain any information on

the correlation structure of soil properties in the vertical
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Figure 2.3(a): Normally distributed random function Z = Y
(a- < n Y(x) < + ).
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direction. The horizontal correlation scales range from 10 cm to

a few tens of meters. These numbers should be taken "with a

grain of salt", as the apparent correlation scales are most

probably influenced by the density and size of the measurement

networks. In addition, the results of Scisson and Wierenga

(1981) indicate that the scale of the instrument (infiltration

ring) has a definite effect on variability. Finally, it should

also be noted that the correlation structures were only

determined for relatively small domains, on the order of 1 hectar

for Russo and Bresler 1981, Vieira et al. 1981. and Russo 1983.

The largest domain of investigation was the 150 ha site of

Nielsen et al. 1973; however these authors did not determine any

correlation structure.

In order to illustrate more concretely the spatial

variability of soil properties, we have reproduced in Figure 2.4

the unsaturated conductivity curves obtained by Nielsen et al.

(1973) on the Panoche silty clay loam. This figure indicates

that both the saturated conductivity and the slope of the &nK(h)

curve are fairly variable. The figure does not seem to indicate

a strong degree of correlation between these two parameters,

although some correlation could be expected on physical grounds:

coarser soils are generally more permeable at saturation and have

a steeper &nK(h)-slope (Ababou, 1981). The effect of correlation

between Ks and the ena(h)-slope will be investigated by way of
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numerical experimentation in Chapter 7 (Section 7.2). Additional

data and references concerning an on-going strip-source

infiltration at the University of New Mexico at Las Cruces will

be given in Chapter 7 (Section 7.3).

Our literature review, partially summarized in

Table 2.2, indicated that available data are too scant to

completely characterize the spatial variability of unsaturated

soils hydraulic properties in terms of rando m field parameters.

The variability of the unsaturated conductivity curve in

particular seems to have important effects on the behavior of

unsaturated flow (antoglou and Gelhar. 1987).. Unfortunately, no

comprehensive study of the three-dimensional spatial structure of

en K(h) has yet been undertaken. However, some of the missing

data could be inferred directly by correlating, for instance, the

shape of the en K(h) curve to the value of the saturated

conductivity for different types of soils. Other alternative

approaches of this kind have had some success, for instance those

relying on the "similar media" postulate. This latter approach

reduces the characterization of spatial variability of (h) and

K(h) to just one spatially random scaling factor: cf.

experimental studies of Warrick et-al. (1977), Simmons et al.

(1979), Russo and Bresler (1980). Vauclin et al. (1981), and

Sharma et al. (1980). The field remains open: future research

could focus on such correlations or similarity assumptions, as a
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means of characterizing n a more comprehensive fashion the

spatial variability of the nonlinear constitutive relations of

unsaturated media.

At any rate, the complexity of unsaturated flow

processes in heterogeneous formations should not be overlooked.

Firure 2.5 shows the spatial structure and evolution of the

wetted zone during an infiltration experiment in the Hanford

sediments (from Routson et al., 1979). The wetted zone in this

case is remarkably assymmetric and has pronounced lateral

spreading. To explain these features statistically requires a

model of three-dimensional variability that includes the effects

of stratification, e.g.. statistical anisotropy. Similar effects

of assymmetry and spreading will be observed in the numerical

simulations of Chapter 7 (Section 7.3) with fully

three-dimensional -and statistically anisotropic random

conductivity curves.



- 91 -

i

(a) After 6 hours

* I

i

(b) After 24 hours

Figure 2.5 Typical horizontal and vertical movement of liquids
in Hanford formation sediments under partially
saturated conditions. Taped area outlines position
of water addition (from Routson et al.. 1979).
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LCHAPTi 3: FIRS oI SECHRAL SOLUTIONS FOR STOCRASrIC FLOW
IfN SAIWS MIA

3.1 Formal Solution of Spectral Perturbation Equations:

In this section, we develop approximate solutions for

the stochastic equation of steady state flow in random saturated

media, following the first order spectral theory previously

developed by Bahr et at. 1978. and Gethar and Axness 1983. The

assumptions made at each step will be clearly stated, in

anticipation of subsequent discussions on the approximate nature

of perturbative spectral solutions.

Our point of departure is the partial differential

equation governing flow in a saturated porous medium with

spatially variable conductivity K(F). This equation is obtained

from the steady state mass conservation equation and the local

Darcy equation, (Darcy. 1856) respectively:

vg = . (3.1)

= -K(K) vH. (3.2)

Here, - - represents the specific discharge rate (Darcy

velocity), and H the hydraulic head potential. Using (3.2) in

(3.1) leads to the familiar groundwater flow equation:
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v(K(x)-vH) = 0. (3.3)

Let us assume that the conductivity K(x) in (3.3) is a

second order stationary random function in 3D space, with a

log-normal distribution. Therefore, the statistical properties

of the tog-conducttty F(_) are entirely described by its first

and second order moments. i.e., its mean F and covariance

function R as defined below:

F(x) = n K(x)

<F(x)>= F = en e

= Rff(k). L = x-

where K is the geometric mean conductivity, and £ a

separation vector. The flow equation (3.3) can be decomposed to

be expressed in terms of F as follows:

IVPH + vF(j)-yH = .l (3.4)

Equation (3.4) will be used for the subsequent spectral

perturbation analysis. Observe that (3.4) is a stochastic

partial differential equation, due to the random character of the

log-conductivity gradient vector vF(x), even in the case of

deterministic boundary conditions.
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Let us now express (3.4) in terms of ensemble averages

and perturbations. The perturbations of the random fields

log-conductivity and hydraulic head are defined as:

f(x) = f(x) - T(V)> n [K(x)/K]

h(2) = H(s) - H(I)>

The governing flow equation can be separated into a mean equation

and a perturbation equation, by substituting H <HD + h and F =

<F> + f in (3.4) and applying ensemble averaging operators. The

mean equation obtains directly by ensemble averaging equation

(3.4):

V2 <H> + <f>*v<H> = - <vf-vH>

and the perturbation equation obtains by subtracting the above

mean equation from (3.4):

v2h + !<F>!yh + f-!<H) =-{vf-vh-<f-vh>}.

Finally, using the assumption that the mean log-conductivity F>

is constant (KG constant), we obtain:

v2 WH) = - <Cf-h> (aeon eq.) (3.5.a)

v2h + f(X)-y<H> - {vf-vh-<vf-vh>) (perturbation eq.) (3.5.b)
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Observe that equations (3.5) form a system of two

stochastic equations with three unknowns: h(x), H(x)>, and the

second order term <(f-!h>. A complete solution would involve

solving an infinite hierarchy of equations governing higher order

moments. This turns out to be an impossible task in the general

case. Various expansion methods have been proposed in the

literature in order to arrive at approximate close-form solutions

(see review in Chapter 2). We develop below first order

perturbation approximations following the work of Gelhar and

others quoted above, although in a slightly different manner.

One way to obtain a first order solution is to expand

the solution H(x) in powers of O. the "small parameter" in the

expansion (the possibly divergent character of this expansion

will be discussed in Section 4.1). Accordingly, let:

H = Ho + H + o 2 H2+0.

On the other hand, note that the random field f(x) in (3.4) is

proportional to af = a, its standard deviation. For a correct

perturbative analysis, we must use instead a normalized random

field g(2) with unit variance and zero mean:

g(s) f()/o
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The conductivity s simply related to g(x) by:

K(G) = exp (og(x)).

Plugging

gives:

g(K) in equation (3.4) and assuming K constant

v2H + og*yH = 0.

Plugging

infinite

the expansion for H in this equation yields the

hierarchy of equations:

[Order £70:

,Order a7.

v

yR0 = 0

v2 H1 + vg-vH0 = 0
0

Comparing the zero-order equation to the mean equation (3.5a)

shows that Ho is just an approximation for the mean head <H>, to

first order tn a. Likewise. the first order term (oH1 in the

series expansion) is just an approximation for the head

perturbation h. to second order n a. Accordingly. we obtain:

v2<HD 0 (a)

v2h + vf-yCH> = O().
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These equations appear tractable if the high order

terms on the right-hand side are neglected (requiring a small).

and the mean hydraulic gradient is constant. Note that <vH> is

indeed constant to first order. This can be seen by observing

that the mean head satisfies the Laplace equation to first order:

vanO = 0

which yields a linear solution for CH(x)> if the flow domain is a

rectangular prism, with Dirichlet conditions on two opposite

faces, and zero Neumann conditions on all other faces. As the

size of the domain becomes infinite, these boundary conditions

becomes equivalent to specifying a constant mean hydraulic

gradient:

1 <vHD . (3.6.a)

In practice, this kind of "boundary condition" corresponds to the

case of a uniform flow field at the large scale.

The perturbative equation can now be expressed, to

second order in a. as follows:

v2h - -I.f = (3.6.b)-
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where the term I-yf(s) is a known random field. Note that

equation (3.6b) is a stochastic Poisson equation governing the

head perturbation h(s).

We proceed to solve the stochastic Poisson equation

(3.6b) in the Fourier space, by using Fourier-Stieltjes

representations for both f(x) and h(x) as shown below:

f(x) = JA~TS eJkx dZf(k)

- (3.7)

h(s) = Al e"2 dZh(k)-

Such a representation exists and is unique for any zero-mean

stationary random field (Yaglom 1962; Loeve 1963). In

particular, this implies that the two-point covariance function

depends only on the separation vector between the two points. By

writing the representation (3.7) for h(x), we therefore assume

that h(K) is stationary, i.e.. statistically invariant under

translation. The validity of this assumption will be discussed

at a later stage.

The usefulness of the representation (3.7) lies in the

fact that it is "orthogonal". The random dZ terms are zero-mean
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complex Fourier-Stieltjes increments which have the property of

being uncorrelated for distinct wavenumbers:

<dZk) dZ(k')> = 0 for k '.

In addition, the real and imaginary parts of dZ(k) are

uncorrelated and identically distributed; the real part is even

in k. while the imaginary part is odd:

dZ(-k) = dZ(k)

Finally, the variance of IdZj corresponds to the spectral

content of fluctuations occurring in the' wavenumber range

(k.k+dk). More precisely, it is easily seen that:

<IdZ(k)12> = S(kdk

where Sk) is the spectral density. i.e., the Fourier transform

of the covariance function R(E) (see equation 3.10 below).

Plugging (3.7) into (3.6) yields, by the uniqueness of

the spectral representations, a simple relation between the

complex Fourier increments of h(x) and f(N):

d (h) - (J. dZf (k). (3.8)
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Multiplying both sides by dZf(h) and averaging, gives the

spectral density of h(x) as a function of that of f(x):

(Jeke0) 2 (

|hh~) i 4 Sff(k) 

where we used Einstein's implicit summation over repeated

indices, and k is the radial wavenumber Ik2,+k2+k2. Finally.

the covariance function of h(y) can be obtained by an inverse

Fourier Transform of its spectrum:

h (£) e S h () d (3.10)

The spectral densities for the head gradient obtain

easily from the well-known relations between 'a stationary field

and its derivative. Denoting hi the ith-component of yh:

(Jfke)
dZh (k) J ki dZh(k) = Z dZf () (3.11)

which gives the spectral density tensor of the head gradient

vector(hi):
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1Sh h(k) = Sff (k) (3.12)

The tensor of covariance functions R h ( could be

obtained by Fourier-transforming the tensor spectrum in (3.12).

Alternatively, the same result can be obtained directly from

R h(f) by applying simple differentiation rules as shown below

(let £ =

hh(E) = Rhh(,x') = (h(x)h(x')>

d = ' xh~)

a8xi =x < ;-2)* er( )>.

Using x' = + £ and the fact that R h depends only on £.
this leads to:

2R , h < ah
<j-~) (+).

Thus, the head gradient covariance tensor is simply given by:



-
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R¼ h W o6 Rof) (3.12')

Finally, we follow elhar and Axness (1983) by using

the local Darcy equation to obtain the spectral density tensor 
of

the flux vector. It turns out that an additional approximation

is needed in order to obtain this result. Indeed, the Darcy

equation must first be expressed in terms of the log-conductivity

f(K):

Q(W) ~ % eef~ffi) * sH. (3.13)

The exponential dependence on f(x) is the source of the trouble,.

since the spectral representation method is only useful when 
the

random fields appear linearly. Gethar and Axness (1983) propose

linearizing the exponential around f(x) = 0. although we will 
see

later that this additional approximation could be avoided.

Following for now the method of Gelhar and Axness, let us compute

the flux moments based on the linearized" Darcy equation. Using

the expansion e =1+f+fl/2+-.. gives:

Q(2) K KG (-1 + h - -f + f'ih -J4/2).

The mean flux Is obtained by taking the ensemble average:
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<Q> = KG -<f.!h> + (1 + /2)]

The ensemble average term <f -h> can be worked out by

using the relation between dZh and dZf given in (3.11). From

the spectral representation theorem (3.7) we have:

<f - a(x > X .dZ fdZ hi>

+C ki(J k)*

=ly <D dZ dZ >
-a k2 $ f

40 2l Sff(k)dk

so that we can express the mean flux <Qi> in terms of an

effective conductivity tensor K as follows:-

i = KiJ JJ

(3.14)

K~j = KG [- ;Ii 2 Sff (k) dk + (1 + -) i"]
ii t L.. k ff2

The effective conductivity K given in (3.14) is a

second rank symmetrtc tensor, provided that the spectral density



- 104 -

function Sff(k) is even in each of the avenumber components k,

e.g. in the case of ellipsoidal anisotropy. However, this holds

only as a first order approximation, implying that the tensorial

property may not hold for large values of Of. Equation (3.14)

was obtained by Gelhar and Axness [1983-Eq. 52]. who developed

close-form expressions for K in specific cases.

In order to obtain also the f lux spectrum. we need to

fexpand again the e term as explained earlier (after Gelhar and

Axness). The flux perturbation equation obtains by subtracting

the mean:

KG [1+f+f2/2+.'.][-!h+J]

<Q(x)> KG [(1+4a/2+-**) - <f.yh> +...J

which gives for the flux-perturbation:

= Q-<Q> = KG *{[(.f+fs2/2+...) - 1+_rp--)]

- yh(1+f+f2/2+---) +(<f.h>+---)}

where the dots represent higher order terms. By neglecting

perturbations of products. such as [f2/2 - rl/2], [f'sh>]. and

all higher order perturbations as well. we obtain the "first

order approximation":
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_q(2j KG {J'f(_) - Xhi. (3.15)

For completeness, let us also write a third order approximation,

of (x) excluding only terms like [f4-(f4>]. etc. This gives:

q(2i) KG (If - h + <yhef> - !hf +(f2-<f2 >)J/2

+ f3/6 + <vh-f2/2> - h-f2/2}. (3.16)

Using the flux perturbation approximation (3.15) as in Gelhar and

Axness leads finally to the spectral density tensor. By the

representation theorem (3.7) and previous results, equation

(3.15) gives:

S (k) 1%2 JmJn (im i kmk A)

(6 -kjk/k2)-Sff(k). (3.17)

This is a second rank symmetric tensor, being the spectral

density tensor of a vector whose components are stationary random

fields.

In view of the results obtained so far, it is worth

noting that the flow field appears to be inherently anisotropic.

Indeed, the spectral density functions Sbh and S are

generally anisotropic (and so is the tensor S ), even in the
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case where the nput spectrum Sff is isotropic.

We end this section by specializing the spectral

solutions (3.9) - (3.17) for the case where the log-conductivity

spectrum is of "ellipsoidal type" (as defined by Van Marcke,

1983). In this important case. the spectrum and covariance of

the log-conductivity are of the form:

Sff() Sf f( 2)

Rff(f) Rff(xi 2I)

in the coordinate system coinciding with the axes of statistical

anisotropy of f(x). In this case, recall that the effective

conductivity K obtained from the first order analysis is a

symmetric tensor.

Let us focus in particular on the case where the mean

head gradient is aligned with one of the principal axes of f(g).

Accordingly, let the x, axis coincide with the mean head gradient

vector J and also with the principal axis corresponding to the

principal value XI (XI is the correlation scale along x in a

sense to be precised later). The spectral solutions (3.9) -

(3.17) can now be written as follows:
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= &2
Shh(k) _ S -k)

Sh (k) = 4' J S.k
i 

(3.18)

Sqqjk) = ([Iil- k? ] 1 k ] _)

where the indices vary from 1 to m (the dimension of space). In

addition, the effective conductivity tensor is now diagonal; this

comes from the fact that the ellipsoidal spectrum Sff -is even in

each of the wavenumber components, so that the integral in (3.14)

vanishes for i E J. Following elbar and Axness (1983), equation

(3.14) gives in this case:

Kij = for i J

=i KG[- 2 g +"(l+a2 )] = KG-eXPE (1<-t2

+", kd S f(
9 = air dk -

-t 0 a

(3.19)

Note that the exponential formula for Kii in (3.19) was proposed

by Gelbar and Axness, 1983, after examination of special cases of

quasi one-dimensional flow for which the effective conductivity

is known exactly.
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In order to obtain more concrete results, such as the

covariance functions of heads and fluxes we need to introduce a

specific model for the spectral density function of the

log-conductivity field. There exists a wide class of ellipsoidal

spectral density functions, but we will see that certain spectra

lead to divergence of second order moments of the flow solution,

thus violating the stationarity assumption. This is discussed in

the next section below.

3.2 Discussion of Admissible Log-conductivity Spectra

In this section, we analyze certain restrictions for

admissible fn K-spectra based on results obtained in the

literature. Table 3.1 summariZes some of the input

log-conductivity spectra and the corresponding covariance

functions used in the literature for 2- and 3-dimensional

stochastic flow problems. These particular spectra were chosen

for several reasons:,

(i) - Some of the spectra in Table 3.1-were fitted to field

data; for instance Bahr (1976) observed a good fit

between the 1D marginal spectrum obtained by

integrating the 3D Isotropic Markov Spectrum over two

wavenumber components, and the D Spectral density of

the log-conductivity measured at a borehole;
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Table 3.1: Isotropic and Anisotropic Spectra for 2 and
3-Dimensional Random Log-Conductivity Fields

Spectral SPECTRAL DENSITY COVARIANCE REFERENCES
Model FUNCTION Sff FUNCTION R ff

. ~~~~o~Ite 2 83
3D Ellipsoidal o2 e Bakr et al.1978

Markov 72_(1+u2)2 - and

Gelhar and
Axness. 1983

3D Ellipsoidal 4a2t1 t2*u2 a2(1-s/3). Naff 1978
and

37r(1+u 2 ) 3 -s

Hole-Markov Vomvoris. 1986

3D Anisotropic Na£f 1978

Hole-Markov 4a 1e2e u 3 o 2 (1-s s)a
Gelhar and

(non-ellips.) 72(1+u2)3 Amess, 1983

2D Ellipsodal 0`2Mz2 a2-s-X(s) Mizell et al.

Markov T(i+u2)2 (Bessel 1982
Function X) (21=22)

2D Ellipsodal 20r2eIu a {2 K) Mizell et al.
32 S1982

Hole-Markov w(l+u2)3 2(2)} 1982

Note: u represents the rescaled wavenumber

summation) and u2 = u2 + u + u; similarly

Xiki (here without

Si represents the

rescaled separation vector sI = I/Xi. and I2 = s s2 +3.
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(ii) The proposed spectra are fairly simple rational

functions of the wavenumber. so that closed form

solutions can be obtained for at least some of the

statistics of interest. such as variances and

covarlance functions;

(iii) Certain properties of the log-conductivity spectrum, In

particular concerning the behaviour at zero wavenumber.

are required in order to obtain physically realistic

solutions for stochastic flow and convection-dispersion

problems.

The last statement may require some explanation.

Previous applications of the spectral solutions (3.18) in the

literature have shown that certain quantities of interest may go

to infinity (see references in Table 3.2). The divergence

problem manifests itself by the appearance of a divergent

integral. the ntegrand being typically the product of the

log-conductivity spectrum by a certain transfer function which

depends on the statistical quantity of interest. Such

divergences are in fact a common problem In statistical physics.

- Two different types! of divergence may be distinguished, as

explained below:
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(1) Low-Wavenumber divergence:

The statistical quantity of nterest may diverge

because of a singularity of the spectral integrand at

zero wavenumber. This has been dubbed "Infrared

Catastrophe". Physically, such divergence s caused by

the persistence of fluctuations at increasingly large

scales (low wavenumbers).

(ii) Larme-Wavenumber divergence

On the other hand, certain statistical quantities

diverge as the spectral integral is carried out to

infinite wavenumbers, because the integrand does not

decay rapidly enough at large wavenumbers. This type

of divergence is known as "Ultraviolet Catastrophe".

Physically, this means that the statistical quantity

diverges because of the persistence of fluctuations at

infinitely small scales (large wavenumbers).

Now, such divergence problems do occur in certain cases

with the infinite domain spectral theory of stochastic flow and

solute transport. Table 3.2 summarizes some of the results

obtained in the literature, along with the relevant references.

The table shows that certain constraints on the log-conductivity

spectrum are needed in order to avoid the ow-wavenumber

dtuergence of hydraulic heads (for steady saturated flow) and of

concentrations (for steady solute transport in a steady flow).
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Table 3.2: Admissible Log-Conductivity Fields for Steady Flow in
1. 2. 3 Dimensions and 3D Solute Transport(*)

CONDITION N EXAMPLE OF INTERPRETATION
COVARIANCE ADMISSIBLE n K

_ (REFERENCES) _

iD flow (W=lA) Jf.RW(fldf<O RW(f) ' Requires strongly
negative hole-

GutJahr.Gelhar 1991 covariance with
lgl -Iff1le negative integral

W (1 ')e scale.

ID Hole-Exponential
Covariance

2D flow J' Rff(f)df-O SffQM) * Requires weakly
(f En K negative hole-

isotropic) 2oa'fa 2 covariance, or
Mizell. Cutjahr. - . _k hole-spectrum

(w*C2)3 with zero
and Gelhar, 1982 2D Markov Spectrum with integral scale.

Multidirectional Hole

3D flow I"_fERff(f)df< Sff(9 * No Hole Spectrum is
(f = n K required. Any 3D

Isotropic) isotropic field with
Ssotropic)eCbar, Axness 1983 W2 +Xk IWZ Rff(f) 0 nd

wi (1e)~k')~ finite integral scale
jutjahr.Gelhar 1981 3D Causs-Karkov Spectrum Is satisfactory.

3D Solute Sff(O) 0. .e.: S f(O = X 20 Requires Hole-
Transport f 3w2 (1+Xk2 ) spectrum with

(f * n K roJ2*Rff(fE)dE - with zeroIsftropin ofC 3D Gass-Markov with integral scale
isotropic) Vomvorls 1986 Multidirectional Hole

(i) The table gives necessary and sufficient conditions for stationary solutions of
the D. 2D, 3D flow problems with an sotropic en K field. For the 3D solute transport
problem the given condition is sufficient, but tmy not be necessary.
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In order to understand the requirements of Table 3.2.

it is useful to note the relation between the integral

correlation scale and the spectral density at zero avenumber.

For an m-dimensional isotropic random field (Vanmarcke, 1983) the

correlation length XmD satisfies:

(X i)m= frl df = c" S0)

Now, Table 3.2 shows that in order to avoid the low-wavenumber

(large scale) divergence of the head fteld, a zero integral scale

of In K is required in the 2D case. In 3D, the requirement is

much milder: it is easily shown for instance that if then any

en K field with finite correlation scale and positive covariance

function will be satisfactory. Finally, in ID, the requirement

is much more stringent: the n K correlation function must have

strongly negative values and its "integral scale" must usually be

negative. It has no physical meaning in this case.

Such requirements on the shape of the input spectrum

could be viewed as an artefact of the nftntte domatn spectral

theory. They can be explained by observing that the head field

appears as the result of band-pass filtering of the An K field
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in the low-wavenumber range [see Figure 6.12 of Bakr, 1976].

When the flow is constrained, e.g., when the dimensionality of

space is decreased from 3D to 2D or ID, the large scale

fluctuations taking place in the remaining dimensions are

effectively amplified, with significant fluctuations persisting

at nfinitely large scales. This leads to divergent solutions in

the case of steady flow in low-dimensional space (consider for

instance a 3D flow cannelized between two impervious walls).

Such divergence can only be avoided by eliminating the large

scale fluctuations of the conductivity. e.g., using

"Hole-Spectra" as those shown in Table 3.1.

Table 3.2 also shows that a low-wavenumber divergence

of the solute concentratton field will occur in 3D. unless the

log-conductivity field had a zero correlation scale (Vomvoris.

1986. p. 45). This shows that the problem of divergence due to

large scale fluctuations may arise even if the fully

3-dimensional nature of space is taken into account (here for the

solute transport problem). One possible interpretation is that

the large scale divergence of solute concentrations results from

the inadequate assumption that there exist steady solutions which

are spattatt sttonary. Some insight on this question could be



- 115 -

gained by examining the fully non-steady flow/transport problem

in three dimensions. This will not be attempted here.

We conclude that the ow-arrenumber or ltrge-scate

dtvergence of stochastic quantities may result from the

inadequacy of the assumption that there exist stationary and

ergodic solutions to the flow and transport problems in the

steady state. The results of the first order spectral

perturbations theory (Table 3.2) clearly show that this is not

always the case, depending on the spatial structure of the porous

medium. In general, the en field must be taken to be "almost

periodic" at some large but finite scale in order to obtain

useful results. Furthermore, it turns out that the en K field

must be taken more strongly "periodic", with smaller

"wavelength", as the dimensionality of space decreases. In our

view, this indicates that the conditions for the existence of

steady stationary solutions become more and more restrictive as

the degree of freedom of flow decreases in physical space.

Finally, let us briefly mention the appearance of large

wavenumber divergences of the steady solute concentration field,

as this may be relevant to the steady flow problem itself. One

example of small scale divergence is the divergence of the

concentration variance as the local dispersion coefficient

(length scale) goes to zero. A second case of small scale
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divergence or near-divergence was found by Vomvoris, 1986: the

correlation scale of the concentration along the mean flow

direction appeared to be very sensitive to the rate of decay of

the en K spectrum at large wavenumbers. In order to obtain

physically reasonable results, the en K spectrum must decay

exponentially at large wavenumbers. In our view, this suggests

that the en K spectrum should be truncated at some large

wavenumber k ~ a71 where a represents the length scale of the

mechanical dispersion process taking place at small scales. In

other words, a represents the small scale dispersivity or

sub-grid dispersivity with respect to the measurement grid.

Accordingly, we argue that the spectral density models of Table

3.1 should be truncated at k a a 1 for use in the solute

transport equations. The proposed approach assumes that the

effect of small scales heterogeneities is correctly modeled by

the local dispersivity term, which should be measured

independently at the laboratory scale.

Based on the previous analysis, both the Markov and

*Hole-Markov spectra appear to be admissible fr stationary first

order flow solutions in an isotropic three dimensional medium.

Presumably, this also holds in the anisotropic case. Thus. we

develop in the next sections a number of closed form results for

these spectra with various degrees of anisotropy in three

dimensions. Recall however that the proposed spectra may not be
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meaningful in the case of stochastic solute transport, unless

they be truncated at some low and high wavenumbers. The Hole

model realizes a kind of smooth truncation at low wavenumbers,

but seems somewhat arbitrary. This problem suggested the idea of

a finite domain approach based on band-pass self-similar spectra,

eventually leading to a systematic analysis of finite size

effects in a later part of this work (Section 4.4 of Chapter 4).

3.3 Head and Flux Moments for the 3D Isotropic Mrkov Spectrum

In the isotropic case, simple closed form results can

be obtained for the head variance, head correlation function.

effective conductivity.' and the variance of the head gradient and

flux vectors. We present all these results below. The

quantities arh R (.), Kilt were obtained by Bakr et al., 1978.

The head gradient variance o2 and the flux variance a2 are
hi i.

easily obtained by spectral integration (see Appendices 3.A and

3.B). Finally, the flux covariance functions R (£) can be

obtained either by numerical integration or analytically (Wendy

Graham. personal communication, and Appendix 3.C). All the

relevant quantities were computed by using the 3D auss-Markov

spectrum of Table 3.1 with X1=)2 =X. Thus, the log-conductivity

spectrum is:
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ay2 No3
Sif () =

jr2 (1+? 2k 2 ) 2

The head covariance obtains from:

(3.20)

fir jkf Shh (k) dhRhh(k)

and the flux covariance from:

i
HS e Jkf Shh(k) dk

where the spectra appearing in the integrands were given in

equation (3.18). The effective conductivity Kii is similarly

evaluated from (3.19). The results are the following:

(i) Hydraulic head (from Bakr et al. 1978):

1
0 h -7= Cf"J 1

(3.21.a)

() ()a * {(cos2<,-l).[e f+22(e EA^l)(EA)l

+(3coszk-l) t (l-e -/A) .(f /2x) -3

e-A (1+2(E2\)-l+2(E2X)-2 ) (3.21.b)

where , is the angle between the separation vector f

and the mean flow direction. The corresponding
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correlation function is plotted in Figure 3.1 for two

angles: = 0 (along the mean flow) and v = T/2 (across

the mean flow). Note cos)c = 1/f = jlF-2+E2 so

that 3 = 0 corresponds to = (f.0.0) and 7 = T/2 to

= (2.4a)-

(li) Head wradient vector (Appendices 3.A and 3.C):

°h = a f J1

(3.22)

h2 = h= , fJ'

The head gradient covariance functions R h ( can be

obtained as indicated in Aendix 3.C.

(iii) Mean flux and effective conductivity
(from Gelhar and Axness. 1983):

X - exp (a- /6) VI = 1.2.3 (3.23)

Kii = K * exp (af /6) Yi = 1.2,3 (3.23) 

A
<Q1> = K1 1I*J 1 . <Q2 > = <Q3 > = 0-
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I

St 1lk

Figure 3.1 Head correlation function along the coordinate
axes for the 3 Isotropic arkov spectrum of

-- - log-conductivity -
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(iv) Flux vector variances and covariance functions
(cf. Aendices 3.B and 3.C)

aq, = fI§ 1 O9f J0 (3.24)

a = aq = -AI5 K Of J,

R (Q) = 0 for i j

The covariance tensor Rq q is defined by:

R (£) <(Q ( ) Q ) (Q (x+° -&) >

The components of this tensor are plotted along the

three coordinates axes ( parallel to xi) in Figures

(3.2) and (3.3). These plots were obtained from

analytical integration of the flux spectrum of equation

(3.18). The integrations were carried out by Wendy

Graham (personal communication) for all but the

covariance R q2q2(fo) given in Appendix 3.C.

The results in equations (3.21)-(3.24) and Figures

(3.1)-(3.3) can be interpreted as follows. In terms of standard

deviations, the equation for H shows that the amplitude of

head fluctuations is proportional to f and to the mean head

drop over one correlation scale (J). The amplitude of the flux

vector fluctations is proportional to af and to KG J (a

subsequent analysis will show that this term should be replaced

by the mean flux <Ql> - see section 4.3). Similarly. the

amplitude of fluctuations of the head gradient is



r.

- 122 -

+0. A

+0.6

F0.4

+O.*

4-

Figure 3.2 Longitudinal flux
coordinate axes for
of log-conductivity

correlation function along the
the 3D Isotropic Markov spectrum



- 123 -

. 6.a

+ 0.6.

+0*.2 

0.0 

R
-0.0

F

Figure 3.3

t Y 3 4. 5 6 a 1 D o

.it/AL

Transverse flux correlation functions along the
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spectrum of log-conductivity
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proportional to and to the mean head gradient J1.

Furthermore, It appears that the ongttudtnat flux

component has larger fluctuations than the transverse flux

components, by a factor vy. The contrast s milder for the head

gradient components (factor Zs). After replacing the term K(JI

by the mean flux <Ql> in (3.24), we obtain a coefficient of

variation on the order of af/& for the longitudinal flux

component. The coefficient of variation for the longitudinal

component of the head gradient is significantly smaller, about

af/;;. This suggests that the range of alidity of the first

order solutions may not be the same for different quantities such

as head gradient and flux. Taking for instance f 1.5 yields a

coefficient of variation of 60X for h/8xi, and over lOOX for q.

It seems wise to expect some degree of inaccuracy of the

perturbative solutions for such a large coefficient of variation

as 100%. This example indicates that the range of validity of

the spectral solutions for the flux vector could be limited to

cases of moderate variability (af < 1-1.5).

In terms of correlation functions, it can be seen from

Figure (3.1) that the hydraulic head is correlated over longer

distances than the log-conductivity. Furthermore, the head

correlation is stronger in the direction transverse to flow.
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Defining the e-correlation length as the distance at which

correlation drops below e 1 we obtain a head correlation length

equal to 7.5X- transversally, compared to 3 in the direction of

the mean flow. This clearly shows that the head field is not

isotropic.

Similarly, the flux components are not isotropic. The

flux correlation lengths are on the order f the conductivity

scale X, or nearly twice as much for certain flux components and

orientations of the separation vector (see Figures (3.2) and

(3.3)). Overall, it appears that the flux correlations are

consistently smaller than the head correlations. This can be

explained by the fact that the flux is more directly related to

the conductivity fluctuations (through the local Darcy equation).

Another remarkable feature is the fact that different flux

components are totally uncorrelated at zero separation distance.

Finally, note again that the ntsotropic flux covariance tensor

satisfies a number of symmetry relations and other identities

(mass conservation), which will be analyzed in a later part of

this work (Section 4.2).

We end this section by focusing on a peculiar feature

of the flux spectral solution which does not seem to have been

observed in the literature. According to equations (3.23) and
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(3.24). it appears that the ratios aq /<Q1> have a maximum at a f

= vy, and they converge to zero as af goes to infinity.

Indeed, from (3.23) and (3.24) we have:

a -o2/6
-L = v 7 -i5 a e f
<Q.> f

(3.25)

a a a 2/6
-2 =Q3 v7I5 ao e .f

<Q.> <Q.>

Surprisingly, these quantities have a maximum at af =

Of~~~~~~~~~~~~~

a

Q- - 0.557

ma

-9L| = _q3_ = 0.271.
<Q.) ax <Q.> max

Unfortunately, there seems to be no obvious physical

reason for such a behavior. Rather, one would expect that the

coefficient of variation aq /Q> be a monotonously increasing

function of af. We will show in Chapter 4 (section 4.3) that a

more physical behavior obtains by an alternative perturbation

analysis which avoids linearization approximations of the type

e - 1 + f + *-- . The new spectral solution obtains simply by

replacing the term KGJ. by <Q.> in the flux variance (3.24).
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Therefore, the exponential term e/6 disappears from (3.25),

and the coefficients of variations of the flux components appear

now to increase linearly with af , which seems to be a more

realistic behavior. Accordingly, we propose that equation (3.24)

be modified as follows:

aq =V < p 1- Of Q> (3.26)

a a a vi<~fQl>.
q2 q3 f

This modification of the spectral flow solutions of Gelhar and

Axness (1983) has also implications on the solute transport

problem, as explained later (Section 4.3 of Chapter 4).

3.4 Head and Flux Moments for the 3D Anisotropic Markov Spectrum

The first order spectral solutions (3.18) are now

applied to the case of the ellipsoidal Markov log-conductivity

spectrum -(Table 3.1) with e1=22=e and e3 ; E. We assume that the

mean head gradient is parallel to the principal direction of

anisotropy (xj). The vertical/horizontal anisotropy ratio:

= a3 e

will usually be taken to be less than one, as this is a case of

practical interest for most horizontally layered porous media.

In addition, certain results become simpler when e << 1 holds,
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which is the case of perfectly stratified media. However, this

assumption is not needed in the calculations that follow.

The log-conductivity spectrum for the case at hand is:

Cr2e2ea

Sff W = -o
T2 

I

rl1E 2 (k2+k2) + okJ 2j

Plugging this into (3.10), we obtain the head covariance function

in the form:

Rhh() =[T8 .f . J2 ] * I(£) (3.27.a)

where I(£) is the triple-integral:

ae] +
k2 cos ()

-~ +k~+1 )e24 dk

k4[e 2+(k 2 +k 2 )+p2C3]2

We show In Appendix 3.D that that this can be reduced to the

double-integral:

I(f) = 2 * I COS2 0 dO I F(e,fp) dp
J12 0. 0

(3.27.b)

where
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F(O.,p) = sin 3(p.[ 1+C(9eP)). C
B(,p)

I A~~(5.p)

c(e,) = 1 . ( A(P,le BMf 

A(6*p) = (fcosO+f2sin9)sin+f*cosf p

B() = isin2'p+e2.COsz.

The double-integral above was computed by careful

numerical integration, using Romberg interpolation for the most

difficult inner integral (IMSL routine DCADRE), and Simpson

integration for the outer integral. The calculations were

carried out in double precision (64-bit words). In addition, the

results were checked by using a quasi-analytical expression for

Rh(OO,3) in the case e((1 (see Aendix 3.E). The comparison

indicates that the numerical integration procedure was sound.

Figure (3.4) shows the resulting head covariance

functions plotted for a separation vector f. parallel to xIx 2 and

x3 respectively, for different values of the anisotropy ratio.

Only the case 1 is shown, as this is te most interesting

case in practice (horizontal layering).

The most remarkable feature from these plots is that
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xi

xl

Figure 3.4

X1

Head correlation function (f) along the three

principal directions for the 3D ellipsoidal Markov
spectrum of log-conductivity with different values
of the anisotropy ratio ( = g/e1) as el increases.
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the head correlation function does not change much when the

vertical scale 3 goes to zero as the horizontal scale remains

fixed. Indeed, the vertical correlation scale of heads only

decreases slightly as f3 decreases from e3=e (isotropic) to e0

(perfectly stratified) while e is fixed. Physically, this

means that the head process in a layered medium has a

vertical scale of fluctuation much larger than the "layers"

thickness, and does not decrease appreciably as the layers

thickness decreases. Thus, as - 0. the ratio of the vertical

head scale versus the vertical log-conductivity scale tends to

infinity.

Furthermore, the ensemble head variance may be obtained

analytically by evaluating the integral I(f at £ = 0. This was

computed by Naff and Vecchia (1986) for the case a 5 1:

2h =t8 f G(&) (3.28)

where:

G(s) =-{(1 -_s- + )

1 1 3 72 -
+-.(---+ 42-r).(l-2tari (7ne))

S2 7 1' T

and:
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Vr = 1 

e we 

It is easily seen that (e) - 1 as e 0. This gives mmediately

the asymptotic result for perfectly stratified media as follows:

|°h -9]8 ° J eC for << 1. (3.29)
h '~ .~ f 1£~ 

Note that = vr is the geometric mean of the horizontal and

vertical correlation scales. This shows that the head standard

deviation tends to a finite constant (neither zero nor infinity)

if the anisotropy ratio decreases while the geometric mean

correlation scale e remains constant.

Finally, let us nalyze the statistics of the flux

vector. In the asymptotic case of perfect stratification

(e << 1). a few close-form results can be obtained. Recall for

instance that equation (3.19) gives the general form of the

effective conductivity in the anisotropic case (after elbar and

Axness, 1983). For 6 << 1, in particular, equation (3.19)

yields the geometric mean and the harmonic mean, respectively,

for the effective conductivity components parallel and transverse

to stratification:
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K, = =

K22 ~KG (3.30)

K33 i = K e

We show in Appendlx .F) that closed form expressions can be

obtained as well for the variance of the flux components ( ) in

the limit of perfect stratification - 0:

aq f KG (3.31)

°2 T1- f 6J
aq3 s~ 0 GOf Jl

These approximate relations were obtained for the 3D anisotropic

Markov spectrum with e = = e and assuming e = 2/! small

(they are thought to be adequate for e 1/5 or so).

It appears from equations (3.31) that both transverse

flux variances vanish in the limit of perfect stratification,

while the longitudinal flux variance tends to a constant value

about twice larger than would be obtained in the isotropic case

(compare equations 3.31 and 3.24). Accordingly, the transverse

flux components Q (i = 23) appear to vanish identically when
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= 0. resulting in a one-dimensional flow. However, the mass

conservation equation shows that Q, must be constant in

one-dimensional flow, which seems contrary to the limit result

aq o O. q = aq =0. This difficulty can be resolved by

considering the fact that the transverse flux components have

smaller scales of fluctuations than the longitudinal component.

The correlation length scales of the flux components

can be evaluated qualitatively by considering the mass

conservation equation in relation to equation (3.31). Using the

fact that the mean flux vector is constant, mass conservation

simply requires that the flux perturbation be "divergence free",

that is:

8q1 8q2 8q3 '

brl 8xb2 8x3 

A standard "scale analysis" of this equation leads to:

AiU(N)+Au2(_) + 0

where Aii is the correlation length of q, along the xi axis.

and the ui(2g) are normalized -zero-mean random fields having

variances on the order of unity. This formulation suggests that

the constant coefficients in the above equation must be roughly
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of equal magnitude:

All A2 2 A3 3

Using the aq 's given in (3.31). and assuming that the

longitudinal flux has a correlation length on the order of -

(the conductivity- scale in the horizontal) leads to rough

estimates for the flux correlation scales as follows:

A11 ~ e

A2 2 e J3 e ve 0.3 (3.32)

A33 132 e e 0.6 r"1.

Thus, although the transverse flux components have very small

variances, their fluctuation scale is also very small. As a

consequence, the terms q1/&x 1 (i-2.3) appearing in the mass

conservation equation may not be negligible. This explains why

the "perfectly stratified" flow might appear nearly

one-dimensional in the large, while still retaining

three-dimensional features at the local scale.
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The actual spatial structure of the flux vector field

is probably more complex than the above analysis would suggest.

However, it is sufficient here to observe that the flux vector

has sharply contrasting scales of fluctuations in different

directions and components, while the hydraulic head field is only

slightly anisotropic (as can be seen from Figure 3.4). The

practical implication of these findings for groundwater flow in

stratified subsurface formations is now examined.

3.5 Dscussion of the Anisotropic Case (Stratified Flow
Systems)

Some of the new results developed above have direct

implications for field problems, as most subsurface formations

exhibit some degree of horizontal or near-horizontal layering

(see Figure 3.5). The spatial structure of the flow field for

statistically anisotropic conductivities was not fully

understood, it seems, although stochastic solutions were

available from the work of Celhar and Axness (1983) and others.

