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. ERRATUM:
Vol. 1, p.2 (Abstract):
Second sentence of last paragraph of p.2 should read:

"Porous medium heterogeneity inferred from borehole conductivity data is

7_self-simil m_fiel Th w ion is solved for small

scale fluctuations” (etc. ...).

Vol 1 le 5.4):

On the row corrcsponding to values of the relaxation parameter w, the first value is
0.25, not 2.5.

V 10 an low):

The term C ;Y2 should be replaced by C# %2 in eq. (5.110). In addition, C V2
‘should be rcplaccd by C ;Y2 two lines below eq. (5.110); the convcrgcncc rate r is
proportional to C ;2 not Cv2,

Vol 2 7, Figures 7.13-14-1 662-

The contour labels on Figure 7.13, Figure 7.14, and bottom plot of Figure 7.15 are
erroneous. These labels should be ch~nged as follows:

Q 70 ‘- 125
2 60 - 100
3 50 - 90
4 40 - 80
5y 30 - 70

The positive numbers indicate suction head in centimeters (not pressure head).
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TEREE-DIMENSICNAL FLOW
IN RANDOM POROUS MEDIA

by

Rachid Ababou
Lynn W. Gelhar
Dennis McLaughlin

lLarge scale subsurface flow in heterogeneous porous formations
is studied using a2 three~dimensional (3D) random field representation
of local hydrazulic properties, assuming for the most part that the
medium is homogeneous/ergodic. Both analytical and numerical methods
are used to characterize the physical behaviour of 3D flow fields,
based on the statistical properties of solutions of stochastic partial
differential equations.

The first order spectral theory is applied to the case of flow
in stratified aquifers, revealing a nearly isotropic head correlation
structure in vertical planes, in contrast with the anisotropy of
conductivity and velocity. Thus, the infinite domain spectral
solutions may only be applicable to aquifers much deeper than the
vertical head correlation scale, say tens of horizontal conductivity
scales. Also, non-perturbative spectral equations derived from mass
conservation and statistical synmetries relate the flux and head
spectra for isotropic media, independently of small parameter
expansions, The new relations are satisfied by the current spectral
solutions in any dimension. In the 2D case, we establish a
statistical identity between head gradient and flux, or head and
stream function (statistical conjugacy). Other results in the
literature inspired a simple conjecture for the effective conductivity
tensor with arbitrary 3D anisotropy of the random conductivity field,
which fits 2ll results known to be exact. Finally, a modified flux
spectrum is8 developed using an approximate spectrzl solution of
equations governing the flux instead of head. The new expressions for
velocity variance and solute macrodispersivity zppear to follow more
realistic behaviours at high variability.

The conceptual approach of "“spectral conditioning™ is developed
to describe finite size effects, particularly for evolving subsurface
phenomena. Porous medium heterogeneity inferred from borehole
conductivity data is solved for small scale fluctuations up to domain
scale, conditioned on larger scale fluctuations (effective variability
versus uncertainty). Closed-form results for 1D flow show that the
uncertainty of finite domain statistics, such as effective
conductivity and head variance, decreases with .domain size.
Preliminary results also indicate the scale dependence of the 3D
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effective conductivity and macrodispersivity of a growing contaminant
Plume.

Direct numerical simulations are developed for single
realizations of homogeneous/ergodic random medium properties, using
the 3D turning band method for random field generation, and a special
purpose numerical code for solving 3D finite difference saturated and
unsaturated flow equations, with spatially variable and nonlinear
coefficients. In the case of stochastic groundwater flow, a novel
method of truncation error analysis shows that the discrete solution
is a consistent approximation of the exact one, however with a lower
order of accuracy if the random coefficients are noisy rather than
smooth. The root-mean-square errors on head and velocity are
respectively proportional to the powers 3/2 and 1/2 of the mesh-
correlation scale ratio in the noisy case (exponential covariance).
The convargence of the iterative "“strongly implicit procedure™ solver
is studied, and the nonlinear stability of transient unsaturated flow
systems is analyzed (Peclet number condition).

The single realization approach is applied to the following flow
problems, using a Cray2 supercomputer for the largest simulations:
steady groundwater flow in statistically isotropic or anisotropic
media (up to 1 million nodes); transient strip source infiltration and
steady rainfall infiltration in unsaturated soils with random
conductivity-pressure curves (up to 30,000 nodes). The simulated flow
fields are statistically analyzed by spatial averaging methods under
weak assumptions of homogeneity. For groundwater £flow, the results
compare favourably with spectral solutions, especially for the head
variance, effective conductivity, and velocity correlation tensor, up
to large standard deviation of the natural logarithm of conductivity
(2.3). The numerical velocity variances agree with the spectral
theory at moderate variability (isotropic case), but increase faster
with conductivity variance. The discrepancy is milder for the new
flux-based spectral theory. Numerical head correlations tend to be
smaller than theoretical ones due to finite size affects, particularly
for shallow stratified aquifezrs.

For unsaturated flow, simulation results indicate sensitivity of
flow behaviour depending on the variability and anisotropy of the
random soil. In the <case of transient strip source
infiltration/drainage in a statistically anisotropic so0il, there is a
pronounced lateral spreading of the edges of the moistura plume. This
behaviour 4is in qualitative agreement with available spactral
solutions. The case of steady "rainfall" infiltration shows a
quantitative agreement with the head variance and vertical unsaturated
effective conductivity from the spectral theory. Some questions
remain open, notably concerning the range of validity of the

homogeneity and ergodicity hypotheses for highly nonlinear and
evolving flow systems.
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CHAPTER 1: INTRODUCTION
1.1 Subsurface Contamination and Field Heterogeneity

There has been significant progress during the past
decade in our conceptual understanding of the physics of flow and
mass transport in naturally heterogeneous or random porous media.
Stochastic concepts were introduced to represent the natural
variability of porous (non-fractured) sﬁbsurface formations and
soils, leading to new mathematical formulations of the classical
equations describing subsurface flow and transport | phenomena,
which in turn influenced current stochastic approaches to data

collection.

This area of research has gradually grown into a field
of its own, known as “stochastic subsurface l';ydrolog". The
basic ingredients of this approach are, on the mathematical éide.
the theory of random functions of multidimensional space (random
fields) and of stochastic partial differential equations; the
concept of “effective” transport coefficients (macro-scale
conductivity and dispersitivity): and advanced linear
estimation/optimization theory for the collection of noisy field
data. Similar concepts have been used in the past, notably in
the statistical theory of homogeneous turbulence (random velocity

fields) and in the mathematical theory of "homogeneization”,
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vhere interest focuses on the existence and 'uniqueh'eés of
effective transport properties for a variety of physical

.problems."

The field of stochastic subsurface hydrology has become
an active a.rea of research for applications to toxic and
radiocactive waste contamination, with the incx'-w.sing‘ bublic and
governmental awareness of the gravity‘ and ubiquity of the toxic
waste problem (North America end Western Europe). Because water
is the main carrier of toxic species underground, e.g., in
dissolved form, the study of subsurface water flow is an
essential preliminary étép towards a better understanding of
toxicsolﬁte transport in complex environments. |

The complexity of natural subsurface flow systems can
be reduced somewhat by considering separately two distinct types
of -flo.w regimes: - purely saturated flow with positive water
" pressures (aqﬁifers). ‘and purely unsaturated flow with negative
water preékures below atmospheric prelssure (unsaturated soils and
vadose zone). In this work, we will be mainly concerned with the
physics of water flow under these two distinct regimes, with
particular emphasis on the effects of random-like heterogeneities

of the porous medium.
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[a] Subsurface contamination:

It may be useful to consider briefly how research on
heterogeneous flow systems relates to actual f ield contamination
problems. Low-level radioactive or toxic cht.emiczls are usually
disposed of above the ground or buried at shallow depths.
Examples of hazardous waste sites of this type are landfills,
surface impoundments (e.g. lined evaporation ponds), and uranium
mill tailings buried at shallow depths. Another situation of
interest concerns the case of potentially harmful chemicals
applied over large surfaces at relatively small concentrations,
such as may occur in irrigated areas (fertilizers dissolved in
irrigation water). | In these cases, contaminant transport will
presuinablj tak;. place in the unsaturated flow regim.e when a leak
occurs. Except for controlled experiments, leakage is usually
not detected until after the contaminant has reached a major,
extensively monit.cored groundwater system, or t-mtil it has caused
major damage (e.g. contamination of local communities via

drinking water).

Large-scale controlled experiments of contaminant
migration through the vadose zone are scant (see the extensive
review of Gelhar et. al. 1984). One notable exception is the
experimental study of an evaporation pond by Trauntwein et. al.

(1983) and Kent et. al. (1982). These authors found that, after
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20 years of leakage in the unsaturatédibne. water reached a

depth of 100 meters, and extended laterally over a distance of 2

‘kilometers. The surprisingly large 1atéral spread could be

explained by the presence of horizontal clay- lenses, 'leading

' pei'haps to the formation of perched water zones (Gelhar et. el.,

- 1984). The flow system in this case is comgnléx and inherently

three-dimensional in nature.

Another type of application concerns the case of
high~level radicactive wastes. Oli_'rently. a number of options
are being (re)considered for their disposal, particularly in the
United States. One of these options is the deep burial of sealed
cannisters into saturated formations of very low permeability,
such as unfrt;,ctured basalt, tuff, or granite. Another 'option
which has been proposed, but not yet iuxpiemented to our
imoirledge. is the burial of radioact:lvé ‘wastes into very dry
unsaturated porous formations Jlocated in arid (and poorly
populated) regions. Winograd (1981), one of tl'.xe' proponents of
this option, discusses the possibility of ‘burying high-level
wastes at depths of 15 m to 85 m in fallgy-fill deposits inside
the man-made Sedan crater at Yucca Flat, Nevada. In that
particular environment the annual rainfall is only 125 mm/year (5

inches/year) and the water table is 600 meters deep. Winograd

estimated that the downward percolation rate (velocity) through
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the unsaturated valley-fill could be roughly on the order of 2
mm/year, 1.e., 200 meters per i':undred thousand years.
Incidentally. this gives also an idea of the large time scale of
interest for high-level, slowly decaying radioactive wastes. 1In
this case of very slow flow and extremely dry conditions, it is
not at all clear what the effect of local heterogeneities could
be on the overall pattern of dispersion of a contaminant at the

scale of thousands to several hundred thousand of years.

Of more immediate concern is the potential hazard from
existing waste facilities. For instance, ‘a major leak was
detected in 1973 beneath one of the tanks located at the storage
facility of Hanford, Washington state. The total amount that
leaked into the Yadose zone was evaluated as one fifth of the
500,000 gallons (2000 m3) of high-level radicactive liquid waste
initially contained in the tank. The contaminént movement at
this site is now being extensively monitored. In 1978,
significant radionuclide concentrations were detected as far as
30 meters in depth, and 25 meters from the.edge of the tank,
laterally (Rouston, et. al., 1979).

Considering all the possible options and scenarios of
subsurface contamination, it is always possible that, in case of
a leak, the contaminant will eventually reach a major (regional)

groundwater flow system, where transport takes place in the
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saturated flow regime. There have been intense monitoring of
contamination plumes in =a number  of groundwater systems
worldwide. However, the groundwater velocities are generally notv
directly accessible to measurements. Thus, to predict the fate
of contaminants in groundwater flow systems requires a priori a
reliasble modelization of groundwater velocities based on other
types of information more accessible to measurement. The current
practice 1is a subtle and complex combination of numerical
modeling and model fitting, e.g.. from measurement of hydraulic
heads and concentrations on the site. For unsaturated flow and
transport, however, there have been very few observations of the
flow and contamination patterns at the lafge ‘scale. - The report
by Gelhar et. al. (1984) contains a comprehensive review and
interpretation of field data for both types of flow/transport
problems, satﬁrated and unsaturated. A major conclusion from

their review is that models based on & simple extrapolation of

.small scale data often fail to predict phenomenza occurring over

large space-time scales.

[b] Eield heterogeneity and implications:

One essential feature of subsurface formations, on
which we have chosen to focus in this dissertation, i spatial
variability. .W:lth the increasing body of literature devoted to

the measurement and identification of wvarious properties of
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natural formations, it appears clear that heterogeneities occur
at many scales, from "grain size” up to llarge. geological
structures. For most practical purposes, the micro-scale or
"grain size” variations of a discontinuous nature can be filtered
out. The formation is then viewed as a porous continuum, whose
bulk properties reflect implicitly the granular nature of the
medium (e.g. porosity, storage capacity, conductivity, and

coefficient of mechanical dispersion of tagged fluid particles).

It should be recognized, however, that this simplified
view may not always be realistic for soils with fissures or
macropores, for fractured rocks, or for karstic formations. Such
‘irreducibly discontinuous media will be ignored in this work. Omn
the other hand, there is now ample evidence that the bulk
properties of natural porous media, even without the presence of
fractures or 6ther large scale discontinuities, may vary quite
erratically in space. It has been progressively recognized that
such variability plays a major role in phenomena like solute

dispersion at the large scale (macrodispersion).

Figure (1.1a) from Gelhar (1976) depicts the vertical
variation of the log-saturated conductivity measured from small
cores taken from a borehole. The conductivity f{fluctuates,

apparently at random, over four orders of magnitude. It is
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"{Gelhar, 1976), °(b) Synthetic realization of a one-

dimensional Gauss-Markov process with exponential
covariance function.




inst.ructive to compare these data to the generated random
function depicted in Figure (1.1b). The variance and correlation
scale of the synthetic random function in (b) were adjusted to
fit those of the observed record 1n. (2a). In many other cases as
well, random functions appear to be adequate models of natural
variability. Relevant data for aquifers can be found for example
in papers by Freeze (1975), Delhomme (1979), and Hoeksema and
Kitanidis (1985). Their work indicates that the log-saturated
conductivity (2nK) is normally distributed, with standard

deviations ranging from 0.5 to 3.5 (see review in Chapter 2).

The hydraulic properties of unsaturated soils also
exhibit seemingly random variation in space. In this case,
however, spatial variability is more difficult to characterize
because unsaturated soil conductivity and moisture content are
functions of soil water pressure. These functional relations are
usually measured either on small soil samples in the laboratory,
or on small field plots (1-10 m2, with a vertical resolution of
10-20 cm). Parameters such as porosity, saturated conductivity,
and shape factors appear to be log-normally distributed whenever
_ variability is high enough to distinguish a skewed distribution.
Experimental evidence supporting this assertion can be found in
Nielsen et. al. (1973), Warrick et. al. (197.7). Sharma et. al.
(1980), Gelhar et. al. (1982), and Russo (1983). A review of
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available field data will be hresénted in Chapter 2.
"In summary, there is amplé evidence of seemingly random

variations of hydraulic properties in space. )Ioréovei*. data like

those shown in Figure (1.1) seem to exhibit a definite spatial

| structure A(sce.le of flucti:ation) that could be identified as the

correlation léngth of a sté,tionary random function. We réi:ognize
however that the ébrrelati‘on scale may mnot be uniquely
identifiable in ‘practice. " In some experimental “studies, the
correlation scale was found negligible (br ignored 'altogether. as
in Nielsen et. al., 1973).‘ In others, it was found almost as
large as the region ‘under investigation, i.e. statistically
meanin@eés. Finally, studfes like those of Scisson énd Vierenga
(i98'1)'. Ga.jém e-t. al. (1981). and 'others.. seem to indicate
sensifivity of the observed varience end correlation scale with

respect to thé scale of measurement and size/spacing of

measurement network. This, we feel, is an important issue that

deserves a more fhorough discussion. The topic will be ‘touched

upon at -other places in this work.

1.2 Scope and Objectives:

k4

' [e] Hotivation end background:

" The present work is based, for the most part, on the
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premise that a realistic descriptibn of naturally heterogeneous
porous media can be achieved by representing the local hydraulic
properties in the form of statistically homogeneous random fields
in three—dimensioqal space. Previous ré.search under this
assumption have led to useful statistical characterizations of
the glob-al behavior and spatial structure of heterogeneous flow
and solute transport. In particular, the spectral theory
developed by Gelhar and co-workers (Celhar, 1984 and 1987; Gelhar
and Axmess, 1983) has led to closed form relations describing in

a compact form the statistical behavior of heterogeneous

- groundwater flow systems, including the cases of statistically

isotropic and statistically anisotropic (stratified) aquifers.
The global/statiétitnl properties of interest for .applications
are the effective conductivity, the macrodispersion of a
convected solute, and the degree of variability and spectral
content of the random head and velocity fields. Parallel results
have also been obtained by other stochastic approaches, which

will be reviewed in Chapter 2.

The spectral theory provide.s particularly simple
results due to the assumptions of infinite-domain and statistical
homogeneity/ergodicity of the solutions of the stochastic flow
and transport equations. These key assumptions, by reducing
further the complexity of the problem, permitted to obtain

approximate expansion solutions of the stochastic groundwater
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flow equation (similar to a “heat equation” with random

. conductivities) and of the solute transport eqixation

("convection-diffusion equation” with a random velocity field) in
terms of spectral densities in Fourier space These spectral
solutions give all the information there needs to know about the
covariance structure of the variables of interest (hydraulic head
and groundwater velocities). However, the validity of the
approximations involved in the spectral theory has yet to be
ascertained for a wide range of field conditions. The same

remark holds for other analytical stochastic theories proposed in

‘the literature. In general, the available stochastic solutions

(spectral or other) rely on some kind of small parameter
expansion, where the small parameter corresponds to the degree of
varia_bility.' of the underlying porous formation (e.g., standard
deviation-of the random log-conductivity field). In the case of
the spectral theory, the accuracy of the small parameter
expansion and the wvalidity of the homogenelity/ergodicity

hypothesis need to be checked for realistic situations.

Moreover, the application of stochastic concepts to the

case of unsaturated -flow in heterogeneous porous media has

“encountered serious difficulties, both technical and conceptual,

due to the highly nonlinear nature of the hydraulic properties of
unsaturated media (moisture capacity and hydraulic condut.:tivity

functions of water pressure). Although the results obtained by
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the linearized spectral approach (Yeh et al. 1985, Mantoglou et.
al. 1987) are qualitatively appealing, it is not at all clear yet

what the range of applicability of their res.ults could be. In

view of our poor understanding of the complex interactions.

between nonlinear effects and spatial variability, there is a
strong motivation for investigating the operational range of the
linearized spectral theory of unsaturated flow in the vadose
zone, notably concerning the predicted shape, a'nisotropy. and
hysteresis of the unsaturated conductivity tensor as a function
of mean water pressure. Even a more qualitative de’scription of
actual or simulated heterogeneous unsaturated flow patterns could

be useful.

At the presént date, the available data concerning the
large scale pattern of heterogeneous unsaturated flow sytems are
too scant (as noted previously) to allow for a verification of
the linearized spectral results, except perhaps in a very
qualitative and speculative fashion. On the other hanci. there
are now enough experimental observations to indicate that the
findings of the spectral theory, among other stochastic
approaches, may provide an = adequate description of the
variability of certain groundwater flow systems and its effect on
contaminant macrodispersion (Gelhar, 1986). However, these
indications still remiﬁ subjective, as too many undetermined

parameters enter into play, notably the' three-dimensional

e

- N
[
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correlation structure, fluctuation scales, and statistical

anisotropy of . the hypothetically ré.ndom log~conductivity field.

Therefore, there arises the need for an independent
verification of the analytical results of the spectral theory in
more closely controlled situations, where the actual spatial

variability of the mﬂerlying porous medium is known with

- -

[b] Present spproach and objectives:

In this work, we aim at obtaining accurate solutions of
the equation's governing f low. in hypothetically random porous
media, based on the "postulate” of statistical hombgeneity of the
hydraulic pi'opefties of saturated or unsaturated media. In the
&ase of saturated groundmater flow in particular, we will seek to
refine and extend further. the analytical .results previously
obtained by the first order spectral theory of Gelhar et al. -
There are several new approaches involved in the -p‘roposed
refinements. In one instance, we explore higher order and
non-perturbative solutions of the stochastic flow equation, while
stilli retaining the infinite domain/ergodicity hypothesis. In
another, we extend the - spectral theory further. to treat
explicitly : the influence of domain size on the statistical

behavior of the flow system at some finite scale. However, the
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latter approach will require the same approximation of "small

variability” as in the infinite-domain approeich.

On the other hand, we also develop and apply a
numerical solution method in view obtaining. as accurately as
possible, the solution of the three-dimensional saturated flow
equation for finite discrete realizations of random medium
properties. When the size of the domain is sufficiently large,
the numerical solution of this equation should have the same
statistical properties as predicted by the spectral theory if the
_latter was correct. Moreover, only one large- single realization
of the random medium should suffice to represent the ensemble
statistics of the flow field, if the homogeneity/ergodicity
hypothesis of the spectral theory holds true. Therefore, the
numerical/single realization approach should provide an
independent | check of the accuracy of infinite-domain spectral
solutions, and of its applicability in practical cases where the

domain of investigation is necessarily finite.

Finally, the same numerical approach will be used to
treat the case of three-dimensional unsaturated flow systems in
random soils, i.e., with random coefficients.intervening in the
nonlinear constitutive properties (random unsaturated
conductivity-pressure curve as a function of space). However,

in this case, the approximations involved in the linearized



Aspectral theory are too severe, and the nuineﬂgal requirements on
the discrete grid size are too constraining, to allow for a
precise statistical comparison between the spectral and
single-realization approaches. Nevertheless, the large numerical
experiments discussed in this work will appear useful for a
preliminary screening of the complex behavior of heterogeneous

unsaturated flow systems.

In summary, this dissertation focuses on the
mathematical de#cription of subsurface flow fields under _the
postulate ' that the natural variability of hydraulic pro'pex-ties~
can be c}arapterized in the form of statistically homogeneous
random fields 'in three-dimensionzal space. . For the case of
saturated flow, the variety of techniques that were used to solvé
the stochastic flow equ_ation’ may reflect our attempts at
minimizing the set of postulates and 'approximtions required to
achieve tractable results. On the other hand, our rather
empirical approach of stochastic unsaturated flow reflects the
difficulty of developing truly nonlinear yet tractable analytical
models of heterogeneous flow systems in that case. Whénever
possible, we have used the indications of the linearized spectral
theory for interpretation. Finally, it may be relevant here to
emphasiz.e that; as in the case of turbulent flows, exact
solutions to the saturated and unsaturate.d stochastic flow

~equations are not known. Thus, even approxiﬁate indications on
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the robustness of existing theories can be extremely valuable.
1.3 Thesis Preview:

This dissertation was broken down into eight chapters,
including this introductory part. The next chapter. Chapter 2,
contains a brief literature review, a survey of available field
data, and a general presentation of the single-realization
approach, particularly in relation' with the hypotheses of the
spectral theory of stochastic flow. This chapter provides a
background for_ subsequent developments. Chapters 3 and 4 are
exclusively devoted to the obtention of trac.table solutions of
stochastic ground water flow by analytical means. Chapter S
focuses on numerical issues related to the single-realization
approach. This Chapter develops at length the various aspects of
a saturated-unsaturated flow simulator, to be used as a tool in
Chapters 6 and 7. The results of large saturated flow
similations in randomly heterogeneous media are presented in
Chapter 6. The emphasis there is on the statistical analysis of
the numerical flow fields for comparisons with the predictions of
the spectral theory. Chapter 7 presents in a more qualitative
fashion the results of large unsaturated flow simulations in
random soils. The overall conclusions of this work are given in

Chapter 8.

[P
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Because the amount of material presented in Chapters

3 - 7 is quite large, we have found it convenient to summarize

" the . contents of each of these chapters in & compact form, as

shown below:

: _Clﬁgter"&

The first order spectral theory of Gelhar and Axness
(1983) 1is used to obtain a more complete picture of the
statistical properties of the flow. Some new analytical results

are derived by integrating the spectra to obtain ensemble

-moments, such as some closed form expressions for the variances

of the flux vector components in the case of extreme anisotropy.

A rémarkable result concerns the near isotropy of the head field

" 1h statistically anisotropic media. The implications of these
" findings are discussed (shallow/deep stratified aquifers and
- finite size effects). ' The role of the low wavenumber

: fiuctuations of the conductivity field is also briefly examined.

The discussion focuses on the physical meaning and possible

limitations of the spectral solutions.

Chapter 4:

In this chapter are developed several new analytical

- approaches related to the standard spectral theory of saturated

flow in stochastic porous media. A new non-perturbative analysis
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of the stochastic flow equation is developed independently of the
"small variability” approximation of the spectral theory. In the
restricted case of statistically isotropic conductivity, it is
shown that the spectral theory of Gelhé.r and Axmess (1983)
satisfies all the fundamental conservation and symmetry
propefties of the flow in any number of dimensions. These
properties lead to an exact statistical 1dentitf between the flux
and head gradient vectors in the 2D isotropic case (statistical
conjugacy). In the 3D isotropic case, ‘the .flux-head gradient
relation contains a few undetermined functions. In the more
general case of 3D anisot;'opic media, an extrapolation of
previous results by Matheron (1967) and Gelhar and Axmess (1983)
leads to a siinple closed form expression for the anisotropic
effective conductivity tensor. A modification of the
Gelhar-Axness spectral solutions to include higher order terms in
the flux spectrum is developed. by using a stochastic system of
equations gdverning the flux vector rather than the hydraulic
h&ad. Finally, we propose a generalization of thg spectral
approach to take into account the effects of finite domain size.
The generalization is based on the new cof:cept of "spectral
conditioning™, wused to quantify explicitly the relative amounts
of uncertainty and spatial variability with respect to the scale
of the problem. The method combines ideas related to the concept
of self-similarity (Mandelbrot, 1983), renormalization group
methods (Wilson, 1975), and spectral solution method (Gelhar,
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1984). Closed form results are obtained in particular for
one-dimensional saturated flow.  Some implications for
three-dimensional flow and solute transport are also discussed in

view of preliminary results.
Chapter 5:

This chapter is devoted to the development and analysis
of 2 numerical method for éolving large single realizations of
saturated and unsaturated flow in three-dimensional random porous
media. In the linear case, a new epproach for evaluating finite
differeﬁce tr_uncation errors with stochastic coefficients is used
to show that the classical centered finite difference scheme is
consistet.xt. at least in the u;ean-square sense. For the flux
vector, the order of accuracy is equal to one for a smooth
conductivity field, but drops to one half for a noisy field. The
leading 'or;:ler terms: of the head error and flux error are
explicitly evaluated as functions of - érid resolution for
different kinds of random conductivity fields. Ve then focus on
the practical implementation of an iterative matrix solver (SIP).
Numerical . experiments are presented  for large random flow
problems on the order of 0.1-1 million nodes (convergence rate
 analysis). An upper bound for the true solution error is given as
a function of convergence rate and final ré.sidua"l error. The

* convergence rate appears propbrtioﬁal' to the inverse square-root
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of the condition number. Finally, we also develop a nonlinear
system solver for unsaturated flow problems (nonlinear SIP).
Preliminary numerical simulations of infiltration in some uniform
and heterogeneous soil systems are used to demonstrate the
problem solving capabilities of the unsaturaéed flow simulator.
The conclusions regarding the numerical feasibility of the single
realization approach are quite favorable in the saturated flow
case. However, we also conclude that there cou'1d be some severe
restrictions on the mesh size (Peclet number condition) and/or
time step size in the case of transient unsaturated flow,

particularly for dry heterogeneous soils.

Chapter 6:

This chapter is devoted to the interpretation and
statistical analysis of large single realization simulations of
three-dimensional saturated flow in random porous formations.
The random conductivity fields are generated on the finite
difference grid of the flow simulator by using the 3D turning
band method. We begin with a preliminary analysis of "medium
size” flow problems (130,000 nodes) in the case of statistically
isotropic conductivities, with emphasis on the qualitative
features of the head and flux fields, and some comparisons with
the predictions of the spectral theory. We then move on to a

-more extensive statistical analysis of large flow simulations on
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a2 1 million node grid, again with statistically isotropic
conductivities. The comparisor; with spéctral results is quite
favorable for a wide range of log-conductivity (€nK) standard
deviations, up to 0 = 2.3. The discrepancies observed for the
flux variances are analyzed, and a further modification of the
spectral solution is proposed to account for high order effects
on flux variability. - The sgreement is quite good for other flow
characteristics "(head variability, flux correlation structure,
‘effective conductivity) but the numerical head correlation ranges
appear shorter due to finite size effects. Ve also investigate
finite size effects for the case of statistically anisotropic
media. The covariance structure of the head field is analyzed
for two f fow simulations mimicking the case of shallow and deep
stratified aquifers with moderate anisotfopy‘-(grid size 220,000

nodes). " The chapter ends with a summary of findings and
| conclusions on the range of validity of spectral solutions of

stochastic ‘groundwater flow.

Chapter 7: -

This chapter presents a qualitative analysis of large
siﬁgle realization simulations of three-dimensional infiltration
" in random unsaturated soils. The random field co.efficients of
the exponential conductivity-pressure curve were generate;l-by the

turning band method. A preliminary analysis of strip source
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infiltration for modest size realizations of statistically
isotropic soils (25,000 nodes) revealed the effect of the
variability of the slope of the conductivity-pressure curve and
of its correlation with the s;.turated conductivity. Maximum
variability of the moisture patterns was observed when both these
parameters were random, and uncorrelated. We then moved on to
the case of infiltration in statistically anisotropic soils. An
unusually large single realization of strip .source infiltration
was simulated (300,000 node grid). under conditions similar to an
on-going field experiment. Both the slope and the saturated
value of the conductivity curve were taken random. Thus, a
different conductivity curve was generated at each node of the
grid. A detailed inspection of the pressure head field, sampled
along transects and slices during 10 days of infiltration and 10
days of natural drainage, seemed to confirm some of the
predictidns of the linearized spectral theory (enhanced lateral
spreading and pressure dependent anisotropy). Finally, we
developed a more quantitative analysis for another large
simulation in the case of steady "rainfall" infiltration on the’
same random soil realization (300,000 nodes). Spatial averaging
estimates of pressure variability and unsaturated effective
conductiv:lty. appeared fairly close to linearized spectral
solutions. The chapter ends with a "summary and discussion”

section, including a discussion of the current limitations and
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future prospects of numerical and analytical approaches in the

case of cqmplex nonlinear flow systems.

This ends our description _of the contents of chapters
3, 4, 5, 6, and 7. In summary, this‘ disserfation was organized
in three main topics: analytical/spectral approaches (Chapters 3
and 4), numerical analysis'(aaapter 5). Vand statistic#l/plwsical
it;terpretation of nmne;-ical simulationsb:of raﬁdom flow préblems
(Chapfers 6 and 7). The conclusive Chapter 8 focuses oﬁ the
.impliAmtions of our fiﬂdings for pract:lcal subsurface flqw and
contamii;ation problems, and discusses some of tfxe contributic;ns
of this ‘\»vo'r»k -towards our conceptuai understanding of . stochastic

" flow and mass transport in heterogeneous poi'ous media.
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CHAPTER 2: REVIEW OF STOCHASTIC APPROACHES TO SUBSURFACE FLOW
2.1 Overview of Past and Current Approaches to Field Problems
2.1.1 Empirical models:

In view of the complexity of subsurface flow systems,
most predictions were and still are based on empirical model
calibration. Practitioners in the field of subsurface hydrology
use numerical models based on local mass conservation, Darcy’s
law, and Fick’s law. These are distributed-parameter models,
usually  two or three dimensional. Most frequently, mnatural
variability' is partilally taken into account by dividing the flow
domain into a few subdomains, with different conductivities.
Layering within each block is also implicitly taken into account
by specifying anisotropic conductivities, with a larger
conductivity in the direction parallel to natural stratification,
most often horizontal. The hydré.ulic and dispersive properties to
be used in the model are further adjusted for a best fit between
numerical and measured values (heads, concentrations). This
calibration process has proved most expedient for addressing
specific problems, but rather limited in scope. The typical
situation is that accurate answers are obtained only for the

particular conditions under which the model was calibrated.
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Predictions made for hypothetical . environmental conditions
(different from those prevailing at the time of calibration)

appear to be of limited value.

The limitations of current engineering practice are
even more drastic concerning solute ,tfanspoft predictions.
Dispersion coefficients obtained by way of | model calibration
appear much greater than those measured on small samples in the
laboratory. Furthermore, they are found to increase as the
contaminant spreads and more. concentration data are made
available for new calibrations. This inadequacy may be due to
the fact that ti:é \vfeloci‘t‘y field predicted from the flow model,
fs' much smoother than indicated by fieid observations
"(conductivity variability). ‘ Ignoring the small scale
fluctuations of the f low field leads to inadequate prediction of
the ‘mechanical dilsper.s"ion of convected species. Overall, it
would seem that empirical calibration of these models does not
allow for réliable predictions of contaminant migration over

large time and length scales.

These remarks apply &s well to  black-box or
zero-dimensional models. Jury et. al. (1982, 1986) proposed fhis
type of model for the transport of solute in unsaturated soils.
Briefly, their model isolates a soil unit (the black-box) and

seeks to characterize a transfer-function that relates input and



output for that particular unit. This is analogous to the "Unit
Hydrograph” method used in surface hydrology. Unfortunately, the
data presented by Jury et al. (1982) indicate that the transfer
functions calibrated for certain conditi?ms do not extrapolate to
other conditions, time scales, and length scales (see discussion

in Gelhar et al. 1984).
2.1.2 Probabilistic models without spatial correlation:

There have been also a number of attempts at modelling
unsaturated flow and transport by using the idea of i‘ndependent
soil colums. These approaches c¢can be viewed as
distributed—j:arameter models in one dimension. They take into
account' the horizontal variability of soil 'pi'operties through a -
few random parameters, such as a random scaling factor in Warrick
and Amoozegar (1979), Sharma et al. (1980), and Vauclin (1982):
or the rahdom saturated conductivity in the work by Dagan and
Bresler (1983). These authors all assumed in effect that
horizontal --fluctuations of velocity were unimportant
(one-dimensionality). The soil properties were assumed
uncorrelated {in the horizontal (statistically independent
columns) but perfectly correlated in the vertical (homogeneous
soil columns). However, other results obtained for fully three
dimensional random properties indicate that dimenstonality and

correlation scales have a crucial influence on the overall



- 54 -

features of the rflow field. The reduced tlimensionality of the
models mentioned above implies a sralier degree of freedom for
the movement of fluid particles, whereas natural heterogeneities
create fluid pathways that are inherently three-dimensional. In
é'additiom the assumption of statistiwlly' independent soil colums
‘does‘not— seem to make sense for columns of die.meter smaller than
the observed correlation scales. ~In fact, because of these
simplifying assumptions the adequate inputs to be used in such
models are difficult to evaluate. What are the average or
effective parameters for each columm? How are they related to

small scale measorements?

2.1.3 Stochastic models with spatially correlated fields:

In view of the difficulties just meotiohed approaches
based on the theory of random functions have been developed in an
attempt to eapture the essential features of flow and transport
processes in heterogeneous media. In these stochastic
approaches. local properties ‘such as the hydraulic conductivity,
or the storage coeff fcienit are ‘viewed as homogeneous random
functions of space. with transla.tion-invariant means. variances.
and correlation functions, determined from field data. In
_actdal practice. ‘the data kneed' only be appro'ximately homogeneous.
For instance, Ababou et al, '(1.985) argue that a statistically

‘meaningful identification of a log-conductivity field must
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satisfy a requirement of the type A <K L <K ¢, where A is the
correlation length or fluctuation scale, L 1s the size of the
measufement network, and ¢ is some scale of inhomogeneity (for
instance ¢ = denKG/dx characterizes the length scale of
inhomogeneity in the mean). In this framework, the governing
equations (local mass conservation, Darcy’'s law, Fick's law) have
stochastic solutions which can be characterized, in principle, in
terms of their ensemble statistics (e.g. fix;st and second order

moments of heads, velocities and concentrations).

The infinite-domain spectral theory developed by Gelhar
and others aims specifically at obtaining a large-scale
characterization of spatially variable flow and concentration
fields. By using ergodic arguments, they assume the equivalence
between ensemble expectations and spatial averages. Their final
results include close-form expressions for the head variance,
velocity variance, effective conductivity and macrodispersion in
a variety of situations (Bakr et al. 1978; Gelhar and Axmess
1983; Gelhar 1984, 1986, and 1987). The "effective” transport
properi:iés were defined in connection with the "large scale”
Darcy and Fick laws, relating mean fluxes "to mean gradients
(similar to the Onsager relations used in thermodynamics). The
validity of these phenomenological equations have been
traditionally investigated at the small scale only. What is

emphasized here is that these equations may be extrapolated to

o .
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describe large scale phenomena, but with different coefficients.
The -effectiife conductivity and macrodispersion coefficients
obte.ined f fom the spectral theory directlyr incorporate the
spatial structure of the observed heterogeneities. in terms of

the variance and correlation structure of the local hydraulic

conductivities.

Other methods for solving stochastic flow and transport
equations include the approxilnate Green's function method (Dz2gan,
1982}, the direct numerieal solution of approximte equations for
first and second order moments (Townley, 1983: McLaughlin. 1985),

and direct Monte-Carlo simlations (Freeze, 1975. Smith and

' Freeze 1979. Delhomme 1979, Ma et al. 1987). _ These methods apply

in 'particular to the eaee of flow in bounded domains, and in the

presence of local sources or sinks such as pumpingk wells. In the

latter case, the ensemble moments of the stochastic flow field
are‘ to be 1interpreted in a Bayesian framework, 1.e., they
represent the uncertainty among many possible roalizatione or
locations, rather than the large scale si:atial' variability of a
single flow system (variance of hw,ds near a pumping well at an
unspecified location). This view was sometimes implicitly
adopted, e.g. .in the "well problem” treated by Dagan (1982). The
case of semi-i_nfinite equifers was tackled by Naff and Vecchia

‘(1986) throuéh & combination of Creen's function and spectral

representation. ) .
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Some authors used Monte-Carlo simulations for checking
analytical or other solutions. In most cases, comparisons were
limited to fairly small conductivity variance (Freeze, 1975;
McLaughlin, 1985). Indeed the number of realizations needed to
obtain accurate answers could be prohibitive for the large
conductivity variances observed in certain field sites, requiring
the numerical solution of perhaps 10,000 or more flow problems in
three dimensions (see discussion in Mclaughlin, 1985). On the
other hand, there are also questions about the range of validity
of the perturbation-based solution methods just discussed
(Gelhar, 1984; Dagan, .1982; McLaughlin, 1985): these are all in
some sense "first order approximations”, which are only valid
asymptotically as the input variability becomes small. Even
approximate indications on the robustness of these approximations

would Be extremely valuable, since exact solutions are not known.

2.2 The Single-Realization Approach:

2.2.1 Objectives and method:

In this section. we define briefly " the

single~-realization approach which will be used in conjunction

with a numerical solution method (Chapter 5) to obtain
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representative solutions of stochastic flow problems (Chapters 6
and 7). It is relevant here to discuss in ﬁore rigorous terms
what & ‘“representative” solution means. The idea of the
single-realization approach 1s that the statistical properties of
the flow field can be evaluated by computing the spatial moments
of one large realization of the flow, ’rathex: than the ensemble
moments ecross a large number of realizations. " The
single-realization and ensemble approaches should be conceptually
equivalent if the single solution is obtained on a sufficiently
large domain, and if the ergodic hypothesis holds, as assumed in

the ~spect:x'a.l theory of Gelhar and others (see Chapter 3).

It may be useful here to brief iy examine .how large must '
“large” be in order to ensure the equivalence of ensembie and
spatial mo;nents ‘of three-dimensional flow fiélds (e.g. Vhydraulic
head or groundwater velocity vector). .Consider a ;ingle finite

realization of an ergodic flow field 'Y(g) in three-dimensional

' space. Note that we do not question here the ergodicity

hypothesis. Let us now focus on the behavior of spatialz sample
moments, - say mean end covarience, as the size L, of the
three-dimensional domain varies. 1f ?\i is the correlation length
of .Y(;g) along X, and 1f Y(x) is indeed sfatistieally homogeneous

along all three directions §i=1.2.3). it seems reasonable to

" define the sample size, or "equivalent number of independent

samples”, as:



- 59 ~

LyL2Lsy
Y = XA (2-1)

Thus, as in the case of Monte-Carlo simulations, the classical
theory of sampling errors can be used to determine the
uncertainty on the computed spatial moments due to insufficient
sample size. The relative errors on the mean and standard

deviations Y and oy are defined as:

@ - L@
Y (2.2)

JVar(aY)
%

£(OY) =

According to classical results of sampling theory (for a
population of independent normal random variables) these
quantities are both proportional to the inverse square-root of

the equivalent sample size (see for instance Kendall and Stuart,

1977):

(2.3)
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However, the error on the covariance function R“.(ﬁ)' will

increase with lag-distance. To evaluate this beffec; in a very

" approximate manner, consider how the available number of samples

_decreasesA with lagfdistance along, say, the x -axis:

£= (ft .0.0)

_ (L,- EL.L,
Ny(fs) =( ;\‘,)‘\2 s

, For an isotropic field (A =A;=A;) and a cubic domain (L,=L.=L;).
the available number of samples that can be used to compute the'

_covariance function at lag-distance §f is then simply:

NY(E) = (!'--f-) ) . " (2.4)

Now, we expect that the relative error on the covariance

fuhction}

e(Rﬁ) = RYY | (2.5)
;vili behave like:

R | c 2.6
e(Ryy(E)) = e (2.6)

Although these estimations of the uncertainty of sample
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statistics are very approximate, they should suffice for our
purpose here. More precise statements on sample statistics can

be found in Appendix 2A, which will be used later in this work.

Let us now illustrate these approximate relations for a
éimple example: a cubic domain of size 5 correlation scales in
each direction. The relative errors on | thé samples mean and
standard deviation are reasonably low in this case (respectively
9% and 6X). However, t_he relative error on the sample covariance
function increases with lag-distance: 10X at § = A, 14X at
€ = 3\, and over 20X for £ 2 4\. Obviously, to obtain a reliable
evaluation of the spatial structure of the flow field from a
single realization, the flow domain must be taken much larger
than "'the largest correlation scales of the variables describing
the flow. In addition., the effects of artificial boundary
conditions, anisotropic behavior, and intrinsic inhomogeneity of

the flow along certain directions (e.g. parallel to flow) may

lead to revise the size requirement up.' This will be

investigated more specifically in Chapter 6, using some of the

sample statistics developed in Appendix 2A.

The requirement on the size of the single-realization
flow problem (to ensure the equivalence of spatial and ensemble

moments) is not unlike the Monte-Carlo method's requirement of a
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large number of | rwiizé.tions in ensemble spaAce.- However, there
is an essenfial difference, that has led us to k‘gvor the
siqélrrealimtim approach over Mon_te—(hrld. In the
single-realization method, the spatial variability of a more or

less homogeneous random phenomenon is studied at the large scale,

énd advantage is taken of the large size of the domain to sample

the variables of interest over many fluctuation scales in

phys:lcal‘ space. In the Monte-Carlo method on the other hand, the

large number of realizations required to obtain reliable ensemble

moments is, in practice, incompatible with the study of large

scale flow or transport phenomenza by numerical methods. The

" Monte-Carlo method seems best; adapted to the study of localized

phéx;oniena af fected by uncerté.in_t:y~ (uncertaih drawdown near a
pumping weli. dependit_xg on its lbéation in a heterogeneous
aquifer). Note fhat our argumenté are based on a' two-sided
interpretation of fhe effects ﬁf spatial variebility. depending

on the nature of the }wdrologic problem and on the size of the

domain of interest. We will touch upon thi_s subject again in

' Chapter 4 {Section 4-.4) wﬁh the idea of "spectral conditioning”.

. Furthermor:e. in 'céses vhere the ergodif: hypothesis does
not hold or 1is only approximate.ly satisfied, the single

realization a.pproachv can still be viewed as a direct stmul_.atton

. of plaﬁsible field conditions, where oﬁly one Vspatiav.l realization

of a particular heterogeneous f low system is actually available
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for observation (over a finite domain). In contrast with the
spectral theory, the numerical single realization approach does
not postulate a priori the statistical homogeneity and ergodicity
of the solution (althon_xgh the assumption of a homogeneous/ergodic
random porous medium is still retained). This brings the single
realization approach closer to a realistic’' representation of
natural field conditions. However, the statistical
interpretation of just one spatial replic.a. of a flow field may
not make sense in situations where the solution appears to be
strongly inhomogeneous, as would be the case for instance in the
presence of some local source (single pumping well) or some
inherent inhomogeneity at the domain-scale (geologic structure).
A difficulty of this nature will be encountered for instance in
the single-realization simulations of transient infiltration from
a strip source (Chapter 7). In this case, the random flow
solution is inherently inhomogeneous, especially at early times
where there is a relatively well defined wetting front separating
a wet and dry region. Nevertheless, even in the case of a moving

front, the single-realization approach {s still interesting

because it provides, by direct simulation, a detailed picture of

one possible flow system as may occur in natural conditions.

In summary, the numerical single realization approach
of naturally heterogeneous flow systems seems to be a nmatural way

to obtain, by direct simulation of the flow field, a realistic

— o —
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piqtufe of the effects of (random) spatiai variability on the
flow pattem./ with a degree of detail]l that cannot be achieved by
direct subsurface measurements in the field. More importently,
the simulated flow field can be statistically analyzed in space
and compared to the ensemble resulté of the épectral theory, in
‘cases where there is enough statistical homogeneity for such a
comparison to make sense. This method of analysis will be
applied systemtieally to the numerical sblutions obtained for
steady state gi'oundwater flow (Chapter 6), and a'ls_o for a problem
of steady siatg infiltration (Chapter 7).} As mentioned _;above.
the case bf transient infiltration from a local source (Chapter
7) produces inherent inhomogeneities in the flow pattern, a.nd.
Ap'reci‘sely for this reason, a statistical analysis will not be
attempted there. Nevertheless, some qualitative comparisons with
the .results of the‘ iinearized spectral theory will be developed
based on visual ‘observations of the spatial pa'ttefn and evolution

61‘7' the wet zone.
2.2.2 Generation of Random Fields by the Turning Band Method:

To be useful. thé nﬁmeriéal single—rél:ization method
also requirés the accurate generatioh 6f random field hydraulic
properties on a reiat:lvely f ine fhree—dimensional grid. The mesh
size rde the grid must be small enough that the statistical

properties of inputs (e.g. log-conductivity) and outputs (e.g.
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heads and water velocities) be preserved in the discrete
representation. Without going into details, it seems reasonable

at first sight to require that:
Ax/A <K 1 (2.7)

where A is a typical fluctuation scale of the flow. This
requirement is similar to the sampling theorem in signal theory:
a temporal signal of period T must be sampled at time intervals
AT <K T/2 in order to avoid aliasing. In the present case, the

fluctuation scale A plays the role of the half~period T/2.

A more quantitative interpretation of the resolution
constraint '(2.7) can be developed by evaluating the behavior of
the local integral of the random field of interest over the
discrete cell of size Ax. The resolution of the grid must be
fine enough that the statistical properties of the locally
integrated field Y (x) be close to the random field Y(x) defined
in continuous space. For a given value of Ax/A, there is a
reduction in variance and an increase in the correlatiﬁn scale of
Y(x) compared to the point process Y(x). For instance, in the
simple case of a one-dimensional process Y(x) with exponential
covariance function, it 1is not difficult to see that the

statistics (o2_, RAx) of the locally integrated process:
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ix
x+§—

Y(x) = o Y(x*)ax" (2.8)
. - |

ng

are related to the (o2,\) statistics of the point\process Y(x)

by:

(2.9)

Thus, the distortion in the var_ia:fce and correlation scale of
Y(i) upon local integration over a mesh of size Ax = A4 is about
10%. This may give & rough idea of . the quantitative meaning of
the inequality constraint (2.7): it seems reascnable to accept a
grid resolution'equal to a fractior_x of unity. i'.e not necessafily
"mich smaller .tl'an" unity. A more precise analysis of the grid
resolution, requirement will be developed 1in .C‘hapter 5 in
connection with the mmerical  issues pertaining to tﬁe

discretized solution of stochastic flow equations.

At any rate, once the ﬁesh size has been chosen, it is

also important to be able to generate a representative

realization of statistically homogeneous random field hydraulic
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properties with specified single-point and n-point moments. We
used for this purpose a three-dimensional version of the "turning
band” random field generator, recently developed by Tompson,
Ababou and Gelhar (1987). The idea of the turning band method
was brought up by Matheron (1973) f{for multidimensional
homogeneous and isotropic random fields. Its practical
implementation was developed by Mantoglou and Wilson (1982),
particularly for two-dimensional random {fields. The case of
three—-dimensional isotropic and anisotropic fields is treated at
length in Tompson et al. (1987), including a number of numerical
.experiments. - Ababou (1986) also discusses in an unpublishe&
report some possible extensions of the method to treat the case
of self-similar random fields, and Mantoglou (1987) elaborates on

the case of statistically homogeneous vector fields.

Let us briefly describe i:he principle of the turning
band method in the case of a statistically homogeneous random
field f(x) baving a zero-mean Gaussian distribution, and an
isotropic or ellipsoidal covariance function in three-dimensional
space. The method relies on the representation of f(x) in

Fourier space (see Chapter 3):

i:(g;) = ﬁ el de(l_()

Re (E) = E =5 (ax o (2.10)



vhere Rff(ﬂ is the covariance function, 'de(ls) the complex

_Fourier-Stieltjes increment, and S f(l_() the spectral density of

f(g) defined by:
| _sf;(x) « dk = < |az (k) |*> | _' (2.11)

In particular. in the 3D :lSotropic case, the covariance function

| in (2.10) ‘can be expresﬁed dir'ectly in terms of & radial spectrum

as follows (Adler, 1981):

Bypl®) = 2 J"mw-m,m.

o | (2.12)
E(K) =_[ S(k)do(k) = 4wk2S(k) |
#(k) Ras

. where the integral defining the radial spectrum E(k) is taken

over the sphere of radius k in R®. Note that k and f are the

radial wavenumber and separation distance, respectively.

The idea of the turning band method 1is that it is

possible to find a one-dimensional process f,(x) génerated

- independently along lines having many different orientations in

space:
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L
i) =1m i Y ix.u) (2.13)

Each line (i) is defined by its direction vector u,. and fsi)(x)
is the sample function of process f, generated along line (i) as
illustrated in Figure (2:.1). The 1D sample functions are
generated independently of each other.' and the line direction
vectors u, are drawn from a random unit vector having a uniform
distribution on the sphere (see Tompson et al. 1987). In these
conditions, it is not difficult to see that the covariance

function of the 3D field defined by (2.13) takes the form:

L
Rff(i) = ]{2 % 2 Rl(f."_li) . _ (2.14)
i=1

where Ry;(§) is the covariance function of the 1D process f,(x).
With additional assumptions of homogeneity and ergodicity, on
which we do not elaborate here, the sum in (2.14) can be replaced
by an ensemble average over all possible realizations of the

random direction vector u, as follows:
Ree(E) = < Re(E-u)> (2.15)

Finally, with a uniform distribution of u on the sphere, equation
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Figure 2.1: Turning band method: projection of the i-th line

process {3 (1) (x) onto an arbitrary point x in
three—dimensional space (from Tompson, Ababou,’
Gelbar, 1987).
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(2.15) leads to an explicit relation between the covariance

function of the line process and the desired covariance function

of the isotropic random field to be generated:

2w T
Re,(E) = Z;-I do _f R, (F cos$) sing d¢
0 0

§
%-- IR,(s)ds
o

whence:

Equation (2.16) gives explicitly the covariance of
line-process such that the projection operator (2.13) yields
desired 3D isotropic covariance Rff(f). asymptotically as
number of lines L goes to infinity. The method used in

turning band algorithm to generate each line process is

R(E) = 3¢ (€ Rff(f))l (2.16)

the

the

the

the

the

spectral decomposition method of Shinozuka and Jan (1972).

Details are given in Tompson et al. (1987). In actual practice,

the number of lines need not be very large to obtain relatively

accurate single-realizations as far as first and second moments

are concerned. In particular, it seems that the number of lines



o ——

—— U

-72 -

L required to be consi;tent with the resolutidn of the grid may
only grdw like some fractional f:ower of the total ixumber of nodes
of the grid. This enlpiriéal observation seems to be confirmed by
the results of ‘Tompsoxi et al. 1987. and those obtained in this
work: see Chapter 6 (Section 6.3)‘ for & realization of the
log-conductivity field on a 1 million node grid using the turning

band generator with 1000 lines.

Finally. the case of ellipsoidal » anié’otropic random
fields does not require any modification of the above method.
For any isotropi’c rfv.ield with covariance function Rff(f) and
fluctuation scale A, an ellipsoidalb fiéld can be constructed by

rescaling the’.'thrée coordinates as follows:

E‘i g%fi . 7 - (2.17)

Thus, the new ellipsoidal covariance function R; f(,E) with

fluctuation scales (7\ ) is simply given by

RilE) = Reg(l2 G-8)D) ~ (@19)

This simple relation was used in Chapteré 6 and 7 to obtain
single-realizations of statistically anisotropic - (elltpsoidal)

random hydraulic properties. ' For other applications such as
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those involving space-time processes, more general classes of
. anisotropic random fields may be needed. Tompson et al. (1987)
discussed this case as well, and Sivapalan and Wood (1986} used
the 3D turning band generator to simulate anisotropic space-time

rainfall intensity fields.
2.3 Brief Survey of Field Data
2.3.1 Hydraulic properties of heterogeneous aquifers

In the case of groundwater flow, the local hydraulic
properties of interest are the saturated conductivity K (m/s) and
the specific storativity Ss (m-l). or their two-dimensional
equivalents, the transmissivity T (m2/s) and the storage

coefficient or specific yield Sy (dimensionless).