In order to illustrate our findings, we will consider the case of

an aquifer with significant vertical-to-horizontal anisotropy.

say to/e = 1/5, and isotropy in the horizontal plane of

stratification. The mean flow is assumed, as before, to be

parallel to the plane of stratification. The log-conductivity

spectrum is assumed to be the 3D anisotropic Karkov model. For

illustration, we will use typical length scale values as follows:
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'x3

Xi,~~~~~~~~~~~~

*~~ l

Figure 3.5: Sketch of a statistically layered porous medium. - -
The ellipses represent contours of constant A
correlation length (anisotropy ellipses in
different planes, or anisotropy ellipsoid in
3D space) for the log-conductivity field.
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= z = im, £3 0.20 m.

We now discuss some of the most salient features of the

flow field, based on the statistical analysis of spectral

solutions developed in this section. Perhaps the most important

point to be made here concerns the correttton structure of the

flow field, in terms of hydraulic head and flux: see figures

(3.5), (3.6) and (3.7). The hydraulic head exhibits near-perfect

isotropy in the cross-flow plane (perpendicular to

stratification). For the example above, the correlation scale of

the head perpendicular to strata would be about 7 m that is

about 40 times larger than the conductivity scale in the same

direction ( = 0.20m). The correlation scale of head in the

horizontal direction across flow is on the same order, about

7.5 m. Finally, the correlation scale of head along the mean

flow direction is half smaller, about 3m. These numbers are very

close to those obtained for the isotropic case e = = e = m.

Thus, it appears that the spatial structure of the hydraulic head

ts not sensttte to the antsotropy ratio. Furthermore, for the

anisotropic case at hand, the head will be very strongly

correlated over distances on the order of one or a few meters.

In fact, the hydraulic head should appear nearly constant

vertically over a few layer thicknesses.
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In contrast, we have seen that the vertical flux

component q has a scale of fluctuation presumably on the order

of 0.20m along 3 perpendicular to stratification. This is just

the same as the conductivity correlation scale t,, or "layer

thickness". Figure (3.6) shows that the transverse flux

component q2 also has a small correlation scale (0.10m) along x2, '1

parallel to stratification. On the other hand, the longitudinal

flux q presumably has a much smaller scale of fluctuation

transverse to the mean flow (0.20m) than along the mean flow

(1m). Thus, the flux vector field appears strongly ontsotroptc

as illustrated on the bottom parts of Figures (3.6) and (3.7).

This is in contrast with the near isotropic character of the head

field (except for a ratio 1:2 in the horizontal plane).

Consider now a very shallow aquifer (L3 3m) and a

deep aquifer (La 100m). with correlation scales e = 2 = m

and 3 = 0.20m as before. Because the vertical head correlation

scale is about 7m. the head will appear nearly constant

vertically in the shallow aquifer:

_3 K a- = °. (3.33)

Upon vertical averaging, head field in the shallow aquifer system

behaves nearly two-dimensionally. (or one-dimensionally) as

aquifer thickness decreases. However, the intermediate case of
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Figure 3.6: Anisotropy ellipses for (a) the log-conductivity
field. (b) the hydraulic head, and (c) the flux
vector in a statistically layered aquifer.
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Figure 3.7: Schematic representation of the fluctuation scales
of the hydraulic head (top) and of the flux vector
(bottom) in a stratified aquifer
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moderately shallow aquifers is more complex, as this case falls

between the nearly two-dimensional case and the case of deep

aquifers covered by the spectral theory. This intermediate class

of flow systems is characterized by aquifer thickness in the

range 3m << L << lOOm for the case at hand.

For deep aquifers on the other hand, the hydraulic head

fluctuates many times in the vertical direction. The infinite

domain spectral theory holds in this case, and predicts that the

flow system behaves one-dimensionally at the large scale, with

the effective conductivity in the mean flow direction equal to

the arithmetic mean conductivity. This result Indicates that the

vertical fluctuations of the conductivity and of the longitudinal

head gradient are effectively decoupled. Indeed, the same result

could be obtained by vertically averaging the Darcy equation:

Qt K H

and assuming that the fluctuations of K and ax, are

independent of each other in the vertical.

The limitations of the infinite domain approach for the

case of aquifers of finite thickness have been recognized in the

past. Naff and Vecchia (1986) developed quasi-analytical
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solutions for confined stratified aquifers with finite thickness.

They found that the head variance increases to infinity as the

ratio of layer thickness to aquifer thickness ( 3 /L 3 ) increases.

This is in accordance with the fact that the flow system becomes

two dimensional (in this case a Hole-Spectrum is needed in order

to obtain finite head variance - see Table 3.2). However, these

authors do not seem to recognize the fact that the vertical head

correlation in an infinite domain is large (7S) and nearly

independent of the anisotropy ratio. This finding provides a

simple criterion for evaluating the range of aquifer thickness

for which the infinite domain theory applies: aquifer thickness

must be on the order of several tens of horizontal conductivity

scales or more. This simple rule does not seem to have been

recognized in the past. On the other hand, for very shallow

aquifers with thickness on the same order as the horizontal

conductivity scale, a two-dimensional theory based on vertical

averages could perhaps be used as a first approximation.

Let us now focus exclusively on the case of deep

stratified aquifers for which the spectral theory holds. In

these cases, the hydraulic head standard deviation appears to be

proportional to the geometric mean of horizontal and vertical

correlation scales (tV/). independently of the anisotropy ratio

(t,/t 1 ). Thus, two different types of aquifers such as (t = m,

13 = 0.2m) and ( = 4m. e3 = 0.05m) lead to the same head
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variance - although the detailed structure of the flow field may

be very different. This shows that the value of head variance

does not Indicate the degree of anisotropy of the velocity field

in stratified aquifers.

It is particularly instructive to examine the limit

cases 11. e 2 " and 3 -* 0 (the anisotropy ratio goes to zero

in both cases: limit of perfect stratification). The first

case, t -ea, corresponds to an infinite horizontal correlation

scale. We have seen that the vertical head correlation length is

proportional to e 1, so that it must also become infinite.

Therefore, the spectral theory will not hold in this case for any

finite aquifer thickness, however large. One must dismiss the

case e X as pathological. Examine now the case 83 - 0

corresponding to infinitely small layer thickness. In this case

the infinite domain theory seems to apply, and equation (3.3.1)

shows that:

h -.0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
a *a -0 (3.34)

q 2 q,

-aq, f Y- -

Note that q2 and aq vanish, implying that the transverse flux

components vanish identically. and the head remains constant in

vertical planes across the mean flow direction. Thus the flow



- 145 -

field appears inherently one-dimensional, which explains why the

ensemble head variance vanish (consider the equivalence of

ensemble mean and 3D averages: the 3D averaged variance of a 1D

process must vanish). However, this result turns out to be

inconsistent, as mass balance would require that Q be constant

for one-dimensional flow. This clearly contradicts the result

(a # o0) obtained above. Again, this case is a singular limit of

the three-dimensional spectral theory and must be dismissed.

In summary, we have shown that the limit cases e = 

and t3 = 0 are meaningless in the framework of the

three-dimensional, infinite domain theory. Nevertheless, the

asymptotic analysis of strongly stratified aquifers (e << 1)

remains valid as long as e 0. The asymptotic solutions (3.31)

hold for small anisotropy ratios, provided that the aquifer

thickness be "significantly larger" than about 10 1, where is

the horizontal conductivity scale. Concerning the flux vector,

it is instructive to note that the longitudinal flux component

has a variance about twice as large as for the isotropic case,

and is independent of e for small. The variance of the

transverse flux components is much smaller, on the order of e, so

that nearly one-dimensional flow obtains at the large scale for

deep stratified aquifers.
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It may be useful to end this section with some remarks

concerning the meaning of the so-called "anisotropy ratio". All

along, we assumed Implicitly that the length scale ratio

& = tle, expresses to some kind of anisotropy in the conductive

properties of the statistically layered formation. We will show

in fact that e is equivalent to the square root of some kind of

conductivity anisotropy ratio to be defined shortly.

The interpretation of e in terms of a conductivity

anisotropy ratio is obtained by re-scaling the coordinate system

in such a way that the random conductivity field becomes

isotropic in the rescaled coordinates:

X = X/ (3.35)

Starting with an ellipsoidal log-conductivity field F(x) with

covariance function:

RF(£)RFF(f2 , > / ~e2 + f2/,#2)
1/2+ 

we obtain indeed an isotropic field F(x') in the new coordinates:

R (Ed) = RFF(|E12 + E2 + 2')
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Furthermore, the governing flow equation (3.3) written in the

rescaled coordinates takes the form:

a (K * jH = 
aiI a b~

(3.36)

where the Xj(x') tensor appears as the product of a

deterministic anisotropic conductance tensor and a statistically

isotropic random field conductivity, as shown below:

Kij(2) =

'C 0
K- 1

KG
K2 2

o 0

0-

0

KcG

* K(x') (3.37)

Kit = [ A3 12

K22 = ( X ]2 KG

K33 = KC

In the case of isotropy in the plane of stratification

= 2). this yields a formal equivalence between length scale

I..
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anisotropy and local deterministic conductivity anisotropy in the

form:

FE A Kit (3.38)

This suggests that a typical "deterministic anisotropy"

on the order K33/K, = 1/100, corresponds to a "length scale

anisotropy" on the order e = 1/10. However, this interpretation

of anisotropy should be taken "with a grain of salt": the

determintstic anisotropy defined above should be distinguished

from the concept of a large scale effective anisotropy. Indeed,

the spectral solutions developed by Gelhar and Axness (1983) show

that the effective conductivity anisotropy is in fact independent

from e. when is small, being asymptotically equal to the ratio

of harmonic to geometric means. In any case, it is still

instructive to think of the length scale ratio ( 3 /e 1) as

equivalent to the square root of some deterministic conductivity

ratio. The form of the scaled flow equation (3.36) also suggests

more generally that-water flow In a stratified heterogeneous

formation results from complex local interactions between purely

isotropic random effects and deterministic anisotropy effects..
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3.6 Head Moments for the Hole-Markov Spectrum and Low Wavenumber
Effects

In order to ascertain that the previous results are

physically meaningful, we investigate in this section the

behaviour of the head process for a different input spectrum: the

Hole-Markov spectrum Table 3.1. The effect of the "hole" here is

to reduce the low-wavenumber content of the log-conductivity

field, compared to the Markov model used previously. This may

affect the behaviour of the head field, particularly by reducing

its correlation range.

Assuming again eC=e1=e and =e3/e. the 3D anisotropic

Hole-Markov spectrum for n K can be written as:

4a 2 e2 B
Sf f (k) -f

3Y2 

(92 (k2+k2) + e2k2)

(1+e2 (k2+k2 + 2 23CL~ (k1 21 3k3

Plugging this into (3.10) gives the head covariance in the form

Rihf) = j J2 e) * I(E) (3.39)

+C

It() = (2/rte)3.J'
-0W

k2 (k2 + k2 + 2 k23)cos(k)

4 [2+(k +2) + 2 k 3 3
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The head variance obtains

analytically at = .

Annendix 3.G. and the result

by evaluating the

The computation is

is:

I(f) integral

detailed in

= 16 (26 f J 2 G. G(a)

with:

e(e{ 2 -1 [ a -l]} for e > 1.) =I -2 1+ 16
eFV' 2 -1 -4 e 2 1J

(3.40)

G(a) = 4/3 for e = 1

G(e) = X * e a 1 262* arcsin(vl-i:)} for < 1.

Sl_62 l-e 2

When the geometric scale e = Velea is kept fixed, this gives the

following asymptotic results for the strongly anisotropic cases

>> 1 (vertical layers) and e << I (horizontal layers):

ee: h 16 ( 02 J2 eIF 41n(2e)-1
e e4 ° h 1(t I2 f J2 C 6

a -.0: % 2 l(T?0J2 2
0 16 1 I e

(3.41)

(3.42)
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In the isotropic case (e = 1), the head variance is:

e =l1: c2 = 1 (T)6 a2J2 e2 (3.43)

The results obtained for the isotropic case (3=e) and

the anisotropic case (<<e( ) resemble those previously obtained

with the Markov spectrum without a hole. The following table

summarizes the different values of aH obtained for the Markov and

Hole-Markov spectra for various degrees of anisotropy.

Anisotropy Markov Spectrum (i): Hole-Markov Spectrum (i):

e-le/81 %/(af ) ah/(of JG)

e <<1 : r , 0.63 (w/2)7/2/4 Z 1.21

e = 1 : i/3- Z 0.58 P 1/1(2 (/2)3 - 1.12

e >> 1 : 41n(2e) * Oa

.T

The comparative table above shows that the head standard

deviations will not be the same if the 2 i-scales of the

Hole-Markov are taken equal to the X -scales of the Markov

spectrum. Remarkably, it. appears that the same head variances

are obtained with the two spectra by taking the length scales of

the Hole-Markov spectrum to be half the correlation scales of the

Markov spectrum, i.e.:
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er = Xi/2.

Furthermore, it appears that the head variance for strongly

anisotropic formations (such that e < ) is approximately

equal to the head variance obtained for an equivalent isotropic

medium with correlation scale fG = -Alfj. Recall that the same

observation holds for the Markou odel. In addition, the table

also shows that the head variance vanishes in the limit for

strongly anisotropic erticat formations ( >> ) if G is kept

constant.

In order to complete the comparison between the arkov

and Hole-Markov spectral models, it may be instructive to compare

the head correlation functions obtained in the two cases. This

would help quantify the influence of the input log-conductivity

spectrum (or correlation function) upon the spatial structure of

the head field. Specifically here, one may expect that the

"Hole" model (spectrum with a low wavenumber hole) produces a

head field with smaller correlation length. The question Is:

how important s this effect? And finally: how sensitive is the

spatial structure of the solution with respect to the assumed

shape of the log-conductivity spectrum?

For the Hole-Markov model. ADoendix 3.G) develops a
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close-form expression for the transverse correlation function

Rh(O.O.) in the isotropic case e=1. The final result is

reproduced below:

e = 1: R(O. ) = 12 2 [ -e - - (1 S eS3

(3.44)

One way to compare the Markov and Hole-Markov models is to

evaluate the e-correlation lengths, i.e., separation distance at

which the correlation drops below e. The e-correlation length

of head is about 7 for the Markov-model, and about 3 for the

Hole-Markov model. This indicates that the head correlation

across flow is about half smaller for the Hole model, based on

XI=ei. On the other hand, recall that the head variances

obtained for the two models become equal if one chooses SIkI/2.

With this choice, the head correlation would appear 4 times

smaller when using the Hole model. Perhaps the most rational

approach is to choose the scales e and in such a way that

the e-correlation scales of the two random fields coincide. It

can be shown that this particular choice corresponds to

= VO.723 (from Table 2.2 of Vomvoris, 1986). It does not seem

that this choice leads to a better agreement between the head

solutions obtained by the two models.
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We conclude that the spatial structure of the head

field is fairly sensitive to the choice of the log-conductivity

spectrum. For the 3D isotropic case, the head correlation

lengths are increased with increasing spectral density at low

wavenumbers, all other quantities being held constant (fixed head

variance). On the other hand, remember that the head random

field becomes non-stationary with infinite correlation length in

two dimensions, unless the spectral density of log-conductivity

vanishes at zero wavenumber (see Table 3.2). This indicates that

the effect of large scale conductivity fluctuations becomes more

significant as the degree of freedom of flow decreases from 3 to

2-dimensional flow. One may think of 3D anisotropy as an

intermediate case between the 2 and 3-dimensional isotropic

cases.

Our finding that the large scale fluctuations of the

conductivity field have a significant effect on the spatial

structure of the head field raises new questions about the

appropriate determination of conductivity spectra from field

measurements. In our view. the available spectral analysis of

field-measured conductivities (Bakr, 1976) do not lead to favor

the Hole-Markov over the arkov-spectrum or vice-versa. This is
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due to the fact that the low wavenumber range of the spectrum

cannot be determined with reasonable confidence for wavenumbers

near or below the inverse domain size (standard estimates of

spectral confidence interval also break down in this range).

Rather, we feel that the size of the domain of interest should be

used as an extra parameter to determine the appropriate cut-off

of the "measured" log-conductivity spectrum at some low

wavenumber, in such a way that essentially all fluctuations

larger than the inverse domain size be removed. The Hole-Markov

model is just one way of carrying on the cut-off procedure in an

implicit way. However, a different aproach, which departs from

the "infinite domain" postulate, will be developed in Section 4.4

of Chapter 4 in order to clarify the effects of finite domain

size.
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CIAPln 4: EXTENSIONS OF SPECMAL TEEMRY:
NCO-PERlJRBMATIVE SOLUTIONS. SPELTFRAL CIONDrrIoIG AND UNCERTAINTY

4.1 Introduction: Sources of Errors in Standard Spectral
Solutions

This chapter is devoted to the improvement and

generalization of the spectral perturbation solutions of

saturated flow developed earlier (Chapter 3). By exploring the

stochastic flow problem from a somewhat broader viewpoint, we

hope to shed some light on the approximations involved in the

standard spectral solutions (see -also' Chapter 6 for a comparison

with direct numerical simulations). More importantly, our goal

is to develop alternative approaches for obtaining realistic yet

tractable solutions of stochastic flow, and related phenomena

like dispersive solute transport.

One of the major advantages of the spectral perturbation

theory, as it stands, is its high potential for producing

tractable closed form results. On the other hand, this-theory

presumably suffers some drawbacks due to -the approximations that

were made. -In the forthcoming sections, we will develop

non-perturbattue solutions method (Section 4.2), as well as new

perturbative solutions (Section 4.3), and suggest possible

extensions of the spectral theory to include non-stationarity or

finite-size effects (Section 4.4). In the preliminary study that
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follows, we review some of the most significant sources of

"errors" in order to clarify the weak points of the current

spectral theory.

There are two levels of approximations involved in the

standard spectral solution method: first. the "solutton errors"

due to the approximate solution of the postulated stochastic flow

equation, and second, the "modet errors" due to the approximate

representation of real world heterogeneities by stationary and

ergodic random fields. The perturbation approximations belong to

the first category, while the basic assumptions of infinite

domain, statistical homogeneity, and ergodicity of the

log-conductivity field, belong to the second category. Let us

now review in some detail the potential inaccuracies of the

current spectral theory, due to approximations made at the

"solution" level and at the "model" level, respectively.

Sotutton errors can be identified through a formal.

qualitative comparison of spectral and exact solutions, assuming

that the basic premises of the spectral theory are true. Hence,

in keeping with the spectral approach, let us assume for the

moment that the flow field is indeed governed by the stochastic

equation (3.1), that the domain is infinite,, and the -i

log-conductivity An K(x) is a Gaussian, stationary and ergodic

random field, with first and second order moments invariant by

; 
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translation. Based on these premises, the standard spectral

perturbation approach (Chapter 3) requires some additional

hypotheses and approximations in order to arrive at closed form

solutions:

(i) All second order and higher order terms O 7 ). p 2 2.

are neglected in the flow equation governing head.

(ii) The random fields h, IH and 2 are assumed to be

stationary and ergodic in the first and second moments

(recall that h is the head perturbation H - <H>).

(iii) The random fields h. H and Q are implicitly assumed

to be nearly Gaussian. so that knowledge of their first

and second moments (mean and covariance function)

suffices to determine their statistical properties

entirely.

Intuitively, the validity of all three requirements

depends on af being small. This is particularly obvious for

(i). but not as obvious for (ii) and (i). Some results in the

literature suggest that stationarity and normality (for heads)

are satisfied asymptotically as f -*O. but may not hold as af

increases. Specifically. Gutjahr and elhar (1981) showed that

if af << 1 then the head field is stationary in the case of

three-dimensional isotropic n K fields whose covariance function

satisfies:
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Rff(E~d < .

This relation is satisfied in particular for any isotropic Rff(E)

that is positive everywhere and has finite integral correlation

length (see Table 2 Chapter 3). Also by looking at the head

covariance (3.22) obtained for a Markov spectrum. one can see

that:

lim Rhh(f) = 

which is a sufficient condition for ergodicity in the first and

second order increments (cf. Yaglom, 1962. 1.4). Unfortunately.

this only proves that h(M) is asymptotically stationary and

ergodic as Of - 0 - since a perturbation method was used to

establish the proof. In fact, it appears from the detailed

perturbation analysis (3.4-3.6) that the apparent stationarity in

the mean head gradient results from neglecting second order terms

O(a2) in the equations. This suggests that the solution may not

be stationary unless af is small.

Similarly. Gutjahr (1984) showed that the first order

spectral perturbation solutions are exact for arbitrary a if it

can be assumed that (Hf) are ointly Gaussian. However, the

point is precisely that the random fields H and Q become

increasingly skewed (non-Gaussian) as Of increases. In turn,
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this implies that the standard spectral perturbation method

becomes increasingly inaccurate as the skewness of the solution

increases with a. Indeed, non-Gaussian random fields cannot be

completely characterized with first and second moments alone.

Some of the numerical experiments of Chapter 6 will confirm the

non-Gaussian character of the flux or velocity field.

In summary. we argue that a large log-conductivity

variance could yield non-negligible high order terms in the

perturbation equations. This in turn produces two types of

effects that cannot be captured by the first order spectral

perturbation solution:

(i) non stationary behavior of first and second moments

(ii) non Gaussian distribution of the random field solution.

At first sight, it seems natural to try developing

higher order perturbation expansions in order to predict more

accurately the statistical behavior of highly variable flow

fields. An effort in this direction was pursued by Dagan (1985).

However, this author did not obtain third or. higher order

moments, as would be needed. to characterize a non-Gaussian

behavior. In addition, it should be kept in mind that the

perturbation expansion admittedly may not converge at all for

a > 0. even though the first order term does converge to the
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exact solution as af - 0.

The distinction between convergent and asymptotic

expansion is well documented in the literature (see Bender and

Orszag. 3.8. 1978). Consider for instance the following

expansion of the head perturbation h in the small parameter a:

h(N) = ho + ahl + 2h2+ JN (4.1)

The Nth-order approximation h(N) may possibly be asymptotic to

the exact solution h, i.e.:

Ih(N)-hj <<aN as a 0. N fixed

*-- even though the series diverges, i.e.:

li h(N)hi 0. a > fixed.
Neim

Accordingly. one should not expect too much improvement

from higher order solutions beyond the first few terms; there is

even the possibility that "higher order" approximations be -less

accurate for a given, fixed value of a. In fact, the work by

Dagan (1985) shows that the head covariance is not changed much

by using second order rather than first order expansions. For

instance, the head variance obtained by numerical integration of
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lbgans spectral solution for a 3D sotropic arkov field is only

slightly decreased as follows (Lynn Gelhar, personal

communication):

Var(h)2 f (1-0.058 Of) cJ 2 (4.2)

compared to the first order result (Eq. 3.21):

Var(h)1 1 2j22:

The difference between these two expressions is quite mild for

log-conductivity standard deviations on the order of unity. This

indicates that the head variance is relatively unaffected by high

order interactions. However, the most interesting high order

effects may have been "missed", as only three-point covariance

functions can capture the "skewness effects" due to large Of.

Moreover, it is also worth noting that the type of higher order

spectral perturbation such as used by Dgan (19S5) does not

address the "large variance nonstationarity effects" discussed

above.

In the present work, we will not pursue the classical

approach of developing higher order expansions. Rather we

develop a more general non-perturbative approach based on exact

statistical identities in order to assess the validity of the
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standard first order spectral solutions (Section 4.2). This will

lead us also to propose a new perturbation solution for the flux

spectrum (Section 4.3).

Let us now focus briefly on the second category of

errors, the so-called "modet errors" defined earlier. In view of

real field situations, it would seem that it is not always

possible to identify uniquely a stationary n K field with a

definite correlation scale. Thus, the ideal case postulated in

Chapter 3 may not be encountered often in actual practice. In

our view, this type of identification problem may be due in

practice to inadequate sampling of field data (geometry and

spacing of measurement network), and/or to the particular spatial

structure of the subsurface formation. which may involve some

large scale inhomogeneities. This kind of situation could lead

to inconsistent random field identification, for instance with

apparent correlation scales on the order of domain size (see some

of the results reported by Hoeksema and Kitanidis, 1985). With

proper detrending, however, it is often possible to identify a

definite correlation length based on the assumption that the

detrended field is stationary. Nevertheless. the correlation

scale determined in this manner may still depend on the.

particular subregion of investigation, as suggested by some field

studies. The reader Is referred to the data review of Chapter 2

for more details and references.
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Another related situation of interest is the case where

the flow or transport process of interest takes place on

increasingly larger regions as time evolves. This occurs in a

number of cases of great importance for contamination studies,

for instance in the case of a contaminant plume spreading from a

local source in an aquifer, or an unsaturated moisture plume

spreading from a local infiltration area. In both cases, the

"global scale" of interest evolves in time, and it is conceivable

that the most dominant contributions from spatial heterogeneities

occur at varying length scales, as the size of the plume evolves.

This idea could be related to- our earlier observation that the

formation's heterogeneity s only locally stationary around some

*given trend, and with a given correlation scale, both depending

on the size of the region. This type of finite scale problem

will be approached in the last section of this chapter (Section

4.4) by using band-pass self-similar spectra. and by developing

the idea of spectral condtttontng. The preliminary results

obtained there will show explicitly the scale dependence and

uncertainty of the head variance, effective conductivity, and

macrodispersivity for flow and transport phenomena taking place

over finite domains.

eI -\:
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4.2 Non-Perturbative Spectral Solutions and Statistical
Symmetries

4.2.1 Summary:

In this lengthy section. we show that a stationary

solution of the stochastic flow equation, if it exists, must

satisfy a certain set of statistical relations, notably in terms

of the spectrum of the flux vector and head gradient. These

statistical identities are derived directly from the continuity

equation, and by taking into account the inherent symmetries of

the flow system in any number of dimensions, particularly in the

case of 3D and 2D isotropic media. These relations are used to

"test' the standard spectral solutions. In the special 2D

isotropic case, the effective conductivity must be identical to

the geometric mean, and an exact relation is found between the

flux spectrum and head spectrum. Both results are based on a

conjugacy property relating the flux and head gradient in

two-dimensional space with isotropic Gaussian log-conductivity.

The problem of determining a general relation for the effective

conductivity tensor in 3D anisotropic media is also investigated,

leading to a general closed form relation in terms of the

log-conductivity variance and two anisotropy length scale ratios.

Note that the spectral relation obtained in the 2 case also

suggested a modification of the standard spectral solutions, to

be developed in a forthcoming section (4.3).
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4.2.2 Mass Conservation Relation:

The mass conservation or "continuity" equation for

steady flow in mr-dimensional space is:

OQi
i = 0 (i 1,....m) (4.3)

axi

where the implicit Einstein summation convention was used. We

now assume that the basic premises of the standard spectral

theory hold, i.e., the flux Qi is a stattonary random vector

field. Whence the mean = <Qi(x)> is a constant vector. and

the perturbation q(x) = Qi(X) is zero mean stationary. For

all practical purposes here, second order stationarity suffices.

By averaging the continuity equation (4.3) and then

substracting, one obtains an equation for the mean and another

equation for the perturbation, of identical form:

0 0 (i = 1,**Om) (4.4)

I
0q1
ax= 0 (i = 1,....m). (4.5)

Because these equations are stochasttcaltly tnezr. and the flux
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Q1 was assumed stationary, the spectral representation theorem

(3.7) can be used to obtain an exact relation on the spectrum of

qi from equation (4.5). The Fourier increments satisfy:

Jki dZq(k) =O. ( =IY) (4.6)

Multiplying by dZ (k) and averaging yields:
q

ki 5 qiq (k) = 0 = .. m) (4.7)

where Sq q is the tensor spectrum of the flux vector, whose

Fourier Transform is the tensor covariance function R (£). The

equivalent mass conservation condition on R (£) is easily

obtained by Fourier-transforming (4.7):

c7Rqi (f
Oj( = ( = ...m). (4.8)

Now, it is easily seen that the standard first order

spectral solutions developed in Chapter 3 verify mass

conservation both in the mean and second order moments. The mean

equation (4.4) is automatically satisfied since QI is constant;

and the equation (4.7) for Sq q is satisfied by the spectrum

given in (3.17). as can be easily verified. We conclude that the
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standard spectral solutions are self-consistent with respect to

mass conservation, as far as first and second moments are

concerned. Incidentally, we obtain for the special ID case:

kSqq (k)=O

which shows that S qq(k) = is a solution, i.e., the flux q

must be a deterministic constant. It may seem that a flux

spectrum of the form S (k) =or2 I(k) could also be solution,
qq q

i.e., the flux q could be a spatially constant random variable

2with variance aq* However this gives rise to an indeterminacy

in the limit kSqq (k) as keO (this can be seen by replacing

I(k) by any sequence of functions that converges to (k)).

Therefore, it seems that the case aq 0 should not be accepted

as a valid "stationary" solution in the D case. Gutjahr and

Gelhar (1981) adopted a different view in their discussion of

stationary and non-stationary two-point boundary value flow

problems with aq 0.

Finally, let us point out a result mentioned, in

Batchelor (1953). By using the continuity condition-(4.7) along

with the usual properties of a spectral density tensor:

S ()= S (Ii) (4.9)
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he obtained the following spectrum:

- ~~k2kj-1
Sq (k) = 2(I).(ij ] + ai(k)a*( [ 2 (4.10)

Here, the complex vectors ak). pi(k) are mutually orthogonal,

and orthogonal with the wavenumber vector (i.e.. a = k =

-k = 0). The scalar quantities a 2,9.k2 denote the squared

modulus of the vectors , A. k. respectively. We will see that

one can arrive at more useful special forms of the flux spectrum

by considering, along with the continuity equation, the

invariance of the tensor under certain transformations arising

from spatial symmetries of the random flow problem, particularly

for statistically isotropic conductivities in 2D and 3D space.

4.2.3 Statistical Axial Symmetry for 3D Flow in Isotropic Media:

Here we consider the case of flow in a statistically

isotropic formation in the infinite 3D space. The

log-conductivity F= n K is a statistically isotropic homogeneous

Gaussian random field, implying in particular that the covariance

function Rff(f) depends only on the radial separation distance

f = ]+2+ 3 (similarly the spectrum Sff(k) depends only on

k = kl+1d+2). We now examine the consequences of this

symmetry, assuming as before that the solution (h, H, and g_) is
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statistically homogeneous in space. In particular, we seek

relations on the flux covariance R (f) or on the spectral
q qj

tensor S (k). in a manner somewhat similar to previous work on
qjqj

the statistical theory of isotropic turbulence (see the books by

Batchelor 1953, Monin and Yaglom 1965, and Landahl and

Mollo-Christensen 1986). However, note that the ase at band is

different from isotropic turbulence in one important respect:

the -flow driven by a mean gradient in a random porous medium

cannot be represented realistically as a statistically isotropic

field in all three space dimensions, even when the underlying

medium is fully isotropic. Rather, the flow field can be thought

of as having statistical xtal symmetry with respect to the mean

flow direction.

In order to clarify this notion, we turn back to the

basic flow equations expressed in terms of "detrended" random

fields. The perturbation equations for the head and the flux

vector are, respectively:

82h + f h O f O
ex ox ox ox I8x

v2/2 f eh> (4.11)
Q e (K~e = 

qi= KG (ef 2/2 Oh e2/2 h _2/2
wherewe e -e stcasi K e f otiig a

where we used the stochastic Dkarcy equation for obtaining Q I and
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q1. Recall that h and q are the statistically homogeneous

perturbations of the head and the flux vector, J1 is the only

non-zero component of the constant mean hydraulic gradient (by

choice of the x, axis), and Q is the i-th component of the

mean flux vector. Recall also that the log-conductivity

perturbation f(x) is Gaussian. and Rff(f£) is invariant under

translations and rotations in the R-space. In addition, all

higher order moments of f(x) are expressible in terms the

covariance of Rff, and the N-point covariance <f(xl)...f(xN)> is

also invariant under translations and rotations in -space. The

form taken by (4.11) implies that h(x). must then be

statistically invariant under rotations in the (x2,xa) plane, as

well as invariant under reflections through the x axis. In

particular R h() is isotropic in (ff2f3)- and invariant when

(ft) is changed into (-E 1 ). In addition, we expect that the
Oh

vectors g=- a , and perhaps q1, be also invariant under

such transformations. We now explore this in more detail,

beginning with the head gradient vector gi.

By using the fact that g1 is a special kind of

"potential" vector, being the gradient of a scalar quantity h(x)

that is statistically isotropic in the (,X 3 ) plane, one can

obtain explicit relations on the covariance tensor R g (£).

Indeed, it is well known that, if h is a homogeneous field,

ahthen = a has the covariance tensor:
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Rg g U£) =
,I i

On the other hand.

explained earlier.

*82 Rh(V

of iaj 
(4.12)

Rhh(f) Is isotropic in the (f2.fE) plane as

Thus we can write:

R =h(I) s = h(ffr) (4.13)

where R is an even function of El. and r s the 2D radial

separaion ditance (E2 * the1separstion dstance 2 ) in the cross-flow-plane. By

applying the chain rule of differentiation, and using the fact

that ar/afi = fuir for i = 2 and 3, we obtain finally the head

gradient covariance in terms of the head covariance:

R~~~2h
g g =Rg g () = _ 

j -le 1: R g() = Rg g() r a a (4.14)

i f 1 j 1: R g(£ = gjg tr =r

_ f f hRh 1 _n1
- Ir- r -
r2 Far 2 rr
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These equations give the general form of the hydraulic

gradient covariance tensor for the case of flow in a 3D isotropic

medium. Note that R is a symmetric tensor and an even
gig

function of (£) for all (id), so that the identity

R g() = R (-i) is satisfied, as it should for any tensor

covariance of a statistically homogeneous vector field. In

addition. it can be seen by inspection of (4.14) that R1 (£) is

invariant under the rotation-reflexion group restricted to the

transverse flow plane (x2 -x3). Here, rotational invariance is to

be understood in the sense of tensor invariance: the tensor

function is invariant when expressed in the new coordinates

according to tensor transformation rules. For the case of pure

rotations we have:

1 0 0

[ail] = 0 cose -sine

0 sinO cose

with transformation rules:

X; = a X; Xi = ai x~ aii xi, I a i J~

(4.15)

i a TiJ a amI a T.

The same transformation rules apply for pure reflexions, defined
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as:

1 0 0 1 .0 0

[aiJ = 0 -1 0 or 0 1 0

0 0 1 0 -1

Invariance is verified by checking directly from (4.14) that

Rg g indeed transforms according to:

R (£) = ama R' , ).

For the reflexions in particular, this implies that the two-point

covariance of the head gradient is invariant under transformation

E2 - 12 or - -a . In addition, it can be seen from (4.14)

that R (f) is also invariant under reflexions through the x,

axis (£ -£ -) Finally, it is worth noting that the

cross-covariances vanish along certain lines or planes, as can be

seen in Figure 4.1:

R9 (f.O.f) = 0

Rg1g (f 1 f 2 .0) ' 0 (4.16)

R92g (E0O) = 0
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x3tŽ

R 12 (X 1 OX3) = 

MEAN FLOW

II

i

I
S . e ,

IX 3

MEAN FLOW

,

i1 R 13 (X1 X2,0) = 0

X 3

xF

Figure 4.1 '1
a
a

MEAN FLOW

R 2 3 (X1.090) = 0 -,

he cross-covariance function of the head gradient
nd flux vectors vanish along certain directions in
a 3D isotropic medium.
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Note in particular that all the cross-covariances at lag zero

( = Q) are null. The result In (4.16) can be found by

inspection of (4.14), or by looking directly at the consequences

of invariance under reflexions and rotations of the R (£).

The results obtained so far can be summarized as

follows:

(i) For a 3D isotropic medium, the covariance tensor

R (£) of the head gradient is symmetric, invariant

under rotations and reflexions in the plane transverse

to flow. and under reflexions through the mean flow

direction. Invariance is understood to hold under

transformations of the coordinate system provided

application of the usual tensor transformation rules.

(ii) The general form of R () is given by (4.14), and the

cross-covariances in particular vanish along' certain

directions according to (4.16).

It is mportant to keep in mind that all the symmetry

relations developed above are independent of the small variance

approximations thai were used to obtain first order spectral

solutions. We now show that the first-order solutions previously
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obtained for x and R g do satisfy the symmetry properties

(4.14. 4.16). This can be easily seen by observing that the

R(f) given in (3.22) is indeed statistically isotropic in the

transverse plane, and so is the spectrum Shh(k). As a

consequence, the covariance and spectrum of g = ah/8x 1 obtained

from the first order theory satisfy indeed all the invariance

properties outlined above. Incidentally, note that the

covariance R (£) can be obtained in close form from the first
gig 

order solution Rhh() by using (3.22) and (4.14). thus avoiding

some difficult Fourier integral.

Finally, it can be shown by using the properties of the

Fourier Transform that the spectrum tensor S g.(k) shares the

same invariance properties as R (i). More precisely, it is

easily seen from g = Oh/OxI that Sg g must be of the form:

S (k) =-kk S (k) (4.17)

where the spectrum Sx must be invariant under rotations and

reflexions in the transverse plane (k2,k3) - and reflexions

through the longitudinal direction kj. All the symmetry

properties previously established for R could be deduced
gigj

from (4.17) by plugging Shh(k) = S(kik) and using Fourier

Transforms.
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We now focus our interest on the flux, vector

perturbation q which is the physical quantity of interest for

applications to contaminant transport. The Darcy equation can be

used to decompose qI into a sum of terms involving the random

field perturbations: p(x) = ef(I) - ea2/2 and g1 = I h/axi.

Using equation (4.11) and decomposing leads to:.

qi(x) = qi 1 ) (x) + q( 2 )W

qIl) x = - KG{P(x) .JI6li e4 7/2.g(x)}

(4.18)

(2)
qi (X) = - KG{P(X)-gi(x) <P( ) _(x)>)'

The term KG p(x) is the perturbation of the log-normal

conductivity field K(x) = KG exp(f(x)). and gI(K) is the

perturbation of the head gradient vector as before. The first

term ql) In (4.18) represents the flux perturbation produced by

the separate contributions from the conductivity and head

gradient fluctuations while the second term q(2) involves the

stochastic interactions between them.

The covariance tensor R (E) could be worked out in

principle by computing all the terms involved in <q1(x)-q(X+f)>.

This leads to an expression involving third and fourth order

moments of the augmented vector (pW)gi(_)) Assuming that



179

(p(),gi (x)) is Jointly statistically homogeneous, up to at least

fourth order moments, one obtains triple-point and four-point

covariances of the form:

<u(_)v(_+ ) w(_+4,)> = (L

<U(X)V(x+f.v) w(X+fW) Z(_+k )> = (£ v f

With these definitions in mind, we obtain from equation (4.18) a

general expression for the flux covariance tensor:

R (£) = Ri() + R 2(f + R22(f (4.19.a)

where:

R11 = 2 * j+ e° R (£)
iJ G u

2 /2

- e JI(611RpR ( + R (-))

R12 2 (Ruo Rij KG 11dl (R ppg (.£ f) + R H (- -)

(4.19.b)

- e * (Rpgg (Q.) + Rpgg (-)

R 22 K {R= (K2fR) - Rpg ()R (Q)}.
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Despite the complicated form taken by the flux

covariance tensor above, it appears that it should remain

invariant under the transformations which leave p(g) and g(X)

jointly invariant. Note that p(s) is just the scaled

perturbation of the conductivity K(x). Without any rigorous

proof, we will assume that K(E) -and g,(x) are jointly

axisymmetric random fields (we know this is true for the

log-conductivity and for g,(X) separately). Accordingly, the

flux covariance should remain invariant under

rotations-reflexions in the transverse plane, and reflexions

through the longitudinal direction as explained earlier. This

also implies that R is a symmetric tensor. For
qjqj

completeness, observe that Rq q given by (4.19) does satisfy

the mass conservation relation (4.8) as required.

Now, by using only the symmetry properties due to

statistical isotropy (invariance to rotations and reflexions, as

defined above) as well as the mass conservation relation, it is

possible to come upwith the general form of the covariance or

spectrum of q(X) independently of the detailed formula given in

(4.19). For instance, Batchelor (1953) gives the general form of

the covariance tensor of a vector field which is statisttcaily

axisymnetric. By applying his results Eqs. 3.3.9. page 43] and

adding the condition of invariance under reflexions through the

axis of symmetry, we obtain:
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R (£) =
qjqj

El.. 
A(ffl.r) ' + B(fls~r) ai (4.20)r2j

+ C(fl.r) lia1> + D(fl.r)-(i°i + f l

where r is the radial lag distance (f2 In the transverse

plane, and AB.C.D are even functions of 5. Note that the

case of spherical isotropy for Rq () obtains by taking

C = D = 0. This suggest that the A and B terms account for

the fully isotropic part of velocity fluctuations, while the C

and D terms account for those fluctuations driven by the mean

head gradient (the driving force responsible for anisotropic

behavior).

Similarly, by using properties of the Fourier Transform,

it can be shown that the tensor of spectral densities S q (k)

must be of the same form as (4.20). namely:

S (k) = A . L+ B

(4.21)

+ C ialj + D-(kIaia+kj5i) |
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where A. B. C. D are functions of k, and k = (k + 3. and

are even in k.

We now apply the mass conservation condition in its

spectral form (4.7) to obtain additional conditions on A. B. C

and D(klkR) as follows. Combining equation (4.7):

k S (k)=O
i qiqj

with equation (4.21) above gives:

(A B) k

+ (k2 -D + ki.C) 6

+ k k D = 0

where k = + + =k ki, and j = 1.2.3 respectively.

These conservation conditions on A.B.C.D can be rewritten as

follows:

(1): k A + kB + kC + (k 2 +k~i)D = 0

(2): k 2 * A + k2B + kk 2D =0 (4.22)

(3): k3 *A kB + kk*D =0

Multiplying each equation by ki and summing, we obtain the

equivalent system of equations:
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2

A+ B +-C+ 2 1 D =0

k2+k2

A + B + C + kD = 0
k2

A + B kD = 0.

This leads after some manipulations to just two independent

relations:

k2D + kC = 0

(4.23)
k2

A + B = - C.
k2

Plugging (4.23) into (4.21) finally gives the general form of the

flux spectrum Sq q that satisfies the properties of axial

symmetry (as defined earlier) and mass conservation:

S (X) = L[kj _ ,l * A(kk )

(4.24)

+ isl + ks6 fii Zi as °1,k l C(ki, kR)
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where k is the spherical-radial wavenumber, and kR is the

cylindrical-radial wavenumber in the transverse plane (k2,ka).

Note again that A and C are even functions of k.

The general result given in (4.24) may now be compared

to specific solutions, such as the first order spectral solutions

derived in Chapter 3. Equation (4.24) also applies to isotropic

turbulence by taking C = 0 (recall that the case C = 0

corresponds to spherical symmetry). In this case, equation

(4.24) gives the correct result, with A(k) being the 3D radial

spectrum of kinetic energy (see for instance Monin and Yaglom.

1965, Eq. 12.73). Let us now compare equation (4.24) with the

first order spectral solution (3.18) for the case where the

spectrum of log-conductivities is isotropic (Sff = Sff(k)). Let

us first decompose both equations (4.24) and (3.18) for a term by

term comparison. This is shown below, denoting S the

general solution and S(1) the first order solution:

Sq q(k)=

(4.25)

1. .l k2 C1 k2 C k2 1k2 ujiij
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Sm ()

(4.26)

klk- kiki (k1)2 kik4l

I J jk)*' i6 ail k2 6j1 2 k2

The comparison shows that the first order solution Sm)
qIqj

satisfies the general form of the spectrum given in (4.24) or

(4.25). with the choice:

C(k1 .kR) = C(k) = K< I? Sff(k)

(4.27)

(k1 )2
A(ki.kR) = A(k1 ,k) =- -C(k).

k 2

The form of the flux covariance tensor can also be found

by applying a Fourier Transform to both sides of (4.24). It is

worth noting that the flux covariance R (f) as well as the

head gradient covariance R (£) must vanish along certain

lines or planes when i (see Figure (4.1) above). This is due

solely to certain symmetries under rotations or reflexions, and

the same should hold for any solution satisfying the stationarity

hypothesis. Again, we find that the first order solutions of

Chapter 3 do satisfy the relations depicted in Figure (4.1).
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In summary, we have obtained the general form of the

spectrum of the flux vector independently of any particular

perturbation approximation, assuming only that the

log-conductivity field is statistically isotropic, and the flow

field is statistically homogeneous (stationary). This general

solution includes as a special case the first order spectral

solutions of Chapter 3 (Bakr et al. 1978. Gelhar and Axness

1983). More generally, we believe that any approximate solution

should yield a flux spectrum of the form (4.24) in order to be

consistent with the basic statistical properties of the governing

flow equation.

Finally, it is worth noting that most of the results in

this section may be applied to the 2D isotropic case as well, by

letting i = (1,2) rather than i = 1,2,3 in tensorial expressions.

For example, applying (4.24) with i = (1,2) gives the general

form of the Sq q spectrum in the 2 case, with A and C even

functions of k = (klk 2). In fact, we will show that the form of

the solutions in the special 2D case can be narrowed down further

by using the special symmetry inherent to the 2 space - leading

to a conjugacy relation between flux and head gradient. This is

examined next.
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4.2.4 Conjugacy property for 2 flow in isotropic media:

For the case of flow in a two-dimensional random porous

medium, we use the streamfunction formulation to show that the

stochastic flow field must satisfy a conjugacy condition (in

probability) between the flux and head gradient vectors.

For details on the streamfunction formulation, the

reader is referred to Bear (1972). among others. Briefly, the

streamlines are defined as the set of curves tangent to the

velocity field at every point in space. Note that the velocity

and flux vectors are equivalent in a medium of constant porosity

(normalized to unity for convenience). Thus the equation for the

streamlines can be written in terms of the flux vector field as

follows:

dx
Q -T QC~)

The streamfunction () is defined as:

' (E) .X2'-

(4.28)

Q2(I) + a8x1L



It is easily seen that the curves +(x) = c describe the set of

streamlines in the flow. The equipotentials H(x) = c similarly

describe the level curves of the hydraulic head ("potential")

field. Finally, note that the flux vector in (4.28)

automatically satisfies the conservation equation Qilaxj = 0.

We now seek a flow equation based solely on the

streamfunction . The Darcy equation implies that (K) is a

potential vector:

Q/K =-H

whose curl must vanish, i.e.:

v x (K) = Q.

In fact, only the third component of the curl is of interest

here, giving:

8 (Q2/K) - -k(Q 1/K)= 0. (4.29)

Plugging (4.28) in (4.29) leads to the required -based equation:

v (K a) (430)
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Equivalently, by using the log-conductivity F(x) = n K(x). we

obtain the desired equation for the streamfunction:

v2' - vF vi =0. (4.31)

In comparison, the equivalent equation for the hydraulic head

"potential" was:

v2H * vH = 0. (4.32)

The idea of conjugacy arises from the observation that

the governing equation for the streamfunction 4 can be obtained

simply by reversing the sign of F(x) = n K(M) in the equation

governing the head field. We now examine the implications of

this "duality" in the case where the log-conductivity is a

Gausstan tsotropic random field in 2D space.

Consider the case of a finite square domain, with fixed

heads on two opposite boundaries, and zero normal flux on the

other boundaries (Figure 4.2). We now use equation (4.28). along

with the Darcy equation, to express these boundary conditions in

terms of the streamfunction. This is summarized below:
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Figure 4.2 Illustration of the conjugacy property for

stochastic flow in a 2D isotropic medium (K is
the dual conductivity with respect to K)
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(i) On the fixed head boundaries (e.z.. at x = 0):

H(O-x2) = Ho => ax (0,X2) = 0 => M (OIX 2) = 

(ii) On the zero-flux boundaries (e.g. at x2 = 0:

Q2 (0,X) = 0 => (O.x1) = => *(O.x1) = 0.

This clearly shows that the boundary conditions for the

streamfunction equation are of the same type as those for the

head equation, provided a 90 degree rotation of the flow domain

(see Figure 4.2). Furthermore, observe that the global hydraulic

gradient is, by construction:

-(Hi-Ho)
L

while the global streamfunction gradient is:

-(yt * °) X2 -L

Lx=LI Q.= dx2=.

Based on these remarks, the boundary value problem for

2D flow can be expressed indifferently in terms of H or * as

shown below. First, we need to define new dimensionless

variables:
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H-Ho
H=

(4.33)

, 0

Second, let us defIne the duat conducttvtty. dual

log-conductivity, and dual log-conductivity perturbation as

follows:

K'(x,x 2 ) = 1/K(-x 2 -+Xl)

(4.34)

F(x,X2) = -F(-X2-+Xl)

f (xI-x 2 ) _ - ff-+Xl).

It s easily seen that equations (4.31) and (4.32) are mutually

"conjugate". or "dual", i.e., the normalized streamfunction Is

solution of the conjugate boundary-value problem involving the

dual conductivity field as shown below:

82 OF - --

.~~~~ 0ayioyi 83Ti I7.

'li(Oy 2) S 0; Z(L.Y2) 1 (4.35)

(y1 °) = -(y1 .L) 0
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where (YI'Y2) = (x2.-x,). The equation for the normalized head

potential H is identical:

82 H F aH
ax axI ax

H(O-x2) = 0; H(L-x2) = 1 (4.36)

aH CM~O
ahC (X 1 ,O) = hC (xL) = 0.

The next step in this analysis consists in letting the

domain size L become infinite, while the mean hydraulic

gradient J remains finite. Furthermore, we now use the

assumption that F(x) is a stationary, Gaussian, and isotropic

random field. Taken together, statistical isotropy and normality

imply that the log-conductivity perturbation (f) must have all

its moments invariant under rotations and reflexions. as well as

invariant under the transformation f e -f (due to the symmetry of

the Gaussian distribution). This implies that the dual field

f"() defined in (4.34) is identical in probability to f(s).

Thus, equations (4.35) and (4.36) imply that the normalized

random fields (y) and H(s). expressed in different coordinate

systems, are identical in probability. Note that the y

coordinate system obtains by rotating N. such that

(Y-Y,2) = (-x2 -+xl).
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The above results can be simply stated in one single

equation:

f (-x2.+xl) A H(XIX2) (4.37)

where the "A" sign stands for equality in probability, meaning

that all the moments up to arbitrary order must be equal. The

above equation simply means that the random patterns of

streamlines and equipotentials are statistically identical in a

2D isotropic ufedium, provided proper normalization of variables

and rotation of the coordinates by a 90 degree angle. This is

the property we call "conjugacy", to be understood in a

statistical sense. Thus, according to equation (4.37). the

streamfunction and head potential are statistically "conjugates"

of each other.

We now use the conjugacy property (4.37) along with the

flux-streamfunction relation (4.28) to show that the flux and

head gradient vectors must also be conjugate. First. by plugging

(4.33) in (4.37) we obtain, in terms of dimensional quantities:

_ H(x1.x2)-Ho
N(Y11y2) -VTo A- Q1 *
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where (Y1-Y2) = (-x2,x 1). Using (4.28) and applying standard

differentiation rules, this gives:

Qi(XI-x 2 ) L- a' (x2 .-x) (4.38)

where the gradient vector MHV8ci should be evaluated by

differentiating H with respect to the (x1,x2) system before

substituting (x2.-xJ), Equation (4.38) shows that the flux and

head gradient vectors, normalized by their mean values, are

statistically identical upon rotation of the coordinate system by

a 90 degree angle.

We now use this important result to obtain an exact

relation between the covariance functions or the spectral density

functions of the flux and head gradient vector fields. Equation

(4.38) immediately leads to:

R (Ef-Ef2 ) = KR -( -. 3)
qjqi gigi ~~~~~~(4.39)

Sq q (ki.k2) = K2_S (k2,-k1)



196

p. _-

where K = Qj/Jj is the effecttve conductivttU. Again note that

the tensors R on the right-hand-side should be evaluated in
glg1

the UI-£) system before substituting for (2.-f ); similarly

for S
gi

Finally, the head spectrum can be introduced on the

right hand side of equation (4.39). Indeed, using the fact that

gi(i) is a potential vector (gradient of the scalar field h(x)).

one may express directly the flux spectrum in terms of the head

spectrum as shown below:

. ~ ~ ~ ~~~~~~~p
S (k) = K * kikj Sh(k)
q 

where ( k) = (k2.-kl). To obtain a more explicit relation.

let us rewrite the transformed wavenumber system as:

ki= ~(1-ai) k + 1 - 6 i2) k2 .

This gives:

Sq q (kl.k 2) =

K { Il)(l 6j) kl + ( 1 - 6 i2)( 1'-o2) k2

[ ~~'5i1) (1 632) + (1 6i2) (1-8jl)]kjk2}.Sh(k2.-k).
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This expression can be simplified further by defining the radial

wavenumber k = (kl+k) and using certain properties of the

Kronecker symbol such as:

(' 5 il)(1-5 J2) + 1-6i2)(1-6jl) = 1-6 Ij

This gives finally a general expression for the flux spectrum in

a 2D isotropic medium, independently of any perturbative

approximation other than the stationarity hypothesis:

Sq q (ki, 2) = I .{ (1_ 6 I)kl

+ ( l-i2) (1-6 J2)2

- (1-5i) kk 2} * S(k 2 -)-

(4.40)

Using the radial wavenumber k = (k2+k2). let us give explicitly

each component of the symmetric Sq q tensor:

S (ki. k2) = K- (1- kt) k' Mh(k2, - k)
qjq1 kc2 c (k.-I)

S (ki, k2) = K2. (1- a2) k2 Sh(k 2, - k 1)
q2q2 k 2

q~~q2 -2 k k 2 S(k 2. -I 1(ki.k2) K 0- M~) k ki

(4.40')

Equation (4.40) is an important new result, since it

gives the relation between the flux and head spectrum based
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solely on the stationarity hypothesis (no small parameter

expansion involved). Furthermore, this result can be checked by

comparing it to the more general form (4.24) which was derived

for 3D isotropic media - and remains valid for 2D isotropic

media as well. Indeed the spectrum (4.40) does satisfy the

condition (4.24). with A = 0 and C = K2 kI2 S(k 2,-k). Finally,

it is instructive to compare (4.40) with the first order spectral

solutions from Chapter 3. By applying equations (3.18) for the

2D isotropic case, it is easily seen that the first order
. ~~~~~~~~~~~~~~~~~~~~~~~~. 

approximation for S is just equation (4.40) with K replaced

by KG.

We conclude that the first order spectral solutions

(3.18) are consistent with the conjugacy condition (4.40). at

least up to a constant factor (K/KG). We will show next that the

effective conductivity K must be precisely equal to the

geometric mean KG in a 2D isotropic medium, assuming only the

existence of K (i.e., stationary flow field). Therefore, we may

conclude here that the first order spectral solution is

consistent, in the sense that it satisfies exactly the conjugacy

property of two-dimensional isotropic flow systems. Note that

any higher-order stationary solutions should also satisfy the

conjugacy property in order to be consistent. The conjugacy

relations were given by (4.40) for second order moments only, but

equation (4.38) could be used to derive similar conjugacy



199

conditions on higher order moments.

4.2.5 Geometric mean effective conductivity for 2 isotropic
media:

In order to complete the previous analysis, we show here

that the effective conductivity, if it exists, must be exactly

equal to the geometric mean in a 2D isotropic medium. Consider

again equations (4.28) to (4.37). and denote the head potential

H. and * the streamfunction 4J expressed in the rotated

coordinates (Y1,Y2) = (x2,-x,). Restating previous results, we

have that (x) and $N(y) are governed by the dual equations:

v2 + v F - v = O
x -x

v2 + F *
Y -Y~-

Furthermore, the Darcy law:

9(X) = -X(_)-x f)

has also its dual counterpart:

9 (y) = - K(v) C Y (x)-7



200

where, according to previous definitions:

K (I) = - V K(E)- (4.41.a)

This leads us to define two "effective conductivities". one for

the original -equation, and one for the dual * -equation:

<K() -&x)>

(4.41.a)

We now borrow an argument from Natheron's indications of

a similar proof (Matheron, 1967 and 1984). First, observe that

the effective conductivity and its dual satisfy by construction:

K = 1/K

as can be seen from equations (4.28) to (4.38). Second, note

O-XI ^

that the effective conductivtites K and KA must take the form of

a functional 5~ involving possibly all the moments of K(x).

Furthermore, this functional must be of the same form in the two

cases, because the governing equations for and are formally
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identical, that is (x) depends on K(x) in the same manner that

*(y) depends on (x). Whence:

K =.5(X(x))

(4.42)

X= 5(1K()) = 1/K.

The functional in (4.42) must behave linearly with respect to

multiplication by a constant, e.g. (aK(x)) = a 5(K(X)): try

equation (4.42) with aK(x). We now use a special property of the

log-normal distribution, namely that K/(K> and K(.K 1 > have

identical distributions in terms of all N-points moments

(N = 1,2,---). This will in fact hold for any conductivity field

whose logarithm has a symmetric distribution. The required

result follows directly from equation (4.42), along with the

symmetry of the en K distribution, and the invariance of X with

respect to coordinates:

= 5(K(y) * K>)

<K -1 >

=<K> *K.CM

From the previous identity K = 1/K. this gives immediately:
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K I<K>I<K-1> (4.43)

Now, by using also the properties of the log-normal distribution:

f(x) = en (K(E)/KG)

KG = exp~en K> (geometric mean)

K> =KG e 2 /2 (arithmetic mean)

Ck-1>-1 K. e- 2/2 (harmonic mean)

we obtain finally the announced result:

1K KG C (4.43')
.~~~

Incidentally, it is interesting to notethat asimilar proof was

obtained for electric networks. by using the -concept of a dual

conductivity network (Marchant and abillard, 1975).

The fact that the effective conductivity is equal to the

geometric mean for a D isotropic medium with a symmetric

probability distribution of en K, was mentioned by atheron

(1967), archant and Gabillard (1975), and atheron (1984). The

proof given above follows and expands on a review published by

Matheron (1984). It seems natural to ask whether an exact closed

form relation for the effective conductivity could be obtained in
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more than 2 dimensions. An interesting formula for the case of

statistically isotropic log-normal conductivity in m-dimensional

space was suggested by Matheron (1967, Capt. VI, p. 132).

however with no proof. In terms of log-conductivities,

Matheron's conjecture can be re-stated as follows:

1 1(4)
en (K) = (1 men KA + en KH (4.44)

where KA is the arithmetic mean K>, and KH the harmonic mean

OCl>-i This equation is indeed exact for m = 1 and 2

dimensions, giving respectively the harmonic mean and the

geometric mean K = A KH. For 3-dimensions, Matheron's

conjecture gives exactly the same result as the first order
p.

spectral theory: K = KG exp(aT-/6). It is remarkable that these

approximations obtained by two different methods match exactly,

even though they might be inaccurate for large values of f.

Furthermore, as the number of dimensions goes to infinity, the

effective conductivity (4.44) converges to its upper bound, the

arithmetic mean KA. Thus, as the "dimensionality" of flow

increases from one to infinity, the effective conductivity

increases monotically from its lower bound iK = K e 2/2 to its

+2/
upper bound KA = KG e /2 This is indeed an attractive

feature of Matheron's formula. Incidentally, the proof that the

effective conductivity is bounded by Ke and KA was given by

Matheron (1967) based on energy arguments.
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In our view, the question of the adequacy of current

estimates of the effective conductivity tensor Kid for

realistic three-dimensional flow problems remains open. However.

anticipating the results of numerical simulations with 3D

isotropic media (Chapter 6), we stress the fact that the

effective conductivity predicted by the spectral theory (or by

Xatheron's conjecture) agreed very well with the numerical

simulation results for a wide range of log-conductivity

variability, up to f = 2.3. Based on this encouraging result,

we now investigate how atheron's conjecture (4.44) could be

generalized to include the case of statistically anisotropic

media.

4.2.6' Effective conductivity for general 3D anisotropic media:

The proposed generalization of (4.44) is based on the.

observation that the parameter m should -be Interpreted as the

number of degrees of freedom of fluid particles, rather than the

dimensionality of space. When the log-conductivity is a

three-dimensional ellipsoidal random field 'with anisotropic

length scales (%1 -X2 ,X 3 ), it seems reasonable to assume that the

degree of freedom of flow will depend solely on these three

length scales. Furthermore, the first order spectral results

obtained by Gelhar and MAxess (1983) for various anisotropy

ratios (X 1 AD, etc.) suggest that equation (4.44) could be
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generalized in the form:

enKl = a en KA + I (4.45)

where the coefficients ait and t must be somehow related to

the degrees of freedom available for flow in "parallel" mode (KA)

and flow in "perpendicular" mode (KH). for each of the three

principal axes of anisotropy (=1,2.3).

We now show how ait and Pt should depend on the

length scales (X 2 A3) for a few special cases, assuming for

convenience that the mean head gradient j is aligned with one of

the principal axes (.x 2,x3). In this case. Kij is a diagonal

tensor. The more general case of arbitrary orientation of J

will follow by using tensorial transformation rules under

rotations, assuming that Kij indeed behaves like a second rank

symmetric tensor (see Matheron 1967, and Gelhar and Axness,

1983).

Let us focus first on the behavior of K in certain

special cases where a close-form result is available. The

results given below were deduced in part from the work of elhar

and Axness (1983. Eqs. 4.52-4.60):
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ti)~ X Ad X2 = 3

en K1 =- en KA + en

A~~~AX

(ii) XI 21 X3 0:

en Ki = 1 * en KA + 0 * en = en KA

A~~~

(iii) XI X, X3 -4 0:

en Ki = en KA ein en

(id) Xit X2 X A

en Kit I e ^ n eA+X+ n .
X 2 KA x2 X

The first case above corresponds to a fully isotropic

medium; the second case corresponds to a horizontally stratified

medium with isotropic horizontal slices; - the third case

represents a vertically "stratified" medium analogous to a bundle

of independent vertical columns of circular section: and the

fourth case is a generalization of the previous one, with

vertical columns of ellipsoidal section.

In addition, the case of horizontal flow-perpendicular

to vertical strata obtains by taking 2 and 'X3 infinite which

yields K11 = =K as expected. Similarly, for flow parallel to

horizontal strata, one obtains K11I KA by taking XI and 2

infinite.
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The other principal components K22 and K33 may be

obtained in a similar fashion. For instance in the case (XIX 2 ,
A A 

?3 -C) K22 obtains from K by inverting (XI.X 2 ). and K33 by

inverting (Xt,>3). The result, given below, follows from the

first order spectral analysis of Gelhar and Axness (1983):

A X2 X3 a

X A2
KII K- X+ En K + X+ ene= b12 A ),InK2

X2 XI

K2 2 = -+X2 en KA X+1 2 H

K33 = n K

Taken together, these results indicate that the a ilpli are

functions of (X1 x 2 X3) that follow a few simple rules, listed

below:

(1) aii(j) is identical to aj(N') with ' obtained by

interversion of \i .

(2) aii(X) + it(h) 1 .

(3) a 1 (?X.X.X) = 2/3 (4.46)

(4) a (X.X,O) = 1

(5) a11 (XI- 2 1 ) = +2
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These remarks eventually led us to a more general rule satisfying

all the requirements in (4.46):

= ~~~~~~~~(4.47)

with the provision that a22 and a72 can be deduced from all

according to (4.46.1), and P 11=l-aii according to '(4.46.2).

Finally, by using (4.45) (4.46) and (4.47), we obtain a

generalization of atheron's conjecture, applicable to the

general case of 3D nisotropic media:

en KIi = at;(^ .n KA + (-aii?))en 

aii(A) = i . (4.48)

X2+

Equivalently, by using the relations:

K= KG e4 /2

KH K e/

valid in the case of a log-normal conductivity field, equation



(4.48) can be expressed in the simpler form:

jKii = G exp -- (1-2ai())1 | (4.49)

where ai was defined in equation (4.48) above.

Furthermore. the case where the mean head gradient J

is not aligned with the anisotropy axis can be resolved by

rotating the coordinate system to coincide with j and by

applying tensorial transformation rules as explained in Gelhar

and Axness, 1983. This yields:

A A I
K' =ai ajM K (4.50)

ii ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

where K is given by (4.48) or (4.49). The matrix [ail]

represents the rotation from to the principal axis. x and

K'j represents the effective conductivity tensor expressed in the

(x1,x2,x3) system of principal axes. Note that when the angle

(J.xj) is zero. we obtain Ki = a imajm KM as expected. i.e.,

the effective conductivity is a diagonal tensor in this case.

It is instructive to see how equations (4.48) to (4.50)

apply in specific cases of practical interest. We give below the
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three principal components of the effective conductivity tensor,

according to (4.49), for the case of' vertical-to-horizontal

anisotropy:

.=

As = X2 X

a = ^/

Kit = K22 = K expj+ 2 f+ } (4.51)

exP{ 1-2a
K30 = KG I

In particular, the case of imperfect horizontal stratification

(horizontal slices) obtains by taking a < 1. The perfectly

stratified case corresponds to a 0. The case a > 1 is less

typical, corresponding to a formation made of vertical elongated

lenses of cylindrical shape (or elongated ellipsoids with

circular section).

More complex cases, such as those involving three

different length scales. can be worked out directly from (4.49).

For example, a typical situation may involve a slight anisotropy

in the horizontal plane (1:2), and a significant anisotropy in

the vertical plane (1:8). Taking X = 8, = 4, X3 = 1 and

KG = = 2.3. the values 8.7, 5.4. and 0.30 for the effective

conductivities Kj1 ,K 22 ,K33 , respectively.
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In summary. we have extended a conjecture by Matheron

(1967) in order to evaluate the effective conductivity in a

three-dimensional anisotropic medium characterized by three

length scales (X1 X2 dX3). The proposed formula (4.48-4.50)

matches the results known to be exact for all cases where these

are available: arithmetic mean for "parallel flow". harmonic

mean for "perpendicular flow". and geometric mean for

two-dimensional isotropic flow. In addition. the conjecture also

coincides with the results of the first order spectral theory

(Gelhar and Axness) in all the special cases examined. such as

the case of anisotropy in the horizontal plane with the vertical

length scale much larger than the horizontal. Such a general

closed form expression for the effective conductivity was not

available before, and could be useful for applications.

4.3 New Closed Form Perturbative Solution for the Flux Spectrum:

In this section, we build on our previous analyses of

the flux spectrum to suggest a new linearization of the

stochastic flow equation for obtaining first order spectral

solutions. Specifically, the results obtained for 2D flow.

suggest that the flux spectrum in any number of dimensions could

be proportional to e (see equations 4.24. 4.25, and 4.40).

rather than the factor KG XI given by the standard spectral

theory (equations 3.18 or 4.26).
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Building on this observation, we will show here that the

flux spectrum can be obtained directly from a linear second order

PDE governing the flux vector q Solving this equation by the

first order perturbation method indeed leads to a factor e

rather than K Pi in the flux spectrum. This is thought to be a

more accurate result because of the "linearity" of the stochastic

flux-based equation (compared to the "non-linearity" of the

stochastic Darcy equation). The numerical experiments of

Chapter 6 will confirm the validity of the new linearization

approach. We now proceed to develop the new first order

solutions in detail.

The flux-based equation can be obtained by applying

linear partial differential operators to the Darcy and continuity

equations:

(4.52)

= 0.

For clarity of notation, observe that we use the liable operator

for the gradient (H) as well as for the divergence (scalar

product y!Q). The next step is based on the observation that the

vector Q/K is a gradient, so that its curl must vanish:

x (Q/K) Q. (4.53)
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In addition, from the mass conservation equation (4.52), the

gradient of the divergence of vanishes:

VUvvQ) = -. (4.54)

Note that equations (4.53) and (4.54) express the fact that /K

is a gradient (Darcy law) and Q is a divergence free vector (mass

conservation). By using the standard rules of vector field

operators (see for instance Gradshtein and Rhyzik, 1980, 10.31),

equation (4.54) gives:

v2 + X ( x Q) = (4.55)

The curl term in (4.55) can be decomposed as follows:

x ( x Q) = v x ( x (K * Q/K))

= v x K x (K) v(K) x Q/Xj

= x (1 vK x Q)

where the last step obtains by using equation (4.53). Plugging

the above identity in (4.55) gives:

2 Q + x (K (K)x Q) = 0 -

This equation is nonlinear in K, but can be made linear in the
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log-conductivity perturbation f(s) = en(K(x)/KG). Indeed, by

using K = KG ef it comes:

j2 _g x C x 2) =2. (4.56)

Equation (4.56) constitutes a system of three scalar

second order partial differential equations governing the flux

vector components. The most remarkable feature of this simple

equation is its linearity with respect to the log-conductivity

field f(x). In comparison, the standard spectral solutions were

based on the nonlinear" Darcy equation, of the form:

Q = -KGe *H

where the exponential ef is obviously a strongly nonlinear

function of f.

Equation (4.56) can be made more explicit by decomposing

the curl term as follows:

v x (Ef X 2) *f(v!Q) - Q(-f)

- (If-!) + ()!f.
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Using again v * = ) and plugging the above expression in

(4.56) yields:

!2Q- (vfV)Q = Qv2f - (Qz)zf j (4.57)

where 2 is the vector-Laplacian defined earlier, and v2 is the

usual scalar Laplacian. For convenience, let us express (4.57)

in tensorial forms

a2QI af aQI a2f (2 f

Ox x O7x ax = ax x Qi O x axQ 458aaJ a a ii i

It is easy to verify that (4.57) or (4.58) is indeed a valid

governing equation for flow, by plugging Q = -KvH and using

v-Q = 0 for mass conservation.

The linear form of the flux-based equation (4.58)

suggests that the standard spectral solutions for the flux vector

field could be improved by using (4.58) rather than the Darcy

equation for a perturbative spectral analysis of the flux vector.

In keeping with the basic premises of the spectral method, we

assume now that the input log-conductivity as well as the output

flux vector are stationary random fields. Defining the flux

perturbation:
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qi Qi 

and using the stationarity assumption Q constant), we obtain

the mean equation by averaging (4.58):

<Of a5 I>82 8f
_ <xJ 8x-J> = <- qi> ~ < dxiJ u>. (4.59)Ox Oxi - xOxj i Oxicxi

Note that the mean flux components Qj cancel out due to the fact

that <f> = 0 and 8i/x = 0. Next, the equation for the flux

perturbation obtains. by subtracting (4.59) from (4.58). This

gives after some manipulations:

a2q Q 82 f
+ O(Cr2 ~~(4.60)

ib ai ai ai ta &f

The term that was neglected on the right hand side of (4.60) is

the second-order perturbation:

,,~x~x + .q. q (4.61)

where we used the operator f to denote the perturbation of a

random quantity: - (Y) = Y - <Y>.
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Now, the first order spectral solution for the flux

field is readily obtained by applying the spectral representation

theorem as in Chapter 3. This gives, from (4.60) with the terms

on the right-hand side neglected:

ki(km~.)

fir,~~~~~~~~~~~~~~~~~~~~~~~~~~~~.'

dZqi(k) = qi (k k ) dZf

Sq q {Q - k2m.1 - 2 Sfm) ff). (4.62)

Note that the flux spectrum in (4.62) is entirely determined once

the effective conductivity tensor is known. Recall that the

effective conductivity relates the mean flux to the mean head

gradient via:

Qi -Kim m-

For the particular case where the mean head gradient coincides

with the principal axis of the K tensor (say x). equation

(4.62) simplifies to:

(4.63)



where Q = K11 J should be used.

Comparing now (4.63) to the result from the standard

spectral result (3.18); it appears that equation (4.63) obtains

from (3.18) by replacing the factor (J 1) by b. Thus, the

shape of the spectrum is not affected by the new approach, and

the flux correlation functions will remain unchanged. On the

other hand. the flux standard deviations aq previously obtained

in Chapter 3 must now be multiplied by the factor (K,,/K)

according to the new approach.

It is instructive to compare (4.63) to the standard

spectral theory (3.18) by examining the behavior of the ratio

Kit/KG. First note that both (3.18) and (4.63) give S = 0 for
G ~~~~~~~~~~~qq

the pathological one-dimensional case (q must be constant in

order to satisfy mass conservation in one dimension). For the 2D

isotropic case, (3.18) and (4.63) coincide exactly since K11 =K

in this case. For the 3D isotropic case we have

K/K 0 = exp(a2c/6) and the discrepancy will increase with 

The discrepancy between (3.18) and (4.63) will be even higher in

the case of strongly anisotropic media, such as flow

perpendicular to perfect stratification (Ki/KC=e /2) and flow

paa l t + ra/2parallel to perfect'stratificatilon. (K11ACme
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Let us illustrate these remarks for two simple cases

using the notation (') for the standard theory (3.18) and (2)
q q

for the new result (4.63). For a 3D isotropic medium with a f=1.

the ratio of a(2),l(l) is about 1.2. In the case of flow
q q

parallel to stratification in a perfectly stratified medium, this

ratio would rise to about 1.7. We conclude that the discrepancy

between (3.18) and (4.63) is quite significant as far as the flux

standard deviations are concerned. It seems reasonable to assume

that the most accurate formula is (4.63). since It is based on a

"Utnear" equation governing the flux vector. The forthcoming

numerical experiments (Chapter 6) will confirm that the standard

solution (3.18) appears to underestimate the flux variances,

whereas (4.63) is in better agreement with numerical results.

Incidentally, the new result obtained here indicates

that the spectral solutions of stochastic solute transport should

be modified as well. In particular, the longitudinal

macrodispersivity for 3D solute transport given by elhar and

Axness (1983):

aft 
All = _ (7 = Kti /K) (4.64)

should now be revised according to equation (4.63). as follows:

A11 = 42.5f (4.65)
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It is interesting to note that the new macrodispersivity given by

(4.65) increases monotonically with of, whereas the expression

(464) of Gelhar and Axness presents a maximum at some positive

value of Of. Beyond this value, the macrodispersivity would

decrease with increasing variability. This behavior could not be

explained on physical grounds, which -makes the new solution

(4.65) more attractive.

Along the same lines, note that the coefficient of

variation of the flux component (a Q) also presents a maximum

with respect to a according to the standard solution (3.18). In

contrast, this coefficient increases monotonically like Of when

(4.63) is used instead. Again, there' seems to be no intuitive

explanation for the occurrence of a maximum in aq /Qi as of

increases. We conclude that the proposed spectral solution for

the flux (4.63) seems preferable. This conclusion is also

justified by observing that the inearization of e used in the

standard spectral perturbation method was not required in the

present approach. However, it should be recognized that other

linearization approximations involved in the solute transport

equation were not eliminated or Improved by the present approach.
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4.4 Finite Size Effects: Band-Pass Self-Similar Spectra.
Spectral Conditioning and Uncertainty.

4.4.1 Motivation and approaches:

One of the major difficulties encountered in the

application of spectral methods to field cases arises from the

fact that groundwater flow fields (and solute concentration

fields) are not, in reality. stattonary random fields over

infinitely large domains. Here, the term "stationary" is

understood in the usual sense of statistical homogeneity, or

translation invariance in probability. Recall that the spectral

solution method, based on the representation theorem of random

functions in Fourier space, required assuming the existence of

stationary solutions over infinite domains in order to solve the

governing stochastic equations in closed form (Chapter 3, and

previous sections of Chapter 4). Other methods were developed in

the literature to deal explicitly with non-stationary problems,

and they may be more appropriate in cases of irreducible

non-stationary behavior (e.g., drawdown near a pumping well).

For instance the approximate Green's function method of Dagan

(1982), and the numerical solution of approximate moment

equations (Townley 1983, McLaughlin 1985) can be used to obtain

non-stationary solutions in the case of small variability. These

solution methods have their advantages. However, they do not

possess the analytical simplicity of the infinite domain spectral

approach (see literature review in Chapter 2).
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Due to the approximations involved, the spectral method

seems best adapted to the study of "large scale" flow and

transport phenomena where the effect of local inhomogeneities on

the overall pattern is minimal. However, field contamination

studies usually focus on phenomena occurring on a finite scale.

The scale in -question may well be imposed by the geologic

structure itself, or by policy considerations (target time for

plume prediction). Moreover, certain physical phenomena like

solute transport or unsaturated infiltration from local sources

necessarily take place over some finite scale euotutng in time.

In addition, experimental studies published in the

literature indicate that the statistical properties of

conductivities or transmissivities measured at different scales

(or by different researchers!) may vary greatly. This is

especially true for the "correlation scale", as noted in the

previous data review in Chapter 2. The reader is referred in

particular to section 2.3 for more complete references on field

observations and data collection.

In our view, these difficulties indicate that, at least

in some cases, the apparent correlation structure of the

conductivity field inferred from field data depends on the scale

of the observation. This suggests that a similar phenomenon may

occur physically in transient flow and/or mass transport systems



223

dominated by local sources. Consider for instance a

contamination plume originating from a local source, and

convected in a steady groundwater flow field through a

heterogeneous porous formation. This is illustrated in Fizure

4.3 (top). As the plume grows and invades larger regions of the

porous formation, it "responds" to larger and larger

heterogeneities. At early times, the plume's spreading process

is being excited" by small heterogeneities which appear large

with respect to the plume. Later on, the same small

heterogeneities appear as mere fluctuations, with respect to the

larger plume. In summary, as the plume grows and spreads, there

is a change in the typical size of those heterogeneities that

affect the global trends of the plume, and those that contribute

to random-like mechanical dispersion within the plume.

Accordingly, the apparent macrodispersion of the plume is likely

to depend on the size or time scale of interest.

The phenomenon of scale dependence may also play a role

for "large scale" characterization of groundwater flow fields.

Figure 4.3 (centerpiece) illustrates that the apparent mean and

the trend of the log-conductivity may depend on the size of the

domain of interest in a given subsurface formation. To

illustrate this scale effect, we have used borehole data from the

Mont Simon formation (Gelhar. 1976, and Bakr, 1976); the figure

shows that, although the mean log-conductivity appears constant
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Figure 4.3: Illustration of finite-size effects:
(a) Contamination plume
(b) Log-conductivity field sample function
(c) Band-pass self-similar spectrum
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at the scale 200 feet, there exist pronounced trends in the

apparent mean log-conductivity at the scale 75 feet. This, in

turn, suggests that the effective "large scale" conductivity

could depend on domain size (and location) within a given

regional formation.

We now briefly indicate how the standard spectral theory

could be manipulated to incorporate finite-size effects. A first

step in this direction consists in using band-pass spectra for

the log-conductivity field, with a low wavenumber cut-off

proportional to the inverse size of the domain (kmin 1/L).

This is illustrated on the bottom part of Figure 4.3. The high

wavenumber cut-off (k l1) takes into account themax

measurement spacing, or possibly the typical scale of

conductivity measurements. In addition, the band-pass spectral

representation of finite-scale phenomena will be considerably

simplified by assuming a setf-similar behautor of the spectrum

within the range of scales of interest. This will be Justified

shortly by examining some available spectral data. Note,

however, that the self-similar behavior may not hold for very

large scale phenomena. In the latter case.. the infinite-domain

spectral theory could be applied safely provided that

L 1 << S 1, where el is the wavenumber below which the

spectral content of the log-conductivity becomes negligible. A

very large measurement network may be required in order to detect
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the actual value of the low wavenumber cut-off el, if such a

value exists at all.

Finally, the "band-pass" spectral approach could be made

more useful if it were possible to incorporate in a simple manner

the dependence of the "mean" log-conductivity field with respect

to the size of the domain under consideration (see centerpiece in

Figure 4.3). This motivated the idea of "spectral conditioning".

leading to a clear distinction between uncertainty and spatial

uartability. The main features of this new approach will be

outlined towards the end of this section. building on the simple

band-pass self-similar model.

4.4.2 Band-pass self-similar spectra and field data:

Figures 4.4(a.b.c) display one-dimensional

log-conductivity spectra obtained from three sets of borehole

data in the Mont Simon aquifer (reproduced from Bakr's thesis,

1976). For Fgure 44.a. the domain size was L 303 ft. with

data spacing e = I ft. The log-spectra density is plotted

against the log-frequency in cyclesfeet units (wave number = 2r

x frequency). The frequency range shown in the figure is

approximately 51. to 0.5e81 cycles. The straight line

superimposed on the spectral data represents a self-similar

spectrum with exponent one,-that is:
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Figure 4.4a: Measured one-dimensional spectrum of log-
conductivity at a borehole (Circles), in
the Mt. Simon aquifer, from Bakr (1976).
The straight line corresponds to a self-
similar spectrum with exponent a 1.
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Figure 4.4.b: Same as Figure 4.4.a. for another set of data.
The straight line corresponds to a self-similar
spectrum with exponent a 1.
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Figure 4.4.c: Same as Figure 4.4a and 4.4b. for another set of
data. The straight line corresponds to a self-
similar spectrum with exponent a = 1. I
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- S
Sff(k) =- a I. (4.66)

It may be nstructive at this point to briefly analyze

the concept of self-similarity. and the meaning of the

coefficient a (slope of the spectrum in a log-log plot).

Self-similarity, or fractal behavior, can be thought of as the

property of certain physical phenomena to replicate themselves on

many scales. This means that certain dentifiable fluctuations,

structures, patterns, etc., appear to replicate themselves at

different length scales, provided a simple similarity

transformation. Mandelbrot (1983) exposed the theory of

deterministic and random fractal geometry, and investigated its

manifestations in nature. In particular, andelbrot proposed to

use the Fractional Brownian Motion (FBM) as a random fractal

model of landscapes, and in other applications including

hydrological time series and geophysical spatial series

(Mandelbrot and Wallis. 1969). More recent studies along these

lines include Mandelbrot et al. 1984 (metal fracture surfaces).

and Burrough 1981 (spatial analysis of soil granulometry).

The Fractional Brownian Motion is a special class of

stationary-increment random process possessing the property of

self-similarity (more appropriately "self-affinity"). That is.

an FBM process f(x) is self-similar if its increments are

statistically invariant under the transformation
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Af(x) + X-HAf(x). The parameter H is the Hurst coefficient

(or Holder coefficient, as Af satisfies a Holder condition).

A complete review of the properties of one-dimensional

FEM processes can be found in Mandelbrot and Van Ness (1968).

Note in particular that the usual Brownian motion corresponds to

H = 1/2. The FBM processes obtained for 1/2 < H < 1 are

"9persistent" (positively correlated increments), while

o < H < 1/2 gives "antipersistent" processes with negatively

correlated increments. The spectrum of the FBM is precisely that

of equation (4.66) with a = 2H 1. Observe that the Hurst

coefficient is close to zero for the log-conductivity spectra

shown in Figures (4.4), indicating a very noisy, anticorrelated

behavior within the range of scales available to us

(1 ft - 300 ft). This finding seems in accordance with the

survey by Burrough (1981). who obtained a low Hurst coefficient

for sand and clay fractions (H ~ 0.2).-

Incidentally, note that the Hurst coefficient could be

evaluated directly from sample functions in physical space rather

than spectral densities in Fourier space. Indeed. for an FM

process, the "core function" (variance of increments) takes the

form:

yH(f) 1 12H
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where F is the lag distance. For the data of Figure 4.4. the

core function would be nearly flat since H O 0. However, this

would need to be checked directly by plotting the core function

without detrending the log-conductivity data. Other methods, such

as R/S analysis", could also be applied: see andelbrot (1983)

for reference.

At any rate, the available data shown in Figures (4.4)

do indicate that the self-similar spectrum (4.66) with exponent

one is a reasonable model, at least within the range of length

scales 1 - 300 ft. One should keep in mind that the spectral

densities obtained at wavenumbers on the order of inverse domain

size or below are unreliable. In our opinion, even the estimated

confidence intervals (dashed lines in Figures 4.4) cannot be

trusted in the low wavenumber region of the spectrum.