Thg spatial variability of hydrauli.c conductivity and
transmissivity have been the object of intensive experimental -
studies in the recent past, in an effort to characterize Fheir
variability in a statistical rather than purely descriptive
fashion. Gelhar (1986) reviews some of the available field data.
Most .experimental studies of aquifer variability actually focused
on the horizontal variability of the transmissivity or of some
depth-averaged conductivity determined from well pumping. tests

(Delhomme 1979, Binsariti 1980, Devary and Doctor 1982, Hoeksema
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and Kitanidis 1'985). Their resulfs could be summarized as
f:c;lloﬁsf the standard deviation of log-transmissivvity‘ (énT)
ranged between 0.6 (sandstone aquifer of Hoeksema and Kitanidis)
to 2.3 (limestoné aquifer of Delhomme), with correlafion ranges
on the order of 1 km to several tens of kilometers. The domain

sizés were on the order of 5 km to several hundred kilometers.

Other studies concerned the local hydraulic
conductivities obtained from small scale measurements, usually

along vertical boreholes (Bakr 1976, Huf schmied 1985, Sudicky

'1986). In these three studies of aquifer variability, the

standard deviation of log-conduétivity (énK) ranged from 0.6 to

2.2, with correlation ranges on the order of 0.1 to 1.0 mgteis in

‘the vertical. The length of the vertical transects (boreholes)

was 20 to 100 meters, The studies of Hufschmied (1985) and
Sudicky (1986) are particularly remarkable because these authors
acthally determined, by different methods, the three-dimensional
variabil'ity of the log-conductivity field. Hufschmied used a
rélafﬁely sophisticated flowmeter measurement of conductivities
in.16 weiis. '}‘or twentyr. 1 meter thickA layers in each well. The

statiﬁfics of the point process ehK(g) in the.verticaal’ were then

obtained by using statistical identities relating  the point

process to the local "av‘er'agé process. Information obtained among
different wells was 'i:t'sved 7'1ndirecytly to infer the horizontai

covariance structure of &€nK(x). On the other hand, Sudicky
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(1986) measured the conductivities from small core samples along
a number of vertical boreholes organized along two perpendicular
planes. This particular choice allowed them to estimate the

covariance structure of &nK in three-dimenéional space.

The statistical results obtained by Hufschmied (1885)
and Sudicky (1986) are summarized in Table 2.1. In addition,
Figure (2. (top) shows the log-conductivity contours obtained
by Sudicky (1986) along the vertical plane aligned with the
natural hydraulic gradient at the Borden site. For comparison,
the bottom part of Figure (2.2) displays an artific1a11y~
generated anisotropic random field obtained by the turning band
method described previously. Note that both Hufschmied and
Sudicky’'s data show a significant statistical anisotropy between
the horizontal and vertical direc_tions.

The data .reviewed above indicate that the
conductivities and transmissivities can vary over several orders
of magnitudes in natural formations. In addition. the work of
Hufschmied (1985) and Sudicky (1986) clearly shows that the
conductivities follow a log-normal probability distribution more
closely than a normal distribution. Finally, it is also clear
that in .most cases, there is a relatively st'rong anisotropy in
the vertical/horizontal correlation scales of the

log-conductivity (Table 2.1). However, it is also possible that

PR
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TABLE 2.1: STATISTICAL PROPERTIES OF MEASURED THREE-DIMENSIONAL |
LOG-CONDUCTIVITIES (&nK) IN SATURATED FORMATIONS, FROM BUFSCHMIED (1985)

AND SUDICKY (1985)

Hufschmied (1985)

Sudicky (1986)

Site

Formation

Covariance

Aeflingen, Switzerland

20 m thick, sand and gravel

Anisotropic exponential
(6 10 ws)

1.62

15-20m

15-20m
05m

Borden site, Ontarioc
Outwash sand
Anisotropic exponential

5

7.17 10°° w/s

0.54 - 0.62

2.8m
2.8 m
0.12 m

—
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Figure 2.2 Log-conductivity contours in a vertical plane. The

upper part is reproduced from Sudicky, 1986
(measured at the Borden tracer site). The lower
part of the figure was obtained by simulation, using
the Turning Band Method with an anisotropic spectrum.
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the anisotropy observed by these author; be due in part (or
depend in vpart) on the discrepancy between the horizontal and
vertical scéles of the domain under investigation (12 m x 3 m in
the study :of‘Sudicky. A1986). Indeed, some of the other studies
mentioned above suggest that the supposedly stationary
correlation strﬁctufe of porous formations may not be well
defined for certain sites and/or for certain domain sizes. This
is suggested for instancé by the statistical analysis of Hoeksema
end Kitanidis (1985). These authors found in a number of cases
that the correlatiox_x scale was either small (on the order of
measurement spacing) or large (on the order of domain size). In

addition, both the correlation structure and the degree of

variability may be strongly influenced by certain subjective

choices, such as empirical detrénding {(an example can be found in
Devary end Doctor, 1982). These difficulties show that the
measured statistical properties of supposedly homogeneous
conductivity fields may be in fact scale-dependent in certain
situations. In our view, this is.not necessarily an obstacle to

the application of stochastic concepts as long as the fact is

" recognized, and that sdequate methods be designed to "pass” from

one. scale of analysis to another. The need for variable éeale
enalysis may ’ai‘isel :fbr ‘ﬁrédicting Eonta:hina.{'xf migration over
large time scales. This particular question will be examined in

Chapter 4 (Section 4.4).
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For completeness, let us mention the papers by Clifton
and Neuman (1982) and Hoeksema and Kitanidis (1S85) concerning
the spatial variability of the specific storativity of aquifers.
The first authors found a positive correlation between
log-transmissivity and log-capacity., with a slope close to unity.
The specific capacity does not play a role in the present work,
since only steady state problems will be considered in our

analyzes of stochastic groundwater f l;:w.
2.3.2 Constitutive relations of heterogeneous soils:

In this work, we will be concerned with both transient
and steady state flow problems in unsaturated soils (Chapter 7).
To describe these phenomena, two constitutive relations need to

be determined:

—— the water retention curve 8(h) relating volumetric
moisture content to pressure head.
— the unsaturated conductivity curve K(h) relating

hydraulic conductivity to pressure head.

Our particular choice of functional relationships for 6(h) and
K(h) will be defined in Chapter 5 (Section 5.1). However,
experimentators have used a variety of functional shapes to

describe the 6(h) and K(h) relationship in view of analyzing
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their spatial variability. This makes it quite difficult to
synthesize their findings in a2 compact form.. Nevertheless, we
have attempted to summarize - in a table some of the most
significant l;esults on natural soil variability in the

literature.

Ig le 2.2 gives information on the probability
distribution function and the correlation structure of the
hydraulic parameters intervening in the constitutive
relationships 6(h) and K(h). It should be mentioned that these
results correspond to different scales of ahalysis and different

schemes of data collection, o0 :they are not always directly

comparable. However, some common features seem to emerge as &

vhole. First of all, it should be emphasized that only one,
author (Russo, 1983) analyzed the correlation structure of the
whole conductivity curve K(h), 1including ink'pa:.rticﬁlza.r the
‘correlation,structure of the saturated conductivity Ks(x) as well
as that of the shape parameter:

© _ 8e¢nK
) = “gn I

His results indicate that both a« and Ks are 'log-normally
distributed, and that the correlatio{: range of ¢&nx(x) is
significantly larger than that of CnKs(x).
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SUMNARY OF SOME FIELD DATA ON THE SPATIAL
VARIABILITY OF URSATURATED SOILS FROM THE LITERATURE

Y Y CVY %on Y Ty ZY Ref. and Remarks
Ko 1.96 | 0.71 0.64 2.49 a=38mn Russo, 1983
{cm/h) A= 17m Hamra Red Mediterranean
Spherical K(h) = Ko e-ah
variogram A=2+25ha
a .0286| 0.43 0.41 1.36 a=5lmnm N = 25 + 6 plots
(cm-l) A=T2m 1 plot = 3m x 3m
Exponent. n = 5 depths
variogram a = range of variogram
A = integral corr. length
es .338 | 0.08 0.08 {0.23) 76m Russo, Bresler 19S1
Hamra Read Mediterrancan
8 030 | 0.30 0.29 (0.93) 9 8-6¢ (1_.!)5
r . : y : 8-6_ " ‘h
s r
. K hv n
K, 22.0 0.41 0.39 (1.2) 34m o o)
(cm/h)
B 1.160 | 0.68 0.62 2.35 23m n=28+2
A=0.8 ha
hw -7.2 0.22 0.22 (0.7) 48m N = 30 locations
(cm) . n = 4 depths
(depth z=0 shown here)
Bs .397 | 0.10 0.10 (0.29) —— Nielsen et al., 1973
Panoche so0il
Ko 0.85 1.06 0.87 4.37 — A =150 ha
(cm/h) N = 20 plots
n = 6 depths

(Qepth z x 30 cm
shown here)

-r—
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TABLE 2.2: SUMMARY OF SOME FIELD DATA ON THE SPATIAL
VARIABILITY OF UNSATURATED SOILS FROM THE LITERATURE (CONTINUED)

Y Y Cvy %n y Ty N Ref. and Remarks
Ko Scisson, Wierenga. 1961
{cm/h) A = 40m?
. 3 infiltration rings:
' ' Diameter Kumber
(1) 0.27 0.70 0.63 2.45 0.13m ¢, = Bem R, = 625
(2) 0.35 0.54 0.51 1.79 — ¢2 =225em N; = 125
(3) 0.36 0.22 0.22 0.68 — ¢ = 127cm R,y = 25
K° 0.70 0.40 0.38 (1.26) S0 m Vieira et 2l., 198}
[{em/h) {10-50m) ‘A =.0.88 ha
K = 1280 plots
160 plots/transect
85 transects
Ko 1.46 0.60 0.56 2.02 -— Sharma et al. 1980
{em/h) ¥atershed
- Ae9.6ha
K = 26 plots
Ko 0.13 1.02 0.84 4.10 02 m Lawxamoore et al. 198)
{em/h) A =192t
N = 48 plots
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The log-normality of Ks’ a, and other inherently
positive unsaturated soil parameters, seems to be confirmed by
other authors. For convenience, we have listed in Table 2.2 the
skewness coefficient =. ¥hen indicated in parenthesis, the
skewness was computed by us based on the assumption of
log—normality instead of the normal distribution assumed by the
authors (references are giien in the right-most colummn). Thus,
in all cases, the skewness Ty was computed from the classical

identity:

3 -
Ty = 3 CVy + (CVy) (2.19)

where CV

random variable Y. In addition, we also used the following

identities:
2
(cvy)? = :_'2 = oxp (0y0y)-1 (2.20)
T =Yg e CA) (2.21)

where YG is the geometric mean defined by:

YG = exp (31-1?).

Y is the coefficient of variation of the log-normal

——
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These relations (2.19 - 2.21) can be found for instance in
Vanmarcke (1983). They were used to compute the énY-statistics
in Table 2.2, when not provided by the authqrs themselves.. It
appears that a number of authors adopted the normality assumption
precisely in those cases where the variability was too mild to be
able to distinguish a normal from a log-normal distribution.
Overall, we conclude that all the ﬁarameters listed in the table
were in fact more or less positively skewed, and are presumably
bett.er represented by log-normal distributions. E_img_(ﬁ_)_
illustrates the difference betwgen a2 normal and a log-normal
random function (artificially generated for illustration). Note
the sharp max:lma and smooth miixima ‘typical of a postively si{ewed

process.

Another feature that emerges from Ta.ble 2.2 is that the
unsaturated conductivity curve seems in general to have greater
variability than the water retention curve (although this is not
aliays verified for a given site). The coefficient of variation
of l{s was larger than unity in four cases, whereas the
coefficient of variation of parameters involved in the 6(h)

relation was always below or at most equal to 0.6.

The data of Table 2.2 do not contain any information on

thé correlation structure of soil properties in the vertical
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direction. The horizontal correlation scales range from 10 cm to
a few tens. of meters. These numbers should be taken "with a
grain of salt”, as the apparent correlation scales are most
probably influenced by the density and size of the measurement
networks. In addition., the results of Scisson and Wierenga
(1981) indicate that the scale of the instrument (infiltration
ring) has a definite effect on variability. Finally, it should
also be noted that the correlation structures were .o-nly
determined for relatively small domains, on the order of 1 hectar
for Russo and Bresler 1981, Vieira et al. 1981, and Russo 1983.
The largest domain of investigation was the 150 ha site of
Nielsen et al. 1973; however these authors did not determine any
correlation structure.

In order to 1illustrate more concretely the spatial
variability of soil properties, we have reproduced in Figure 2.4
the unsaturated conductivity curves obtained by Nielsen et al.
(1973) on the Panoche silty clay loam. This figure indicates
that both the saturate;i conductivity and the slope of the ZnK(h)
curve are fa%rly variable. The figure does not seem to indicate
a strong degree of correlation between these two parameters,
although some correlation could be expected on physical grounds:
coarser soils are generally more permeable at saturation and have
a steepef énK(h)-slope (Ababou, 1981). The effect of correlation

between Ks and the &énK(h)-slope will be investigated by way of |
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Unsaturated hydraulic conductivity versus capillary
tension head for the Maddock sandy loam. Each
curve corresponds to a different spatial location
(from Yeh et al., 1982). .



numerical experimentation in Chapter 7 (Section 7.2). Additional
data &and references concerning an on-going strip-source
infiltration at the University of New Mexico at Las Cruces will

be given in Chapter 7 (Section 7.3).

Our literature review, partially summarized in
Table 2.2, indicated that availeble data are too scant to
completely characterize the spatial variability of unsaturated
soils hydraulic properties in terms of ra.ndom field parameters.
The variability of the unsaturated conductivity curve in
particular seems to have :lmportaht effects on the behavior of
unsaturated flow (Hantoglou aend Gelhar, 1987).. Unfortunately, no
comprehensive study of the three-dimensiona;l spatial structure of
én K(h) has yet been undertaken. However, some of the missing
data could be inferred directly by correlating, for instance, the
- shape of the &n K(h) curve to the value of the saturated
conductivity for different types of soils, Other alternative
approaches of this kind have had some success, for instance those
relying on the "similar media" postulate. This latter approach
reduces the characterization of spatial variability of 6(h) and
'K(h) to Just one spatially random: scaling factor: cf.
experimental studies of Warrick et al. (1977), Simmoﬁs et al.»
(1979), Russo and Bresler (1980). Vauclin et al. (1981), and
Sharma et al. (1980). The field remains open; future research

could focus on such correlations or similarity assumptions, as a
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means of characterizing in a more comprehensive fashion the
spatial variability of the nonlinear constitutive relations of

unsaturated media.

At any rate, the complexity of unsaturated flow
processes 1in heterogenéous formations shduld not be overlooked.
‘E:igg_- re 2.5 shows the spatial structureA and evolution of the
wetted zone during an infiltration experiment in the Hanford
sedimeﬁts (from Routson et al., 1979). The wett.ed zone in this
éase is remarkably assymmetric and has pronounced laterzal
spreading. To explain these features statis.ticé.lly- requires a
model ofA three~dimensional variability that includes the effects
of stratification, e.g., statistical enisotropy. Similar effects
of assymmetry and spreading will be obsefved in t;he numerical
simulations of,_ Chapter 7 (Section 7.3) with fully
three-dimensional and s#atistically anisotropic random

conductivity curves. _
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(b) After 24 hours

Typical horizontal and vertical movement of liquids
in Hanford formation sediments under partially
saturated conditions. Taped area outlines position
of water addition (from Routson et al., 1979).

e
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CHAPTER 3: FIRST ORDER SPECTRAL SOLUTIONS FOR STOCHASTIC FLOW
IN SATURATED MEDIA

3.1 Formal Solution of Spectral Perturbation .Equa.tions:

In this section, we develop approximate splutions for
the stochastié equation ‘of steady state flow in random sat;urated
media, following the first order spectral théory previously
developed by Bakr et al. 1978, and Gelha.r and Axness 1983. The
assumptions uéde at each step will be clearly stated, in
enticipation of subsequent discussions on thé approximate nature

of perturbative spectral solutions.

Our point of. departure is the partial differential
equati.on goveming flow in a saturatéci porous medium with
spatially variable conductivity K(x). This equation :l‘s obtained
from the steady state mass conservation equation and the local

Darcy equation, (Darcy, 1856) respectively:

vQ = O, : (3.1)
Q= =K(x)-¥H. - ‘ : - (3.2)

‘Here, -~ Q@ . represents the specific discharge rate (Darcy

velocity), and H the hydraulic head potehtial. Using (3.2) in

(3.1) leads to the familiar groundwater flow equation:



v(K(x)yH) = O. (3.3)

Let us assume that the conductivity K(x) in (3.3) is a
second order stationary fandom function in 3D space, with a
log-normal distribution. Therefore, the statistical properties
of the log-conductivity F(x) are entirely described by its first
and second order moments, i.e., its mean F and covariance
function Rff as defined below:
F(x) = &n K(x)
F(x)>=F =¢n I(G

F((x)-F).(F(x')-F)> = R (E). E=x-x'

where KG is the geometric mean conductivity, and § a
separation vector. The flow equation (3.3) can be decomposed to

be expressed in terms of F as follows:

‘vzﬂ + yF(x)-yH = O. _ . (3.4)

Equation (3.4) will be used for the subsequent spectral
perturbation analysis. Observe that (3.4) is a stochastic
partial differential equation, due to the random character of the
log-conductivity gradient vector vF(x)., even in the case of

deterministic boundary conditions.
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Let us now express (3.4) in terms of ensemble averages
and perturbations. The perturbations of the random fields
log-conductivity and hydraulic head are defined as:

f(x) = £(x) - <£(x)> = &n [K(x)/K]
h(x) = H(x) - <H(x)>

The governing flow equation can be separated into & mean equation
and a perturbation equation, by substituting H =<D +hand F =
<F> + f 1in (3.4) and applying ensemble averaging operators. The
mean equation obtains directly by ensemble averaging equation
(3.4):

vZ GD + E>evKH) = ~ <vfevHD>

and the perturbation equation obtains by subtracting the above

mean equation from (3.4):
" v2h + g<FY*yh + yf-y<H> ={vfevh—<fevh>}.

Finally, using the assumption that the mean log-cohduc'tivity <F

is constant (K, constant), we obtain:

VK = - {yfeyh> (mean eq.) (3.5.a)
vZh + gf(x)y<H> = - {vf-vh-<vfvh>} (perturbation eq.) (3.5.b)
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Observe that equations (3.5) form a system of two
stochastic equations with three unknowns: h(x), <H(x)>. and the
second order term <yfevyh>. A complete solution would involve
solving an infinite hierarchy of equations governing higher order
moments. This turns out to be an impossible task in the general
case. Various expansion methods have been proposed in the
literature in order to arrive at approximate close—-form solutions
(see review in Chapter 2). - We develop below first order
perturbation approximations following the work of Gelhar and

others quoted above, although in a slightly different manner.

One way to obtain a first order solution is to expand
the solution H(x) in powers of O the "small parameter” in the
expénsion (the possibly divergent character of this expansion

will be discussed in Section 4.1). Accordingly, let:
H=Hy + 0 Hy + 0% Hybeoo

On the other hand, note that the random field {£(x) in (3.4) is
proportional to o, =0, its standard deviation. For a correct
perturbative analysis, we must use instead a normalized random

field g(x) with unit variance and zero mean:

g(x) = f(x)/0 .

[N
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The conductivity is simply related to g(x) by:

K(x) = K; exp (og(x))-

Plugging g(x) in equation (3.4) and assuming l(c constant

gives:
v2H + oyeg-yH = 0.

Plugging the expansion for H 1In this equation yields the

infinite hierarchy of equations:

Order ¢°: vHo , =0
Order o!: v?H; + vgevHs = 0

Comparing the zero-order equation to the mean equation (3.52)
shows that Hy is just an approximation for the mean head <H>, to
first order itn o. Likewise, the first order term (aii, in the
series expansion) 1s Just an approximation for the head

perturbation h, to second order in o. Accordingly, we obtain:

VD = 0 (o)
v2h + yfey<H> = 0(02).
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These equations appear tractable if the high order
terms on the right-hand side are neglected (requiring o small),
and the mean hydraulic gradient is constant. Note that <vH> is
indeed constant to first order. This can be seen by observing

that the mean head satisfies the Laplace equation to first order:
vV = 0

which yields a linear solution for <H(x)> if the flow domain is a
rectangular prism, with Dirichlet conditions on two opposite
faces, and zero Neumann conditions on all other faces. As the
size of the domain becomes infinite, these boundary conditions
becomes equivalent to specifying a constant mean hydraulic

gradient:
J=-<v> . (3.6.a)

In practice, this kind of "boundary condition” corresponds to the

case of a uniform flow field at the large scale.

The perturbative equation can now be expressed, to

second order in o, as follows:

v3h - Joyf = 0 (3.6.b) -
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where the term Jevf(x) is a known random field. Note that
equation (3.6b) is a stochastic Poisson équation governing the
head perturbation h(x).

We proceed to solve the stochastic Poisson equation
(3.6b) in the Fourier space, by using ’Fourier-Stieltjes

representations for both f(x) and h(x) as shown below:

+0
(x) = IS S az (k)
. (3.7)

4+ A
hx) =I5 = az (k).

Such a representatioﬁ exists and. is uﬁique' for a.ny iero—mean
stationary random field (Yaglom 19562; Loéve 1963). In
particular, this implies that the two-point covariance function
depends only on the separation vector between the two points. By
writing the representation (3.7) for h(x)., we therefore assume
that h(x) is sltatiAonary.‘ i.e., statisticéliy invariant under
translation. The validity of this assumption will be discussed

at a later stagé.

The usefulness of the representation (3.7) lies in the

fact that it is “orthogonal”. The random dZ terms are zero-mean
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complex Fourier-Stieltjes increments which have the property of

being uncorrelated for distinct wavenumbers:
<dZ(k) dZ¥(x')> =0 for k #Xk'.

In addition, the real and {maginary parts of dZ(k) are
uncorrelated and identically distributed; the real part is even

in Xk, while the imaginary part is odd:

dZ(-k) = dZ’ (k)
Finally, the variance of |dZ] corresponds to the spectral
content of fluctuations occurring in the wavenumber range

(k.k+dk). More precisely, it is easily seen that:
<laz(x) I?> = s(k)dk

where S(k) is the spectral density, i.e., the Fourier transform

of the covariance function R(E) (see equation 3.10 below).

Plugging (3.7) into (3.6) yields, by the uniqueness of
the spectral representations, a simple relation betyveen the

complex Fourier increments of h(x) and f(x):

U,k
dzh (k) = -3 -—k;—dzf (k). (3.8)
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Multiplying both sides by dZ’;(k) and averaging, gives the

spectral density of h(x) as a function of that of f(x):

(Jk,)?

shh(k) = Sff(k) (3.9)

vhere we used Einstein's implicit summation over repeated

indices, and k 1is the radial wavenumber Jk§+k§+k§. Finzlly,
" the covariance function of h(x) can be obtained by an inverse

Fourier Transform of its spectrum:

+0
Ry () = SIS JEL s () a (3.10)

The spectral densities for the head gradtent obtain
easily from the well-known relations between a stationary field

and its derivative. Denoting h1 the ith-component of gh:

(Jgkp)

@, () = 3 %y () = Ky Z (k) (3.1

which gives the spectral density tensor of the head gradient

vector(hi)=
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5 . @ Xk ke (Jyky)
L (&) =
1

J ~ Sge () G2

The tensor of covariance functions Rh h (E) could be
17J
obtained by Fourier-transforming the tensor spectrum in (3.12).

Alternatively, the same result can be obtained directly from
th(ﬁ) by applying simple differentiation rules as shown below

(let & = x'-x):

R (E) = Ry (x.x°) = <h(x)h(x')>

g;hh— =< g—hx-;{z)lf(x')>

Using x' = x + £ and the fact that th depends only on §E,
this leads to:

a’th

h ch
'a-.g-i-af—j ==-< 5{(&)' 3?‘-1(2?5)%

Thus, the head gradient covariance tensor is simply given by:
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6%k, (E)

Rhihj(i) > o (3.12')

Finally, we follow Gelhar and Axmess (1983) by using
the local Darcy equation to obtain the spectral density tensor of
the flux vector. It turns out that an additional approximation
is needed in order to obtain this result. | Indeed, the Darcy

equation must first be expressed in terms of the log~conductivity

f(x):
o(x) = ~ K, f . ¥H. (3.13)

The exponential dependence on f(x) is the source of the trouble,.
since the spectral representation method is only useful when the
random fields appear linearly. Gelhar and Axness (1983) propose
linearizing the exponential around f(x) = O, although we will see
later that this additional approximation could be avoided.
Following for now the method of Ge-lhar énd Axness, let us compute
the flux moments based on the "linearized" Darcy equation. Using

the ékpansion elejl-f+£2/2+°-- gives:
Q(x) = - Ky (=1 + ¢h = J-f + fogh - J-£2/2).

The mean flux is obtained by taking the ensemble average:



- 103 -

Q =+ I(G [-<f.gh> + J(1 + a§/2)].

The ensemble average term <{fevyh> can be worked out by

using the relation between th and de given in (3.11). From
i .

the spectral representation theorem (3.7) we have:

+0
<f(x)°%xL’:)-> = I5s <dzgedZ", >

1
+0 k (J.k
..,m—i(ai—ilmzfdz%
0 k
+  k (J.k.)

= o AL s (k)ak
-o k?

so that we can express the mean flux <Qi> in terms of an

effective conductivity tensor Ki aS follows: -

J

Q = K-
(3.14)
+o k. k o2
o i £
Kij = KG[-EI_I;;iSff (l_()dk+(l+—;—) 611]

The effective conductivity ﬁi j

second rank symmetric tensor, provided that the spectral density

given in (3.14) is a
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function Sff(]g) is even in each of the wavenumber components k:l'

e.g. in the case of ellipsoidal anisotropy. However, this holds

:only as a first order approximation, implying that the tensorial

property may not hold for large values of raf./ “Equation (3.14)
was obtained by Gelhar and Axness [1983-Eq. 52]. who developed

- A

close-form expressions for Ki j in specific cases.

In order to obtain also the flux spectrum, we need to
expand again the ef term as expiained eérlier (after Gelhar and
Axness). The flux perfurbation equation obtaixis by subtracting

the mean:

Qx) = Kg [1f+£2/20e-][-ghe]] |
Qx)> = Ky [(1402/2++++)] = <E.gh> +ee0] - .

vhich gives for the flux-perturbation:

a(x) = Q4@ = Ky ~{[(1+£+£2/2+++) = (140%4+<-+)] ]
| o Gh(14+£4£2/24000) + (<F.ghX+e+0))

where the dots represent higher order terms. By neglecting
perturbations of products, such as [f2/2 - 03/2] [f-¥h>], and
all higher order perturbations as well, we obtain the "first

order approximation™:
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a(x) = K, {I-#(x) - zh}. (3.15)

For completeness, let us also write a third order approximation,

of g(x) excluding only terms like [£*-<f*>], etc. This gives:

a(x) % Kg. {If - 3h + <gh+f> = ghef +(£3-F2>) /2
+ If3/6 + <gh*£f3/2> - ghef3/2}. (3.16)

Using the flux perturbation approximation (3.15) as in Gelhar and
Axness leads finally to the spectral density tensor. By the

representation theorem (3.7) and previous results, equation

(3.15) gives:

sqi‘lj(k) % Kg o Jpdy (8 = Xk /k?). .

(8yn = Kyk/K?) S (K). : (3.17)

This is a second rank symmetric tensor, being the spectral
density tensor of a vector whose components are stationary random

fields. .

In v_iéw of the results obtained so far, it is worth
noting that the flow field appears to be iriherentiy anisotropic.

Indeed, the spectral density functions shh and Sqiqjare

generally anisotropic (and so is the tensor S q ). even in the

qu
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case where the input spectrum S¢; is tsotropic.

Ve end this section by specializing the spectral
solutions (3.9) - (3.17) for the case where the log-conductivity
spectrum is of "ellipsoidal type” (as defined by Van Marcke,

1983). In this important case, the spectrum and covariance of

the log-conductivity are of the form:
s
Sge(k) = Spe(Afky)

Reg(E) = R\ E7)

in the coordinate system coinciding with the axes of statistical

enisotropy of f(x). In this case, recall that the effective
conductivity K1 j obtained from the first order analysis is a

symmetric tensor,

Let us focus in particular' on the case Awhere tﬁe mean
head gradient is aligned with one of the principal -axes of f(x).
Accordingly, let the x, axis coincide with the mean head gradient
vector ] and also with the principal axis corresponding to the
principal value )\_, (A; 15 the correlation scale along x;. in a
sense to be precised later). The spectral solutions (3.9) -

(3.17) can now be written as follows:
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S = -Jfffk S¢ (k)
W Kk, J5k3 s
Shen (8 = ” ££(k)

(3.18)

sqiqj(k) = KgJj [611 - k:zu] [531 - -lfkil:—l]sff(k)

vhere the indices vary from 1 to m (the dimension of space). In
addition, the effective conductivity tensor is now diagonal; this
~comes from the fact that the ellipsoidal spectrum Sff ~-is even in
each of the wavenumber components, so that the integral in (3.14)
vanishes for i # jJ. Following Gelhar and Axness (1983), equation
(3.14) gives in this case:

Kij=0fori#j

N

K, = KG[-a; gu+(1+a;/2)] X xcoexp[o;(u:z-gu)] (3.19)
+0 k2 8..(k
g, = JIJ _L.L‘)_dk
R

Note that the exponential formula for 121 { in (3.19) was proposed
by Gelhar and Axness, 1983, after examination of special cases of
quasi one-dimensional flow for which the effective conductivity

is known exactly.
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In order to obtain more concrete results, such as the
covariance functioﬁs of heaﬂs and fluxes. {ve need to introduce a
specific __fn‘:odel for the spectral density function of the
lbg-conductivity field. There exists a wide cl#ss of ellipsoidél
spectral aensity f@ctions. but we will see that certain spectra
lead to divérgence ﬁf i second order moments of the f low solution,
thus violating the stationax;ity assumption. This is discussed in

the next sectfon below.
3.2 Discussion of Admissible Log—conductivity Spectra

‘In this section, we analyze 'ce',rta'u; “rest.ric'tions for
admissible &n K-spectra bas;.ed on results 6btained in the
literature. | iawle 3.1 éinmﬁé.riies some of the input
log-conductivity spectra and the - corresponding covariance
A'functior;s used Ain thgl literature for 2- and 3;dimensional
stochastic { lqw problems. These particular spectra were chosen
for séveral reasons: - . o
(1) " Some of the’ sp’ectré. in Teble 3.1 were fitted to fiel’d

data; for instance Bakr (1976) observed a good fit

bevtween the 1D marginal  spectrum bbtained by
integrating the_' 3D I;otropic Markov_ Spectrum over two

wavenumber components, and the 1D Spectral density of

the log-conductivity measured a8t & borehole;
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Table 3.1: Isotropic and Anisotropic Spectra for 2 and
3-Dimensional Random Log-Conductivity Fields

REFERENCES

Spectral SPECTRAL DENSITY | COVARIANCE
Model FUNCTION S FUNCTION R
ff ff
: o32,2;2, -3
3D Ellipsoidal — o2 e Bakr et al.1978
Markov w2+(1+u?)3- - and
Gelhar and
Axness, 1983
3D Ellipsoidal | 4022,8,84°u? o2(1-s/3). Naff 1978
and
372(1+u?)? e °
Hole-Markov ’ Vomvoris, 1986
3D Anisotropic Naff 1978
Hole-Markov 4028,2,2,5u, o2+ (1-s3s) and
s Gelbar and
(non-ellips.) 72(1+u2)° e Axness, 1983
2D Ellipsodal | o32,2, 025K, (s) | Mizell et al.
Markov 7(1+u3)? (Bessel 1982
Function Kg) (81_:83)
9D Ellipsodal | 2022,2,u? o2(5k, (5 | Mzell etal.
— 2 1982
Hole-Markov w(1+u?)? - E—Ko(%)} (2,=22)
Note: u, represents the rescaled wavenumber 7\11:i (here without

summation) and u? = uf + u3 + u3; similarly s

rescaled separation vector s = 13 i/7\1. and s2

4 represents the

= s? + s3 + s3.
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(11) The prOposed. épectra are fairly simple rational
functions of the wavenumber, so thé.t closed form
solutions -m be .obtainled for ét least some of the
statistics of :lﬂterest. such as variances and
covariance functiﬁnéé

‘ '(:l:li)  Certain ﬁropert:les of thevlog-cohductiﬂty.spectrum. inv

particular concerning the behaviour at zero wavenumber,

are required in order to obtain' physically realistic
solutions for stochastic flow and convection-dispersion

problems.

The last statement may require some explanation.
Previous appiicétions of the spectral solufioﬁs (3.18) in the
literature have shown that certain —quantities of interest may go
to infinity "(sé.e: references in 'Table 3.‘2). The divergence
problem manifests itself by the appéaré:xzé.e bf a divergent
integral, the integrand being typically the product of the
log-t:onducdvity spectﬁ.nn by a certaiﬂ trensfer function which
depends on the statistical ‘quantity of interest. - Such
divergences are in fact & common 'prSEiém in statistical physics.
Two different types’ of divergence may be distinguished, as

" explained below:
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(1) Low-Wavenumber_ divergence:

The statistical quantity of interest may diverge
because of a singularity of the spectral integrand at
zero wavenumber. This has been dubbed "Infrared
Catastrophe”. Physically, such divergence is caused by
the persistence of fluctuations at increasingly large
scales (low wavenumbers). |
(11) Large-Wavenumber divergence

On the other hand, certain statistical quantities
diverge as the spectral integral is carried out to
infinite wavenumbers, because the integrand does not
decay rapidly enough at large wavenumbers. This type
of divergence is known as "Ultraviolet Catastrophe”.
Physically, this means that the statistical quantity
diverges because of the persistence of fluctuations at

infinitely small scales (large wavenumbers).

Now, such divergence problems do occur in certain cases
with the infinite domain spectral theory of stochastic flow and
solute transport. Table 3.2 summarizes some of the results
obt:ained“ in the literature, along with the relevant references.
The table shows that certain constraints on the log-conductivity
spectrum are needed in order to avoid the low-wavenumber
divergence of hydraulic heads (for steady satura.ted flow) and of

concentrations (for steady solute transport in a steady flow).
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Table 3.2: Admissible Log-Conductivity Fields for Steady Flow in
1. 2. 3 Dimensions and 3D Sclute Transport(x)
CONDITION ON EXAMPLE OF INTERPRETATION
COVARIANCE ADMISSIBLE &n K
(REFERENCES) -
1D flow (¥el/K) | Propp(E)aE©  RL(E) = Requires strongly
- ' negative hole-
Gutjahr,Gelhar 1981 - covariance with
-{E1/8 negative integral
af, (l—’-ﬂ" e scale.
1D Hole-Exponential
Covariance
2D flow J:px“(f)d&o Sgelk) = . |Requires weakly
(f = énkK _ negative hole-
, 252a2 covariance, or
isotropic) Mizell, Gutjahr, f: . X . hole-gspectrum
. (k*4a®)® with zero
and Gelhar, 1982 |on y,ppqy Spectrun with |integral scale.
Multidirectional Hole -
3D flow J:f-ll"(f)dE@ Seg(l) = No Hole Spectrum is
(f=nk . required. Any 3D
‘ o2\ isotropic field with
isotropic) Gelhar, Axness 1983 . —  [Rer(E) 2 0 end
’ o (12%%) finite integral scalce
Gutjahr,Gelhar 1981|3D Gauss-Markov Spectrum|is satisfactory.
. m‘ a
3D Solute S;¢(0) = 0, 1.e.: S“'(y e A AT Requires Hole-
Transport -} 3r2  (14A%k2)%ispectrum with
2, i _ ; with zero
s:o:rznil:) I:E R“(E)df =0 3D Gauss~Markov with integral scale
P Vomvoris 1986 Multidirectional Hole L .

(%) The table gives necessary and sufficient conditions for statiomary solutions ér
the 1D, 2D, 3D flov problems with an {sotropic én K field. For the 3D solute transport
problem the given condition is sufficient, but may not be necessary.
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In order to understand the requirements of Table 3.2,
it is useful to note the relation between the integral
correlation scale and the spectral density at zero wavenumber.
For an m~dimensional isotropic random field (Vanmarcke, 1983) the

correlation length )‘mD satisfies:

*p J‘fm-1 R(E) 4¢ o o~ . S0
0 °t

Now, Table 3.2 shows that in order to avoid the low-wavenumber
(large scale) divergence of the head fteld, a zero integral scale
of 2n K is required in the 2D case. In 3D, the requirement is

‘much milder: it is easily shown for.instance that if then any

én K field with finite correlation scale and positive covariance

function will be satisfactory. Finally, in 1D, the requirement
is much more stringent: the &n K correlation.function must have
strongly negative values and its "integral scale” must usually be

negative. It has no physical meaning in this case.

Such requirements on the shape of the input spectrum
could be viewed as an artefact of the infintte domain spectral
theory. They can be explained by observing that the head field

appears as the result of band-pass filiering of the &n KX field

paa——’
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in the low-wavenumber range [see Figure 6.12 of Bakr, 1976].

When the flow is constrained, e.g., when the dimensidnality of

space 1s decreased from 3D to 2D or 1D, the large scale
fluctuations taking Aplac’e ~in the remé.ining dimensions are
eff-ectwély'amplified,"viith significant fluctuations persisting
at inf :lnitely. Alarge scales. This leads to divergent solutions in
the case of steady flow in low-dimensional épace (consider for
instance a 3D flow channelized between two fmpervious walls).
Such divergence can onlf be avoided by eliminating the large
scale fluctuations of the conductivity, e.g., using

"Hole—Spec'tra" as those shown in Table 3.1.

Tab1§ 3.2 also shows that a low-wavénmnbei- divergence
of the solute concentration field will occur in 3D, unless the
log-conductivity field had & zero correlation scale (Vomvoris,

1986, p. 45). This shows that the problem of diﬁei‘gence due to

-large scale _fluctuatioxis may arise even 1if the fully

'3-dimensional nature of spacé is taken ﬁzto -accou-nt (i‘:ére for the

solute transport problem). One possible interpretation is that
the large scale divergence of solute concentrations results from
the ihé.dequate assxmptton that there exist steady solutions which

are spattially stattonafy. Some insigh’t”on this question could be
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gained by examining the fully non-steady flow/transport problem

in three dimensions. This will not be attempted here.

We conclude that the low-wavenumber or large-scale
divergence of stochastic quantities may result from the
inadequacy of the assumption that there exist stationary and
ergodic solutions to the flow and transport problems in the
steady state. The results of the first order spectral
perturbation§ theory (Table 3.2) clearly show that this is not
always the case, depending on the spatial structure of the porous
medium. In general, the &n K field must be taken to be "almost
periodic” at some large but finite scale‘ in order to obtain
Auseful results. Furthermore, it turns out that the &n K field
must be taken more strongly periodic”, 'with smaller
"wavelength”, as the dimensionality of space decreases. In our
view, this ind:lcate.s that the conditions for the existence of
steady stationary solutions beéome more and more restrictive as

the degree of freedom of flow decreases in physical space.

Finally, let us briefly mention the appearance of large
wavenumber divergences of the steady solute concentrafion field,
as this'may be relevant to the steady flow problem itself. One
example of small scale divergence 1is the divergence of the
concentration vai'iance as the local dispersion coefficient

(length scale) goes to zero. A second case of small scale
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divergence or near-divergence was found by Voivoris, 1986: tl;e
correlation scale of the concentration albng the mean flow
'direction appeared to be very sensitﬁre to.the rate of decay of
the &n K spectrum af large wavenumbers. In order to obtain
physimily reasonable results, the &n K spectrum muét decay
exponentially at large wavenumbers. In our view, this suggests
that the én K spectrum should bé truncated at some large
wavenumber k 2 a.l. wvhere a represents the length scale of the
mechanical dispersion process taking plaée at small scales. In
other- vwords, a represents the small scale ‘dispersivity. or
sub-grid .dispersivity with respect to the ‘measurement grid.
kccofd:lngly. we argue‘ that the spectral deﬂsity' l;zodels of Table
3.1 should be ‘truncated é.t k £ a-l for use in the solute
tra'l;sport eéué.tions. The proposed ap'proach assumes that the
effect of smali scales heterogeneities is correctly modeled by
the ldcal dispersivity term, whicl'; "should be measured

1ndependenlt1y at the laboratory scale.

- Based on the previous analysis; both the Markov and
‘Hole-Ma.rl-v:ov_spect;ra appear to be admissible for stationary first
order flow solutions in an isotropic three dimensional medium.
Presumably, this also holds in the anis'otropi‘_c case. Thus, we
develop in the next sections a number of closed form resu-lts for-

thésg spectra with various degrees of anisotropy in three

dimensions. Recall however that the proposed spectra may not be
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meaningful in the case of stochastic solute transport, unless
they be truncated at some low and high wavenumbers. The Hole
model realizes a kind of smooth truncation at low wavenumbers,
but seems somewhat‘arbitrary. This problem suggested the idea of
a finite domain approach based on band-pass self-similar spectra,
eventually leading to a systematic analysis of finite size

effects in a later part of this work (Section 4.4 of Chapter 4).

3.3 ‘ Head and Flux Moments for the 3D Isotropic Markov Spectrum

In the isotropic case, simple closed form results can
be obtained for the head variance, head correlation function,
effective conductivity, and the variance of the head gradient and
flux vectors. We present all these results below. The
quantities aﬁ. th(i). Kﬁ. were obtained by Bakr et al., 1978.

The head gradient variance a; and the flux variance a; are
i i
easily obtained by spectral integration (see Appendices 3.A and

3.B). Finally, the flux covariance functions Rq q (E) can be
S |

obtained either by numel;iml integration or analytically (Wendy
Graham, personal communication, and Appendix 3.C). All the
relevant quantities were computed by using the 3D Gauss-Markov
spectrum of Table 3.1 with A;=A\;=A;. Thus, the log-conductivity

spectrum is:

T

,, .
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S a? AS _ 1
ff(k) = .. (3.20)
72 (14A2Kk2)2

The head covariance obtains from:

Ra () = S I s (k)

and the flux t-:ovariance from:

- JKE ’
quqjcz) = g5 I s (k) a

where the spectra appearing in the 1ntegra.nds were given in
equation (3.18). The effective ‘conductivity Ki:l is similarly

evaluated from (3.19). The results are the following:

(1) Hydraulic head (from Bakr et al. 1978):

. 1 . |
Oh = y_;ﬂ’f A J‘ - (3.21.8.)

Ry () = (D)o? - {(cosx-1).[e T PMe2(eE 1) (e2)7]
+(3cos?-1)+ [ (1- ™). (57203
-5 1e2(8720) Te2(5722) %) ] ) (3.21.b)

where X 1s the angle between the separation vector §

and the mean flow direction. The corresponding
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correlation function is plotted in Figure 3.1 for two
angles: x = O (along the mean flow) and x = /2 (across
the mean flow). Note cosx = §,/€E § = J§§+E§+§§, so
that x = O corresponds to £ = (§,.0.0) and x = 7w/2 to
£ = (0.£2.55).

(11) Head gradient vector (Appendices 3.A and 3.C):

1
%, = g% %
(3.22)
o =0 =-Lol
ha h, AS f

The head gradient covariance functions Rh h () can be
1
obtained as indicated in Appendix 3.C.

(111) Mean flux and effective conductivity
(from Gelhar and Axness, 1983}):

x'u = Ky + exp (02 /6) Vi=1.23 (3.23)

Q) =KygoJy  <Qa> = <Qp> = O.
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Figure 3.1 Head correlation function along the coordinate -
axes for the 3D Isotropic Markov spectrum of
log-conductiv:lty .
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(iv) Flux vector variances and covariance functions

(cf. Appendices 3.B and 3.C)

%y = vB/715 K o¢ J (3.24)
%, = %, = VI K5 o Ui

quqj(g) = 0 fori #§

The covariance tensor quqj(i) is defined by:

R (&) = <(Qi(z)—¢51)°(Q‘1 (x+£) - 'Gj) >

qqu

The components of this tensor are plotted along the
three coordinates axes (£ parallel to gc,i) in Figures
(3.2) and (3.3). These plots were obtained from

analytical integration of the flux spectrum of equation
(3.18). The integrations were carried out by Wendy

Graham (personal conmimication) for all but the

covariance R (§3) given in Appendix 3.C.
9292

The results in equations (3.21)-(3.24) and Figures
(3.1)-(3.3) can be interpreted as follows. In terms of standard
deviations, the equation for oy ‘shows' that the amplitude of
head fluctuations is proportional to op and to the mean head
drop over one correlation scale (AJ;). The amplitude of the flux
vecto.r fluctations is proportional to op and to KG J: (a
subsequent analysis will show that this terxﬁ should be replaqed
by the mean flux <Q,> -- see section 4.3). Similarly, the

amplitude of fluctuations of the head gradient is

[ |

]
P

\ i

R

[l

.
-
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Figure 3.2 Longitudinal flux correlation function along the
coordinate exes for the 3D Isotropic Markov spectrum
of log-conductivity
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Figure 3.3 Transverse flux correlation functions along the
coordinate axes for the 3D Isotropic Markov
spectrum of log-conductivity
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~ proportional to o, and to the mean head gradient J,.

Fur»thermore. it appears that the longitudinal flux
.component has larger fluctuations than the transverse flux
components, by a factor v8. The contrast is nilder for the head
gradient components (factor \5). Af ter replacing the term KGJ’
by the mean flux <Q,$ in (3.24). rze obtain a coefficient of
.variation on the order of /\fZ- for the longitudinal flux
component. The coefficient of variation for the longitudinal
component of the head gradient is significantly smaller. about
af/wg. This suggests that the range oi‘l.validity of tlie first
order solutions txa.y not be the same i‘or daif ferent quantities.such

" as head gradi‘entand flux. Taking for instance o, = 1.5 yields a

f
coeff icient of variation of 60% for h/8x,, and over 100% for q,.
It seems Vwise to expect some degree of inaccuracy of the
perturbative solutions for such a large coefi'icient of variation
as 100%. ’l'his example indicates that the range of validity of

the spectral solutions for the f lux vector could be limited to

cases of moderate variability (of < 1-1.5).

In terms of correlation functions. it can be seen from
Figure (3.1) that the hydraulic head is correlated over longer
dista.nces tha.n the log-conductivi ty. Furthermore, the head

correlation is stronger in the direction transverse to flow.
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Defining the e-correlation length as the distance at which
correlation drops below e-l. we obtain a head correlation length
equal to 7.5\ transversally, compared to 3A in the direction of
the mean flow. This clearly shows that the head field ts not

isotropic.

Similarly, .the flux components are not isotropic. The
flux correlation lengths are on the order af the conductivity
scale A, or nearly twice as much for certain flux components and
orientations of the separation vector (see Figures (3.2) and
(3.3)). Overall.l it appears that the flux correlations are
consistently smaller than the head correlations. This can be
explained by the fact that the flux is more directly related to
the conductivity fluctuations (through the local Darcy equation).
Another remarkable feature is the fact that different flux
components are totally uncorrelated at zero separation distance.
Finally, note again that the anisotropic flux covariance tensor
satisfies a number of symmetry relations and other identities
(mass conservation), which ;vill be analyzed in a later part of

this work (Section 4.2).

We end this section by fbcusing on a peculiar feature
of the flux spectral solution which does not seem to have been’

observed in the literature. According to equations (3.23) and
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(3.24), it appears that the ratios aq /4Q;> have a maximum at o
i .

= V3, and thej converge to zero as o¢ goes to infinity.

f

Indeed, from (3.23) and (3.24) we have:

o -02/6
.- T S, vB715 af e
Q>
(3.25)
o o - 02/6
Sz . VI oge !
Q> £Q,> ’

Surpi'isingly. these quantities have a maximum at op = V3:

(]
= =32
max €Q,>

o
Sz
<Qy>

= 0.271.
max

Unfortux'ﬁteiy. theré: seems to be no obvious physical
" reason for such a behavior. ﬁathef; one wouid expéct that the
coefficient of 'ivariation 'aq‘/<Q,>- be a monb‘toﬁously 1nc§-easing
function of ai..‘ We will show in d;apter 4 v'('sé'ctibn 4.3) that a
more physical behavior obtains by an alternative perturbation
analysis whfch ﬁvoids ;linearizatvion approxiuétions‘ of fhé type
; ,

e x 1 4 £ 4 oos The new vspectral solution obtains simply by

replacing the term K.J, by <Q,> in the flux variemce (3.24).
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2
Therefore, the exponential term e C /6

disappears from (3.25),
and the coefficients of variations of the flux components appear
now to increase linearly with Oc. which seems to be a more

realistic behavior. Accordingly, we propose that equation (3.24)
be modified as follows:

L £ f _

= Y1/15 Q> .
a‘lz aQa af Q

This modification of the spectral flow solutions of Gelhar and

Axness (1983) has also implications on the solute transport

problem, as explained later (Section 4.3 of Chapter 4).
3.4 Head and Flux Moments for the 3D Anisotropic Markov Spectrum

The first order spectral solutions (3.18) are now
applied to the case of the ellipsoidal Markov log—-conductivity
spectrum -(Table 3.1) with 2,=8,=8 and &5 # 2. We assume that the
mean head gi-adient is parallel to the prinéipal direction of
anisotropy (x;). The vertical/horizontal anisotropy ratio:

e = 85/8
will usually be taken to be less than one, as this is a case of
practical interest for most horizontally layered porous media.

In addition, certain results become simpler when & << 1 holds,
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vhich 1s the case of perfectly stratified media. However, this

assumption is not needed in the calculations that follow.

The log-conductivity spectrum for the case at hand is:

o2eze, .
Seelk) = .
£f .
 [1+82(343E) + e3kE)°

Plugging this into (3.10), we obtain the head covariance function

in the form:
Ry (k) = [gag £ eea] . I(E) (3.27.2)
vhere I(f) is the triple-integral:

4 k2 cos (kE
@ = [ ur =
J . -0 -
KT +KE JetkE)?

We show in Appendix 3.D that that this can be reduced to the

double-in;egral'= o

, 2 T
I{E) = == + § cos®6 d6 [ F(6,¢) d¢ (3.27.b)
o 0

where
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F(8.9) = sin"ﬂp.[ 1+C(6, ]. oC(6.9)
B(v)
c(8.9) = —1--. I A(9.9)
¢ B(y)
A(8.9) = (FicosB+f2sind)sing+f,cose
B(‘P) = ‘lSinzwezocosz‘p ¢

The double~integral above was computed by careful
numerical integration, using Romberg interpolation for the most
difficult inner integral (IMSL routine DCADRE), and Simpson
integration for the outer integral. The calculations were
carried out in double precision (64-bit words). In addition, the
results were checked by using a quasi-analytical expressioh for
th(0-°-§a) in the case e<<1 (see Appendix 3.E). The comparison

indicates that the numerical integration procedure was sound.

Figure (3.4) shows the resulting‘ head covariance
functions plotted for a separation vector § parallel to x,,%X; and
X3 respectively, for different values of the anisotropy ratio.
Only the case ¢ { 1 is shown, as this is the most interesting .

case in practice (horizontal layering).

The most remarkable feature from these plots is that
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Head correlation function R, (f) along the three

prin';:ipial directions for the 3D ellipsoidal Markov
spectrum of log-conductivity with different values
of the anisotropy ratio (e = €5/8,) as &, increases.
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the head correlation function does not change much when the
vertical scale &; goes to zero as the horizontal scale 2 re;mains
fixéd. Indeed, tfxe vertical correlation scale of heads only
decreases slightly as &3 decreases from £5=8 (isotropic) to 2520
(perfectly stratified) while & {s fixed.' Physically, this
means that the head process in a layered medium has a
vertical scale of fluctuation much larger than the "layers”
thickness, and does not decrease appreciably as the layers
thickness decreases. Thus, as € - 0, the ratio of the vertical
head scale versus the vertical log-conductivity scale tends to

infinity.

Furthermore, the ensemble head variance may be obtained
analytically by evaluating the integral I(£) at £ = 0. This was

computed by Naff and Vecchia (1986) for the case e £ 1:

o2 =Z o2 J7 &2 «Gle) (3.28)
where:
1 e? 2 e
G(e) = = {1 - —_;;) +2 3
1 1 3. 2 -1
+ :;(—1; -+ 27)+(1 - 7 tan (v/¢))

and:
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v =V 1-€2
€3/8 € 1

£G= TP

€

It is easily seen that G(e) @ 1 as € = 0. This gives immediately

the asymptotic result for perfectly stratified media as follows:

~ [T |
o = J§- op Ji &5 for e << 1. (3.29)
Note that eG = vV €85 is the geometric meah -of the horizontal and

vertical correlation scales. This shows that the head standard
deviation tends to a finite constant (neither zero nor infinity)
if the anisotropy ratio decreases while the geometric mean

correlation scale £G remains constant.