According to the previous- discussion, the

one-dimensional spectrum of log-conductivity can be approximated

as a band-pass self-similar spectrum with-Hurst coefficient zero:

-1 1

( ) SC/jkj for L 1 k 5 C
Sff (kl) J . (4.67)

O0 otherwise

Furthermore, we now adopt the view that the large scale cut-off L

represents the size of the region in which flow or transport

takes place (which may evolve in time), while e represents some
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fixed small scale on the order of measurement spacing or perhaps

sample size. The intercept of the spectrum at the origin (in a

log-log plot) could be thought of as an intrinsic measure of

variability of the formation independent of the particular

cut-off scales L and e. Accordingly, we define the "intrinsic

variance" of log-conductivity as:

ao S. (4.68)

On the other hand, the "observed" variance of the

log-conductivity within the range of scales (e.L) can be computed

by integrating the ID band-pass spectrum as follows:

e~ 2

a =2 - dki= 2 n(L. (4.69)

Note that a2 is scale-dependent, being a slowly varying functionf

of the ratio (L/e). In particular, it is interesting to note

that the "observed" variance of the log-conductivity increases

logarithmically with domain size.

We now generalize this approach for the

three-dimensional case, assuming that the log-conductivity is

statisttcatly sotroptc. First, note that the one-dimensional

spectra displayed in Figure 4.4 were obtained by Fourier
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transforming the log-conductivity data sampled along a single

direction. This yields a one-dimensional marginal spectrum,

related to the full 3D spectrum by:

S'C)(k1 ) = Sff(kl.k2 -k3) dk2 dk3

Let us now

self-similar

counterpart:

define a

spectrum

three-dimensional

analogous to

isotropic band-pass

its one-dimensional

2

IG
Sf f (k) = 2rk*

0

for L k 1

otherwise

(4.70)

where k is the radial wavenumber:

k Jki+2+k.:

By plugging equation (4.70) into the equation preceeding it, one

obtains the one-dimensional marginal spectrum corresponding to

(4.70). It turns out that this spectrum approximates quite well

the one-dimensional spectrum of (4.67). at least far enough from

the cut-offs, as shown below:

72.~~~~ 1

S 1(k 1) = -2 i ] k 1 « C1 .
(k2+L ) (k2
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Since the above spectrum agrees fairly well with the ID

spectral data displayed in Figure 4.4. this Justifies our choice

of the 3D spectrum (4.70) - assuming only that the formation is

statistically isotropic. The more general case of anisotropic

media will not be discussed here.

To complete this preliminary investigation, note that

the "observed" finite-domain variance of the log-conductivity in

3D space can be obtained by integrating the isotropic spectrum

(4.70), leading to the same relation as in the D case:

Of = 2 In (L/1) (4.71)f o

where L - and e are now the radial cut-off scales in 3D space.

Again, note that a. increases (logarithmically) with domain

size. We are now ready to investigate the stochastic flow

problem with the one-dimensional and three-dimensional band-pass

self-similar spectra defined above.

4.4.3 Stochastic flow solutions for band-pass self-similar
spectra:

We now proceed to develop first order spectral solutions

following the method already used in Chapter 3. It is important

to note that the log-conductivity fields having band-pass
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self-similar spectra (4.67) or (4.70) are, by construction.

statistically homogeneous in infinite space. As in Chapter 3. we

assume again that the mean log-conductivity is a uniquely defined

constant, as well as the mean hydraulic gradient. However, we

must emphasize the fact that these assumptions do not take into

account the influence of domain size on the "observed" mean

values. Admittedly, the present approach will be only of limited

interest if one insists on stationarity in the mean as a

requisite for obtaining tractable solutions. Postponing to a

later stage this delicate point, we examine here strictly the

solutions obtained by applying the standard first order spectral

method with the band-pass self-similar log-conductivity spectra

defined above.

For the head variance, the effective conductivity, and

the longitudinal macro-dispersion of a convected solute (as

defined by Gelhar and Axness, 1983), the calculations are

straightforward and need not be detailed here. Recall only that

J represents the constant mean hydraulic gradient (expectation

or infinite domain average). For one-dimensional flow, with the

log-conductivity spectrum (4.67), the head variance is found to

be:

|°h = a0 J2 (L2- 2) (4.72)
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For three-dimensional flow, with the isotropic spectrum (4.70),

the head variance is:

Sao (L2 (4.73)h - 3 O J2(L2-82)

In comparison, the results obtained respectively for a

iD hole-exponential model (Gutjahr and elhar 1981) and the

3D Markov spectrum were, respectively:

o2 o2 J2 2 (474)

a = 1 a2_J2X2 (4.75)

Note that the X's do not necessarily represent the same length

scale in (4.74) and in (4.75). Nevertheless, it is interesting

to note that, when << L in the band-pass models, then the

results obtained with the band-pass and continuous spectra are

similar in form if one replaces by and X by L. Since L

represents the domain size in (4.72) and (4.73), the head

variance obtained with the band-pass spectra appears to depend

mainly on large-scale structures, and not on small-scale

fluctuations. For instance, assuming e L in (4.73) yields the

simple result:
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u2h~ . ta2 J2L2 (4.76)Ch 3 0r' JL

where o is the "intrinsic" log-conductivity variance and does

not depend on the domain size.

For the 3D effective conductivity. one obtains formally

the same result as with the 3 Markov spectrum used in Chapter 3.

namely:

p... 

K11t KG exp(cT/6). (4.77)

However, remember that a2 now represents the observed

finite-domain variance of the log-conductivity within the range

of scales (e.L). Accordingly, plugging (4.71) in (4.77) gives a

scale-dependent effective conducttvtty:

I o20/3 1/3

KS = KG 'tL (4.78)

For the data of Figure 4.4.a. the intrinsic

log-conductivity variance cO is on the order of 0.06. so that the

rate of growth of the effective conductivity with domain size is

quite slow (+10% for an increase of L by 2 orders of

magnitude). Note however that this example corresponds to a

mildly variable formation (2 = 0.67 from equation 4.71 with
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a = 1 ft and L = 300 ft). For highly variable media, we expect

2values of o on the order of 0.3 - 0.6. In these cases the

effective conductivity (4.78) could increase by a factor of two

or more as the domain size L increases by two orders of

magnitude.

It is interesting to note that this "size" effect is

captured by (4.78) based solely on the standard spectral theory

of stattonary flow fields previously developed in hapter 3. The

increase of effective conductivity with domain size can be

interpreted as follows. When the size of the domain of interest

is allowed to grow, larger heterogeneities are included. The

high conductivity zones outweight those of low conductivity. due

to the high degree of freedom of fluid trajectories in- a

three-dimensional isotropic medium.

In one dimension, the situation is reversed. Indeed.

the one-dimensional effective conductivity is the harmonic mean:

KI = I Kg exp(-a,/2). (4.79)

Expressing, as before, the observed variance al in terms of the
f

intrinsic variance o. we obtain the D effective conductivity:
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_02

|KJJ, *gL | (4.80)

Thus, for ao on the order of 0.3 - 0.6, the effective

conductivity of a one-dimensional flow system will decrease by

one order of magnitude when the domain size is increased by two

orders of magnitude. This is due to the low degree of freedom of

fluid trajectories in one dimension. As domain size is

increased, larger heterogeneities are included, and the low

conductivity zones outweight the high conductivity zones

(consider what happens If an impervious inclusion is placed in a

1D flow system). Finally, the two-dimensional case appears to be

special. The effective conductivity is equal to the geometric

mean, and does not depend on domain size, unlike the 1 and

3-dimensional cases.

The same approach can be used to evaluate the

macro-dispersivity of a convected plume. Following Gelhar

(1987), the longitudinal macro-dispersity at large tes is given

by:

+W~~~~.

All = t|JfSqlq1 (O.k2,k3 ) dk2 dk3. (4.81)
-e
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Using the flux-based flow equation (Section 4.3) and plugging the

3D Band-Pass Self-Similar spectrum eventually leads to:

Sqlq&(h) = I[1 - )*1 (4.82)

with the provision that S q vanishes outside the avenumber

range (L 1,1)* Plugging (4.82) into (4.81) and integrating

gives finally:

Al = * (L-e). (4.83)

This last result suggests that the macro-dispersivity could grow

'linearly with the size of the plume, due to the fact that a wider

range of conductivity heterogeneities will contribute to

mechanical dispersion as the plume grows. However, equation

(4.83) is admittedly oversimplified, due to the "large time"

assumption that was used. Nevertheless, the result does suggest

that the macro-dispersivity could increase in time as:

IA1u(t) * L(t) (4.84)

where L(t) is some typical global scale characteristic of the

plume. This relation indicates the occurrence of a positive
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feedback: a large macro-dispersivity enhances spreading, which

in turn yields a larger macro-dispersity.

In summary, the new spectral solutions obtained with

band-pass self-similar spectra reveal the influence of domain

size. For a given heterogeneous formation, the analysis suggests

that the 3D head standard deviation and the longitudinal

macrodispersivity increase like domain size, and the 3D effective

conductivity increases slowly as a small power of domain size.

In one dimension, though, the effective conductivity decreases

with domain size. This behavior was found to be physically

realistic based on intuitive arguments.

4.4.4 Uncertainty and "spectral conditioning"

We now proceed to develop further the finite-domain

approach, building on previous results obtained with the

Band-Pass Self-Similar spectrum. Our purpose here is to show how

the effects of local trends could be taken into account by using

the idea of "spectral conditioning". This will be illustrated

summarily for the simple case of one-dimensional flow in a random

self-similar medium, with a prescribed uniform mean flow at the

regional scale.
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The idea of "spectral conditioning" - to be described

shortly - was borrowed from a similar technique used in the

Fourier-Space version of the Renormalization Group Theory of

critical phenomena in statistical mechanics and quantum physics

(Wilson and ogut. 1974; Wilson, 1975; Wilson. 1983). Wilson's

version of the Renormalization Group Theory involves defining an

average state (magnetization) over regions of a given size (L)

by truncating a spectral representation to include only the low

wavenumber range (O • k L ), and obtaining effecttve

properties (a Hamiltonian) by conditionally averaging over local

fluctuations (k > L ). In fact, this is Just the first step of

the whole renormalization procedure, which involves iterating and

re-scaling to advance towards a fixed' point solution. The

approach proposed here does not involve the whole recursion, but

uses the idea of conditioning low frequencies while solving for

higher frequencies.

Consider now the one-dimensional stochastic flow

equation:

d2H d d 
(4.85)

where the log-conductivity F(x) is a random field whose spectrum

is Band-Pass Self-Similar, with cut-off wavenumbers

(e k 1 ). Suppose we are interested in finding some
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statistical characteristics of the flow within a domain of size

L comprised between e and i. This. is illustrated in

Figure (4.5). The small scale corresponds to the measurement

scale or spacing; the intermediate scale L represents the size

of the flow domain 'of interest (perhaps the size of a

contaminated zone); and the large scale is a regional scale

such that the log-conductivity spectrum is roughly self-similar

up to fluctuation scales on the order of S. If a piece of size

L of the sample function F(x) is isolated as shown in Figure

(4.5). it will appear that the mean value (x) estimated over

the domain of size L is different from the regional mean <F>.

Our main purpose is to incorporate this kind of effect in the

stochastic equation (4.85) by way of "spectral conditioning".

We now develop the spectral conditioning approach to

solve equation (4.85). The key to this approach. consists in

writing the spectral representation of F(QE). a

stationary-ergodic random field, in such a way that the

wavenumbers above and below are clearly distinguished:
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Figure 4.5: Illustration of the spectral conditioning method:
(a) Spectral density versus wavenumber on a

log-log plot
(b) Sample function of log-conductivity in

space (Mt. Simon data).
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F(x) = (F> + (x) f(x) = F> + f(s)

fRX) kJ ex dZF(k) (4.86)

jkxc
f(x) = e dZF(k)

L 1 I kI•Cl

In these equations, <F> represents the ensemble average of

log-conductivity, equivalent to Infinite domain- average by

stationarity-ergodicty of F(x) (in practice, this corresponds to

the regional mean). The perturbation f(x) was split in two

components. The first component is a smooth trend f(x) involving

only those fluctuations of scale larger than domain size L. and

the second is a rapidly fluctuating component f(x) involving

higher wavenumbers. As the size of the domain becomes large (on

the order of the regional scale or larger) this representation

yields the usual infinite-domain spectral representation with:

'F(x) -0

f(x) f f(x)

F = <F> + f(x).

Let us now "freeze" the local trend (x) by assuming

that the Fourier coefficients at low wavenumbers are known. This

procedure boils down to conditioning the local log-conductivity
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field with respect to its large scale fluctuations and to the

specific location of the local domain of interest. Say for

instance that x defines the location of the center of the flow

domain:

xO L x ( XO + L

Thus. f(x) is known when the position x of the domain and all

fluctuations on the order of domain size or larger are known.

Plugging (4.86) in (4.85) while holding f(x) fixed yields a

stochastic equation driven by the local fluctuations f(x) as

will be seen shortly.

We now introduce a spectral representation for the head

process as well. Using the same model as (4.86) gives:

H(x) = H(x)> + h(x) + h(x). (4.87)

Plugging (4.86) and (4.87) in (4.85) gives finally the stochastic

flow equation in the desired form:

d 2'H> d2 ' d2 h + d df] dHD+ dh dhl
dX2 dX2 dX iP+ + -+ d =O . (4.88)

Upon conditional averaging (in the sense described earlier), the

conditional fluctuations f and h vanish. This yields a
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conditional mean equation:

d 2 (H>+ d + df dH>+ df dh (df dh I]

dX2 dx2 dxdx dx d dx dx
(4.89)

Note again that the "bar" sign stands for a conditional spectral

average as defined In (4.86). By subtracting (4.89) from (4.88).

one also obtains the equation governing the local head

perturbations h conditioned on regional scale fluctuations:

d2h df d<H> dfd dFdh { dfdh df dh1
d dx dx dx dx + xd E|d xE xd |

Neglecting the second order perturbation term on the right-hand

side gives finally:

d2h df d(H> df dh + df dh = O
dX2 dx dx dx dx dx dx

(4.90)

Before attempting to solve (4.90) for h(x). we need

some information on h(x). This Is obtained by solving (4.89)

for (x). with f(x) considered now as a random function (not a

prescribed deterministic function). This may be called the

"unconditional solution step", where f(x) is allowed to vary

randomly over all possible fluctuations larger than L. and-over

all possible locations x (midpoint of the local flow domian).
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Accordingly, we now apply ensemble averages to equation

(4.89) in order to obtain the uncondtttonal ensemble mean and the

uncondtttona perturbation equations:

d2(H> df dh df dh
dX2 <dx dx

d1h +df dH> -dfdh dfdh|}
d dx dx = dCd x Cd -dIX 2 +

df dl _< df dh>Idx dx dx

We now neglect the high order perturbation terms appearing on the

right-hand sides, as we did in the formal "small parameter"

expansion developed in section 3.1 of Chapter 3. Thus, we obtain

finally:

d CH> = O (4.91)
dx2

and

IdX - df d<H> 0. (4.92)

Equation (4.91) implies that the ensemble mean (or

regional) hydraulic gradient is constant:
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= d>dx (4.93)

Plugging this into equation (4.92) governing the perturbation of

the local mean head. yields the simple result:

(4.94)

dR
This relation makes sense Intuitively. The term (- d)

represents the perturbation of the local mean hydraulic gradient

with respect to the regional gradient (J); it is positive if

the local mean log-conductivity is smaller than the regional mean

(f negative). Thus, the local mean hydraulic gradient will be

higher than the regional mean if the local mean log-conductivity

is lower than its regional mean (the term "local" refers to

domain size L). This behavior is suggested more directly by the

form of the Darcy equation in one-dimensional space: the

hydraulic gradient is inversely proportional to the conductivity.

We may now attempt a spectral solution of the

condtttonal perturbation equation (4.90), by plugging (4.93) and

(4.94) while holding f(x) fixed (non-random). This gives the

required stochastic equation for the ocal bead perturbations:

1. -

d2h d d 

dX2
*(4.95)
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It is important to note that T(x) is by construction a slowly

varying function. compared to the rapid oscillations of f(x).

This suggests approximating equation (4.95) by letting d/dx be

some average slope, and some average level of (x) within

the flow domain. as illustrated in Figure (4.5).

With this provision, equation (4.95) becomes a linear

stochastic equation which can be solved by the standard spectral

method in Fourier space. The result is given below in terms of

Fourier-Stieltjes increments conditioned on the values taken by

T and df/dx:

dZK(k) - (4) Jk d `(k). (4.96)

k2
- J

This gives the conditional head spectrum:

Sr (k) J2(1_$2 f1 w(k) (4.97)

k 2 +(df ) 2

where S. (k) is the conditional band-pass self-similar spectrum

oa/k. vanishing outside the range L k e 1. Note that the

low wavenumber range (k 5 L ) has been incorporated entirely

into the terms T and df/dx. the local mean level and local

trend of log-conductivity.
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The condtttona head variance obtains directly from

(4.97) by integrating over the wavenumber range (L 1,C1 . This

.~~~~~~~~~~~

gives after some manipulation and replacing (1-f) by e 

-j2 -2 e

Incidentally, it is interesting to note that this expression

gives the correct head variance as L goes to infinity (W).

Indeed in this case, the local and regional means coincide,

yielding 1- and df -O. and it can be seen from a Taylor

development of the logarithmic term that the right-hand side of

(4.98) will coincide exactly with the previous result (4.72).

Recall also that. the conditiona log-conductivity variance,

obtained by integrating the log-conductivity spectrum in the

range L k 5 C depends on domain size as in equation

(4.69). that is:

2 o2 en(L). (4.99)

The last step of the spectral conditioning method

consists in analyzing the local head variance (4.98) as a random

parameter when T(x) is viewed as a random field. Indeed,

remember that 1 was defined in (4.86) as the difference between
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a local and regional mean: the spectral content of f(x)

coincides. with the spectrum of the log-conductivity in the

wavenumber range 1 k L 1. Accordingly, 2h can be viewed

as the local head variance due to spatial variability at the

local scale L; at the same time, also appears to be random at

the regional scale Y. The randomness of a arises fromh

uncertainty among all possible realizations of the regional

formation, and should be understood in the Bayesian sense, that

is in terms of rtsk analysts.

In order to evaluate explicitly the uncertainty on °ht

let us compute the ensemble variance of the random terms

appearing in (4.98) for the case L 5E

Var(T) = 202 en(-)

df 2 1 1
Var(t) = °° L2 f2 )

Plugging these values into (4.98), we obtained after some

manipulations a rough estimate of the coefficient of variation of

the local head variance:

~~~ I' ~~~~~en{ lo( 1-62 ) .
C.V.(oa') 1 - exp{-22a08n (l/e)} * (4.100)

a20(1-&2)
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where e is the length scale ratio LA. Using hypothetical data

for a fairly heterogeneous formation (af o 0.5) with a domain

size about one order of magnitude smaller than the regional scale

(e = 0.1), yields a C.V. on the order of 100%. In addition.

equation (4.98) shows more specifically that the local head

variance is larger than its expectation if the local mean of the

log-conductivity is smaller than the regional mean value.

A similar analysis can be carried out for the effecttie

conductiutty. First, the Darcy equation can be used to define a

local effective conductivity Keff, conditioned on regional scale

eff' ~ ef
fluctuations. Second, the unccrtatnLy on Keff can be computed

by averaging over the unresolved fluctuations (terms involving

T(x)). Using previous results (equation 4.94). the Darcy

equation can be expressed as:

(T~f) 'F + dh
Q - KG e * (3 J+ 3 +

where the flux Q is necessarily constant for ID flow. Taking

conditional expectations with respect to both sides (with (x)

fixed), and linearizing the exponential term gives:

-KG 2 1+ 2
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Using previous definitions, the second term on the right can be

computed by spectral integration as shown below:

~dh
f dx = f jk <dZf-dZp.

L lflkj5e 1

Plugging equation (4.96) for dZj. and using the band-pass

self-similar spectrum for the log-conductivity finally leads to:

i
QKeff J

where the local effective conductivity is given by:

K~~~~~~ afl E G*{ d@o n(L)Kef f 'C 

-(1-T)*2a2O n [ J] +a2e2
[. I+a2L2 I

and a = df/dx. After rearranging and replacing terms like (1-T)

by exponentials, we obtain a more realistic expression for the

local effective conductivity as follows:
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K I.

Keff = -

F r T - 2 7 An _ r12T 2 7

KGS *exp (G-2J').ain(L) + e'" 4 ecTo ereja . ). (4.101)
l . J

This effective conductivity is local to the flow domain

of size L, in the sense that it is conditioned on the local

mean (KG e) and the local trend (a = df/dx). As the domain

size increases, these parameters converge to the regional mean

values (T= 0 and a = 0). In that case, equation (4.101)

converges to the harmonic mean:

2~n- _a2/-aolen( /2
KH =KG e = KG e f

as expected. Moreover, equation (4.101) shows that the local

effective conductivity drops below the arithmetic mean if the

local mean level of en K happens to be smaller than the regional

mean ( < 0). Finally, the variance of Keff could be computed

from this equation by letting T(x) be random, and applying

ensemble averages to resolve the uncertainty due to low

wavenumber components (regional scale fluctuations).
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In summary, the "spectral conditioning" approach based

on a band-pass self-similar model of the log-conductivity

spectrum was used to evaluate the effect of domain size on "large

scale" flow characteristics. This led to closed form expressions

for the head variance and the effective conductivity in a ftntte

domatn. Moreover, we have shown that these statistical

quantities were themselves subject to uncertatnty due to

heterogeneities on the order of domain size or larger. The

solutions obtained for the case of one-dimensional flow

incorporate such uncertainty in the form of two simple random

parameters:

f(i) The local mean level" of conductivity ( e);

(ii) The local mean slope of log-conductivity (a=df/dx).

These local parameters were defined by smoothing out the local

fluctuations of en K. i.e. those fluctuations whose wavenumber

is higher than the inverse domain size. Their spectral content

is concentrated exclusively in the low wavenumber range. which

decreases as domain size increases.

The whole approach leads to analytical results that

distinguish the uncertainty and spatial variability of phenomena

taking place over finite scales. This may be particularly

relevant for the case of a subsurface contamination plume
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spreading from a local source, where there is some uncertainty

about the location of the center of mass and the extent

(macro-dispersion) of the plume at early times. It would be

interesting to examine how this uncertainty decreases as the time

and length scales of the plume increase. Admittedly, more work

is needed in order to evaluate the potential of the proposed

"spectral conditioning approach" for realistic model problems of

stochastic flow and dispersive transport. Last but not least,

large sets of conductivity data collected over a wide range of

scales may be needed in order to ascertain the validity of the

proposed band-pass self-similar model. A useful range of scales

for subsurface contamination problems may involve at least three

to four orders of magnitude along each spatial direction.
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CHAPIER 5 NUMERICAL METHOD FOR LARGE SINGLE-REALIZATION
SOLUTIONS OF SOCHASTIC FLOW IN SATURATED OR
UNSATURATED MEDIA

5.1 Governing Equations and Finite Difference Approximations

In this introductory section, we develop a Finite

Difference numerical approximation for solving large

single-realization stochastic flow problems in three dimensions.

The choice of the finite difference (FD) discretization method is

justified by considering the numerical requirements and

computational work involved. The discrete form of the flow

equation (finite difference system) is given in detail for steady

saturated flow, and also for the more general case of transient

flow in partially saturated or unsaturated media with nonlinear

and spatially variable coefficients.

5.1.1 - Governing equation and numerical requirements

For simplicity, let us focus here on the case of

saturated flow in the steady state, postponing to a later stage

the analysis of the more general case of transient and

unsaturated flow. The governing equation for the hydraulic head

H is easily obtained from the Darcy equation and the continuity

equation. By using implicit summation over repeated indices,

this yields in three dimensions:
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L(H) = - [K(x) = 0 ( = 1,2,3). (5.1)

Here, we emphasize once again that the flow problem to

be solved Is inherently stochastic, since the conductivity is

assumed to be a random function of space. But, according to the

single realization approach, we aim at obtaining a numerical

solution of the flow equation for one particular realization of

the random conductivity field K(x), over a large finite domain

with specified boundary conditions. Thus, equation (5.1) is now

considered as a single realization of a stochastic partial

differential equation. The flow problem "appears" to be

deterministic and may be solved, in principle, by standard

numerical methods.

On the other hand, recall that the idea of the

single-realization approach is to obtain the stattstical

properties of the flow field by postulating the equivalence of

spatial averages and ensemble averages. The flow statistics

obtained in this manner should be unique, independent of the

particular realization, provided that the flow field is

statistically homogeneous and ergodic and the domain is

sufficiently large. In this framework, the numerical solution of

the single-realization problem requires special care regarding

the numerical method to be used. The difficulty is that the

local conductivity K(x) fluctuates wildly in space, which
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requires a high resolution mesh in order to capture the detailed

features of the flow field. On the other hand, the domain must

be large compared to the largest scale of fluctuation of the flow

field, in order to guarantee the equivalence of spatial and

ensemble statistics by the ergodicity hypothesis. These

considerations imply that the size of the computational grid may

have to be unusually large to capture the fluctuations of the

flow solution over a reasonably wide range of scales.

For a preliminary evaluation of statistical

requirements. one may use the n K-correlation scale as an

indication of the typical scale of fluctuation of the solution

(the index i refers to the spatial direction xi). Let Axi be

the size of the discretization cell, and Li the size of the

computational flow domain. We require for adequate statistical

resolution:

AXi/Ai <x 1. (5.2)

On the other hand, the computational flow domain must be large

enough so that many "independent events" can be sampled. In

other words, the domain size must be taken much larger than the

scale of fluctuation, that is:

LiA i > 1. (5.3)
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Now, the number of discretization cells in each direction is:

n1 L /Axi

and the total number of cells in 3 dimensions is:

N n1n2n3.

The, requirements (5.2) and (5.3) could lead to ratios Li/Axi on

the order of 100 or more, implying that the typical size of the

computational grid (N) could be 1 Million cells or more.

Another major point of concern is the validity of

classical numerical methods, such as finite differences (FD) or

finite elements (FE) Methods, when applied to an equation like

(5.1) with highly variable conductivities. Intuitively, one

would expect that the error due to discretizatlon decreases as f

decreases. Note for instance that as Of -. 0 equation (5.1)

becomes just the Laplace equation which can be solved accurately

(even exactly) with a second order accurate FD or FEM scheme.

The key question is: "What happens when aOf is significantly

different from zero?" The -truncation error analysis to be

developed' in the next section will show that the discretization

error decreases with AxIA 1 'when f is fixed. Intuitively,

this means that truncation errors are small when the solution
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behaves smoothly at the scale of the mesh. We conclude that the

resolution constraint (5.2) is a requirement for numerical

accuracy as well as statistical resolution.

In summary, the issues of numerical accuracy,

statistical resolution, and large sampling space, all indicate

the need for solving very large discrete systems (e.g., one

million equations or more). This has led us to the choice of the

7-point centered finite difference scheme for spatial

discretization. The reason for this choice will appear more

clearly, in the sequel. Let us briefly mention some of the

arguments in favor of this discretization method. First of all,

the resulting system of equations is very sparse, symmetric and

can be solved efficiently by fast iterative methods based on

matrix preconditioning, such as the Strongly Implicit Procedure

(SIP) and the Incomplete-Choleski Conjugate Gradient (ICG)

methods. Moreover, the algebraic properties of the coefficient

matrix arising from other discretization methods, such as

Galerkin, would not be as well suited to fast solution methods.

In our view, the centered finite difference scheme essentially

gives the most sparse and best structured algebraic system among

all discretization methods consistent with the governing flow

equation. Based on these remarks. most of our efforts were

devoted to developing efficient solvers for large finite

difference systems having spatially variable (random)
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coefficients. This will be developed in detail in

(for linear systems) and in Section 5.4 (for

nonlinear systems), following the truncation error

linear flow systems presented in Section 5.2.

Section 5.3

unsaturated

analysis of

We now proceed to develop the finite difference

approximations,, first for the steady saturated flow equation,

then for the transient unsaturated flow equation with nonlinear

coefficients. The stochastic nature of the coefficients in these

equations should always be kept in mind, particularly for

purposes of error analysis.

5.1.2 - Finite difference in space for steady saturated flow

[a] Derivation of the Finite Difference System:

The 7-point centered finite difference approximation of

the steady state flow equation (5.1) obtains by approximating the

Darcy flux q = - K(K)07L by the centered difference scheme:
x1

Q1(xi.~Jk) Ki~Jk (i+ K- ik ijk]
qx K.J.k 2 K%.J.k '&

(5.4)

Note that qL is evaluated at the mid-nodal point

an orthogonal grid where nodes are located at

derivative -qL is then approximated again byax1

xi+J.k of

xi.j.k. The

the centered
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difference:

oa(xijk) ql(xi+g. 4jk) - q(xj'h k)
_OX I xijk) ~' S Ax, (5.5)

at the node points Xijk. By repeating similar approximations

for the terms 2. and 2al one obtains the Finite Difference

system governing the hydraulic head at the nodes of the

orthogonal grid. For convenience, we use the triple-index

notation as shown below between brackets:

EOJ = (iJk)

[i = (i i '.J.k)

[i 1] =(i I lJ,k)

etc.

Accordingly, the FD system for heads can be expressed as:

X(H) = _ Kri-1 . Hi-l] - Krj-l . H[J-1] _ Krk-'JA H[k-l]
(^(H (AX 1 )

2 (AX2)2 (AX 3 )
2

+ {Kri-XA+Kri+wl + Krj-Sl+Krj + K Krk-A rk+'A1 } . H[O]

--I (Ax, )2 (AX 2 ) 2 (AX 3 )

- KrL+l H[i+l] - Kr+l H[J+l] - KFk+%l * H[k+l] = 0
(A&X) 2 (AX 2 ) 2

(AX 3 )
2

(5.6)
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and the Darcy flux vector (5.4) can be expressed in terms of the

discrete head solution as:

ql[i+] = -Kti+%] . ____________

q2[J+K%] -K[J.A . Hrj+1]-HrOl (5.7)AX2

q3[k44S] = -K[kiJ . Hrk+ll - HrOlAx3

where HO] stands for the head at the central node H(iJk).

The FD system (5.6) comprises N equations: one equation

per node. Equation (iJk) relates the unknown at node (iJ.k)

to the unknown.at six neighboring nodes (i+lj1. kIl) as

illustrated in Figure 5.1. representing the 7-point FD molecule

in space. Note that mid-nodal conductivities like Ki+%] stand

for potnt vatues of K(x) at _ = xi+jk* Since only the nodal

values of K(_) are known, the mid-nodal conductivities must be

approximated by some weighting scheme, such as the geometrtc mean

of nodat conducttutttes:

K[i+] = IK[O] * Ki+1]

or in more explicit triple-index notation:

K(i+,.Jh) ~ ' K(iJ,k) * K(i+1.j~k) (5.8) 
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I'~~~~~~

1~ ~ ~~4

l<0~~~~~~~~~~~~~~~~~~~~~b

Figure 5.1 Seven-point centered finite difference molecule for a .
three-dimensional orthogonal grid of mesh points.



268

The geometric mean weighting scheme was preferred to

other schemes used in the literature (such as the arithmetic mean

and the harmonic mean) based on the findings of the spectral

theory concerning the effective - conductivity of a

three-dimensional random isotropic formation:

- 2/2 af2/6 cOf 2 /2

KE = Ke < Kff =KGe < KA =K e (5.9)

Equation (5.;9) shows that the flow at the large scale is governed

by K. more closely than KA or Kv. This suggests that the

flow at smaller scales is similarly governed by the local

geometric mean conductivity (5.8); more closely than by

arithmetic or harmonic averages. To complete this analogy,

observe that the discrete conductivity field will appear more

nearly isotropic at the mesh scale if the mesh size is chosen

proportional to the conductivity correlation scales in all three

directions (Ax1^ 2 - AX2/ 2 = Ax3A 3 ). This seems to be a

desirable property in order to avoid artificial grid-induced

anisotropy.

Other criteria for' a "best" conductivity weighting

scheme were proposed In the literature (e.g., Narasimhan et al.,

1978). Their arguments do not appear convincing enough to be

taken into account, as truncation error analysis shows that the
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weighting error K[i+%]-K[i+%] remains of order O((Ax/X)2) for

all consistent weighting schemes such as KH. K. KA.

Intuitively, when the mesh size is such that AxI/XI is the same

in all directions, the geometric mean weighting scheme appears as

a good compromise between the arithmetic mean (exact for layered

systems with flow parallel to layers) and the harmonic mean

(exact for layered systems with flow perpendicular to layers).

We now focus on the structure of the linear FD system

(5.6). In matrix notation, this system can be expressed as:

K * h = b (5.10)

where K is the coefficient matrix, or conductivity matrix of

size N = njn2n3 for the 3D case (boundary nodes excluded). The

vector h represents the nodal head values, and b is a vector

containing boundary conditions such as fixed head and fixed flux.

In our implementation, this vector was formed by a technique

known as "matrix condensation": the discretized boundary

conditions were used to express the unknown at the boundaries in

terms of the unknowns at neighboring nodes located inside the

domain. All quantities such (as H or q) specified at the

boundaries were then transferred to the right-hand side of the

system (vector D). The details of this procedure are illustrated

below in the simple case of one-dimensional flow.
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Consider the case of one-dimensional flow with fixed

head on the left boundary and fixed flux on the right boundary.

The flux condition on the right is discretized by using a

centered FD approximation at the mid-node located between the

last and next-to-last nodes (one may consider the physical

boundary to be located precisely at the mid-node). The finite

difference approximation of Darcy equation yields:;

H 1 -H
q(xn+y) n+ nK r q ftn+% Ax %

On the other hand, the head condition on the left boundary can be

expressed exactly as:

H(xo) = Ho.. (5.12)

After implementation of boundary conditions, the one-dimensional

Finite Difference system analogous to (5.10) can be written

explicitly as follows:

1w + K - K1- 

i =1: 0 + HI H2 =+ H
0 , AX2 AX2 AX2

i n -. H + - Hi -n: H - 0
Ax2 AX 2 AX( Ax

(5.13)
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The proposed treatment of flux boundary conditions (see

the last equation above) has several advantages over other

schemes proposed in the literature. First, the flux at the

boundary is approximated by the same scheme as used for interior

nodes (compare (5.4) to (5.11)). Second, the coefficient matrix

retains the same sparsity pattern and remains symmetric after

elimination of boundary values, as can be seen by inspection of

(5.13). In the one dimensional case above, a tridiagonal

symmetric system is obtained.

In the three-dimensional case, boundary conditions

similar to (5.11) and (5.12) should be used for each node of the

six planar boundaries. The resulting coefficient matrix K is

7-diagonal symmetric, as illustrated in Figure (5.2). Each of

the six off-diagonal lines contains a few zeroes corresponding to

those nodes that are adjacent to one or several boundaries. For

a cubic domain of size N = n3, the number of such zeroes on the

off-diagonal lines is only O(n2), while the size of each line is

about O(n3). On the whole, only 4n3 matrix elements need to be

defined, due to the symmetry and sparsity of the matrix. This is

very small compared to the total number of elements of the

matrix, (n3 x n3) including the zeroes. Thus, for a 1 million

node grid (n = 100). the total number of elements in the matrix

is 1012, of which only 4 x 10 are actually non-zero. In

addition, it is important to note that the location of the
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XiXs- i-- - - - - - - - - - - - - - - - - - - - -

Y)Y~ -o - -- - - - - - - - - - --------

a-- - - - - - -…

_ ~y ~- - - - - s- - - - - - - - - - - - - - -

- - - - - a - - a - a _ a - a a

- a- - - - - - - - -- - - -

Figure 5.2 Structure of the coefficient matrix for the seven-
point centered finite difference scheme, llustrated
here for a 3D cubic grid with 27 nternal nodes
(cubic domainof side 4Ax). The matrix is symmetric
and as only seven non-zero diagonal lines.
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non-zero elements (or non-zero lines) is known exactly. This is

illustrated shown in Figure (5.2), for a small matrix of size

27 x 27 corresponding to n = 3 interior nodes along each side of

the domain.

Furthermore, it can be seen by inspection that K is

symmetric positive-definite and weakly diagonal-dominant,

provided that a fixed head boundary condition be specified on at

least one boundary node. The matrix becomes singular in the case

where all nodal boundary conditions are "fixed flux". In this

case, a solution to the steady state problem exists only if the

algebraic sum of in-going and out-going fluxes is identically

zero; the head solution is then only defined up to an additive

constant.

Finally, K has also the "M-matrix property", that is

all diagonal elements are strictly positive and all off-diagonal

elements are negative or null. This property is required for

certain approximate factorization methods such as Incomplete

Choleski decomposition (Meijerink and Van der Vorst, 1977). More

generally, many iterative solution methods rely on the system

being at least symmetric positive-definite in order to ensure

optimal convergence (e.g., successive overrelaxation methods).

Positive-definiteness or weak diagonal dominance is also required
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for the stability to round-off errors of certain matrix

factorization methods, such as the Thomas algorithm for

tri-diagonal matrices. This requirement is likely to extend to

more general factorization methods such as the one considered in

section 5.2 for the solution of the 7-diagonal finite difference

system (SIP factorization).

In conclusion, the 7-point centered FD scheme seems

very well suited for the application of fast iterative methods,

particularly those based on approximate factorization. due to the

sparsity and special algebraic structure of the coefficient

matrix.

[b] Comparison of Finite Differences with the Galerkin Method:

It may be instructive to compare the sparse FD system

with the Finite Element system obtained by using the alerkin

method with tetrahedral elements and tri-linear basis functions

(details can be found for instance in Huyakorn and Pinder. 1983.

pp. 88. 3.5.1). One of the simplest partitions of 3D space into

tetrahedral elements is obtained from a regular partition of

space into hexahedral elements, each of which is further

subdivided into six tetrahedra, of distinct sizes and shapes. It

may be of interest to note that there exists no regular partition

of the 3D space with tetrahedra all of the same size and shape;
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in contrast the 2D space can be partitioned into triangles all of

the same size and shape (see for instance Coxeter's book "Regular

Polytopes". 1973).

The alerkin system for the 3D saturated flow equation

(5.1) takes the form:

N

a a * HJ= bI (I =1.--,N)

J=1

where N = n3 is the total number of nodes for the regular

orthogonal partition of space into identical hexahedra, and the

matrix coefficients a are made up of weighted conductivities

over the set of six tetrahedral elements forming an hexahedron.

These coefficients take the form:

N 6 3

a = a7 7 7 I i) (i x) (5.14)

H=1 T=1 i=l HT

where tetrahedral elements were labeled " XT" The index H runs

over all hexahedral elements (same as total number of nodes), the

index T runs over the six tetrahedra comprised in one hexahedron.

and the index I = 1,2,3 is related to the three independent

tri-linear basis functions. It turns out that the coefficient

product a(i)a (i = 123) is generally non-zero for 27

tetrahedra out of 6N tetrahedra on each row (equation) of the
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matrix system. This yields a priort 27 non-zero diagonal lines

in the Galerkin coefficient matrix.

In fact, most Finite Element equation solvers ignore

the fine structure of the matrix, e.g. they only take into

account the bandwidth of the system, (size of the band containing.

non-zero coefficients). The bandwidth is 2n2 I for a cubic

domain of size n3. Taking into account the symmetry of the

matrix. this implies that the number of matrix elements to be

processed for solution is about n compared to 4n0 for the 7

point FD system. In our view, these observations show that the

solution of the Galerkin system would be impractical for large

grids on the order of 1 million hexahedral cells (n = 100).

Moreover, it turns out that the Galerkin system does not satisfy

the "-matrix property" mentioned above. This seems to exclude

the Galerkin system as a candidate for Incomplete Choleski, and

other approximate factorization methods. Note that the SIP

method in particular was specifically designed for Finite

Difference systems having a simple structure.

We conclude again that the 7-point centered Finite

Difference scheme appears the most suited for the solution of

very large flow problems with fluctuating conductivities, due to
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the special algebraic properties and sparsity of the FD system.

In comparison. "higher order" discretization methods such as

Calerkin lead to more complex matrix structures, particularly in

the three-dimensional case. We feel that the advantage of using

higher order or smoother numerical approximations may well be

offset by the significant increase in computational work for

three-dimensional, high resolution simulations.

5.1.3: Finite difference in space-time for transient
unsaturated flow

We now extend our finite difference discretization

method to the case of unsaturated flow, or more generally

"partially saturated flow", in a statistically heterogeneous

porous medium. In what follows, we focus particularly on the

case of transient flow, as this is of interest for applications

like local infiltration in unsaturated soils. However, the cases

of steady unsaturated flow, mixed saturated/unsaturated flow, as

well as the case of purely saturated flow studied ust above, are

all embodied in the general unsaturated flow problem treated in

this section.
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[a] Governing Eguation and Constitutive Soil Properties:

The general unsaturated flow problem in a heterogeneous

porous medium is governed by the continuity equation:

at [S(hx) + e(hx)] -_ (i = 1,2,3) (5.15)

and the generalized Darcy equation:

a~~~~~~~~~~~~~~~~~~~~~~

q= -K(h,x) * jrh + g x (5.16)

where:

* S(hx) is the storage term due solely to water-soil

compressibility under positive pressures (cm3/cm3)

* e(h,x) is the pressure-dependent, spatially variable

volumetric soil water . content relative to an

incompressible soil matrix (cm3/cm3)

* q1 is the flux vector, or specific discharge rate (cm/s)

* K(h.K) is the pressure-dependent, spatially variable

unsaturated hydraulic conductivity (cm/s)

* h is the water pressure head relative to atmospheric

pressure (cm)

* gi Is a cosine vector, corresponding to the unit

acceleration of gravity taken with a minus sign.
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The generalized Darcy equation (5.16) calls for

explanations. First, note that the "gravity vector" g has

components (-1,0,0) if the x axis is taken to be vertical

downwards. More generally, gI = (sinr. 0, cosT) if there is an

angle Xv between x3 and the upward vertical axis. This

formulation makes it possible to simulate infiltration onto hill

slopes and similar unsaturated flow problems involving sloping

faces. Second, it should be observed that the hydraulic head H

appears implicitly in the generalized Darcy equation (5.16), in.

the form:

H = h + g x ( = 1,2,3)

i.e., as the sum of a pressure potential and a gravity potential.

Note that the "pressure head" h may attain very large negative

values in a dry soil, especially in clay soils or in the presence

of active plant roots. In these cases, h should be interpreted

as a thermodynamic potential. The minus hydraulic head (-H)

stands for the energy that must be produced in order to bring

soil water to its free state at a plane of reference such as soil

surface (gjxj = 0). Soil water is in its free state when H = 0.

has negative energy when H < 0. and positive energy when H > 0.

We now introduce specific constitutive relations for

the unsaturated conductivity K(hx), the soil moisture retention
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curve (hx). and the elastic storage term S(hx). First of all,

we assume that the elastic storage term plays no role for purely

unsaturated flow, provided that positive pressures never appear

within the flow domain. This may be realistic in the case of

infiltration at low flow rate. On the other hand, it should be

recognized that perched water tables or locally saturated zones

are likely to appear in the case of high rate infiltration in a

heterogeneous medium. For this reason, the elastic storage term

was retained in the numerical code, assuming a simple dependence

on water pressure as follows:

S() * h if h O

S(h.x) (.18)

0 if h O

where S () is the specific storativity (cm 1) which accounts for

the compressibility of water and the solid porous matrix under

positive pressures. For simplicity. Ss can be taken constant

when the flow system is mostly in the unsaturated regime. In

this work, Ss was neglected altogether since most unsaturated

flow simulations concerned the case of low rate infiltration in

dry soils (Section 5.4.3 and Chapter 7).

The soil moisture retention curve (h,X) was assumed to

take the form of a multi-parameter nonlinear function of pressure

h. possibly with spatially variable parameters. The particular
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model we used for unsaturated flow simulations is the

well-documented Van Genuchten model (Van Genuchten, 1978 and

1980). With spatially variable parameters, this model can be

expressed as:

G(hrx) = ( )n}1-1/n (5.19)

-1
where is a scale factor (cm ), n is a real dimensionless

parameter (identified as "VGN" in the flow simulator). s is the

saturated soil water content, and r is the residual water

content at very high negative pressures. Note that the term

(6(x) - r(x)) can be thought of as a spatially variable

"effective porosity". The and n parameters could also be taken

spatially variable. However the results of the linearized

spectral theory suggest that the effects of the spatial

variability of (hx) are small compared to those due to K(hx):

see Mantoglou 1984, and Mantoglou and Gelhar, 1987. For this

reason we will assume constant parameters in the water retention

curve for stochastic unsaturated flow simulations (Chapter 7).

although some of the preliminary numerical experiments developed

in the present chapter will include uniformly layered soil

systems where both the (h) and K(h) curves vary from layer

to layer (section 5.4.3).

The most relevant feature of the constitutive relation
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(5.19) is its nonlinear (logistic curve) shape. This is

illustrated in Figures (5.3) and (5.4) for two different types of

soils (from Ababou, 1981). The location of the nflexion point

is of particular interest, since this is the point where the

specific soil moisture capacity C(h) = attains its maximum.

This inflexion point is given below in close form:

I 1 1/n
0 h = -max ( _t I~~

{CX = *(6s6 r)*(n- 1) *()$l (5.20)

where m = 1-1/n. For coarse or sandy soils the maximum capacity

occurs at relatively high pressures (hmax) with a narrow peak

compared to finer soils. For example, the maximum capacities for

the Dek Sand and Montfavet Silt soils depicted in Figure (5.3)

and (5.4) were, respectively:

-3 -1* nd: C = 2.82 x 10 cm h = -24.5 cm

xSilt: Cx = O.33 x 103 cm 1 hma = -344.cm

Furthermore, the shape of the (h) curve indicates that the soil

moisture capacity must be approximately constant in the pressure

range:

Ih-hmal< (5.21)
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Figure .5.3(a) Soil water retention curve (h) for the "Dek sand"
of Senegal. The solid line represents the Van-
Genuchten function fitted to data points (from
Ababou. 1981)..
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Unsaturated conductivity curve K(h) for the "Dek
sand" of Senegal. The solid line represents the
exponential conductivity curve fitted to data
points (from Ababou, 1981).
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Figure 5.4 (a) Soil water retention curve (h) for the Montfavet
silt, a loess soil from the south of France. The
Van Genuchten curve (solid line) was fitted to
data points (Ababou, 1981).
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Figure 5.4 (b) Unsaturated conductivity curve K(h) for the
Montfavet silt. The exponential conductivity
curve (solid line) was fitted to data points
(Ababou, 1981).
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In the examples above, P was about 2.3 x 102 for the sand, and

2.3 x 10 3 for the silt. Accordingly, it appears that the soil

moisture capacity is approximately constant and close to Cax in

the pressure ranges (-90cm to -10cm) and (-650cm to -150cm)

respectively for the sand and silt soils. Within these ranges,

the simplifying assumption of a constant capacity used by

Mantoglou and elhar (1987) in their spectral theory of

unsaturated flow appears to hold approximately.

Finally, we chose an exponential model for the

unsaturated conductivity-pressure relation; as shown below:

|K5 (!) exp{a(E).(h - hb(j))} if h hb(x)

K(x) if h hb(x)

When the "bubbling pressure head" hb is taken to be null,

equation (5.22) becomes identical to the model used in the

spectral theory of Mantoglou and elhar. Figures (5.3) and (5.4)

show that the exponential conductivity model is in good agreement

with measured values for wet and moderately dry soils. However,

these and other data also suggest that the exponential rate of

decrease of K(h) is not sustained as the soil dries up below a

certain pressure (e.g., h - -600 cm for the silt). This

limitation of the exponential model will be taken into account in
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our simulations of field infiltration problems, by using the

field measured initial conductivity (rather than the

field-measured pressure) for an estimate of the initial pressure

based on the exponential conductivity model. The initial

pressure obtains by plugging K = Kin (field-measured) into the

inverse relation:

h a In(K)a Ki

where a and K represent using mean values, in lieu of a(x)

and K (K). This expedient procedure may be useful in cases where

the field-measured initial pressure is outside the range of

validity of the exponential model (very low pressure) whereas

most of the unsaturated flow process occurs at-higher pressures

well within the range of validity of the exponential model.

In view of the results obtained by the spectral

perturbation method of antoglou and elhar, our main focus will

be the study of infiltration problem with the exponential

conductivity curve having both (x) and a(x) random fields in 3D

space. This, combined with the strong nonlinearity of K(hx)

with respect to h, makes the numerical solution of the

unsaturated flow problem a difficult task indeed.
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(b] Time Discretization:

The time discretization of the transient unsaturated

flow equation is now being developed. For convenience, let us

merge the elastic storage and the soil moisture terms into a

single term:

O(h~x): = S(hx) + (hx)

Plugging the Darcy equation into the continuity equation. one

obtains the governing nonlinear flow equation for pressure head

or Richards equation":

at = a [K(h.x) * ( + g] - L(h.1) (5.23)

For the time integration scheme, we choose the fully implicit

(Backward Euler) two-point finite difference scheme. Denoting

(-L(hx)) the spatial operator on the right-band side of (5.23).

the fully implicit time discretization scheme can be expressed as

the first order finite difference approximation:

3 l(hx) - n(h+x) _ L (h,x) (5.24)
At 1
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where Atn+i tn+1 - tn. Alternatively, this finite difference

approximation could also be interpreted as a time integral

approximation. Indeed, by integrating the exact equation (5.23)

between times (tn.tn+1 ) one obtains:

tn+l

(hx)- (h - Jt L(hg) dt
tn

and, using the mean value theorem:

6n+ (h )-e

onltX - nhX XL (h A)+ (I - ) LO(h x)} (5.25i)
n+l

where 0 X 1. In particular for r = 1 one obtains the fully

implicit finite difference approximation (5.24). The more

general class of implicit scheme-corresponds to 2 -r 1. The

Crank-Nicholson scheme in particular corresponds to the case

-r = 1/2.

Briefly, our particular choice X = 1 was based on

results of stability theory and various numerical experiments in

the literature. -First of all, it is well known that implicit

schemes are unconditionally stable,- whereas explicit schemes

require for:- stability a stringent constraint on the time step.

For the simple heat equation D e , the stability
constraint takes the form (Aes,1977):

constraint takes the form (Ames, 1977):
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At * z 1 - 1
i 

This observation holds also for more complex cases such as the

nonlinear unsaturated flow equation. Of course, the exact form

of the stability constraint depends in fact on the spatial

discretization scheme and the linearization scheme. In any case

the resulting stability constraint is qualitatively of the same

form as shown above. In particular, note that the soil moisture

diffusivity D = K/C may become quite large in a wet zone, so

that the time step may have to be dramatically small in order to

satisfy the stability constraint. Taking the Dek sand of

Figures (5.3)-(5.4) as an example, and using a value of pressure

corresponding to the maximum soil moisture capacity, we find

that At 4.3 sec is needed to ensure the stability of the

explicit scheme on a 3D grid with AxI = 5 cm. For "wetter"

conditions, the stability constraint would be even more drastic.

This Justifies the use of the unconditionally stable implicit

scheme for time integration.

Our second remark is about the choice of the fully

implicit scheme (-r = 1) in preference to other implicit schemes

such as Crank-Nicholson ( = 1/2). Numerical experiments tend to

show that the fully implicit scheme is particularly efficient for

the case of the nonttnewr flow equation at hand (Vauclin et al.,

1979), although there is'no theoretical evidence in favor of one
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type of implicit scheme over the other for strongly nonlinear

equations.

[c] Linearization and Satial Discretization:

We now focus on the nonlinear semi-discretized equation

(5.24). In order to obtain a tractable linear system, we propose

an approximate linearization of (5.24) by way of iterative

corrections based on a modified Picard iteration scheme. The

procedure is best explained in two steps: (i) linearization of

the right hand side spatial operator, and (ii) linearization of

the left hand side temporal operator. This is described in

detail below:

(i) - We use a Picard iteration scheme to approximate

the nonlinear equation (5.24) into a sequence of equations

(k 0,1.2 ) where the conductivity appears linearly as

follows:

Gn~lk~(h~x) 6n(h.x) at1 ~ [ l+.k~h~ anlkl+g]
AX axl, . hK)a + g)]

Note that the conductivity on the right-hand side is evaluated

from the previous Iteration level. By substituting to both sides

the "residual":
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Rn+l.k { n+1k -6 h [.i l .[ lk + ]

we obtain equivalently the "modified" Picard scheme:

9n+1.k+1 - 6n~lk - a [Kn+1.k 8 (hn!l1k+lh1a~lk)] el'k.

Atn+1 i (5x

which is computationally more stable with respect to round-off

errors. For clarity, note that n represents the time level,

while k represents the iteration level. At this point, we have

only linearized the spatial operator a [K(h) k hog,)].

However the discrete storage term involving @(h) is still

nonlinear.

(ii) - In order to obtain a fully linear equation.

the storage term is now linearized by applying the mean value

theorem as follows:

k+l

ek+l Ok = Jk C(h) dh

= (hk+l - hk) C[(l - )h + ¶hk]

where -r is some number in the interval [0.1]. The choice = 0

would lead to a linear equation in h as required. We prefer a

more stable approximation similar to the chord-slope
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approximations proposed by Huyakorn, et al. (1984) and Milly

(1985). that is:

k+l e n . (hk~' _ hk)
_ _ _ _ _ _ _ _ ( h kh
At W.1 An+1,

(5.Z7)

C(hk) _ (hk) _ G(hol

where all variables are for time level (n+1), except h0 which

stands for "iteration level (0)'. In other words, h0 is the

known solution at the previous time level n.

Combining (5.26) and (5.27) we finally obtain a fully

linear semi-discretized equation in terms of the incremental

pressure head h between successive iterations:

~1,.ktA h 8 l...1k 8 (bh)] el (5.28)

'At ax- (a)x ~ Rl

: ~ ~ ~ ~ ~ ~ nl I 

where:

Oh =hn+lk+1 _ ik.

and:

R 1,k 8n1 k -h)- 8lkt Bit lel~ (hn . k._ h) a 1[K .lk[h+' ]

In summary, equation (5.28) is a linearized, semi-discrete

* 
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approximation of the original unsaturated flow equation (5.23).

which can be used as a starting point for further discretization

in space. This is examined next.

The spatial operators appearing on the left and

right-hand sides of (5.28) are now discretized by using the

7-point centered finite difference scheme, in the same fashion as

in the previous section dealing with saturated flow

(Eqs. 5.4-5.7). For convenience, the two spatial operators

appearing in (5.28) will be designated as:

lN(Y) = - a (K a

LG(Y) = i axi

Applying the 7-point finite difference scheme to the LK-operator

leads to an expression similar to that obtained for saturated

flow (Eqs. 5.1 and 5.6). with the mid-nodal unsaturated

conductivities defined as:

KigJ k = K(hi AJki Xi+gAJSk)-

Furthermore, we use again the geometric mean weighting scheme to

evaluate the mid-nodal conductivities:
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Ki+.Jk IK(hijk!xijk) * K(hi+l J k'Xx j k)

In the particular case of the exponential conductivity model

(5.22) with a zero bubbling pressure, this gives:

Ki+%, k KS(xi+laJk) * Ks(xij k)*

(5.29)

.exp {(i+l.JJkk 2 hiik)}

This particular choice of conductivity weighting

the results of the spectral theory concerning

conductivity in a random unsaturated soil (see

Gelhar. 1987). According to these authors,

unsaturated conductivity is of the form:

was- guided by

the effective

Mantoglou and

the effective

Keff KG exp{(ah)}

where KG is the ensemble geometric mean of the random saturated

conductivity. The conductivity weighting scheme (5.29) -may be

Justified by analogy with this result.

The Loperator may be approximated in the same fashion

as the i-operator. Using the same index notation as before (see

equation 5.6) we obtain the following centered finite difference

approximation:
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LG(Y) = i t -(K[i+%] - K[iL-AJ)

g2

+ -(K[J+'A] - K[J-]) (5.30)

+ -(K~k+) - K[k fA])}

Mid-nodal conductivities like K[i+'A] = Ki+. jk are as defined

just above.

The fully discretized, linearized unsaturated flow

system obtains by plugging LG of (5.30) and LK of (5.6) into

equation (5.28). The resulting finite difference system takes

the form:

C n+lk n+lklt. I + ) * h = r( (5.31)

where I is the identity matrix, K is the unsaturated

conductivity matrix, h is the increment of pressure between two

iteration levels (k.k+l). and r is the vector of residuals

including also the vector of boundary conditions. It is worth

noting that the conductivity matrix K has exactly the same form

as for the saturated flow equation, with the unsaturated

mid-nodal conductivities of (5.29) replacing the saturated

mid-nodal conductivities of (5.28). As a consequence, the

coefficient matrix:
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A = C * I + KAt --= =

has the same sparsity pattern for saturated and unsaturated flow.

In both cases, the matrix is a 7-diagonal symmetric as shown in

Figure (5.1). ^

Furthermore, the coefficient matrix is strtctty

diagonal- dominant in the case where the storage term (C/At) is

strictly positive for all times and all locations. as would occur

for transient infiltration in a moderately dry soil. As a

consequence, the iterative matrix solver could converge much

faster in the transient case than in the steady state case (due

to better matrix condition). This suggests that there will be a

trade-off between the requirement of strong diagonal dominance

for faster solution (small At), and the need to minimize the

number of time steps (large At). In addition, a small time step

may be required for fast convergence of the nonlinear-Picard

iterations. The numerical experiments of section 5,4 will help

determine the appropriate strategy in that respect.
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5.2: Statistical Truncation Error Analysis
for Linear andom Flow Problems

In this section, we focus on the evaluation of

numerical errors due to the discretization of the stochastic flow

equation. In particular, we develop in detail a stattsticat

truncation error analysts of the finite difference approximation

of the steady state saturated flow equation with random field

conductivities. This will lead to some useful results concerning

the order of accuracy of the finite difference method for a

certain class of stochastic equations (random heat equations).

Both the method and results appear to be new in view of the

current literature on numerical analysis. The final results will

be summarized and discussed at the end of this section, notably

in terms of numerical requirements like grid resolution. For

completeness, note that the nonlinear problem of transient

unsaturated flow will be analyzed separately in a forthcoming

section, however in a much more qualitative way.

Because the statistical truncation error analysis of

this section is somewhat intricated. we feel that it may be

useful to outline here the main features of our approach. Our 1

purpose is to obtain a closed form statistical evaluation of the

finite difference error, that is the error on the finite

difference solution due solely to truncation errors, assuming
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that an exact solution of the finite difference system can be

achieved. The method we use is applicable to linear problems,

such as the linear system arising from the stochastic saturated

flow equation. Briefly, we begin by evaluating analytically the

truncation error of the finite difference operator. We then

obtain an equivalent partial differential equation that governs

the error on the hydraulic head. This equation has the same

structure as the governing equation, except that it is driven by

the truncation error (forcing function). To solve this "error

equation", we use a first order spectral perturbation method with

the usual assumptions of stationarity and ergodicity (the "exact"

solution is also evaluated by this method). This gives finally

the error in the form of a random field with known spectral

density. The root-mean-square error on the hydraulic head

obtains by computing the variance of the random field error, and

taking the square root. A similar procedure is then used to

evaluate the error in the flux vector. The reader not interested

in the details may jump to the "summary and discussion" given in

subsection 5.2.4.

5.2.1 Governing equation for the numerical head error

Recall that the exact equation governing the head

variable is of the form L(E) = 0. where LH) is the partial

differential operator:
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L(H) = a (K(x)aH)
m m

(m = 12.3)

The FD solution H defined on a grid (Ij.I2,I3) satisfies the

FD equations L(H) = 0. where L(H) is the difference operator:

^ , I v A.L(H) 2 - KI
m=1.2.3 (Aim)2 m+IA

HI
m+l

- [rI+, + Kmj] H~ m-V ImJ 

AH

In-11

To

. I

* I

+ KI
m 'M0

Note that

shorthand

m indicates the three directions x and we used the

notations:

Ho - H(IjI 2 I3)

HI +l - H(I+l-.I2,I3)

KII K(I+A, I2.I3)

(etc. )

The mid-nodal conductivities were evaluated by the geometric mean

weighting scheme:
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+K *K(I1,I2-I3) * K(I +1I2,I3)

(etc.). 1

and the flux vector:

q=- Ox31ax
m

was evaluated at mid-nodal points by:

H -H
D 0

- qI +, = K + * Ax
m m m

Finally, we now prescribe Dirtchtet boundary condtttons on all

boundaries, since these conditions can be expressed exactly in

the finite difference formulation. The introduction of Neuman

conditions would complicate unnecessarily the forthcoming error

analysis.

The truncatton error is defined as the difference

between the exact and approximate operators (both operating on

the exact solution H):

T(H) - L(H) - L(H)
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where H is evaluated at the grid points I = (112,1I3). Once

computed as a functton of H. the truncatton error could also be

eualuated as a function of the approximate FD solution HI or

more precisely as a function of an equivalent continuous FD

solution H which takes the values of the discrete FD solution Hi

at the grid points. Thus we can write:

T(H) = L(H) - L(H) qI

where H(2) is a continuous function such that
A ~

Observe that the term L(H) can be eliminated

identically zero at the grid points (by definition

yields immediately a partial differential equation

"Equivalent Continuous Finite Difference Solution":

a r [ x=
ftm [1(2 + T(H) =0.

H(x 1) = H.

since it is

of H). This

governing the

(5.32)

Similarly, the continuous solution error can be defined

as:

6H(20 = H(c) - H)

(5.33)
A.

6HI = HI-H(x 1).

Ultimately. one would like to obtain an estimate for the error
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6H at the grid points. This can be achieved by developing H(_)

into a power series of (Ax=?

If!() = 6i) +x . (l) + (ax)2 . R(2) +

Obviously, the zero-order term H(O) should vanish if the FD

approximation is consistent. In fact it will turn out that the

zero-order and all odd-order terms in the expansion vanish.

To see that 6H(O) vanishes, we plug the identity

H = H+H into (5.32) to obtain:

axm K) * ] + T(H) + T(6H) = (5.35)

6H =0 on all boundaries (exact BC's)

where we used the fact that T is a linear function, due to the

linearity of the flow equation. Combining (5.34) and (5.35) it

appears that H(O) vanishes if lim T(H) = 0. that is, provided
Ax-iO

that the finite difference scheme is a consistent approximation.

We will see shortly that this is indeed the case.

We now proceed to evaluate explicitly the truncation

error function T(H) in order to obtain the equation governing the
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solution error H (from (5.34) and (5.35)).

using Taylor series expansions such as:

This is done by

Hill Hi+ 2 ax i+
iX + (a 8 *Ax 2 + 1 (H AX3 +-

OX2 1_ 4 Ox3 i+'A

Hi+M-Hi = (0 1 12 H 1 O iH
aOX2 i+A O-x3 i+'A

whence:

Hi+i- Hi -H &2 * 8H +

Axi;~~~~~ (ax~i+S + 24 (-X) + O(Ax )

iAX i-4 ()i + T4 ( ) + (+O(Ax 4)

(5.36)

(5.37)

Plugging

divergence:

y = x aH into the last equation yields the flux

AX (Ki (Ex)i+ - Ki+JA (1)i-'A =

[x(K MX )] +x * (K ax)]i +o& - (5-3 &a)

Substituting (5.36) for the terms ( a i appearing in the left

hand side of (5.37) yields:



306

LfK * l r~ Hi] _ KI_ 1H -H i]} - {"[K( a)]}

KI-% 82 + O(Ax3)j 
- {24 * Sx [Kax* taai+ iS ax vy

(5.38b)

24 {ax3(K + O(Ax 4 )

Using again equation (5.37) with Y = K H yields a Taylor
ax 3

development for the finite difference appearing on the right hand

side above:

Ox3~ ~~ ftax ax~ (3i+ ax~ (3iJ] {>Ka3

AX2 83 3(K asf)} + O(Ax 4 ).

Plugging this identity into the right hand side of (5.38b)

yields, on the right hand side of that equation:

&t2 (K + - (K + O(AX 3)

How observe that the left hand side of (5.38b) is just the

one-dimensional truncation error function Tj(H) = L(H)-
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Furthermore. the exact mid-nodal conductivities can be expressed

as K+ -Ki+- &,+ , where Ki+ is the error due to the

approximate evaluation of Ki+ by Ki+= JKi Ki+l. Thus, we

obtain an intermediate formulation of the truncation error

T(H) = L(H) - L(H). shown below for just the first of three

terms (T = T+T 2+T3):

T1(H) =

1 ~ i+1 Hi] ai~ I -1 X C 
{ L Axl i] - 6KiSs Si Ax ]} + 24 x ax 

+-...(K ak} + O(Ax3 ).

In order to complete this evaluation. we need again to

replace finite differences by differentials. Thus, using again

(5.36) in the above equation gives:

T±(H) _

1x {6Ki+h (8H i ai-_ (Kx)iJA} (5.39)

AX2 1 (a3H a

Ax {6i+A * (e 3 - iAhi- ax3 i

AX2- {e (K a3u) + a3 (s aH) + O(AX3
).24 (K =A) + iJ
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Finally, we must use again a Taylor expansion technique

to evaluate the "mid-nodal conductivity error" 6K1* that

appears in equation (5.39). We have from previous definitions:

K = K ~ -K

L=A Kx.K(x,+l, - K(xi+).

However, it will be more convenient to use the- log-conductivity

process f(x) = en K (x) in order to evaluate the 6K term.

The mid-nodal log-conductisity is:

Tih: =.e i+ = 2 (fi + l)

f~ = en K 

which leads to a simple expression for the mid-nodat conductivity

error:

f +f
6 K K {exp( 2 fi+ - 1). 

Furthermore, we obtain by Taylor expansion of f and fi+

around fi+-

f +f 1 2f

i2F if + 8 aX2 I+ x
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so that the mid-nodal conductivity error (5.40) can be expressed

as:

5K = K i+ I{exp[ (-24)i+A 1A I8 aX2 +
+ O(AX4)] -1.} (5.41)

This expression may be linearized under conditions which will be

discussed in more detail in the sequel (these conditions require

both Ax and f to be small):

fAx2 a2f6K = K 8 + O(AX4)
I+1A I+!& iV I- (5.42)

Plugging

error, we

this into the expression (5.39) for the truncation

obtain:

T 1(H) = 8 1 x K.( )1
8 ax1[~2iJ

+

Ax* { a ( H) + a (k ) + O(A 3 ).
8x3(K aX3 a~

The first term is a finite difference which can be evaluated by a

Taylor expansion similar to that of equation (5.38):

a2f mlA *a K3 )2 f
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This gives finally in closed form the truncation error

function T(H) evaluated at the grid point x = x for the

one-dimensional flow operator. The result is the same for Tm (H)

with m 1,2,3 corresponding to the spatial operators

L,= £ {8= ) etc. The total truncation error in the 3D case

obtains by summing:

T(H) = T(H) + T2(H) + T(H) (5.43)

where:

(R'3 p- , '* K1]x ax, x) x ax,

(5.44)

and similar expressions hold for T2 and T.

We may now use this result in order to solve the

partial differential equation governing the "equivalent" solution

error 5H. Using the Ax-expansion (5.34) and plugging (5.44)

into equation (5.35). we find that:

(i) At order zero, A satisfies the flow equation with

boundary conditions d-(0)=O so that 5H(O) vanishes

identically over the whole domain.
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(it) Since T(H)=O(Ax2), all the odd-order error terms

6H(l) 6H etc., vanish.

(iii) The leading error term is AH(2), second order in Ax.

In the three-dimensional case, the leading order

solution error can be expressed formally as:

=H =l {&(2) * (AX ) 2 + O(Ax 4)} -
6H = 2 m m (5.45)

and 6H is governed by equation (5.35) without the term

T(A) = O(AX 4
), which can be neglected. This leads to a

tractable governing equation for the solution error, of the form:

a [K(x) * ] = - T(H) + O(Ax4 ) (5.46)
m m

Upon substituting the expression for T(H) given in (5.43)-(5.44),

we obtain an equation which can be broken into three spatial

component of the leading error term (6Hm(2), m = 12,3). For

convenience, we show here only the term on the left-hand side of

the equation corresponding to the first spatial direction m = 1:
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(5.47)

8xt [K~x-3] F 6x13 [ aa + 0 (AX)

where the notation E = 1(2) was used. We also obtain similar

expressions for- E2 and E3. The-total solution error is:

H= E1 Ax + E2 Ax22 + E3 AX3 + O(Ax4) (5.48)

In the particular case where Ax, = Ax2 = Ax3 (equal mesh sizes in

all directions), the full error equation becomes is simpler.

Indeed we obtain the governing equation for E =E + E2 + E by

summing over spatial directions and observing that Kax
m m

vanishes. Thus, we obtain finally the head solution error for a

cubic mesh as follows:

CH =E .Ax2 . 0(A4) (549)

where E(x) is governed by the partial differential equation:

.!~~~~~~~~~0

-76[K(x) o = 24 ( + O(Ax)

m mm

(5.50)
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with boundary conditions E = 0 on all boundaries.

Equation (5.50) gives explicitly the stochastic

equation governing the head solution error. The first term on

the right hand side is solely due to errors in the evaluation of

mid-nodal conductivities, while the second term corresponds to

errors in the evaluation of the flux divergence. Note that the

right hand side depends solely on the exact solution H. which

must be evaluated in order to find closed form stochastic

solutions for the error E(x). Our approach assumes that the

remainder O(Ax) can be neglected; this residual term could

perhaps be loosened to O(Ax2) with more work.

5.2.2 Statistical analysis of the numerical head error

[a] The spectrum of the head error:

We now proceed to analyze the hydraulic head solution

error 6H = EkAx2 in a stochastic framework. Following the

assumptions of the spectral theory and the single realization

approach, we postulate the equivalence of ensemble and spatial

averages in the stochastic error equation (5.50). Furthermore,

we use the first order spectral method to evaluate the

statistical moments of the "exact" solution H(x) appearing on the

right hand side of (5.50). The same method will then be used to
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obtain the first and second order moments of the head error

itself. First, equation (5.50) is re-arranged in a more

tractable form by using the relation:

K(x) = K efC

where f(x) is the perturbation of the n K process around its

mean (f) = 0). This leads to:

fx2 in im indX2 a~m M

(5.51)

L 3083f* O H + 8 8Hf + af L 4 1 [ 84H + af 83H

24 C)X3 OmX2 i2 xM nXm 4 2 m ax3 J
m m m m m m

Equation (5.51) should be interpreted as a stochastic

equation in an infinite domain, i.e., with domain size much

larger than correlation scales. The boundary conditions E = 0

suggest that the mean error should be approximately zero in order

to be consistent with the stationarity-ergodicity assumptions.

We will show that this is indeed the case for small. Our

purpose will be to determine the standard deviation, or

root-mean-square norm (RMS norm) of the solution error

6H = E * Ax 2 , in an ensemble sense. The accuracy of the finite

difference approximation will then be studied by analyzing the
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behavior of a(6H) compared to a(H). The ratio of these two

quantities indicates the relative amount of "numerical noise"

compared to the physical noise in the solution.

In order to show explicitly how the forthcoming

statistical analysis of error depends on af 
being small, let us

reproduce below the spectral perturbation solution 
of the exact

flow equation (s in Chapter 3). We begin by expanding (5.53a)

H(x) into a power series with af as the "small parameter":

H(x) = Ho(x) + oH(x) + a2H2(x) +

Similarly, we let:

f(x) - o * g(x)

or equivalently:

K(_) = c TO'g(x)

where g(x) is a zero-mean Gaussian field with unit variance.

The 3D flow equation (5.1) with stochastic 
conductivities can now

be expressed as:

HO7 + r .H = .

Mm m



316

By plugging the expansion (5.52) into this flow equation, we

obtain the infinite hierarchy of equations:

mOxm = °
C0o m m

02H +Qit - aH! = O (5.53b)
ax Oxc ax ax-m m m in

(etc.).

The zero order term (Ha) could be interpreted as the linear mean

head solution, satisfying °= -JD' where Jm is the mean
m

hydraulic gradient. Accordingly, the other terms in the

expansion will have zero mean as can be easily checked. Assuming

that the mean gradient is parallel to x, the first order term in

the expansion satisfies:

2

Oxm ax= ax*

Comparing this to the equation for head perturbations (h) as

obtained in Chapter 3, it appears that Ho and H are related

to the mean and first order perturbation of the head field as

follows:

{H) = H 1 J x

| h = * At + O(Cr2) (5.54a)
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Solving the equation for H in Fourier space gives immediately

the Fourier increment and spectral density of H:

kt dZ
dH = i J -d (i = 4T))1 ~k2

(5.45b)
12

S = J2 at SgSHI .J 1 S 

We now use a similar expansion for the stochastic error

to solve equation (5.51) by a first order spectralin order

method:

E(x) =E o + E * + E 2 * + ''- (5.55a)-

By plugging the expansions for H and E into (5.51) with

f(x) = a g(x). we obtain a hierarchy of equations for E, E,

etc., as shown below:

aO: 8E E = 
li ax a

IDM

(5.55b)

a1: 7a{8 2E, + 8Z=

m

2 [a j: ' a ] ( et c.

a2: (etc.).
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Again, the zero order equation suggests that E is the mean

error, and that it must vanish identically over the infinite

domain. This Is consistent with the boundary conditions E = 0

for the finite domain case. It is also consistent with the fact

that all higher order terms appear to have zero mean if E = (E)

holds. As a consequence, the equation governing the leading term

(El) becomes:

a2E ~ = 8 4H±
o m x 8 f t 3 24 ft2 .y2 (5.56)

with implicit summation over repeated -indices. Thus, the head

error's leading order term in Ax and is given by:

H =E .Ax2= Et f. Ax2.| (5.57)

The two equations above show that the numerical error 5H is

proportional, as a first approximation, to the product UAx2

times a stochastic term governed by a stochastic PDE independent

of and Ax.

Furthermore, since equation (5.56) is linear, it can be

solved easily in Fourier space, i.e., by using a spectral method

as in Chapter 3. Plugging Fourier-Stieltjes representations for
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El and g in (5.56) yields:

Ic2 =3 , ikli3dZg L(k2. k) d.
k2 dZE a J1 24 m m

Using also equation (5.54) for d this gives explicitly the

Fourier component and spectrum of E(x) in terms of the Fourier

component and spectrum of g(x):

dzE_ =k 2 { + ;m}dZg!ZEW -JTk± I 2 (k4 2~l

(5.58)

jr 2 [2 (kc ; )12
SE QO (24)2 k n kg(k.

where we used again implicit summation over repeated indices.

Equivalently, the spectrum of 6H can be obtained by multiplying

SE by Ax4 and replacing Sg by Sf. Thus, equation (5.58) gives

the spectral density of the "equivalent error" 6H(!).

Note that 6H(2) is a zero-mean random field defined

in the continuous 3D space. However, we are only interested in

the discrete error defined at the nodes of the finite difference

grid. The restriction 6Hi of the continuous process 6H(^) on

the D grid may be viewed as a lattice process, whose spectrum is

identical to that of the continuous error within the range of

wavenumbers:
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0 Ikm 5 T/Axm (m = 1,2,3).

and zero outside this range. In other words, the fluctuations of

5H at scales smaller than the mesh size must be ignored. In

particular, the variance of the discrete error process 6Hi can

be obtained by integrating the spectrum (5.58) up to wavenumbers

(T/Ax). This gives the final result we were looking for, namely

the variance of the head error for the 3D flow problem:

var(611) ~ (j1 * M]f * ~ + (k2. k2)%2

0 0•k~7/Ax k2 k4

(5.59)

[b] Head error in the one-dimensional case:

For ease of analysis, we focus first on the

one-dimensional version of the flow equation. In this case,

equation (5.59) becomes simpler:

var(H) [t 6] * | k2 Sff(kL)dkl. (5.60)

It is interesting to note that, in one dimension, the variance of

the head error is proportional to the spectral content of df/dx

up to wavenumber (A). For illustration, let us use the D
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"hole-spectrum" log-conductivity as proposed by Bahr et at. 1978:

Sff(k) = 2 ;e7 (lk2eS11(k) = (T/2) (+k 2e2)2

Rff(ff) = a2 (1 I I/e) * el t.

In this case, the spectral head solution is known to be

stationary, with variance:

Var(H) = 2 J2 cf e2 .h f

On the other hand, observe that the first derivative of the f(x)

process used in this example has a significant spectral content

at large wavenumbers, up to the wavenumber cut-off (/Ax)

corresponding to the smallest scale of fluctuations sampled by

the numerical grid. The integral in (5.60) can now be obtained

by using the- following identities from Gradshteyn and Rhyzik,

*1980 (2.174 and 2.175):

U4 3 U2
u du = - 3 u du

(i+u2)2 I+U2 (l+u 2 ) 2

I du = _ 2u +2 .|du ~
(1+u2)2 4(1+u2) 4 +u2

du= arctg

1+u 2
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whence the result:

Var(5H1) 2 2 r X4 k + 3 Axke

Var(H6) v1 Ax +( Ax 2+ 

3 32 4 arctg [(e ) 1}

For Ax/e << 1, this gives a simple expression for the ratio of

the standard deviations of the head numerical error and head

solution in one dimension:

( l 6 9547 (AeX )3/2 + Ax (5.61)

The most striking feature in this equation is that the

"noise-to-signal ratio" appears independent of the input

log-conductivity variance, and increases as a fractional power of

the resolution (Ax/e), rather than the usual O(Ax2) behaviour for

deterministic problems. The relative error is 2.5% for a

resolution 1/3, and 7% for a resolution 2/3.

The simplicity of the D case allows us to study in

some detail. the effect of the behaviour of f(x) at small scales

or large wavenumbers. If a smoother process with D exponential

covariance is used, equation (5.61) becomes:
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i (H1 _ * (_2

Of - 6 7-

Alternatively, using the D Band-Pass Self-Similar Spectrum of

Chapter 4, with Ax 1 < < L, we obtain:

a(H 6 1 AX
_H

On the whole, these results indicate that the relative numerical

AXerror goes to zero with (RE) faster in-the case of a smooth en K

process, compared to the case where en K has significant

variability at the smallest scales. This observation can be

stated formally as follows:

6 (I) UP S < p 2 (5.62)

where X is a typical correlation scale, and p is equal to 3/2 for

the "noisy" en K process with hole-exponential covariance, while

p = 2 for smoother processes.

[c] Head error in the three-dimensional case:

We will now see that the relative numerical error

a(61H)/a(H) follows a similar behavior in the case of 3D flow.
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The variance of the three-dimensional head error given in

equation (5.59) will be computed below for two different

isotropic log-conductivity spectra: a "noisy" spectrum, and a

"smooth" spectrum. The isotropic 3D Markov spectrum is a good

candidate for - a "noisy" random field. since it is

non-differentiable in the mean-square sense (the variance of

df/dx. is infinite!). This noisy random field was used for allm

the stochastic single-realization flow simulations to be

described in Chapters 6 and 7. On the other hand, the 3D

Hole-Gaussian spectrum (used by Vomvoris, 1986. for analysis of

stochastic solute transport) appears as a good candidate for a

"smooth" random field, being infinitely differentiable.

To obtain a closed form result for Var(5H) in equation

(5.59) requires the evaluation of complicated three-dimensional

Fourier integrals.. The details of this evaluation are given in

Appendix A for the case of the Markov spectrum (noisy field),

and Appendtx 5B for the case of the Hole-Gaussian spectrum

(smooth field). These appendices also develop the spectral

solution for the -head field in order to obtain Var(H). The

root-mean-square relative numerical error on thehead field is

given below, respectively, for the "noisy" case and the "smooth"

case:
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(a): Noisy inDut: a() 1 2 Ax 3/2 1+ (

(5.63)

(b): Smooth: WM < ( 2

This result confirms the behavior observed earlier in

the ID case. Indeed, equation (5.63) shows that the relative

head error is proportional to the grid resolution AxA with a

power 3/2 far the "noisy" 3D Markov log-conductivity spectrum,

and with a power 2 for the "smooth" 3D Hole-Gaussian spectrum.

Note that the X-scale stands for the integral correlation scale

of the Markov spectrum, while the -scale is a typical

fluctuation scale for the Hole-Gaussian spectrum (not the

integral scale). Both log-conductivity fields are assumed

isotropic, and the grid has equal mesh size in all three

directions. A generalization of these results to the case of

anisotropic inputs and rectangular grids would be of great

interest.

Equation (5.63) can be used to compute the leading

order term of the relative head error in specific cases (note

that the inequality in 5.63b becomes equality as the resolution

ratio goes to zero). It appears that the relative error on the

head field is quite small and fairly independent on the type of

log-conductivity field (noisy or smooth), at least for a

reasonably fine grid. Indeed, the error is only 3 in both cases
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for a resolution equal to 1/3. This indicates that the hydraulic

head fluctuations can be accurately resolved by the finite

difference flow simulator with moderate grid resolution. The

situation is not so good when it comes to evaluating the Darcy

flux vector, as will be seen shortly.

5.2.3 Numerical error on the flux vector

[a] Relation between flux error and head error:

The next step of the truncation error analysis focuses

on the error in evaluating the flux vector q by the centered FD

scheme (5.31). This error is defined as:

aq qm qm (m = 1.2.3). (5.64)

The FD solution qm was expressed in terms of head differences in

equation (5.31). Dropping the spatial direction index (m) for

convenience, equation (5.31) gave an expression of the form:

P. P. Hi+i-H (565
q(xiV) = Ki% M .65H

AX

Thus, the flux error evaluated at the mid-nodal points of the

grid is simply:
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6q (x I+) =2 - Ki+ (5)+ - K+% A 11i (5.66)

Now, we can use our previous results in order to evaluate

explicitly the flux error. Indeed, let:

i+A =i+'A i+1A

H =H + Hz.

Plugging these expressions in equation (5.66) yields:

Sq(xi+.) -Ki+% (x)i-P- Ki+A Ax nil

(5.67)

Hi+i H fkKi H * i} _ Ak I}fbii+% Axi 4 Ax~6H~

Using a

form:

Taylor expansion, the first term in braces takes the

- -Ki+ 4 (2 3H) (X4)24 x 3 i+A+ I

To evaluate the second

concerning the mid-nodal

This gives:

term, we use our previous finding

conductivity error Ki+A in (5.42).
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- {Ki+ 8~. ( (A)}

Finally, we evaluate the third term by using a Taylor expansion

of (H 141- 6MI) with H, replaced by the equivalent H(x) head

error. This gives:

- { KI+% 24 (5) )i+ 0 (Ax 4)}

Reassembling these terms in (5.67) leads to the following

expression for the equivalent flux error q(x) defined in

continuous space:

6q(K)=

[Ax2 +Ax e0 -A4

24 't.1 3 51 + a--6 1 + (AX4)
-,K(x) *{ ax 6H 24 Ox0 6

The head error 5H is known from previous results. Recall that

the leading order term in f and Ax was:

51 = E * Ax2 = E a AX2

where EI(x) is known from equation (5.58). Similarly, the exact

solution H(x) s known from previous spectral perturbation

results. In particular, we have:



329

H= + af H + (a2)

where the zero-mean H(x) process is known from equation (5.54).

Note also that f(x) = f g(x). Plugging these expressions into

the equation for (x), we obtain to the leading order in and

Ax:

~~~~ 8~~~3H, aE 
(x) = Of-Ax2 .K~exP(a-g) {+ -- (5.68)

m nm

Finally, denoting h the perturbation h = H - <H>. equation (5.68)

can be expressed in a form which clearly shows the dependence of

6q on the exact head perturbation h and the head error H:

{ AX2 ah 8 -
6qm(x) = K(x) * - - + da H; | (5.69)

`16824 mm

where the first term is due solely to errors in the evaluation of

the mid-nodal conductivities. A similar expression holds for the

error d0m in the hydraulic gradient =-aH

6lG = (5.70)
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[b] Spectrum of head gradient and flux errors:

The random field errors (5.69) and (5.70) are perfectly

determined from previous results (head spectrum and head error

spectrum). For the hydraulic gradient error, we obtain the

following statistics spectrum:

(G0) = 0

- ( a) 2 ' m 3k2 (kZ 2k 2 . (5 )

S(m) = ()*J *(k| (, k |

with implicit summation over repeated indices. In order to

determine the statistics of the flux error 5q in a similar

fashion, we need to linearize the conductivity in the following

fashion:

K = KG egg ~ K0 (+ g+...).