Finally, let us analyzeb the statistics of the flux
vector. In thg asymptotic case qf perfect s;tratification
(e < 1), é. few close-form resulf.s can be oBtained. Re§a11 for
instance that equation (3.19) gives the general form of the
effeétive conductiv:l’ty in }thevaxiisotropié case (after Gelhar and
Axmess, 1983). For e < 1, in particular, equa:tioﬁ (3.19)
yiéids the georﬁetric mean and ,the harmonic ‘mean, re;t'.pectively.
for the effec;ive gox;ducéivity &mponenté parallel and transverse

to stratif:lqation:
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Kzz X KG (3-30)

We show in Appendix (3.F) that closed form expressions can be

obtained as well for the variance of the flux components (ac’l ) in
i

the limit of perfect stratification ¢ = O:

—5
a4 ‘1-52-11'5 ach*Ii

Q
R

T

99 433 ¢ ° % KG Js (3.31)
I

O 8¢ * 9% K du

These approximate relations were obtained for the 3D anisotropic
Markov spectrum with 2, = 8; = ¢ and assuming & = £5/2 small

‘(they are thought to be adequate for e { 1/5 or so).

It appears from equations (3.31) that both transverse
flux variances vanish in the limit of perfect stratification,
while the longitudinal flux variance tends to a constant value
about twice larger than would be obtained in the isotropic case
(compare equations 3.31 and 3.24). Accordingly, the transverse

flux components Q1 (1 = 2,3) appear to vanish identically when
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e = 0, resulting in a one-dimensional f lbw. However, the mass
conservation equation shows t};at Q; must be constant in
one-dimensional flow, which seems cont.rafy to the limit result
a‘h # 0, aqz = aqa = 0. This difficulty can be resolved by

considering the fact that the transverse flux components have

smaller scales of fluctuations than the longitudinal component.

The correlation length scales of the flux components
can be evaluated qualitatively by considering the mass
conservation equation in relation to equation (3.31). Using the
fact that the mean flux vector is constant, mass conservation
simply requires that the flux pertﬁrbation be "divergence free”,

that is:

6q, 8qz 6qa
g+ m=—— 4 =— = 0.

ox, O8x; Ox3

A standard "scale analysis” of this equation leads to:.

L4 c ' g
93 + 92 + G2 =
Ky W@+ 2 ua(®) + Lt us(x) = 0

vhere Is.1 g is the correlation length of q along the Xy axis.
and the ui(g) are normalized zero-mean random fields having
variances on the order of unity. This formulation suggests that

the constant coefficients in the above equation must be roughly
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of equal magnitude:

a . g (2}
9 . 92, .92
Ai S Azz AOO

Using the aq 's given in (3.31), and assuming that the
i

longitudinal flux has a correlation length on the order of &
(the conductivity- scale in the horizontal) leads to rough

estimates for the flux correlation scales as follows:

14
~

Aii

==e & ~ 0.3 V2, (3.32)
32

H

A2z

Ay = J% e 2~ 0.6 Vii;.

Thus, although the transverse flux components have very small
variances, their fluctuaiion scale is also very small. As a
consequence, the terms aqilaxi. (1=2.3) appearing in the mass
conservation equation may not be negligible. This explains why
the "perfectly stratified” flow might appear nearly
one-dimensional in the large.‘ while still retaining

three-dimensional features at the local scale.
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The actual spatial structure of the flux vector field
is probably more complex than the above analys.i.s would suggest.
However, it is sufficient here to observe that the flux vector
has sharply contrasting scales of fluctuations in different
directions and components, while the hydraulic head field is only
slightly ‘anisotropic (as can be seen from Figure 3.4). The
practical implication of these findings for groundwater flow in

stratified subsurface formations is now examined.

3.5 Discussion of the Anisotropic Case (Stratified Flow
Systems) - _ :

Some of the new results developed above have direct
implications for ffeld problems, as most subfurface' formations
exhibit some degree of horizontal or near-horizontal layering
(see Figure 3.5). The #patial structure of the flow field for
statistically anisotropic conductivities was not fully
understood, i1t seems, aithough stochastic solutions were
available from the work of Gelhar and Axness (1983) and others.
In order to illustrat‘:e our findings, we will consider the case of
an. aquifer with significant vertical-to-h_orizontal a.!_us?trop)f..
say /8, = 1/5, and isotropy in the horizontal plane of
stratification. The mean flow is essumed, as before, to be
parallel to the plane of stratificatibn. The log-conductivity
spectrum is assumed to be the 3D anisotropic Markov model. For

illustration, we will use typical length scale values as follows:
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Figure 3.5: Sketch of a statistically layered porous medium. - -y
: The ellipses represent contours of constant .
correlation length (anisotropy ellipses in
different planes, -or anisotropy ellipsoid in ‘
3D space) for the log-conductivity field.
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&y =8, = 1m, €3 =~ 0.20 m.

Y¥e now discuss some of the most sali;ent features of the
flow field, based on the st.:atistical enalysis of spectral
solutions developed in this section. Perhaﬁs_ the most important
point to be made here concerns the correlation structure of the
f l»ow field, in terms of hydraulic head and flux: see figures
(3.5). (3.6) and (3.7). The hydraulic head exhibits near-perfect
isotropy in the cross-flow plane (perpendicular. to
stratification). For the e:cample"abqve. the correlation scale of
.thé head‘perpendicular, to strata ;would be about 7 m, that is
about 40 times larger than the conductivity scale in the same
direction (&3 = 0.20m). The correlation scale of head in the
horizontal direction across flow is on the.same order, about
75 m. Finally, the correlation scale of head a{qng the mean
flow directiox.x‘ is half smaller, about:3m. These numbers are very
close to those obtained for the isotropic cé.se_ ¢ =8 = 3 = lm.
Thus, it eppears that the qu.tta.l structure of the hydraulic head
is not senstl';tve' to the mtsotroﬁy ratto. Furthermore, for the
ani;otropic case- at hand, the head will be very strongly
correlated over distances on the order of one or a few meters.
In fact, the hydraulic heagl ;hpuld appear nearly constant

vertically over a few layer thicknesses.
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In contrast, we have seen that the vertical flux
component 45 has a scale of fluctuation presumably on the order
of 0.20m along x5 perpendicular to stratification. This is just
the same as the conductivity correlation scale 2;, or "layer
thickness”. Figure (3.6) shows that the transverse flux
component q, also has a small correlation scale (0.10m) along x5,
parallel to stratification. On the other hand., the longitudinal
flux q; presumably has a much smaller scale of fluctuation
tran-sverse to the mean flow (0.20m) than along the mean flow
(1m). Thus, the flux vector field appears strongly anisotropic
as illustrated on the bottom parts of f-'ig_u.ires (3.6) and (3.7).
This is in contrast with the near isotropic character of the head

field (except for a ratio 1:2 in the horizontal plane).

Cc_msider now a very shallow aquifer (L ¢ 3m) and a
deep aquifer (L; 2 100m), with correlation scales &, = &; = 1lm
and &3 = 0.20m as before. Because the vertical head correlation
scale is about 7m, the head will appear nearly constant
vertically in the shallow aquifer:

Qy = =K (3.33)

e
R
o

Upon vertical averaging, head field in the shallow aquifer system
behaves nearly two-dimensionally, (or one-dimensionally) as

aquifer thickness decreases. However, the intermediate case of

[N S
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Figure 3.6: Anisbtropy' éllipses for (a) the log-conductivity
field, (b) the hydraulic head, and (c) the flux
vector in a statistically layered aquifer.
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Figure 3.7: Schematic representation of the fluctuation scales
of the hydraulic head (top) and of the flux vector
(bottom) in a stratified aquifer
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moderately shallow aquifers is inore complex, as this case .falls
between the‘ nearly fwo—dimensional case and the case of deep
aquifers covered by the spectral theory. This interme;diate class
of flow systems {is charactérized by aquifer thickness in the
range 3m < L << 100m for the case at hand.

For deep aquifers on the other hand, the hydrgulic head
fluctuates many time$ in the vertical direction. The infinite

domain specfral theory holds in this_ case, énd predicts that the

_flow system behaves one-dimensionally at the 1arge scale, with

the effectiw}e conductivity in the méan flow direction equal to
the ai‘ithmetic mean conduétivity. This result indicates that the
vertica.i fluctuations of the conductivity andAof the longitudinal
head gradient are effectively decoupled. Indeed, fhe same result

could be obtained by vertically averaging the Darcy equation:

and assuming that thé fluctuations of K and &H/86x; are

indepeizdent of each other in the verticé.l.

Tbé limitationS'of the infinite domain approach for the
case of aquifers of finite thickness have been recognized in the
past. Naff and Vecchie (1986) developed quasi-analytical
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solutions for confined stratified aquiférs with finite thickness.
They found that the head variance increases to infinity as the
ratio of layer thickness to aquifer thickness (25/L;) increases.
This is in accordance with the fact that the flow system becomes
two dimensional (in this case a2 Hole-Spectrum is needed in order
to obtain finite head variance — see Table 3.2). However, these
authors_ do not seem to recognize the fact that the fertical -head
correlation in.an infinite domain is large (72) and nearly
independent of the .anisotropy ratio. This finding provides a
simple criterion for evaluating the range of aquifer thickness
for which. the infinite domain theory applies: aquifer thickness
must be on the order of several tens of horizontal conductivity
scales or more. This simple rule does not seem to have been
recognized in the past. On the other hand, for very shallow
aquifers with thickness on the same order as the horizontal
conductivity scale, a two-dimensional theory based on vertical

averages could perhaps be used as a first approximation.

Let us now focus exclusively on the case of deep
stratified aquifers for which the spectral theory holds. In
these cases, the hydraulic head standard deviation appears to be

proportional to the geometric mean of horizontal and vertical

correlation scales (v2,8;), independently of the anisotropy ratio
(572,). Thus, two different types of aquifers such as (2, = 1lm,
23 =0.2m) and (2, = 4m, &3 = 0.05m) lead to the same head
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variance —— a.lthough- the detailed structure of the flow field may

be very diffefent. 'I'hié sﬁows that the value of head variance
does not indicate the degree of a.nisotrohy of the veloéity field

in stratified aquifers.

It is vpaxv'fircularly :lnstruétive to examine the limit
cases &, ¢, -b © and 85 =0 (thé aixisotrdpy ratio goes to zero
in both cases: limit of perfect stratification). ) The first
case, &, = ©, correspgnds. to an infinite horizontal correlation

scale; Ve have éeen that the vertical head correlation length is

proportional io &y, so‘ tha.i: it must also become infinite.

Therefore, the spectral theory will not hold 1n‘ this case for any

finite aquifer thi‘c'lmess. however large. One must dismiss the

‘case é; = © . a@as patholbgical. Examine‘ now the case €3 = 0

corresponding to infinitely small iayer thickness. In this case
the infinite domain theory seems to apply, and equation (3.3.1)

shows that: |

..,o.'

%n | | - S
aqz. s -DO | o (3.34) .

A a‘lz, , | icéfKGJ‘.'

Note that aq and aq vanish, implying that thé ‘transverse flux
2 3

components vanish identically, and the head remains constant in

vertical planes across the mean flow direction. Thus the flow
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field appears inherently one-dimensional, whiéh explafns why the
ensemble head variance wvanish (consider the equivalence of
ensemble mean and 3D averages: the 3D averaged variance of a 1D
process must vanish). However, this result turns out to be
inconsistent, as mass balance would require that Q, be constant
for one-dimensional flow. This clearly contradicts the result
(aq‘;ﬁ 0) obtained above. Again, this case i{s a singular limit of

the three—dimensional spectral theory and must be dismissed.

In summary, we have shown thé.t the limit cases &, = @
and 25 =0 are. meaningless in the framework of the
three-dimensional, infinite domain theory. ' Nevertheless, the
asymptotic analysis of strongly stratified aquifers (e << 1)
remains valid as long as e # 0. The asymptotic solutions (3.31)
hold for small anisotropy ratios, provided that the aquifer
thickness be "significantly larger"” than about 10 2,, where &, is
the horizontal conductivity scale. Concerning the flux vector.
it is instructive to note that the longitudinal flux component
has a variance about twice as large as for the isotropic case,

and is independent of & for & small. The variance of the

transverse flux components is much smaller, on the order of &, so

that nearly one-dimensional flow obtains at the large scale for

deep stratified aquifers.

———t
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It my be useful to end this section with some rémarks

concerning the meaning of the so-called "a.nisbtropy ratio”. All

along, we assumed 1mplicitly that the length scale ratio

€ z 83/8, expresses to some kind of anisot'ropy in the conductive
properties of the statistically layered formation. We will show
in fact that e is equivalent to the square root of some kind of

conductivity anisotropy ratio to be defined shortly.

The interpretation of € in terms of & conductivity
anisotropy ratio is obtained by re-scaling the coordinate system
in such a way that the .random conductivity field bepomes
isotropic in the rescaled coordinates:

xi = xi/ei. ) (3.35)
Starting with an ellipsoidal log-conductivity field F(x) with

covariance function:

Rep(E) = Rpp(ES/ef + £2/0% + £3/¢3)

we obtain indeed an isotropic field F(x_") in the new coordinates:

Rep(E) = RepllEi® ¢ 12 e 2
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Furthermore, the governing flow equation (3.3) written in the

rescaled coordinates takes the form:

gx—i Ky (&) - %%3) =0 (3.36)

where the Kij(g') tensor appears as the product of a

deterministic anisotropic conductance tensor and a statistically

"
PR

isotropic random field conductivity., as shown below:

s X
K, ©° °
L] KG .
Kij(x ) = 0 R; 0 .° K(g ) (3.37)
e
o o I-(:s N

5
n
]
S
~

K33=KG i

In the case of isotropy in the plane of stratification

(2, = &3), this yields a formal equivalence between length scale
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anisotropy and local deterministic conductivity anisotropy in the

form:

8 J K
el | das
€ z, K., v (3.38)

This suggests that a typical "deterministic anisotropy”
on the order K33/K;, = 1/100, corresponds to a "length scale
anisotropy” on the order € = 1/10. However, this interpretation
of anisotropy should be taken “with a grain of salt": the
deternintistic anisotropy defined above should be distinguished
from the concept of a large scale effective ahisotroﬁy. Indeed,
the gpectral solutions developed by Gelhar and Axmess (1983) show
that the effective conduf::tivity anisotropy is in fact independent
from e when € 1is small, being asymptotically equal to the ratio
of harmonic to geometric means. In any case, it is still
instructive to think of the length scale ratio (£€3/¢,) as
equivalent to the square root of some deterministic conductiv.ity
ratio. The form of the scaled flow equation (3.36) also suggests
more generally. that water flow in a stratified heterogeneous
formation results from complex local interactions bet;ween purely

isotropic random effects and deterministic anisotropy effects.
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3.6 Head Moments for the Hole-Markov Spectrum and Low Wavenumber
Effects

In order to ascertain that the previous results are
physically meaningful, we investigate in this section the
behaviour of the head process for a different input spectrum: the
Hole-Markov spectrum Table 3.1. The effect of the "hole” here is '
to reduce the low-wavenumber content of the log-conductivity
field, compared to the Markov model used previously. This may
affect the behaviour of the head field, particularly by reducing

its correlation range.

Assuming again 2,=8,=2 and e=2,/2, the 3D anisotropic

Hole-Markov spectrum for 2n K can be written as:

022220 (22 (Ki+K3) + £3K3)

Sep(k) =
£t 3% - [140% (k3+k3) + 23K3T°

Plugging this into (3.10) gives the head covariance in the form
Ry (E) = (o3 J% &) - 1(B) . (3.39)

+ kT (k¥ + k3 + £®k3)-cos(k§)
I(E) = (2/%2)>.54S :

-0

K [e20 k2 H3) + B3P
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The head variance obtains b‘y; evaluating the I(f) 1integral
enalytically at £ = 0. The computation 1is detailed in

Appendix 3.G, and the result is:

o = Té‘ B oz J* & c(é) . (3.40)

with:

2 2. . 2.
c(e)—i---“—-{-1+ 26271, |etve 1} for e > 1
eve?-1 e—Ve2-1 '

G(e) = 43 fore=1

G(e) = 1 -{ £ _+ 1-2e", arcsin(\/'i—e’)} for e < 1.
U Vi-e2 U Vi-e2 1-¢2 .

= V8,85 is kept fixed, this gives the

When the geometric scale eG

following asymptotic' results for the strongly anisotropic cases

e >> 1 (vertical layers) and e << 1 (horizontal layers):
. 2l T 2, _4ln(2e)-1 SR
eve: of %= (5)° of J? 2. S 20 (3.41)

(3.42)
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In the isotropic case (e = 1), the head variance is:

. =1
e=1: of =13

(3)° oF J2 & (3.43)
The results obtained for the isotropic case (£5=2,) and

the anisotropic case (£3¢<2,) resemble those previously obtained

with the Markov spectrum without a hole. The following table

summarizes the different values of oy obtained for the Markov and

Hole-Markov spectra for various degrees of anisotropy.

Anisotropy |Markov Spectrum (7\i)= Hole-Markov Spectrum (2 :l):
e=8,/8, ah/(af J7\G) ah/(af Jec) y
e «1 :| Va5 = o.63 @2)"%4 = 1.21
e = 1 : 1~/ 3 = 0.58 v 1712 (w/2)® = 1.12
e M1 : — An(2e) ,

The comparative table above shows that the head standard
deviations will not be the same if the @ i-scales of the
Hole-Markov are taken equal to the }\i-scales of the Markov
spectrum. Remarkably, it.appears that the same head variances
are obtained with the two spectra by taking the length scales of

the Hole-Markov spectrum to be half the correlation scales of the

Markov spectrum, i.e.:
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€ {1 = )\1/2.
Furthermore, it appears that the head variance for strongly
‘anisotropic formations (such' that &5 < &,)} 1is epproximately

equal to the head variance obtained for an equivalent isotropic

medium with correlation scale ¢, = Jé:?;. Recall that the same
observation holds for the Markov model. In addition, the table
also shows that the head variance vanishes in the limit for
strongly anisotropic vertical formations (&5 >> €,) 1if ec is kept

constant.

‘In,ofder to complete the comparison between the Markov
- and Hole-Markov spectral models, it may be instructive to compare
the head correlation functions obtained in the two cases. - This
would help quantify the influence of the input - log-conductivity
spectrum (or correlation func_:tion) upon the spatial structure of
the head field. Specifically here, one may expect that thfe
“Hole" model (spectrum with & low wavenumber hole) produces a
head field with smaller correlation length. . The question is:
how important is this effect? And finally: how sensitive is the
spatial structure of the solution with respect to the assumed

shape of the log~conductivity spectrum?

For the Hole-Markov model, Appendix (3.G) develops &
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close-form expression for the transveré.e correlation function
th(0.0.'E) in the isotropic case e=1. The final result is
reproduced below:

(3.44)
One way to compare the Markov and Hole-Markov models is to
evaluate the e-correlation lengths, i.e., separation distance at
which the correlation drops below e_l. The e-correlation length
of head is about 7A for the Markov-model, and about 32 for the
Hole-Markov model. This indicates that the head correlation
across flow is about half smaller for the Hole model, based on
)\i=81. On the other hand, recall that the head wvariances
obtained for the two models become equal if one cho.oses ei=>\i/2.
With this choice, the head correlation would appear 4 times
smaller when using the Hole model. Perhaps the most rational
approach is to choose the scales & and A 1in such a way that
the e-correlation scales of the two random fields coincide. It
can be shown that this particular choig:e corresponds - to
2 = M0.723 (from Table 2.2 of Vomvoris, 1986). It does not seem

that this choice leads to a better agreement between the head

solutions obtained by the two models.

. - -,
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We conclude that the spatial structure of the head
field is fairly sensitive to the choice of the iog—conductivity
spectrum. A For the 3D -isotropic case, ‘they head correlation
lengths are 1ncfeased with increasiné s'pectix.'al. density at low
wavenumbers, all other quantities being held constaﬁt (fixed head
variance). On the other hand, remember that the head random
field becomes non-stationary with infinite correlé.tion length in
two dimensions‘. unless the speétral density of log~conductivity
vanishes at zero wavenumber .(see Table 3.2). Tlﬁs indicates that

the effect of lat;ge scale conductivity fluctuations becomes more

-

significant as the degree of freedom of flow decreases from 3 to

9-dimensional flow. One may think of 3D axiisdtfopy as an °
intermediate case between the 2 and 3-dimensional isotropic

-

cases.

Our finding that the. large scale fluctuations of the
conductivity field have a significant effect on the spatial
structure of the head field raises new questions about the
appropriate determination of conductivity spectra from field
measurements. In our view, the available spectral analysis of .
field-measured conductivities (Bakr, 1976) do not lead to favor

the Hole-Markov over the Markov-spectrum or vice-versa. This is
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due to the fact that the low wavenumber range of the~spectrum
cannot be determiped with reasonable confidence for wavenumbers
near or below the inverse domain size (standard estimates of
spectral confidence interval also break down in this range).
Rather, we feel that the size of the domain of interest should be

used as an extra parameter to determine the appropriate cut-off

of the "measured” log-conductivity spectrum at some low

wavenumber, in such a way that essentially all fluctuations
larger than the inverse domain size be removeé. The Hole-Markov
model is just one way of carrying on the cut-off procedure in an
implicit way. However, a différeni approach, which departs from
the "infinite domain” postulate, will be developed in Section 4.4
of Chapter 4 in order to clarify the effects of finite domain

size. ' -
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CHAPTER 4: DCI'EI(SI(X‘(SOFSPECI‘RALTHH)RY

- NON-FERTURBATIVE SOLUTIONS, SPECTRAL CONDITIONING AND UNGEZKTA]NTY

4.1 Introduction: Sources of Errors in Standard Spectral
Solutions

- This chapter 1is- devoted to the improvement and

generalization of the. spectral perturbation solutions of

saturated flow developed earlier (Chapter 3). By exploring the
stochastic flow problem from a somewhat broader viewpoint, we

hope to shed some light on the approximations involved in the

- standard spectral solutions (see also Chapter 6 for a comparison

with direct numerical simulatio_ns).. More importantly, our goal

is to develop'alternative approaches for obtaining realistic yet

'ti'actable solutions of stochasti¢ flow, and  related phenomena

like dispersive solute transport.

One of the major advantages of the spectral ﬁerturbation
theory, as it 'stands, 1s its high potential for producing
tractable closed form results. On the other hand, this . theory
presumably suffers some drawbacks due to -the approximations that
were made. ‘In the forthcoming sections, -vwe will develop
non-perturbative solutions ‘method (Section 4.2), as well as new
perturbative solutions  (Section 4.3), and -suggest possible
extensions of the spectral theory to include non-stationarity or

finite-size effects (Section 4.4). In the preliminary study that
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follows, we review some of the most significant sources of

“errors” in order to clarify the weak points of the current

spectral theory.

There are two levels of approximations involved in the
standard spectral solution method: first, the "solution errors"”
due to the approximate solution of the postulated stochastic flow
equation, and second, the "model errors” due to the approximate
representation of real world heterogeneities by stationary and
ergodic random fields. The perturbation approximations belong to
the first category, while the basic assumptions of infinite
domain, statistical homogeneity, and ergodicity of the
log-conductivity field. belong to the second category. Let us
ﬁow review in some detail the potential inaccuracies . of the
current spectral theory, due to approximations made at the

"solution” level and at the "model” level, respectively.

Solutton errors can be identified through a formal,
qualitative comparison of spectral and exact solutions, assuming
that the basic premises of the spectral theory are true. Hence,
in keeping with the spectral approach, let us assume for the
moment that the flow field is indeed governed by the stochastic
equation (3.1), that the domain 1is infinite,. "and  the
‘log-conductivity 2n K(Xx) is a Gaussian, stationary and ergodic

random field, with first and second order moments invariant by

N s @
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translation. Based on these premises, the standard spectral
perturbation epproach (Chapter 3) requires some additional
hypotheses and approximations in order to arrive at closed form

solutions:

(1) All second order and higher order terms O(aP). P2 2,

are neglected in the flow equation governing head.

(11) The random fields ' h, ¥H and ©Q are assumed to be

stationary and er:godic in the first and second moments
(recall that h 1is the head perturbétion H - D).
(111) The random field; h, v and Q are implicitly assumed
to be nearly Gaussian, so that howiedge of their first
and second moments (mean and covariancé function)
guff :lceysrb tor‘. detgrﬁine their sté.tistical properties

ent:li-ely. |

Intuitively, the validity of al‘l three requirements
depends. on op being small. This is particulé.rly obvioﬁs for
(1). but not as .obvdidusv fof (11) and (ii1). ‘Some results in the
literature suggest that sf.ationa.rityi;ndu m)'ll'mrlity' (for heads)
are satisfied asymptotically as a? = 0, but may not hold as o,
increases. Sﬁecificalljr. Guﬂahr andGelhar (1981) showed that
if a? << 1 then thé héa.d'field is statidnary in the case of
three-dimensional iéot;'opic fn K fields whose cové.riance function

satisfies:
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€ R, (E)AE € =,
e e

This relation is satisfied in particular for any isotropic Rff(f)
that is positive everywhere and has finite integral correlation
length (see Table 2, Chapter 3). Also by loocking at the head
covariance (3.22) obtained for a Markov spectrum, one can see

that:

1 =0
Lin By (8)

which is a sufficient condition for ergodicity in the first and
second order increments (cf. Yaglom, 1962, 1.4). Unfortunately,
this only proves that h(x) is asymptotically stationary and
ergodic as op = 0 — since a perturba.tion~ method was used to
establish the proof. In fact, it appears from the detailed
perturbation analysis (3.4-3.6) that the apparent stationarity in
the mean head gradient results from neglecting second order terms
) 0(0®) in the equations. This suggests that the solution may not

be stationary unless o¢ is small.

Similarly, Gutjahr (1984)_ showed that the first order
spectral perturbation solutions are exact for arbitrary o if it
can be assumed that (¥H.f) are jointly Gaussian. However, the
point is precisely that the random fields vH and Q Dbecome

increasingly skewed (non-Gaussian) as o; increases. In turn,
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this implies that the standard spectral perttirbétion method

becomes increasingly inaccurate as the skewness of the solution

. increases with Op. Indeed, non-Gaussien random fields cannot be

completely characterized with first and second inoments alone.
Some of the numerical experiments of Chapter 6 will confirm the

non-Gaussian character of | the flux or velocity field.

In summary, we ai'gue that a large log-conductivity
variance could yield non-negligible high order terms in the
perturbation eqﬁations. This in turn produces two types of
effects that cannot be captured by the first order spectral

perturbation solution:

(1) non stationary behavior of firgt and second moments

(11) non Gaussian distribution of the random field solution.

At first sight, it seems natural to try developing
higher order perturbation expansions in order to predict more
accurately the statistical behavior of highly variable flow
fields. An effort 1nvthis.d1rect:lon was pursued by Dagan (1985).
However, this author did not obtain third .or. higher order
moments, as would be needed. to characterize a mnon-Gaussian
behavior. In' addition, it should be kept in mind that the
perturbation expansion admittedly may not converge at all for

c¢ > 0, even though the first order term does converge to the
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exact solution as c:rf - 0.

The distinction between convergent and asymptotic
expansion is well documented in the literature (see Bender and
Orszag, 3.8, 1978). Consider for instance the {following

expansion of the head perturbation h in the small parameter o:
h(“) = hﬂ + Uh,_ + azhz-‘-o-ou]-aN}‘N (4- 1)

The Nth-order approximation h(N) may possibly be asymptotic to

the exact solution h, i.e.:

IhMon| <« M as 0 » 0, N fixed

s++ even though the series diverges, i.e.:

1im [hMg| 2 0. 0 > 0 fixed.

N-xo

Accordingly. one should not expect too much improvement

from higher order solutions beyond the first few terms; there is

even the possibility that "higher order” approximations be -less -

accurate for a given, fixed value of o. In fact, the work by
Dagan (1985) shows that the head covariance is not changed much
by using second order rather than first order expansions'. For

instance, the head variance obtained by numerical integration of

N v 4
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Dagan’s spectral solution for a 3D isotropic Harkov field is only
:slightly decreased as follows (Lynn Gelhar, personal

communication):
Var(h); = & (1-0.088 o2) o2J%* (4.2)
" compared to the first order result (Eq. 3.21):

Var(h), = & 02032,

-

The difference between these two expressions is quite qxild for
log-conductivity standard deviations on the order of ullxity; This
indicates that th'eA head varia_.ncé is relatively unaffected by‘ high
order interactions. Howéver. thé moslt 'interEStihg high order
effects may have been "missed”, as 'only three-point i:ova.riance
functions can capture the "skewx;éés effeéts" due td llarge' Op-
Moreover, it is also ﬁorth nétihg fhat the ty'peﬂqf higher order
spectfal pertufbation such as used by Dagan 7(1985) does not
addres§ the ;'iarge variénce norilstati.ona;rity effects” disc_u_ssed

above.

In the present vzork.t ‘we will not pursue the classical
approach of developing higher order expansions. Rather we
develop é. moré ‘géneral 'non-perturba‘tive apﬁroach based on exact

statistical identities in order to assess‘the validity of the
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standard first order spectral solutions (Section 4.2). This will
lead us also to propose a new perturbation solution for the flux

spectrum (Section 4.3).

Let us now focus briefly on the second category of
errors, the so-called "model errors” defined earlier. In view of
real field situations, it would seem that it is not always
possible to identify uniquely a stationary 2n K field with a
definite correlation scale. Thus, the ideal case postulated in
Chapter 3 may not be encountered often in actual practice. In

our view, this type of identification problem may be due in

practice to inadequate sampling of field data (geometry and

spacing of measurement network), and/or to the particular spatial
structure of the subsurface formation-. whici'l may involve some
large scale inhomogeneities. This kind of situation could lead
to inconsistent random field identification, for instance with
apparent correlafion scales on the order of domain size (see some
of the results reported by Hoeksema and Kitanidis, 1985). With
proper detrending, however, it is often possible to identify a
definite correlation length based on the assumption that the

detrended field is stationary. Nevertheless, the correlation

scale determined in this manner may still depend on the.

particular subregion of investigation, as suggested by some field
studies. The reader is referred to the data review of Chapter 2

for more details and references.

P
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Another related situation of ‘interest is the caee vwhere
the flow or transport process of interest takes place on
increasingly larger regions as time evolves. This occurs in a
number of cases of great importance for contam-ination, studies,
for instance in the case of a contaminant plume spreading from &
local source in an aquifer, or an unsaturated moisture plume
spreading from a local infiltration area. In both'eases. the
“global scale” of interest evolves in time, and it is conceivable
that the most dominant contributions from spatial heterogeneities
occur at varying length scales, as the size of the plume evolves.
This 1dea could be related to our earlier observation that the

formation's heterogeneity -1s only lacally stationary around some

‘given trend. and with a given correlation scale, both depending

on the size of the region. This type of finite ;cele problem
will be approached in the last section of this chapter (Section
4.4) by using band-pass seif-similar spectra, and 'by‘ develpping
the idea of spectral conditioning. 'I'he preliminary . results
obtained there will show explicitly the scale dependence and
uncertainty of the head variance. effective conductivity, and
macrodispersivity for f low and transport phenomena taking place

over finite domains.
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4.2 Non-Perturbative Spectral Solutions and Statistical
Symmetries )

4.2.1 Summary:

In this lengthy section, we show that a stationary
solution of the stochastic flow equation, 1f it exists, must
satisfy a certain set of statistical relations, notably in terms
of the spectrum of the flux vector and head gradient. These
statistical identities are derived directly from the continuity
equation, and by taking into account the inherent symmetries of
the flow system in any number of dimensions, particularly in the
case of 3D and 2D isotropic media. These relations are used to
“te.st" the standard spectral solutions-. ~In the .special 2D
isotropic case, the effective conductivity must be identical to
the gegmefric mean, and an exact relation is found between the
flux spectrum and head spect'rum. Both results are based on a
conjugacy property relating the flux and head gradient in
two-dimensional space with isotropic Gaussian log-conductivity.
The problem of determining a general relation for the effective
conductivity tensor in 3D anisotropic media is also investigated,
leading to a general closed form relation in terms of the
log-conductivity variance and two anisotropy length scale ratios.
Note that the spectral relation obtained in the 2D case also
suggested a modification of the standard spectral solutions, to

be developed in a forthcoming section (4.3).

[N
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4.2.2 Mass Cohservation Relation:

The mass conservation or "continuity” equation for

steady flow in m—dimensional space is:

aQi
—— =0 (1 =1,00.m) - (4.3)
1 ,

3

where the implicit Einstein sumnmation convention was used. We
now assume that the basic prémises of the standard spectral
theory hold, i.e., the flux Qi is a stattonary random vector
‘field. Whence the mean '61 = <Q’i(x)) is a constant vector, and
the perturbation qi(g) = Qi(g) - 61 is zero mean stationary. For .

all practical purposes here, second order stationarity suffices.

By averaging the éont:lnuity equation (4.3) and then
substracting, one obtains an equation for the mean and another

equation for the perturbation, of identical form:
=0 (1 =1,e0em) (4.4)

—L_-0 | (1 =1,000m).  (4.5)

Because these equations are stochastically linear. and the flux
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Q

g vas assumed stationary, the spectral representation theorem
(3.7) can be used to obtain an exact relation on the spectrum of

q from equation (4.5). The Fourier increments satisfy:

J ky qui(_lg) =0. (§=VFD) (4.6)
Multiplying by dZ: (k) and averaging yields:
. J

ki.sqiqj(k) =0 (§ = 1e++m) (4.7)

where Sq q is the tensor spectrum of the flux vector, whose
17

Fourier Transform is the tensor covariance function R‘:l q (E). The
17

equivalent mass conservation condition on Rq q (E) is easily
173

obtained by Fourier-transforming (4.7):

a_R‘%;JE’_= 0 (§=1eem). (4.9)
i

Now, it is easily seen that the standard first order
spectral solutions developed in Chapter 3 verify mass
conservation both in the mean and second order moments. The mean
equation (4.4) is automatically satisfied since 61 is constant;

and the equation (4.7) for S.:l q is satisfied by the spectrum
173
given in (3.17), as can be easily verified. We conclude that the
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standard spectral solutions are self-consistent with respect to

mass conservation, as far as first and second moments are

- concerned. Incidentally, we obtain for -the‘ special 1D case:

k Sqa®) =

whicn showe that Sqq(k) = 0 is a eolution. i.e.. the l;'l.ux q
must be a deterministlc can.stant. It may seem that a flux
spectrum of the form Sqqk) = a: 5(k) could also be solution,
i.e., the flux‘ q conld be a spatially constant random variable
with variance o: . .‘However this gives rise to an indeterminacy
in the. limit l-:S (k) as k - 0 (this can be seen by replacing
6(k) | by any sequence of functions that converges to &6(k)).
Therefore. it seems that the case a Z0 should not be accepted
as a valid "stationary” solution in the 1D case. Gutjahr and
Gelhar (1981) adopted.a.dii;ferent view in their discussion of

stationary and non-stationary two-point boundary value flow

problems with Oq £0.

Finally, let us point out a result mentioned in

| Batchelor (1953) . By using the continuity condition (4.7) along

with the usual properties of a spectral density _tensor-

Sqiqj(k) = quqi('k) o (4.9)
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he obtained the following spectrum:

k,k B* ()
= B2(k)- - 14 * -
sqiqj(l_c) = B*(k) [6“ v ] + ay(k)as(k) [1 e ] (4.10)

Here, the complex vectors a.i(l_s). Bi(k) are mutually orthogonal,
and orthogonal with the wavenumber vector (i.e., a°*B = ag*k =
B°k = 0). The scalar quantities a°,p*.k* denote the squared
modulus of the vectors a, 8, k. respectively. We will see that
one can arrive at more useful special forms of the flux spectrum
by considering, along with t?xe continuity equation, the
invariance of the tensor under certain transformations arising
from spatial symmetries of the random flow problem, particularly
for statistically isotropic conductivities in 2D and 3D space.

4.2.3 Statistical Axial Symmetry for 3D Flow in Isotropic Media:

Here we consider the case of flow in a statistically
isotropic formation in the infinite 3D space. The
log-conductivity F= In K is a statistically isotropic homogeneous
Gaussian random field, implying in particular that the covariance

function Rff(i) depends only on the radial separation distance
£ = J§f+§§+§§ (similarly thé spectrum Sff(]_c) depends only on

k = Jk¥+k§+k§). We now examine the consequences. of this

symmetry, assuming as before that the solution (h. ¥H, and q) is
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" statistically homogeneous in space. In partichlé.r. we seek

relations on the flux covariance Rq (E) or on the spectral
: . i j

tensor Sq q (k). 1n a manner somewhat simi lar to previous work on
17y

. the statistical theory of isotropic turbulence (see the books by

Batchelor 1953, Monin and Yéglom 1965, and Landahl and
Mollo-Christensen 1986). However, note that the casé at hand is

different from isotropic turbulence in one important respect:

“the -flow driven by & mean .gradient in a random porous medium

cannot be represented realistically as a statistically isotropic
field in all three; space dimensions, even when the underlying
medium is fully isotropic. Rather, the flow field can be thought
of as having statistical axial symmetry with respect to the mean

flow direction.

In order to clarify this notion, we turn back to the
basic flow equations expx}essed in terms of "detrended"” random
fields. The perturbation equations for the head a:nd the flux

vector are, respectively:

_8%h _ _of 8h '-
"B Ox; * B, Bx; J*b?{‘o
§, = Kglibyy & 2

Kc<e h_, R . (4.11)

02/2811

q = Kc"‘.(erf - )(J’ 1 " '—) Kc (Qi I“G"’

vhere we used the stochastic Darcy equation for obtaining -Q-i and
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Q- Recall that h and q are the statistically homogeneous

perturbations of the head and the flﬁx vector, J; is the only
non-zero component of the constant mean hydraulic gradient (by
choice of the x, axis), and 51 is the i-th component of the
mean flux vector. Recall also that the log-conductivity
perturbation f(x) is Gaussian, and Rff(ﬁ) is invariant under
translations and rotations in the §-space. In additidn.. all
higher order moments of f(x) are expressible in terms the
covariance of Rff. and the N-point covariance <f(:_c,)"°f(§N)> is
also invariant under translations and rotations in x-space. The
form taken by (4.11) implies that h(x) . must then be
statistically invariant under rotations in the (xa,x3) plane, as
well as invariant under reflections through the x, axis. In
particular th(ﬁ) is isotropic in .(Ez.fa). and invariant when
(§,) is changed into (-f,). In addition, we expect that the

vectors g, = - %—. and perhaps Q- be also invariant under
: i

such transformations. We now exploré this in more detail,

beginning with the head gradient vector 8-

By using the fact that gi' is a special kind of
"potential” vector, being the gradient of a scalar quantity h(x)
that is statistically isotropic. in the (x3.%;) plane, one can

obtain explicit relations on the covariance tensor Rg g (£).
1=
Indeed, it is well known that, if h 1s a homogeneous field,

then g = -g%— has the covariance tensof:
i
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.aznhh( )

Rgigj(i) =.- o, - (a12)

On the othef hand, th(i) is isotropic in the (f..f3) plane as

explained earlier. Thus we can write:

R = Ry(Em) | (4.13)

where . R is an even function of §;, end r 1s the 2D radial
separation distance (f3 + E%)% in the cross-flow-plane. By
applying the chain rule of differentiation, and using the fact
that ¢."Jr/¢':i§i = Ei/r for 1 = 2 and 3, we obtain finally the head

gradient covariance in terms of the head covariance:

az
R, (E) = - 2

£184 aff

;
S#L R @) =Ry g (B) == 3 (.14)

1#£1, §#1: RgigJ(E) = jogi(g) ==
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These equations give the general form of the hydraulic
gradient covariance tensor for the case of flow in a 3D isotropic

medium. Note that Rg g is a symmetric tensor and an even
. 15§

function of b(i) for all (1.j), so that the identity
R (E) =R (-E) 1is satisfied, as it should for any tensor
2,8, 248,

covariance of a statistically homogeneous vector field. In

addition, it can be seen by inspection of (4.14) that Rg g (E) i1s
1=

~ invariant under the rotation-reflexion group restricted to the
transverse flow plane (x3.X3). Here, rotational invariance is to
be understood in the sense of tensor invariance: the tensor
function is invariant when expressed in the new coordinates
according to tensor transformation rules. For the case of pure

rotations we have:

1 0 o
[a.i j] = |0 cos# ~-sind
o sind cosf

with transformation rules:

x:'l = a” xi: xi = el.Ji xi

(4.15)
3e 3e .
ax, © 213 _J' Tiy =2 295 The-

The same transformation rules apply for pure reflexions, defined

e
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as:
1 0 4] 1 0 o
[aij] = |0 -1 Ofor 0 1 - 0].
0 - o) 1 0o o -1

Invariance is verified by checking directly from (4.14) that

R indeed transforms accordihg to:

€484

R, o (E) =emat, R' ).

oo (B
Ei8j JRC R %17
For the reflexions in particular, this implies that the two-point
covariance of the head gradient.‘is invariant under transformation
E2 2 -f, or £53 =2 -F;3. In additidn. it can be seen from (4.14)
that Rg £ (£) is also invariant under reflexions through the x,
1=J

exis (£, = -f,). Finally, it 1is worth noting that the

cross—-covariances vanish along certain lines or planes, as can be

seen in Figure 4.1:
Rg’gz(fa.O.fa) =0
Rgiga(fufz-o) =0 (4.16)

Rgzgq(f, ,0,0) = 0
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X3
X2 mes—iee--
/ MEAN FLOW
X
1 Ryp (X1,0X3) = 0
X3
xz .
MEAN FLOW
P
1 Ryz(X1.X2,0) = 0
X3z
X
2 R~
' MEAN FLOW
X1

Ro3 (X1,0,0) = 0

Figure 4.1 The cross-covariance function of the head gradient
and flux vectors vanish along certain directions in
a 3D isotropic medium.

— -
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Note in particular tha.t all the cross-covariances at lag zero
(E = Q) are null. The result in (4.16) can be found by
inspection of (4.14), or by loocking directly at the consequences

of invarience under reflexions and rotations of the R e (E).

The results obta'ined‘so far can be summarized as

follows:

(1) For a 3D isotropic medium,. the covariance tensor

g g (E) of the head gradient is symmetric, invariant
i~

under rotations and reflexions in the plane transverse
to flow, and under reflexions through the mean flow
direction. Invariance is ﬁriderstood to hold under

transformations of the coordinate system provided

application of the usual “tensor transformation rules.

(i1) The general form of R (&) 1s given by (4.14), and the
, €185

cross-covariances in particular va.nislf along’ certain

directions according to (4.16).

It is important to keep in mind that all the symmetry
relations developed above are independent of the smll variance
approximations that were used to obtain first order spectral

solutions. We now show that the first-order solutidn’s previously
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obtained for th and Rg g do satisfy the symmetry properties
1=J

>(4.l4. 4.16). This can be easily seen by observing that the
th(g) given in (3.22) is indeed statistically isotropic in the
transverse plane, and so is the spectrum Shh(l_s). As a
consequence, the covariance and spectrum of g = ¢‘3h/8x1 obtained
from the first order theory satisfy :lndeec} all the invariance
properties outlined above. Incidentally, note that the
covariance Rgigj(ﬁ) can be obtained in close form from the first
order solution th(ﬁ) by using (3.22) and (4.14), thus avoiding

some difficult Fourier integral.

Finally, it can be shown by using the properties of the

Fourier Transform that the spectrum tensor Sg .(k) shares the

. BBy
same invariance properties as Rg g (E). More precisely, it is
i=j :
easily seen from g, = 6h/0x, that S must be of the form:
i i gigj
S (k) =-kk (x 4.17
ARCERR RN (4.17)

where the spectrum Shh must be invariant under rotations and
reflexions in the transverse plane (kz,k;) —— and reflexions
through the longitudinal direction k. All the symmetry

properties previously established for Rg g could be deduced
1=j '

from (4.17) by plugging Shh(k) = S(k..k) and using Fourier

Transforms.
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¥e now focus" our interest on thAev flux . | vector
perturbation q;. ihich irs 1.:he physical quantity of interest for
applications to contaminant transport. The Dé.réy equafion can be
used to decompose q into a sum of terms involving the random

field perturbations: ﬁ(x) = ef(’-c) - eazlzk

Using equation (4.11) and decomposing leads to: .

4@ = oV + P

. ’ 2
qgl)(x) = - Ky{p(x) Ji6;, - €’ lz'zi(x)}

| o (4.18)
q§2)(z) = ~ Ko {p(x) g, (x) - <p(x)-g;(x)>}.

The term KG p(x) is the perturbation of the 16g—norma1

conductivity field K(x) =KGexp(f(§)). and gi(g) is the

perturbation of the head gradient vector as before. The first

term qgl) in (4.18) represents the flux perturbation produced by

the separate contributions from the conductivity and head

‘gradient fluctuations while the second term _qu) involves the

stochastic interactions between them.

The covariance tensor Rq q (E) could be worked out in
17

principle by computing all the terms involved in (qi(x)oq J(K-lf)).

This leads to an expression 'involvixrxg' third and fourth {order

moments of the augmented vector (p(x).gi(g)). Assumfng that

and gi = ah/axi. .
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(p(g).gi(g)) is jointly statistically homogeneous, up to at least
fourth order moments, one obtains triple-point and four-point

covariances of the form:

x)v(RE,) W(x+E)> = R__(E .E)

<u(x)v(x+£v) w(x+§w) z(x+§z)) = ({v Ew {z)

With these definitions in mind, we obtain from equation (4.18) a

general expression for the flux covariance tensor:
R = Ri? + R}Z + R .. .
a,a,® = R * R + @ (4.19.2)
where:

Rij = Kg - (16,6, R (E) + gigjti)
2

i Jltal,nqu(z) * 814 Reg (D))

R =K Uity g (€.0) + Ry (£-0)

(4.19.b)
o272

F g g @0 + Ry g (0.-D)

BT =1 Rogypg (8D - Ry (OR, ().
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Despite the complicated form taken by the flux
covari_'a.nce' tensor ébo#e. it appozré that it should remzain
invarjant under the transformations which leavAe p(x) and gi(g)
jointly invariant. Note that | P(x) 1is Just the scaled
perturbation of the conductivity K(x). Without any rigorous
proof, we will assume that K(x) ’f"and gi(z) are Jointly
axisymmetric random fields (we know this 1is true for the
log-conductivity and ‘for 8 (x) sépafately). Accofdingly. the
flux covariance should remain - invarient  under
rotations-reflexions in the transverse piane. ‘and reflexions

through the longitudinal direction as explained earlier. This

also implies that Rq'q' is a symmetric tensor. For
. i%y ’ _
completeness, observe that Rq q given by (4.19) does satisfy
_ i%3 . :

the mass conservation relation {4.8) as required.

Now, by using only the symmetry properties due to
sta;.‘t-:istical iéot:;opy (invariance to rotations and x:eflgxions. as
' defined aboire) .as well asﬂ the ﬁxa.ss vconsrervatvion relation. it is
possible to come up with the general form of the covariance or
spectrum of qi(x) independently of the detailed ‘formula given in
(4.19). For ihs;tance: ‘B;tcheior (1953)‘ gives the general form of
the covariance tensor 6f a vector fiéld Awhic'h is statistically
axisymmetric. By applying his results [qu.. 3.3.9, page 43] and
adding the condition of invariance under reflexions through the

exis of symmetry, we obtain:



181

quqj (&) =

£E
AE:.r) L+ B(EL) 8y | (a0
T .

+ C(E1.r) 8y,81, + D(Es.T)"(E,8) + E, 5y,)

where r 1is the radial lag distance (£3 + Eg)% in the transverse
plane, and A,B.C.D are even functions of £s4. Note that the

case of spherical {isotropy for Rq q (E) obtains by taking
17

C =.D = 0. This suggest that the ‘A and B terms account for
the fully isotropic part of veloéity f'luctuations. wvhile the C
and -D terms account for those fluctuations driven by the mean
head gradient (the driving force responsible for anisotropic

behavior).

Similarly, by using properties of the Fourier Transform,

it can be shown that the tensor of spectral densities Scl q (k)
17

must be of the same form as (4.20), namely:

kk, -

quJ k3 J

(4.21)

+k &

+C+ 3§ 161.1 jli)

li‘slj + De(k
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where A, B, C, D are functions of k; and kR = (k3 + kg)K. and

are even in k,.

¥e now apply the mass conservé.tioﬁ ‘conc'lition in {ts
spectral form (4.7) to obtain additional conditions on A, B, C

and D(k,,.kR) as follows. Combining equation (4.7):

kiS

qiqj(lf{) =0

with equation (4.21) above gives:
(A +B) kJ
+ (kK%+D + k,C) 515
+ k, kJ D=0
vhere K =ki+k3+k3 = ki + k;. and § = 1,2,3 respectively.

These consemtion conditions on A,B,C.D can be rewritten as

‘follows=

(1): ky = A+kB+KkC+ (k¥ +ki)D=0

(2): ko * A+ kB + kykoD =0 (4.22)
(3): kg + A+ kgB +kkD =0 |

'Hultiplying 'eacl'x equation by ki and summing, we obtain  the

equivalent system of equations:
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k3
A+B+—C+ 2ksD =0
kz
k3+k3
A+B+C+ kisD=0
X3
A+B+XkJD = 0.

This leads after some manipulations to just two independent

relations:
kD + kx,C =0
(4.23)
k3
A+B=—0C.
K2

Plugging (4.23) into (4.21) finally gives the general form of the

flux spectrum S':l q that satisfies the properties of axial
173

symmetry (as defined earlier) and mass conservation:

k.k
— i - L
Sq 0, = [ prahl) ,} A(ks )

(4.24)

(k) k. k k,k
+ [511511 M by = P 615 = e 6y4|° Clki.Xkp)
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wvhere k 1is the spherical-radial wavenumber, and kR is the

- cylindrical-radial wavenumber in the transverse plane (kz.ks3).

Note again that A and C ai'e even functions of k,.

The general result given in (4.24) may now be compared

 to specific solutions, such as the first order spectral solutions

derived in Chapter 3. 'Equatidn (4.24) ’also applies to ‘isotropic
turbulence by taking C =0 (recall that the case C=0
corresponds to spherical symmetry). In this case, equation
(4.24) gives the correct result, with A(k) being Athe 3D radial
spectrum of kinetic energy (see for instance Monin and Yaglom,
1965, Eq. 12.73). Let us now compare equation (4.24) with the
first order spectral solution (3.18) for the case where the
spectrum of log—conductivi.ties. is 1sé)tropic (Sff = Sff_(k)). Let

us first decompose both equations (4.24) and (3.18) for a term by

term comparison. T'hié is shown below, denoting S.:1 q the
_ 19y

general solution and S‘(ll‘)1 the first order solution:

S, . (k)=

949

(4.25)

. . ‘ -
gy R, k[T,
kz jl kz C kz kz C 1.1

c {511511 = %41
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(1) =
Sqiqj(k) =
(4.26)
k. k kk, (k)?® kk
_ 1 I 174 R |
Kg 9T Sgek) - {511511 %11 ?1 MY ' e > }

The comparison shows that the first order solution St(ll;
17
satisfies the general form of the spectrum given in (4.24) or

(4.25). with the choice:

Clki.kp) = C(k) = K3 JT S, (k)

_ (4.27)
(k,)?

Ak, 'kR) A(ks k) = *C(k).

The form of the flux covariance tensor can also be found
by applying a Fourier Transform to both sides of (4.24). It is

worth noting that the flux covariance Rq q (E) as well as the

17

head gradient covariance Rg g () must vanish along certain
1=J

lines or plane§ when i # j (see Figure (h.l) above). This is due
solely to certain symmetries under rotations or reflexions, and
the same should hold for any solution satisfying the stationarity
hypothesis. Again, we find that the first order solutions of

Chapter 3 do satisfy the relations depicted in Figure (4.1).
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In sunimrj, we have obtained the genéral fom ofv the
spectrum of the flux vector independently of any particular
perturhatio}x .approxilfxat‘ion. assuming ronly that the
log~-conductivity field is sta..tistimrllyr isotropic; and the flow
field is statisticé.lly ilomogeneoué (station:iry). _'l}x_isI general
soluti‘on ‘includes as a special case tl;e first "order spectral
solutions of Chapter 3 (Bakr et al. 1978, Gelhar and Axmess
1983).* More genera;lly. weibelieve that any appro:éimate solution
should yielﬂ "a flux spectrum of the form (4.24) in ordef lto be
consistent wi"t;h the basic sta..tistica.lA pfoperties of the governing

~

flow équation.

Finally. it is worth noting that most of the results in
this section may be applied to the 2D isotropic case as well by
letting 1 = (1,2) rather than i = 1,2,3 in tensorial expressions.
For example, applying (4.24) with i = (1,2) gives the general

form of the Sq a spectrum in the 2D case, with A and C even
173
functions of k = (ky.kz). In fact, we will show that the form of

the solutions in the spe"cial' 2D case can be narrowed down further
by using the special symmetry inherent to the 2D space — leading
to & conjugacy relation between flux and head gradient. This is

examined next.
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4.2.4 Conjugacy property for 2D flow in isotropic media:

For the case of flow in a two-dimensional random porous
medium, we use the streamfunction formulation to show that the
stochastic flow field must satisfy a conjugacy condition (in

probability) between the flux and head gradient vectors.

For details on the streamfunction formulation, the
reader is referred to Bear (1972), among others. Briefly, the
streamlines are defined as the set of curves tangent to the
velocity field at every'poi“nt in space. Note that the velocity
and flux vectors are equivalent in a medium of constant 'porosity
(normalized to unity for convenience). Thus the equation for the
streamlines can be written in terms of the flux vector field as

follows:

dx, dxg -
QU(x) ~ Q)

The streamfunction ¥(x) is defined as:

Q:(y == %
(4.28)
Qz()i) = 4+ gx—w—.

1
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It 1is easils' seen that the curves \Il(z)}.—‘ c aeS§fibe the set of
streamlines in the flow. The equipotentials H(x) = ¢ similarly
describe | the level curves of the hydraulic head (“potential”)
field. Finally, note that the flux vector 1in (4.28)

automatically satisfies the conservation equation 8Q,/8x, = 0.

Ve now seek a flow equation based solely on the
streamfunction ¥. The Darcy equation implies that (Q/K) is a
potential vector: .

Q/K = - gH -
whose curl must vanish, {i.e.:

¥ x (9/K) = 0.

In fact, only the third component of the curl is of interest

here, giving:
8. (Qu/K) - - (Qu/K) =0. - 4.29
E(Qz) ?‘;;(Qt ) =0. (4.29)
Plugging :(4‘.28) in (4.29): leads to the required V-based Aequation:

4 (-,1,3 w) = 0. ' - (4.30)
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Equivalently, by using the log-conductivity F(x) = &n K(x). we

obtain the desired equation for the streamfunction:
vy - wF - w¥ = 0. (4.31)

In comparison, the equivalent equation for the hydraulic head

"potential” was:
v?H + gF « vH = O. (4.32)

The idea of conjugacy arises from the observation that -
the governing equation for the streamfunction ¥ can be obtained
simply by reversing the sign of F(x) = &n K(x) Ain the equation
" governing the head field. We now examine the implications of
this "duality” in the case where the log-conductivity is a

Gaussian isotropic random field in 2D space.

Consider the case of a finite square domain, with fixed
heads on two opposite boundaries, and zero normal flux on the
other boundaries (Figure 4.2). We now use equation (4.28), along
with the Darcy equation, to express these boundary conditions in

terms of the streamfunction. This is summarized below:



Figure 4.2
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Illustration of the conjugacy property for

stochastic flow in a 2D isotropic medium. (K’e is
the dual conductivity with respect to K)
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(1) On_the fixed head boundaries (e.g., at x, = 0):
oH ov
H(0.xz) = Ho => 3%z (0.x2) = 0 => gx‘; (p-xz) = 0.
(i1) On_the zero-flux boundaries (e.g. at x, = 0):
. : _
Q2(0.,x4) =0 = =, (0.%;) =0 => V¥(0,x,) = ¥,.
This clearly shows that the boundary conditions for the
streamfunction equation are of the same type as those for the
head equation., provided a 90 degree rotation of the flow domain

(see Figure 4.2). Furthermore, observe that the global hydraulic

gradient is, by construction:

=(H-Ho) _ 5
L = J1

while the global streamfunction gradient is:

(¥ - %) 4 (T _
—r—=t]  aws-d
x:=o

Based on these remarks, the boundary value problem for
2D flow can be expressed indifferently in terms of H or V¥ as
shown below. First, we need to define new dimensionless

variables:
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(4.33)

. Second, let wus define the dual conducttvity, dual

log-conductivity, and dual log-conductivity perturbation eas

follows:

K*(x1.%2) = 1/K(=xz,4%1)
| | (4.34)

F*(xl -xz.) 'F("xzv- +x,)

F(xg.xz) = = f(=xz.+x4).

It is easily seen that equations (4.31) and (4.32) are mutually

“conjugate”, or "dual”, i.e., the normalized streamfunction ¥ 1is

" solution of &th‘e conjugate 'A boundary-value prdblem involving the

dual conductivity field as shown below:

az;i; + .ai*- .?'_5.. =0
8y 9y; Oyy Oy
¥(0.y2) =0;: ¥(L.y2) =1 : , (4.35)
ar_ v

3yz (y1.0) = %(Y:-L) =0
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where (y;.¥2) = (X2.-X;). The equation for the normalized head

potential H is identical:

#2H G . _,
I ox; B ax,
H(0.xz) = 0;: H(L.xz) = 1 (4.36)

6H [e)s
ax, (X1.0) =z~ (x4.1) = 0.

The next step in this analysis consists in letting the

‘domain size L become infinite, while the mean hydraulic -

gradient ,3, remains finite. Furthermore, we now use the
assumption that F(x) is a stationary, Gaus-sian. and isotropic
random field. Taken together, statistical isotropy and normality
imply that the log-conductivity perturbation (f) must have all
its moments invariant under rotations and reflexions, as well as
invariant under the transformation f - -f (due to the sMetw of
the Gaussian distribution). This implies that the dual field
f*(_y,) defined in (4.34) is 1identical in probability to f(x).

Thus, equations (4.35) and (4.36)} imply that the normalized

random fields $(x) and ﬁ(gg). expressed in different coordinate -

systems, are identical in probability. Note that the ¥y

coordinate system obtains by rotating x, such that

(¥1.52) = (—x2.4x,).

\ .
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The above Aresulté can be simply stated in one single

equation:

¥ (=xz.4%1) & H(x,.x2) (4.37)

where the "A" sig;ﬂ stands for equality in probability, meaning
that all the momentsrt‘xp to arbitrary ofder must be equal. The
aboveA equation simply means j:hat the random patterns of
svtreamlines and equipotentials are statistically identical in a
2D 1sotropic mediﬁm. p;-ovided proper nd»malgizatiorﬁx of varia_.bles
and rotation of the g:botdinates by a 90 dégree angle. This is
the propert;} we cali "conjuéacy". to be under#tood i ;n a
statistical sense. Thus, according to équation (4.37), the
streamfunction and head potential are statistically "conjugates”

of each other.

We now use the conjugacy property (4.37) along with the
flux-streamfunction relation (4.28) to show that the flux and
head gradient vectors must also be conjugate. First, by plugging

(4.33) in (4.37) we;obta:in. in terms of d:linensional quantities:

f - H(xi.X2)Ho
Y(yi.¥2) = Yo é'Q*'.[ 3
1
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where (y,.y2) = (-x2.%x;). Using (4.28) and applying standard

differentiation rules, this gives:

Q(xs.x2) 4 - g—} © e () (4.39)
1

where the gradient vector aﬂlax1 should be evaluated by
differentiating H with respect to the (x,,x2) system before
substituting (x3.-x.). l?quation (4.38) shows that the flux and
head gradient vectors, normalized by their mean values, are
statistically identical upon rotation of the coordinate‘system by

a 90 degree angle.

We now. use this important: result to obtain an exact
relation between the covariance functions or the spectral density
functions of the flux and héad gradient vector fields. Equation
(4.38) immediately leads to:

quqj(fi-fz) = Kz.ggigj(fz’_fi) (4.39)

S (ky.kz) = K*S_ _ (kz.k,)
a9, %8,
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vhere l? = 6,/31 is the effective conductivity. Again note that
the tensors Rg g, OB the right-hand-side should be evaluated in
=) ' '

the (£,.f.) system before substituting for (£-.-f,): similarly
for S .
g8

Finally, the head spectrum can be introduced on the
right hand side of equation (4.39). Indeed, using the fact that
gi(a_c) is a potential vector (gradient of the scalar field h(x)).
one may express directly the flux spectrum in terms of the head

spectrum as shown below:
-— Az ° ] Vn ]
Sqiqj(k) = K0 kiky Sk

where (ki, k2) = (kz.,~k;). To obtain a more“ekplicit -}elétion.

let us rewrite the transformed wavenumber system es:
ki = «;-(1—611) ky + (1-612) ks.
This gives:

s‘,lx‘lj (ki.kz) =

K2 +((1-6,)(1-6,) K+ (1-6,5) (16 5) k3
- [(1-6y1) (1-659) + (1-8;5) (1-5)Tk;ka}oSyy (k2. ky).
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This expression can be simplified further by defining the radial
1
wavenumber k = (kf+k§_)" and using certain properties of the

Kronecker symbol such as:
(1-8,1)(1-845) + (1-8,5)(1-84;) = 1-5 .

This gives finally a general expression for the flux spectrum in
a 2D 1isotropic medium, independently of any perturbative

approximation other than the stationarity hypothesis:

Sqq, (ke k) = K3+(01-2,) (18
+ (1—512)(1-612)@ _ (4.40)
= (1-611) kika} - Shh(kz- -k,).

Using the radial wavenumber k = (k§+k§)%. let us give explicitly

each component of the symmetric Sq q tensor:
173

Saya (ie ko) = K (1= 0 3 8 (s - 1)

Az. _ k2 _ .
quqz(k,. k2) = K3 (1 1-::-) k2 Shh(kz. ky) _ (4.40*)

S g, (Ker ka) = K2 (- %) 12 8, (ka. - ki)

Equation (4.40) is an important new result, since it

gives the relation between the flux and head spectrum based
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solely on the stationarity hypothésis (ho small parameter
expansion involved). Furthermore, this result can be checked by
comparing it to the more general form (4.24) which was derived
for 3D isotropic media —- and remains valid for 2D {sotropic
media as well. Indeed the spectrum (4.40) does satisfy the
condition (4.24). with A = 0 end C = K2 k® S, (kz. k). Finally,
it is instfuctive to compare (4.40) with the first ofder spectral
solutior{s- from Chapter 3. By applying | equations .(3.18) for the
2D isotropic; case, it is 'wsily seen that thé- fifsf. order

approximation for Sq q is just equation (4.40) wivth' K replaced

G

Ve conclude that the f irs‘t ordér spectrai solutions
(3.18) are consistent with the conjugacy éondition (4.40), at
least up to a constant factor (ﬁ/l(c). We will show next that the
effective conductivity ﬁ must be precisely equal to the
geometric mean KG in 2 2D isotropic medium, ,assuming only the
existence of l?. (i.e., stationary flow field). Therefore, we may
conclude here that the first order spectral solution is
ﬁonsistent. in the sense that it.-satisfies exactly the conjugacy
property of two-dimensional isotropl_c flow systems. Note that
any higher-order stationary solutions should alsctr' satisfy the
conjugacy broperty in order to be consistent;. ‘The conjugacy
relations were given by (4.40) for secon& order moments only, but

equation (4.38) could be used to derive similar conjugacy
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conditions on higher order moments.

4.2.5 Ceometric mean effective conductivity for 2D isotropic
media:

In order to complete the previous analysis, we show here
that the effective conductivity., if it exists, must be exactly
equal to the geometric mean in a 2D isotropic medium. Consider
again equations (4.28) to (4.37), and denote ¢ the head potential
H, and d’” the streamfunction V¥ expressed in the rotated
coordinates (y,,.y¥2) = (X2.-X;). Restating previous results, we

have that ¢$(x) and ¢*(y) are governed by the dual equations:
2 ° —
vx ¢ + %( F L2 =0
2

=0 .
Zy¢

v2 ¢* +9F .

y 4
Furthermore, the Darcy law:

Q(x) = -K(x)-x #(x)

has also its dual counterpart:

Q'(y) = - K® - 12"
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where, according to pfevious definitions:
2
K (¥) = - 1/K(¥). : (4.41.2)

This leads us to define two "effective conductivities”, one for

the original ¢-equation, and one for the dual ¢*-equation:

K(x)e x))

K =

(5%1(1:_))

(4.41.2)

R K
K* = (!) P

Pyl

<3§;-(z)>

1
We now borrow an argument from Matheron’s indications of

& similar proof (Matheron, 1967 and 1'9847). First, observe that

the effective conductivity and its dual satisfy by construction:

as can be seen from equations' (41_.28) t_:&-- (4.38). Second, note
that the effective conductivities K andl?‘ must take the form of
1.1 functional ¥ involving possibly'all the moments of K(x).
Furthermore, this functional must be of the same form in the two

cases, because the governing equations for ¢ and 6* are formally
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identical, that is ¢(x) depends on K(x) in the same manner that

¢*(y) depends on K’(;). Whence:

K = 3(K(x))
(4.42)
K = 3(1/K(x)) = 1/K.

The functional in (4.42) must behave linearly with respect to
multiplication by a constant, e.g. F(aK(x)) = a F(K(x)): try
equation (4.42) with aK(x). We now use a special property of the
log-normal distribution, namely that K/<K> and K1/« 1> have
identical distributions in terms of all N-points moments
(N=1,2,°++). " This will in fact hold for any conductivity field
whose logarithm has a symmetric .distrﬂ)ution. The required
result follows directly from equation (4.42), along with the
symmetry of the &n K distribution, and the invariance of 12 with
respect to coordinates:

K'/K =3 (K (v))
' -1
5K(y) + S5

-1
<K *>
= 5 F(XK(y))
&b .
*X.

=

”

From the previous identity K* = 1/K, this gives immediately:
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~1

g = daoracts (4.43)

Now, by using also the properties of the log-normal distribution:

fx) = en (KK

Ko = explén K> "~ '(geometric mean)
{ : <K> = KG e':’z/2 (arithmetic mean)
\ -
| L KG 02 (harmonic mean)

-

ve obt:ain finally the announced result:

K=K .| | N )
Incidentally, it is interesting to note that a similar proof was
obtained for electric networks, by using the. concept of a dual

: conductivity network (Marchant and Gabillard, 1975).

- The fact that the effective conductivity is equal to the
_geometric mean for a 2D 1isotropic medium with a symmetric
L probability distribution of &n K, was mentioned by Matheron

(1967), Marchant and Gabillard (1975) a.nd liatheron (1984). The

proof given above follows and expands on a review published by
! - Matheron ( 1984) It seems natural to ask whether an exact closed

form relation for the ef fective conductivity could be obtained in
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more than 2 dimensions. An interesting formula for fhe case of
statistically isotropic log-normal conductivity in m—dimensional
space was suggested by Matheron (1967, Chapt. VI, p. 132),
however with no proof. In terms of log-conductivities,
Matheron’s conjecture can be re-stated as follows:

mE=1-Yemg +Imx L (4.44)

where KA is the arithmetic mean <K>, and KH the harmonic mean
(K.1>-1. This equation is indeed exact for m = 1 and 2

dimensions, -giving respectively the harmonic mean and the
geometric mean KG = Jm. For 3-dimensions, Matheron's
conjecture gives exactly the same result as the first order
spectral theory: I‘E = KG.exp(a?IG). It is remarkable that these
approximations obtained by two different methods match exactly,
even though they might be inaccurate for large values of Op.
Fﬁrthermore. as the number of dimensions goes to infinity, the
effective conductivity (4.44) converges to its upper bound, the
arithmetic mean KA’ Thus, as the "dimensionality” of flow
increases from one to infinity, the effective conductivity

increases monotically from its lower bound KH = KG e-"’:'/2 to its

upper bound KA = KG e+azl2. This is indeed an attractive
feature of Matheron's formula. Incidentally, the proof that the
effective conductivity is bounded by KH and KA was given by

Matheron (1967) based on energy arguments.
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In our view, the question of the adeqﬁacy of current

~

estimates . of the effective conductivity tensor K:l j for
realistic three-dimens‘ionai flow problems remzins open. ﬁowever.
anticipating the results of numerical simulations with 3D
" isotropic media (Cﬁaptef 6)., we stress“ the fact that the
effective conducﬁvity predicted by thé spectral theory (or by
' Matheron’s conjecture) Aag‘reed very Twelll' with the numerical
simulation results fof a wide ra.nge of log-conductivity
variability, up to o = 2.3. Based on this encouraging result,
we now‘ inveStiééte how Hatheron's conjécture (4.44) could be

i . .
generalized to include the case of statistically anisotropic

media.
4.2.6 Effective condixctiviiy for general 3D anisotropic media:

The proposed genemlizaﬁion of (4.44) is bé.séd on the
ob#ex:vation that the parameter m should be interpfeted as the
number of degrees of freedom of fluid particles, rather\th.';m the
dimensionality of space. Vhen the log-conductivity is =a
‘f:hi-ee-diinfensional ellipsoidal random field with anisotropic
length ééé;lés (7\,.}37.'?\3). it seems reasonable to aséume ;that the
degreev of .fx"ee'dom of flow will 'deper.ld s;:lelj on' the.se three
length scales. Fuxjthemoré. tixe Jf'irst: ’ovrdér si:ectral results
obtained by Gelhar and Axmess (1983) for various anisotropy

ratios (A;/A3, etc.) suggest that equation (4.44) could be
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genéralized in the form:

11 én KA+ Bii EnKH (4.45)

where the coefficients a and B:l { must be somehow related to

ii
the degrees of freedom available for flow in "parallel” mode (KA)
and flow in "perpendicular” mode (KH). for each of the three

principal axes of anisotropy (i=1.2,3).

We now show how a

length scales (A;.A2.,A3) for a few special cases, assuming for

and B 1 should depend on the

convenience that the mean head gradient ,J is aligned with one of

>~

the principal axes (x;.X2.X3). In this case, Kij is a diagonal
tensor. The more general case of arbitrary orientation of ]
will follow by using tensorial transformation rules under

rotations, assuming that Ki indeed behaves like a second rank

J
symmetric tensor (see Matheron 1967, and Gelhar and Axmess,

1_983) .

Let us focus first on the behavio; of K;; in certain
special cases where a close-form result is available. The
results given below were deduced in part from the work of Gelhar

and Axness (1983, Eqs. 4.52-4.60):
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(1) 7\1=)\z=7\3:‘

£n12,,‘=§8nKA+%-£nKH

(ii) AI = Az. ka -> 0:

enK“=1"'enKA+0°£nKH=£nKA

(iii) A’. = kz. As - 0

gn'f%“ =-;—£nKA+%-£nKH=£nKG

(iv) Ay £ A2, Ag 2@

én K,?'= y VeV én KA + vy én KH"

The first case above corresponds to a fully isotropic'
medium; the sgcond case corresponds to & horizontally stratif 1ea
medium with 1isotropic horizontal slices; the third case
represents a vertically "stratified” medium analogous to a bundle
of independent vertical columns of circular section: and the
fourth case 1s a generalization of the previous one, with

vertical columns of ellipsoidal section.

In addition, the case of horizontal flow perpendicular

. to vertical strata obtains by teking A ’and’?\a'.infinite which

yields l:'“ = KH as expected. Similarly, for flow parallel to
horizontal strata, ome obtains K, = KA by taking Ay and Az

infinite.
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The other principal components I?zz and 1233 may be
obtained in a similar fashion. For instance in the case (A\;#\5,
Ay = ) I?zz obtains from 12“ by inverting (A;.A2). and 1233 by
inverting (A;.A3). The result, given below, follows from the

first order spectral analysis of Gelhar and Axmess (1983):

AL #£ A2, Ag S

~ AI. . 7\2

S wowl LR S o sl LR

Taken together, these results indicate that the a, i'Bi q are
functions of (Ay.A2.,A3) that follow a few simple rules, listed

below:

(1) au(A) is identical to ajj(?_\_') with A' obtained by

interversion of 7\1.7\ .

J
(2) ay )+ By, Q) = 1.
(3) @ys(A\AA) = 2/3 (4.46)
(4) a;:(AA0) =1

Ay
(5) ais(A1.A2.®) = Nethg
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These remarks eventually led us to a more general rule satisfying

all the requirements in (4.46):

Ay

T Aahg
o200
¥ Xofhg

aii(hg nk2|k3) = (4-47)

with the provision t}xé.t a,, and ag5 can be deduced from . P

according to (4.46.1), and Bu‘l“’i according to (4.46.2).

i

Finally, by using (4.45) (4.46) and (4.47), ve obtain a
generalization of Matheron’s conjecture, é.pplicable to the

general case of 3D anisotropic media: ~

N
a;;(d) = N hoha

2
N R,

(4.48)

Equivalently, by using the relations:

, +02/2
~KA=KGe

Ky = Kg 67 72

valid in the case of a log-ndmal ctrmductivityrrfield. equation
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(4.48) can be expressed in the simpler form:

- o

vwhere a,; was defined in equation (4.48) above.

Furthermore, the case where the mean head gradient J
is not aligned with the anisotropy axis can be resolved by
rotating the coordinate system to coincide with J and by
applying tensorial transformation rules as explained in Gelhar
and Axness, 1983. This yields:

-~ -~

Kij =a, ajm Kmm (4.50)

o

where Km is given by (4.48) or (4.49). The matrix [aij]'

represents the rotation from J to the principal axis x,. and

Ki j rebresents the effective conductivity tensor expressed in the

(xy.X2.X3) system of principal axes. Note that when the angle

~

(I.xy) is zero. we obtain Kij = 6im ajm Km as expected, {i.e.,

the effective conductivity is a diagonal tensor in this case.

It is instructive to see how equations (4.48) to (4.50)

apply in specific cases of practical interest. We give below the



210

three principai components of the effective bonductivity tensor,

according to (4.49), for the case of vertical-to-horizontal

anisoti'opyt
Ay = 7\; = ?\
8= AN
Ky1 = K22 = K, exp{* g_z_ . —1'22} (4.51)

o 0z , 1-2a
Koa = Kg m{‘ 7 TTzZ}

In particular, the case of imperféct horiiogtal stratification

(horizontal slices) obtains by taking a < 1. The perfectly

stratified case corresponds to a +0. The case a > 1 is less

typical, corresponding to a formation made of vertieai elongated
lenses of cylindrical shape (or elongated ellipsoids with

circular section).

More complex cases, such as those involving three

different length scales, can be worked out directly from (4.49).

‘For example, 2 typical situation may involve a slight enisotropy

in the horizontal plane (1:2), and a signifiwnt ani#’otropy in
the vertical plane (1:8). Taking A, =8, Az =4, A3 =1 and
KG =1, op = 2.3, the values 8.7, 5.4, and 0.30 for the effective

~ -~ ~

" conductivities K“'.-Kzz.l(,,;.' respectively.
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In summary, we have extended a conjecture by Matheron
(1967) in order to evaluate the effective conductivity in a
three-dimensional anisotropic medium characterized by three
length scales (A .A2.A3). The proposed formula (4.48-4.50)
matches the results known to be exact for all cases where these
are available: arithmetic mean for "parallel flow"”, harmonic
mean for ‘"perpendicular flow”, and geox'net'ric mean for
two—dimensional isotropic flow. In addition, the conjecture also
coincides with the results of the first order spectral theory
(Gelhar and Axmess) in all the special cases examined, such as
the case of aniﬁotx:opy in the horizontal plane with the vertical
length scale much larger than the horizontal. . Such a general-
closed form expression for the effective conductivity was not

available before, and could be useful for applications.
4.3 New Closed Form Perturbative Solution for the Flux Spectrum:

In this section, we build on our previous analyses of
- the flux spectrum to suggest a new linearization of the
stochastic flow equation for obtaining first order spectral
solutions. Specifically, the results obtained for 2D flow,
suggest that the flux spectrum in any number of dimensions could
be proportional to Q7 (see equations 4.24, 4.25, and 4.40),
rather than the factor K3 J? given by the standard spectral

‘theory (equations 3.18 or 4.26).
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. Building on this observation, we will show here that the
flux spectrum can be obtained directly from a linear second order

PDE governing the flux vector q,. Solving this equation by the
i

first order perturbation method indeed leads to a factor Q2

rather than Ké J2 in the flux spectrum. This is thought to be a

more gccurate result because of the "linearity” of the stochastic

" flux-based equation '(compared to the "non—lineaﬂty" of the

stochastic Darcy eﬁuatidn). The numerical experiments of
Chapter 6 will confirm the validity of the new linearization
approach. We now proceed to develop the new first order

solutions in detail.

The flux-based equation can be obtained by applying
linear partial differential operators to the Darcy and continuity

equations:

' Q = - KyH
, (4.52)

¥Q=0.

For clari'i':jr of notation, observe that we use the Nable operator
for the gradient (vH) as well as for the divergence (scalar

product y+Q). The next step is based on the observation that the

" vector Q/K is a gra.dient; so that its curl] must vanish:

gx(@K) =0 . (a.83)
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In addition, from the mass conservation equation (4.52), the

gradient of the divergence of Q vanishes:

2(z-Q) = 0. (4.54)
Note that equations (4.53) and (4.54) express the fact that Q/K
is a gradient (Darcy law) and Q is a divergence free vector (mass
conservation). By using the standard rules of vector field

operators (see for instance Gradshtein and Rhyzik, 1980, 10.31),

equation (4.54) gives:
?Q+yx (2xQ) =0. ‘ (4.55)
The curl term in (4.55) can be decomposed as follows: ~

Zx (2 xQ)

]
I

x (2 x (K * /K))
x [K ¥ x (@/K) + 2(K) x O/K]
¥ x (g %K x Q)

"
14

W

where the last step obtains by using equation (4.53). Plugging

the above identity in (4.55) gives:
P Q+yx(gy(X)xQ)=0.

This equation is nonlinear in K, but can be made linear in the
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" log-conductivity permrbafion f(x) = en(K(g)/i(G). " Indeed, by

using K = KG ef it comes:

lPe+zxx=0| (a8

Equation (4.56) ‘constitutes a systeui of three scalar
second order partial differential equations governing the flux
vector ‘components. The most remarkable feature of this simple
equation is its linearity with respect to the log-conductivity
field f(x). In comparisoﬁ. tﬁe standard spectral solutions were

based on the "nonlinear” Darcy equation, of the form:

r(as)

Q=K e oH

where the exponential ef is obviously a strongly nonlinear

function of f.

Equation (4.56) can be made more explicit by decomposing

the curl term as follows: -

¥ x (2f x Q) = vi(v-Q) - Q(g-uf)
- (uf-v)Q + (Q-w)f.
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Using again v * Q=0 and plugging the above expression in
(4.56) yields:

¥2Q - (wf-¥)Q = Qv3f - (Q-¥)vf (4.57)

where v® is the vector-l.apiacian defined earlier, and v? is the
usual scalar Laplacian. For convenience, let us express (4.57)

in tensorial form:

It is easy to verify that (4.57) or (4.58) is indeed a valid
governing equation for flow, by plugging Q = -KvH and using

¥+Q = O for mass conservation.

The linear form of the flux-based equation (4.58)
suggests that the standard spectral solutions for the flux vector
field could be improved by using (4.58) rather than the Darcy
equation for a perturbative spectral analysis of the flux vector.
In keeping with the basic premises of the spectral method, we
assume now that the input log-conductivity as well as the output
flux vector are stationary random fields. Defining the flux

perturbation:
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9 =Q - Q

and using the stationarity assumption (-Q-1 constant), we obtain

the mean equation by averaging (4.58):

A aq 2 2
of i 8°f o<f : -
- L ) = (e q:l> S S5k S qj>' (4.59)

3% it TR N

Note that the mean flux compdnents 61 cancel out due to the fact
that <f> = 0 and 8Q/8x = 0. Next, the equation for the flux
perturbation obtains. by subtracting (4.59) from (4.58). This

gives after some manipulations:

azq 2 2 -

i a9<f = g=f =

% x5 e Q, + T Q, = 0(02). (4.60)
373 B 1 1] J £

The term that was neglected on the right hand side of (4.60) is

- the second-order perturbation:

8q 2p 2“ 7
of i a“f g<f
9—.—+-———.q --————-oq} : (4_61)
{axj 6xJ axjaxj i axiaxJ 3

where we ‘used the dperai:or § _‘ to denote the perturbation of a

random qu:antity:ﬁ":?(Y) =Y - <M.
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Now, the first order spectral solution for the flux
field is readily obtained by applying the spectral representation
theorem as in Chapter 3. This gives, from (4.60) with the terms

on the right-hand side neglected:

)
dzq, (k) = {q, —]{TQ%-} dZ,.(
mm

Sqyq,00 = (9 - A28 s k). | (4.62)

k2

k(kom) @ k(kom
9 - K2

Note that the flux spectrum in (4.62) is entirely determined once
the effective conductivity tensor is Lknown. Recall that the
effective conductivity relates the mean flux to the mean head

gradient via:

MDI
1]
>

|

im “m’

For the particular case where the mean head graﬂieixt coincides

with the principal axis of the Ki j tensor (say xl). equation
(4.62) simplifies to:

k.k - =k.k
- 0. [ - 1 i . —Ll
g0, = @ {611 kz} {613 - }sff(l.s) (4.63)
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where Q, = I?,, J, should be used.
MCompai'ing novw (4.63) to th§ result from the standard

spectral result (3.18)A.-'it appears that equation (4.63) obtains
from (3.18) by 'replacihg the factor (KGJI) by Q,. Thus, the

~ shape of the spectrum is not affected by the new approach, and

the flux correlation functions will remain unéha.nged. On the

other hand, the flux standard deviations ‘aq‘ previously oBfained
i .

in Chapter 3 must now be multiplied by the . factor (I‘E“/KG)

according to the new approach.

It 1s instructive to compare (4.63)7 to the standard
spéctral “theory (3.18) by eacamining the behavior-éf the ratio
K,1/Ky. First note that b;th (3.18) and (4.63) give S = O for
the pathological one-dimensional case (q must be constant in
ordef to satisfy ms§ conservation in one dimension). For the 2D
;so;rppic case, (3.;8) and (ﬁ.éB) coincide exactly since 12“ = KG
:le1 7this case. | For the 3D isétrbpic cé.se we have

ﬁ,,n{c = exp(a?/S) and the discrepancy will increase with op.
The discrepancy between (3.18) and (4.63) will be even higher in

‘the case of strongly anisotropic . media, such as flow

perpendicular to perfect stratification (K,,/KG=e-02,2

+02/2,

) and flow

; parallel to perfect'stl:'a;..tifiéa‘tion (I?“/Kc=e ).
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Let us illustrate these remarks for two simple cases
using the notation aél) for'the standard theory (3.18) and ac(12)
for the new result (4.63). For a 3D isotropic medium with af=1.
the ratio of a‘(lz)/agl) is about 1.2. In the case of flow
parallel to stratification in a perfectly stratified medium, this
ratio would rise to about 1.7. We conclude that the discrepancy
between (3.18) and (4.63) is quite si@ifi@t as far as the flux
standard de'(iations are concerned. It seems reasonable to assume
that the most accurate formula is (4.63), since it is based on a
"linear” equation governing the flux vector. The forthcoming
numerical expériﬂ:ents (Chapter 6) will confirm that the standard
solution (3.18) appears to underestimate tﬁe flux variances,
whereas (4.63) is in better agreement with numerical results.

Incidentally, the new result obtained here indicates
that the spectral solutions of stochastic solute transport should
be modified as well. In particular, the longitudinal
macrodispersivity for 3D solute transport given by Gelhar and
Axness (1983): |

P
Ay = —1: (= Ku/xc) (4.64)

should now be revised according to equation (4.63), as follows:

Ay = 2. (4.65)
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It is interesting to note that the new macrodispersivity given by
(4.65) increases monotonically with Tps whereas the expression
(4:.64) of Gelhar and Axmess presents é. maximum at some positive
value of Op. Beyond this value, the macrodispersivity would

decrease with increasing variability. This behavior could not be

. explained on physical grounds, which makes the new solution

(4.65) more attractive.

Along the same lines. note that the coefficient of

variation of the flux component (aq /Q,) also presents a maximum
. i

with respect to o, according to the standard solution (3.18). In

contrast, this coefficient ‘increases monotonically like o, when

(4.63) is used instead. Again, there seems to be fxo intuitive

explanation for the occurrence of a maximum in aq‘/ﬁ, as o

i
increases. We conclude that the proposed speci:ral solution for

the flux (4.63) see'ms'preferbable. This conclusion is also
Justified by observing that the linearization of ef used“in the
sta.ndar;i ‘spectral pértufbatlon method was not reqﬁired in the
preseni: ,appr‘oach.( However, 1t #h—ot;l.;i be recognized that ‘6_ther

linearization approximations involved in the solute transport

equation were not eliminated or improved by the present approach.
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4.4 Finite Size Effects: Band-Pass Self-Similar Spectra,
Spectral Conditioning and Uncertainty.

4.4.1 Motivation and approaches:

One of the major difficulties encountered in the
application of spectral methods to field cases arises from the
fact that groundwater flow fields (and solute concentration
fields) are not, in reality, stationary random fields over
infinitely large domains. Here, the term “stationary™ is
understood in the usual sense of statistical homogeneity, or
translation invariance in probability. Recall that the spectral
solution method, based on the representation theorem of random
functions in Fourier ‘spa_ce. requi.red assuming the existence of
stationary solutions over infinite domains in order to solve the
governing stochastic equations in closed form (Chapter 3, and
previous sections of Chapter 4). Other methods were developed in
the literature to deal explicitly with non-stationary  problems,
and they may be more appropriate in cases of irreducible
non-stationary behavior (e.g., drawdown near a pumping well).
For instance the approximate Green’'s function method of Degan
(1682), and the numerical solution of approximate moment
equations (Townley 1983, McLaughlin 1985) can be used to obtain
non-stationary solutions in the case of small variability. These
solution methods have their advantages. However, they do not
possess the analytical simplicity of the infinite domain spectral

approach (see literature review in Chapter 2).
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Due to the approximations involved, the spectral method
seems best adapted ’to‘ the study of "lafge scale” flow and
tranSporrt' phenomena where the effect of local inhomogéneities on
the overall patﬁerti is minimal. However, f ie-ld contaxﬁination
studies usually focus on phgnbmerié. occurring oﬁ a finite scale.
The scale in .question may well be imposed by the geologic
strﬁcturevit»:sélf. ‘or by policy considei-é.tions (target time for
plume ﬁrediction). | Mbreover. certain phjrsica.l phenomena{ like
solu.te tfansport orb unsaturated infiltration from local sources

necessarily take place over some finite scale evoluving in time.

In addition, (experimental 'studies ,bubl.ished in the
literature i-nd‘icAate that the statistical prdperties_ of
conductivities or transmissivities measured “at ‘different scales
(or .by different 'reseé.fchers!) may vary greatly. This is
especially true for ti'xe “correlation scale”, as noted in the

previous data review in Chapter 2. The reader is referred in

- particular"to section 2.3 for more complete references on field

observations and data collection.

In our view, these difficulties indicafe that, at least
in some cases, the: apparent correlafiqn stm;:ture of the
conductivity fielﬂ sinf'err‘ed' from field dé.ta deﬁénds on the scale
of the bi:_s;zﬁation. 'I'his’“ suggests that e similar 'phenomehoh may

occur physically in transient flow and/or mass transport systems
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dominated by local sources. Consider for 1instance a
contamination plume origiﬁating from a local source.l and
convected in a steady groundwater flow field through a
heterogeneous porous formation. This is illustrated in Figure
4.3 (top). As the plume grows and invades larger regions of the
porous formation, it “responds” to larger and larger
heterogeneities. At early times, the plume’'s spreading process
is being "excited” by small heterogeneities which appear large
with respect to the plume. Later on, - the same small
heterogeneities appear as mere f'luctuations. with respect to the
larger plume. In summary, as the plume grows and spreads, there
is a change in the typical size of those heterogeneities that
affect the global trends of the plume, and those that coﬁtrii:ute
to random-like mechanical dispersion within the plume.
Accordingly, thé apparent m:crodispersion of the plume is likely

to depend on the size or time scale of interest.

The phenomenon of scale dependence may also play a role
for “large scale” characterization of groundwater flow fields.
Figure 4.3 (centerpiece) illustrates that the apparent mean and
the trend of the log-conductivity may depend on the size of the
domain of 1interest in a given subsurface formation. To
illustrate this scale effect, we have used borehole data from the
Mont Simon formation (Gelhar, 1976, and Bakr, 1976); the figure

shows that, although the mean log-conductivity appears constant
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. Illustration of finite-size effects:
(a) Contamination plume
(b) Log-conductivity field sample function
(c) Band-pass self-similar spectrum
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at the scale 200 feet, there exist pronounced trends in the
apparent .mean log-conductivity at the scale 75 feet. This, in
turn, suggests that the effective "large scale"™ conductivity
could depend on domain size {and location) within a given

regional formation.

We now briefly indicate how the standard spectral theory
could be manipullated to incorporate finite-size effects. A f irst
step in this direction consists in using band-pass spectra for
the log-conductivity field, with a low wavenumber cut-off
proportional to the inverse size of the domain (kmin ~ 1/L).
This is illustrated on the bottom part of Figure 4.3. The high
wavenumber cut-off (kmax > 1/8) takes 1into account the
measurement spacing, » or possibly the typical scale of
conductivity measurements. In addition, the band-pass spectral
representation of finite-scale phenomena will be considerably
simplified by assuming a self-similar behavior of the spectrum
within the range of scales of interest. This will be justified
’shortly by examining some available spectral - data. Note,
l"xowever. that the self-similar behavior may not hold for very
large scale phenomena. In the latter case, the infinite-domain
spectral theory «could be applied safely provided that

I.,'-1 <L 2-1. where se'l

is the wavenumber below which the
spectral content of the log-conductivity becomes negligible. A

very large measurement network may be required in order to detect

. "
e s
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the actual value of the_ low wavenumber cut-off 2-1, if such a

value exists at all.

Finally, the "band-pass" spectral approach could be made
more useful if it were possible to incorporate in a simple manner
the depghdgnce of the "mean” log-conductivity f feld with respect
to the size of  the domé.iﬂ under consideration (see centefpiece in
Figure 4.3). This motivated the idea of "spectral conditioning”,
leading to a2 clear distinction between urw..e_rta:tnty-and spatial
variability. The main features of this new approach will be
outlined towards the end of this section, building o;x the sihple

band-pass self~similar model.

4.4.2 Band-pass self-similar spectra and field data:

Figures 4.4(a.b.c) display - one-dimensional

log-conductivity spéctra obtained from three sets of borehole
data in the Mont Simon aquifer (reproduced from Bakr's thesis,
1976). For Figure 4.4.a, the domain size was L = 303 ft, with

data spacing € =1 ft. The log-spectra density is plotted

- against the log-frequency. 1n_cycles/feet units (wave number = 27

x frequency). The f{requency range shown in the figure is

1 cycles. The straight line

approximately SL i to 0.58
superimposed on the spectral data represents & self-similar

spectrum with exponent one, that is:
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Measured one-dimensional spectrum of log-
conductivity at a borehole (Circles), in
the Mt. Simon aquifer, from Bakr (1976).
The straight line corresponds to a self-
similar spectrum with exponent a = 1.
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spectrum with exponent a = 1.
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Figure 4.4.c: Same as Figure 4.4a and 4.4b, for another set of
data. The straight line corresponds to a self-
similar spectrum with exponent a = 1.
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n

stf(k) = k-% Lax1. - (4.60)

It may be instructive at this point to briefly analyze

_ the concept of self-similarity, and the meaning of the

coefficient a (slope of the spectrum in a log_-log,plot).

Self-similarity, or fractal behavior, can be thought of as the

property of certain physical phenomena to repliw.tg themselves on

many scales. This means that certain identifiable fluctuations,

structures, patterns, etc., appear to replicate themselves at
different length scales, ©provided a simple s_imilarity
transformation. Mandelbrqt (1983) eqused the theory of
deterministic and random fractal geometry, and invéstigated its
naixifestat;ons in nature. In parficular. Mandelbrot proposed to
use thé Ffactional Brownian Motion (FBM) as a random fractal
model of landscapes, and in other applications including
hydrological time series and geophysical spatial series
(Mandelbrot and Wallis, 1969). More recent studies along these
lines include Mandelbrbt et al. 1984 (metal fracture surfaces),

and Burrough 1981 (spatial analysis of soil granulometry).

The Fractional Brpwﬁian Motion is & special class of
statlonafy—incremént random .process possessing the property of
self-similarity (more appropriately "self-affinity”). That is,
an FBM process f(x) 1is self-similar if its increments are

statistically invariant under the : transformation



231
Af(x) -i)\-HAf()\x). The parameter H is the Hurst coefficient

(or Holder coefficient, as Af satisfies a Holder condition).

A complete review of the properties of one-dimensional
FBM processes can be found in Mandelbrot and Van Ness (1968).
Note in particular that the usual Brownian motion corresponds to
H = 1/2. The FBM processes obtained for 172 (H <1 are
"persistent” (positively correlated increments), while
0 <H<C 1/2 gives "antipersistent” processes with negatively
correlated increments. The spectrum of the FBM is precisely that
of equation (4.66) with a = 2H + 1. Observe that the Hurst
coefficient is close to zero for the log-conductivity spectra

shown in Figures (4.4), indicating a very noisy, ani:icorrelated

behavior within the range of scales available to wus

(1 ft - 300 ft). This finding seems in accordance with the
survey by Burrough (1981), who obtained a low Hurst coefficient

for sand and clay fractions (H = 0.2)..

Incidentally, note that the Hurst coefficient could be
evaluated directly from sample functions in physital space rather
than spectral densities in Fourier space. Indeed, for an FBM
process, the “core function” (variance of increments) takes the

form:

cu(®) ~ g1

[N
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where § 1s the lag distance. For the data of f‘igure 4.4, the
core function would be nearly flat since H =~ 0. However, this
‘would need to be checked direct_ly by plotting the core function
without detrending the log-?conductivity data. Other methods, such
as "R/S analysis”, could also be applied: see Mandelbrot (1983)

for reference.

At eny rate, the available data shown in Figures (4.4)
do indicate that the self-similar spectrum (4.66) w.ith exponent
one is a reasonable_mbdel. at least within the range of length
scales 1 - 3OIOI-ft. ‘One should keep in mind that the- spectral
densities obtained at wavenumbers on the order of inverse domain
size or below are unreliable. In our opipion. even the estimated V
confidence intervals (dashed lines in Figures 4.4) cannot be

trusted in the low wavenumber region of the spectrum.

According . to - the  previous - discussion, the
one~dimensional spectrum of log-conductivity can be approximated

as a band-pass' self-similar spectrum with Hurst coefficient zero:

), [Seslkil for LTI ] g 7
Sps’ (k)) = . (4.67)
: -0 otherwise

‘'Furthermore, we now adopt the view that the large scale cut-off L
represents the size of the region in vhich flow or transport

takes place (which may evolve in time), while ¢ represents some
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fixed small scale on the order of measurement spacing or perhaps
sample size. The intercept of the spectrum at the origin (in a
log-log plot) could be thought of as an intrinsic measure of
variability of the formation independeht of the .particular
cut-off scales L and &. Accordingly, we define the "intrinsic

variance” of log-conductivity as:
08 = Sg. (4.68) .
On the other hand, the "observed" variance of the

log-conductivity within the range of scales (2,L) can be computed

by integrating the 1D band-pass spectrum as follows:

2-1
» go L
0; =2 J ) I-‘Tdk, = 203 En(-e-). (4.69)
L

Note that a? is scale-dependent, being a slowly varying function
of the ratio (L/2). In particular, it is interesting to note
tln; the "observed” variance of the log-conductivity increases

logarithmically with domain size.

We now generalize this approach for the
three-dimensional case, assuming that the log-conductivity is
statistically tsotropic. First, note that the one-dimensional

spectra displayed in Figure 4.4 were obtained by Fourier
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transfoi‘ming the log-conductivity data sampled along a2 single

direction. This yields a one-dimensional marginal spectrum,

related to the full 3D spectrum by:

s{p ) = J J 8 ek o) dks di

Let us now define a three-dimensional isotropic band-pass

self-similar spectrum analogous to {its one-dimensional

counterpart:
2
OJo - -
—_— for L'I¢ k ¢ &7t
See(k) = 27k® , ' ' (4.70)

0 otherwise

whexje k 1is the radial ‘wavenumber: -

k= \ka+k§+k§ .

By plugging equation (4.70) into the equation preceeding it, one

obtains the one-dimensional mrgii;al‘ spectrum c:orrespondiﬁg to

(4.70). It turns out that this spectrum approximates quite well

the one-dimensional spectrum of (4.67), at least far enough from

the cut-offs. as shown béiow: |
. ,

S, (k =a=[ ] forLl«k <<e1
W) =% | o (k=+e 2y% T—T ‘
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Since the a;bove spectrum agrees fairly well with the 1D
spectral data displayed in Figure 4.4, this justifies our choice
of the 3D spectrum (4.70) ~— assuming only that the formation is
statistically isotropic. The more \general case of anisotropic

media will not be discussed here.

To comi:lefe this preliminary investigation, note that
the "observed” finite-domain variance of the log-conductivity in
3D space can be obtained by integrating the isotropic spectrum

(4.70), leading to the same relation as in the 1D case:
o2 = 202 en (L/2) ' (4.71)

where L-and & are now the raciia.l cut-off scales in 3D space.
Again, note that a; increases (logarithmically) with domain
size. We are now ready to investigate the stochastic flow
problem with the one-dimensional and three-dimensional band-pass

self-similar spectra defined above.

4.4.3 Stochastic flow solutions for band-pass self-similar
spectra:

We now proceed to develop first order spectral solutions
following the method already used in Chapter 3. It is important

to note that the log-conductivity fields having band-pass

!
ey
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self-similar spectra (4.67) or (4.70) are, by conistru!ction.
statistically homogeneous in infinite si:ace. As in Chapter 3, we
assume again that the mean log-conductivity is a-uniquely defined
constant, as well as the mean hydraulic g»ra.dient:. However, we
must emphasize the fact that these assumptions do not take into
account the influence of domzin size on the "observed” mean
values. Admittedly, the present approach will be only of limited
interest if one 1insists on sta‘ti»onarity in the mean as a
requisite for obtaining traétable solutions. Postponing to a

later stage this delicate point, we examine here strictly the

-

‘solutions obtained by applying the standard first order spectral

“method with the band-pass self-similar log-conductivity spectra

defined above.

For the head variance, the effective conductivity, and
the longitudinal macro-dispersion of =a convected soiuté (as
defined by Gelhar and Axness, 1983), ' the calculations are
straightforward and need not be deté.iled here. Rewllﬁ only\ that
J represents the constan't>'niean hydraulic gra.dient (é}ﬁpectation
or infinite domain aire"ra;ge).' For bne—dimehsional flow, iviﬁh the

log-conductivity spectrum (4.67). the head variance is found to

 be:

o2 = o3 J* (L2-%) | (4.72)
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For three-dimensional flow, with the isotropic spectrum (4.70),

the head variance is:

o2 = 3 of J3(L2-2?) (4.73)

Wi

In comparison, the results obtained respectively for a
1D hole-exponential model (Gutjahr and Gelhar 1981) and the

3D Markov spectrum were, respectively:

o2 = 02 J2 A, (4.74)
a; = Lo,  (4.75)

Note that the A's do not necessarily represent the same length

scale in (4.74) and in (4.75). Nevertheless, it is interesting

to note that, when & <{ L in the band-pass models, then the:

results obtained with the band-pass and continuous spectra are
similar in form if one replaces a? by 08 and A by L Since L
represents the domain size in (4.72) and (4.73), the head
variance obtained with the band-pass spectra appears to depend
mainly on large-scale structures, and not on small-scale
fluctuations. For instance, assuming & << L in (4.73) yields the

simple result:

meen ao
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w

“ﬁ ~ L o2 J°L2 ' | (4.76)
vhere 0% is the "intrinsic" log-conductivity variance and does

not depend on the domain size.

For the 3D effective conductivity, one obtains formally
the same result as with the 3D Harkd# spectrum used in Chapter 3,

namely:
Kis = K, exp(03/6). (4.77)

However, remember that L now represents the observed
fini te-don;ain variance of the log-conductivify within the range
of scales (£,L). Accordingly, plugging (4.71) in (4.77) gives a

scale-dependent effective éonducttvt tyl:

K,‘,=KG~(% A o (4.78)

For the data of Figure 4.4.a, the intrinsic
log-conductivity variance o3 1s on the order of 0.06, so that the
rate of growth of the effective conductivity with domain size is
quite slow (+10X¥ for an increase of L .by 2 orders of
magnitude). Note however that "this example corresponds to &

mildly variable formation (a; = 0.67 from equation 4.71 with
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2=1ft and L = 300 ft). For highly variable media, we expect
values of 03 on the érder of 0.3 -0.6. In these cases the
effective conductivity (4.78) could increase by a factor of two
or more as the domain size L increases by two orders of

magni tude.

It is interesting to note that this "size" effect is
captured by (4.78) based solely on the standard spectral theory
of stationary flow fields previously developed in Chapter 3. The
increase of effective conductivity with domain size can be
interpreted as follows. When the size of the domain of interest
is allowed to grow, larger heterogeneities are included. The
high conductivity zones outwéighi: those of low conductivity. due
to the high degree of freedom of fluid trajectories in- a

three-dimensional isotropic medium.

In one dimension, the situation is reversed. Indeed,

the one-dimensional effective conductivity is the harmonic mean:
Kyqy = KH= KG exp(-a?/2). (4.79)

Expressing, as before, the observed variance a; in terms of the

intrinsic variance o032, we obtain the 1D effective conductivity:

-———
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5 «L-a% L
Kyy = KG. (-é-) N P S (4.80)

2

‘Thus, for o2 on the “order of 0.3 - 0.6, the effective

conductivity of a one-dimensional flow system will decrease by
one order of magnitude when the domain size is increased by two
orders of magnitude. This is dué to the low degree of freedom of
fluid trajectories 1in one dimension. As dpﬁain size 1is
increased, larger heterogeneities are included, and the low
conductivity zones outweight the high conductivity zones
(consider what happens if an imper;'ibus ,:ln?:iusii:h is placed_ in a
1D flow system). Finally, the two-dimensional case appears to be
special. The effective conductivity is equal to the geometric
mean, and does not depend on domain size, unlike the 1 and

3-dimensional cases.

The same @approach .can be used to evaluate the
macro-dispersivity of a convected plume. Following Gelhar
(1987), the longitudinal macro-dispersity at large times is given
by:

Z
Ay = 5_—’2’- H $1q4(0.kz ko) dkz dka.  (4.81)
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Using the flux-based flow equation (Section 4.3) and plugging the

3D Band-Pass Self-Similar spectrum eventually leads to:

Sq Q? 2 [ ! ]3 1 (4.82)
194 k - ry ——— 1 - enamem ® 4.
q (—) 2r X2 K3

with the provision that S‘:l q vanishes outside the wavenumber
112

range (L-l.e-l). Plugging (4.82) into (4.81) and integrating

gives finally:

Ay =02 o (L-2) |. | (4.83)

This last result suggests that the macro-dispersivity could grow
“ linearly with the size of the plume, due to the fact that a wider
range of conductivity heterogeneities will contribute to
mechanical dispersion as the plume grows. However, equation
(4.83) is admittedly oversimplified, due to the "large time"
~assumption that was used. Nevertheless, the result does suggest

that the macro-dispersivity could increase in time as:

Ayq(t) =03 * L(¢) (4.84)

where L(t) is some typical global scale characteristic of the

plume. This relation indicates the occurrence of a positive

o
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feedback: =a large macro-dispersivity enhances spreading, which

4n turn yields a larger macro-dispersity.

In summary, the new spectral solutions obtained with

‘band-pass self-similer spectra reveal the influence of domain

' size. For a given‘heferogeneous foruétidn. the émlyéis suggests

that the 3D head standard deviation and the longitudinal

macrodispersivity increase like domain size, and the 3D effective

: conductivity incrjéases slowly as a small power of domain size.

In one dimension, though, the effective COﬁductivity decreases
with domain size. This behavior was found to be physically

realistic based on intuitive arguments.
4.4.4 Uncertainty and "spectral cdnditioning"

We now proceed to develop furthel-"" the finite-domain
approach, building on previous results obtained with the
Band-Pass Self-Similar spectrum. ‘Our purpose here is to show how
the effects of local trends could be taken into account by using
the idea of "spéctral conditioning”. This will be illustrated
summarily for the simple case of one—dimeriésional f lpw in & random
self-similar medium, ‘with a prescribed uniform méaﬁ flow at the

regional scale.
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The idea of "spectral conditioning™ —— to be described
shortly —— was borrowed from a similar technique used in the
Fourier-Space version of the Renormalization Group Theory of
critical phenomena in statistical mechanics and quantum physics
(Wilson and Kogut, 1974; Wilson, 1975; Wilson, 1983). Wilson's
version of the Renormalization Group Theory involves defining an
average state' (nﬁgnetintion) over regions of a given size '(L)
by truncating a spectral representation to include only the low
wavenumber range (0 { k ¢ L-l). and obtaining effective
properties (a Hamiltonian) by conditionally averaging over local
fluctuations (k > L-l). In fact, this is just the first step of
the whole renorﬁwalization procedﬁre. which involves iterating and
re-scaling to advance towards a fixed point solution. The
approach proposed here does nof 1nvol§e the whole recursion, but
uses the idea of conditioning low frequencies while solving for

higher frequencies.