Now, we recognize that this approximation may be poor if f is

larger than unity. Also, recall that a similar approximation was

made for the mid-nodal conductivity error 6K in (5.41) and

(5.42). For the time being, we postpone discussing the possible
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inaccuracy of this linearization approximation.

Using the latter approximation, we obtain a tractable

expression for the stochastic flux error to the leading order

in f and Ax:

- AxZ r 63H2 oE
Iqm(x) G f i4- + 24oI. (5.72)

m

Finally, since the spectra of H and E are known from previous

results, this gives the required statistics of the flux error

vector in closed form:

<q>= 0

FX mlk + k2 (k2k
6qm EGJ= x24 - k + km [ - + 4 d22 (5.73)bqm ~ ~ I 2 Ic2 *

S~qm = (term above squared) * Sff.

The first equation indicates that the mean flux error is null in

an infinite domain; the second equation gives the complex

Fourier-Stieltjes increment of the stochastic flux error vector,

and the third equation indicates how the diagonal components of

its spectral density tensor can be obtained. Recall that Sff is

the known spectrum of the input log-conductivity field.
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[c] Head radient and flux errors in the ID case:

In order to facilitate the analysis, we now focus on

applications of previous results in the D case. The spectral

densities of the random field errors G and q shown in (5.71)

and (5.73) become much simpler in one dimension. Dropping the

tttde (c) sign for convenience, we obtain in this simple ce:

2 Sff(k)
S (k) = (afJl 2 A) * k - (5.74)

of

Sf f(k)
S (k) = (afJKG y Ax2) . (5.75)

of

Now, the variances Var(6G), Var(6q). can be obtained by

integrating the above spectra up to wavenumber r/Ax as explained

previously. It turns out that these variances are proportional

to the variance of the second derivative of the log-conductivity

field (after elimination of fluctuation scales smaller than the

mesh size). For illustration, the relative numerical errors for

the ID Hole-Exponential Covariance log-conductivity ("noisy"

field) were obtained in closed form. The result is shown below:
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7(6q)

(afJ) = (5 

4 .tf JKG)

VsŽ3 - /6 * * (l+O(j)) (5.76)

The most remarkable feature in equation (5.76) is that the order

of accuracy on both the head gradient and the flux vector, drops

by one power of (-i.) compared to the order of accuracy on the

head (equation 5.61). This is exactly the same behaviour as in

the case of deterministic, spatially smooth conductivities.

However here, the order of accuracy is fractional rather than

integer, and less than unity.

[d] Head gradient and flux errors in the 3D case:-

We now proceed to develop similar expressions for the

relative error on the numerical flux and head gradient solutions

in the case of three-dimensional flow with statistically

isotropic conductivity fields. We focus specifically on' the

"noisy" Markov spectrum of log-conductivity, which is the input

spectrum actually used in the numerical simulations of

groundwater flow presented in Chapter 6. The present analysis of

the flux error, due to truncations in the finite difference

scheme, is of particular interest for assessing the feasibility

of accurate numerical simulations of three-dimensional flow and

solute transport in heterogeneous media. Indeed, the spatial
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fluctuations of the flux (or groundwater velocity) are

responsible for the mechanical dispersion of convected solutes.

It seems clear that an accurate simulation of the velocity field

is a prerequisite for obtaining reliable simulations of the

convection-dispersion mechanism in groundwater contamination

problems.

In order to compute the retattue error on the flux and

head gradient vectors in the root-mean-square sense, one needs to

compute both the variance of errors and the variance of the

physical quantities themselves (using known solutions). The

variance of numerical errors can be computed by integrating the

error spectra given in equations (5.71) and (5.73), up to

wavenumbers kil < v/Ax (i = 12,3) in three-dimensional Fourier

space. This can be expressed as follows, for the flux error

vector (Y = qm) as well as the head gradient error

vector (Y = G)

Var (Y) fiff sy (k)'dk (5.77)

0• Iki I•T/XA,

i=1,2.3

The result of integration is given in Aendix .C, using the

flux error spectrum (5.73) and the head gradient error spectrum

(5.71). Note that the domain of integration in (5.77) was

approximated as 0 k /Ax, where k is the radial wavenumber.



335

In addition, the error variances obtained in Appendix 5.C take

particularly simple forms for moderate-to-small grid resolution

ratio:

R = TX << 1

which is precisely the case of most interest for applications

(say Ax/X 1/2 in practice). Thus, we will generally assume

R << 1 in what follows.

On the other hand, the variances of the flux and head

gradient random fields are known from the first order spectral

solutions developed in Chapter 3 (see equations 3.21-3.24).

These results are reproduced below for convenience:

Var(qj) = QS Vfj)2

Var(q 2 ) = { K fJ}2

Var(q 3 ) = 1Kfj 2

and

Var(GI) = {]3KcffJ)i
15~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Var(G2 ) = { 1 f5 .1

Var(G 3 ) = {,.KVcfJ}2
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The final result shown below in terms of relative

root-mean-square errors was, obtained by computing the ratio

Var(BY)/Var(Y) and taking the square 'root (see Aendix 5.C).

The relative numerical error on the flux vector is:

[m =l: oc flA 2.2 (X) | . (5.78)
Vq 1 I I I& -1A -

= a(`) 1.82v Ax 
) 24 (F)

and the relative numerical error on the head gradient is:

m = 1: ~c(a1 ) 3 51-w Ax %m = 13: - -- . ()
;(G1) -1 24

m = 2,3: o(6G) 1.3i (Ax %
a(G ) 2 4 ~

(5.79)

where X is the integral correlation scale of the 3D isotropic

Markov log-conductivity field.

5.2.4. Simnary and discussion

We have evaluated the root-mean-square norm of the
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finite difference solution error on the random head and flux

fields, , for both 1D and 3D saturated flow. The

three-dimensional results of equations (5.78) and (5.79) confirm

the behaviour already observed in the one-dimensional case

(equation 5.76). In both cases, it appears that the order of

accuracy on the flux vector is O(Ax/X) when a "noisy"

log-conductivity field is used. Recall that the order of

accuracy on the hydraulic head was O(Ax/X)3/2 in the "noisy"

case, and O(Ax/X)2 in the case of a "smooth" log-conductivity

field. In spite of the fact that we did not compute the order of

accuracy for the flux in the case of a "smooth" 3-dimenstonal

log-conductivity field, there is little doubt that the order of

accuracy will be O(AxA) in that case, as shown previously for

the 1-dimensional case. These findings are summarized in Table

5.1.

The most important conclusion to be drawn from the

truncation error- analysis developed above, is that the centered

finite difference scheme is a conststent approximation of the

stochastic flow equation, even when the log-conductivity is a

"noisy" random field, such as the non-differentiable 3D Markov

field. Here, "consistency" means convergence in the mean-square

sense of the finite difference solution to the exact solution as
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Table 5.1

Order of Accuracy of the Stochastic Finite Difference
Approximation (the "Noisy" and "Smooth" Random Fields

were Defined in the Text, with Examples for 1 and
3-Dimensional Flow).

ORDER OF ACCURACY

O(AxA&)P NOISY en K FIELD SMOOTH en K FIELD

Hydraulic Head (H) p = 3/2 p = 2

Head Gradient (G) p = 1/2 p = 1

Flux Vector (go) p = 1/2 p = I

Table 5.2

Relative Numerical Error on the Hydraulic Head and
Flux Vector. in the Case of the 3D Isotropic Markov
Log-Conductivity Spectrum ("Noisy" Random Field)

GRID RESOLUrION

(Ax/X) 1/10 117W] 1/2

Hydraulic Head-(H) 0.5% 3X 5%

Longitudinal flux(qj) 10. 17% 22%

Transverse Flux (q2.q 3) S. 14% 17%
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the grid resolution (Axle) goes to zero. The length scale e

represents the integral correlation scale or some otherwise

defined fluctuation scale, of the log-conductivity field.

Furthermore, it is worth noting that the present

analysis leads to explicit estimates of the leading order term of

the numerical error for the variables of interest, particularly

the hydraulic head and the flux vector. Table 5.2 gives the

relative numerical errors on the hydraulic head and on the

different components of the flux vector in the case of the 3D

Isotropic Markov spectrum of log-conductivity. Recall that the

relative error was defined as the ratio of the standard deviation

of the numerical error Y, versus the standard deviation of the

variable of interest Y. For a moderate grid resolution, such as

the value 1/3 used in the numerical experiments of Chapter 6, the

error on the head appears to be fairly small (3%), while the

error on the flux vector is significant but still acceptable

(less than 20%).

Another important finding from the truncation error

analysis is that the retattve errors a(6Y)/a(Y) appear to be

independent of the log-conductivity standard deviation af.

Therefore, as f decreases, the absolute precision on H and

aq will improve, but not the relattue precision. The latter
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can only be improved by using higher grid resolution. This

finding will be useful for the design of numerical experiments

aimed at obtaining accurate second order moments of the flow

field for comparison with spectral solutions (Chapter 6).

In order to put these findings in proper perspective,

it may be useful to recall the various assumptions that were used

in our analysis of accuracy of the finite difference scheme.

First of all, note that the solution errors were evaluated by

using a statistical root-mean-square norm, or standard deviation

of the random field error. It was assumed that the computational

domain is large enough that these statistics can be viewed

equivalently as ensemble or spatial averages, provided also that

both the solution and the error be stationary and ergodic.

Without these assumptions, no simple closed form results could be

obtained.

Second, we emphasize the fact that the results of error

analysis were obtained by using a double-expansion in terms of

Ax/ and Of, respectively. Thus, the closed form results

obtained above give only the Leading order term of the

root-mean-square error, with respect to the "small parameters"

AxA and Of. In particular, note that a linearization of the

type:
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ef 1 + f +

was needed in order to include the effect of inaccurate

evaluation of mid-nodal conductivities by the geometric mean

weighting scheme (see equations 5.40 and 5.41). This particular

linearization could lead eventually to underestimating the error

on the flux vector a(6qi) for large values of a . However, the

same type of linearization was also used to evaluate a(qi), so

that the relatiue error a(Bqi)/a(qi) could be less dependent on

the linearization approximations, even for large values of f.

As an indication, the leading order errors obtained in this

section are thought to be fairly representative of the actual

finite difference solution errors for values of af up to 1-1.5

and Ax/X up to 0.5.

In addition, it is worth noting that the present error

analysis did not include finite size effects and/or

non-stationary behavior of the stochastic solution (as will

necessarily occur to some degree for finite domain simulations).

Neither did it include the sampling errors that will occur when

computing single realization flow statistics by spatial averages

(rather than ensemble averages). These effects will be discussed

in Chapter 6.
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Finally, it should be noted that several different

kinds of errors actually occur in the numerical solution

procedure: truncation errors, matrix soLution errors, and

round-off errors. The truncation errors were defined and

analyzed in this section. Sotution errors arise from the

approximate solution of the finite difference system (e.g.. by an

iterative method). Round-off errors are due to the finite

precision of digital computers, usually 32 digits on mainframes

and 64 digits on recent supercomputers, and they accumulate more

or less rapidly depending on the type of algorithm used (certain

linear system solvers are more stable to round-off errors than.

others). It seems important to ascertain that solution errors

and round-off errors will be minimal. Indeed, the fine grid

resolution required for the case at hand leads to very' large

finite difference systems that may be difficult to solve

accurately. This will be the subject of a forthcoming section.

where we will focus on a particular type of preconditioned

iterative solution method (the SIP solver).

By way of closing remarks, let us mention that the

proposed approach of evaluating finite difference truncation

errors for a stochastic partial differential equation appears to

be new, in view of the available literature on numerical

analysis. Our method, based on Taylor expansions, stochastic
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linearization, and Fourier space representations, could be used

to analyze mesh resolution requirements for more general

stochastic partial differential equations, such as parabolic

convection-diffusion equations. The present work could also be

used to obtain a more complete picture of the discretization

errors, such as the spatial correlation structure of the errors

on the hydraulic head and on the flux vector. Other possible

applications could involve the study of higher order finite

difference methods, finite element methods, pseudo-spectral

methods. and multigrid methods for stochastic PDE's with random

coefficients.

5.3 Iterative Matrix Solver and Convergence Analysis
for Linear Random Flow Problems

5.3.1 Review of iterative and preconditioned matrix solvers

Our survey of the literature (Table 5.3) clearly showed

that large sparse matrix systems can be solved more efficiently

with iterative solvers than with direct solvers such as Choleski

factorization or Gauss substitution. One of the many examples of

the superiority of iterative solvers, even for relatively modest
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Table 5.3 List of Matrix Solvers and References

Solvers Comments Applications to Subsurface
Hydrology and Related Problems

I Point Jacobi Explicit type; O(n2) seldom used
iterations.

2. Gauss Seidel Weakly implicit; (na) seldom used
iterations.

3. SOR Accelerated Gauss-Seidel Reisenauer et al., 1981
O(n) iterations with Bjordammen and Coats, 1969
optimal parameter, else Stone 1968

O(n2) iterations.

4. LSOR Line - SOR, mplicit Bjordammen and Coats. 1969
along lines; requires Freeze. 1971. Cooley, 1974
optimal parameter for
O(n) convergence.

5 ADI Implicit along each Stone 1968
direction alternatively: Weinstein et al.. 1969
requires near-optimal Bjordammen and Coats. 1969
sequence of parameters. Watts 1971; Cooley. 1974:

Trescott and Larson 1977:
Kershaw. 1978

6 IOG First order accurate Kershaw 1978
Incomplete Choleski Cambolati. 1979
factorization. with Kuiper 1981 and 1987
Conjugate Gradient Gambolati and Perdon 1984
iterations (no parameter
required).

7. SIP Second order accurate Stone 1968. Weinstein et. al.
strongly implicit W 1969. Cooley 1974 and 9S3.
factorization (requiring Trescott. 1975. Trescott and
sequence of parameters); Larson 1977. McDonald and
Picard iterations. Harbaugh. 1984. Kuiper 1981

and 1987.

S. Gauss Fully implicit, direct Neuman and Davis 1963
Elimination solver (non-iterative). Yeh and Lxmoore 1983
or Choleski
Factorization
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size problems, can be found in Gambolati and Perdon (1984). Our

own experience with a Gauss elimination solver adapted to a

banded alerkin coefficient matrix confirmed this view. The CPU

time for this direct solver was proportional to N7/3 for steady

state 3D groundwater flow on a cubic domain discretized into N

elements. On a Vax 11/782 machine, the CPU time was about one

hour for N = 4000 elements. However, solving a problem of size

N = 64000 would have required one month of CPU time on the same

machine, and larger problems on the order of 1 million elements

could not be solved in reasonable amounts of time even on recent

supercomputers such as Cray 2. The storage would be likewise

prohibitive, being proportional to N 3 (number of equations N

times the matrix bandwidth N 3 ). Thus, the storage requirement

will be 10 Gigawords for large problems on the order of 1 million

elements. In comparison, the central memory of the Cray 2 is

currently about 250 Megawords.

The major disadvantage of using direct solvers for the

solution of large linear systems lies in the fact that the

triangular matrices arising in the process of decomposition are

not sparse, even though the coefficient matrix itself may be

sparse. For the 7-diagonal finite difference matrix depicted in

Figure 5.2. a Choleski factorization A = LLT yields a triangular

matrix L with mostly non-zero elements within the half band of

width N2 = 3 (for a cubic grid of size n3 = N). As



346

mentioned above, this yields on the order of N5"3 non-zero

elements to be computed, compared to just 4N non-zero elements in

the lower half of the original matrix. This kind of observation

has led numerical analysts to develop a number of iterative

solution methods based on approximate sparse decompositions of

the original system matrix, such that the computational work per

iteration and the required storage are both proportional to N.

The sparse iterative methods can be roughly classified

with respect to the approximate decomposition method used. Most

of the "classical" iterative solvers are based on an approximate

splitting of the matrix (Point Jacobi. Gauss-Seidel, successive

overrelaxation (SOR), alternate directions implicit (ADI)) while

the more recent "fast" iterative solvers are based on an

approximate factorization of the matrix (strongly implicit

procedure. and incomplete Choleski-conjugate gradients). The

reader is referred to Jacobs (1981) for a survey of iterative

solvers according to the classification proposed above, and Evans

(1981) for a review of matrix-splitting preconditioners. A

number of other reviews and experimentations with matrix

iterative methods can be found in the collections of papers

edited by Schultz (1981), Evans (1983), and Birkhoff and

Schoenstadt (1984). In addition, Table 5.3 gives a list of

references concerning the use of iterative solvers for subsurface

flow and analogous problems; some of these studies include
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numerical experiments and comparisons between different types of

solvers.

Another important distinction to be made among

iterative solvers is, precisely. the type of iteration used to

converge to the solution of the original matrix system. Apart

from the IG solver, all the other solvers mentioned above are

based on Picard-like iterations, including in particular the SIP

method. These solvers can be briefly described as follows.

Consider the linear finite difference system:

Ah = b (5.80)

and suppose that an approximation M of matrix A has been

found (M must be easier to invert than A). The simple

manipulation shown below leads quite naturally to a Picard

iteration scheme where the new system matrix M is by

construction easier to invert than the original matrix A:

(M + A - M ) h = b

Mh= b (-A)h

Mh 1 5 b + (M-A)hm.
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Furthermore, by substracting MhP to both sides, one obtains a

"modified Picard" scheme that is presumably more stable with

respect to round-off errors:

X* hM!+ = b O

where 6hm+ - hT1*l- h * and m is the iteration counter.

Finally, the iterations can be overrelaxed or underrelaxed by

multiplying the right-hand side residual by a "relaxation

parameter". :

M.6MP1 = w,(b-Ahm) (5.81)

It is worth noting that (5.81) is a consistent

iteration scheme with respect to the original system (5.80), in

the sense that the exact solution h = A b is obtained as m - a,

provided however that the iterations converge. Unfortunately,

convergence is not necessarily guaranteed in the general case.

We now proceed to review various kinds of

preconditioners (matrix M). The classical iterative solvers such

as Jacobi and various versions of successive overrelaxation (SOR)

are based on an approximate decomposition obtained by splitting

A into lower triangular,* diagonal, and upper triangular
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matrices:

A = L + D U

The approximate matrix can be expressed in the general form:

M = D 1 (D+%LL)(D7UU) (5.82)

When the preconditioner (5.82)

obtains some well known

"matrix-splitting" kind:

is plugged into (5.81).

iterative solvers of

one

the

Point Jacobi

Point Gauss-Seidel

Point SOR

Symmetric SOR

(.rL

= -u= 0, and = 1)

= 1, iu = id and w = 1)

= 1, mu= and l C Iwj 2)

= u = Ad and = (2--r))
i

Similarly, the ADI solver can be viewed as an iterative

method based on matrix-splitting decomposition. As an example,

the Peaceman-Rachford version of ADI for two-dimensional finite

difference systems (Peaceman and Rachford, 1955), can be

expressed as follows: 
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A = LX Ly

(I- i )(h+-h) b -A

(-rI-Ly) h'-hm") = b - Ah

where the LX and Ly matrices correspond to the partial

differential operators in the X and Y-directions. respectively.

Note that each step of ADI is similar to the basic iterative

scheme (5.81). The ADI method can be extended to

three-dimensional finite difference systems (Douglas, 1962).

More general alternate directions operator splitting methods haye

also been devised for the solution of weighted residual and

collocation systems (Celia and Pinder, 1985).

The convergence properties of some of the classical

iterative solvers reviewed above have been thoroughly analyzed in

the literature (Varga 1962, Young 1971, Golub and Van Loan 1983).

For instance, it has been shown that Jacobi and Gauss-Seidel

require on the order of n2 iterations to reach a given.

precision, where n is the unidirectional size of the grid

(Laplace problem, in any number of dimensions). The SOR methods

require only O(n) iterations if the optimal iteration parameter

can be computed accurately. Unfortunately, this requires

estimating the spectral radius of the SOR iteration matrix. For
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complex problems such as the stochastic flow equation, it seems

unlikely that the "optimal" relaxation parameter could be

estimated accurately without dramatically increasing the total

computational work. Thus, the number of iterations is likely to

be 0(n2) - rather than the O(n) behaviour predicted for optimal

SOR.

This feature is presumably shared by the iterative ADI

methods. The theory for ADI convergences remains incomplete, but

the work of Peaceman and Rachford (1955) and Wachspress and

Habeter (1960) shows that the optimal ADI-relaxation parameter is

not a constant. These authors proposed a cyclic sequence of

parameters based on the eigenspectrum of the LX and L

matrices defined above. The truly optimal sequence is not known,

except for very special forms of the governing equation, e.g..

the heat equation with spatially separable conductivity

K(xy)=K(x).K (y). More details can be found in Varga (1962)xy

and Ames (1977). among others.

The Jacobi, SOR, LSOR, and ADI solvers can also be

compared in a slightly different way as follows. First of all,

let us point out key feature shared by all the iterative methods

reviewed above: the interactions among nodal variables are

partially decoupled through the iterative solution process. At

each iteration step, the solution is computed by taking into
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account the interactions among a certain group of nodal values,

while the remaining nodes are treated explicitly (e.g., by

retaining the values obtained at the previous iteration). The

computational work per iteration is roughly the same for all

solvers (on the order of N), but the "degree of implicitness"

differs. In the Jacobi method, the solution at each node is

computed explicitly with respect to all the remaining nodes; in

the Gauss-Seidel and SOR methods, about half of the nodes are

treated implicitly on average; and in the ADI method, the nodal

values are coupled alternatively in the X and Y-directions,

while the other direction is treated explicitly. Various devices

have been proposed in the literature in order to increase the

degree of implicitness, or coupling, of iterative solvers while

still retaining the advantages of a sparse and easily invertible

matrix approximation. Indeed, the SOR matrix-splitting can be

generalized into line-SOR or more generally block-SOR splittings,

which may increase the coupling along lines or among neighboring

nodes (Evans, 1984).

However, our literature review indicates that the most

efficient, or "strongly implicit", iterative solvers are those

based on an approximate factorization of the original matrix,

such as the SIP and ICG solvers mentioned earlier. This was

taken into account in the classification given in Table 5.3.

where the solvers were listed according to their "degree of
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implicitness", increasing from top to bottom (Jacobi, Gauss

Seidel, SOR, LSOR, ADI, ICCG, SIP, and Direct Solvers). According

to this classification, direct solvers are fully implicit

(requiring only "one iteration") but their computational cost

will be prohibitive for large systems, as explained earlier. The

advantage of SIP and I is that they are based on strongly

impltctt, yet sparse factorizations of the coefficient matrix.

Thus, these two methods presumably converge faster than the

solvers based on matrix-splitting, while the computational work

per iteration remains on the order of N.

The numerical experiments published in the literature

confirmed this view. Most of the references given in Table 5.3

above involved comparisons between LSOR, ADI, SIP, and ICG. It

appeared that ADI had the slowest convergence rate in most cases,

or diverged in difficult cases such a those involving anisotropic

conductivities. The LSOR solvers were reasonably efficient,

provided alternate line-sweeping along different directions, but

the SIP solver was usually more efficient for "difficult"

problems involving heterogeneities and mild nonlinearity. In

addition, the performance of SIP was not overly sensitive to the

choice of its iteration parameters, whereas this was sometimes a

critical issue for LOR and ADI.
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On the other hand, ICCG also appeared to be a powerful

solver. The numerical experiments by Kershaw (1978) demonstrate

the superiority of ICC over ADI and LSOR for a laser fusion

problem (transient diffusion equation with a radiation term).

Other numerical experiments for heterogeneous confined and

unconfined groundwater flow (Kuiper 1981) indicate that SIP with

underrelaxation could be as efficient as IG for the mildly

nonlinear case of unconfined flow, although IOG usually

converged faster for linear problems. In a more recent study

Kuiper (1987) concludes in favor of ICCG over SIP. However, it

is possible that a change in the details of implementation,

especially for the nonlinear problems, could affect his

conclusions. Furthermore, the SIP solver involves an adjustable

sequence of iteration parameters (similar to ADI), and could also

be underrelaxed to avoid divergence in difficult cases. On the

other hand, IO G does not depend on any extraneous iteration

parameter. It is conceivable that the flexibility of SIP could

be an advantage, rather than a drawback, when dealing with near

ill-conditioned systems.

At any rate. it may be preposterous to draw definite

conclusions here. since the numerical experiments mentioned above

were limited to rather modest-size flow problems, below 10,000

nodes. The largest among those was the saturated-unsaturated

numerical simulation by Freeze (1971) with the LOR solver on an
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8,000-node grid, but his study did not include comparisons with

other solvers. Larger simulations can be found in the literature

on numerical analysis, however, these focus typically on the

solution of the Laplace or Poisson equations (constant

coefficients). One of these studies, by Jacobs (1983). develops

an adaptation of the SIP factorization in conjunction with

conjugate gradient iterations, for comparison with ICOG methods.

The conclusions, based on two-dimensional test problems up to

40,000 nodes, were in favor of ICOG over SIP--CC. However, we do

not know of any numerical experiments with the standard SIP

solver for problems of comparable size or larger..

We now focus our review on the theory of SIP and ICCG.

since our search in the literature indicates that these solution

methods may have the best potential for large finite difference

systems. The idea of using sparse approximate factorization for

preconditioned iterative solvers arose in 1968, when the SIAN

Journal on Numertcal Anatysts published in the same issue three

papers on the approximate factorization and iterative solution of

multi-dimensional finite difference systems. The first, by

Stone, described the strongly tmplictt procedure (SIP) based on

an approximate, non-symmetric LU factorization of the symmetric

coefficient matrix A. with a Picard iteration scheme to converge

to the solution of the A-matrix system. Although Stone's paper

(1968) concerned only two-dimensional 5-point finite difference
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systems, the SIP method was subsequently extended to

three-dimensional 7-point finite difference systems (Weinstein et

al, 1969). The two other papers in the 1968 SIAN Jou=aX, by

DuPont, Kendall, Rachford and the companion paper by Dupont,

developed a symmetric LLT approximate factorization with Picard

iterations to converge to the solution. The U.. factorization

they used was similar to an incomplete Choleski factorization

where the matrix L is forced to have the same sparsity pattern

as A, and furthermore the row-sums of A are conserved (see

Gustaffson 1978, Jackson and Robinson 1985). Thus, the iterative

solvers of Stone (1968) and Dupont et al. (1968) differed

essentially in the method used to obtain an approximate

factorization of the finite difference matrix.

It was not until 1977 that the symmetric incomplete

Choleski factorization was used as a preconditioner for conjugate

gradient iterations (Mejerink and Van der Vorst, 1977). This

combination, known as incomplete Choleski-conjugate gradients

(ICCG), has become quite popular due to the fast convergence of

the CC iterations in the case of well conditioned

(preconditioned) symmetric positive-definite systems (see

Kershaw, 1978, among others). It is interesting to note that the

"pure" conjugate gradients method devised by Hestenes and Stiefel

(1952) was viewed in the early days as an exact solver, since the

method was known to converge to the exact solution in at most N
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iterations (N being the number of equations). However, the CC

iteration did not converge fast enough to be competitive as an

approximate large sparse matrix solver (N large). Thus, i t

should be kept in mind that the incomplete factorization is an

essential ingredient of the ICOG method, required to ensure fast

convergence of the conjugate gradient iterations.

On the other hand, it is worth noting that the

conjugate gradients method, and the ICCG solver, can only be used

to solve symmetric positive-definite systems. As a consequence,

the conjugate gradients method cannot be used to accelerate the

convergence of the SIP solver, as the latter is based on a

non-symmetric LU factorization. This would seem to advantage the

ICG method, since the conjugate gradients iterations presumably

converge faster than Picard iterations for well conditioned

(preconditioned) systems. On the other hand, the non-symmetric

SIP factorization appears to be a more accurate approximation of

the original system matrix than the Incomplete Choleski

factorization (respectively second order and first order in Ax:

see Stone 1968 and ustaffson 1978). This seems to advantage

SIP, with a better preconditioner than ICCG.

Unfortunately, there does not appear to be any solid

theoretical basis on which to compare the two methods. A formal

theory of SIP convergence is still lacking, due to the complex
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form of the LU factorization involved; there has not been much

progress in this area since the indications given by Stone (1968)

for 2-dimensional problems with constant coefficients. The

theory for ICOG is more developed, but limited to constant or

mildly variable coefficients. For instance, Gustaffson (1978)

showed that the condition number of the iteration matrix for the

Picard-Incomplete Coleski solver of Dupont. et al. (1968) was

O(n). compared to O(n2) for the condition number of the original

matrix (Laplace equation, with n the unidirectional size of the

grid). On the other hand, the number of iterations required to

reach a given precision grows like the square-root of this

condition number, both for the Picard and the conjugate gradient

iterations (Gustaffson 1978, and G6lub and Van Loan 1983). This

yields for the number of IC iterations a relation of the form:

m n

which indicates that the IG method could converge quite fast

for large 3D systems. Indeed, the total size of the grid is

N = n0 in three dimensions, which-yields:

i ' N1"6 (5.83)

indicating a very slow growth of the number of iterations with

grid size. Note however that the theoretical analysis that led
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to (5.83) was based on a number of assumptions, including the

restriction to mildly variable or constant coefficients. It

seems more reasonable to postulate that, in the worst case, the

number of iterations could grow like the unidirectional size of

the grid, for the ICOG as well as the SIP methods, i.e.:

m n

This gives finally a worst case estimate of the number of

iterations required for convergence of both ICOG and SIP for

three-dimensional systems with highly variable coefficients:

m N1"3 (5.84)

In comparison, note that the non-optimal SOR method will not

converge faster than NW 3 iterations, even for mildly variable

coefficients.

We have developed a Fortran implementation of the SIP

solver during the initial stages of this research. Some of the

details of this implementation will be described in the next

section, and a number of numerical experiments for large random

flow problems will also be presented in a forthcoming section.

Because the results obtained with SIP were eventually found to be

quite satisfactory, it was felt that developing the ICC solver
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was not necessary. However, there is no claim that ICCG could not

perform as well or perhaps better than SIP in terms of

computational work (more on this later).

5.3.2 Formulation of the strongly implicit procedure (SIP solver)

We now proceed to describe the algebraic details of the

strongly implicit procedure. Recall that SIP is based on the

Picard iteration scheme (5.81):

M* :MP+' = . (b-Ahm) [(5.81)]

where X = LU is an approximate non-symmetric factorization of

the system matrix A. In what follows, we analyse in some detail

the SIP factorization for the case of the 7-diagonal symmetric

coefficient matrix A, corresponding to the 7-point centered

finite difference scheme in three dimensions (see Figures 5.1 and

5.2 above). The 3D version of SIP was exposed briefly by

Weinstein et al. (1969), based on the 2D version previously

developed by Stone (1968). Details on coding can be found for

instance in McDonald and Harbaugh (1984). However, our

particular implementation is exposed below.

The SIP factorization aims at obtaining a close

approximation of matrix A in the form of a product of a lower and
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an upper triangular matrix (L and U) that have the same sparsity

patterns as the lower and upper parts of A (Fiuure 5.5). The

difficulty is to find the matrices L and U such that the

product M = LU is indeed close to A in some sense. Let us

define E the error matrix:

E = M - A LU - A (5.85)

Obviously, many choices of L, U. and E are possible for a given

matrix A, since the system (5.85) is undetermined. On the other

hand, it is easily seen by inspection that E cannot be the

zero-matrix since the system A = LU is overdetermined. We

conclude that A cannot be exactly factored in the form LU.

The particular factorization devised by Stone and

co-workers was obtained by writing explicitly the undetermined

system (5.85) - with L and U as shown in Figure (5.5) - in a

recursive form. The undetermined coefficients in this recursion

were then obtained by manipulating the equations in such a way

that the product LU appears equivalent to a non-symmetric, second

order finite difference approximation of the governing partial

differential equation. In two dimensions, Stone (1968) showed

that LU corresponds to a 7-point symmetric FD approximation
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Figure 5.5 Schematic representation of the SIP approximate
factorization (top). and structure of the roduct
X = LU approximating A (bottom). The dashed lines
indicate extra diagonals not present in the original
matrix A.
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(Figure 5.6.top) satisfying:

LU = A + 0 (Ax 2 . Ay2 . AX Ay).

In three dimensions, an analogous procedure devised by Weinstein

et al. (1969) leads to a factorization LU that appears equivalent

to a 13-point asymmetric FD approximation of the governing

equation (Figure 5.6. bottom). Presumably, this corresponds to a

second order approximation of the governing equation, as in the

two-dimensional case.

However, it turns out that the LU factorization

required an additional modification in order to ensure proper

convergence of the iterations defined by (5.81). A new parameter

7 was introduced (undetermined coefficient of the LU matrices)

in such a way that the factorization described just above

corresponds to the case X = 1. Note that X is an "iteration

parameter", distinct from the relaxation parameter W appearing

in equation (5.81). According to Stone (1968) and Weinstein et

al. (1969), the best results were obtained when r followed a

cyclic sequence, with 0 < (m < 1. The proposed sequence of

parameters is analogous to that of the ADI method. This sequence

takes the form:
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Figure 5.6 Asymmetric SIP molecule corresponding to the
approximate LU factorization of the symmetric
finite difference matrix A (top: 2D case; bottom:
3D case).
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-1
m0 -1

- = (1 ) m = 1,2,---,mo (5.86)

where m is the cycle length (taken equal to 4 in this work),

and 7max is the maximum value of -r over one cycle. Correcting

the erroneous formula given by Stone (1968), max is given by:

I j.k nip np 2 n3

=1 Ki-PAk Ki,jk+ 1 KiV.*JAk
1i +1 AX + 2 J2 (etc.)

where ni represents the number of nodes along direction xi.

Note that max appears to be spatially variable in the case of

non-constant conductivities, so that the above formula requires

some further modification. In the case of 3D flow with locally

isotropic (but variable) conductivities, we propose a simple

elimination of the conductivities appearing in p. etc., on the

grounds that neighboring mid-nodal values should not differ much

on a hgh resolution grid. This yields finally:

'1r2 (Ux 2 - Axe)2
1- = in { 1 (5.87)

max 1=1,2,3 2n2 * j2 f
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where =Ax2 = Ax2 + Ax2 + Axg. Equations (5.86) and (5.87)

completely define'the cyclic sequence of SIP iteration parameters

used in this work, both for the linear and nonlinear flow

systems. The cycle length was m = 4 for all simulations. To

avoid confusion, we stress again the fact that X is distinct

from the relaxation parameter X appearing in the basic

iteration (5.81). The parameter w was introduced to provide

additional flexibility to the SIP solver, and 'will turn out later

to be useful.

It may be instructive to briefly explain the rationale

behind the choice of a cyclic sequence of the -paramettr. The

geometric progression (5.86) was chosen intentionally in order to

cover a wide range of values ° •m -rmax < 1, in such a way

that the values taken by ,rm are mostly clustered near unity (note

that max is very close to one for- large grids). Indeed, it

turns out that for a 1, the iterative smoothing of the error is

only effective within a narrow wavenumber band, so that several

different values or -r near unity are needed in order to cover a

wide enough band. In addition, the precise choice of Imax is

important for the success of the SIP method. According to

equation (5.87), this parameter'is close to one, but always less

than one. Indeed, -Fourier analysis shows that taking rax

exactly equal to unity would lead to divergence of the SIP

iterations.
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In the case of the two-dimensional Laplace equation,

Stone (1968) showed that, for any constant value of in them 

vicinity of unity, there will be an amplification of the Fourier

modes of the error within some wavenumber range. On the other

hand. Stone also showed that for any given Fourier mode, there

exists a value of XY between zero and one that results in the

decay of the amplitude of that mode. Values of near unity

tend to decay the low wavenumber components of the error

(although some other modes might be amplified!), while values of

7v near zero tend to decay the high wavenumber modes quite

rapidly. The sequence of m defined above is therefore an

important ingredient of the SIP method, without which very slow

convergence or even divergence could occur. Unfortunately, there

exists no proof that this sequence will guarantee optimal

convergence of the SIP method in the general case. The ADI

method encounters the same type of problem, as explained earlier.

Another important feature of the SIP factorization that

might be altered to improve convergence is its drecttonatity,i

arising from the asymmetry of the "SIP molecule" depicted in A

Figure 5.6 above. Indeed, the orientation of the SIP molecule

could be changed by reordering the nodes in a different fashion.

In three dimensions, we have enumerated eight possible ways to do

so without changing the sparsity pattern of the system matrix.

The standard node ordering scheme, which sweeps first through
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(+x), then (+x2), then (+x), was used as the basic indexing

scheme in our numerical code. However, the SIP algorithm can be

manipulated to accommodate other node orderings, such as sweeping

reversely through (-x,), then (-x 2 ), then (-x 3 ) in the negative

directions. It has been claimed that implementing the SIP

factorization with alternate ordering (+x ,+x2-+x3)/(-xl,-x2 o-x 3)

from one iteration to the next, resulted in improved convergence.

However we have not observed any favorable effect of the

alternate ordering strategy in our preliminary numerical tests.

For completeness, note that there are two ways to implement the

atternate SIP method; the one we have tried without success

cycled the 7-parameter every other iteration, so that the same

value of 7v was used for alternate sweeps. According to

Weinstein et. al. (1969), the other strategy which uses different

values of -v over alternate sweeps may work as well or better. In

any case, the numerical experiments shown in this work were all

performed with the standard node ordering implementation of SIP

(no alternate sweeps).

'The algebra of the SIP factorization is tedious and

will not be reproduced in detail here. The factorization must be

recomputed at each iteration step because the factored matrices

L and U depend on 'vm, which varies cyclically as explained

before. Our particular implementation used a vector

representation of each non-zero diagnonal line of A, L and U. We
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obtained a nonlinear recursion for the coefficients of the L and

U matrix, analogous to the Thomas algorithm for tridiagonal

matrices, but much more complex (13 equations define the

recursion). Unfortunately, this type of recursion does not

appear to be fully vectorizable, except at the cost of increased

storage requirements.

We have coded several implementations of the SIP solver

in order to accommodate different computing environments. One of

the variants is slower, but more flexible and requires less

storage. Typically, the solution of a linear problem such as

saturated flow with random field conductivities will require a

storage of about 10 N words, where N is the total number of

nodes. The number of equivalent additions performed at each

iteration step is on the order of 50-100 per node, of which only

a fraction is vectorizable. Thus, solving a single realization

of the stochastic flow problem on a 3D grid on the order of

1 million nodes would require the availability of about

10 Megawords of central memory, and consume on the order of

100 MFLOP per iteration (FLOP = 1 million floating point

operations).

In comparison, a recent supercomputer like the Cray 2

could run at 10 MFLOP/second (or several times faster) in sator

mode, and 100 MFLOP/second (or several times faster) in full
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vector mode. The physical memory of the Cray 2 is currently

256 Megawords (with 64-bit words), but other supercomputers have

only about 1-10 Mwords of central storage (Cray 1, Cyber 205).

Nevertheless, storage should not be a real problem in the near

future, since the current trend is towards larger physical

memories on the order of the Gigaword (109 words).

We conclude that the numerical solution of random flow

problems on grids on 'the order of I million nodes will be

feasible at reasonable cost on current supercomputers having

sufficient, direct access memory, provtded that the number of

tterattons required to reach an accurate solutton be on the order

of 1000 or less. In this case, a solution for each

single-realization problem could be reached in, say, no more than

a few hours of CPU time. Thus, the key question is whether the

SIP solver converges at a reasonable rate in the case of large,

highly variable flow problems. We will- examine this question

below for the case of steady state flow in saturated media. The

transient and nonlinear problem of unsaturated flow is of a

different nature, and its numerical analysis 'is postponed to a

later section.
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5.3.3 Convergence analysis for large 3D random systems of
saturated flow

In this subsection, we summarize the results of a

number of numerical experiments conducted with the SIP solver.

for large single-realizations of the stochastic groundwater flow

equation in three dimensions (up to 1 million nodes). We begin

by developing an approximate theory relating the unknown solution

error to other "observables" such as the residual iteration

error. This will serve as a basis to interpret the numerical

experiments. Note that we focus here strictly on the convergence

of the solver, and not on the physical meaning of the solutions

themselves (see Chapter 6).

[a] Theoretical Analysis of Convergence:

We proceed to show that the convergence rate of the

SIP solver is related to the spectral radius of the so-called

iteration matrix, or "Jacobi matrix" J. Furthermore, we will

also show that the observable "residual error" (e) usually

underestimates the true error (e) by an amount which depends on

the convergence rate. Let us start with the basic Picard

iteration scheme (5.81):

LU(hb~-hm) = (m) [(5-81)]
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and recall that LU is an approxtmate factorization of matrix A.

which depends on the cyclic -parameter of equation (5.86). For

simplicity here, we will ignore the fact that LU varies

cyclically with respect to the iteration counter m. This should

not be of consequence for the forthcoming analysis. e.g.. the

convergence rate can be interpreted as an average over the cycle

length.

Let us now define a "residual error" which can be

computed a posteriori by numerical experimentation:

e =hm- --hm (5.88)

However, the "true error":

em= h h (5.89)

remains unknown, since the exact solution h is not known.

Nevertheless, a recursive relation on m is easily obtained by

manipulating equation (5.81); this gives:

am (J)M.O- (5 90)

where e is the initial error (depending on the initial guess

h0), and J is the iteration matrix'
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J = I - (LU) A (5.91)

Furthermore, it is easily seen, by manipulating again equation

(5.81), that the residual error follows a geometric progression

similar - but not identical - to equation (5.90):

A= (J) naw (h-(LU)flAho) (5.92)

These relations show that the SIP iterations will not

converge unless the "norm" of the iteration matrix is less

than one, in some sense to be precised later. In the case of an

exact LU factorization, and taking = 1, the iteration matrix

becomes zero and the exact solution will be obtained after just

one "iteration". In the case of the approximate SIP

factorization, we expect that the rate of convergence be directly

related to the accuracy of the LU factorization, which can be

represented by the norm of in equation (5.91). This

intuitive observation will be given a more precise meaning

shortly.