Consider now the one-dimensicnal stochastic flow

equation:
d*H . dF dH 85
12 + dx dx =0 (4. )

where the log-conductivity F(x) is a random field whose spectrum
is Band-Pass Self-Similar, with cut-of f wavenumbers

('.fls k se"l). Suppose we are interested in finding some

v
1
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statistical characteristics of the flow within a doxiain of size ‘

L 'compr:lsed between 4 and ¢. This. is 1illustrated in

Figure (4.5). The small scale & corresponds to the measurement

scafle or spacing; the intermediate sca!e L. represents the size
of the flow doma#n "rof interest (perhaps the size of a
contaminated zbf;e);: and the large scale ¢ 1is a regional scale
such §Mt the iog—'conductlﬁty spectrum is roughly self-similar

up to f luctﬁation scales on the order of ¥. If & piece of size

L of the sample function F(x) 1s isolated as shown in Figure

(4.5). it will appear that the mean value f(x) estimated over

‘the domain of size L 1s different from the regional mean <F>.

Our main purpose is to incorporate this kind of effect in the

stochastic equation (4.85) by way of ".sp'ectral conditién:lng".

We now develop the spectral qondi.tioning approach to
solve equation (4.85). The key to this approach consists in

writing the spectral representation of - F(x). a

'stb.tionary-ergodi;: ra.ﬁdbm "fierld. in such a way that ' the

wavenumbers above and below .L"1 are clearly distinguished:
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Figure 4.5: Illustration of the spectral conditioning method:

(a) Spectral density versus wavenumber on a
log~log plot

(b) Sample function of log-conductivity in
space (Mt. Simon data).
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F(x) = <F> + F(x) + £(x) = <F> + £(x)

T(x) = _r Jkx aZ (k) (4.86)
-1 -1 -
¢ <lklsL

T(x) = I I az_(k)
-1 -1 |
L ¢lk|ge

In these equations, <F> represents the ensemble average of
log~conductivity, equivalent to infinite domain average by -

stationarity-ergodicty of F(x) (in praétice. this corresponds to

the regional mean). The perturbation f(x) was split in two

components. The first component is a smooth trend -f-(x) involving

only those fluctuations of scale larger than domain size L, and

“the second 1s a rapidly fluctuating component . f(x) involving

higher wavenumbers. As the size of the domain becomes large (on
the order of the regional scale ¢ or larger) this representation

yields the usual infinite-domain spectral representation with:

f(x) »0
£(x) - £(x)
F = <F> + £(x).

Let us now "freeze” the local trend f(x) by assuming

that the Fourier coefficients at low viavenumbers are known. This

_procedure boils down to conditioning the local log-conductivity
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field with respect to its large scale fluctuations and to the
specific location of the local domain of interest. Say for
instance that x5 defines the locatioh of the center of the flow
domain:

Xo ~ESxX X+ 5.

Thus, f(x) is known when the position X, of the domain and all
fluctuations on the order of domain size or larger are known.
Plugging (4.86) in (4.85) while holding f(x) fixed yields a
stochastic equation driven by the local fluctuations ;(x). as

will be seen shortly.

We now introduce a spectral representation for the head

process as well. Using the same model as (4.86) gives:
H(x) = <H(x)> + h(x) + h(x). (4.87)

Plugging (4.86) and (4.87) in (4.85) gives finally the stochastic

flow equation in the desired form:

z 2_ ~ — ~ -— e
d<H>+dh+d2h+[df+df [gxdl)+dh dh

af | daf dh (dhl _ o5 . (4.89)
dx3  ax? dx3 Ox dx dx - odx

Upon conditional averaging (in the sense described earlier), the

N

conditional fluctuations f and h vanish. This yields a
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conditional mean equation: |

e | d*h  dF aad> | dF @__[
dx2 ax®  ax & dx dx

1% zl
18

(4.89)

Note again that the "bar” sign stands for a conditional s_pectralh

- average as defined in (4.856). By subtracting (4.89) from (4.88).

one also obté.ins the equation governing the local head

perturbations h conditioned on regional scale fluctuations:

¢*h , df dab  df h , dFdh __ g (o)
dx2 dx dx dx dx dx dx dx dx dx & J|[°

Neglecting the second order perturbation term on the right-hand

side gives finally:

a®h  df dCH> , df &k . dF &b _
e H & e & = | (4.90)

‘Before attempting to solie (4.90) for ﬁ(x). we need
some information on h(x). This is obtained by solving (4.89)
for": h(x), with F(x) considered now as a random function (ﬁot a
prescribed deterministic function). This may be called the
"unconditional solution step”, Aw'hefe; ?(x) is allowed to vary
ra.ndomly over all poSsiBlé fluctuations ‘larger than 'L.'and"over

all possible locations x, (midpoint of the local flow domain).
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Accordingly, we now apply ensemble averages to equation
(4.89) in order to obtain the unconditional ensemble mean and the

unconditional perturbation equations:

42an af db df dh
= Ex T ‘Ex

We now neglect the high order perturbation terms appearing on the
right-hand sides, as we did in the formal "small parameter”
expansion developed in section 3.1 of Chapter 3. Thus, we obtain

finally:

d2<H>
dxz

~ 0 | (4.91)

and

Q:E-} -d:—f._—d<H>~

0. (4.92)
o . Gx

Equation (4.91) implies that the ensemble mean (61'

regional) hydraulic gradient is constant:
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J=-5 | (4.93)

Plugging this into equation (4.92) governing the perturbation of

the local mean head, yields the simple result:

18
R

Jo£(x). _ (4.94)

This relation .makesr sense intuitively. The term (- -g%)
represents»the "pex-'fur'-bation'of the local mean:hydraulic gradient
with respect to the regional gradient (J): 1t is positive if
the local mean log-conductivity is smalle_r than the regional mean
(T negative). Thus, the local mean hydraulic,gradient will be
higher than the regional mean if the local mee.m’ log—conductivify
is lower than its regional mean (the term "local” refers to
domain size L). This behavior is suggested more directly by the
form of the Darcy equation in one-dimensional space:  the

hydraulic gradient is inversely proportional to the conductivity.

Ve may | now attempt a spectral solution of the
conditional perturbation equation (4.90), by plugging (4.93) and
(4.94) while holding :f(x) fixed (nbn—rindom). This gives the

required stochastic equation for the local head perturbations:

(4.95)




251

It is important to note that ?(x) is by construction a slowly
varying function. compared to the rapid oscillations of ;(x).
This suggests approximating equation (4.95) by letting df/dx be
some average slope, and f some average level of f(x) within

the flow domain, as illustrated in Figure (4.5).

With this provision, equation (4.95) becomes a linear
stochastic equation which can be solved by the standard spectral
method in Fourier space. - The result is given below in terms of

Fourier-Stieltjes increments conditioned on the values taken by

T and df/ax:
azy(k) = - J (1-F) —E— azz). (4.96)
2 o

~ df,
L

This gives the conditional head spectrum:

1

k) = J2(1-f)? ——:{: St (k) (4.97)
kz-l-(-d)—‘

where S}’E(k) is the conditional band-pass self-similar spectrum
o3/k. vanishing outside the range L-1 €k ¢ e’l. Note that the
low wavenumber range (k ¢ i.-l) has been incorporat‘ed entirely
into the terms f and df/dx, the local mean level and local

trend of log-conductivity.
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The conditional head varience obtains directly from

(4.97) by integrating over the wavenumber range (L =1 & ) This

—

gives after some manipulation and replacing (l—f ) 'by (] -,
~. o2F 1+ ( dEy*) 2 -
a; = 03] =— - en —x__ % (4.98)

1+( ) “e2

Incidentally, it is interesting to note that this expression
gives the correct head variance as L goés to infinity (L>>¢).
Indeéd in this case, the local and 'regioné.l means coincide,

yielding f = 0 and gi =0, and it can be seen from a Taylor

development of the logarithmic term that the right—h‘and side of
(4.98) will coincide exactly with the previous result (4.72).
Recall also that the conditional log-cnnductivity variance,
obta.‘ined by integrating 'the log-conductivii:yv sﬁectrum in the
range Ll ¢k el depen(is. on domain size as in equation
(4.69), that is: |

;f =2 ¢::§'<L’n(!e":-)’.'i o T (4.99)

The last step of the spectral conditioning method
consists in a.na.lyzing the local head variance (4.98) as 2 random
parameter when F(x) is ‘viewed as & random field. Indeed,

remember that f was defined in (4.86) as the difference between
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a local and régional mean: the spectral content of T(x)
coincides. with the spectrum of the log-conductivity in the
wavenumber range 2-1 €k ¢ L—l. Accordingly, ;; can be viewed
as the local head variance due to spatial variability at the
local scale L; at the same time, ;; also appears to be random at

N

the regional scale <. The randomness of aﬁ arises from
uncertainty among all possible realizations of the regional
formation, and should be understood in the Bayesian sense, that

is in terms of risk analystis.

In order to evaluate explicitly the uncertainty on o2,
let us compute the ensemble variance of the random terms

appearing in (4.98) for the case LSg:

Var(F) = 203 en(§)

df 1 1
Va.r(-&) = 03 (I; - ;;) .

Plugging these values into (4.98), we obtained after some
mnipdlations a rough estimate of the coefficient of variation of

the local head variance:

~ en{1+03(1-¢2)}
C.V.(qp) ~ 1 - exp{-2~12038n (1/e)} - (4.100)
: . 05(1-¢?)

d
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vhere e 1is the length scale ratio L/¥. Using hypbthetical data
for a fairl;f heterogéneous formation '. (aﬁ’z 0.5) with ‘a domain
size gbout one order of magnitude smaller than the regional scale
(¢ = 0.1), yields a C.V. on the order of 100% - In addition,
equation (4.98) shows @re specifically thati the local head
variance is larger than its expectaﬁion if i:he local mean of the

log-conductivity is smaller than the regional mean value.

A similar analysis can be carried out for the effectiuve
conductivity. First, the Darcy equation can be used to define a
local effective conductivity ﬁef{' conditioned on regional scale
fluctuations. Second, the uncertatnty on Eeff ~can be computed
by averaging over the ﬁnye;olved f luctuatit;ns (terms involving
T(x)). Using previous résu1t§ (equation: .4..94). the Darcy

equation can be expressed as:

-~

) L -y Te D

Q = - KG
vhere the flux Q _:lﬁs_necessarivly; constant for 1D flow. Taking
conditional expectations with respect to both sides (with T(x)

fixed), and linearizing the exponential term gives:

——
~ ~

T2 ~
Qs -k (-0 TRy Y
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Using previous definitions, the second term on the right can be

computed by spectral integration as shown below:

Q‘T?; al

I Sk <ZgedZ>.

LY |ge™

Plugging equation (4.96) for dZ;. and using the band-pass

self-similar spectrum for the log-conductivity finally leads to:

where the local effective conductivity is given by:

K. =K, {1-4+02m®
eff = Ko 3~ * o0 (3

- (1)+203 [g e ]}

1+a%L2

and a = df/dx. After rearranging and replacing terms like (1-?)
by exponentials, we obtain a more realistic expression for the

local effective conductivity as follows:
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~

Kers

~
-

-F T2 -F 212 )
K.+ expi(1-2e T)eo2en) + e 72 o2 en|12L)1 | (4.101)
G ¢ 1+a28?

This efft;ctive conductivity is local to the flow domain

of size L, in the sense that it is conditioned on the local

mean (l{c ef) and the local trend (a = df/dx). As the domain
size increases, these parameters converge to the regional mean
values (f=0 and a =0). In that case, equation (4.101)

converges to the harmonic mean:

-o%én(g) -02/2
=K, e L K. e £
Ko =X - =kge

as expected. | Mofeéver. -equation (4.101) showsi that the local
"effect_ive coficiuctivity ‘tvirqps below the #.rithmefic mean if the
local mean level of #n K happens to be smller than the regional
mean (¥ < 0). Finally, the variance of iEeff could be computed
“from this equation by letting f(x) be random, and applying
| en#émbié a;ve‘raliges to revsolve‘ the uncevrtainty‘ due to low

wavenumber components‘(régional scale f luctuafions).
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In summary, the "spectral conditioning”™ approach based
on a band-pass self-similar model of the log-conductivity
spectrum was used to evaluate the effect of domain size on "large
scale” flow characteristics. This led to closed form expressions
for the head variance and the effective conductivity in a finite
domatn. Moreover, we have shown that these statisticalA
quantities were themselves subject to uncertainty due to
heterogeneities on the ord;r of domain size or larger. The
solutions obtained for the case of one-dimensional flow

incorporate such uncertainty in the form of two simple random

parameters:
(1) The local mean "levél" of conductivity (Kcef):
(i1) The local mean slope of log-conductivity (a=df/dx).

These local parameters were defined by smoothing out the local
fluctuations of ¢&n K, i.e. those fluctuations whose wavenumber
is higher than the inverse domain size.. Their spectral content
is concentrated 'exclusively in the low wavenumber range, which

decreases as domain size increases.

The whole approach leads to analytical results that
distinguish the uncertainty and spatial variability of phenomena
taking place over finite scales. This may be particularly

relevant for the case of a subsurface contamination plume
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spreading from a local source, where there is some uncertainty
about the location of the center of mass and the extent
(macro-dispersion) "of the plume at early times. It would be
interesting to examine how this uncertainty decreases as the time
and length scales of the plume vincr‘ease. Admittedly, more work
is needed in order to evaluate the potential of the proposed'
"spectral conditioning approach" for realistié model problems of

stochastic flow and dispersive transport. Last but not least,

.-large sets of conductivity data collected over a wide range of

scales may be needed in order to ascertain the validity of the

proposed band-pass self-similar model. A useful range of scales

for subsurface contamination problems may involve at least three

to four orders of magnitude along each spatial direction.
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CHAPTER 5 NUMERICAL METHOD FOR LARGE SINGLE-REALIZATION
SOLUTIONS OF STOCHASTIC FLOW IN SATURATED OR
UNSATURATED MEDIA

5.1 Governing Equations and Finite Difference Approximations

In this introductory section, we develop é. Finite
Difference numerical approximation for solving large
single-realization stochastic flow problems in three dimensions.
The choice of the finite difference (FD) discretization method is
Justif ied. by considering the numerical requirements | and
computational work involved. The discrete form of the flow
equation (finite difference system) is given. in detailv for steady
saturated flow, and also for the more general case of transient
flow in partially saturated or unsaturated media with nonlinear

and spatially variable coefficients.

5.1.1 - Governing equation and numerical requirements

For simplicity, let us focus here on the case of
$aturated flow in the steady state, postponing to a later stage
the analysis of the more general case of transient and
unsaturated flow. The governing equation for the hydraulic head
H - is easily obtained from the Darcy equation and the continuity
equation. By using implicit summation over repeated indices,

this yields in three dimensions:
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L(H) = - s [K(x)g—i] =0 (i=1.23). (5.1)

‘Here. ve emphasize once again that the flow problem to

be soived is inherently stochastic, since the conductivity is

‘assumed to be & random function of space. But, according to the

single realization approach, we aim at obtaining a numerical

solution of the flow equation for one particulé.r realization of

the random conductivity field K(x). over a large finite domain
with specified boundary conditions. Thus, equation (5.1) is now
considered as a single realization 6f a stochastic partial

differential equation. The flow problem 7"ar.>pears" to be

deterministic and may be solved, 1in principler.' by standard

~

numerical methods.

On the other hand, recall that the idea of the
single-realization approach is to obtain the statistical

properties of the flow field by postulating the equivalence of

spatial averages and ensemble averages\. The flow statistics

obtained in this manner should be unique, independent of the

' particular realization, prb;*ided that the flow field 1is

statistically':"Aﬁomogeneous”" and ergod.ic and the domain is
suff icientl;r- iargé. In this framework.f l:hej numer:’l.ee‘.l solution of
the single-realization problen:x l re'quires. spécial care regarding
the numerical method to be used. The ;iifficulty' is that the

" local conductivity K(x) fluctuates wildly in space, vwhich
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requires a high resolution mesh in order to captur;e the detailed
features of the flow field. On the other hand, the domain must
be large compared to the largest scale of fluctuation of the flow
field, in order to guarantee the equivalence of spatial and
ensemble statistics by the ergodicity hypothesis. These
considerations imply that the size of the computational grid may
have to be unusually large to capture the f luctuations of the

flow solution over a reasonably wide range of scales.

For a preliminary evaluation of' statistical
" requirements, one may use the &n K-correlation sml;a 7\i as an
indication of the typical scale of fluctuation of the solution
(the index i refers to the spatial direction ?‘i)' Let Axi be
' the size of the discretization cell, and L, the size of the

computational flow do:;ain. We require for adequate statistical

resolution:
Axi/)\i « 1. (5.2)

On .the other hand, the computational flow domain must be large
. enough so that many "independent events” can be sampled. In
other words, the domain size must be taken much larger than the

scale of fluctuation, that is:

L,/A » 1. | (5.3)

PR

.
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Now, the number of discretization cells in each direction is:
ni = Li/Axi

and the total number of cells in 3 dimensions is:
N = n‘nzha-

The, requirements (5.2) and (5.3) could lead to ratios Li’“i on
the order of 100 or more, implying that the typical size of the

computational grid (N) could be 1 Million cells or more.

‘Another ma jor point of concex"n is the validity of
classical numerical methods, such as finite differences (FD) or
finite elements (FE) Methods, when applied to an equation like
(5.1) with highly variable conductivities. Intuitively, one
would expect that the error due to discretization dgcreases as op
decreases.  Note for instance that as op - 0, ‘equation (5.1)
becomes just the Laplace e’quation vhich can be solved accurately
(even exactly) v;ith a second order accurate FD or FEM scheme.
The key ~quest16n is: "what happens when df is significantly
differqnt‘ from zero?" The truncation error a.nalys'is to be
developed in the next section will show that the discretization

error decreases with Axi’n\'i" ‘when af’ is fixed. Intuitively,

" this means that truncation errors are small when the solution
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behaves smoothly at the scale of the mesh. We conclude that the
resolution constraint (5.2} is a requirement for numerical

accuracy as well as statistical resolution.

In summary, the 1issues of numerical accuracy,
statistical resolution, and large sampling space, all indicate
the need for solving very large discrete systems (e.g., one
million equations or more). This has led us to the choice of the
T-point centered finite difference scheme for spatial
discretization. The reason for this choice will appear more
clearly in the sequel. Let us briefly mention some of the
arguments in favor of this discretization method. First of all,
the resulting systen; of ‘equations is very sparse, ﬁymnetric _and
can be solved efficiently by fést iterative methods based on
matrix preconditioning, such as the Strongly Implicit Procedure
(SIP) and the Incomplete-Choleski Conjpgate Gradient (ICOG)
methods. Moreover, the algebraic properties of the coefficient
matrix arising from other discretization methods, such as
Galerkin, would not be as well suited to fast solution methods.
In our view, the centered finite difference scheme essentially
glves the most sparse and best structured algebraic system among
all discretization methods consistent with the governing flow
equatjon. Based. on these remarks, most of our efforts were
devoted to developing efficient solvers for large finite

difference systems having spatially variable (random)
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coefficients. This will be developed in detail in Section 5.3
(for linear systems) and in Section 5.4 (for unsaturated
nonlinear systems), following the truncation error analysis of

linear flow systems presented in Section 5.2.

We now proceed to éevelop the finite difference
approximations,. first for the steady saturated flow equation,
then»ifor the transient unsaturated flow gﬁuation with nonlinear
coefficients. The stochastic nature of the coefficients in these
equations should always be kept in mind, particularly for

purposes of error analysis.
5.1.2 - Finite difference in space for steady saturated flow

[2] Derivation of the Finite Difference System:

The 7-point centered finite difference approximation of
theAstead_x} state flow equation (5.1) obtains by approximating the
Darcy flux q4 = - K(g)gxi by the centered difference scheme:

1
T : H ;. — H
ol o W 1+1,3.k i,
(X4 5.0 = Kiag 5.k [ ax,

J—E] (5.4)

Note that gq, is evaluated at the .mid-nodal point’ L Y, .k .of

an orthogonzal grid where nodes are located at The

xi’J'k.
derivative %‘L is then approximated again by the centered
1
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difference:
K . qi(xi+%. .k) = Q1(xi-%.1.k)
-S:'(xi,j.k) ~ L! - (5.5)

at the node points x4 3.k By repeating similar approximations

for the terms 99z and %. one obtains the Finite Difference
Oxa Ox2

system governing the hydraulic head at the nodes of the

orthogonal grid. For convenience, we use the friple-index

notation as shown below between brackets:

fol = (1.§.k)
[12%]=(i%%5.X)
[1£1]=(i41,4.k)

etc.

Accordingly, the FD system for heads can be expressed as:

Ly(H) = - XOHL . grygg - EUﬁ} .+ H3-11 - SEEL g
(Axq) (Axz) (

. {K[i-%hK[Hﬂ o KLISIKTg#] | K[k-#]+K[ke4] } « H[O]
(Ax,)? (Axz)? (Ax5)?

- K[1+4) | prieqy - KO grgeng - KL L gy =0
(Ax,)? (Axz)* (4x5)?

(5.6)

- emted
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and the Darcy flux vector (5.4) can be expressed in terms of the

discrete head solution as:.

qu[1#4] = K[1+4] - FLALIHID

R R R (5.7)

qalk#4] = K[kes] - Hke1l = HO] |

where H[O] sta.ncrls‘ for the head at the central node H(i,J.k).

The FD; system (5.6) comprises"N éﬁuations: one equation
per node. Equation (1.‘j.k) reiates tlie.unlmown at node (i.3.k)
to the .unknownAat‘ six neighboring nodes (iﬂ:l.j:!:l._‘k:tl) as |
illustra:ted in E:rigt_xr 'i-ev 51 repfeseﬁting the 7-§§int FD molecule
in space. Note that mid-nodal conductivities like’ K[ﬂ%] stand
for point values of K(g) at x = xi+%.1.k‘ -7 Since only the nodal
values of K(x) are known, the mid-nodal conductivities must be
approximated by some weighting scheme, such as the geometric mean

of nodal conductivtties:

K[1+%] = JK[0] ¢ K[1+1]

or in more explicit triple-index notation:

K(i+%,§.h) = K(1.].k) ¢ K(i+1,].k) (5.8)
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Figure 5.1 Seven-point centered finite difference molecule for a
three-dimensional orthogonal grid of mesh points.
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The geometric mean weighting scheme was preferred to
othe; _-schemes used in the literature (such as the arithmetic mean
and the harmonic mean) based on the findings of the spectral
theory concerning - the effective - conductivity of a
three-dimensional random isotropic formation:

272 o 2/6 a.2/2

f f

-a
£
Ky = Ke <Kgpp = Kee <K, =K, e (5.9)

Equation (5.9) shows that the flow at the large scale is governed

- by KG more closely than KA or KH This suggests that the

flow at smaller scales is similarly governed by the local
geometric mean cdhciuctivity .(5.8)'.‘ more .closely ‘than by
arithmetic or harmonic averages. To. complefe_ this a.nalt;gy.
observe that the ‘discrete conductivity field will appear more

nearly isotropic at the mesh scale if the .mesh size is chosen

- proportional to the conductivity correlation scales in all three
"directions (Ax./A; = Axo/A; = Ax3/As). This seems to be a

~ desirable property in order to avoid artificial grid-induced

anisotropy.

Other criteria for 'a "best™ conductivity weighting

" scheme were proposed in the literature (e.g., Narasimhan et al.,

1978). Their arguments do not appear - convincing enough to be

teken into account, as truncation error analysis shows that the
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weighting error I?[iﬂ&]—l([iﬂé] remains of order O((Ax/A)?) for
all consistent weighting schemes such as KH' KG' KA‘
Intuitively, when the mesh size is such that Axiﬁ\i is the same
in all directions, the geometric mean weighting scheme appears as
a good compromise between the arithmetic mean (exact for layered
systems with flow parallel to layers) and the harmonic mean

(exact for layered systems with flow perpendicular to layers).

We now focus on the structure of the linear FD system

(5.6). In matrix notation, this system can be expressed as:

-~

h=b (5.10)

W=

where K is the coefficient matrix, or 'conduc':tivity matrix of
size N = nynan; for the 3D case (boundary nodes éxcluded). The
vector h represents the nodal head values, and b is a vector
containing boundary conditions such as fixed head and fixed flux.
In our implementation, this vector was formed by a technique
known as "matrix condensation”: the discretized boimdary
conditions were used to express the unknown at the boundaries in
terms of the unknowns at neighboring nodes located inside the
domain. All quantities such (as H or q) specified at the
boundaries were then transferred to the right-hand side of the

system (vector b). The details of this procedure are illustrated

below in the simple case of one-dimensional flow.

|
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Consider the case of one-dimensional flow with fixed
head on the left boundary and fixed flux on the right boundary.
The flux condition on the right is discretized by using =a
centered FD approximation at the 'mid-node located between the
“last and next-to-last nodes (one may consider the physical
 boundary to be located precisely at the mid-node). The finite
difference approximation of Darcyl.equatioh yields:"

_ Hn+1-Hn
L (5.11)

On the other hand, the head condition on the left boundary can be
expressed exactly as:

H(xo) = Ho. | | (5.12)
After implementation of boundary conditions, thé'one—dilixensional

Finite Difference system analogous to (5.10) can be written

explicitly as follows:

+ K ’ K ;
i=1: 0 +K” 4 g, - Iy _+.l.<.*.._.go
. Ax2 Ax? Ax?
K (K, K, ..) K
1 ( i ( n:- J—i o Hi-l + M Iy Hi - -—;ﬁ . Hi-’»l: 0
* . sz sz sz
K K + K K

1=n:_n—%.H-1+n+% nt% _ niY H1_0='qn+x
' AP n Ax? AX? Ax
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The proposed treatment of flux boundary conditions (see
the last equation above) has several advantages over other
schemes proposed in the literature. First, the flux at the
boundary is approximated by the same scheme as used for interior
nodes (compare (5.4) to (5.11)). Second, the coefficient matrix
retains the same sparsity pattern and remains symmetric after
elimination of boundary values, as can be seen by inspection of
(5.13). In the one dimensional case above, a tridiagonal

symmetric system is obtained.

In the three-dimensional case, boundary conditions
similar to (5.11) and (5.12) should be used for each node of the
six planar boundaries. The r_esulting coefficiex"xt matrix § is
7-diagonal symmetric, as illustrated in Figure (5.2). Each of
the six off-diagonal lines contains a few zeroes corresponding to
those nodes that are adjacent to one or several boundaries. For
a cubic domain of size N = n®, the number of such zerces on the
off-diagonal lines is only O(n®), while the size of each line is
about O(n°). On the whole, only 4n® matrix elements need to be
defined, due to the éynunetry and sparsity of the matrix. This is
very small compared to the total number of elements of the
matrix, (n® x n°) including the zeroes. Thus, for a 1 million
node grid (n = 100), the total number of elements in the matrix
is 10'%2, of which only 4 x 10° are actually non-zero. In

addition, it is important to note that the location of the

. -
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o Figure 5.2 Structure of the coefficient matrix for the seven-

: point centered finite difference scheme, illustrated
here for a 3D cubic grid with 27 internal nodes
(cubic domain of side 4Ax). The matrix is symmetric
and has only seven non-zero diagonal lines.

p - ———
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non-zero elements (or non-zero lines) is known exactly. This is
illustrated shown in Figure (5.2), for a small matrix of size
27 x 27 corresponding to n = 3 interior nodes along each side of

the domain.

Furthermore, it can be seen by inspection that'lé is
symmetric positive-definite and weakly diagonal-dominant,
provided that a fixed head boundary condition be .specified on at
least one boundary node. The matrix becomes singular in the case
where all nodal boundary conditions are "fixed flux”. In this
case, é solution to the steady state problem exists only if the
algebraic sum of in-going and out-going fluxes is identically
zero; the head solution is then only defined up to an additive

constant.

Finally, {_(_ has also the "M-matrix property”, that is
all diagonal elements are strictly positive and all off-diagonal
elements are negative or null. This property is required for
certain approximate factorization methods such as Incomplete
Choleski decomposition (Meijerink and Van der Vorst, 1977). More
-gener"ally. many iterative solﬁtion methods rely on the system
being at least symmetric positive-definite in order to ensure
optim‘al convergence (e.g., successive overrelaxation methods).

Positive—definiteness or weak diagonal dominance is also required

.
[
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Afor the vstability to round-off errors of cer-tain matrix

factorization methods, such as the Thomas algorithm' for
tri-diagonal matrices. This requirement 1s' likely tove'xtend to
more general factorization methods: such .as the one considedred in
section 5.2 for the solution of the 7—diagona1 finite difference

system (SIP factorization);

In conclusion, the 7-point centered FD scheme seems

very well suited for the appliw.tion of fast iterative methods.

A"particularly those based on approximate factorization. due to the

sparsity and special algebraic structure of the coefficient

mtrix

[b] - Comparison of Finite Differences with the Galerkin Method:

It my'be instructive to corhpare the sparse FD system
with the Finite Element system obtained by using the Galerkin
method with tetrahedral elements and tri-linw.r basis functions
(details can be found for instance in Huyakorn and Pinder. 1983,

pp 88, 3.5. 1) One of the simplest partitions of 3D space into

tetrahedral elements is obtained from a regular partition of

space into hexahedral elements. each of which is further

subdivided into sik tetrahedra. of distinct sizes and shapes. It
may be of interest to note that there exists no regular partition

of the 3D space with tetra.hedra all of the same size and shape.
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in contrast the 2D space can be partitioned into triangles all of
the same size and shape (see for instance Coxeter’s book "Regular
Polytopes”, 1973).

The Galerkin system for the 3D saturated flow equation

(5.1) takes the form:

]
o

1 (I = 1,eee, N)

N
) 2y
J=1

where N =n® is the total number of nodes for the regular
orthogonal partition of space into identical hexahedra, and the
matfix coefficients ‘aI J are made up of weighted conductivities
over the set of six tetrahedral elements forming an hexahedron.

These coefficients take thei form:

N 6 3
ay=) ) 2 f ?’af,”xcz) dx (5.14)
Hel T=1 1=l

where tetrahedral elements were labeled "nH.T"' The index H runs
over all hexahedral elements (same as total number of nodes), the
index T‘ runs over the si.x tetrahedra comprised in one hexahedron,
and the index i =1,2,3 is related to the three independent
tri-linear basis functions. It turns out that the coefficient
product‘ agi)agi) (1 =1,2,3) 1is gene;rally non-zero for 27

tetrahedra out of 6N tetrahedra on each row (equation) of the



e

o m——y

276

matrix system. This yields a priort 27 non-zero diagonal lines

in the Galerkin coefficient matrix.

In fact, most Finite Elemént eouation solvers ignore

the fine structure of the matrix. e.g. they only ta.ke into

account the bandwidth of the system. (size of the band containing_
non-zero coefficients) The bandwidth is 2n2 +1 for a cubic
domain of size n°. Taking into account the symmetry of the
matrix, this implies that the number of matrix elements to be
processed for solution is about n®, compared to 4n® for the 7
point FD system. In our view, these observations show that the

solution of the Galerkin system would be impractical for large

grids on the order' of 1 million hexahedral cells (n = 100).

Moreover, it turns out that the Galerkin system does not satisfy
the- "M-matrix property mentioned above. This seems to exclude
the Galerkin system as a candidate for Incomplete Choleski and
other approximate factorization methods. | Note that the SIP

method in particular vas specifically designed for Finite

' Difference systems having a simple structure.

Ve conclude again that the 7—point centered Finite
Difference scheme appears the most suited for the solution of

very large flow problems with fluctuating conductivities, due to
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.

the special algebraic properties and sparsity of the FD system.
In comparison, "higher order” discretization methods such as
Galerkin lead to more complex matrix structures, particularly in
the three-dimensional case. We feel that the advantage of using
higher order or smoother numerical approximations may well be
offset by the significant increase in computational work for

three-dimensional, high resolution simulations.

5.1.3: Finite difference in space-time for transient
unsaturated flow .

We now extend our finite difference discretization
method to the case of unsaturated flow, or more generally
"partia.liy saturafed flow”, in a statistically heterogeneous
porous medium. .In what follows, we focus particularly on the
case of transient flow, as fhis is of interest for: applications
like local infiltration in unsaturated soils. However, the cases

of steady unsaturated flow, mixed saturated/unsaturated flow, as

well as the case of purely saturated flow studied just above, are |

all embodied in the general unsaturated flow problem treated in

this section.
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(2] Governing Equation end Constitutive Soil Properties:

" The general unsaturated flow problem in a heterogeneous

| porous medium is governed by the continuity equation

-a—-.tS:(h:)-r-B‘(l.zic)]:-fq—i (i 1.2,3)  (5.15)
ge LOULE X %, = e :

and the generalized Darcy equation=
q; = “K(h.x) - a;;(h + gjxj) (5.16)

wheré:

. S(h.;) is the storage term due solely to watei'-.eoil

} _ compreésibility under positive pressures (em®/cm®)

e B(h,x) s the pressure-dependent,  spatially variable
i volumeti-ic soil water . content relative to an

incompressible soil matrix (cm’/cm®)

e q ‘is tlie‘vflux vector. or specific diecherge rate (cm/s)

e K(h,x) 1is _the pressure—dependent. spatially variable
unsaturated hydraulic conductivity (cm/s)
eh is the water pressure head relative to atmospheric

pressure (cm)

. gy is» a cosine ve'ctor._ ~corresponding to the unit

g acceleration of gravity taken with a minus sign.
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The generalized Darcy equation (5.16) calls for
explanations. First, note that the "gravity vector” g; has
components (-1,0,0) if the x; axis is taken to be vertical
downwards. More generally, g; = (sinv, 0, cosv) if there is an
angle v between x5 and the upward vertical axis. This
formulation makes it possible to simulate infiltration onto hill
slopes and similar unsaturated flow probléms involving sloping
faces. Second, it should be observed that the hydraulic head H
appears implicitly in the generalized Darcy equation (5.16), in -

the form:
H:h'é- ngJ (j =1,2,3)

i.e., as the sum of a prgssufe potential and a gravity potential.
Note that the "pressure head” h may attain very large negative
values in a dry soil, especially in clay soils or in the presence
of active plant roots. In these cases, h should be interpreted
as a thermodynamic potential. The minus hydraulic head (-H)
stands for the energy that must be produced in order to bring
soil water to its free state at a plane of reference such as soil
surface (gixJ = 0). Soil. water is in its free state when H = O,

has negative energy when H < 0, and positive energy when H > O.

We now introduce specific constitutive relations for

the unsaturated conductivity K(h,x). the soil moisture retention
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curve 6(h,x), and the elastic storage term S(h,x). First of all,
we assume that the elastic storage term plays no role for purely
unsaturated flow, provided that vpositive pressures never appear
within the flow domain. This may be realistic in the case of -
infiltration at low flow rate.. On the other hand, it should be
recognized that p_erched water tables or locally saturated zones
are likely to anpear in the case of high rate infiltration in a
‘heterogeneous medium. For this reason. the elastic storage term
.;was'retained in the numerical code. assuming a simple dependence

on water pressure as follows:

S6) h  1f B30

S(h.x) = .| . . . (5.18)
‘ o if h€O

vhere S (g) is the specific storativity (cm ) which accounts for
the compressibility of water a.nd the solid porous matrix under
positive pressures. For _simplicity. Sg can be taken constant
wl'xen the ‘f low system is mostly in the'unsaturatetl regime In
this work S ‘was neglected a.ltogether since most unsaturated
flow simulations concerned the case of low rate infiltration in

' dry soils (Section 5.4.3 and Chapter 7).

The soil moisture retention curve 8(h.x) was assumed to
take the form of a multi-parameter nonlinear function of pressure

" h. ‘possibly with Aspatia‘.lly'variable parameters'; The particular
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model we wused for unsaturated flow simulations 1is the
well-documented Van Genuchten model (Van Genuchten, 1978 and
1080). VWith spatially variable parameters, this model can be

expressed as:

8,(x) - 8,(x)
{1+ EmRte

8(h.x) = 6_(x) + (5.19)

where B is a scale factor (cm—l).‘ n is a real dimensionless
parameter (identified as "VGN" in the flow simulator), Bs is the
saturated soil water content, and 61_ is the residual watei'
content at very high negative pressures. Note that the term
(Gs()_g) - Sr(;)) can be thought of as a spatially variable
"effective porosity”. The B and n parameters could also be taken
spatially variable. However the results of the linearized
spectral theory suggest that the effects of the spatial
variability of 6(h,x) are small compared to those due to K(h,x):
see Mantoglou 1984, and Mantoglou and Gelhar, 1987. For this
reason we will assume constant parameters in the water retention
curve for stochastic unsaturated flow simulations (Chapter 7),
although some of the preliminary numerical experiments developed
in" the present chapter will include uniformly layered soil
systems where both the 6(h) and X(h) curves vary from layer

to layer (section 5.4.3).

The most relevant feature of the constitutive relation
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(5.19) is 1its nonlinear (logistic curve) shape. This 1is

‘illustrated in Figures (5.3) and (5.4) for two different types of
soils (from Ababou, 1981). The location of the inflexion point
is of particulé.r interest, since this is the point where the
~specific soil moisture capacity C(h) = -g—g attains its maximum.

This inflexion point is given below in close form:

h - l_ . 1 - l)lln
nax = 5 ( o '. .
C_.= B+ (6, -6+ (n'=1) - —m) (5.20)

max (m + 1)m+1

wvhere m = 1-1/n. For coarse or sandy soils the maximum capacity
occurs at relatively high p!;essures (hmax) with a narrow peak
compared to finer soils. For example, the maximum capacities for
the Dek Sand and Montfavet Silt soils depicted in Figure (5.3)
ahd (5.4) were, rgspectively:

1

¢ Sand: C__ =2.82x 102 en !, h_ = -245cm

lch =:"344.cm
>mxi

e st Cpo = 0:33 x 1073 em”
Furthermore, the shape of the 6(h) curve indicates that the soil
moisture capacity must be approximately constant in the pressure

range:

.. « - . r-l . ‘V ) . -
b | << B | SRR (5.21)
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Figure 5.3(a) Soil water retention curve 8(h) for the '"Dek sand”
of Senegal. The solid line represents the Van -
Genuchten function fitted to data points (from
Ababou, 1981).
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Figure 5.3 (b) Unsaturatéd conductivity curve K(h) for the "Dek

: 7 - The solid line represents the
exponential conductivity curve fitted to data
points (from Ababou, 1881).
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Figure 5.4 (a) Soil water retention curve 6(h) for the Montfavet
silt, a loess soil from the south of France.
Van Genuchten curve (solid line) was fitted to
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data points (Ababou, 1981).
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" Figure 5.4 (b) :Unsaturated conductivity curve K(h) for the’

Montfavet silt. The exponential conductivity

"curve (solid line) was fitted to data points

(Ababou, 1981).
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In the examples above, f was about 2.3 x 10-'2 for the sand, and

2.3 x 10-:3 for the silt. Acecordingly, it appears that the soil
moisture capacity is approximately constant and close to Cmax in
the pressure ranges (-90cm to -10cm) and (-650cm to -150cm)
respectively for the sand and silt soils. Within these ranges,
the simplifying assumption of a constant capacity used by
Mantoglou and Gelhar (1987) in their spectral theory of

unsaturated flow appears to hold approximately.

Finally, we chose an exponential model for the

unsaturated conductivity-pressure relation; as shown below:

Ky(®) + ep(a(®) (b - hy(©)) 1f K < b ()

K(h.x) = (5.22)

K (%) if b2 h, (x)

When the "bubbling pressure head” hb is taken to be null,
equation (5.22) becomes identical to the model used in the
spectral theory of Mantoglou and Gelhar. Figures (5.3) and (5.4)
show that the exponential conductivity model is in good agreement
with measured values for wet and moderately dry soils. However,
these and other data also suggest that the exponential rate of
decrease of K(h) is not sustained as the soil dries up below a
certain pressure (e.g., h = -600 cm "for the silt). This

limitation of the exponential model will be taken into account ip
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our simulations of field infiltration problems, by using the
field measured initial conductivity (rather than the

field-measured iaressure) for an estimate of the initial pressure

‘based on the exponential conductivity ~model. The initial

pressure obtains by plugging K =4Ki’n (£ iéld—medsured) into the

inverse relation:

1 K
h = z en(l—(:)

v?rhere‘ a aﬁd K; represent uéiﬁg mean ‘vav.luesv. 'ir.x l'ieu of a(x)
and Ks(;_g). ’I'his :expedient procedure may be usefui in cases where
the field-measured initial pressure is outside the ranée of
validity of the exponential model (very low pressure) whereas
most 6&’ ‘ thé hnsaturafed flow process occurs at higher pressures

well within the range of validity of the exponential model.

- In view of the results obtained by- the spectral
perturbation ‘method of Mantoglou and Gelhar, our main focus will
be the study of infiltration iaroblem with the exponential
conductivity curve having both Ks(x_) and ‘a(x) random fields in 3p
space. This, combined with the strong nonlinearity of K(h.x)
witb respect to h, ‘makes the numerical solution of the

unsaturated flow problem a difficult task indeed.
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[b] Time Discretization:

The time discretization of the transient unsaturated
flow equation is now being developed. For convenience, let us
merge the elastic storage and the soil moisture terms into a

single term:
8(h.x): = S(h.x) + 8(h.x)
Plugging the Darcy equation into the continuity equation, .one

obtains the governing nonlinear flow equation for pressure head

or "Richards equation":

86 (h.x)
v o [ - Gorep) -l G2

For the time integration scheme, we choose the fuily implicit
(Backward ‘Euler) two-point finite difference scheme. Denoting
(-L(h.x)) the spatial operator on the right-hand side of (5.23),
the fully implicit time discretization scheme can be expressed as

the first order finite difference approximation:

™1 (h.x) - 8%h.x) _

x) - 1™ (n,x) (5.24)
n+l -
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where Mn+1 =t t Alterﬁa;ively. this finite difference

approximation could also be interpreted es a time integral

approximation. Indeed, by integrating the exact equation (56.23)

- between times (tn'tn+1) one obtains:-

t
: ntl ;
61 (h.x) - 6°(h.x) = - L L(h.x) dt
. . Yh

and, using the mean valt_:e theorem:

6™ (h.x) - °(h.x) _
it

- {r 1" (n.x) +"(1,- 1).L%(h.x)} (5.25)

vhere 0 { v+ { 1. In particular for v+ = 1 one obtains the fully
implicit finite difference approximation (5.24). The more
general class of implicit scheme. corresponds to -;—S ¥<1. The

Crank-Nicholson scheme in particular corresponds to the case

-y = 1/2,

Briefly, our particular choice ~ =1 was based on
results of stability theory and various numerical experiments in
the literature. -First of all, it' is well known that implicit
schemes are ‘unconditionally stable, ' whereas explicit ‘schemes

require for .stability & stringent constraint on the time step.

e R " 8u o 8% ‘ ¥
For the simple heat lequa_.tion 3T=D6x16xi . the stgbility

constraint takes the form (Ames, 1977):
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At ¢ [21) .3 —1——]'1.
o
This observation holds also for more complex cases such as the
nonlinear unsaturated flow equation. Of course, the exact form
of the stability constraint depends in fact on the spatial
-discretization scheme and the linearization scheme. In any case
the resulting stability constraint .is qualitatively of the same
form as shown above. In particular, note that the soil moisture
diffusivi‘tyA D = K/C may become quite large in a wet zone, so
that the time step may have to be dramatically small in order to
. satisfy the stability constrgint. Taking the Dek sand of
Figures (5.3)-(5.4) as an example, and using a value of pressure
corresponding -to the maximum soil moisture capacity, we find
that At { 4.3 sec is needed to ensure the stability of the
explicit scheme on a 3D grid with Axi = 5 cm. For "wetter"”
conditions, the stability constraint would be even more drastic.
This Jjustifies the use of the unconditionally stable implicit

scheme for time integration.

Our second remark is about the choice of the fully
implicit scheme (v = 1) in preference to other implicit schemes
such as Crank-Nicholson (v = 1/2). Numerical experiments tend to
show that the fully implicit scheme is particularly efficient for
the case of the nonlinear flow equation at hand (Vauclin et al.,

1979), although there is no theoretical evidence in favor of one
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type  of implic_it scheme over the other for strongly nonlinear

equations.

[c] Linearization and Spatial Discretization:

¥We now focus on the nonlinear semi-discretized equation
(5.24). In order to obtain a tractable linear system, we propose
an approximate linearization of (5.24) by way of iterative

corrections based on a modified Picard iteration scheme. The

‘procedure is best explained in two steps: (i) linearization of

the right hand side spatial operator, and (ii) linearization of
the left hand side temporal operator. This is described in

detail below:

(1) - Ve use a Picard iteration scheme to approximate
the nonlinear equation (5.24) into a sequence of equations
(k = 0.1.2 ses) where the conductivity appears linearly as
follows: :

en+1 Jk+1

- gt ~ kn4'-1.k+1
Agh.x) 6 °(h.x) _ ag Kn+1 k(h x) * [ahax +gi]]

ntl i
Note that the conductivity on the right-ha.nd side is evaluated
from the previous iteration level By substituting to both sides

the ”residual" :
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n+l,k n n+l,k
gtlk _ {e -6 _ 3 [alk, [ah . 31]]
n+l i

we obtain equivalently the "modified” Picard scheme:

gitl.ktl _ ol k5 ALk, 3 n+l kel nel k n+l,k
- om— © cr— (h —h ) zR .

At 1 c3xi ox
n+ (5.26)

which is computationally more stable with respect to round-off
errors. - For clarity, note that n represents the time level,
while k represents the iteration level. At this point, we have

only linearized the spatial operator -a—g— [K(h) a;-i-(h-!-gi)].
i i

However the discrete storage term involving 6(h) 1is still

nonlinear.

(i1) - In order to obtain a fully linear equation,
the storage term is now linearized by applying the mean value

tixeorem as follows:

k+1
gk*l _ gk - rk C(h) dh
h
= (5 - 1% . 1 - p¥ + mEtY

where 7 is some number in the interval [0,1]. The choice » = 0
would lead to a linear equation in h, as required. We prefer a

more  stable approximation similar - to the chord—-slope
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approximations proposed by Huyakorn. et al. '(1984) and Milly
' (1985), that is: -

[ k+l
2] Jh ) . k+l k
(""" -h
Y PR G )
4 ' » , (5.27)
PN k - 0
- (hk) . G(hk) hs(h )

where all varisbles are for time level (n+1), except h® which
stands for "iteration level (0)". In other words, h® is the

known solution at the previous time level n.

Combining (5.26) and (5.27) we finally obtain a fully
linear semi-discretized equation in terms of the incremental

pressure head ©&h between successive iterations:

E“"l 11‘ o _[Kn+1 Xk = (Gh)] . gLk (5.28)
where: N
5h = hn+1.k+1 - hml.k.
and: ' : .
gLk | {6'“1 ko m [Kn+1 k[ =k ve)]}
n+1 '

In summary, equation (5.28) is a linearized, semi-discrete
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approximation of the original unsaturated flow equation (5.23),
which can be used as a starting point for further discretization

in space. This is examined next.

'l'hev spatial operators appearing on the left and
right-hand sides of (5.28) are now discretized by using the
7-point centered finite difference scheme, in the same fashion as
in the previous section dealing with saturated flow
(Eqs. 5.4-5.7). For convenience, the two spatial operators

appearing in (5.28) will be designated as:

L) = - = (X -Z,’Z—i)

- dK
LG(Y) =-g ° 51-

Applying the 7-point finite difference scheme to the LK-opex_'ator
leads to an expression similar to that obtained for saturated
flow (Eqs. 5.1 and 5.6), with the mid-nodal unsaturated

conductivities defined as:

X = K(h

144, §.k 144, §.%° X144, .00

Furthermore, we use again the geometric mean weighting scheme to

evaluate the mid-nodal conductivities:
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Kiwg, 5.k = JK(hiJk-‘xijk) * Kby, 5.0 %841, 5,10

In the particular case of the exponential conductivity model

(5.22) with a zero bubbling pressure, this gives:

144, 3.k JKs(le.J.k) * K (xg 40"

K
‘ (5.29)
* h *h
. exp {“("1+1,;.k) i+1éj.k *alxg g 1.;.1-:)}

This particular choicé of conductivity wei'ghtvingi was guided by
the results of the spectral theory ct)'ncerning the effective
conductivity in a random unsaturated soil (see Mantoglou and
| Gelhar, 1987). “ Acéo;ding to these authors, the effective

unsaturated conductivity is of the form:

Kg.ff ~ KG * exp{{ah)}

vhere KG is the ensemble geometric mean of the random saturated
conductivity. The conductivity weighting scheme (5.29) may be

Justified by analogy with this result.‘

The Lc-operator‘may be approximated in the same fashion
as the LK-operator'. Using the same index notation as before (see
equation 5.6) we obtain the following centered finite difference

approximation:
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L) = - {%E‘i-(x[ms] - K[1-%])
g2
+ To(KL3+] - K[5-4]1) (5.30)

24
+ Xx—a(K[kﬂi] - K[k-%])}

Mid-nodal conductivities like K[i+4] = I(i +, 3.k are as defined

just above.

The fully discretized, linearized unsaturated flow
system obtains by plugging LG of (5.30) and I..K of (5.6) into
equation (5.28). The resulting finite difference system takes

the form:

& . I+K) . oh = Lk (5.31)

where ; is the identity matrix, l=( is the unsaturated
conductivity matrix, 6h is the increment of pressure between two
itération levels (k,k+1), and r 1is the vector of residuals
including also the vector of boundary conditions. It is worth
noting that the conductivity matrix I__g has exacﬂy the same form
as for the saturated flow equation, with the unsaturated
mid-nodal conductivities of (5.29) replacing the saturated
mid-nodal conductivities of (5..28). As a consequence, the

coefficient matrix:
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ny>
n
e
B
e~
+
il

has the same sparsity pattern for saturated and unsaturated flow.

In both cases, the matrix is a 7-diagonal symmetric as shown in

Figure (5.1). - -

-Furthermore, - the coefficient matrix is strictly

diagonal- dominant in the case where the storage term (C/At) is

. strictly positive for all times and all locations, as would occur

for transient infiltration in a moderately dry soil. As a

- consequence, the iterative matrix solver could converge much

faster in the transient case than in the steady state case (due
to better matrix condition). This suggests that there will be a

trade-off between the requirement of strong diagonal dominance

for faster solution (small At), and the need to minimize the

number of time steps (large At). In addition, & small time step

- may. be required for fast convergence of the nonlinear-Picard

iterations. The numerical experiments of section 5.4 will help

determine the appropriate strategy in that respect.
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5.2: Statistical Truncation Error Analysis
for Linear Random Flow Problems

In this section, we focus on the evaluation of
numerical errors due to the discretization of the stochastic flow
equation. In particular, we develop in detail a statistical
truncattion error analysis of the finite difference approximation
of the steady state saturated flow equation with random field
conductivities. This will lead to some useful results concerning
the order of accuracy of the finite difference method for a
certain class of stochastic equations (random heat equations).
Both the method and results appeé.r to be new in view of the
current literature on numerical analysis. The final results will
be summarized and discussed at the end of this section, notably
in terms of numerical requirements like grid resolution. For
completeness, note that the nonlinear problem of transient
unsaturated flow will be analyzed separately in a forthcoming

section, however in a much more qualitative way.

Because the statistical truncation error analysis of
this section is somewhat intricated, we feel that it may be
useful to outline here the main features of our approach. Our
purpose is to obtain a closed form statistical evaluation of the
finite difference error, that is the error on the finite

difference solution due solely to truncation errors, assuming

-—
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that an exact solution of the finite difference system can be
achieved. The method we use is applicable to linear problems,
“such as the linear system 'arising from the stochastic saturated
flow equation. ' Briefly, we begin by evaluating anaiytically the
truncation error of the finite difference operator. We then
obtaifz an equivalent .partia.l differential equation that governs
the error on the hydraulic head. This Vet'quation has the same
structure é.s ‘the governing‘ equation, except that it is driven by
the truncation error (foi'cing function). To solve this "error
equation”, we use a first ,ord?r spectral perturbation method with
"the usual assumptiorié of stat‘ionarizty and ergodivéity (the "exact™
solution is also evaluated by this method). Th'is' gives finally
the e'rror‘ in the fc.:rm of & ra.ndr:tm field with known spectral
density. The root-mea.n-sédé.re error on the iuydraulic head
obtains by computing the variance of the random field error, and
ta.king» the square root. A simi laf procedure is then used to
evaluate the error in the flux vector. The reader not interested
in the details may jump to ‘the "summary and disct;ssion" given in

subsection 5.2.4.

5.2.1 Governing equation for the numerical head error

Recall that the exact equation governing the head
variable is of the form L(H) = O, where L(H) 1s the partial

differential operator:
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;0

L(H) = 3%- (K(x)Z-) (m = 1,2,3)
m

The FD solution H defined on a grid (I,.1,,1I5) satisfies the

FD equations E(ﬁ) = 0, where L(ﬁ) is the difference operator:

L = ) - {RI - Hp -[I'EI + Ky ]°.H
pel23 (4%) w4 m-

Note that m {ndicates the three direciions Xy and we used the

shorthand notations:

Hp - H(I,.I, I,)

Hy 4, = H(L+1LI2.15)
Ky ay = KLt Io.1o)
(etc.)

The mid-nodal conductivities were evaluated by the geometric mean

weighting scheme:

‘.
e
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R = K11 T2 L)« (L1 1a.T)

" {etec.).

and the flux vector:

U= Ky T
mt? | .

Finally, we now prescfibe Dt.rtchlet Wy condittons on all

boundaries, since these conditions can be expressed exactly in

the finite difference formulation. The introduction of Neuman

- conditions would complicate unnecessarily the forthcoming error

analysis.

The truncatton error 1is defined as the difference

between the exact and approximate operators (both operating on

. the exact solution H):

T(H) = L(H) - L(H)
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where H 1is evaluated at the grid points I = (I,,I;,I5). Once
computed as a function of H, the truncation error could also be
evaluated as a function of the approximate FD solution I}I' or
more precisely as a function of an equivalent continuocus FD
solution H which takes the values of the discrete FD solution ﬁ

at the grid points. Thus we can write:
T(H) = L(H) - L(H)

where ﬁ()_c) is a continuous function such that I-l(xI) = ﬁI'
Observe that the term It(ﬁ) can be eliminated since it is
identically zero at the grid points (by definition of fl). This
yields imédiately a partial differential equation governing the

"Equivalent Continuous Finite Difference Solution”:

g [K(E) g_m] + T(H) = 0. (5.32)

Similarly, the continuous solution error can be defined

efi(x) = H(x) - H(x)
(5.33)

~e

6HI = HI—H(XI).

" Ultimately, one would like to obtain an estimate for the error

3 o
[ S—
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6H; at the grid points. This can be achieved by developing 8H(x)
into a2 power series of (Axm):

8H; (x) = (0 bx_ ﬁél) +'(Axl;)2. . aﬁf) + ooe (5.34)

Obviously, the zero-order term (). should vanish if the FD
approximation is consistent. In fect it will turn out that the

zero-order and all odd-order terms in the expansion vanish.

To see that Gﬁ(o) vanishes, we -plug the identity
H = H+6H into (5.32) to obtain: ‘

[K(g ,a_gagn‘_')_] + T(H) + T(sH) = 0
m

A

(5.35)

2

=0  on all boundaries (exé.ct BC's)

where we used the fact that T is a linear function, due to the
linearity of the flow equation. Combining (5.34) and (5.35), it
appears that 6?1(0) venishes if 1lim T(H) = O, that is, provided

that the finite difference scheme is a2 consistent approximation.

¥We will see shortly that this is indeed the case.

We now proceed to evaluate explicitly the truncation

error function T(H) in order to obtain the equation governing the
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solution error 6H (from (5.34) and (5.35)). This is done by

using Taylor series expansions such as:

M1 e %(%)w,{u : _.(:x_’%)i%.,&xz ® (g:—z)im&a " e
Yty = % (%)ma e % (':%)w; -‘158- (%)1#4 e e '
whence: ‘
T S (‘ﬂ) R (5.38)
T Tan @ty (6“Y) + o(&x*). (5.37)

Plugging Y= K% into the last equation yields the flux

divergence:

gt 0(Ax*). (5.38a) N

Substituting (5.36) for the terms (%)ii:‘é appearing in the left
hand side of (5.37) ylelds:



306

-{“" [Hi+1 17 “14 [HAxi-]} {[’“ax’]}

Ax? 1 [ 8°H 8°H | 3
v RN ) KB AL COIE
{24 Ax [T1+Y% P “% i—%
’ (5.38b)
Ax® }o° 8H, <
54 —(K—)} + 0(4x")
24 {axs ox {
8°H
Using again equation (6. 37) with Y = K—— yilelds 2 Taylor
ax .

development for the finite difference appearing on the right hand

side above:

1[ 8°H 8°H, 8 ,., 8°H
LRy s & k- @ ] 8w ZE )
Ax i+4 x> 144 if% P | ox P ;
Ax%)8° 8°H, |
24{ ~ (K —a)}»+0(Ax‘).
ax ax* )

Plugging this identity into the right hand side of (5.3Sb)

yields, on the right hand side of that equation:

sz a°H g° OH 3
53 o K + — (K % O(Ax
{ ¢ (Gx )i ax° (,’ )1}& ( )

‘Now observe that the left hand side of (5.38b) is Just the

one-dimensional truncation ‘error function T,(H) = L,(H).
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Furthermore, the exact mid-nodal conductivities can be expressed
as Ki+% = Kiﬂé- 6Ki+% ., Where 6Ki+% is the error due to the

approximate evaluation of K by Ki+4 = VK, K, .. Thus, we

i+%4 i i+l
obtain an intermediate formulation of the truncation error
T(H) = L(H) - L(H), shown below for Jjust the first of three

terms (T = T,+T;+T3):

Ti(H) =
JUN PO U5 Ut | [ i ey T34 | Gl -1 - & B
ax Y T i 1% | & 2 | & s ),

+ -Z%[x%—]i} + 0(4x°).

In ordér to complete this evaluation, we need again to
replace finite differences by differentials. Thus, using again

(5.36) in the above equation gives:

Ti(H) -

1 oH dH

= {6Ki+% (F) 145 ~ Ky (5)1-',4} + (5.39)
Ax2 1 d°H 3°H
53— * o (K c (—=) - & s (/) +

24 Ax{ 1+ tas iy 1-4% ax® 1%

A2 )8 3°H a° aH a
51 ° {'& (K a_x;)i + -;; (X K)j} + O(Ax").
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Finally, we must use again a Taylor expansion technique

to evaluate the "mid-nodal conductivity error” GKi 3 that

appears in equation (5.39). Ve have from previous definitions:

Oy = King = Kiayg

= { K(x,)*K(x,,,) - K(x

i+1) i+56) )

However, it will be more convenient to use the log-conductivity
process f(x) = én K (x) 1in order to evaluate the &K term.

The mid-nodal log—conduétivl:lty is:

which leads to a simple expression for the mid-nodal conductivity

error:

~ fie1tiy

&K, , = Ky © (o(=5— - £,,,0 - 1}. (5.40)

i+

Furthermore, we obtain by Taylor expansion of f i and f 1+1

around f“%:

S A R N R L
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so that the mid-nodal conductivity error (5.40) can be expressed

as:
2 2
Ky = Ky, {exp [é_xs_ . (gx_i)“% + o(Ax‘*)] -1.} (5.41)

This expression may be linearized under conditions which will be’
discussed in more detail in the sequel (these conditions require

both Ax and o, to be small):

f

5K (5.42)

Ax? | a*f 4
=Ky {5 & o).
i+4 1+4 8 ax2 144

Plugging this into the expression. (5.39) for the truncation

error, we obtain:

The first term is a finite difference which can be evaluated by a

Taylor expansion similar to that of equation (5.38):

1 a’f ) Ka_a]“"‘ a_ (3% KBH] + O(&x).
Ax ax 1% ox 2
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This gives finally in closed form thg truncation error
function T,(H) evaluated at the grid point x = Xy for the
one-dimensional f lqw operator. The result is the same for Tm(H)
with m = 1.2,3  " corresponding to the spatial operators
L, = gx—‘(l{g;). etc. The total truncation error in the 3D case

obtains by summing:
T(H) = T,(H) + To(H) + Ty(H) - (5.43)

where:

o ke 12 oo

ax? 6)(1 6x1 ,

(5.44)
and similar exprgssions hold for T, and Tj;.

Ve may now use this result in order to solve the
partial differential equation governing the "eQuivé.lent" solution
error OH. Using the Ax-expansion (5.34) and plugging (5.44)

into equation (535). we find that:

(1) At order zero, 6f{'(0) satisfies the flow equation with
boundary conditions Gﬁ(o)=0 " so that Gﬁ(o) vanishes

identically over the whole domain.
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(i1) Since T(H)=0(Ax®), all the odd-order error terms

8§(1). 5ﬁ(3). etc., vanish.
(111) The leading error term is 6ﬁ(2). second order in Ax.

In the three-dimensional case, the leading order

solution error can be expressed formally as:
3 )
~ ~ (2
=) {anm( o (ax)? + O(Axm‘)} (5.45)
i=1

and bﬁ is governed by equation (5.35) without the term
T(6ﬁ) = 0(Ax*)., which can be neélected. This leads to a

tractable governing equation for the .solution error, of the form:

%[K(K) . g.(x?).] = - T(H) + 0(Ax*) (5.46)

Upon substituting the expression for T(H) given in (5.43)-(5.44),
we obtain an equation which can be broken into three spatial
component of the leading error term (6ﬁm(2). m=1,2,3). For
convenience, we show here only the term on the left-hand side of

the equation corresponding to the first spatial direction m = 1:

U
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o Sk « A (S B
s S [K(K)ax1 * %5\, =

oo [ 2 () oy

OH;

(5.47)

where the notation E,; = 6§£2) was gsed. - We alsb obtain similar

expressions for. E; and E,. The total solution error is:
S8 = E,Ax2 + E;Ax2Z + Eo Ax2 + 0(&x*) (5.48)

In the particular case vwhere Ax, = Ax; = Ax; (equal mesh sizes in
all directions), the full error equation becomes is simpler.
Indeed we obtain the governing equation for E = E, + E; + E; by

summing over spatial directions and ‘observing that -a%-ﬂ(g%)
m

vanishes. Thus, we obtain finally the head solution error for a

cubic mesh as follows:

(5.49)

Iaﬁ = E ¢+ &x* + O(Ax*)

where E(x')”" is gléve'rhe'd'b} the partial differential equation:

K(x) axm] {32 5 [Z:f KHH“J e [Ka'”'“ }+ 0(4x)

- (5.50)
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with boundary conditions E = O on all boundaries.

Equation (5.50) gives explicitly the stochastic
equation governing the head solution error. The first term on
the right hand side is solely due to errors in the evaluation of
mid-nodal conductivities, while the second term corresponds to
errors in the evaluation of the flux divergence. Note that the
right hand side depends solely on the exact solution H, which
must be evaluated in order to find closed form stochastic
solutions for the error E(x). Our approach assumes that the
remainder O(Ax) can be neglected; this residual term could

perhaps be loosened to 0(Ax?) with more work.

5.2.2 Statistical analysis of the numerical head error

[a] The spectrum of the head error:

We now proceed to analyze the hydraulic head solution
error OH = E°Ax? in a stochastic framework. Following the
assumptions of the spectral theory and the single realization
approach, we postulate the equivalence of ensemble and spatial
averages in the stochastic error equation (5.50). Furthermore,
we use the first order spectral method t6 evaluate the
statistical moments of the. "exact"” solution H(x) appearing on the

right hand side of (5.50). The same method will then be used to
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obtain the first and second order moments of the head error
itself. First, equationr (56.50) is re-arranged "in a more

tractable form by using the relation: ‘
f
K(x) = KG e 63

where f(x) 1is the perturbation of the &n K process around 1its

mean ({(f) = 0). This leads to:

262E+8f 8 _ _
éx_ ox_
nPp "
(5.51)

2-_3.@3_f.iﬂ. +ff_..iﬁ.+§£_ﬂ] .».!._[ﬂ...i”_.éa_ﬂ]
- 24ax3 axm axz ; ) ax4 axm ax:!.

Equation (5.51) should be interpreted as a stochastic
equation in an infinite domain, i.e., with domain size much
larger than correlation scales. The boundary conditions E =0
suggest that the mean error shouid be approximately zero in order
to be consistent with the stationarity-ergodicity ‘assmnptions.
Ve will shpw that this  is indeedi_tbe case for o¢ small. Our
purpose will be to determine the. standaljd. dgviat.;on. or
root-mean-square norm (RMS nofm) of the solution error
SH = E » Ax®, in an ensemble sense. The accuracy of the finite

difference approximation will then be studied by analyzing the
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behavior of o(8H) compared to o(H)}. The ratio of these two
quantities indicates the relative amount of "numerical noise”

compared to the physical noise in the solution.

In order to show explicitly how the forthcoming
statistical analysis of error depends on op being small, let us
reproduce below the spectral perturbé.tion solution of the exact
flow equation (as in Chapter 3). We begin by expanding (5.53a)

H(x) into a power series with o, as the "small parameter™:

f
H(x) = Ho(x) + oH,(x) + 0%Hy(x) + ==

Simila.rly. we_ let:
f(x) =0 * g(x)

or equivalently:
K(x) = Ky o7 8(x)

where g(x) 1is a zero-mean Gaussian field with unit variance.

The 3D flow equation (5.1) with stochastic conductivities can now

be expressed as:

o' SN .
-t a ta -
m m m m



316

By plugging the expansion '(5.52) into this flow equatvion. we

obtain the infinite hierarchy of equations:

S )
o
"

Tt eee B

Fg,

+
2"

lé

(5.53b)

2
2

Sz .
axm

”~~

(4] .
- XX
0

N’

The zero order term (Ho) could be interpreted as the linear mean

head solution, satisfying ;xﬂo.= -Jm. vwhere Jm is the mean
m

hydraulic gradient. Acc_:or&ingly. the other terms in the
expansion will have zero mean as can be easily checked. Assuming
that the mean gradient is parallel to x,. the first order term in

the expansion satisfies:

8H, _o6g .
Bx_ox. = ax, = -
m m

Comparing this to the ‘equation for head perturbations (h) as
obtained in Chapter 3, it appéars that Hp and H; are related
to the mean and first"order perturbation of the head field as

follows:

(D) =Ho(x) =-J°x | .
h =0 +H +0(c%) | (5-54a)'
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Solving the equation for H; 1in Fourier space gives immediately

the Fourier increment and spectral density of H,;:

k, dZ =
dZH; =1J, _ikz (1 =-1))

(5.45b)
2 .
12 kg

SH: k* g

We now use a similar expansion for the stochastic error

in order to solve equation (5.51) by a first order spectral

method:

E(X) =Eo +E, * 0+ E; * 0% + - (5.55a)

By plugging the expansions for .H 'and. E into (5.51) with
f(x) = 0 g(x). we obtain a hierarchy of equations for E,. E,.

etc., as shown below:

(5.55b)

-§_[.J .Qf.&]-l.}i‘_lh
1
21 a3l 24 axt




318

Again, the zero order equation sﬁggests that 'Eo is the mean
error, and that it must ‘vanish identically over the infinite
domain. This is consistent with the boundary conditions E = O
for the finite domain case. It is also consistent with the fact
that all higher order terms appeé.r to have zero mean if E; = (E)
holds. As & consequence, the equation governing the leading term

(E;) becomes:

=g B T 5.56
"% aq 2 ad.a (5.56)

with implicit summation over repeated -indices. Thus, the head

error’s leading order term in Ax and O¢ is given by:

SH=E« &b =E *0p0 bx*.  (5.57)

The two equations above show that the numerical error O6H |is
_ proportional, as a first approximation, to the product oAx?
times a stochastic term governed by a stochastic PDE independent

of o and Ax.'

Furthermore, since equation (5.56) is linear, it can be
solved easily in Fourier space, i.e., by using a spectral method

as in Chapter 3. Plugging Fourier-Stieltjes representations for
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E, and g 1in (5.56) yields:
K2 . =31, (k) 4Z_ - = (k2 x2)
dZE,'S‘ 1 T 24 ‘'m mdzﬂi'
Using also equation (5.54) for dZH , this gives explicitly the
1

Fourier component and spectrum of E,(x) in terms of the Fourier

| component and spectrum of g(x):

Jiky Ei (k; * k;)
dZE‘(E) = -i 54 3 " + —;{4—- ng(g)
(5.58)
(kz . kZ) 2
) = Lkg . I3 K, n m], S (x

where we used again implicit summation over repeated indices.

Equivalently, the spectrum of &H can be obtained by multiplying’

SE by Ax* and replacing Sg by Sf. Thus, equation (5.58) gives
1

the spectral density of the "equivalent error"” Gﬁ(:_c_).

Note that bﬁ(g is a zero-mean random field defined
in the continuous 3D space. However, we are only interested in
the discrete error defined at the nodes of the finite difference
- grid. The restriction 6?!1 of the continuous process Eﬁ(:_c) on
the FD grid may be viewed as a lattice process, whose spectrum is
identical to that of the continucus error within the range of

wavenumbers:
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0 ¢ Ikml < w/hx (m = 1,2,3).

and zero outside this range. In other words, the fluctuations of
6H~ at scales smaller than the mesh size must be ignored. In
particular, the variance pf the discrete error process bﬁi can
be obtained by integrating the spectrum (5.58) up to wavenumbers
(v/Ax). This gives the final result we were looking for, namely

the variance of the head error for the 3D flow problem:

2 : ! 2 2y 2
- Ax® 3k2 ( m km)
1 o2t Joqeqarax L P K¢ er ()

[b] Head error in the one-dimensional case:

For ease of analysis, we ‘focus first on the
one-dimensional version of the flow equation. 7 In this case,

equation (5.59) becomes simpler:

ey

var(efly) =[5, £ M Spl)dk,. (5.60)

J 0<k<n/Ax

It is interesting to note that, in one dimension, the variance of
the head error is proportional to the spectral content of df/dx

up to wavenumber (w/Ax). For {illustration, let us use ‘the 1D
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"hole-spectrum” log-conductivity as proposed by Bakr et al. 1978:

S; (k) = 02 -5 k2
150 = 7 WA ey

Rep() = 0% (1 - [glve) - & V2,

In this case, " the spectral head solution is known to be

stationary, with variance:
= - 12 2
var(H) = aﬁ = J? a? 22,

On the other hand, observe that the first derivative of the f(x)
process used in this example has a significant spectral content
at large wavenumbers, up to the wavenumber cut-off (w/Ax)
corresponding to. the smallest scale of fluctuations sampled by
the numerical grid. The integral in (5.60) can now be obtained
by using the- following identities from Gradshteyn and Rhyzik,
1980 (2.174 and 2.175):

I——ui—du = —i—-ﬁl_--'. go ‘[du
(1+u?)2 4(1+u?) 4 1+u2
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whence the result:

n Ax (s 3 Ax\e
Var(8H;) o (_1_)2,{ Ax)‘+(—8_) * S
s -

Var(H) @ 2 Bz e

- 35 - e [

For Ax/& < 1, this gives a simple expression for the ratio of
the standard deviations of  the head numerical error and head

solution in one dimension:

a(Gﬁ ) ' : o '
== & YT G2+ 0. | (5.61)

The most stt.iking feature in this equation 1is that the
"noise-to-signal ratio” appears '1nd§pendent of the 1input
log-conductivity variance, and increases as a fractional power of
the resolution (Ax/€), rather than the usual 0(Ax?) behaviour for
deterministic - problems. The " relative error is 2.5X for a

resolution 1/3, end 74X for & resolution 2/3.

The simplicity of the 1D case allows us to study in
some detail, the effect of the behaviour of f(x) at small scales
or large wavenumbers. If a smoother process with 1D exponential

covariance is used, equation (5.61) becomes: -



Alternatively, using the 1D Band-Pass Self-Similar Spectrum of

Chapter 4, with Ax { 2 < L, we obtain:

On the whole, these results indicate that the relative numerical
error goes to zero with (%—) faster in the case of a smooth én K
process, compared to the case where &n K has significant
variability at the smallest scales. This observation can be

stated formally as follows:

a(5ﬁ )
=T S -é- (%x-)l’. 0<pg2 (5.62)

where A is a typical correlation scale, and p is equal to 3/2 for

the "noisy” &n K process with hole-exponential covariance, while

p = 2 for smoother processes.
[c] Head error in the three-dimensional case:

We will now see that the relative numerical error

o(6H)/o(H) follows a similar behavior in the case of 3D flow.
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The variance of the ﬁhree-dimensiohal ‘head error given 1in
equation (5.59) will be computed below for two different
isotropic log-conductivity spectra: &a "noisy” spectrum, end a
"smooth” spectrum. The isotropic 3D Markov spectrum is a good
candidate for - & ‘“noisy” random field, since it is
non-differentiable in the,mean-square sense (the variance of
df/dxm is infinite!). This noisy random field was used. for all
the stochastic single-realization flow simulations to be
described in Chapters 6 and 7. On the other hand, the Bb
Hole-Gaussian speétrum (used by Vomvoris, 1986, for analysis of
stochastic solute transport) appears as a good candidate for a
"smooth” random field, being infinitely differentiable.

To obtain a closed form result for Var(6H) in equation
(5.59) requires the evaluation of complicated three-dimensional
Fourier 1nte§ra15; ~ The @ietails_ of this evaluation are given in
Appendix SA for the case of the Markov spectrum (noisy field),
and Appendix 5B for the case .of the Hole-Gaussian sﬁectrum

(smooth field). These appendices also develop the spectral

- solution for the.head field in order to obtain Var(H). The

root-mean-square relative numerical error on the head field is
given below, respec,ti.vely. for the "noisy” case and the “smooth™

case:



Q

Ql -
nN
\n

(a): Noisy input: a.%%l= _1_:23_ (z_\_x)\_)3/2 (1+0 (_i%))%
(5.63)
(®): smoth: ZEL ¢ B (&

This result confirms the behavior observed earlier in
the 1D case. Indeed, equation (5.63) shows that the relative
head error is proportional to the grid resolution Ax/A with a
power 3/2 far the "noisy" 3D Markov log-conductivity spectrum,
and with a power 2 for the "smooth"” 3D Hole-Gaussian spectrum.
Note that the A-scale stands for the integral correlation scale
of the Markov spectrum, while the &-scale is a typical
fluctuation scale for the Hole-Gaussian spectrum (not the
integral scale). Both log-conductivity fields are assumed
isotropic, and the grid has equal mesh size in all three
‘directions. A generalization of these results to the case of
anisotropic inputs and rectangular grids would be of great

interest.

Bﬁuation (5.63) can be used to compute the leading
order term of the relative head error in specific cases (note
that the inequality in 5.63b becomes equality as the resolution
ratio goes to zero). It appeai's that the relative error on the
head field is quite.sna.ll and fairly independent on the type of
log-conductivity field (noisy or smooth), at least for a

reasonably fine grid. Indeed, the error is only 3% in both cases
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for a resolution equal to 1/3. This indicates that the hydraulic
head f lucfﬁatibns can be accurately resolved by the finite
difference flow simulator with moderate grid resolution. The
situation is not so good when it comes to evaluating the Darcy

flux vector, as will be seen shortly.

5.2.3 Numerical error on the flux vector

[2] Relation between flux error and head error:

The next step of the truncation error analysis focuses
on the error in evaluating the flux vector q, by the centered FD

scheme (5.31). This error is defined as:

5§m = am - q (m = 1,2.3). (5.64)
The FD solution am was expressed in terms of head differences in

equation (5.31). Dropping the spatial direction index (m) for

convenience, equation (5.31) gave an expression of the form:

~ o i+1 i .

Thus, the flux error evaluated at the myid-nodal points of the

grid is simply:
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~ ~

H, -0
~ oH ~  Hy,H
6q (x4,y) = - {Ki+% G~ Kl i (5.66)

Now, we can use our previous results in order to evaluate

explicitly the flux error. Indeed, let:

Kivg = Kypyg + Ky
Hy =H + oH,

Plugging these expressions in equation (5.66) yields:

| H .. -H
o oH i+1 i
8%y 4ye) = = {K1+x (Z s ~ Kiwg ~ —ax — |
| (5.67)

-~

sk . Hiyp - By ~ i Ol - Oy
i+% Ax i+4% Ax :

Using a Taylor expansion, the first term in braces takes the
form:
_ Ax® 8°H 4
(Ko B ot * 0 (& )}

To evaluate the second term, we use our previous finding

concerning the mid-nodal conductivity error 61(i in (5.42).

+4
This gives:
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o
o 5 v 0 0}

Finally, vie evaluate the third term by using a Taylor expansion

of (Gﬁ 6}11) with Gﬁi replaced by the equivalent Gﬁ(x) head

1+1°
error. This gives:

Ax* §°(8H )\
{ Ku»se 54 (_ngl)H% +0 (& )}'

Reassembling these terms in (5.67) leads to the following

‘expression for the equivalent flux error ©&q(x) defined in

continuous space:

- 8a(x) = . .
Ax? [ 8°H . . 8%f &H .
K(x) * {33 o +.3 o Ex‘] + 0 (Ax )}
- K(x) - {a 5§+%’4‘i-§;—5}1+o (Ax‘)}

The head error 6;1‘ is known from previous results. Recall that

the leading order term in o and Ax was:

o Ax>

6§=E‘sz=E1 £

where E,(x) is known from equation (5.58). Similarly, the exact
solution H(x) {s known from previous spectral perturbation

results. In particular, we have:
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oH
= - J*oeH + O(a;)

where the zero-mean H,(x) process is known from equation (5.54).
Note also that f(x) = o¢ g(x). Plugging these expressions into

the equation for 6qm(§). we obtain to the leading order in o¢ and

Ax: »
~ 2 , 9°H, &E
6q (x) = o.+Ax*+K.exp(o-g) {-2—4- =+t — (5.68)
A & Ox

Finally, denoting h the perturbation h = H ~ <H>. equation (5.68)
can be expressed in a form which clearly shows the dependence of

6q on the exact head perturbation h and the head error &H:

~ Ax2 3°h . 8 =
& =K . oH 5.69
W) =K@ - 500 5 } I (5.69)

where the first term is due solely to errors in the evaluation of

the mid-nodal conductivities. A similar expression holds for the

—oH

error 6Gm in the hydraulic gradient Gm = —a-,E:

(5.70)

———

v vl
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[b] Spectrum of head gradient and’flux errors:

The random field erfors (5.69) and (5.70) are perfectly
determined from previous re_sul:ts (head spectrum and head error
spectrum). For the hydraulic gradient error, we obtain the-

following statistics spectrum:

<6G >= 0O
m
~ 3kZ  (k2-k3?)
Ax? 1 n'n
dZ(&Gm) =51 J1 kmk1 [k2 + 2 ] dzf (5.71)

S(65,) = By « 3T - (ki ka)?

2 2 ,1.2v]2

3kt . (kn kn) . s
k‘l ff

with implicit summation over repeated indices. In order to

determine the statistics of the flux error &q in a similar

fashion, we need to linearize the conductivity in the following

fashion:

K= KG 8 o K, (1+ og+ees). |

Now, ‘we recogn:lzé that thi‘s" approximation may be poor if o¢ is
larger than unity. Al‘so. récall'kthaAt a similar ai:proximation was
made for the mid-nodal conductivity error 8K 1in (5.41) and

(5.42). For the time being, we postpone diécuﬁsing the possible
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inaccuracy of this linearization approximation.

Using the latter approximation, we obtain a tractable
expression for the stochastic flux error to the leading order

in g¢ and Ax:

~ Ax2 5°H, oE,
5qm(x) = KG Oc 54 {—— + 24 = (5.72)

axa
m

Finally, since the spectra of H; and E, are known from previous
results, this gives the required statistics of the flux error

vector in closed form:

<Bq_> = 0
k, k> 3k?  (k%-x?)
N - . oAx—z —’_m n_n .
d26qm = KG Js 53 { " + k,km " + " ]} de (5.73)
k k k
S.,~ = (term above squared) -° Sff.

6qm

The first equation indicates that the mean flux error is null in
an infinite domain; the second equation gives the complex
Fourier-Stieltjes increment of the stochastic flux error vector,
and the third equation indicates how the diagonal components of
its spectral density tensor can be obtained. Recall that S,. is

ff
the known spectrum of the input log-conductivity field.

————
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[c] Head gradient and flux errors in the 1D case:

In orcier to facilitate the analysis, we now focus on
applications of previous results iﬂ tl;e 'lD case. The spectral
densities of the random field errors 65 and 5; shown in (5.71)
and (5.73) 4beco'me much simpler in oneA dimension. Dropping the

tilde ‘(“‘) Sign for convenience, we obtain in this simple case:

| s..(k) |
S50(K) = (0pJs 5o &x®) = K* fiz (5.74)
.' f
Spe(k) |
Sqk) = (op3iks 37 167 - 1t L (5.75)
f

Now, the variances Var(é6G), Var(8q), can be obtained by
integrating the above spectra up to wavenumber n/Ax as explained
previously. It turns out that these variances are proportional

to the variance of the second derivative of the log-conductivity

~ field (after elimination of fluctuation scales smaller than the

~mesh size). For illustration, the relative numerical errors for

the 1D Hole-Exponential - Covariance log-conductivity ("noisy”

field) were obtained in closed form. The result is shown below:
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o(sc) _ __ %)
- /5
(UfJ) (z afJKG)

~s
-

Ve73 - /6 - (5% - (roSE% | (5.76)

The most remarkable feature in equatioﬁ (5.76) is that the order
of accuracy on both the head gradient and the f lux vector, ~drops
by one power of (A—’e‘-) compared to the order of accuracy on the
head (equation 5.61). This 1s exactly the same behaviour as in
the case of deterministic, spatially smooth conductivities.
However here, the order of accuracy is fractional rather than

integer, and less than unity.

[d] Head gradient and flux errors in the 3D case:.

We now proceed to develop similar expressions for the

relative error on the numerical flux and head gradient solutions

in the case of three-dimensional flow with statistically

isotropic conductivity fields. We focus specifically on’ the
"noisy” Markov spectrum of log-conductivity, which is the input
spectrum actually wused in the numerical simulations of
groundwater flow presented it_x Chapter 6. The present analysis of
the flux error, due to truncations in the finite difference
scheme, is of particular interest for assessing the feasibility
of accurate numerical simulations of three-dimensional flow and

solute transport in heterogeneous media. Indeed, the spatial

————— e

-t
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fluctuations of the flux (or groundwater vel"ocity)' are
responsible for the mechanical dispersion of convebted solutes.
It seems clear that an accurate simulation of the velocity field
is a prerequisite for obtaining reliable siinulat..’tops of the
convection-dispersion mechanism in groundwater contamination

problens.

In t;rder to compute the reilattue rerr'or ron the flux and
head gradient vectors in the root—meén-squafe sense.' one needs to
compute both the variance of errors and the variance of the
physicg.l quantities' fhémselves (using known solutions). ‘I'he.
variance of numerical errors can be compu:ted by integrating the
_error spectra given in equations (5.71) ‘and (5.73). .up to
wavenumbers Ikifl 'S";r/Ax (i = 1.2.3) in three-dimensional Fourier
space. This can be expressed as follows, for the flux error
vector (Ym = qu) as well as the head 'gradient error

vector (Ym = BGm)=

ver 0 =[] sy woea (5.77)
m
0$|k1|$1r/Ax
i=1,2,3 -

The result of integration is given in Appendix 5.C, using the
flux error spectrum (5.73) and the head gradient error spectrum
(5.71). Note that the domain of ’1ntegratioﬁ in (5.77) was

approximated as 0 { k { w/Ax, where k 1is the radial wavenumber.
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In addition, the error variances obtained in Appendix 5.C take
particularly simple forms for moderate-to-small grid resolution
ratio:
Ax

R= ™ <1,
which is precisely the case of most interest for applications
(say Ax/A { 1/2 in practice). Thus, we will generally assume
R << 1 in what follows.

On the other hand, the variances of the flux and head
gradient random fields are known from the first order spectral
solutions developed in Cl'iapter 3 (see equations 3.21-3.24).

These results are reproduced below for convenience:

o}

Var(a,) = {|15 KoJ)?

Var(az) = {{q KopJ)?

Var(aa) = {{1z KopJ)?

and

Var(G,) = {|2 kg, )?
15 %2

3
5

va.r(Gz) t—4 { é

1 2

15 Keopd}

N

Var (Ga) = {\

SR
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The finzal bresult shown be'lbw in terms of relative

root-meah—sduare errors was. obtained by computing the ratio

Var(5Y)/Var(Y) and taking the square root (see Appendix 5.C).

“The relative numerical error on the flux vector is:

0(821) o gor Ax.Y
m= _Q(QJ 24 5‘—)
o089 gor axi
n=23 ey ;@ &

and the relative numerical error on the 'he'ad gradient is:

) o(86.) 31w Axn
m= 1oy e )
Co(56) | 39r Ax.Y
m‘?&amj 3z &)

(5.78)

(5.79)

vhere A is the integral correlation scale of the 3D isotropic

Markov log-conductivity field.

'5.2.4. Summary and discussion

Ve have evaluated the root-mean-square norm of the
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finite difference solution error on the random head and flux
fields, , for both 1D and 3D saturated flow. The
three-dimensional results of equations (5.78) and (5.79) confirm
the behaviour already observed in the one-dimensional case
(equation 5.76). In both cases, it appears that the order of
accuracy on the flux vector is O(Ax/h)g wvhen a ‘"noisy”
log-conductivity field is used. Recall that the order of
accuracy on the hydraulic head was 0(Ax/7\)3/2 in the "noisy”
case, and O(Ax/A)2 in the case of a "smooth" log-conductivity
field. In spite of the fact that we did not compute the order of
accuracy for the flux in the case of a "smooth” 3-dimensional
log-conductivity field, there is little doubt that the order of
accuracy will be O(Ax/A) in that case, as shown previously for
the l-dimensional case. These findings are summarized in Table
5.1.

The most important conclusion to be drawn from the
truncati;n error- analysis developed above, is that the centered
finite difference scheme is a consistent approximation of the
stochastic flow equation, even when the log-conductivity is a
"noisy” random field, such as the non-differentiable 3D Markov
field. Here, "consistency"” means convergence in the mean-square

sense of the finite difference solution to the exact solution as
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Table 5.1

Order of Accuracy of the Stochastic Finite Difference
Approximation (the "Noisy™ and "Smooth" Random Fields
vwere Def ined in the Text, with Examples for 1 and

3-Dimensional Flow) .

ORDER OF ACCURACY

O(Ax/?\)p NOISY én K FIELD | SMOOTH én K FIELD
Hydraulic Head (H) p =372 p=2
Head Gradient ’(c!'n) p =172 p=1
Flux Vector (gm) , p=1/2 p=1
Table 5.2

Relative Numerical Error on the Hydraulic Head and
Flux Vector, in the Case of the 3D Isotropic Markov
Log-Conductivity Spectrum ("Noisy"” Random Field)

GRID RESOLUTION

(Ax/A) 1/10 11737 172
Hydraulic Head - (H) - 0.8%" 3% 5%
Longitudinal flux(q,) 10. ¥ 17%  22%
Transverse Flux (q2.qa)| 8. ¥ 14% T1T%
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the grid resolution (Ax/2) goes to zero. The length scale ¢
represents the integral correlation scale or some otherwise

defined fluctuation scale, of the log~conductivity field.

' Furthermore, it 1is worth knoting that the present
analysis leads .to explicit estimates of the leading order term of
the numerical error for the variables of interest, particularly
the hydraulic head and the flux vector. Table 5.2 gives the
relative numerical errors on the hydraulic head and on the
different components of the f lux} vector in the case of the 3D
_Isotroﬁic Markov spectrum of log-conductivity. Recall that the
relative error was defined as the ratio of the standard deviation
of the numerical error &Y, versus the standard deviation of the
variable of interest Y. For a moderate grid resolution, such as
the value 1/3 used in the numerical experiments of Chapter 6, the
error on the head appears to be fairly small (3%), while the
error on the flux vector is significant but still acceptable

(less than 20%).

Another {important finding from the truncation error
analysis is that the relative errors o(6Y)/o(Y) appear to be
independent o.f the log-conductivity standard deviation Tp-
Therefore, as a; decreases, the absolute preciéion on oy and

aq will improve, but not the relative precision. The latter
i
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can only be improved by using higher grid resolution. This
finding will be useful for the design of numerical experiments
aimed at obt;aining accurate second order moments of the flow

- f 1éld for' comparison with spéctral solutions (Chapter:G).

In order to put fhese findings i@ proper perspec;:ive.
if iixay be useful to recall fhe vé.rious assumptions that were used
in our. maal&sié of accuracy of the finite difference scheme.
First of all, note that the solution errors wére evalua;'ed by
using a statistical root-meén—s’quare norm, or stahdard deiriation
. of the random f iel.t.i- error. It ﬁas assixmed that the computatior!al
domaih is large enoﬂgh thét these stafistics can be viewed
equivaléritly as ensemt;le or spatial é.vefages. ‘provi'devd alsov;hat
both the solution and the error. f:é stétionary and ergodic.

Without these assumptions, no simple closed form results could be

obi:ained .

Second, we emphasize the faétrthat the results of error
analysis we:r'e obtained by using e double—e:&:éhsion in terms of
Ax/N and O¢s respeétively. Thus, the closed form fesults
obtained above give‘ only ‘the leading orde’r; term of the
root?-mean—équare ex;ror. with réspeét "to the "small paramef;ers"
Ax/\ and O In particular, note that a lineariiation of the

type:
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e 21+ f + eee

was needed in order to 1include the effect of inaccurate
evaluation of mid-nodal conductivities by the geometric mean
weighting schemé (see equations 5.40‘a.nd 5.41). This particular
linearization could lead eventually to underestimating the error
on the flux vector a(bqi) for large values of Op- Hc')we;ver. the
same type of linearization was also used to evaluate a(qi). so
that the relative error a(6qi)/a(qi) could be less dependent on
the linearization approximations, even for large values of O¢-
As an indication, the- léading order errors obtained in this
section are thought to be fairly representative of the actual

finite difference solution errors for values of ge up to 1-1.5

and Ax/A up to 0.5. | _

In addition, it is worth noting that the present error
analysis did not include finite size effects and/or
non-stationary behavior of the stochastic solution (as will
necessarily occur to some degree for finite domain simulations).
Neither did it include the sampling errors that will occur when
computing single realization flow statistics by spatial averages
(rather than ensemble averages). These effects will be discussed

in Chapter 6.
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Finally. 1{t éhould be noted that several different
kinds of errors actually occur in the numerical solution
»pr.-ocedure; truncation errors. matrix solution errors, and
round-of f _ ‘errors‘.r The truncation errors were def iped and
analyzed in’ this section. Solution errors arise from the
approximate solution of the finite difference system‘ (e.g.. by an
1terativ¢:: hethod). _ Ro:md—qff errors are due to the finite
precision of digital computers, ﬁsually 32 digits on mainframes
and 64 digits on récént supercomputers, and they accumulate more
or less rapidly depending on the type of algorithm used (cer_tain
linear system .solvers are more stable to round-off errors than,
others). It seems important to ascertain thaf solution .errors
and round-off ér.x'ors ;111 be minimal. Indeed, the fine grid
resolution required for the case at hand leads to very- large
finite difference systems that may be difficult to solve
"accurately.  This will be the subject of a forthcoming section,
where we will focus on a particular type of preconditioned

iterative solution method {(the SIP solver).

" By way of closing remarks, let us mention that the
proposed approach of evaluating finite difference truncation
errors for a stochastic partial differential equation appears to
be new, in view of the available literature on numerical

analysis. Our method, based on Taylor expansions, stochastic
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linearization, and Fourier space representations, could be used
to analyze mesh resolution requirements for more general
stochastic partial differential equations, such as parabolic
convection-diffusion equations. The present work could also be
used to obtain a more complete picture of the discretization
errors, such as. the spatial correlation structure of the errors
on the hydraulic head and on the flux vector. Other possible
applications could involve the study of higher order finitq
difference methods, finite -element methods, pseudo-spectral
methods, and multigrid methods for stochastic PDE’'s with random

coefficients.

5.3 Iterative Matrix Solver and Convergence Amlysis
for Linear Random Flow Problems

5.3.1 Review of iterative and preconditioned matrix solvers

Our survey of the literature (Table 5.3) clearly showed
that large sparse matrix systems can be solved more eff:l'ciently
with iterative solvers than with direct solvers such as Choleski
factorization or Gauss substitution. One of the many examples of

the superiority of iterative solvers, even for relatively modest
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Table 5.3 List of Matrix Solvers and References

Solvers

Comments

Applications to Subsurface
Hydrology and Related Problems

1 Point Jacobi

2. Gauss Seidel

3. SOR

4, LSOR

5 ADI

6. 100G

7. SIP

8. Gauss
Elimination
or Choleskt
Factorization

Explicit type; O(n?)
iterations.

Weakly implicit; O(n%)
{terations.

Accelerated Gauss-Seidel
O(n) iterations with
optimal parameter, else

0(n®) iterations.

Line - SOR, implicit
along lines; requires
optimal parameter for
O(n) convergence.

Implicit along each
direction alternatively;
requires near-optimal
sequence of parameters.

First order accurate
Incomplete Choleski
factorization, with
Conjugate Gradient
iterations (no parameter
required).

Second order accurate
strongly implicit LU
factorization (requiring
sequence of parameters):
Picard iterations.

Fuily it;pliéit. direct
solver (non-iterative).

seldom used

seldom used

Reigenauer et 2]., 1981
Bjordammen and Coats, 1969
Stone 1968

Bjordammen and Coats, 1969
Freeze, 1971, Cooley, 1974

Stone 1968

¥einstein et 2al., 1969
Bjordammen and Coats, 1969
¥atts 1971; Cooley, 1974:
Trescott and Larson 1977;
Kershaw, 1978

Kershaw 1978

Gambolati, 1979

Kuiper 1981 and 1987
Gambolati and Perdon 1584

Stone 19G8, Weinstein et. al.
1969, Cooley 1974 and 1683,
Trescott, 1975, Trescott and
Larson 1977, McDonald and

‘Harbaugh, 1984, Kuiper 1981

and 1987.
Neuman end Davis 1983

~Yeh and Luwxmoore 1983
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size problems, can be found in Gambolati and Perdon (1984). Our
own experience with a Gauss elimination solver adapted to a
banded Galerkin coefficient matrix confirmed this view. The CPU

time for this direct solver was proportional to N7/3

for steady
state 3D groundwater flow on a cubic domain discretized into N
elements. On é. Vax 11/782 machine, the CPU time was about one
hour for N = 4000 elements. However, solving a problem of size
N = 64000 would have required one month of CPU time on the same
machine, and larger probiems on the order of 1 million elements
could not be solved in reasonable amounts of time even on recent
supercomputers such as Cray 2. The storage would be likewise
prohibitive, being proportional to N5/3 (number of equations N
times the matrix bandwidth Nm ). Thus, the storage requirement
will be 10 Gigawords for large problems on the order of 1 million

elements. In comparison, the central memory of the Cray 2 is

currently about 250 Megawords.

The major disadvantage of using direct solvers for the
solution of large linear systems lies in the fact that the
triangular matrices arising in the process of decomposition are
not sparse, even though the coefficient matrix itself may be
sparse. For the 7-diagonal finite difference matrix depicted in
Figure 5.2, a Choleski factorization A = LLT yields a triangular

matrix L with mostly non-zero elements within the half band of

width n2 = Nm (for a cubic grid of size n® =N). As

———
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mentidned above, ‘this yields on the order of N5/3 non-zero
elements to be computed, compared to just 4N non-zero elements in
the lower half of the original matrix. This kind of observation
has led numerical analvsts to deveiop e number of {iterative
solution methods based on aj:proximate spa.rse decomoositions of
the original system matrix. such that the computational work per

iteration a.nd the required storage are both proportional to N.

The sparse iterative methods can be roughly classif ied
with respect to the approximte decomposition method used Host
of the "classical" iterative solvers are based on an approximate
splttting of the matrix (Point Jacobi, Gauss-Seidel. successive
overrelaxation (SOR), alternmate directions implicit (ADI)) while
the more reeeht "fast” 1iterative solvers are based ‘on an
approxittate fa.ctortza.tion of the matrix (strongly implicit
procedure, and iucompiete Choleski-conjugate gradients). The
reader is referred to Jacobs (1981) for a survey of iterative
solvers according to the classif ication proposed above, and Evans
(1981) for a review of matrix—splitting preconditioners. A
number of other reviews and ‘experirrxentations with matrix
iterative methods can be found in the“collections of papers
edited by Schultz (1981), Evans (1983), end Birkhoff and
Schoenstadt (1984). In addition, Jable 5.3 gives a list of
references concerning the use of itera.tive soilvers ‘for subsurface

flow and analogous problems; some of these studies include
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numerical experiments and comparisons between different types of

solvers.

Another important distinction to be made among
iterative solvers is, precisely., the type of iteration used to
converge to the solution of the original matrix system. Apart
from the IOOG solver, all the other solvers mentioned above are
based on Picard-like iterations, including in particular the SIP
method. These solvers can be briefly described as follows.

Consider the linear finite difference system:
Ah=b (5.80)

and suppose that an approximation M of matrix.‘ A has been
found (M must be easier to invert than A). The simple
manipulation shown below leads quite naturally to a Picard
iteration scheme where the new system matrix ). | is by

construction easier to invert than the original matrix A:
(M+A-M)h=>»

Mh = b + (M-A)h

m+1

M™" = b+ (M-A)R™.

P
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Furthermore, by substracting Mh™ to both sides, one obtains a
"modified Picard” scheme that is presumably more stable with

respect to round-off errors:

Mo o™ b -an®

‘where  &h™'! = pLl B®, and m 4is the iteration counter.

Finally. the {iterations can be overrelaxed or underrelaxed by
multiplying the right-hand side residual by a "rélmtion

parameter” . w:

-

Mesh™ 1 = e (b-ART) (5.81)

It is worth noting that (5.81)"i's a consistent
iteration scheme with reSbect to.the original system (5.80). in

lb is obtained as m - ®,

the sense that the exact solution h = A~
provided however that the 1terations COnvérge. Unfortunately,

convergence is not neéessarily guaraiitéed in the general case.

We now jpr'oceed to review various kinds of
preconditioners (matrix M). The classical itéx;ative golvers such
as Jacobi and various versions of successive overrelaxation (SOR)
are based on an approximate decomposition obtained by splitting

A into lower triangular, ' diagonal, and uppér triangular
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matrices:
A=L+D+1U
The approximate matrix M can be expressed in the general_ form:
M = D"} (D+v, L) (D+v ) (5.82)
When the preconditioner (5.82) is plugged into (5.81). one
obtains some well ¥nown iterative solvers of the
"matrix-splitting” kind:
Point Jacobi '('rL =7, = 0, and w = 1)

Point Gauss—Seidel (1L =1, Ty = 0, and w = 1)

Point SOR (=1, 71,=0 and 1¢ loig 2)

Symmetric SOR ('rL =7,=7. and o = 1(2-7))

Similarly, the ADI solver can be viewed as an iterative
method based on matrix-splitting decomposition. As an example,
the Peaceman-Rachford version of ADI for two-dimensional finite
difference systems (Peaceman and Rachford, 1955), can be

expressed as follows:

. .
———

P
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Asoly-ly
(‘rI-Lx)(h h)..b Ah

ln+1ln+%

(1I-Ly) (8 s

) =b - AW

vhere the Lx and LY matrices correspond to the partial
differential operators in the X and Y-directions, respectively.
Note that each step of. ADI is similar to the basic iterative
schenie '(5.81'). The ADI nethod can be extended to
three-dimensional finite difference systems (Douglas, 1962).
More general alternate directions operator splitting methods haye
also been devised for the solution of weighted residual and

collocation systems (Celia and Pinder. 1985)

The convergence properties of some of the classical
iterative solvers reviewed ‘above have been thoroughly analyzed in

the literature (Varga 1962, Young 1971, Golub and Ven Loan 1983).

For instance, it has been shown that Jacobi and Gauss-Seidel

require on the order of n? iterations to rmch a given-
precision. where 'n is the unidirectiom.l size of the grid
(Laplace problem. in any number of dimensions) The SOR methods

require only O(n) iterations if the optimal iteration parameter

can be computed accurately. A Unfortunately. this requires

estimating the spectral radius of the SOR iteration matrixr For
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complex problems such as the stochastic flow equation, it seems
unlikely. that the "optimal” relaxation parameter could be
estimated accurately without dramatically increasing the total
computational work. Thus, the number of iterations is likely to
be O(n®) - rather than the O(n) behaviour predicted for optimal
SOR.

This feature is presumably shared by the iterative ADI
methods. The theory for ADI convergences remains incomplete, but
the work of Peaceman and Rachford (1955) and Wachspress and
Habeter (1960) shows that the optimal ADI-relaxation parameter is
not a constant. These authors proposed a cyclic sequence of
parameters based on the eigenspectrum of the Lx and I_Y
mtrices defined above. The truly optimal sequencé is not known,
except for very special forms of the governing equation, e.g..
the heat equatior; with spatially separable conductivity
K(x,y):Kx(x)-Ky(y). More details can be found in Varga (1962)

and Ames (1977), among others.

The Jacobi, SOR, LSOR, and ADI solvérs can also be
compared in a slightly different way as follows. First of all,
let us point out key feature shared by all the iterative methods
reviewed above: the interactions among nodai variables are
partially decoupled througﬁ the iterative solution process. At

each iteration step, the solution is computed by taking into

g —-

o

. ",
(IR
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accoﬁnt the 1nteractions a.ntong a certein group of nodal values.
while the rema.:lning nodes are treated explicitly (e. g.. by
retaining the values obtained at the previous iteration). The
computational work per iteration is roughly the same for all
solvers (on the order of K), but the "degree of implicitness"”
differs. In the ‘Jac':obi methot!. the solution at each node is
computed explicitly with t'espect to all the tema.ihing 'nedes:' in
the Gauss-Seidel and SOR :methods. about half of the nodes are
treated implicitly on average and in the ADI method the nodal
values are coupled alternatiVely in the X and Y-directions.
vhile the other direction is treated explicitly. Various devices
have been proposed in the literature in‘ order Ite‘ increase the
degfee of 1mplicitness. er ceupling. of iterative solvers while
still retaining the adira.txtages of a sparse and easily invertible -

matrix epprdximtion. 7 Indeed, the SOR matrix-splitting can be

'generalized into line-SOR or more generally block-SOR splittings.

which may increase the coupling along lines or among héighboring
nodes (Evans, 11984). : |

However, :_our literature review indicates that the most

efficient, or -"sti'etlgly implicit™, iterative solvers are those

‘based on an approximate faetortzation 'Vof the o'ri.gihal‘ matrix,

such as the SIP and IOOG solvers mentioned earlier. This was
taken into account in the classification given in Table 5.3,

vhere the solvers were listed according to their "degree of
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implicitness”, increasing from top to bottom (Jacobi, Gauss
Seidel, SOR, LSOR, ADI,‘ ICCG, SIP, and Direct Solvers). According
to this classification. direct solvers are fully implicit
(requiring only "one iteration”) but their computational cost
will be prohibitive for large systems, as explained earlier. The
advantage of SIP and IOCG is t}xa.t they are based on strongly
implicit, yet sparse factorizations of the coefficient matrix.
Thus, these two methods presumably converge faster than the
solvers based on matrix-splitting, while the computational work

per iteration remains on the order of N.

The numerical experiments published in the literature
confirmed this view. Most of the references given in Table 5.3l
above involved comparisons between LSOR, ADI, SIP, and IOCG. It
appeared that ADI had the slowest convergence rate in most cases,
or diverged in difficult cases sucil a those involving anisotropic
conductivities. The LSOR solvers were reasonably efficient,
pro'vided alternate line-sweeping along different directions, but
the SIP solver was usually more efficient for "difficult”
problems involving heterogeneities and mild nonlinearity. In
addition, the performance of SIP was not overly sensitive to the
choice of its iteration parameters, whereas this was sometimes a

critical issue for LSOR and ADI.
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On the .other hand, 100G also appeared to be a powerful
';o1véf. The numerical experiments by Kershaw (1978) demonstrate
the superiority»of I(IX: over ADI and LSOR .for a laser fusion
problem (transient diffusion equation with a radiation term).
Other numerical ‘experiments for heterogeneous conf ined and
unconfined groundwater flow (Kuiper 1981) indicate that SIP with
underrelaxation could be as efficient“as I0CG i'or the mildly
nonlinear case of .unconf ined rf low, elthough IOCG uﬁxally
converged l'aster for linear problems In a more recent study
Kuiper (1987) concludes :ln favor of 100G over SIP. However. it
is possible that =a change in the details of implementation.
especially for the _nonlinear problems, could =affect his
conclusions. Furthermore, the SIP solver involves an adjustable '
sequence oi‘ iteration parameters '(similar to ADI), and could also
be underrelaxed to avoid divergence in difficult cases. On the
other hand, ICXI; does not depend on any extraneous iteration
parameter. It is conceivable that the flexibility of SIP could
be an advantage, rather than a drawback, when dealing with near

ill-condi tioned sys tems.

At any rate. it may be preposterous to draw definite
conclusions here. since the numerical experiments mentioned above
were limited to rather modest-s:lze flow problems, below 10,000
nodes. The larg:est among those was the saturated-unsaturated

numerical simulation by Freeze (1971) with the LSOR solver on an
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8,000-node grid, but his study did not include comparisons with
other solvers. Larger simulations can be found in the literature
on numérical analysis, however, these focus typically on the
solution of the Laplace or Poisson equations (constant
coefficients). One of these studies, by Jacobs (1983), develops
an adaptation of the SIP factorization in conjunction with
conjugate gradient iterations, for comparison with ICOG methods.
The conclusions, based on two-dimensional test problems up to
40,000 nodes, were in favor of IOOG over SIP-OG. However, we do
not know ofr any numerical experiments with the standard SIP

solver for problems of comparable size or larger.