Note also that equations (5.90) to (5.92) can be

combined to relate the unknown error vector e to the residual

error vector as follows:
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m ( J. -1 . em (5. 93)

This equation indicates that the true error may be much larger

than the observed residual error when the norm of the iteration

matrix J is close to unity. Observe that J W depends on the

chosen value of the relaxation parameter. The role of can be

made more explicit by plugging equation (5.91) into (5.93). This

yields:

em 5 
1 e A-1 LU (5 94)

The role of the relaxation parameter now appears more

clearly. Taking a-< 1-(underrelaxation) does not seem a good

strategy at first sight. since this will-increase the ratio E. /a

according to equation (5.94). On the other hand, underrelaxation

might be necessary in order to avoid divergence in the case where

the LU matrix is not an accurate approximation of A (the norm

of J must be less than unity in equation 5.91). This suggests

that there exists some optimal value of the relaxation parameter

(u ) which will maximize the convergence rate of the trueopt

error. It Is conceivable that wopt be greater than one in

certain "easy" cases, but more likely wopt will be less than

unity for "difficult" problems characterized by a large condition

number of the coefficient matrix.
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Unfortunately, the relations obtained so far depend on

the unknown inverse matrix A 1 involved in J, so they cannot

be used for an a priori analysis of convergence of the SIP solver

in terms of the true error a. However, it is possible to

relate the norm or spectral radius of to the -convergence

rate, at least approximately. In addition, comparing equation

(5.92) to (5.90) shows that the e- and e-convergence rates

should be the same. These remarks eventually lead to an explicit

expression for the true error (e) in terms of two "observable"

quantities: the residual error (e), and the e-convergence rate.

This is developed in more detail below.

Our starting point consists in obtaining a tractable

expression for the true solution error (e) in equation (5.93).

Intuitively, this equation suggests an inequality of the form:

Am15 J 11 

A relation of this type was used for instance by Hageman and

Young (1981) to design a stopping criterion for conjugate

gradient iterations. In order to show that this is indeed a

reasonable approximation of (5.93), we need to define some vector J

and matrix norms. The reader is referred to Householder (1964)

for basic definitions and inequalities on matrix norms. The
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facts directly relevant to the present work can be summarized as

follows. A matrix norm must satisfy the usual properties of

norms, including the triangular inequalities:

11A + B 5 11Ai + 1B1l

-(5.95)

11ABII 1 Ail - 11B11

One particularly useful matrix norm 11Ail is defined in relation

with the usual Euclidean norm hixl for vectors, as follows:

HAII Max tIAxI (5.96)
x

Incidentally, it can be shown that 1iA11 is the square-root of the
-- T

maximum eigenvalue of M. Now, by using the second triangular

inequality in (5.95) we obtain another useful inequality:

mll IAI1m (5.97)

On the other hand, the spectral radius p(A) of a matrix A is

defined as its maximum absolute egenvalue:

p(A) = Max Xi(A) (5.98)
i
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This quantity turns out to be always smaller or equal to the

Euclidean matrix norm:

p(A) IIAII (5.99)

Finally, combining (5.97) and (5.99) yields another useful

inequality:

p(A ) IIA 11 • IlAIm (5.100)

Let us now assume that the iterations do converge, and

that the norm IIJ II of the iteration matrix is less than unity

(this also implies that its spectral radius p(J.) is less than

unity). Equation (5.93) can then be approximated as follows.

First, take the Euclidean vector norm on both sides of (5.93) to

obtain:

Second, write a formal Taylor development of the matrix-valued

function:

jw 1 j= I + 3 J+*

and use the previous inequalities to obtain:
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II(I-J6,1C1) • 1 + IIJII + IIJ12+000

The series on the right-hand side converges since it was assumed

that IIJwII < 1. Thus, we obtain finally:

It(I J. - II -IJ II

which gives immediately the announced result:

11 m1
Itmit (5.101)

On the other hand, applying previous matrix norm

inequalities to equations (5.90) and (5.92) gives two more

inequalities:

llml D I llm * Be160

(5.102)

lie 1 II J Hl * w llh-(LU) lW1O

Let us now define the convergence rate:
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r= den (5.103)
din

and observe that the convergence rate of the residual error is

identical to that of the true error if equality holds in both

relations of (5.102). In that case, the convergence rate is

given by:

r en (l/llj 11). (5.104)I

However, this can only be a rough approximation

(hopefully on the safe side) since in fact equations (5.102) are

inequattttes. Other authors have used a slightly different

argument that leads to a similar result with IIJ 11 replaced by

p(J ) in equation (5.104). This is reported for instance in

Remson et al. (1971), following the work of Forsythe and Wasow

(1960) and others. Indeed, expressing equation (5.90) in the

basis (ei) of independent eigenvectors of J, gives:

a0 = ai ei

a a X e

and, in the case where the largest eigenvalue XI = P(w)

dominates the others, we obtain approximately:
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This finally leads to replacing 113J11 by p(J) in equations

(5.101) through (5.104). It should be mentioned that, although

we know in general that p(J) iIJIl, the cases where these two

quantities are not close to each other are somewhat pathological.

Here, we can only hope that the SIP iteration matrix J is not

pathological, i.e. that its spectral radius is approximately

equal to its Euclidean matrix norm.

To conclude, the results of equations (5.101) - (5.104)

finally lead to an upper bound on the "true" solution error, in

the form:

116m11 H _(5.105)

where e is the true error vector, e is the residual error

vector, and r is the convergence rate, which can be computed

from:

r - d en | ; (5.106)dm
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Equations (5.105)-(5.106) are applicable in the case where the

computed convergence rate, r is a positive constant. In other

words, the iterations must converge, and the number of iterations

must be large enough that the convergence rate reaches an

asymptotic value. Fizure 5.7 shows three different situations

that might arise in practice:

(i) The residual error norm IIe 1I increases monotonically

(on average over the cycle length) after a certain

number of iterations: this is a sure sign that the

method diverges.

(ii) The residual error norm He 1lI decreases monotonically

but does not seem to reach a constant convergence rate:

the method may converge with more iterations, or may

not (possibly due to accumulation of round-off errors).

(iii) The residual error norm il decreases monotonically

and reaches a constant convergence rate (straight line

on a semi-log plot): the method clearly converges, and

the final error le11m can be evaluated a posteriori by

using equation (5.105).

The methodology developed above proved to be useful in

practice, especially for the solution of very large "random" flow
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IF

Figure 5.7

ft

A posteriori analysis of convergence of the SIP
solver: residual error norm versus number of
iterations on a semi-log plot. In the convergent

case (iii). the final residual error Itell and the
convergence rate r can be used to estimate the true
error Hell as explained in the text.
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problems. It was found that underretaxation was needed in order

to achieve convergence for such problems. As a consequence, the

iterations converged quite slowly. Now, the simple relation in

(5.105) shows that the residual error will largely underestimate

the true solution error in these cases of slow convergence.

Incidentally, let us mention that most empirical studies of

iterative solvers in the literature use the residual error

(e = h-h), or else the right-hand side residual (b-Ah ), in

their evaluation of the solver's performance. The above analysis

indicates that such information could be misleading, except

perhaps for "academic" cases where the convergence rate is high

enough that the residual error approximates well the true

solution error. In the sequel, we analyze sequences of residual

errors obtained from actual simulations, using equation (5.105)

for a realistic evaluation of the performance of the SIP solver

in terms of the "true" solution error.

[c] Numerical Exeriments:

The SIP solver was applied to a model problem of

saturated flow for a variety of grid sizes and different cases of

log-conductivity variability. Briefly, the model problem was

designed to simulate steady state saturated flow driven by a

known global hydraulic gradient. The three-dimensional domain
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was a rectangular prism, elongated in certain cases, cubic in

other cases. The global hydraulic gradient was imposed along one

of the axes of the rectangular prism (axis x) by using fixed

head boundary conditions on two opposite faces (xl=O and x=L1),

while zero-flux conditions were imposed on all other lateral

faces. With this configuration, x represents the direction of

the mean flow (longitudinal), while x2 and x 3 are the axes

transverse to the mean flow.

In the trivial case of a constant conductivity (af=0).
.~~~~~~~~~~~~~~~~~~~

the exact solution in terms of the hydraulic head is a linear

function of the longitudinal coordinate:

H(L,)-H(O)
H°(K) = H(O) + *x1 (5.107)

In the case of a random log-conductivity (Of 0), equation

(5.107) was used as the initial guess for the SIP solver. The

log-conductivity was generated at each node of the finite

difference grid by using the 3-dimensional Turning Band algorithm

developed by Thomson, Ababou and Gelhar (1987). This method

generates single-realizations of random fields, as explained

earlier (Chapter 2). The particular random field used for the

numerical experiments of this section is the 3D isotropic Markov

field, whose spectrum was given in Table 3.1. Let us mention

that other simulations were conducted with anisotropic arkov
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log-conductivity fields. The numerical solutions obtained for

isotropic as well as anisotropic fields will be analyzed more

thoroughly at a later stage (Chapter 6).

Table 5.4 summarizes the results obtained with SIP

for 4 test problems and several values of a The first row

gives the size and geometry of the grid. Note that the largest

problem (1 million nodes) was solved on a Cray 2 machine with

64-bit words, while the other problems were solved on a

minicomputer, the icrovax 2, with 32-bit words. The mesh size

was the same along all three directions, and equal to one third

of the conductivity correlation scale for the largest problem

(one half for the others).

The second row in Table 5.4 gives the standard

deviation of the log-conductivity field (f), which ranged

between 1 and 2.3; these are fairly representative values in view

of available field data (see Chapter 2). In addition, one of the

simulations listed in Table 5.4 was for f = 0. i.e. for

constant conductivity (Laplace equation). The initial guess for

the Laplace equation was taken to be a constant hydraulic head:

H(O)+H(L1)
H(x) = 2

rather than the linear function (5.107) which is known to be the
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Table 5.4

Convergence Rate of the SIP Solver:
Summary of Numerical Experiments for 3D Steady State

Saturated Flow with Statistically Isotropic Random Conductivities

Problem A B C D
LabelI
N 1 million 130.000 110.000 40.000

n (101; 101:101) (51; 51; 51) (250; 21; 21) (80;21;22)

1.0 2.3 2.3 2.3 0. 1. 2.3

2.5 .25 .50 .25 1.00 .50 .50

r .0219 .0070 .0256 .0041 .0341 .0512 .0259

(mn)* 105. 330. 90. 570. 67. 45. 64.

(a)" 1.2 0.4 0.7 0.3 0.9 1.4 0.7

(*) The "iteration increment" (m,) and the "scaled convergence rate" (s) are
defined in the text; note that Am, is the number of iterations required
to decrease the true error by 1 order of magnitude.
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exact solution of the Laplace equation. This particular test

problem was included in order to examine the effect of

conductivity variability over a wide range of Of values. In

theory, the asymptotic convergence rate should not depend on the

initial guess, but only on the size of the grid, the input

conductivities, and certain iteration parameters.

The third row of inputs in Table 5.4 gives the

relaxation parameter W used for simulations (see equation

5.81). The method used to search for an optimal value of was

rather elementary and empirical. The value w = 1 was tried

first; if divergence or very slow convergence occurred, the

simulation was started again with underrelaxation. Thus, the.

sequence of values of the relaxation parameter used successively

in the search process was w = 1, w = 0.50, w = 0.25, and

c,= 0.1.

The last three rows of Table 5.4 display the asymptotic

convergence rate (r) and two other quantities related to it.

Recall that r is the rate of decrease of the logarithm of the

residual error normal as defined by equation (5.106), which can

be rewritten as:

m+1 [ 1
r diIh -hl[(5.106)]
r-~d
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As explained earlier, this should be identical to the rate of

convergence of the true error, lh-hMll. The "iteration

increment" Am, was defined as the average number of -iterations

required to decrease the error by 1 order of magnitude:

Am,= ernO (5.108)

Finally, the "scaled convergence rate" (s) was obtained by

dividing the convergence rate by a factor approximately equal to

the square root of the condition number of the coefficient matrix

A. In fact, this condition number is known only for the special

case Of =0 (Laplace matrix), namely:

4 (n1)2+(n2)2+(n3)2 (.0
CO 4 (5.109)

72

where ni is the unidirectional size of the grid (number of

nodes) in the direction xi.

The condition number given by (5.109) was obtained as

follows.. First of all, the condition number of a symmetric

matrix is defined as the ratio of the maximum versus minimum

absolute eigenvalue of the matrix. The eigenspectrum of the

Laplace matrix is easily obtained by solving the Laplace

eigenproblem:

(v2 -X) v = 0
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for v(x). and by plugging the corresponding eigenvectors

V(i 1 AXI- i 2 AX2 - i 3 Ax3 ) into the matrix eigenvalue problem:

(A-XI)v = 0.

In the case where Ax1 = AX2 = Ax3 , this gives the egenvalue

spectrum:

X (k) =~ sS [ n k1 T 
ix i 2(nI+1)J

Ax =1,2,3

where k = 1,2,***n The final result (5.109) was obtained by

computing the ratio of the extreme eigenvalues (CO= XA )

assuming n >> 1, and the quantity "s" on the last row of

Table 5.4 was defined as:

's = oCA*r (5.110)

Thus, a constant value of s across the last row of Table 5.4

would indicate that the convergence rate is proportional to C 

which is itself approximately proportional to the unidirectional

size of the grid along the direction of maximum elongation

(largest number of nodes). To avoid confusion, recall that C is

the condition number of the Laplace matrix (f = 0), not of the
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random matrix ( f 0 0).

The major results that emerge from Table 5.4 are the

following. First of all, it appears that underrelaxation was

usually required in order to achieve convergence. Second,

convergence was fairly slow in general, since the number of

iterations required to decrease the error by 1 order of magnitude

(Am,) was on the order of one hundred, up to several hundred

iterations in the most difficult cases. Furthermore, it appears

that the required number of iterations was roughly proportional

to the unidirectional size of the grid as defined earlier. This

can be seen by comparing problems AB.C for f = 2.3. On the

other hand, the required number of iterations usually increased

with a for a given grid size (see problems A and D for

of = 1 and 2.3).

However, the sequence of convergence rates obtained for

problem D with of = 0. 1 and 2.3, indicates that the influence

of of on convergence might be fairly complex. If one accepts

the -conjecture that the convergence rate of SIP is proportional

to w where CA is the condition number of -the random
A* A

conductivity matrix A, then the results of problem D suggest

that CA decreases with a at low values of Of, and

increases eventually for larger values. We have observed this

kind of behavior for a very small matrix with random
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conductivities distributed independently of each other, using a

direct perturbation analysis to obtain a "geometric mean"

condition number. The minimum condition number was obtained for

af around 1.00-1.25. This result is not intuitively obvious.

In any case, we infer from Table 5.4 that the

convergence rate of the SIP solver behaved like:

7
r = s *_ _

I n2+n2+n2

(5.111)

where ni is the unidirectional size of the grid, and s is a

slowly variable function of Of and ni. According to the last

row of Table 5.4. the coefficient s was roughly on the order of

unity.

Figures 5.8) and (5.9) display the actual sequence of

residual errors obtained during the iterative solution process

for the largest and smallest problems A and D listed in

Table 5.4. Figure 5.8a in particular gives the Euclidean norm of

the residual error 10*1-011 versus the number of iterations (m)

on a semi-log plot for the "1 million node" problem A. The

three subproblems Of = 1.0. 1.7 and 2.3 were solved sequentially
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NON-SCAD M NORM ( VERSUS NO. OF RATIONS I)

Figure 5.8 (a) Euclidean norm of the residual error versus
number of iterations on a semi-log plot for
problem A (1 Million nodes). The three
suproblems a-1.1.7, 2.3 were solved
sequentially on a Cray 2 computer
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Figure 5.8 (b) Comparison of the asymptotic convergence rates
for oI and a=2.3 of the 1 Million node problem
A: same as Figure (5.8a) except that the
residual errors have been scaled
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I

I

Figure 5.9 (a) Euclidean norm of the scaled residual error
versus number of iterations for problem D, on
a semi-log plot. The two subproblems a--I. a=2.3
were solved separately on a icrovax.



395

8
Sj

0

8
1%j'

a
Wr MAX.

S
4.

I I Euct
. I ., I I1I

S
II'

8-
TiI P . f2IL Z401

I
4tIL

Figure 5.9 (b) Comparison of the Euclidean norm and absolute
maximum norm of the scaled residual error for
problem D with f = 1.0.
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on a Cray 2 machine, by using the last iterate of a subproblem as

an initial guess for the next one. This procedure bears some

resemblance with the so-called "continuation methods" to solve

systems of equations whose solution depends continuously on a

parameter a: see Ortega and Rheinboldt (1970) in the context of

nonlinear systems. Here the system is linear, but "difficult" to

solve unless a = 0; the three subproblems a = 1, 1.7, 2.3

correspond to three "iterates" of the continuation method.

The total number of SIP iterations required to solve

accurately the three subproblems of Figure 5.Sa was about 1000

iterations, which consumed a total of about 4 CPU hours on the

four-quadrant Cray 2 machine of the Minnesota Supercomputer

Center running in "single precision" (64-bit words).

It should be noted that the Fortran code ("Bigflo") did

not fully vectorize due to the nonlinear recursions of the SIP

factorization algorithm, and the backward substitution of the

solution algorithm. In addition, a "slow" Fortran compiler

("cft77") was used for technical reasons. As a result, the

speed-up ratio between the Cray 2 and a Microvax 2 machine was

moderate, about-1 CPU hour/1 CPU minute. The CPU time was found

to follow the general relation:

T = (co + c *Tm - (5.112)
106
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where co 5 mn (overhead per million nodes) and c, = 23 mn

(per hundred iterations/per million nodes) for the Cray 2

machine. Recall that the number of iterations (m) was found to

be roughly proportional to the largest unidirectional size of the

grid. Using equations (5.108) and (5.111) and ignoring the

overhead time gives approximately the CPU time required to

decrease the residual error by 1 order of magnitude, as a

function of the grid size:

T c II (100) Max ToO} (5.113)
i=1.2,3 i=1,2.3

For a grid with equal size n in all directions, this gives

simply:

T c =cl(n)4 (5.114)

For the 1 million node grid (n = 100) this yields just 23 CPU

minutes on the Cray 2. However, doubling the unidirectional size

of the grid (n = 200) yields an 8 million node grid, which would

require about 6 CU hours of Cray 2 time in order to decrease the

residual error by just one order of magnitude! This indicates

that flow problems on the order of ten million grid points or

more are presently very costly or infeasible in any "reasonable"

amount of time with the SIP solver. Presumably, this assessment
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also holds for most of the iterative solvers discussed in our

literature review.

For the flow problems reviewed in Table 5.4. fairly

accurate solutions were obtained after the initial residual error

was decreased by two -to three orders of magnitude. The

iterations were usually stopped after the relative error (defined

below) reached about 10-2 _ 10 3 or less. The relative solution

error was evaluated -a posteriori in two steps. First, the

residual errors (Figure 5.6a) were normalized by a typical head

variation (oH) which was taken to be the standard deviation of

head given by the approximate spectral solutions, of Chapter 3.

Figure 5.8b shows the sequence of scaled residual errors for the

1 million node problem A, with a = 1 and = 2.3. A similar

graph is depicted in Figure 5.9a for the smaller problem D.

The true solution error (normalized by H) was then

evaluated according to equations (5.105)-(5.106). As an example.

let us focus on problem A with O = 2.3 (Figure 5.8b). The

scaled residual error at the last iteration was:

llh~ihml ~ 104

However, the asymptotic convergence rate was quite small:
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r = _ d~nllh l-h O0. 0070.
dm

According to equation (5.105), we evaluated the upper bound on

the true solution error as follows:

HhhmII 1Os 007 2 1.5 1o-2.

cH 1-e -. 0

This shows that the solution error was at most 1.5%, relative to

the magnitude of fluctuations of the solution (H). Although

this is certainly acceptable, it should be noticed that the

"true" error (upper bound) appears to be almost 2 orders of

magnitude larger than the residual error. The discrepancy was

less marked in the case of smaller variability (of = 1.0). and

the solution error was found to be only a fraction per cent

relative to h. Indeed, it is clear from Figures (5.8) and

(5.9) that convergence was faster in the case of smaller

variability (f 1. compared to Of = 2.3).

We conclude that the solutions obtained with the SIP

solver were highly accurate, since the solution error at the last

iterate was found to be at most on the order of one percent the

standard deviation of the (random) head solution itself. In our

view, this is a remarkable result given the large size and high

variability of the problems considered for solution (especially

problem A, with million nodes and af=2.3).
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On the other hand, we have seen by extrapolating a

relation on the number of iterations versus grid size, that the

solution of larger random flow problems on the order of 10

million nodes or more may not be at hand. Even if convergence

could be achieved, we predict that the solution of such problems

could require 1 CPU day or more on recent supercomputers like the

Cray 2. Furthermore., the solution process could be overwhelmed

by the accumulation of round-off errors before reaching a

satisfactory solution error. This possibility seems to be

indicated by Figure .9b, which shows that the residual error

cannot be decreased beyond a certain level. Note that Figure

5.9b is for the "small" problem D, solved on the Microvax 2

minicomputer with 32-bit words. The accumulation of round-off

errors was not observed with the Cray 2 simulations, due to the

higher precision on this machine (64-bit words).

Incidentally, Figure 5.9b also compares the Euclidean

norm and the absolute maximum norm of the residual error. As one

could expect, using the absolute maximum norm gives a more

pessimistic picture of the performance of the solver.

Nevertheless, we emphasize the fact that, for all problems listed

in Table 5.4, the SIP solver did converge in terms of the

.absolute maximum norm as well, and the zaxtmum head error over

the grid was only a fraction of the head standard deviation in

all cases. In summary, the solution error due to the approximate
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matrix solver SIP was quite small in all cases considered for

simulation, both in the Euclidean norm and the absolute maximum

norm.

Finally, it should be kept in mind that truncation

errors will necessarily compound with the matrix solution errors

to yield, presumably, a larger total error. Considering the

results above and those of Section 5.2 on truncation errors, it

appears that the total root-mean-square error on the hydraulic

head will be at most about 5% relative to the head standard

deviation. Note that this evaluation is based on the one million

node problem (A) of Table 5.4 with af = 2.3. The error so

estimated refers of course to the exact solution of the

finite-domain single-realization problem, not to the hypothetical

ergodic solution of the infinite-domain problem as assumed for

instance in the spectral theory.
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5.4 - Development and Analysis of the Nonlinear Iterative Solver
for Transient Unsaturated Flow

5.4.1 Nonlinear SIP solver and nested Picard iterations:

[a] Overview of Numerical Issues:

In the case of unsaturated or partially saturated flow

- as opposed to saturated flow a new solution strategy must

be devised in order to take into account the highly nonitnear

nature of the algebraic finite difference system. We have chosen

in' this work to focus our analysis on the case of transtent flow

problems, such as local infiltration in semi-infinite unsaturated

media. Steady state solutions, when they exist, can be obtained

by running the transient unsaturated flow simulator for large

times. An example of this'can be found in Chapter 7. where large

scale unsaturated flow solutions are presented for both transient

and steady state cases.

In the transient regime, and when the time steps are

sufficiently small, the algebraic system to be solved becomes

much better conditioned than its steady state counterpart (see

equation 5.31). As a 'consequence, the SIP matrix solver is

expected to converge much faster for each time step of a

-transient flow problem than it does for the single step of a

steady flow problem. On the other hand, the nonlinearity of the
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unsaturated flow system requires prior linearization in order to

obtain a solvable matrix system, presumably with iterative

corrections to converge to the solution of the nonltnear system.

Now, it is likely that there will be some restriction on the time

step size in order to ensure the convergence of the iterative

linearization scheme. Therefore, we expect that the interplay

between time step size and convergence rate of the linearization

scheme will play a major role in determining the overall

efficiency of the unsaturated flow simulator (perhaps more

important than the rate of convergence of the SIP matrix solver).

With this "warning" in mind, we proceed to describe the actual

procedure used to solve the nonlinear transient flow problem.

[b] Description of the Nonlinear-SIP Solver:

The procedure which we have developed is based on a

doubly-iterative Picard scheme for solving the nonlinear finite

difference system at each time step. The outer Picard iteration

loop is a simple iterative predictor-corrector scheme which

breaks down the nonlinear system into a sequence of linear

systems. This was described in Section 5.1.3, where we developed

in detail the nonlinear space-time finite difference system and

its linearized version (see in particular equations 5.28-5.31).

The inner Picard iteration loop corresponds to the solution of
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the linearized matrix system by the SIP method, for each step of

the outer iteration loop. For simplicity, the whole solution

procedure will be designated as "nonlinear SIP".

The linearized system (equation 5.31) can be written

for each time step (n n+1) -and each outer iteration (k - k+l)

as:

An+lk hn+l.k+1 = rn+l.k (5.115)

where 11 is a new nonlinear relaxation parameter, and r is the

residual for the outer Picard iteration loop (r - 0 as k a.

Note that the linearized vector of boundary conditions was

absorbed in the residual. The numerical code accommodates

boundary conditions of fixed pressure, fixed flux, or zero

pressure gradient, for each of the nodes belonging to the

boundary.

The linearized coefficient matrix A has the same

sparse structure as the matrix previously obtained for the linear

system of saturated flow -- a major advantage of the Picard

linearization scheme over Newton-Raphson. More precisely, we

have shown earlier (equation 5.31) that A takes the form:
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An+1.k n .k . + Kn+lk (5.116)
4 = At 516

n

where C is the linearized storage term (for transient flow

only). I is the identity matrix, and K is the linearized

unsaturated conductivity matrix, formally identical to the

coefficient matrix of the saturated flow system. As mentioned

earlier, the condition of matrix A improves as Atn decreases,

due to enhanced diagonal dominance in that case.

Plugging the standard SIP iteration scheme of equation

(5.81) into the linear system (5.115) yields a doubly-iterative

Picard scheme of the form:

k+l,my h hkl' - h = 1hl

k+lm+l k+lm+l k k+lm+y = h P~l-h = h1,~

ayk+lm+ll= yk+l.m+l yk+ltm

(5.117)

Lk Uk 4k+1.m+ = -q-rk-Akyk+l'm)
m+1 +

where the time index (n+1) has been dropped for clarity of
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exposition. The double' iteration loop (5.117) runs over

k = 1.o*,K for outer iterations, and m = 1.-,-J- for inner

iterations of the SIP solver (the LU matrices vary with m

because of the cyclic SIP iteration parameter xm of

equation 5.86).

Now, for any given time step (n n+1). let ho be the

known pressure solution at time tn. Then, the solution at the

next time step tn+1 = tn + Atn is obtained as follows:

(0) Define the initial guess for outer iterations:

ho = h(tn). k = 0.

(1) Increment the outer iteration loop k -1 k + 1

(Picard linearization scheme)

. ~ ~ ~ ~ ~ ~ ~ ~ ~ k ,k

(2) Update nonlinear coefficients of matrices Lk, k, Ak

and vectors rk. bk (all functions of hk, known from

previous outer iteration step)

(3) Define the initial guess for inner iterations:

yk+l.0 k+l.0 hk o n=0
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(4) Increment the inner iteration loop m e m + 1

(Picard iterations of the SIP solver)

(5) Compute the LU factorization and solve the

system (5.117) by forward-backward substitution (SIP)

to obtain 6yki1,z+

(6) Update yk+lm+l yk+l.m n+y and iterate to

step (4) unless m = M or Idyll < M

(7) Update hk+l = hk + y , and iterate to step (2) unless

k = K or llyll = 115hl eK.

(8) The last computed vector h is the desired solution

h(t 1 ) at the new time: the difference (h -hn) is

used to compute the next time step before incrementing

the time loop (not shown here).

This algorithm defines, in an extremely condensed form.

the nonlinear SIP solver which forms the backbone of the flow

simulator. The actual Fortran code ("Bigflo") comprises over ten

thousand lines of instructions and comments. A summary narrative

of this code is given in Appendix 5.D. It should be emphasized

that a single program was developed to solve both steady and

transient, saturated and unsaturated, deterministic and random
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flow problems. These various options are accommodated by certain

parameters that act as switches (transient/steady.

saturated/unsaturated. etc.). The "nonlinear SIP" algorithm

described above includes all the cases just considered. For

instance, in the case of steady saturated flow, the time loop and

the outer iteration loop are simply bypassed, or incremented only

once.

Another important feature of the numerical flow

simulator is its modularity. For instance, the SIP solver

intervening in Step (5) is the same for saturated or unsaturated

flow. This solver, and many other parts of the code, are

isolated in subroutines. It may be of interest to note that the

SIP solver subroutine, although quite complex. takes only a very

small fraction of the whole Fortran code. However, we have found

that most of the computational work was usually consumed in that

small part of the object code (typically 80%-90X of the total CPU

time, as estimated by a Cray software called "flowtrace").

Let us now consider how the nested inner/outer Picard

iteration loops can be controlled to optimize the nonlinear

solution process. The control parameters that remain to be

determined for a given flow problem and a given mesh size are the

following:



- Time step size (Atn)

- Maximum number of iterations for the inner loop (M)

and outer loop (K)

- Maximum residual error for the inner loop (eM)

and outer loop (eK)

- Choice of a norm for the residual error

(Euclidean norm? Maximum absolute norm?)

- Relaxation parameters for the inner iterations ()

and outer iterations (i).

These control parameters were determined empirically on

a case-by-case basis, i.e., by numerical experimentation, for a

number of transient test problems of two and three-dimensional

infiltration in homogeneous and heterogeneous soils, with grid

sizes ranging from a few thousand to a few hundred thousand

nodes. The artable time-step size was controlled automatically

by following the evolution of the solution, as will be explained

in a later subsection. It was found that the time-step size had

to be quite small in order to ensure the convergence of the outer

Picard iterations (although not as small as would be needed in

the case of an explicit time discretization scheme). The

relaxation parameters w and 1 were usually taken equal to

one. Note that the inner iteration loop (SIP) ims not

underretaxed because most cases of divergence seemed to have been
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triggered by the growth of the outer iteration residuals. When

divergence occurred, the simulations were simply resumed with

smaller time steps, while the relaxation parameters were usually

kept the same (c=i=l). On the other hand, recall that for linear

problems of steady saturated flow, the choice of the SIP

relaxation parameter was critical, and w < 1 was frequently

required for SIP convergence. It appears that for highly

nonlinear transient flow problems, the time step size is more

important as a control parameter.

The remaining parameter (K, eK) and (M, e) were used

to control the number of iterations for the outer loop and inner

loop,, respectively. Typically, the mcxtmw length allowed for

each iteration loop was set for KM=50. The actual length of

each loop was controlled by the tolerances aK and e. for the

outer and inner residual errors expressed in terms of pressure

heads. The norm chosen for comparison was the absolute maximum

of the residual errors over the grid (rather than the Euclidean

norm used for steady saturated flow). The chosen tolerance was

typically 6K 0.1 cm for the outer iterations, and

ex = 0.01 cm for the inner (SIP) iterations. -This resulted in a

very short iteration loop for the SIP solver (on the order of

1-10 iterations). The outer iteration loop was somewhat larger

(1-20 iterations) depending on the time step size. In one

example, it was found that a moderate increase in the time step
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size resulted in an increase of the average number of iterations,

in such a way that the total computational work. was unchanged.

However, divergence eventually occurred if the time step was

increased by a larger amount. Thus, the simulations were

successful only in those cases where the time step was small

enough that the lengths of the inner and outer loops were kept

small, say, no more than 10 inner iterations and 20 outer

iterations on average.

For clarity, it may be useful to define more explicitly

.our concept of a "successful" simulation. First, the inner and

outer residuals must both decrease monotonously on average. And

second, the number of iterations for each loop must remain below

the preset maximum, so that the residual at the last iteration be

smaller than the preset tolerance (at least most of the time).

Typically, a "successful" simulation of infiltration in dry

heterogeneous soils resulted in a total of 50 iterations of the

SIP matrix solver per time step (say 5 inner iterations and 10

outer iterations on average). Thus, the solution of a nonlinear

flow problem over, say 100 time steps, typically required

5000 SIP iterations. This is more than would be required for the

solution of a steady state, saturated flow problem (Section 5.3).

The increased computational work for unsaturated flow is due to

the highly nonlinear nature of the governing equation. Of

course, we expect that the solution of steady state unsaturated
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flow problems will be even more demanding, unless a good initial

guess can be found.

[c] Brief Literature Review and Discussion:

The nonlinear solution procedure just described bears

some resemblance with a number of methods proposed in the

literature. In particular, various versions of nonlinear SIP

solvers that are similar in some respects to the present method

were developed by Trescott and Larson (1977), Kuiper (1981), and

Kuiper (1987) for the simulation of groundwater flow with a

variable watertable. In the first two papers, the standard SIP

solver was implemented in such a way that the nonlinear

coefficients were updated at every SIP-iteration. This is nearly

equivalent to reducing the inner iteration loop of our solver to

just one iteration (=1). The third paper (Kuiper 1987) was

devoted to the comparison of a number of variants of the SIP and

ICCG solvers in conjunction with various strategies for the outer

linearization loop. including SIP-Picard and SIP-Newton

strategies with only 1-5 inner iterations of the SIP solver.

Finally. Cooley (1983) addressed the problem of partially

saturated flow with seepage faces, using a complex procedure be

described as a combination of Newton-Raphson iteration.

successive approximation, and (SIP).
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It should be noted that the numerical experiments

reported by these authors involved rather small, mildly nonlinear

problems, with grid sizes generally below 1000 nodes.

Unfortunately, we have found it quite difficult to draw

conclusions from their work regarding the optimal design of the

nonlinear solvers. The nonlinear systems to be solved are

sometimes so complex that they could be sensitive to even minute

details of implementation. One single fact seems to emerge

however: most authors have chosen a solution strategy that

imposes a very small number of matrix solver iterations between

each nonlinear coefficient updates. This is similar to what

occurred in actual practice with the more flexible nonlinear-SIP

method developed in this work.

More details on certain aspects of the unsaturated flow

simulator will be given below, particularly concerning the

dynamic control of time step size and domain size (in cases where

a variable domain evolving with the solution makes sense), as

well as mass balance computation, and other related issues. A

semi-empirical analysis of space-time resolution requirements

will also be developed in order to obtain heuristic criteria for

the choice of mesh size and time step size, particularly for

ensuring the convergence of the linearization scheme. In

addition. numerical experiments for a variety of test problems

will be presented in order to explore the actual capabilities of
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the unsaturated flow simulator. However, the analysis and

physical interpretations of the numerical solutions obtained for

random unsaturated flow problems is postponed to Chapter 7. It

should be noted that the largest such problem analyzed in this

work involved a three-dimensional grid size on the order of 0.3

million nodes, and over a hundred steps in time. As far as we

know, this problem size is 1 to 2 orders of magnitude larger than

currently available simulations of unsaturated flow published in

the literature. Even for modest size problems, it does not seem

that the degree of variability considered in this work, with a

node-by-node variation of the random constitutive properties of

unsaturated porous media, bas ever been considered elsewhere for

direct numerical simulations. The present flow simulator appears

therefore as a unique "high resolution" tool for exploring highly

heterogeneous nonlinear unsaturated flow phenomena.

5.4.2 Truncation errors. nonlinear stability. and space-time
resolution requirements

[a] Methodolv-

In this subsection, we attempt by various methods to

evaluate the numerical requirements for convergence and accuracy

of the unsaturated flow simulator. The major numerical
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difficulty appears to be the highly nonlinear nature of the

governing flow equation, with the soil moisture capacity and

unsaturated conductivity curves given by equations (5.19) and

(5.22). In the case of transient infiltration in dry soils, we

have observed that the solution could diverge after just one or a

few time steps if the initial time step size was taken too large.

The problem becomes naturally more severe in the case of

spatially variable soils: instabilities can be triggered at any

time as a moving infiltration front encounters zones of higher or

lower conductive properties. In this light, it seems worthwhile

to look for constraints on the mesh size and time step size that

will guarantee the convergence of the Picard linearization scheme

(outer iteration loop of the nonlinear-SIP solver). The question

of accuracy of the finite difference approximation can also be

examined in terms of truncation errors. It seems however futile

to draw conclusions from truncation analysis without taking into

account the errors due to Lineartzatton. This difficult

enterprise was not pursued in this work. Instead, the issues of

accuracy (truncation error) and convergence (nonlinear stability

analysis) will be examined separately. The latter view-point

will lead to some specific numerical requirements, however

without rigorous proof.
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[bJ Truncation Error Analysis:

Let us develop a simplified truncation error analysis

for the one-dimensional, transient unsaturated flow equation with

spatially constant soil properties. Note that we do not attempt

to develop closed form expressions for the solution error as was

done in Section 5.2 for the case of random saturated flow.

Briefly. the truncation error is defined by the expression:

T(hi) = L(hi) - L(hi). (5.118)

where L(h) represents the (vanishing) operator corresponding to

the one-dimensional transient unsaturated flow equation:

L(h) = C(h) ah a (K(h) Oh + g)) = 0 (5.119)

Note that g indicates the acceleration of gravity: take g = 0

for horizontal flow, and g = +1 for vertical flow with the x-axis

upwards. On the other hand, L(hi) represents the finite

difference operator defined analogously to equations

(5.24)-(5.30). In this discrete operator, the midnodal

unsaturated conductivity K(h1+,) is evaluated by the geometric

mean Ki+. as in equation (5.29).

The truncation error (5.118) can be expressed formally
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by using Taylor developments analogous to those of Section 5.2

(e.g., equation 5.36). The calculations are tedious but

straightforward, and its details will not be reproduced here

(some intermediate results can be found in Vauchin et al.. 1979,

p. 40). When the truncation error due to the approximate

evaluation of mid-nodal conductivities (Ki,4) is ignored, the

resulting truncation error (Ti) at the nodes of. the space-time

grid takes the form:

+~~~~

P =i 24 {ax [ax3 ] -C Wax [ 1 ]

(5.120)

+At * {6x[K at [a-x]j c a

On the other hand, when K is evaluated by the

geometric mean weighting scheme, the error (K-K) needs also to be

taken into account. Assuming an exponential conductivity -

pressure relation:

K(h) = Xs exp(a-h) (5.121)

where both Ks and a are assumed constant, the mid-nodal

conductivity error takes the form:
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K - K cAL.* K 82h (5.122)
Ox2

When this discrepancy is taken into account in the Taylor

developments. an additional term is obtained in equation (5.120).

This new term takes the form:

8 a x a2g]] (5.123)

and the total truncation error results from adding (5.123) to the

right-hand side of (5.120).

A few remarks can be made about equations

(5.120)-(5.123). First of all, we find that the order of

accuracy of the finite difference approximation is (AX)2 in

space and (At) in time. However, we expect a degradation of the

spatial accuracy when the coefficients are random fields instead

of constants (by analogy with the results of Section 5.2). Our

second remark is that the accuracy in time depends on the rate of

change of the pressure gradient and on the second derivative

82h/8t2. Finally, it is interesting to- note that the error due

to inaccurate weighting of mid-nodal conductivities

(equation 5.123) is roughly proportional to 3h/oxO (this is in

fact exactly true in the steady. state case of 1 dimension).

Thus, the error is largest in regions of rapid changes of the
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curvature of h(x). which are located just above and just below

the inflexion point of the wetting front.

[c] Nonlinear Stability Analysis:

Unfortunately, it appears that our formal evaluation of

truncation errors does not lead to any useful estimates of

space-time resolution requirements. This is due to the fact that

the approximate, iterative linearization of the finite difference

system was left out of the analysis. Here. we propose an

indirect way of including the "linearization error" by

considering only one iteration of the outer loop of the nonlinear

solver. For one-dimensional flow, the corresponding finite

difference system can be expressed as:

n+1 n n+l n+l n+l n+lC hi -hI hi+,-hi _n hi -hi_

i At = i+ l Ax J i-' AX

(5.124)

Kn _Kn .1
i+A it-'

AX

where n indicates the time level, and g is zero for

horizontal flow, one for vertical flow. This formulation reveals

that the nonlinear gravity term, containing g, is in fact

treated expLtctttl during the first outer iteration of the

nonlinear solver, even though we used a so-called fully implicit
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time discretization scheme. Let us now examine how this could

affect the stability of the numerical solution.

One possible way of investigating the specific effects

of linearization of the gravitary term is to develop a Fourier

stability analysis of equation (5.124) with "frozen coefficients"

on the storage term and diffusive term, while the nonlinearity of

the gravity term is explicitly taken into account. In the case

of the exponential conductivity model (5.121), the gravity term

takes the special form:

Kn _Kn En hnhn hn E

i+% in et i+l hi hili 
g . Ax =g x. rj - exp 2J

which may be approximated as:

ia n n
9 x 2 (h1+1 hI-,)

provided that a(h-+1- hi) be on the order of unity or less.

Thus, we find that the D scheme (5.124) is approximately

equivalent to:

n+1 n+ n+l
Ri 5-- hi-l + (1 + 2i)hi - RI+ i+l

(5.125)

2g ax R hi i + _ g asx P.,hnis
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where R is a dimensionless number proportional to At/Ax2:

K 1(±%) At - Ri-.h+R i+
Ri(±S) C * i 2

Now, a standard Fourier stability analysis of

equation (5.125) with the R coefficients "frozen" (see for

instance Ames, 1977) yields the complex tme ampltftcatton factor

of the Fourier modes of h(x):

l+J-g aAx RIsin kAx
P =

1+(Ri e+Ri)(l-cos kAx) - J-(Ri+k-RiA)sin kAx

where k is the discrete wavenumber taking values

(7/L,...,nT/L). After some manipulations, the square-modulus of

this amplification factor takes the form:

1pJ 2 1 + [g Ax R sin kAX]2

[l+(R k4+R .)(l-cos kAx)]2 + (Ri+, 2Ri,)i

(5.126)

Clearly, when the gravitary term disappears (horizontal flow:

g = 0) the amplification factor is always less than one, and the

FD scheme is then inconditionally stable. However, in the

presence of the gravity term (vertical flow: g = 1) equation
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(5.126) shows that a constraint on the mesh size will be

necessary in order to guarantee stability.

The exact stability condition for the case g 0 can be

found by requiring that the denominator be larger than the

numerator in (5.126). To simplify the analysis, let us assume

R R R The stability condition is then:

1 -R [l-(g k)2] * (1-COS kAx) 0.

This condition is required for all wavenumbers (k=r/L.--.,nr/L)

where n is the unidimensional size of the grid. Since R > 0,

this condition is always satisfied in the case g = 0. as

expected. For non-horizontal flow (g O). it is easily seen

that the inequality above will be satisfied if and only if:

(g I)2 • 1 + (2RI) 1.