We now focus our review on the theory of SIP and ICCG,
since our search in the literature indicates that these solution
methods may have the best potential for large finite difference
systems. The idea of using sparse approximate factorization for
preconditioned iterative solvers arose in 1968, when the SIANM
Journal on Numerical Analysis published in the same issue three
papers on the approximate factorization and iterative solution of
malti-dimensional finite difference systems. The first, by
Stone, described the strongly implictt procedure (SIP) based on
an approximate, non-symmetric LU factorization of the symmetric
coefficient matrix A, with a Picard iteration scheme to converge

to the solution of the A-matrix system. Although Stone’'s paper

(1968) concerned only two-dimensional 5-point finite difference
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systems, the  SIP method was sub‘sequently extended to
three-dimensional 7-point finite difference systems (Weinstein et
al, 1969). The two other papers in the 1968 SIAM ]Ml. by
DuPont, Kendall, ‘Rachford and the companion paper by Dupont,
developed a symmetric l..I..'r apj:i‘oximate fectorization with Picard
iterations to converge to the solution. . The LLT factorization
they used was similar to an incomplete Choleski factorization
where the matrix L is forced to have the same sparsity pattern
as A, and furthermore the row-sums of A 'are conserved (see
Gustaffson 1978, Jackson and Robinsoh'1985). Thus, the iterative
solvers of Stone (1968) and Dupont et al. (1968) c_liffered
essentially in the method used to obtain an approximate
factorization .of -t_he finite difference matrix.

It was not until 1977 that the symmetric incomplete
Choleski factorization was used as & preconditioner for conjugate
gradient iterﬁtions (Mejerink and Van der Vorst, 1977). This
combination, known as 1nconr;;1ete Choleski-conjugate gradients
(1I00G), has become quite popular due to the fast convergence of
the OG :lterai:lons in the case of well conditioned
(preconditioned) symmetric positive-definite systems v(see

Kershaw, 1978, among others). It is interesting to note that the

"pure” conjugate gradients method devised by Hestenes and Stiefel

(1952) was viewed in the early days as an exact solver, since the

'method was known to converge to the exact solution in at most N
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iterations (N being the number of equations). However, the CG
iteration did not converge fast enough to be competitive as an
approximate large sparse matrix solver (N large). Thus, it
should be kept in mind that the incomplete factorization is an
essential ingredient of the ICOG method, required to ensure fast

convergence of the conjugate gradient iterations.

On the other hand, it is worth noting that the
conjugate gradients method, and the IOOG solver, can only be used
to solve symmetric_: positive-definite systems. As a consequence,
the conjugate gradier;ts method cannot be used to accelerate .the
convergence of the SIP solver, as the latter is based on a
non-symetrié LU factori;at'ion. This would seem to advantage the 4
IOCG method, since the conjugate gradients iterations presumably
converge faster than Picard iterations for well conditioned
(preconditioned) systems. On the other hand, the non-symmetric
SIP factorization appears to be a more accurate approximation of
the original system matrix than the Incomplete Choleski
factorization (respectively second order and first order in Ax:

see Stone 1968 and Gustaffson 1978). This seems to advantage

SIP, with a better preconditioner than IOCG.

Unfortunately, there does not appear to be any solid
theoretical basis on which to compare the two methods. A formal

theory of SIP convergence is still lacking, due to the complex
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form of the LU factorizatioﬂ involved; there has nof been much
progress iin this aréa since the indications given by Sfone (1968)
for. 2-dimensional ﬁfdblems with constant ct:;eff icients. The
theory for IOOG is more develbped. but | limited to. constant or
mildlir variable coefficients. For‘ i'nstance. Gustaffson (1978)'
showed that the condition number of the iteration matrix for the
Picard-Incomplete Choleski solver of Dupont, et al. (1968) was
O(n). 'compared to O(n?) for the condition number of the original
matrix _(Laplaéé equation, wit.:h n the unidirectional size of the
grid); On tﬁe other hand, the number of iterations required to
reach a ‘.given i:recisioxi grows like the squére-roof of this
condition. number, both for the Picard and the conjugate gradient
~ iterations (Gustaffson 1978, and Golub and Van Loan 1983). This .

yields for the number of ICCG iterations a relation of the form:

which indicates that the ICOG method could converge quite fast
for large 3D systems. Indeed, the total size of the grid is

N = n® in three dimensions, which yields: -
m~ N6 o . (5.83)

indicating a very slow growth of the number of iterations with

grid size. Note however that the theoretical analysis that led
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to (5.83) was based on a number of assumptions, including the
restriction to mildly variable or constant coefficients. It‘
seems more reasonable to postulate that, in the worst case, the
n_umber of iterations could grow like the unidirectional size of

the grid, for the 100G as well as the SIP methods, i.e.:

This gives finally a worst case estimate of the number of
iterations required for convergence of both IOOG and SIP for

three—dimensional systems with highly variable coefficients:

o~ w7 |

(5.84)
In comparison, note that the non-optimal SOR method will not
converge faster than N : iterations, even for mildly wvariable

coefficients.

We have developed a Fortran implementation of the SIP
solver during the initial stages of this research. Some of the
details of this implementation will be described in the next
section, and a number of numerical experiments for large random
flow problems will also be presented in a forthcoming section.
Because the results obtained with SIP were eventually found to be

quite satisfactory, it was felt that developing the IOCG solver
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was not neceSsary. However, there is no claim that IOCG could not
perform as well or perhaps better than SIP in terms of

computational work (more on this later).
5.3.2 Formulation of the strongly implicit procedure (SIP solver)

We now proceed to describe the algebraic details of the
strongly implicit procedure. Recall that SIP is based on the

“Picard iteration scheme (5.81):
K- a™! 2o . (b-an") o [(5.81)]

where M =LU is an e;pproximate non~-symmetric factorization of
the system matrix A. " In what follows, we analyse in some detail
the SIP factorization for the case of the 7-diagonal symmetric
coefficient matrix A, ‘corresponding to the T7-point centered
finite difference scheme in three dimensions (see Figures 5.1 and
5.2 sbove). The 3D version of SIP was exposed briefly by
Veinstein et al. (1969), based on the 2D version previously
developed.by Stone (1968). Details on coding can be found for
instance in McDonald “and Harbaugh (1984).  However, our

particular implementation is exposed below.

The SIP factorization aims at obtaining a close

approximation of matrix A in the form of a produét of a lower and
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an upper triangular matrix (L and U) that have the same sparsity
patterns as the lower and upper parts of A (Figure 5.5). The
difficulty is to find the matrices L and U such that the
product M = LU'is indeed close to A in some sense. Let us

define E the error matrix:
E=N~-A=1U-A (5.85)

Obviously, many choices of L, U, and E are possible for a given
matrix A, since the system (5.85) is .undetermined. On the other
hand, it is easily seen by inspection that E cannot be the
zero-matrix since the system A = LU 1is overdetermined. 'We

conclude that A cannot be emct.ly factored in the form LU.

The particular factorization devised by Stone and
co-worker; was obtained by writing explicitly the undetermined
system (5.85) - with L and U as shown in Figure (5.5) - in a
;-ecursive form. The undetermined coefficients in this recursion
were then obtained by manipulating the equations in such a way
that the product LU appears equivalent to a non-symmetric, second
order finite difference approximation of the governing partial
differential equation. In two dimensions, Stone (1968) showed

that LU corresponds to a 7-point symmetric FD approximation

P

o~
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Figure 5 5 Schematic representation of the SIP approximate

. ‘ factorization (top). and structure of the product

\' ' M = LU approximating A (bottom). The dashed lines
b : indicate extra diagonals not present in the original
matrix A.
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(Figure 5.6, top) satisfying:
LU = A + O (Ax3, Ay3, Ax Ay).

In three dimensions, an analogous proceduré devised by Weinstein
et al. (1969) leads to a factorization LU that appears equivalent
to a 13-point asymmetric FD approximation of the governing
equation (Figure 5.6, bottom). Presumably, this corresponds to a
second order appréximatiori of the governing equation, as in the

two-dimensional case.

However, 1t turns out that the LU factorizgtion
required an additional modification in order to ensure proper
convergence of the iterations defined by (5.81). A new parameter
v was introduced (undetermined coefficient of the LU matrices)
in such a way that the factorization described just above
corresponds to the case v = 1. Note that « is an "iteration
parameter”, distinct from the relaxation parameter @ appearing
in equation (5.81). According to Stone (1968) and Weinstein et
al. (1969), the best results were obtained when Tn followed a
cyclic sequence, with 0 < T < 1. The proposed sequence of

parameters is analogéus to that of the ADI method. This sequence

takes the form:

.
——
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Figure 5.6 Asymmetric SIP molecule corresponding to the
approximate LU factorization of the symmetric
finite difference matrix A (top: 2D case; bottom:
3D case).
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m -1
. -1

1 - T = (l-wmx) s Mm=1,2,002,mg (5.86)
where mg is the cycle length (taken equal to 4 in this work),

and Tax is the maximum value of <« over one cycle. Correcting

the erroneous formula given by Stone (1968), Toax is given by:

2
7m - Hin { L s Trz 1 wz }
1.3.k nip; n3p> n3p,

-

Ki.

=14 [Kagws.k . J.km] , Shgk s
A3 03 o

where n; represents the number of nodes along direction X -
Note that Tmax 2PPears to be spatially variable in the case of
non-constant conductivities, so that the above formula requires
some further modification. In the case of 3D flow with locally
isotropic (but variable) conductivities, we propose a simple
elimination of the conductivities appearing in p,, etc., on the

grounds that neighboring mid-nodal values should not differ much

on a high resolution grid. This yields finally:

1 -~ = Min
i=1,2,3

{r’(mx’ - Axf)}
S (5.87)

2, 2
2ni EAx:l

v
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where Eij = Ax? + AxZ + Ax2. Equations (5.86) and (5.87)
completely define the cyclic seqﬁenée of SIP iteration parameters .
used in this work, both for the linear and nonlinear flow
systems. The cycle length was m = 4 for all simulations. To
avoid confusion, we stress again the fact that ~ is distinct
from the relaxation parameter 3] appearing in the basic
iteration (5.81). The parameter @ was introduced to provide

additional f lexibility to the SIP solver, and will turn out later

to be useful.:

It may be instructive to briefly explain the rationale
behind the choice of a cyclic sequence of the v-parameter. The
geometric progression (5.86) was chosen intentionally in order to

cover a wide range of values 0 ¢ T L <1, in such a way

max
- that the values taken by -rm' are mostly clustered near unity (note
that Voox is very close to one for large grids). Indeed, it
turns out that for v+ =~ 1, the iterative smoothing of the error is
only effective within' 2 narrow wavenumber band, so that several
‘different values or 7 near unity are needed in order to cover a
wide enough band. In addition, the precise choice‘. of ﬁmax is
“"important for the success of the SIP method. According to
equation (5.87), this parameter is close to one, but always less
‘than one. Indeed, Fourier analysis shows that i:aking Tpax

exactly equal to unity would lead to divergence of the SIP

‘{terations. -



367

In the case of the two-dimensional Laplace equation,
Stone (1968) showed that, for any constant value of v, in the
vicinity of unity. there will be an amplification of the Fourier
modes of the error within some wavenumber range. On. the other
hand, Stone also showed that for any given Fourier mode, there
exists a value of <~ between zero and one that results in the
decay of the amplitude of that mode. Values of +~ near unity
tend to decay the low wavenumber components of the error
(although some other modes might be amplified!), while values of
¥ near zero tend to decay the high wavenumber modes quite
rapidly. The sequence of T defined above is therefore an
important ingredient of the SIP method, without which very slow
~ convergence or ev‘en divergence could occur. Unfortunately, there
exists no proof that this sequence will guarantee optimal
convergence of the SIP method in the general case. The ADI

method encounters the same type of problem, as explained earlier.

Another important feature of the SIP factorization that
might be altered to improve convergence is its directionality,
arising from the asymmetry of the "SIP molecule™ depicted in
Figure 5.6 above. Indeed. the orientation of the SIP molecule
could be changed by reordering the nodes in a different fashion.
In three dimensions, we have enumerated eight possible ways to do
so without changing the sparsity pattern of thé system matrix.

The standard node ordering scheme, which sweeps first through

-~

A
- .

[E—
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(+x,). tﬁen (+xz), then (+x5). was used as the basic bi'ndexing
scheme in our numerical code. However, the SIP algorithm can be
manipulated to accommodate ofher node orderings, such as 's“weepmg
reversely through (-x,). then (-xz), then (-x;,) in the négative
directions. It has been claimed that implementing the SIP
factorization with alternate ordering (+x,,+x2,+x3)/(—%4.=Xz.~X3)
from one iteration to the next, resulted in improved convergence.
However we have not observed any favorable effect of | the
alternate ordering strategy in our preliminary numerical tests.
For completeness, note that there are two ways to implement the
alternate SIP method; the one we have tried without success
" cycled the ~-parameter every o'ther iteration, so that the same
value of 7 was »used' for alternate sweeps. According to
Weinstein et. al. (1969), the other strategy which uses different
values of v over alternate sweeps may work as well or better. In
any case, the numerical ‘experiments shown in this work were all
performed with the standard node orderiﬁg implementation of SIP

(no alternate sweeps).

"l'yheA algebra of the SIP factorization is tedious and
will not be reproduced in detail here. The factorization must be
recomputed at each iteration step because the factored matrices
L and U depend on ""vl'n. which varies cyclically as explained
' before. Our - particular 1mplementatibn used a vector

representation of each non-zero diagnonal line of A, L end U. Ve
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obtained a nonlinear recursion for the coefficients of the L and
U matrix, analogous to the Thomas algorithm for tridiagonal
matrices, but much more complex (13 equations define the
recursion). Unfortunately, this type of recursion does not
appear to be fully vectorizable, except at the cost of increased

storage requirements.

We have coded several implementations of the SIP solver
in order to accommodate different computing environments. One of
the variants is slower, but more flexible and requires less
storage. Typically, the solution of a linear problem such as
saturated flow with random field conductivities will reql_xire a
storage of about 10 N words, where N 1is the total number ;)f
nodes. The number of equivalent additions performed at each
iteration step is on the order of 50-100 per node, of which only
a fraction is vectorizable. Thus, solving a single realization
of the stochastic flow problem on a 3D grid on the order of
1 million nodes would require the availability of about
10 Megawords of central memory, and consume on the order of
100 MFLOP per iteration (IMFLOP = 1 million floating point

operations).

In comparison, a recent supercomputer like the Cray 2
could run at 10 MFLOP/second (or several times faster) in scalar

mode, and 100 MFLOP/second (or several times faster) in full

4 .
[ —
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vectdr mode. The phyéical memory 6f ‘Vthe Cray 2 is currently
256 Megawords (with 64-bit words), but other supercomputers have
only about 1-10 Mwords of central storage (Cray 1., Cyber 205).
Nevertheless, storage should not be a real problem in the near

future, since the current trend is towards larger 'physical

‘memories on the order of the Gigaword (10° words).

We conclude that the numerical solution of random flow
problems oh grids on the order of 1 million nodes will be
feasible at reasonable cost on current supercomputers having
su‘ffi~cient.’ direct access memory, provided that the rumber of
iterations required to reach an accurate solution be on the order
of 1000 or less. . ]En this case, a solution for 'each

single-realization problem could be reached in, say, no more than

" a few hours of CPU time. Thus, the key' 'questibn is whether the

SIP solver converges at a reasonable rate in the case of large,

'highly variable flow problems. We will examine this question.

below for the case of steady state flow in saturdied’média. The
transient and 'nbnlinear | problem of unsaturated flow is of a
different nature, é.nd its numerical analysis is postponed to a

later section.
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5.3.3 Convergence analysis for large 3D random systems of
saturated flow

In this subsection, we summarize the results of a
number of numerical experiments conducted with the SIP solver,
for large single-realizations of the stochastic groundwater flow
equation in three 'dimensions (up to 1 million nodes). We begin
by developing an approximate theory relating the unknown solution
error to other "observables” such as the residual {teration
error. This will serve as a basis to interpret the numerical
experiments. Note that we focus here strictly én the convergence
of the solver, and not on the physical meaning of the solutions

themselves (see Chapter 6).

[a] Theoretical Analysis of Convergence:

We proceed to show that the convergence rate of the
SIP solver is related to the spectral radius of the so-called
iteration matrix, or "Jacobi matrix™ J. Furthermore, we will
also show that the observable "residual error"” (;) usually
underestimates the true error (e¢) by an amount which depends on
the convergence rate. Let us start with the basic Picard

iteration scheme (5.81):

L™ 1) = 0 o (b-AnD) [(5.81)]

-—

v
[

-
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and recall that LU fs an approximate factorization of matrix A,
vhich depends on the cyclic v-parameter of equation (5.86). For-:
sitﬁplicity here, we will ignore the fact that LU varies
cyclically with respect to the iteration counter m. This should
not be of consequence for the forthcoming analysis, e.g.. the
convergence rate can be interpreted as an average over the cycle

length.

Let us now define a "residual error” which can be
computed & posteriori by numerical experimentation:
LN L L | ~ (5.88)

However, the "true error™:

. =n"-h ; - (5.89)
remains unknown, since the exact solution h 1is not known.
Nevertheless, a recursive relation on e° is easily obtained by
manipulating equation (5.81); this gives:

Pl (Jw)m'e" : : (5.90)

where €° 1s the initial error (depending on the initial guess

h°). and Jw is the iteration matrix:
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Jy=1-0 @) (5.91)
Furthermore, it is easily seen, by manipulating again equation
(5.81), that the residual error follows a geometric progression

similar — but not identical —- to equation (5.90):
= (J)" - o (h-(Lv) an°) (5.92)

These relations show that the SIP iterations will not
converge unless.‘the "norm” of the iteration matrix J is less
than one, in some sense to be precised later. In the case of an
exact -LU factorizatibn. and taking @ = 1, the iteration matrix
becomes zero al;xd the exact solution will be obtained after just
one “iteration”. In the case of the approximate SIP
factorization, we expect that the rate of convergence be directly
related to the accuracy of the LU factorization., which can be
represented by the norm of Jw in equation (5.91). This

intuitive observation will be given a more precise meaning

shortly.

Note also that equations (5.90) to (5.92) can be
combined to relate the unknown error vector & to the residual

~
error vector &€ as follows:
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=(@-3)t.Em (5.93) °

This equation indicates that the true error may be much larger
than the observed residual error when the norm of the iteration
matrix Jw is close to unity. Observe that Jw depends on the
chosen value of the relaxation parameter. The role of @ can be
made more explicit by plugging equation (5.91) into (5.93). This

yields: L R

(5.94)

The role of the relaxation parameter now appears more
clearly. Taking @< 1- (underrelaxation) does not seem a good
strategy at first sight, since this will.increase the ratio e /e
according to equation (5.94). On the other hand, underrelaxation
might be necessary in order to a\roid divergence in the case where
the LU matrix is not an accurate approximation of A (the norm
of J must be less than unity in equation 5.91). This suggests
tha.t there exists some optimal value of the relaxation parameter

(@

€error. It is conceivable that wopt be greater than one in

opt) which will maximize the convergence rate of the true

certain easy cases. but more likely "’opt will be less than

unity for "diff icult" problems characterized by a large condition

number of the coeff icient matrix
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Unfortunately, the relations obtained so far depend on
the unknown inverse matrix A-l involved in Jm' so they cannot
be used for an a priori analysis of convergence of the SIP solver
in terms of the true error e. However, it is possible to
relate the norm or spectral radius of Jw to the e&-convergence
rate, at least approximately. In addition. comparing equation
(5.92) to (5.90) shows that the e- and ;-convergence rates
should be the same. These remarks eventually lead to an explicit

expression for the true error (e) in terms of two "observable”

quantities: the residual error (e), and the e-convergence rate.

This is developed in more detail below.

Our starting point consists in obtaining a tractable
expression for the true solution error (&) in equation (5.93).

Intuitively, this equation suggests an inequality of the form:

Ne™l
=170

ne™ ¢
A relation of | this type was used for instance by Hageman and
Young (1981) to design a stopping criterion for conjugate
gradient iterations. In order to show that this is indeed a
reasonable approximation of (5.93), we need to define some vector
and matrix norms. The reader is referred to Householder (1964)

for basic definitions and inequalities on matrix norms. The
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facts directly feleva.pt to the present work can be summarized as |
follows. A matrix norm must satisfy the usual properties of

norms, including the triangular inequalities:

HA + BIl < NAIL + KB
' - (5.95)
BABI < NAN - BN '

One particularly useful matrix norm IlAll is defined in relation

with the usual Euclidean norm lxll for vectors, as follows:

UAxII . :
Al = M;x =i ] . (5.96)

Incidentally. it can be shown that IAll is the square-root of the

maximum eigenvalixe of AAT. Row, by using the second triangular

inequality in (5.95) we obtain another useful inequalii:y:
T RE T | | (5.97)

On the other hand, the spectral radius p(A) of a matrix A is

defined as its maximum absolute eigenvalue:

PUA) = Hax Ny W) o (5.98)
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This quantity turns out to be always smaller or equal to the

Euclidean matrix norm:
p(A) < lAl (5.99)

Finally, combining (5.97) and (5.99) yields another useful

inequality:
p(A™) < 1A™ < na™ (5.100)

Let us now assume that the iterations do converge, and
that the norm Ilell of the iteration matrix is less tl_:a.n unity
(this also implies that its spectral radius p(Jw) is less-than
unity). Equation (5.93) can then be approximated as follows.
First, take the Euclidean vector norm on both sides of (5.93) to
obtain:

ne™ = n(I-J ) "tn o e,

Second, write a formal Taylor development of the matrix-valued

function:
- _1 — 2 [ N N )
(1 Jw) "I+Jw+Ju+

and use the previous inequalities to obtain:
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N(I-J 1) € 1+ I+ U 2o e

The series on the right-hand side converges since it was assumed

that I!lel < 1. Thus, we obtain finally:

-1 1
HI-3, ) < 1-0J 1

vhich gives immediately the announced result:

: “m
. fle il . N
"e," < i—_-w . . | . (5.101)

On the other hand, applying previous matrix norm
inequalities to equations (5.90) and (5.92) gives two more

inequalities:
he™n ¢ qun“’ . el
(5.102)

He™n < MI U™ + @ Wh-(LU) AR

Let us now define the convergence rate:
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r=- T (5.103)

and observe that the convergence rate of the residual error is
identical to that of the true error if equality holds in both
relations of (5.102). In that case, the convergence rate is

given by:
r¢?&n (llllJmll). (5.104)

However, this can only be a rough approximation
(hopefully on the safe side) since in fact equations (5.102) are
inequalities. Other authors have used a slightly diffe_rent
argument that leads to a similar resﬁlt with llJmII replaced by
p(Jw) in equation (5.104). This is reported for instance in
Remson et al. (1971), following the work of Forsythe and Wasow
(1960) and others. Indeed, expressing equation (5.90) in the

basis (ei) of independent eigenvectors of Jw gives:

3 =}:ai ey

3 =2¢:¢17\‘,1 e

and, in the case where the largest eigenvalue Ay = p(Jm)

dominates the others, we obtain approximately:
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e = [p(I)I" - €°

‘This finally leads to replacing IleIl by p(Jw) in equations
(5.101) through (5.104). It should be mentioned that, although
we know in general ‘that p(J) € HIJHl, the cases where these two
quantities are not closé to eaf:h _other are somewhat pathological.
Here, we can only hope that the SIP iteration matrix Jw is not
pathological, 1i.e. that 1ts spectral radius is approximately

equal to its Euclidean matrix norm.

To conclude, the results of equations (5.101) - (5.104)
finally 'lead to an upper bound on the "true” splution eri‘br. in

the form:

m He™
el £ —— (5.105)
1l-¢ ' .

~

where & 1is the true error vector, & is the residual error
vector, and r is the convergence rate, which can be computed

from:

_ ..d fn N

fr = = (5.106)
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Equations (5.105)-(5.106) are applicable in the case where the
computed convergence rate, r, is a positive constant. 1In other
words, the iterations must converge, and the number of iterations
must be large enough that the convergence rate reaches an
asymptotic value. Figure 5.7 shows three different situations

that might arise in practice:

(1) The residual error norm II;‘“II increases monotonically
(on average over the cycle length) after a certain
number of iterations: this is a sure sign that the

method diverges.

(i1) The residual error norm llle\m I decreases monotonically

but does not seem to reach a constant convergence rate:
the method may converge with more iterations, or may

not (possibly due to accumulation of round-off errors).

(1i1) The residual error norm Il;mll decreases monotonically
and reaches a constant convergence rate (straight line
on a semi-log plot): the method clearly converges, and
the final error lle™l can be evaluated a posteriori by

using equation (5.105).

The methodology developed above proved to be useful in

practice, especially for the solution of very large "random” flow
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Figure 5.7 A posteriori anzalysis of convergence of the SIP
solver: residual error norm versus number of
iterations on a semi-log plot. In the convergent

case (1i1), the final residual error llell and the
convergence rate r can be used to estimate the true
error llell as explained in the text.
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problems. It was found that underrelaxation was needed in order
to achieve convergence for such problems. As a consequence, the
iterations converged quite slowly. Now, the simple relation in
(5.105) shows that the restdual error will largely underestimate
the true solution error in these cases of slow convergence.
Incidentally, let us mention that most empirical studies of
iterative solvers in the literature use the residual error
(;m = hm'bl-hm). or else the right-hand side residual (b-Ah"), in
their evaluation of the solver's performance. The above analysis
indicates that such information could be misleading, except
perhaps for "academic” cases where the convergence rate is high
enough that the residual error approximates well the true
solution error. In the sequel. we analyze sequences of residual
errors obmiﬂed from actual simulations, using equation (5.105)

for a realistic evaluation of the performance of the SIP solver

in terms of the "true” solution error.

[e] DNumerical Experiments:

The SIP solver was applied to a model problem of
saturated flow for a variety of grid sizes and different cases of
log-conductivity variability. Briefly, the model problem was
designed to simulate steady state Asaturated flow driven by a

known global hydraulic gradient. The three-dimensional domain

-
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was ‘a rectaxxguler'prism. elongated in ‘certain cases, cubic in
other cases. The global hydraulic gradient ‘'was imposed along one
of the axes of the rectangular prism (axis x,) by using fixed
head boundary conditions on two opposite faces (x;=0 and x,=L,),
while zero-flux conditions were imposed on all other lateral
faces. With this c_onfigtiration. X, represents the direction of
the mean flow (longitudinal), while x; and x,; are the axes

transverse to the mean flow.

In the trivial case of a constant conductivity (af=0) .
the exact solution in terms of the hydraulic head is & linear

" function of the longitudinal coordinate:

H(L,)-H(0)

" x4 © (5.107)

H°(x) = H(0) +
In the case of =a r'andomr :log-conduetivity (a ‘:;! 0). equation
(5.107) was used as the initial guess for the SIP solver. The
) log—conductivi ty was generated at each node of the finite
| difference grid by using the 3-dimensional Turning Band algorithm
developed by 'I'homson. Ababou a.nd Gelhar (1987) This method
.genera.tes single—realiutions of random fields. as explained
earlier (Chapter 2). The particular random field used for the
numerical experiments of this section is the 3D isotropic Markov
field, whose spectrum was given in Table 3;1. Let us mention

that other simulations were conducted with anisotropic Markov
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log-conductivity fields. The numerical solutions obtained for
isotropic as well as anisotropic fields will be analyzed more

thoroughly at a later stage (Chapter 6).

Table 5.4 summarizes the results obtained with SIP
for 4 test problems and several values of O The first row
gives the size and geometry of the grid. Note that the largest
problem (1 million nodes) was solved on a Cray 2 machine with
64-bit words, while the other problems were solved on a
minicomputer, the Microvax 2, with 32-bit words. The mesh size
was the same along all three directions, and equal to one third
of the conductivity correlation scale for the largest problem

(one half for the others).

The second row in Table 5.4 gives the standard
deviation of the log-conductivity field (af). which ranged
between 1 and 2.3; these are fairly representative values in view
of available field data (see Chapter 2). In addition, one of the
simulations listed in Table 5.4 was for f =0, i.e. for
cohstant conductivity (Laplace equation). The initial guess for

the Laplace equation was taken to be a constant hydraulic head:

B(x) = —

rather than the linear function (5.107) which is known to be the
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Table 5.4

Convergence Rate of the SIP Solver:

of Rumerical Experiments for 3D Steady State

Saturated Flow with Smtistieally Isotropic Random Oonductivitles

Problem A B C D

Label

N 1 million 130,000 110,000 40,000

n, (101; 101:101) [(51: 51: 51)] (250: 21: 21) (80:21:22)

a; 1.0 2.3 2.3 2.3 0. 2.3

© 2.5 .25 .50 .25 1.00 .50 .50
r .0219 . ..0070 .0256 .0041 .0341  .0512 .0259
(am)™® | 105.  330. 90. ~ 570. 67. 45. 64.
(s)* 1.2 0.4 0.7 0.3 09 1.4 0.7

(%) The "iteretion increment” (im,) and the “scaled convergence rate" (s) are
defined in the text; note that 4m; i{s the number of iterations required
to decrease the true error by 1 order of magnitude.
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exact solution of the Laplace equation. This particular test
problem was included in order to examine the effect of
conductivity variability over a wide range of o¢ values. In
theory, the asymptotic confergence rate should not depend on the
{nitial guess, but only on the size of the grid, the input

conductivities, and certain iteration parameters.

The third row of inputs in Table 5.4 gives the
relaxation parameter © used for simulations (see equation
5.81). The method used to search for an optimal value of « was
rather eiementary and empirical. The vatlue (o =.1 was tried

first; if divergence or very slow convergence occurred, the

simulation was started again with underrelaxation. Thus.‘ the.

sequence of values of the relaxation parameter used successively
in the search process was w=1, o= 0.50, w‘=0.25. and

W= 0.1.7

The last three rows of Table 5.4 display the asymptotic
convergence rate (r) and two other quantities related to it.
Reca.il that r 1is the fate of decrease of the logarithm of the
residual error normal as defined by equation (5.106), which can
be rewritten as: |

_d en ™ 1My

r — [(5.106)]

H '
o
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As explained earlier, this should be identical to the rate of

- convergence of the - true error, h-h™1 .  The “iteration

increment” Am; was defined as the average number of - iterations

required to decrease the error by 1 order of magnitude:

_$¢n 10

Am
1 r

(5.108)

Finally, the "scaled convergence rate” (s) was obtained by
dividing the convergence rate by a factor approxtmately equal to
the square root of the condition number of the coefficient matrix
A. In fact, this cohd}tion number is known only for the special

case 0, = 0 (Laplace matrix), namely:

4 (ny)%+(nz)%+(ny)*
Co = 3 (5.109)
s
vhere n is the unidirectionzl size of the grid (number of

i

{°

The condition number -given by (5.109) was obtained as
follows. . First of all, the condition number of a symmetric

matrix is defined as the ratio of the maximum versus minimum

_ absolute eigenvalue of the matrix. The eigenspectrum of the

Laplace matrix 1s easily obtained by solving the Laplace
eigenproblen:

(v3-A) v =0
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for v(x). and by plugging the corresponding eigenvectors

v(iAx,, i2Ax,, 135A%3) into the matrix eigenvalue problen:
(A-AI)v = O.

In the case where Ax, = Ax; = Ax,, this gives the eigenvalue
spectrum: i

ki'ﬂ' ]2

KG .
e ) b

i=1,2,3

where ki = 1.2.'-°ni. The final result (5.109) was obtained by

computing the ratio of the extreme eigenvalues (Cy= Amaxn‘min)
assuming n, » 1, and the quantity "s" on the last row of

Table 5.4 was defined as:
‘s = Cp er , (5.110) B

- Thus, a constant value of s across the last row of Table 5.4 5
would indicate that the convergence rate is proportional to c{f .
which is itself approximately proportional to the unidirectional o
size of the grid along the- diréction of maximum elongation
(largest number of nodes). To avoid confusion, recall that C, is

the condition number of the Laplace matrix (af = 0), not of the
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random matrix (crf # 0).-

The major results that emerge from Table 5.4 are the
followingz. ' First of all, it appears that underrelaxation was
usually required in order to achieve convergence. Second,
convergenée was fairly slow in general, since the number of
iterations required to decrease the error by 1 order of magnitude
(Am;) was on the order of one hundred, up to several hundred
' iterations in the most diff icultg éases. Furthermore. it appears
:i:hat the required numbex; of iterations was roughly proportional
to the unidirectional size of ”the gri;d as define& earlier. This
can be seen by comparing problems A,B,C for op = 2.3. 'On the
other hand, the required number of iterations usually increased
with op for a given grid size (see pt‘c'yb'l'ems ‘A and D for

op = 1 and 2.3).

However, the sequence of convergence rates cbtained for
problem D with o, = 0. 1 and 2.3, indicates that the influence
of . op ‘on convergence might be .fairly complex. If one accepts
the conjecture that the convergence rate of SIP is proportional
to C}z.. vwhere CAl is the condition number of -the random
conductivity matrix A, then the results of problem D suggest
that CA'* decreases with 'af at low values of 'o,, and
increases eventually for larger values. We have observed this

kind of behavior for a very small matrix with random
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conductivities distributed independently of each other, using a
direct perturbation analysis to obtain a "geometric mean”
condition number. The minimum condition number was obtained for

Op around 1.00-1.25. This result is not intuitively obvious.

In any case, we infer from Table 5.4 that the

‘convergence rate of the SIP solver behaved like:

rxs - X (5.111)

Jnz4nzm32

where n, is the unidirectional size of the grid, and s 1is a
slowly variable function of o and n,. According to the last
row of Table 5.4, the coefficient s was roughly on the order of

unity.

Figures (5.8) and (5.9) display the actual sequence of
residual errors obtained during the iterative solution pfocess
for the largest and smallest problems A and D listed in
Table 5.4. Figure 5.8a in particular gives the Euclidean norm of

the residual error llhm'"1

-h™ll versus the number of iterations (m)
on a semi-log plot for the "1 million node"” problem A. The

three subproblems op = 1.0, 1.7 and 2.3 were solved sequentially
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g NON-SCALED ERROR NORM (E) VERSUS NO.OF ITERATIONS (D)
-t

-a00 -200

LOG10(ED)
=4, 00

400 -500

=7, 00
fa

Figure 5.8 (a) Euclidean norm of the residual error versus
number of iterations on a semi-log plot for
problem A (1 Million nodes). The three
suproblems o0=1,1.7, 2.3 were solved
sequentially on & Cray 2 computer
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Figure 5.8 (b) Comparison of the asymptotic convergence rates
for o=1 and 0=2.3 of the 1 Million node problem
A: same as Figure (5.8a) except that the
residual errors have been scaled
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Figure 5.9 (a) Euclidean norm of the scaled residual error
versus number of iterations for problem D, on
e semi~log plot. The two subproblems o=1, 0=2.3
were solved separately on a Microvax.
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Figure 5.9 (b) Comparison of the Euclidean norm and absolute
maximum norm of the scaled residual error for
problem D with o, = 1.0.
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on a Cra& 2 machine. by nsing the last iterate of a subproblem as
an mimﬂ guess for the next one. This procedure bears some
resemblance with the so-called 'continnation methods” to solve
systems of equations whose solution depends continuously on a
parameter O: see Ortega and Rheinboldt (1970) in the context of
nonlinear s&stems. Here the system is l:lnear. but "d:lff icult” to
solve unless ar= 0; the three subproblems ox1, 1.7, 2.3

correspond to three "iterates™ of the continuation method.

The total number of SIP iterations required to solve
accurately the three subproblems of Figure 5.82 was about 1000

iterations, which consumed a total of about 4 CPU hours on the

four-quadrant Cray 2 mchine of the Minnesota Supercomputer

Center running in "single precision” (64-bit words).

It should be noted that the Fortran code ("Bigflo") did

not fully vectorize due to the nonlinear recursions of the SIP

: factor,iza_tion. algorithm, and the backward substitution of the

- solution algorithm. In addition, a "slow" Fortran compiler

("cft77") was used for technical reasons. As & result, the
speed-up ratio between the Cray 2 and a Microvax 2 machine was
moderate, about -1 CPU hour/1 CPU minute. The CPU time was found
to follow the general relation:

T (co+ e » 7o) N (5.112)

1 108
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where cg = 5 mn (overhead per million nodes) énd cy 223 mn
(per hundred iterations/per million nodes) for the Cray 2
machine. Recall that the number of iterations (m) was found to
be roughly proportional to the largest unidirectional size of the
grid. Using equations (5.108) and (5.111) and ignoring the
overhead time gives approximately the CPU time required to
decrease the residual error by 1 order of magnitude, as a

function of the grid size:

T P () (o (5.113)
1 XCy ===} Max ETovey .1
i=1,2,3 190" 4.9 9.3 100

For a grid with equal size n 1in all directions, this gives

simply:
N 4 V

For the 1 million node grid (n = 100) this yields just 23 CPU
minutes on the Cray 2. -However. doubling the unidirectional size
of the grid (n = 200) yields an 8 million node grid, which would
require about 6 CPU hours of Cray 2 time in order to decrease the
residual error by just one order of magnitude! This indicates
that flow problems on the order of ten million grid points or
more are presently very costly or infeasible in any "reasonable”

amount of time with the SIP solver. Presumably, this assessment
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also holds for most of the ’iterativ’e solvers discussed in our

literature review.

For the flow problems reviewed in Table 5.4, fairly
accurate solutions were obtained after the initial residual error
was decreased by "two “to three orders of .n:égni tude. The

iterations were usually stopped after the relative error (defined

below) reached about ‘10-2 - 10-3'01- less. The relative solution

error was evaluated a posteriori in two steps. ' First.v the

residual errors (Figure 5.8a) were normalized by a typical head

variation (OH) vhich was taken to be the standard deviation of

head given by the approximate spectral solutionst of Chapter 3.

Figure 5.8b shows the sequence of scaled residual errors for the

1 million node problem A, with op = 1 and op = 2.3. A similar

graph is depicted in Figure 5.9a for the smaller problem D.

The true solution error (normalized by aH)_ was then
evaluated according to equations (5.105)-(5.106). As an example,
let us focus on problem A with o = 2.3 (Figure 5.8b). The

scaled residual error at the last iteration was:

Coml om
SR
oy

However, the asymptotic convergence rate was quite small:
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_ denin™ 1™

r = am ~ 0.0070.

According to.equation (5.105), we evaluated the upper bound on

the true solution error as follows:

-4
fth-h"™i 10 -2
< 5557 = 1510

%4 1-e

This shows that the solution error was at'mo'stv 1.5X, relative to
the magnitude of fluctuations of the solution (aH). Although
this 1is certainly acceptable, it should be noticed that the

”

"true” error (upper bound) appears to be almost 2 orders of
magnitude larger than the residual error: ‘The discrepancy was
less marked in the case of smaller var-ia.bility'(af = 1.0), and’
the solution error was found to be only a fraction per cent
relative to G - Indeed, it is clear from Figures (5.8) and

(5.9) that convergence was faster in the case of smaller

variability (crf = 1, compared to g = 2.3).

We conclude that the solutions obtained with the SIP
solver were highly accurate, since the solution error at the last
iterate was found to be at most on the order of one percent the
standard deviation of the (random) head solution itself. In our
view, this is a remarkable result given the large size and high
variability of the problems considered for solutipn (especially
problem A, with 1 million nodes and af=2.3).
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Oh thé other hand, we have seen by exfrapolating a
relation on the number of iterations versus grid éize. that the
solution of larger random flow problems on the order of 10

million nodes or more may not be at hand. Even if convergence

could be achieved, we predict that the solution of such problems

could reﬁhire 1 CPU day or more on recent supercomputers like the
Cray 2. Furtheﬁnore.. .the solution brocéss could be overwhélmed
by the accumulation of VA raumi-off errors béfore reachiizg a
satisfactory solution errof. Thiszfossibility seéms to be
indicated by Fi‘ggrev 5.9b, which shows that the residual érror
cannot be decr;ased beyond a certain level. Notf.é that F{guf'e’
5.9 is for the "small” problem D, solved 6n the Microvax 2
miniconxputér with 32-bit words. .The sccumulation of rouné-off
errors was not (_)bserveci with the Cra& 2 si-mul.ations. due tc; the

higher precision”on this machine (64-bit words).

_ Incidentally, Figure 5..9b also compares the Euclidean

norm and the absolute maximum norm of the residual error. As one

‘could expect, using the absolute maximum norm gives & more

pessimistic picture of the performance of the solver.
Nevertheless, we emphasize the fact that, for all problems listed

in Teble 5.4, the SIP solver did converge in terms of the

.absolute maximum norm as well, and the maximum head error over

the grid was only a fraction of the head standard deviation in

all cases. In summary, the solution error due to the approximate



501
matrix solver SIP was quite small in all cases considered for

simulation, both in the Euclidean norm and the absolute maximum

norm.

Finally, it should be kept in mind that truncation
errors will neéessa.rily compound with the matrix solution errors
to yield, presumably, a larger total error. Considering the
results above and those of Set:ltion 5.2 on truncation errors, it
appears that the total .root-mean—square error on the hydraulic
head will be at most about 5% relative to the head standard
deviation. Note that this evaluation is based on the one millien
node problem (A) of Table 5.4 with o = 2.3. The error so
estimated refers of course t:o~ the exact solution of the
finite-domain single-realization problem, not' to the hypothetical
ergodic solutfon of the ifxf inite—-domain problem as assumed fof

instance in the spectral theory.
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5.4 © Development and Analysis of the Nonlinear Iterative Solver
for Transient Unsaturated Flow

5.4.1 Nonlinear SIP solve; and nested Picard iterations:

[a] ° Overview of Numerical Issues:

In the case of unsaturated or partially saturated flow

-— as opposed to saturated flow —— a new solution strategy must

‘be devised in order to take into account the highly nonlinear

nature of the algebraic finite difference system. We have chosen

in this work" to focus our ahalysis on the case of transient flow

" problems, such as local infiltration in':semi-:lnf inite unsaturated

media. Steady state solutiohg; when they exist, can be obtained
by running the transient unsaturated flow simulator for large
times. An example of this can be found.in fChaptér’?.' ivhqré 'large
scale unsaturated flow solutions are presented i;or both transien.t

and steady state cases.

In the transient regime, and when the time steps are

- sufficiently small, the alg'ebraﬂi'c“ system to be solved ‘becomes

much better conditioned than its steady state counterpart (see
‘e:quation 5.31)." As @& Tc‘\dnSequence.’ ‘the SIP matrix solver is

expected to conirerge niuch : faster for éch time étep of a

-transient flow problem than it does for the !single step of a

steaciy flow problem. On the other hand, the nonlinearity of the
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unsaturated flow system requires prior linearization in order to
obtain a solvable matrix system, presumably with iterative
corrections to converge to the solution of the nonlinear system.
Now, it is likely that there will be some restriction on the time
step size in order to ensure the convergence o_f the iterative
linearization scheme. Therefore, we expeét that the interplay
between time step size and convergence rate of the linearization
scheme will play a major role in determining the overall
efficiency of the unsaturated flow simulator (perhaps more
important than the rate of convergence of the SIP matrix solver).
With this "warning” in mind, we proceed to describe the actual
procedure used to solve the nonlinear transient flow problen.

[b] Description of the Nonlinear-SIP Solver:

The procedure which we have developed is based on a
doubly~-iterative Picard scheme for solving the nonlinear finite
difference system at each time step. The outer Picard iteration
loop is a simple {iterative predictor-corrector scheme which
breaks down the nonlinear system into a sequence of linear
systems. This was described in Section 5.1.3, where we developed
in detail the nonlinear space-time finite difference system and
its linearized version (see in particular equations 5.28-5.31).

The inner Picard iteration loop corresponds to the solution of

PPy
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the linearized matrix system by the SIP method, for each step of
the outer iteration loop. For simplicity, the whole solution

procedure will be designated as "nonlinear SIP".

- The linearized system (equation 5.31) can be written
for each time step (n = n+l) and each outer iteration (k = k+l1)
as:

ARLk | gLkl o ek (5.115)

wvhere 1 is a ne.w nonlinear relaxation parameter, a_nd r 1is the
residual for the outer Picard iteration loop (rk 20 as k =»®).
Note that the ;inearized ve_ctor‘ of boundary conditions was
absorbed in the residual. The numerical code accommodates
boundary conditiohs of fi#ed _pressure, fixed ' flux, or zero
pressure gradient. for each of th'e‘ noaes belonging to the

boundary.

The linearized coefficient matrix A has the same
sparse structure as the matrix previously obtained"for the linear
system of saturated flow -- & major advantage of the Picard

linearization scheme over Newton-Raphson. More precisely. we

have shown earlier (equation 5.31) that A tekes the form:
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cn+1.k

- At
n

An+1 .k

. £+Kn+l.k

(5.116)

where C is the linearized storage term (for transient flow

only), I 1is the identity matrix, and K is the linearized

unsaturated conductivity matrix, formally identical to the

coefficient matrix of the saturated flow system. As mentioned
earlier, the condition of matrix A improves as Atn decreases,

due to enhanced diagonal dominance in that case.

Plugging the standard SIP iteration scheme of equation
(5.81) into the linear system (5.115) yields a doubly-iterative

Picard scheme of the form:

where the

yk-l-l.m = ptlm _ h¥ = spk*l.m
k+1,m+1 k+1,m+1 k k+1,m+1
y =h - h =
5 k+l,m+1 - k+1l,m+l k+1,m
y =Y -Y
v (5.117)
k k+1,m+1 k .k k+1,
Line1 Ve ¥ = o (ner-AY )

time index

(n+1)

has been dropped for clarity of
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exposition.  The double ' iteration loop (5.117) runs over

k=1, K for outer iterations, and m = 1.°¥-.M for inner

iterations of the SIP solver (the LU matrices vary with m

because of the cyclic SIP iteration parameter 'fm' of

equation 5.86).

Now, for any given time step (n = n+l), let h°® be the
known pressure solution at time t Then, the solution at the

next time step ter =t t Atn is obtained as follows:

(0) Define the initial guess for outer iterations:

0 ‘
b° =h(t )., k=0.

(1) Increment the outer iteration loop k = k + 1

(Picard linearization scheme)

(2) Update nonlinear coefficients of matrices Lk. Uk. Ak

and vectors rk. blc (211 functions of hk. known from

previous outer iteration step)

(3) Define the initial guess for inner iterations:
HHLO L0 ko Lo

h
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(4) Increment the inner iteration loop m - m + 1

(Picard iterations of the SIP solver)

(5) Compute the LU factorization and solve the
system (5.117) by forward-backward substitution (SIP)

to obtain 6yk+1 Lt

(6) Update yk+1'm+l = yk+1’m +dy , and iterate to

step (4) unless m =M or lidyll ¢ &y

() Update hk+1 = hk +y . and iterate to step (2) unless
k = K or liyll = I5hil e
(8) The last computed vector h is the desired solution

h(tn+1) at the new time; the difference (hm_l-hn) is
used to compute the next time step before incrementing

the time loop (not shown here).

This algorithm defines, in an extremely condensed form,
the nonlinear SIP solver which forms the backbone of the flow
simulator. The actual Fortran code ("Bigflo™) comprises over ten
thousand lines of instructions and comments. A summary narrative
of this code is given in Appendix 5.D. It should be emphasized
that a single program was developed to solve both steady and

transient, saturated and unsaturated, deterministic and random
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flow problems. ’I'lmese various options are accommodated oy certain
parameters  that act as switches (tranéient/steady.
saturated/unsaturated, etc.):’ The "nonlinear SIP" =algorithm
described above includes all the cases just considered. For
instarice, in the case of steady saturated bflow. the time loop and
the outer iteration loop are simply bypaseed. or incremented only

once.

Another 1mportant feature of tlne numerical flow
simulator 1is its modularity. For instance, the SIP solver
intervenlng in VSi:ep (5) ls ‘the same for sarurated or unsaturated
flow.. This solver, and na.ny‘ other parts _of"the code, are
isolated in subrontlnes. It'may be of inferesl: to note that‘_,the.
SlP solver sul:rout:lne. although quite complex.» takes only a very
small fraction of the whole Fortran code. However. we have found
that most of the computatlonal‘ work was usually consumed in that
small part of the object code (typically 80%-90% of the total CPU

time, as estimated by a Cray software called "f lowtrace")

l..et us novr consider how the nested 1nner/outer Picard
iteration loops can be controlled to optimize the nonlinear
solution process. | ‘Ihe control parameters that remain to be
. determined for a giv’!enr\rf low proBlem and a giren mesh size are the

' following:
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— Time step size (Atn)

— Maximum number of iterations for the inner loop (M)

and outer loop (K)

~— Maximum residual error for the inner loop (eu)
and outer loop (eK)

—— Choice of a norm for the residual error
(Euclidean norm? Maximum absolute norm?)

—— Relaxation paréméters for the inner iterations (w)

and outer iterations (n).

These control parameters were determined empirically on
a case-by-case basis, i.e., by numerical experimentation, for a
number of transient test probfems of two and three-dimensional
infiltration in homogeneous and heteroger;eous soils, with grid
sizes rang:lhg from a few thousand to a few hundred thousand
nodes. The vartioble time-step size was controlled automatically
by following the evolution of the solution, as will be explained
in a later subsection. It was found that the time-step size had
to be quite small in order to ensure the convergence of the outer
Picard iterations (although not as small as would be needed in
the case of an explicit time discretization scheme). The
relaxation parameters «® and 7 were usually taken equal .to
one. Note that the inner iteration loop (SIP) was not

underrelaxed because most cases of divergence seemed to have been

. 1
.
———
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trigéered by the growth of ti'xe outer iteration residﬁals. Vhen
divergence occurred.' the simulations were | sit‘nply' reé@ﬁ with
smaller time step's. while the relaxation parameters were usually
kept the same (w=m=1). On the other hand, recall that for linear
problems of steady saturated flow, the choice of the SIP
relaxation parameter was critical, end o < 1 was frequently
required for SIP convergence. It appears that for highly
nonlinear transient flow problems, the time step size is more

" important as a control parameter.

The remaining parameter (K, 'e.K)- and (M, eu) were used
to control the number of itera_.tioi‘xs for thg. outer loofn and inner
loop, respectively. Typically, the; maximum length allowed for
each it.:eration loop was set for K=M=56. ' The actual length of
each loop was controlled by the tolerances ey and eM for the
outer and inner residual efrors expressed in terms of | pressure
heads. The norm chosen for comparison was Athe absolute n:axim
of the residual errors over the grid (rather than ihe Euciidean
norm used for steady saturated f low). The chosen tolerance was
typically éxzo;l cn  for the outer :iterations'.’. and
€y = 0.01 cm for the inmer (SIP) 1terations. This 'résiult.:.e.d‘in a
very short iteration loop for the SIP solver (on the order of
1-10 iterations). The outer iteration lbop was somewhat larger
(1-20 1iterations) depending on ‘the time step size. In one

example, it was found ‘that a moderate increase in the time step
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size resulted in an increase of the average number of iterations,
in such a way that the total computational work.was unchanged.
However, divergence eventually occurred if the time step was
increased by a larger amount. Thus, the simulations were
successful only in those cases where the ti_me step was small
enough that the lengths of the inner and outer loops were kept
small, say, no more than 10 inner iterations and 20 outer

iterations on average.

For clarity, it may be useful to define more explicitly
.our concept of a "successful” simulation. First, the inner and
outer residuals must both decrease monotonously on average. And
second, the number of iterations for eacii loop must remain below
the preset maximum, so that the residual at the last iterﬁtion be
smaller than the preset tolerance (at least most of the time):
Typically, a "successful” simulation of infiltration in dry
heterogeneous soils resulted in a total of 50 iterations of the
SIP matrix solver per time step (say 5 inner iterations and 10
outer iterations on average). Thus, the solution of a nonlinear
flow problem over, say 100 time steps, typically required
5000 SIP iterations. This is more than would be required for the
solution of a steady state, saturated flow problem (Section 5.3).
The increased computational work for unsaturated flow is due to
the highly nonlinear nature of the governing equation. of

course, we expect that the solution of steady state unsaturated
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flow problems will be even more demanding, unless & good initial

1

gﬁess can be fouhd.

[c] Brief Literature Review and Discussion: .

The ndnli'pwr éolufion procedure just described bears
some resemb‘lanc;e‘ with a number of methods propbsed in the
literature. In particular, various versions of ;nonlihea;t: SIP
solvers that are similar in some respects to the prééent method
were developed By T;rescott and Larson (1977), i{uiper (1981), and
‘Kuiper (1‘987)' for the simulationrof lgroundwate:‘- flow with a
variable watertable. In the first two papers, the standard SIP
solver was implemented in sucl; a ﬁay that | fhe nc;;llinear
coefficients wére update§ aﬁ every SIP—-itefation. This is nearly
equivalent to r'educ'i'ng: the inner iteration léop of our solver to
Just one iteration (M=1). "I'tv\e third paper (Kuipér 1987) was
devoted to the éomparisoh of a number of variants of fhe SIP and
100G solvers in corij;mctidn with vé.ridﬁs strategies for'the outer
linearization loop'.. “including SIP—Picérd j and‘ SIP-Newton
étrétegi‘es with ohly '1-5 inmer iferra:tionsv of the ‘SIP” solver.
Finally, Cooley (1983) addressed the problem of partially
saturated flow with seepage faces, using ’é complex pi'ocedufe be
descx;ibvedr as ; a 'Cdmrbfina'ti:onl of Neﬁtoix—Ré.phson itéré.tion.

successive approximatioh. and (SiP). B
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It should be noted that the numerical experiments
reported by these authors involved rather small, mildly nonlinear
problems, with grid sizes generally below 1000 nodes.
Unfortunately, we have found it quite difficult to draw
conclusions from their work regarding the optimal desié:a of the
nonlinear solvers. The nonlinear systems to be solved are
sometimes so complex that thej éould be sensitive to even minute
details of implehentation. One single fact seems to emerge
however: most authors have chosen a solution strategy that
imposes a very small number of matrix solver iterations between
each nonlinear coefficient updates. This is similar to what
qccurred in actual practice with the more flexible nonlinear-SIP

method developed in this work.

More details on certain aspects of the unsaturated flow
simulator will be given below, particularly concerning the
dynamic control of time step size and domain size (in cases where
a variable domain evolving with the solution makes sense), as
well as mass balance computation, and other related issues. A
semi-empirical analysis of spacé-time resolution requirements
will also be developed in order to obtain heuristic criteria for
the choice of mesh size and time step size, particularly for
ensuring the convergence of the linearization scheme. In
addition, numerical experiments for a variety of test problems

will be presented in order to explore the actual capabilities of
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the unsaturated flow simulator. However, the analysis and
physical interpretations of the numerieal solutions obtained for
random unsaturated flow problems is postponed to Chapter 7. It

should be noted that the largest such problem analyzed in this

* work involved a three-dimensional grid size on the order of 0.3

million nodes, and over a hundred steps' in time. As far es we
know, this problem size is 1 to 2 orders of magnitude larger than
currently available sinulations of unsaturated flow published in
the literature; - flven for modestsize‘problems. it does not seem

that the degreeb of uariability considered in this work, with a

node-by-node variation of the random constitutive properties of

unsaturated porous media. i‘as ever been considered elsewhere for

| direct numerieal simulations. The present f low simulator appears

therefore as a unique "high resolution" tool for exploring highly

heterogeneous nonl inear unsaturated flow phenomena.

5.4.2 Tmtim errors, nonlinear stability. and space—time
“resolution requirements =

[2] Methodology

In this subsection, we attempt by various methods to
evaluate the numerical requirements for convergence and accuracy

of the unsaturated flow simulator. The major numerical
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difficulty appears to be the highly nonlinear nature of the
governing flow equation, with the soil moisture capacity and
unsaturated conductivity curves given by equations (5.19) and
(5.22). In the case of transient infiltration in dry soils, we
ha.ve_ observed that the solution could diverge after just one or a
few time steps ‘if the initial time 'step size was taken too large.
The problem bécomes naturally more severe in the case of
spatially variable soils: instabilities can be triggered at any
time as a moving infiltratjon front éncounters zones of higher or
lower conductive properties. In this light, it seems worthwhile
to look for constraints on the mesh size and time step size that
will guarantee the convergence of the Picard linearization scheme
(outer iteratibn loop of the nonlin@a'.r-—SIP solver). The que.stion
of accuraéy of the finite difference approximation can also be
examined in terms of truncation errors. It seems however futile
to draw conclusions from truncation analysis without taking into
account the errors due to Llinearization. This difficult
enterprise was not pursued in this work. Instead, the issues of
accuracy (truncation error) and convergence (nonlﬁxw.r stability
analysis) will be examined separately. The latter view-point
will lead to some specific numerical requirements, however

without rigorous proof.
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[b] Truncation Error Analysis:

Let us develop a simplified truncation error analysis

for the one-dimensional, transient unsaturated flow equation with

~ spatially constant soil properties. Note that we do not attempt

to develop closed form expressions for the solution error as was
done in Section 5.2 for the case of random saturated flow.

Briefly, the truncation error is defined by the expression:
T(h) = L(h,) - L(h). - - (5.118)

whei-e L(h) represents the (vanishing) operator corresponding to

the one-dimensional transient unsaturated flow equation:
' &, 8 8h |
L(h) = ch) 2+ T k) . G+e)) =0 (5.119)

Note that gl indicates ;hg accelerati‘on o-fr gravity: take g = 0
for hﬁrizontal flow, and g = +1 for vertﬁ:al flow with the x-axis
upwards. On the other hand, £(h1) represents the finite
difference - operator defined gxxalogously to equations
(5.24)-(5.30). In this discrete} operatof. the midnodal
unsaturated cqndqctivity K(hi .,_%) 1; evaluated by the geometric

-~

mean Ki+%' as in equation (5.29),;

The truncation error (5.118) can be expressed formally
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by using Taylor developménts analogous to those of Section 5.2
(e.g.. equation 5.36). The calculations are tedious but
straightforward, and its details will not be reproduced hére
(some intermediate results can be found in Vauchin et al., 1979,
p. 40). When the truncation error due to the approximate
evaluation oi; mid-;nodal conductivities (ﬁi 44) 1s ignored, the
resulting truncation error (Tt;) at the nodes of  the space~time

grid takes the form:

0p -5 & 2] S o)
(5.120)

On the other hand, when K‘1 % is evaluated by the
geometric mean weighting scheme, the error (K-K) needs also to be
taken into account. Assuming an exponential conductivity -

pressure relation:
K(h) = Ks exp(a+h) (5.121)

where both Ks and a are assumed constant, the mid-nodal

conductivity error takes the form:
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~ o2 a2 '
K-k=8.xZh, (5.122)

When this discrepancy is taken into account in the Taylor
developments, an additional term is obtainéd in equation (5.120).

-

This new term takes the form:

*'é‘-‘g_x'[“;“’x [3;4- g]] ' (5.123)

and the total truncation error results from adding (5.123) to the
right-hand side of (5.120). |

A few remarks can ' be made 'aBout B equations
(5.150)-(5.123). First of all, we find that .the. order of
accuracy of the finite difference approximation is O(Ax)? in
space and O(At) in time. However, we expect a degradation of the
spatial accuracy when the coefficients are r'a;Lndom fields instead
of 'éonstants (by analogy with the results of Section 5.2). Our
second remark is that the accui-acy in time depends on the rate of
change of | the pressure gradient and on the second derivative
8°h/8t?. Finally, it is interesting to note that the error due
to - inaccurate weighting of mid-nodal conductivities
(equation 5.123) is roughly proportional to &°h/6x® (this is in
fact exactly true in the steady. state case of 1 dimension).

.Thus, "the error is largest in regions of rapid changes of the
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curvature of h(x), which are located just above and just below

the inflexion point of the wetting front.

[c] Nonlinear Stability Analysis:

Unfortunately, it appears that our formal evaluation of
truncation errors does not lead to any useful estimates of
space-time resolution requirements. This is due to the fact that
the approximate, iterative linearization of the finite difference
system was left out of the analysis. Here, we propose an
indirect way of including the ™linearization error” by
considering only one iteration of the outer loop of the nonlinear

solver. For one-dimensional flow, the corresponding finite

difference system can be expressed as:

n+l .n n+l . n+l n+l . n+l
2l P e (Pm™ ]_ @ [P ‘hi-l]
i Atn I S Ax i-% Ax
(5.124)
N K:;H‘ - Klil-%
g ° AX
where n indicates the time level, and g 1is zero for

horizontal flow, one for vertical flow. This formulation reveals
that the nonlinear gravity term, containing g, is in fact
treated explicitly during the first outer iteration of the

nonlinear solver, even though we used a so-called fully implicit

'
——
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time discretization scheme. Let usA now examine how this could

affect the stability of the numerical solution.

One possible way of investigating the specific effects
of linearization of the gravitary term is to develop a Fourier
stability analysis of equation (5.124) with "frozen coefficients”
on the storage term and diffusive term, while the nonlinearity of
the gravity term is explicitly taken into account. In the case
of the exponential conductivity model (5.121), the gravity term

takes the special form:

' n n n n
Kiew = Ky Ky o hyygh hy_ 170y
B CETRC | e -ee p 5

which may be approximated es:

n
141 ~ By_q)

provided that a(h,, .- hi) be on the order of unity or less.

1+1
Thus, we find that the FD scheme (5.124) is approximately

équivaient to:

n+l . . = N+l n+l
Ry by ¢ (l;+ 2R1)hi - Ri-}%hi-i-l =

1-4% i-
- (5.125)
1 . n n, 1 n
R - alx Ri.hi-l + h1 + € alx Rihi-l-l
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where R is a dimensionless number proportional to At/Ax2:

K R, R
R, =) At g i i
1(£4) Ci Axc? b 2

Now, a standard Fourier stability analysis of
equation (5.125) with the . R coefficients "frozen" (see for
instance Ames, 1977) yields the complex time amplification factor

of the Fourier modes of h(x):

1+j°g aAx R sin kix

.3

1+(R

(1-cos kAx) - j+(R )}sin kAx

1436 Ry 1456 Ry

where k is the discrete wavenumber taking values
(w/L,**+,nw/L). After some manipulations, the square-modulus of

this amplification factor takes the form:

1 + [g adx R, sin kAx])?

lo|? =

[+

(1-cos kAx)]2 + [ (R Jsin kAx]Z

TETALI) 1% Ry-)

(5.126)

Clearly, when the gravitary term disappears (horizontal flow:
g = 0) the amplification factor is always less than one, and the
FD scheme is then inconditionally stable. However, in the

presence of the gravity term (vertical flow: g = 1) equation

al -
-
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(5.126) shows that a constraint on the mesh size will be

necessary in order to guarantee stability.

The exact ‘stability condition for the case g # 0 can be
found by requiring t,hat the denominator be larger than the
numerator in (5.126).  To simplify the analysis, let us assume

R, 2R ~ R1 The stability condition i.s then:

i i+ =¥’

1+, * [1-(g 25)%] * (1-cos kix) 2 0.

This condition is required for all wavenumbers (k=w/L,°***,nu/L)
vhere n is the unidimensional size of the grid. Since Ri > 0,
this condition 'is always sa_tisfied in the case g=0, as
expected. For non-horizontal flow (g # 0), it is easily seeﬁ

that the inequality above will be satisfied 1fra.nd only if:
akxys ¢ -1
(g 5% <1+ (X)) .
Plugging g=1 for vertical f low, and ‘using the previous

definition of VRi give finally the "noiiliriear stability

condition":

K .
L -‘-‘: -1 (5.127)

adx <2 . Jx+(2'—-
o1
Ax
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The second term inside the square root corresponds to
t.:he well known stability condition for explicit time
discretization schemes (whereas the discretization used in this
work 1is of implicit type). If At/Ax®* 1is taken to be
significantly larger than the inverse diffusivity C/K, the
condition (5.127) becomes muiﬁlent to a constraint on the grid

Peclet number, of the form:

|Pe = adx ¢ 2 .. | (5.128)

For completeness, note that in the case where inequality (5.128)
is not satisfied, then the stability condition (5.127) implies a

rather stringent constraint on the time step:

K

i At 1
o LAt ifadx>2 . (5.129)
Ci ax2 —“3"-1

In conclusion, equations (5.127)-(5.129) show that the
linearized finite difference scheme used to approximate the
unsaturated flow equation may not be stable unless the grid
Peclet number Pe = aAx is less than 2. In the more general case
of multidimensional space, this gives a constraint on the

vertical mesh size, Ax,, of the form Ax, { 2 a.-l.

For heterogeneous soils however, the coeff icient a
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will be spa-.tially variable, .and the constraint will not be
satisfied at every nodes of the grid in aétual practice.
Therefore, attention 1is called on the timé step' constraint’
(5.129). This conditioﬁ is rather stringent, having the same
form as the condition for stability of explicit tiﬁe integration .
schenmes. This ihdicntes that the best strategy might be to

minimize as much as possible the vertical grid Peclet number,

e.g.:

Pe, = alx, << 2 (5.130)

vhere a 1is some average of a(x) over the grid, or some mean

value defined in ensemble space.

[d] Interpretation of the Peclet Constraint and Discussion:

It may be interesting to note that the inverse of
a = dénK/dh has been interpreted in the literature as a pore éize
distribution index, or as the typical thickness of the capillary
fringe (Yeh et al., 1985). Another interesting interpretation is
" that a represents a "graivity/diffusion" ratio. Both types of
interpretations seem qualitatively correct. Observations show
thatl a 1is largest in coarse soils, ﬁhefe:gravity effects are
significaat and the pore size distribution is typically quite
"narrow. A review of various 1nter’prétation§ Aqf a in the

literature can be found in a recent paper by White and Sully
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(1987), who also contribute their own. It seems particularly
useful to view ‘a' as a gravity/diffusion ratio in the context of
numerical analysis. Ababou (1981) suggested this interpretation
by rewriting the pressure-based flow equation {5.119) in terms of

the "Kirchhoff potential™:

h
¢(h) =J. K(h')dh* ,

named after Kirchhoff (1894) for his work on heat conduction. In
the case of an exponential conductivity relation of the type

(5.121), it turns out that ¢ =¢::-1

K, and the multidimensional
flow equations can then be expressed by using the unsaturated

conductivity as the dependent variable:
K_D. (vK +a - (g%K)} (5.131)
3t . g°vl _ .

where D 1is a nonlinear diffusivity function (D =K/C) and g
is the gravity vector, for instance g=(1,0,0) for a 3D system of
coordinate with the x,-axis upwards. The so-called Kirchhoff
equation has been used extensively in the area of soil water
physics since the early works of Wooding (1968), Philip (1969),
Raats (1971), and Parlange (1972) among others.

It is now clear that the coefficient a takes the

form:

—

- i s

— e *
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vhere e is the volumetric water content of the soil. This
shows that ‘Ta“' is indeed the ratio of gravitary versus diffusive
coefficients -of ' the conductivity?based (Kirchhoff) ecuation given
" above. " In particular, note that aD scales like a velocity
(V=aD). This finally Justifies our interpretation of an:as a

ori'd Peclet number:

To complete the analogy observe that the Kirchhoff
-‘equation (5. 131) is equivalent to the equation governing heat
conduction in a body that moves with velocity V. with respect to
the heat source (see Carslaw and Jaeger, 71959. for heat
conduction problems) VSi’milarly. the K-based equation is also
equivalent to the convection—diffusion equation governing solute
transport in a porous medium, with diffusion coefficient D and
water velocity V. In the case of unsaturated flow, D is the
soil moisture diffusivity and V=dK/dB gives in certain cases the
rate of advance of the wetting front in the vertical direction
The proposed stability constraint on the grid Peclet number
(equations 5.128 or 5.130) is most uSually taken into account in
the area of solute transport ‘modelitig.t but does not seem to have

been invoked in the context of unsaturated or two-phase flow
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simulation, as we do here.

In summary, we have found that a constraint on the grid
Peclet number Pe = adx,, analogous to the ratio of 'velocity
versus diffusion coefficient in convect_:ion—diff\ision problems,
must be satisfied in order to ensure the stability of the finite
difference approximation of the nonlinear unsaturated flow
equation. Here, we have assigned a particular meaning to the
notion of stability, such that the error due to linearizing the
gravitary term of the equation is taken into account, while all
other nonlinear coefficients are "frozen". In addition, our
analysis was based on the assumption that only one outer

iteration of the nonlinear solver was performed for each time

step (see equation 5.124). In spite of the ‘many approximations

involved, we believe that the Peclet number .constraint is

meaningful and gives an approximate condition for the stability
and convergence of the outer Picard iterations of the nonlinear

SIP solver.

Accordingly, the Peclet number constraint (5.130) was
taken into account in all of our numerical simulations. Note

1 for

that the coefficient a lies in the range 0.01-0.10 cm
natural soils (clayey soils to coarse sénds). According to the
Peclet constraint (aiAx, << 2) the vertical mesh size should not

be taken greater than 10-100 cm, depending on the type of soil.

e
————

[ SURIT
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Ve have found this rule to be quite useful, although far from
sufficient for ensuring stability without additionzl constraints
on the time step. Indeed,  equation (5.129) suggests a more
pessimistic view of the numerical requirements, particularly for
heterogeneous soils where the Peclet constraint may not be

enforced at all nodes of the grid.

Thus, it may be interesting to examine how
instabilities could -be triggered locally in regions where the
Peclet constraint is not satisfied. Equation (5.126) and the
:lnequal:lf:y below specif ically show that the high wavenumber
Fourier nodes are the most unstable (fluctuations at the mesh
scale are amplified fast;er).A Moreover, the instability will be
more sevére for .large ﬁlues of At/sz and for large values of

the local diffusivity (e.g., near saturation).

However, results from Fourier stability analysis may be
too approximate to be reliable in practice. It remains unclear
wh'ethe'r‘ locé,l scale instabilities, such é.s ‘due to high Peclet
number, will actually grow and contaminate all scales of
fluctuations from mesh size to domain size. Another appi'oach.
based on the r'ejc'm:ii'ement' that the spectral radius of the
nonlinear 1iteration matrix be less than unity (Ortega and
Rheinboldt. 1970, 7.1 and 10. 1) suggested that the condition for

convergence of the nonlinear iterations could be of the form:
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a1
Pe = a(x)dx 2 - lﬁl _ (5.132)

which means that the mesh size in any &irection (m =1,2,3) must
be taken smail in inverse proportion of the hydraulic gradient
(arvaxm) in that direction. This is obviously a more severe
constraint than the standard Peclet number condition. It
indicates that the presence of sharp hydraulic gradients, such as
occur at a wetting front, could trigger global divergence of the
nonlinear SIP solver., even when the mesh size is small enough
that the Peclet condition aix << 2 is satisfied.  This

observation seemed to be confirmed by numerical experiments, as

most cases of divergence occurred during the early times of.

infiltration in very dry soils (sharp fronts). -

5.4.3 HNumerical experiments and test of problem solving
capabilities:

In this last subsection, we present the results of a
number of numerical experiments in order to test the problem
solving capabilities of the unsaturated flow simulator.
Accordingly. we focus have mainly on numerical issues, and only
occasionally on physical interpretation. The numerical solutions
obtained for large problems of three-dimensional infiltration in

random soils will be presented and discussed more thoi'oughly in

-

o
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Chapt;.erA 7). The order of presehtatioﬁ is as follows. We first
discuss the methodology and pl;ééent' an overview of model problems
~ for testing the unsaturated 'f low simulator. Some details of
implementé.tion of the code are then described, notably concerning
the dynamic conti'bl, of ‘time‘step size, the variable domain size,
end the algorithm used for @ss balance computation. Numerical
expériments are f inally presented, for :lhcreésingly complex
proBIems. in view of testing various features of the unsaturated

flow simulator.

[2] Overview of Test Problems and Methodology:

" The complexity 'of‘ the random unsaturé.ted flow problem
is such that it does not appear possible 'tl:o‘devise a unir.iue.
well-defined procedure to check the accuracy of' the numerical
solution, as was done earlier in the linear case (steady
saturated flow, Sections 5.2 and 5.3). . In the ﬁresent cé.se. the
best approach seems to be =& "d;videﬂ zand conéuer" strategy.
whereby severai isolated features of the code are éhecked through
a se.riés' of simple test pi'obléms. " The -pai'ticular tests

considered 11i this work can be Broadly classified as follows:

(1) Comparison with exact solutions:

Quasi-a.na‘lyt:lcal solutions are available for instance

in the case of two-dimensional 1nf1‘ltration from a
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surface strip source in a homogeneous soil. However,
the unsaturated soil properties must be of a sl-)ecial
type, assuming in particular a constant soil moisture
diffusivity. This is usually an unrealistic assumption
for transient infiltration problems (Ababou, 1981).
Nevertheless, since' the conductivity-pressure function
is exponential.} the comparison of the numerical and
analytical solutions provides a test of the ability of
the nonlinear SIP sélver to converge to the correct
nonlinear solution. Another quasi-analytical solution
for one~dimensional flow with constant coefficients was
also used for debugging purposes: the flow simulator
was run in the wunsaturated mode with constant
coefficients in order to test various algorithms such

as the effect of variable time step size.

Self-benchmark procedures:

We refer to "self-benchmark” as a method for testing
some special feature of the flow éimulator in complex
cases where no analytical solution is available (highly
nonlinear and random soil properties). The most
obvious self-benchmark of a numerical flow simulator is
the computation of global mass balance. Our flow
simulator automatically computes the mass balance by

spatial integration of soil moisture and calculation of
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the mass entéring or lea\f{ng the system at the
" boundaries. Another kind of self-benchmark procedure

"consists in testing the sensitivity of the numerical

solution with respect to mesh size 'and time step size,
using as a reference the solution obtained with the

highest space-time resolution. The obvious limitation

~of this kind of test is its high computational cost:
“thus, in actual practice, such tests were limited to

fairly small domain size. A self-benchmark test was

also conducted to check whether the solutions obtained
with variable domain size and fixed domain size
coincide. Fimally, it should be kept in mind that the
iterative matrix solver, which is one _of the key
components of the unsaturated flow code, was 'already
tested extensively (Section 5.'3).; "The method we used
there can be viewed as a particular type of

self-benchmark, conducted by running the .SIP _solver

‘over a very large number of iterations and monitoring

the conVergehce rate of residual errors, for & variety
of linear flow systems. However, it does not appear

feasible to test the nonlinear iterative solver in the

' same systematic way.

"Qualitative tests:

' Certain enomalies of the numerical solutions can
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sometimes be detected by examining the numerical
solutions visually, e.g., by looking at a plot of the
pressure head contours, or at pressure profiles along
one-dimensional transects. For exanrplg. in the case of
strip source infiltration in a perfectly layered spil.
one expects the solution to be perfectly symmetric
about the vertical plane running through the middle of
the strip.. This and a number of other features based
on .physical principles, can be used to detect possible
inaccuracies in the numerical solutions. A few simple
-test problems were devised for this purpose, including
one-dimensional and two—dimensional infiltration in
homogeneous .soi 1s (with various types of boundary
coﬁdi tions), and twb—dimensional strip source
infiltration in horizontally layered and vertically
-layered soil systems. In addition, some more complex
infiltration problems in three-dimensional random soils
" are also discussed briefly (the complete analysis of
these numerical solutions is postponed to Chapter 7,

as mentioned earlier).

In summary, we have adopted a variety of procedures to

test the problem solving capabilities and reliability of the
unsaturated flow simulator, including comparisons with known

analytical solutions, self-benchmark procedures, and qualitative
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evaluation of the~ reliability of numerica! solutions based on
physical principles. Let us start by & d:scription of some of
the most relevant details of implementation of the flow

simulator, along with some related numerical experiments.

[b] Control of Variable Time Step, Moving Fjundaries, end Mass
Balance:

The variable time step size is -omputed as follows.
First, an initial time step is prescribed b the user (or else a
very small initial time step is computed b the code). Second,

the code evaluates the maximum possible alue of the global

. spatial variation of pressure head that cc ld occur within the

flow domain ‘“hsta.b)' Typically, -this p_.e’ssure variation {s
estimated by taking the difference between :he largest pressure
at the boundaries and the initial pressire within the flow

domain, that is:

4h

stab 'h

surf hin'

vhere h is either the fixed pressure at the infiltration

surf

surface, or, in case or a flux condition, the pressure obtained
surf” Finally, the variable time
step size Atn for the next time step .tn -, tn+l' is computed by

the following algorithm (n > 1):
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1

-h“umx
Atn-= Min p.Atn_l . T *At, (5.133)

stab .

where At, is the first (initial) time step, p is an
amplification ratio used for limiting the rate-at which the time
step may grow, and the norm "h"ma;c represents the absolute
maximum of h(x) over the grid. In practice, the amplification
ratio p should be only slightly greater thaﬁ unity, e.g..
p=105up top= 1..2.5 at most. Our experience for infiltration
problems with initially dry soils indicates that equation (5.133)
usually leads to a sharp increase of the time step at early

times, reaching a sill after a relatively short time of

infiltration. :

Figures 5.10(a),(b). and (c) show the growtﬁ of the

time step for three simulations of infiltration in dry soils
(plotted against number of outer iterations rather than time).
The first of these figures corresponds to a problem of
one-dimensional infiltration under fixed pressure (h=0) in a dry
sand (Dek soil) whose unsaturated properties were given earlier
in Figure 5.3. The second figure <corresponds to a
two-dimensional infiltration in the same soil, with a fixed
pressure (h=0) at the surface of a strip source. The third and
last figure corresponds to a problem of two-dimensional strip
source infiltration in a two-layer system of sandy soils of

moderate contrast, with a relatively high flux condition
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Evolution of the time step size (plotted against
number of outer iterations) for one-dimensional
infiltration in a dry sand with fixed pressure
h = 0 at soil surface.
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Figure 5.10 (b) Evolution of the time step size (plotted against
number of outer iterations) for two-dimensional
infiltration with fixed pressure h = O on a
strip source (same soil as 5.10a).
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Figure 5.10 (c) Evolution of the time step size (plotted against
number of outer iterations) for two-dimensional

infiltration with fixed flux q = 12 cm/day on a

strip source (two-layered sandy soil, top layer

same as in 5.10a and b)
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prescribed at the surface of the strip (q = 12 cm/day, one order
of magnitude lower than the saturated cox.mductivity of the top
layer). 1In all cases, the initial pressure was on the order of
-100 cm, corresponding to an initial conductivity on the order of

0.1 cm/day or less.

Based on these and other numerical experiments, the
time~stepping algorithm appeared to be well-behaved, and did not
generate instabilities. Howéver. this algorithm was not flexible
enough to handle properly large~time simulations. In such cases,
the simulation was processed in several pieces: whenever thé
time step size appeared too small and did not increase, the
simulafion was stopped and resumed with a larger "initial” time
step At,. It is expected that a more satisfactory time-stepping
algorithm could be obtained by taking into account the maximum
flux over the grid (Ababou, 1981) and/or some global property of
the numerical solution such as the rate of advance of the wetting
front, the mean pressure gradient, or the global mass balance.
Other methods of control of the time steplsize for similar flow
problems can be found in Hanks and Bouwer (1962), Edwards (1972),
Ababou (1981), and Dave and Mathis (1981). The latter authors
used mass balance to adjust the time step size in their "adaptive

grid” model of one-dimensional unsaturated flow.

k4 o
.
L

B e = it

r-

S wenn -
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A varioble domain size was used for multidimensional
iﬂfiltration problems on very dry soils.. The size of the
computational domain was controlled by moving the artificial
boundaries in such a; way that they always remained far from the
"wetting front”. The rationale behind this procedure is _fhat.
for any finjte time, there exists a reéion beyond the wetting

front where the preésure_has not 'yet: increased from its initial

value. It should be noted however that this property holds only

in the case of highly nonlinear cc;efficients and a very dry
initial state "(hin - ®). . The second condition is not exactly
satisfied in prﬁctiée, .'There may be & significant amount of
gravity—d;iven flow rout:side _the wettec-li zone in the case of
:lmpgrfectly dry soil,s; .Fm; heterogeneous soils.'%this “natural
flow" willA be even ﬁore ?:omplex. with gravity acting in th‘e
ve.r"tiél direction and soil moistulie "diffusion” in the
horizontal. Neyfért_héless. the variable domain size algorithm was
found useful ih a nurx;ber of cases, leading to significant savings

in computational work when the so0il was dry enough that the

"wetting front” could be tracked accurately.

Figure 5.11 gives & schematic representation of the

;'variablé domain" procedure . ii; " the case of‘ strip source
infiltration in two dimensions l(the- three-dimensional case 1is

treated in a similar way). The pfocédure can be summarized as

follows. A small initial domain size must be specified by the
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Figure 5.11 Representation of the "variable domain" procedure in
the case of infiltration from a strip source. The
thick arrows indicate the movement of artificial
boundaries. In this example, the soil surface is the
only fixed boundary.
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user, along with the maximum allowable size of the domain and the
definition of "artificial” °(moving) boundaries, as opposed to
fixed boundaries. The numerical solution at any given time step
is computed based' on the current‘domaih gize, with fixed pressure
conditions on the artificial boundaries  (h = hin):' Each
artificial boundary is then moved away from the wetted zone if
the maximum pressure change "h—hin"m'ax is larger than a preset
tolerance (within the "search region” depicted in Figure 5.11).
The algorithm is such that each boundary can move separately at
its own rate, depending on the shape of the wetted zone. The
displacement of a moving boundary was taken equal to the depth of
the search region (3ix). It sho\ild be noted that the grid itself
was not deformed in the process, i.e., the mesh (Ax,, Axp, Axgy)
remained constant in space as' the size of the domain was
increased. The design of a truly adaptive grid model would pose
 difficult problems of interpolation/extrapolation in the case of

highly variable or random coefficients.

. Figures (5.12) and (5.13)_ show two cases vwhere the

variable domain procedure worked well. Figure 5.12(a) shows the

pressure head contours obtained for two-dimensional strip source
inf iltration on a dry sand, using the variable domain procedure
‘with three moving boundaries 'l'he solution obtained with & f ixed

domain size (Eigt_lre 5.12. ) is visually indistinguishable A
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Figure 5.12 (a) Pressure head contours obtained after 1 day of
infiltration with the variable domain procedure
for 2D strip source infiltration q = 12 cm/day
on the Dek sand with initial pressure
h=- 150 cnm..
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Figure 5 12(b) Pressure head contours after 1 day of infiltration
-+ with fixed domain size 150 x 150 cm and mesh size
ix = 3 cm (same case as Figure 5.12a).
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Figure 5.13 (a) Pressure head contour surface (h = - 90 cm) 3
obtained after 1 day of infiltration with the |
variable domain procedure: 3D strip-source _
infiltration (q = 2 cm/day) on the Dek sand with
random K, and a parameter, and initial pressure 1
}

h = - 150 cm =
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. Figure 5.13

(b) Pressure head contour surface (h = - 90 cm)
after 1 day of infiltration with fixed domain
size - 140 x 400 x 400 cm and mesh size -

Ax = 10 cm (same case as Figure 5.13a).
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similar comparison is shown on Figures 5.13(a) and (b)., this time
for the case of three-dimensiocnal strip source infiltration on a
random, statistically isotropic soil whose mean properties are
the same as those of Figure 5.12. _The same pressure contour
surface (h = -90 cm) is shown in both Figures 5.13(a) and (b):
again the solutions fof variable and fixed domain size seem
undistinguishable visually. It should be noted however that, in
the random case, the bottom boundary moved rapidly downwards to
reach its prescribed méximum depth. This was due to the
occurrence of non-negligible changes of pressure even far below

the "wet zone'.

Finally, the mass balance was computed automatically by
the code at every time step based on the following algorithm.
First, the computational domain for mass balance was defined as
the sub-domain obtained by deleting a half-mesh size near each of
the six planar boundaries (assuming here that the boundaries are
fixed, for simplicity of exposition). Second, the total mass
inside this subdomain was computed by integrating the volumetric
moisture content 8(x) according to a simple trapezoidal rule in
three dimensions. Accordingly, the mass of a node-centered cell

located at node (i,,i5.15) was calculated as follows:

MaSS(i1.iz.13) = e[h(i:.iz.ig)] 'Ax,'szﬁAxa.

,., B
s



L3

On the other hand. the tortal mass entering or leaving the system
“was obtained by summing the normal fluxes at each node of the six
planar boundaries. end integrating over time. The normal fluxes -

were calculated aéc’ording to:

S A hs‘ho
ay = "R

‘).,

‘where the index 1/2 indimtes the mid-nodal location adjacent to
the boundary under eonsideration (other indices have been
omitted). In the case where all boundary conditions are of
Neuman fype ‘(.fixed f lux) .thi‘s algor:lethm éives:'the same result as
would be obtained by summing directly the prescribed fluxes at

the boundaries at least within machine precision

The accuracy of the numerical solutions was examined
from the point of view of mass balance by looking at the

time—dependent relative errors:

Qmass (Qin out) . R
Q

t) = =~ =
’ o(*) LTS -
. (5.134)
.I'tbQ('r)d'r
E(t) =
J Q('r)d-r

-

where Quass is the rate of change of total mass in the system,
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and Qin and Qout are the discharge rates in and out of the
system (both positive quantities here). The relatjve error on
the mass rate of change (e) usually oscillated during the early
time of infiltration (this has been observed with othgr numerical
models as well, e.g. Ababou 1981). In some of the numerical
simulations presented in this work, the amplitude of oscillations
could attain relatively high values (about 10X, and up to 100X in
certain cases).b'ut only for a limited number of time steps. Both
error indicators e(t) and E(t) were usually very small after a
sufficient number of time steps, even for fairly "difficult”
cases. For instance, the relative error on total mass, E(t).
was well below 1X at time t = 1 day for the infiltration problems
of Figures 5.12 and 5.13, involving fixed as well as variable
domain size. Figure 5.13.b‘ in particular was for a 25,000 node

grid with random soil properties.

The evolution of the relative mass balance errors e(t)

and E(T) was also monitored for the more difficult infiltration .

problems to be analyzed in Chapter 7: see the 300,000 node grid
simulations of transient strip source infiltration and steady
rainfall infiltration in a random anisotropic soil (respectively
sections 7.3 and 7.4). In both cases, the error on the total
mass present in the flow domain rarely exceeded 10-15X%. This was
Judged to be quite satisfactory given thé high wvariability,

nonlinearity, and large size of the system. Note that the steady
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"rainfall infiltration” solution was obtained by running the flow
simulator in the transient mode. . The information provided by the
mass balahce subroutine was used to detect the convéirgen'ce of the

transient flow system to a steady state.

[c] Comparisons of Numerical and Analvtical Solutions:

1

Figure 5.14 depicts the numerical solution of the 2D
strip é_ource infiltration problem (time t = 1 day) for a special
type of soil having nonlinear conducti(rity and water retention
‘cut;ves, but constant "moisture diffusivity;'. The wet 2zone in
) thaf case is characterized by a fairly smooth sj:atial variation
of pressure, and. the absence of a sharply defined wétfing frong.
"Figure 5.15 compares tfxe ~r'1umerica1 and .quaSi-analytical solution
. obtained at a shorter time t.= 0.5 day. Thé quasi-analyt'ica.l
solution was only possible because of the special form taken by

the nonlinear constitutive properties of the soil, as shown

below:

K(h) = K_ exp(ch) |
© 8(h): = 8, exp(fn) - T (5.13)

a=f

Note that the soil moisture diffusivity corresponding to the

conductivity and water retention curves (5.135) is constant,
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10E-0Q2

Figure 5.14 Example of numerical pressure contour map for 2D
strip-source infiltration in a homogeneous soil with
exponential K(h) and 8(h) curves having the same

slope (a = B = 0.1 cm_l). Time t = 1 day.
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Figure 5. 15 Comparison of numerical and a.nalytiml solutions for

2D strip-source infiltration in a homogeneous soil
with exponential K(h) a.nd 6(h) curves having the same

slope (@ =8 =0.1cm ) Pressure contours at time
t = 0.5 day '
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independent of pressure:
D = Ks/(aes).

As a consequence, the unsaturated flow equation expressed in
terms of the conductivity or Kirchhoff transform (Equation 5.131)
becomes linear; Warrick and Lomen (1976) developed
quasi-analytical solutions for the case of strip-source and
disc-source infiltration under constant flux. The particular
program to calculate the strip-source solution shown in

Figure 5.15 was developed by us (Ababou, 1981).

Unfortunately, the soil properties (5.135) are not
realistic enough to obtain a reasonabie simulation of transient
infiltration phenomeria. due to the fact that in general the
diffusivity is far from constant (see Ababou, 1981). Another
drawback is that the solution given by Warrick and Lomen (1976)
is exact only in the limit of-zero initial conductivity. The
slight discrepancy that can be observed between the.numerical and
analytical solution§ shown in Figure (5.15) could be due to the
fact that the initial conductivity in this example was not really
negligible relative to the input flux (Kin/qo = 4.5 10.3). In
addition, the quasi-analytic solution requires a numerical

evaluation of integrals of special functions; the computed

——
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pressure contours close to the initial state (far from the
source) are quite sensitive to small errors of numerical

integration.

N_evertheless. the agreement between the numver:ical and
analytical solutidns of Figure (5.15) seem§ reasonably good,
eépecially close to the source. The two-dimensional numerical
solution shom on top was obtained by shrinking the longitudinal
domain size to just 5 nodes (3 internal nodes) and picking the
central slice for visual display. The near-perfect symmetry of

the numerical solution is an indication that the nonlinear-SIP

' solver worked well in that case: it should be noted indeed that

the three-dimensional SIP solver is inherently assymetric. This
asymmetry would probably show up in cases of incdmplete

convergence.

Figure 5.16 shows the result of another comparison
between numerical and analytical solutions. In this case, the
flow simulator was used in both the "saturated” and "unsaturated”
mode to solve the one-dimensional 1inear diffusion equation:

) -g%=D,'§—H. 0<¢x<L
H(O.t) = 1 ‘ ‘ B (5.136)
H(L,t) =0

H(X.O) = 0.
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Figure 5.16 Numerical and analytical solutions for the transient
1D diffusion equation with constant coefficients. The
numerical solutions obtained in the saturated or
unsaturated modes, with fixed or variable time steps,
were undistinguishable from the analytical solution.
One of the numerical solutions is shown here for
times t = 0.01, 0.10, 0.5, 1, and t 2 5
(quasi-steady state)

————
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This equation models for instance the transient recharge of a
confined aqui‘fer with conductivity: K. and specific storativity
S, such that D = K/S.

7Th'e a.né.lytical” solution of equation (5;136) can be
expressed rin the form of an infinite series with | sine and
exponential functions (Kot;n and Korn, 1968, p. '325). A_However we
hav.e found that a \iery high machine precision would be needéd to
obtain reé.sonably accurate answers at early times. Another
series solution was finallj waked out by uéing a superposifion

of Green's functions as explained by Godunov (1973, pp. 29-41).

'The final result is given below in dimensionless space-time

variables:
| L .
H(y.7) = ) n*(a b )
n=1
o =erf(BX2) 4 ers (XX (5.137)
vr Vv :

b = erf (n‘_l"'ﬂ) + ér{(M) '
N vF
‘wheret
¥y =x1
T = D't{L?

and erf(x) is the usual error function defined by:

. 2 ~-52
grf (?c) = E . Ioe ds.
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The numerical solut.ions obtained with both the
saturated and unsaturated options of the flow ‘simulator for a
three-dimensional elongated domain, fitted perfectly the
one-dimensional analytical - solution computed from equation
. (5.137). Figure (5.16) showed only one graph of H(x,t) because
~ the three solutions were visually indistinguishable. It shoula
be noted that the saturated flow mode was implemented with
constant ti‘mé steps, while the unsaturated mode was implemented
with' a variable time step size. In the latter case, the constant
coefficients were obtained by taking K(h) constant and 6(h)
linear. This test was useful to check the soundness  of various
algorithms of the flow simulator, including the variable time
step proceduré and the performance of the SIP matrix solver for
transient problems. In o.ther words, this particular test pi‘oblem
provide:d an accurate check on many features of the flow

simulator, other than the nonlinear solver.
A[c] Infiltration riments with Homogeneous and Lavered Soils:

We now proceed to analyze, in a rather qualzitative way,
the numerical pressure fields obtained for a few test problems of
one and two—dimensional infiltration in uniform or
deterministically layered soil systems. Our intent here is
merely to demonstrate that, in all cases considered, the

numerical solution. agrees with intuitive and/or physically based

-

.
——
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principles. We consider first a few cases of infiltration in
ﬁrii'fom soils, and continue our exolore.tion with the case
strip—source infiltration in two-dimensional detefministieally
layered soils. In the process, one of these test problems will
be used to examine the efi;ect of mesh size on the nu_meriee.l

solution.

The first sequence of test problems concerned one and
two—dimensional infiltration on the homogeneous "Dek” sand with a
relatively dry initial state (hi -111 cm). The constitutive
relations of this soil were given w.rlier in Figure (5.3). The’
pfessure prof iles obtained for one-dimensional infiltration in a
3 meter deep soil column with zero pressure at the top, are

depicted in Figure (5. 17) The resolution Ax = 3 cm was fine

enough to capture the very sharp wetting fronts obtained in this

case. The next two Figures (5.18) and (5.19) display the

vertical pressure profile and the pressure contours obtained for »
2D infiltration with zero pressure nﬁintained at the surface of‘ a
strip-source (saturated strip). The wettj.ng front is still very
sharp, although less so than for the one-dimensionzl problem. 1In
addition, it can be seen that that front moves downwards at a
lesser rate due to increased dimensionality (lateral diffusion)

Finally, Figures {5. 20) and (5 21) display the vertical pressure

profiles and the pressure contours obtained for 2D strip-source

infiltration with & fixed flux (qo = 12 ecm/day) at the surface of



459

H
§150.00 -120.00 -90.00 -B0.00 -30.00 0.00

o=
o

L

00 °0¥

0008

y—

IX
00°002 00°G31  00°G2!

00 'Qr2

00 ‘g8z

Figure 5.17 Vertical pressure profile at times t = 0.005 and 0.1
day for one~dimensional infiltration with zero
pressure at soil surface (Dek sand with
hin = = 111 cm). The vertical mesh size is Ax = 3 cm

and the total length of the colum is L = 300 cm.
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Figure 5.18 Vertical pressure profile at. time t=0. 1 day for
a two-dimensional infiltration with a saturated strip
source. The (vertical transect coincides with the
axis of symmetry (see Figure 5.19).
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Figure 5.19 Pressure head contour lines at time t = 0.1 day
for 2D infiltration with a saturated strip source
(Dek sand with hm = = 111 cm). The source width is

33 cm, the mesh size is 3 cm, and the domain size
150 x 150 cm.
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Figure 5.20 Vertical pressure profiles at times t = 0.1, 0.3 and
0.6 day for & two-dimensional infiltration with a
constant flux strip-source. The vertical transect

. coincides with the axis of symmetry (see
Figure §.21)
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Figure 5. 21 Pressure head contour lines for 2D infiltration with
= 12 cm/day (Dek sand

with hin = = 111 cm). The source width is 33 cm,
mesh size 3 cm, and the domain size 150 x 150 cm.

a constant flux strip source qa,

t = 0.1 day

t = 0.3 day

t= 0.6 day

t = 1.0 day

Times: t = 0.1, 0.3, 0.6 and 1.0 day
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the strip. In this case, the wetting front appears even
smoother, ‘and the rate of growth of the wet zone is slower than
in the previous case of a saturated strip (in both cases,. the
strip width was 33 cm). Note that the prescribed flux was 8.5%

the value of the saturated conductivi ty, whereas the flux over

‘the saturated strip source in the previous example was 'presumabls;

much larger. Last but not least, we emphasize the fact that the

numerical solutions obtained for the strip-source problems seem

- perfectly symmetric about the central vertical ‘- axis. This

feature was not built-in the solution, but rather resulted from

the - convergence of the nonlinear-SIP . solver towards the exact
solution; it should be kept in mind indeed that the SIP
f.actorization is not symmetric, so that the numerical solﬁtion
would "proba.bly appear non-syinmétric 'iﬁ case of fncbmplete

convergence.

In order to explore the problem solving capabilifies of
fhe flow simulﬁtbf for ‘'spatially 'vafiable unsaturated soils, we
have simulated ' two-dimensional strip-source 'inf iltration'- on
horizontally and vertically layered soils. This could be viewed
as an intermediate case between the ideal caée‘ ‘of homogeneous
soils, and the more reé.iistic case of three-dimensionzal random
soils io be énzil&zed in dxai)ter 7 (-sﬂtatistircally layered soils in

particular).v" of coursé. we expect that the flow pﬁtterns will be
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much easier to analyze for uniformly. layered soils than for
statistically layered (random) three-dimensional soils. That is

precisely the reason for our choice here.

Three types of uniformly layered soil systems were
considered for qualitative analysis: a horizontally layefed
system with mild contrast (sand/sand); another horizontally
layered éyStem with high contrast (sand/silt); and a vertically
léyered system with high contrast (sand/silt). Briefly. the
sand/sand system corresponds to alternate layers of the Dek sand
of Figure 5.3, and a somewhat coarser sand (Dieri.sand, Ababou
1981). The sand/silt system corresponds to alternate layers of

the Dek sand of Figure 5.3 and the Montfavet silt of Figure 5.4.

The contrast for each layered system can be characterized by an '

index of variability of Ks and a, the two parameters of the

exponential K(h) curve, as follows:

Pn Y

{ (¢n Y,/¥g)2 -+ (enY,/YG)z}"‘
p)

Y, = Y, Y2

where Y is either Ks or a, and the index (1,2) refers to the
two soils composing the layered system. For the sand/sand

system, the contrast was moderate:
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aen Ks ~'0.44
o ~ 0.22

Fig re- (5.22) shows pressure head contour lines
obtained at time t =1 day for the sand/sand system with
alternate horizontal layers of thickness 9 ecm. The initial

pressure was h = -150 cm for figure (a), and h = -90 cm for

figure (b). The general shape of the wetted zone, apart from

small scale oscillations, is quite similar to that obtained for
either sand soil alone, that is, without alternate layering.
But, for the highly contrasted sand/silt system shown in

Figure 15”.23). the pressure field looks quite different. In-this

case, the initial pressure (h = - 150 cm) was such that the
initial conductivity was higher in the silt than in the sand, by

two orders of magnitude. Consequently, as we have observed from

~detailed numerical bﬁtpl‘.\ts.f the wét;tihg front reésted most of the

time Just sbove & sand la.yer, while moisture spread laterally

within the silt iayers.
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Figure 5.22 (a) Pressure head contour lines for 2D strip-source
infiltration (q = 12 cm/day) in a horizontally
layered sand/sand system, at time t = 1 day.
The mesh size is 3 cm, the domain size
150 x 150 cm, the strip width 33 cm, and the,
alternate layers thickness 9 cm. The initial
pressure head was hin = - 150 em

-



Figure 5.22(b) Same as Figure 5.22.a, but with a less dry
“initial state (hin = = 90 cm).
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Figure 5.23 Pressure head contour lines for 2D strip-source
infiltration (q = 12 cm/day) in a horizontally
layered sand/silt system, at time t = 1 day. The
mesh size is 3 cm, the domain size 150 x 150 cm, the
strip width 33 cm, and the alternate layers thickness
9 cm. The initial pressure was hin = - 150 cm.
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It should be noted that the mesh size in thése examples
was one third of the layers thickness, 1i.e., Ax = 3 em.
Figure (5.24) shows the solution obtained for the sand/silt
system with a coarser grid equal to the layer thickness, 1i.e.,
Ax = 9 cm. The obvious effect of f,he coarse mesh is that it
smears out the small scale fluctuations of pressure obtained with
the finer grid (compare Figures 5.23 and 5.24). However._ the

overall shape and size of the wet zohe are surprisingly well

represented with the coarse grid simulation. This can be seen

Amovre easily by representing on the "sa_me plot the vertical

pressure prof iles obtained with the fine and coarse meshes
(Figure 5.25); This relative_ agreement indicates that the grid
resolution need not be much finer than the typical layer
thickness in'order to obtain realistic solutions. The grid
Peclet number constraint (5.128) should‘ be also kept in mind. In
the present case, the coarse grid Peclet number (with Ax = 9 cm)
was about 0.6 for the sand layers, and 0.1 for the silt layers.
Both these values satisfy thé "nonlinear"” stability constraint

Pe € 2.

Finally, Figure (5.26) shows the pressure head contour

lines obtained for the vertically layered sand/silt system, with
alternate layers of thickness 9 cm. The non-symmetrical shape of

the pressure field is due to the fact that the vertical axis
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Figure 5.24 Same as Figure 5.23, but with a coarser mesh size
Ax = 9 cm equal to the layer thickness.
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Figure 5.25 Vertical pressure profiles through the axis of
symnetry of the strip source for the sand/silt system
at times t = 0.3 and 1 day. : The crosses correspond
to the fine mesh simulation (Figure 5.23 with
Ax = 3cm) and the square boxes to the coarse mesh
simulation (Figure 5.24 with Ax = 9 cm).
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Figure 5.26 Vertically layered sand/silt soil system (strip
source infiltration-time = lday).

-

.

= .
Il
e



- t————

m——an g

———————

'K

K

L7k

located at the mid-point of the strip-source does not constitute
an axis of symmetry with respect to the vertical layers. One
interesting feature in Figure (5.26) is that the spatial

fluctuations of the wet pressure contours- are more or less in

- opposite phase with the dry pressure contours (looking. through

vertical lines). This is due to the existence of a cross-over

point (h = =90 cm) below which K and above which

silt < Ksa.n .

silt >4 Kéahd‘ Thus, it should not be surprising to see that .the
particular contour “line h = -80 cm corresponding to
= Ksa.nd ‘is almost perfectly smooth | --

silt

. 5.5 Summry and Conclusions on Numerics:

‘In this chapter, we have developed a multi-faceted

analysis of the numerical issues related to the direct simulation

-of large and complex flow systems. It may be useful to briefly

summarize the various approaches that were developed and the
conclusions that were drawn from these analyses. To begin with,
we deve'loped in Section 5.1 the basic equations for the finite
difference approximation of both saturated and unsaturated flow
phenomena in spatially heterogeneous media. The particular
choice of the finite difference: model was -motivated by
considering the likely .numerical requirementf for simulating

representative single realizations of random flow systems (high
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resolution and large domain).

These considerations were confirmed by a more
systematic theoretical analysis of -the stochastic finite
difference solution error arising from truncation errors
(Section 5.2). The remarkable result obtained for the case of
steady saturated flow, i.e.. for the stochastic "heat equation”
with 3D random field. conductivities, was that the finite
difference scheme is indeed a consistent approximation of the
stochastic equation in the mean-square sense. Furthermore, it
was shown that the order of accuracy is O(Ax/A)2 for the

hydraulic head and O{Ax/A) for the flux vector, in the case of a

smooth log-conductivity field with correlation length A (e.g., ]

random field with a Gauss-shaped spectrum). On the other hand,
we found that the order of ac;::uracy drops to O(Ax/?\)3/2 ahd
O(Ax/?\)% for the head and flux, in the case of a noisy
log-conductivity such as the 3D Markov field with exponential
covariance function. It is remarkable that the finite difference
approximation is still consistent in this case, despite. the fact
that the log-conductivity 1is non-differentiable in thé
mean-square sense. These encouraging results were refined
further by evaluating explicitly the leading order terms of the
root-mean-square errors in the head and flux. It was found that
both errors were proportional to the standard deviation of the

log-conductivity field. Cne mjor conclusion from this
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statistical truncation error analysis is ‘that a relatively fine
grid resolution is’ needed to obtain even moderately accurate
solutions ir terms of the flux vector field. Thus, when the
log-conductivity is the_ "noisy" three—d‘iménsioh.al‘ Markov field,
the root-ﬁean—squa‘re error on the flux is as large as 15-20% for

Ax/N = 1/3, and still about 10% for Ax/A = 1/10.

However, it was also recognized that the numerical
errérs of the random flow simulator will be due in part to the
difficulty of solving accurately very large matrix systems.
Section 5.3 was devoted to the development of en adequate linear
system solver for large sparse matrices. Our literature review
-focused on {terative solvers, and par.ticularly the SIP and I(I.ﬁ
.solvei-s based on ap.bro'ximate factorizations. The SIP solver was
'fiﬁally‘ chosen for  implementation and was described in “some
detail. The accuracy of the linear system soluti'ons obtained
with SIP were analyzed in a semi-empirical way by examining the
‘rate of convergence of the SIP iterations both from & theoretical

and "experimental” point of view.

Our conclusions, based on numerical experiments for
large random systems of saturated flow (up to l'millim’u nodes),
were quite favourable. It was found that the root-mean-square
solution error could be reduced to very émall values (typically

less than 1X) in a few hundred up to one thousand iterationms,
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depending on the variability of the input log—conductivity‘ field.
The numerical simulations were carried out on a Cray 2
supercomputer, requiring CPU times of one to several hours for
the most "difficult” random flow problems (1 million nodes). A
Microvax 2 machine was used for medium size problems on the order
of 1 to 2 hundred thousand nodes. One remarkable aspect of the
proposea method of analysis was that the "true" solution error
was evaluated indirectly by using ini"ormation from the actual
simulations (sequence of residual errors, and convergence rate).
It was shown that in many cases the true error could be much
larger than the apparent (residual) error, particularly for large
and noisy systems where underrelaxation was needed to achieve
convergence. Empirical analysis suggested tha-.t the number of
iterations required to solve iinear random flow problems could be
proportional‘ to n, the largest unidirectional size of the
three-dimensional rectangular grid. However, it is still ﬁot
clear at this time whether the SIP solver or any similar
- iterative solver will actually converge for very large random
flow systems on the order of 10 million equations or more.
Extrapolation of our results suggested that, in case of

convergence, the solution of a highly variable saturated flow

problem on a 10 million node grid could require about 1 day CPU

time on the Cray 2 machine.
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Finally Section 5.4 was devoted to the development and
analysis of a nonlinear system solver for the case of unsaturated
flow.: The nonlinear SIP solver was developed by adding an
iterative linearization scheme to the previous iterative matr-ix_
solver (nested Picard iterations). A preliminary enalysis of
nu;nerical requirements suggested that, in the case of transient

infiltration on dry soils, there could be a severe limitation on

- the time step size in order to ensure the convergence of the

nonlinear iteration loop (outer iterations). On the other hand,
the SIP matrix solver 1is likely to converge much faster for any
given time step of a transient problem (particularly for small
time steps) than for the single step of a steady state proﬁlem.
Our discussion of these issues also included a brief literature
review. dur attempt at elucidating the space-time resolution
requirements by  way 'of. numerical analysis was not entirely
successful. The most remarkable finding in  that stu&y was
perhaps the grid Peclet number constraint (Pe = adx; £ 2), which

was obtained from a heuristic "nonlinear stability analysis™ of

-the unsaturated finite difference system. This analysis also

suggested that a very stringent requirement on the time step
could. result if the ‘Peclet number constraint was not satisfied
locally. The discussion included a physical interpretatién of

the