Plugging g = 1 for vertical flow, and using the previous

definition of Ri give finally the "nonlinear stability

condition":

a Ax • 2. ]l+(2 At -) . (5.127)
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The second term inside the square root corresponds to

the well known stability condition for explicit time

discretization schemes (whereas the discretization used in this

work is of implicit type). If At/Ax' is taken to be

significantly larger than the inverse diffusivity C/K, the

condition (5.127) becomes equivalent to a constraint on the grtd

Peclet number, of the form:

IPe= aAx 2.| (5.128)

For completeness, note that in the case where inequality (5.128)

is not satisfied, then the stability condition (5.127) implies a

rather stringent constraint on the time step:

2 At s if a Ax > 2 . (5.129)
C 2 aAx

In conclusion, equations (5.127)-(5.129) show that the

linearized finite difference scheme used to approximate the

unsaturated flow equation may not be stable unless the grid

Peclet number Pe = Ax is less than 2. In the more general case

of multidimensional space, this gives a constraint on the

uerticat mesh size, Ax1, of the form Ax, • 2 a 1.

For heterogeneous soils however, the coefficient a
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will be spatially variable, and the constraint will not be

satisfied at every nodes of the grid in actual practice.

Therefore, attention is called on the time step constraint

(5.129). This condition is rather stringent, having the same

form as the condition for stability of expttctt time integration.

schemes. This indicates that the best strategy might be to

minimize as much as possible the vertical grid Peclet number,

e.g.:.

Pe= ax, < 2 (5.130)

where e is some average of a(2E) over the grid, or some mean

value defined in ensemble space.

Ed] Interpretation of the Peclet Constraint and Discussion:

It may be interesting to note that the inverse of

a = dnK/dh has been interpreted in the literature as a pore size

distribution index, or as the typical thickness of the capillary

fringe (Yeh et al., 1985). Another interesting interpretation is

that a represents a "gravity/diffusion" ratio. Both types of

interpretations seem qualitatively correct. Observations show

that a is largest in coarse soils, where gravity effects are

significant and the pore size distribution is typically quite

narrow. A review of various interpretations of a in the

literature can be found in a recent paper by White and Sully
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(1987). who also contribute their own. It seems particularly

useful to view a as a gravity/diffusion ratio in the context of

numerical analysis. Ababou (1981) suggested this interpretation

by rewriting the pressure-based flow equation (5.119) in terms of

the "Kirchhoff potential":

h

+(h) = K(h')dh' , i

named after Kirchhoff (1894) for his work on heat conduction. In

the case of an exponential conductivity relation of the type

(5.121), it turns out that * = a 1K. and the multidimensional

flow equations can then be expressed by using the unsaturated

conductivity as the dependent variable:

FT = D . {v2K a * (g-vK)} (5.131)

where D is a nonlinear diffusivity function (D = K/C) and l

is the gravity vector, for instance E=(1,,0) for a 3D system of

coordinate with the x1-axis upwards. The so-called Kirchhoff

equation has been used extensively in the area of soil water

physics since the early works of Wooding (1968). Philip (1969).

Raats (1971). and Parlange (1972) among others.

It is now clear that the coefficient a takes the

form:
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a aD dK/dG V-D D D

where 8 is the volumetric water content of the soil. This

shows that a is indeed the ratio of gravitary versus diffusive

coefficients of the conductivity-based (Kirchhoff) equation given

above. In particular, note that D scales like a velocity

(V=aD). This finally justifies our interpretation of aAx as a

grtd Pectet ntber:

VAX
Pe aAx- D

To complete the analogy. observe that the Kirchhoff

equation (5.131) is equivalent to the equation governing heat

conduction in a body that moves with velocity V. with respect to

the heat source (see Carslaw and Jaeger, 1959, for heat

conduction problems). Similarly, the K-based equation is also

equivalent to the convection-diffusion equation governing solute

transport in a porous medium, with diffusion coefficient D and

water velocity V. In the case of unsaturated flow, D is the

soil moisture diffusivity and V=dK/dG gives in certain cases the

rate of advance of the wetting front in the vertical direction.

The proposed stability constraint on the grid Peclet number

(equations 5.128 or 5.130) is most usually taken into account iq

the area of solute transport modeling, but does not seem to have

been invoked in the context of unsaturated or two-phase flo*
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simulation, as we do here.

In summary, we have found that a constraint on the grid

Peclet number Pe = Ax1, analogous to the ratio of velocity

versus diffusion coefficient in convection-diffusion problems,

must be satisfied in order to ensure the stability of the finite

difference approximation of the nonlinear unsaturated flow

equation. Here, we have assigned a particular meaning to the

notion of stability, such that the error due to linearizing the

gravitary term of the equation is taken into account, while all

other nonlinear coefficients are "frozen". In addition, our

analysis was based on the assumption that only one outer

iteratton of the nonlinear solver was performed for each time

step (see equation 5.124). In spite of the many approximations

involved, we believe that the Peclet number constraint is

meaningful and gives an approximate condition for the stability

and convergence of the outer Picard iterations of the nonlinear

SIP solver.

Accordingly, the Peclet number constraint (5.130) was .4

taken into account in all of our numerical simulations. Note

that the coefficient a lies in the range 0.01-0.10 cm71 for

natural soils (clayey soils to coarse sands). According to the

Peclet constraint (aAx, << 2) the vertical mesh size should not

be taken greater than 10-100 cm. depending on the type of soil.
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We have found this rule to be quite useful, although far from

sufficient for ensuring stability without additional constraints

on the time step. Indeed, equation (5.129) suggests a more

pessimistic view of the numerical requirements, particularly for

heterogeneous soils where the Peclet constraint may not be

enforced at all nodes of the grid.

Thus, it may be interesting to examine how

instabilities could be triggered locally in regions where the

Peclet constraint is not satisfied. Equation (5.126) and the

inequality below specifically show that the high wavenumber

Fourier nodes are the most unstable (fluctuations at the mesh

scale are amplified faster). Moreover, the instability will be

more severe for large values of At/Ax2 and for large values of

the local diffusivity (e.g.. near saturation).

However, results from Fourier stability analysis may be

too approximate to be reliable in practice. It remains unclear

whether local scale instabilities, such as due to high Peclet

number, will actually grow and contaminate all scales of

fluctuations from mesh size to domain size. Another approach,

based on the requirement that the spectral radius of the

nonlinear Iteration matrix be less than unity (Ortega and

Rheinboldt, 1970, 7.1 and 10.1), suggested that the condition for

convergence of the nonlinear iterations could be of the form:
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Pe = a(fi)Ax • 2 *a (5.132)
m

which means that the mesh size in any direction (m = 1.2,3) must

be taken small in inverse proportion of the hydraulic gradient

(MHVoxm) in that direction. This is obviously a more severe

constraint than the standard Peclet number condition. It

indicates that the presence of sharp hydraulic gradients, such as

occur at a wetting front, could trigger global divergence of the

nonlinear SIP solver, even when the mesh size is small enough

that the Peclet condition arhx << 2 is satisfied. This

observation seemed to be confirmed by numerical experiments, as

most cases of divergence occurred during the early times of.

infiltration in very dry soils (sharp fronts).

5.4.3 Numerical experiments and test of problem solving
caa bilities:

In this last subsection, we present the results of a

number of numerical experiments in order to test the problem

solving capabilities of the unsaturated flow simulator.

Accordingly, we focus have mainly on numerical issues, and only

occasionally on physical interpretation. The numerical solutions

obtained for large problems of three-dimensional infiltration in

random soils will be presented and discussed more thoroughly in
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Chapter 7). The order of presentation is as follows. We first

discuss the methodology and present an overview of model problems

for testing the unsaturated flow simulator. Some details of

implementation of the code are then described, notably concerning

the dynamic control of time step size, the variable domain size,

and the algorithm used for mass balance computation. Numerical

experiments are finally presented, for increasingly complex

problems, in view of testing various features of the unsaturated

flow simulator.

[a] Overview of Test Problems and Methodologv:

The complexity of the random unsaturated flow problem

is such that it does not appear possible to devise a unique,

well-defined procedure to check the accuracy of the numerical

solution, as was done earlier in the linear case (steady

saturated flow, Sections 5.2 and 5.3). In the present case, the

best approach seems to be a "divide and conquer" strategy.

whereby several isolated features of the code are checked through

a series of simple test problems. The particular tests

considered in this work can be broadly classified as follows:

(i) Comparison with exact solutions:

Quasi-analytical solutions are available for instance

in the case of two-dimensional Infiltration from a
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surface strip source in a homogeneous soil. However.

the unsaturated soil properties must be of a special

type, assuming in particular a constant soil moisture

diffusivity. This is usually an unrealistic assumption

for transient infiltration problems (Ababou, 1981).

Nevertheless, since the conductivity-pressure function

is exponential, the comparison of the numerical and

analytical solutions provides a test of the ability of

the nonlinear SIP solver to converge to the correct

nonlinear solution. Another quasi-analytical solution

for one-dimensional flow with constant coefficients was

also used for debugging purposes: the flow simulator

was run in the unsaturated mode with constant

coefficients in order to test various algorithms such

as the effect of variable time step size.

(ii) Self-benchmark procedures:

We refer to "self-benchmark" as a method for testing

some special feature of the flow simulator in complex

cases where no analytical solution is available (highly

nonlinear and random soil properties). The most

obvious self-benchmark of a numerical flow simulator is

the computation of global mass balance. Our flow

simulator automatically computes the mass balance by

spatial integration of soil moisture and calculation of
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the mass entering or leaving the system at the

boundaries. Another kind of self-benchmark procedure

consists in testing the sensitivity of the numerical

solution with respect to mesh size and time step size,

using-as a reference the solution obtained with the

highest space-time resolution. The obvious limitation

of this kind of test is its high computational cost:

thus, in actual practice, such tests were limited to

fairly small domain size. A self-benchmark test was

also conducted to check whether the solutions obtained

with variable domain size and fixed domain size

coincide. Finally, it should be kept in mind that the

iterative matrix solver, which is one of the key

components of the unsaturated flow code, was already

tested extensively (Section 5.3). The method we used

there can be viewed as a particular type of

self-benchmark, conducted by running the SIP solver

over a very large number of iterations and monitoring

the convergence rate of residual errors, for a variety

of linear flow systems. However, it does not appear

feasible to test the nonrtnear iterative solver in the

same systematic way.

(iii) Qualitative tests:

Certain anomalies of the numerical solutions can
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sometimes be detected by examining the numerical

solutions visually, e.g., by looking at a plot of the

pressure head contours, or at pressure profiles along

one-dimensional transects. For example, in the case of

strip source infiltration in a perfectly layered soil.

one expects the solution to be perfectly symmetrtc

about the vertical plane running through the middle of

the strip. This and a number of other features based

on physical principles, can be used to detect possible

inaccuracies in the numerical solutions. A few simple

.test problems were devised for this purpose, including

one-dimensional and two-dimensional infiltration in

homogeneous soils (with various types of boundary

conditions), and two-dimensional strip source

infiltration in horizontally layered and vertically

layered soil systems. In addition, some more complex

infiltration problems in three-dimensional random soils

are also discussed briefly (the complete analysis of

these numerical solutions is postponed to Chapter 7,

as mentioned earlier).

In summary, we have adopted a variety of procedures to

test the problem solving capabilities and reliability of the

unsaturated flow simulator, including comparisons with known

analytical solutions. self-benchmark procedures, and qualitative
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evaluation of the, reliability of numerical solutions based on

physical principles. Let us start by a d scription of some of

the most relevant details of implementation of the flow

simulator, along with some related numerical experiments.

[b] Control of Variable Time Step. Movin Fundaries. and Mass
Balance:

The variable ttme step sze is omputed as follows.

First, an initial time step is prescribed b the user (or else a

very small initial time step is computed b the code). Second,

the code evaluates the maximum possible alue, of the global

spatial variation of pressure head that cc ld occur within the

flow domain -(Ahstab). Typically, this p ssure variation is

estimated by taking the difference between he largest pressure

at the boundaries and the initial pressire within the flow

domain, that is:

hstab Ihsurf hin

where hsurf is either the fixed pressure at the infiltration

surface, or, in case or a flux condition, the pressure obtained

by solving the equation K(h) = surf' Finally, the variable time

step size At for the next time step t - tn+ is computed by
n >)-

the following algorithm (n > 1):
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At =Min tn 1 tb *At.. (5.133)

where At, is the first (initial) time step, p is an

amplification ratio used for limiting the rate-at which the time

step may grow, and the norm Illhmax represents the absolute

maximum of h() over the grid. In practice, the amplification

ratio p should be only slightly greater than unity, e.g.,

p = 1.05 up to p = 1.25 at most. Our experience for infiltration

problems with initially dry soils indicates that equation (5.133)

usually leads to a sharp increase of the time step at early

times, reaching a sill after a relatively short time of

infiltration.

Figures 5.1O(a),(b), and (c) show the growth of the

time step for three simulations of infiltration in dry soils

(plotted against number of outer iterations rather than time).

The first of these figures corresponds to a problem of

one-dimensional infiltration under fixed pressure (h=O) in a dry

sand (Dek soil) whose unsaturated properties were given earlier

in Figure 5.3. The second figure corresponds to a

two-dimensional infiltration in the same soil, with a fixed

pressure (h=O) at the surface of a strip source. The third and

last figure corresponds to a problem of two-dimensional strip

source infiltration in a two-layer system of sandy soils of

moderate contrast, with a relatively high flux condition
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Evolution of the time step size (plotted against
number of outer terations) for one-dimensional
infiltration in a dry sand with fixed pressure
h = 0 at soil surface.
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Figure 5.10 (b) Evolution of the time step size (plotted against
number of outer iterations) for two-dimensional
infiltration with fixed pressure h = 0 on a
strip source (same soil as 5.10a).
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Figure 5.10 (c) Evolution of the time step size (plotted against
number of outer iterations) for two-dimensional
infiltration with fixed flux q = 12 cm/day on a
strip source (two-layered sandy soil, top layer
same as in 5.1Oa and b)
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prescribed at the surface of the strip (q = 12 cm/day, one order

of magnitude lower than the saturated conductivity of the top

layer). In all cases, the initial pressure was on the order of

-100 cm. corresponding to an initial conductivity on the order of

0.1 cm/day or less.

Based on these and other numerical experiments, the

time-stepping algorithm appeared to be well-behaved, and did not

generate instabilities. However, this algorithm was not flexible

enough to handle properly large-time simulations. In such cases,

the simulation was processed in several pieces: whenever the

time step size appeared too small and did not increase, the

simulation was stopped and resumed with a larger "initial" time

step At,. It is expected that a more satisfactory time-stepping

algorithm could be obtained by taking into account the maximum

flux over the grid (Ababou, 1981) and/or some global property of

the numerical solution such as the rate of advance of the wetting

front, the mean pressure gradient, or the global mass balance.

Other methods of control of the time step size for similar flow

problems can be found in Hanks and Bouwer (1962), Edwards (1972).

Ababou (1981), and Dave and Mathis (1981). The latter authors

used mass balance to adjust the time step size in their "adaptive

grid" model of one-dimensional unsaturated flow.
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A variable domain sze was used for multidimensional

infiltration problems on very dry soils. The size of the

computational domain was controlled by moving the artificial

boundaries in such a way that they always remained far from the

"wetting front". The rationale behind this procedure is that.

for any finite time, there exists a region beyond the wetting

front where the pressure has not yet' increased from its initial

value. It should be noted however that this property holds only

in the case of highly nonlinear coefficients and a very dry

initial state '(hin co ). The second condition is not exactly

satisfied in practice. There may be a significant amount of

gravity-driven flow outside the wetted zone in the case of

imperfectly dry soils. For heterogeneous soils, this "natural

flow" will be even more complex, with gravity acting in the

vertical direction and soil moisture "diffusion" in the

horizontal. Nevertheless, the variable domain size algorithm was

found useful in a number of cases, leading to significant savings

in computational work when the soil was dry enough that the

"wetting front" could be tracked accurately.

Figure 5.11 gives a schematic representation of the

"variable domain" procedure in the case of strip source

infiltration in two dimensions (the three-dimensional case is

treated in a similar way). The procedure can be summarized as

follows. A small initial domain size must be specified by the
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::!Figure 5.11 Representation of the "variable domain" procedure in
the case of infiltration from a strip source. The
thick arrows indicate the movement of artificial
boundaries. In this example, the soil surface is the
only fixed boundary.
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user, along with the maximum allowable size of the domain and the

definition of "artificial" (moving) boundaries, as opposed to

fixed boundaries. The numerical solution at any given time step

is computed based on the current domain size, with fixed pressure

conditions on the artificial boundaries (h = hin). Each

artificial boundary is then moved away from the wetted zone if

the maximum pressure change lh-hinImax Is larger than a preset

tolerance (within the "search region" depicted in Figure 5.11).

The algorithm is such that each boundary can move separately at

its own rate, depending on the shape of the wetted zone. The

displacement of a moving boundary was taken equal to the depth of

the search region (3Ax). It should be noted that the grid itself

was not deformed in the process, i.e.. the mesh (Ax,, AX2 , AX)

remained constant in space as the size of the domain was

increased. The design of a truly adaptive grid model would pose

difficult problems of interpolation/extrapolation in the case of

highly variable or random coefficients.

Figures (5.12) and (5.13) show two cases where the

variable domain procedure worked well. Figure 5.12(a) shows the

pressure head contours obtained for two-dimensional strip source

infiltration on a dry sand, using the variable domain procedure

with three moving boundaries The solution obtained with a fixed

domain size (Figure 5.12.b) is visually indistinguishable. A
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Figure 5.12 (a) Pressure head contours obtained after 1 day of
infiltration with the variable domain procedure
for D strip source infiltration q = 12 cm/day
on the Dek sand with initial pressure
h = - 150 cm..
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Figure 5.12(b) Pressure head contours after 1 day of infiltration
with fixed domain size 150 x 150 cm and mesh size
Ax = 3 cm (same case as Figure 5.12a).
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Figure 5.13 (a) Pressure head contour surface (h = - 90 cm)

obtained after 1 day of infiltration with the
variable domain procedure: 3D strip-source
infiltration (q = 2 cm/day) on the Dek sand with
random K and a parameter, and initial pressure
h = - 150 cm
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Figure 5.13 (b) Pressure head contour surface (h - 90 cm)
after 1 day of infiltration with fixed domain
size-140 x 400 x 400 cm and mesh size
Ax = 10 cm (same case as Figure 5.13a).
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similar comparison is shown on Figures 5.13(a) and (b). this time

for the case of three-dimensional strip source infiltration on a

random, statistically isotropic soil whose mean properties are

the same as those of Figure 5.12. The same pressure contour

surface (h = -90 cm) is shown in both Figures 5.13(a) and (b):

again the solutions for variable and fixed domain size seem

undistinguishable visually. It should be noted however that, in

the random case, the bottom boundary moved rapidly downwards to

reach its prescribed maximum depth. This was due to the

occurrence of non-negligible changes of pressure even far below

the "wet zone".

Finally, the mass balance was computed automatically by

the code at every time step based on the following algorithm.

First, the computational domain for mass balance was defined as

the sub-domain obtained by deleting a half-mesh size near each of

the six planar boundaries (assuming here that the boundaries are

fixed, for simplicity of exposition). Second, the total mass

inside this subdomain was computed by integrating the volumetric

moisture content 0(_) according to a simple trapezoidal rule in

three dimensions. Accordingly, the mass of a node-centered cell

located at node (i1,i2,i3) was calculated as follows:

Mass(i1 ,i 2 ,i 3 ) = [h(i 1 ,i2,i 3 )] *Ax1 *Ax2 Ax3.
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On the other hand, the total mass entering or leaving the system

was obtained by summing the normal fluxes at each node of the six

planar boundaries, and integrating over time. The normal fluxes

were calculated according to:

h1-ho

qua =_ \ ( a + g)

where the index 1/2 indicates the mid-nodal location adjacent to

the boundary under consideration (other indices have been

omitted). In the case where all boundary conditions are of

Neuman type (fixed flux), this algorithm gives the same result as

would be obtained by summing directly the prescribed fluxes at

the boundaries, at least within machine precision.

The accuracy of the numerical solutions was examined

from the point of view of mass balance by looking at the

time-dependent relative errors:

Qmass- (in out) 8
e(t) iQotQ

(5.134)

IJQ(r)dT

E(t) t

JIQ(T)dT

where Qmass is the rate of change of total mass in the system,
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and Qin and Qout are the discharge rates in and out of the

system (both positive quantities here). The relative error on

the mass rate of change (e) usually oscillated during the early

time of infiltration (this has been observed with other numerical

models as well, e.g. Ababou 1981). In some of the numerical

simulations presented in this work, the amplitude of oscillations

could attain relatively high values (about 10%, and up to 100% in

certain cases) but only for a limited number of time steps. Both

error indicators e(t) and E(t) were usually very small after a

sufficient number of time steps, even for fairly "difficult"

cases. For instance, the relative error on total mass, E(t).

was well below 1 at time t = 1 day for the infiltration problems

of Figures 5.12 and 5.13, involving fixed as well as variable

domain size. Figure 5.13.b in particular was for a 25.000 node

grid with random soil properties.

The evolution of the relative mass balance errors e(t)

and E(T) was also monitored for the more difficult infiltration

problems to be analyzed in Chapter 7: see the 300.000 node grid

simulations of transient strip source infiltration and steady

rainfall infiltration in a random anisotropic soil (respectively

sections 7.3 and 7.4). In both cases, the error on the total

mass present in the flow domain rarely exceeded 10-15%. This was

judged to be quite satisfactory given the high variability,

nonlinearity, and large size of the system. Note that the steady
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"rainfall infiltration" solution was obtained by running the flow

simulator in the transient mode. The information provided by the

mass balance subroutine was used to detect the convergence of the

transient flow system to a steady state.

[c] Commarisons of Numerical and Analytical Solutions:

Figure 5.14 depicts the numerical solution of the 2D

strip source infiltration problem (time t = 1 day) for a special

type of soil having nonlinear conductivity and water retention

curves, but constant "moisture diffusivity". The wet zone in

that case is characterized by a fairly smooth spatial variation

of pressure, and the absence of a sharply defined wetting front.

Figure 5.15 compares the numerical and quasi-analytical solution

obtained at a shorter time t 0.5 day. The quasi-analytical

solution was only possible because of the special -form taken by

the nonlinear constitutive properties of the soil, as shown

below:

K(h) = exp(ah)

@(h) = . exp(Ph) (5.135)

a,= /Ef

Note that the soil moisture diffusivity corresponding to the

conductivity and water retention curves (5.135) is constant,
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Figure 5.14 Example of numerical pressure contour map for 2D
strip-source infiltration in a homogeneous soil with
exponential K(h) and (h) curves having the same

slope (a = = 0.1 cm ). Time t = day.
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Figure 5.15 Comparison of numerical and analytical solutions for
2D strip-source infiltration in a homogeneous soil
with exponential K(h) and (h) curves having the same

slope (a =P = 0.1 cm ). Pressure contours at time
t = 0.5 day
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independent of pressure:

D = /(a9s).

As a consequence, the unsaturated flow equation expressed in

terms of the conductivity or Kirchhoff transform (Equation 5.131)

becomes linear. Warrick and Lomen (1976) developed

quasi-analytical solutions for the case of strip-source and

disc-source infiltration under constant flux. The particular

program to calculate the strip-source solution shown in

Figure 5.15 was developed by us (Ababou. 1981).

Unfortunately, the soil properties (5.135) are not

realistic enough to obtain a reasonable simulation of transient

infiltration phenomena, due to the fact that in general the

diffusivity is far from constant (see Ababou, 1981). Another

drawback is that the solution given by Warrick and Lomen (1976)

is exact only in the limit of zero initial conductivity. The

slight discrepancy that can be observed between the numerical and

analytical solutions shown in Figure (5.15) could be due to the

fact that the initial conductivity in this example was not really

negligible relative to the input flux (K/q 0 = 4.5 10 3). In

addition, the quasi-analytic solution requires a numerical

evaluation of integrals of special functions; the computed
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pressure contours close to the initial state (far from the

source) are quite sensitive to small errors of numerical

integration.

Nevertheless, the agreement between the numerical and

analytical solutions of Figure (5.15) seems reasonably good,

especially close to the source. The two-dimensional numerical

solution shown on top was obtained by shrinking the longitudinal

domain size to just 5 nodes (3 internal nodes) and picking the

central slice for visual display. The near-perfect symmetry of

the numerical solution is an indication that the nonlinear-SIP

solver worked well in that case: it should be noted indeed that

the three-dimensional SIP solver is inherently assymetric. This

asymmetry would probably show up in cases of incomplete

convergence.

Figure 5.16 shows the result of another comparison

between numerical and analytical solutions. In this case, the

flow simulator was used in both the "saturated" and "unsaturated"

mode to solve the one-dimensional linear diffusion equation:

= D 0 x L

H(O,t) = 1 (5.136)

H(Lt) = 0

H(xO) = 0.
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Figure 5.16 Numerical and analytical solutions for the transient
1D diffusion equation with constant coefficients. The
numerical solutions obtained in the saturated or
unsaturated modes, with fixed or variable time steps,
were undistinguishable from the analytical solution.
One of the numerical solutions is shown here for
times t = 0.01, 0.10. 0.5, 1 and t 5
(quasi-steady state)
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This equation models for instance the transient recharge of a

confined aquifer with conductivity K. and specific storativity

S. such that D K/S.

The analytical solution of equation (5.136) can be

expressed in the form of an infinite series with sine and

exponential functions (Korn and Korn, 1968. p. 325). However we

have found that a very high machine precision would be needed to

obtain reasonably accurate answers at early times. Another

series solution was finally worked out by using a superposition

of Green's functions as explained by odunov (1973, pp. 29-41).

The final result is given below in dimensionless space-time

variables:

H(yT) - 7 n-(a -b)

n=l

an = erf(n+Y/2) + erf(n Y'2) (5.137)

bn erf l+Y/2) erf(n-ly'2)

where:

y =x/L

T= D-t/L2

and erf(x) is the usual error function defined by:

x

erf(x) = * e ds.
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The numerical solutions obtained with both the

saturated and unsaturated options of the flow simulator for a

three-dimensional elongated domain, fitted perfectly the

one-dimensional analytical solution computed from equation

(5.137). Figure (5.16) showed only one graph of H(xt) because

the three solutions were visually indistinguishable. It should

be noted that the saturated flow mode was implemented with

constant time steps, while the unsaturated mode was implemented

with a variable time step size. In the latter case, the constant

coefficients were obtained by taking K(h) constant and (h)

linear. This test was useful to check the soundness of various

algorithms of the flow simulator, including the variable time

step procedure and the performance of the SIP matrix solver for

transient problems. In other words, this particular test problem

provided an accurate check on many features of the flow

simulator, other than the nonlinear solver.

[c] Infiltration Experiments with Homogeneous and Layered Soils:

We now proceed to analyze, in a rather qualitative way,

the numerical pressure fields obtained for a few test problems of

one and two-dimensional infiltration in uniform or

deterministically layered soil systems. Our intent here is

merely to demonstrate that, in all cases considered, the

numerical solution agrees with intuitive and/or physically based
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principles. We consider first a few cases of infiltration in

uniform soils, and continue our exploration with the case

strip-source infiltration in two-dimensional deterministically

layered soils. In the process, one of these test problems will

be used to examine the effect of mesh size on the numerical

solution.

The first sequence of test problems concerned one and

two-dimensional infiltration on the homogeneous Dek" sand with a

relatively dry initial state (hin = -111 cm). The constitutive

relations of this soil were given earlier in Figure (5.3). The

pressure profiles obtained for one-dimensional infiltration in a

3 meter deep soil column, with zero pressure at the top. are

depicted in Figure (5.17). The resolution Ax 3 cm was fine

enough to capture the very sharp wetting fronts obtained in this

case. The next two Figures (5.18) and (5.19) display the

vertical pressure profile and the pressure contours obtained for

2D infiltration with zero pressure maintained at the surface of a

strip-source (saturated strip). The wetting front is still very

sharp, although less so than for the one-dimensional problem. In

addition, it can be seen that that front moves downwards at a

lesser rate due to increased dimensionality (lateral diffusion).

Finally, Figures (5.20) and (5.21) display the vertical pressure

profiles and the pressure contours obtained for 2D strip-source

infiltration with a fixed flux (q = 12 cm/day) at the surface of
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Figure 5.17 Vertical pressure profile at times t = 0.005 and 0.1
day for one-dimensional infiltration with zero
pressure at soil surface (Dek sand with
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Figure 5.18 Vertical pressure profile at-time t 0.1 day for
a two-dimensional nfiltration with a saturated strip
source.> 7bevertical transect coincides with the
axis of symmetry (see Figure .19).
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Figure 5.19 Pressure head contour lines at time t = 0.1 day
for 2D infiltration with a saturated strip source
(Dek sand with hin = - 111 cm). The source width is

33 cm, the mesh size is 3 cm, and the domain size
150 x 150 cm.
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Figure 5.20 Vertical pressure profiles at times t = 0.1. 0.3 and
0.6 day for a two-dimensional infiltration with a
constant flux strip-source. The vertical transect
coincides with the axis of symmetry (see
Figure 5.21)
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Figure 5.21 Pressure head contour lines for 2D infiltration with
a constant flux strip source q = 12 cm/day (Dek sand
with hin = - 111 cm). The source width is 33 cm, the

mesh size 3 cm, and the domain size 150 x 150 cm.
Times: t = 0.1, 0.3, 0.6 and 1.0 day
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the strip. In this case, the wetting front appears even

smoother, 'and the rate of growth of the wet zone is slower than

in the previous case of a saturated strip (in both cases, the

strip width was 33 cm). Note that the prescribed flux was 8.5%

the value of the saturated conductivity, whereas the flux over

the saturated strip source in the previous example was presumably

much larger. Last but not least, we emphasize the fact that the

numerical solutions obtained for the strip-source problems seem

perfectly symmetric about the central vertical axis. This

feature was not built-in the solution, but rather resulted from

the convergence of the nonlinear-SIP, solver towards the exact

solution; it should be kept in mind indeed 'that the SIP

factorization is not symmetric, so that the numerical solution

would 'probably appear non-symmetric in case of incomplete

convergence.

In order to explore the problem solving capabilities of

the flow simulator for 'spatially variable unsaturated soils, we

have simulated two-dimensional strip-source infiltration on

horizontally and vertically layered soils. This could be viewed

as an intermediate case between the ideal case, of homogeneous

soils, and the more realistic case of three-dimensional random

soils to be analyzed in Chapter 7 (statistically layered soils in

particular). Of course, we expect that the flow patterns will be
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much easier to analyze for uniformly. layered soils than for

statistically layered (random) three-dimensional soils. That is

precisely the reason for our choice here.

Three types of uniformly layered soil systems were

considered for qualitative analysis: a horizontally layered

system with mild contrast (sand/sand); another horizontally

layered system with high contrast (sand/silt); and a vertically

layered system with high contrast (sand/silt). Briefly. the

sand/sand system corresponds to alternate layers of the Dek sand

of Figure 5.3. and a somewhat coarser sand (Dieri sand, Ababou

1981). The sand/silt system corresponds to alternate layers of

the Dek sand of Figure 5.3 and the Montfavet silt of Figure 5.4.

The contrast for each layered system can be characterized by an

index of variability of Ks and a, the two parameters of the

exponential K(h) curve. as follows:

2. a/y )2}A(nYj/YC)2 + (ny2/Y 1 .

'en Y = 2

where Y is either K or a, and the index (1.2) refers to the
5

two soils composing the layered system. For the sand/sand

system, the contrast was moderate:
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'en i 0 .° 

en a = 0.22

and, for the sand/silt system the contrast was quite high:

en K 2.60

aen a' 0.87

Figure (5.22) shows pressure head contour lines

obtained at time t = 1 day for the sand/sand system with

alternate horizontal layers of thickness 9 cm. The initial

pressure was h = -150 cm for figure (a), and h = -90 cm for

figure (b). The general shape of the wetted zone, apart from

small scale oscillations, is quite similar to that obtained for

either sand soil alone, that is, without alternate layering.

But, for the highly contrasted sand/silt system shown in

Figure (5.23), the pressure field looks quite different. In this

case, the initial pressure (h = - 150 cm) was such that the

initial conductivity was higher in the silt than in the sand, by

two orders of magnitude. Consequently, as we have observed from

detailed numerical outputs, the wetting front rested most of the

time just above a sand layer, while moisture spread laterally

within the silt layers.



467

i

-u

l 

Figure 5.22 (a) Pressure head contour lines for 2D strip-source
infiltration (q = 12 cm/day) in a horizontally
layered sand/sand system, at time t = 1 day.
The mesh size is 3 cm. the domain size
150 x 150 cm. the strip width 33 cm. and the,
alternate layers thickness 9 cm. The initial
pressure head was hi = - 150 cm
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Figure 5.22(b) Same as Figure 5.22.a, but with a less dry
initial state (hin = - 90 cm).



I~*

469

.. 

:I

II

I

-i

-I

Figure 5.23 Pressure head contour lines for 2D strip-source
infiltration (q = 12 cm/day) in a horizontally
layered sand/silt system, at time t = 1 day. The
mesh size is 3 cm, the domain size 150 x 150 cm. the
strip width 33 cm. and the alternate layers thickness
9 cm. The initial pressure was hin = - 150 cm.
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It should be noted that the mesh size in these examples

was one third of the layers thickness, i.e., Ax = 3 cm.

Figure (5.24) shows the solution obtained for the sand/silt

system with a coarser grid equal to the layer thickness, i.e.,

Ax = 9 cm. The obvious effect of the coarse mesh is that it

smears out the small scale fluctuations of pressure obtained with

the finer grid (compare Figures 5.23 and 5.24). However, the

overall shape and size of the wet zone are surprisingly well

represented with the coarse grid simulation. This can be seen

more easily by representing on the same plot the vertical

pressure profiles obtained with the fine and coarse meshes

(Figure 5.25). This relative agreement indicates that the grid

resolution need not be much finer than the typical layer

thickness in order to obtain realistic solutions. The grid

Peclet number constraint (5.128) should be also kept in mind. In

the present case, the coarse grid Peclet number (with Ax = 9 cm)

was about 0.6 for the sand layers, and 0.1 for the silt layers.

Both these values satisfy the "nonlinear" stability constraint

Pe 2.

Finally, Figure (5.26) shows the pressure head contour

lines obtained for the verttcally layered sand/silt system, with

alternate layers of thickness 9 cm. The non-symmetrical shape of

the pressure field is due to the fact that the vertical axis
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Figure 5.24 Same as Figure 5.23. but with a coarser mesh size
Ax = 9 cm equal to the layer thickness.
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Figure 5.25 Vertical pressure profiles through the axis of
symmetry of the strip source for the sand/silt system

. - at times t = 0.3 and 1 day. The crosses correspond
to the fine mesh simulation (Figure 5.23 with
Ax = 3cm) and the square boxes to the coarse mesh
simulation (Figure 5.24 with Ax = 9 cm).
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Figure 5.26 Vertically layered sand/silt soil system (strip ;
source infiltration-time = day).
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located at the mid-point of the strip-source does not'constitute

an axis of symmetry with respect to the vertical layers. One

interesting feature in Figure (5.26) is that the spatial

fluctuations of the wet pressure contours are more or less in

opposite phase with the dry pressure contours (looking through

vertical-lines). This -is due to the existence- of a cross-over

point (h = -90 cm) below which KSIt <Ksd and above which

Ksilt >Ksand* Thus, it should not be surprising to see that the

particular contour line h = -90 cm corresponding to

Ksilt =Ksand is almost perfectly smooth1 -

5.5 Summary and Conclusions on Numerics:

In this chapter, we have developed a multi-faceted

analysis of the numerical issues related to the direct simulation

of large and complex flow systems. It may be useful to briefly

summarize the various approaches that were developed and the

conclusions that were drawn from these analyses. To begin with.

we developed in Section 5.1 the basic equations for the ftntte

difference approximation of both saturated and unsaturated flow

phenomena in spatially heterogeneous media. The particular

choice of the finite difference model was motivated by

considering the likely numerical requirements for simulating

representative 'single realizations of random flow systems (high
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resolution and large domain).

These considerations were confirmed by a more

systematic theoretical analysis of *the stochastic finite

difference solution error arising from truncation errors

(Section 5.2). The remarkable result obtained for the case of

steady saturated flow, i.e., for the stochastic "heat equation"

with 3D random field conductivities. was that the finite

difference scheme is indeed a consistent approximation of the

stochastic equation in the mean-square sense. Furthermore, it

was shown that the order of accuracy is O(Ax/) 2 for the

hydraulic head and O(AxA) for the flux vector, in the case of a

smooth log-conductivity field with correlation length (e.g.,

random field with a Gauss-shaped spectrum). On the other hand,

3/2we found that the order of accuracy drops to O(AxA) and

O(AxA) for the head and flux, in the case of a noisy

log-conductivity such as the 3D Markov field with exponential

covariance function. It is remarkable that the finite difference

approximation is still consistent in this case, despite the fact

that the log-conductivity is non-differentiable in the

mean-square sense. These encouraging results were refined

further by evaluating explicitly the leading order terms of the

root-mean-square errors in the head and flux. It was found that

both errors were proportional to the standard deviation of the

log-conductivity field. One major conclusion from this
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statistical truncation 'error analysis is that a relatively fine

grid resolution is needed to obtain even moderately accurate

solutions i terms of the flux vector field. Thus, when the

log-conductivity is the "noisy" three-dimensional Markov field,

the root-mean-square error on the flux is as large as 15-20% for

AxA = 1/3, and still about 10% for AxA = 1/10.

However, it was also recognized that the numerical

errors of the random flow simulator will be due in part to the

difficulty of solving accurately very large matrix systems.

Section 5.3 was devoted to the-development of an adequate linear

system solver for large sparse matrices. Our literature review

focused on iterative solvers, and particularly the SIP and IC

solvers based on approximate factorizations. The SIP solver was

finally chosen for implementation and was described in some

detail. The accuracy of the linear system solutions obtained

with SIP were analyzed ina semi-empirical way by examining the

rate of convergence of the SIP iterations both from a theoretical

and "experimental" point of view.

Our conclusions based on numerical experiments for

large random systems of saturated flow (up to million nodes),

were quite favourable. It was found that the root-mean-square

solution error could be reduced to very small values (typically

less than 1) in a few hundred up to one thousand iterations,
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depending on the variability of the input log-conductivity field.

The numerical simulations were carried out on a Cray 2

supercomputer, requiring CPU times of one to several hours for

the most "difficult" random flow problems (1 million nodes). A

Microvax 2 machine was used for medium size problems on the order

of 1 to 2 hundred thousand nodes. One remarkable aspect of the

proposed method of analysis was that the "true" solution error

was evaluated indirectly by using information from the actual

simulations (sequence of residual errors, and convergence rate).

It was shown that in many cases the true error could be much

larger than the apparent (residual) error, particularly for large

and noisy systems where underrelaxation was needed to achieve

convergence. Empirical analysis suggested that the number of

iterations required to solve linear random flow problems could be

proportional to n, the largest unidirectional size of the

three-dimensional rectangular grid. However, it is still not

clear at this time whether the SIP solver or any similar

iterative solver will actually converge for very large random

flow systems on the order of 10 million equations or more.

Extrapolation of our results suggested that, in case of

convergence, the solution of a highly variable saturated flow

problem on a 10 million node grid could require about 1 day CPU

time on the Cray 2 machine. ...



478

Finally Section 5.4 was devoted to the development and

analysis of a nonlinear system solver for the case of unsaturated

flow. The nonlinear SIP solver was developed by adding an

iterative linearization scheme to the previous iterative matrix

solver (nested Picard iterations). A preliminary analysis of

numerical requirements suggested that, in the case of transient

infiltration on dry soils, there could be a severe limitation on

the time step size in order to ensure the convergence of the

nonlinear iteration loop (outer iterations). On the other hand,

the SIP matrix solver is likely to converge much faster for any

given time step of a transient problem (particularly for small

time steps) than for the single step of a steady state problem.

Our discussion of these issues also included a brief literature

review. Our attempt at elucidating the space-time resolution

requirements by way of numerical analysis was not entirely

successful. The most remarkable finding in that study was

perhaps the grid Peclet number constratnt (Pe = Ax1 2), which

was obtained from a heuristic "nonlinear stability analysis" of

the unsaturated finite difference system. This analysis also

suggested' that a very stringent requirement on the time step

could result if the -Peclet number constraint was not satisfied

locally. The discussion included a physical interpretation of

the Peclet number for unsaturated flow (gravity/diffusion), and

focused on the possible divergence of the nonlinear solver in
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severe cases such as infiltration in dry heterogeneous sotts

(sharp fronts).

It was felt that the complexity of the unsaturated flow

problem, and the associated numerical issues, required a careful

testing of the unsaturated flow simulator. The last part of

Section 5.4 was devoted to numerical tests with increasingly

complex problems of transient infiltration. These numerical

experiments included specialized tests for checking certain

features of the code such as the variable time step and the

variable domain procedures. mass balance tests, comparisons with

analytical solutions, and a number of infiltration experiments

with homogeneous and uniformly layered soils, mostly in two

dimensions. Our overall conclusion from these numerical

experiments is that the unsaturated flow simulator appears as a

reliable and flexible tool for the detailed simulation of fairly

complex transient infiltration problems.

The encouraging results obtained here need however to

be confirmed for the case of truly large realizations of random

soil systems. This will be the subject of Chapter 7, where we

will analyze in detail the solutions obtained from large

single-realization simulations of flow in random soils, with

three-dimensional grids on the order of ten thousand to several

hundred thousand nodes. On the other hand, the forthcoming
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Chapter 6 will be devoted to a systematic statistical analysis of

the solutions obtained from large single-realization simulations

of saturated flow. Note that both Chapter 6 and Chapter 7 will-

focus mostly on physical interpretation and mathematical analysis

of numerical solutions, and only occasionally on some numerical

issues. It is assumed at this stage that the flow simulator has

been fully tested, both in the saturated and unsaturated flow

regimes.


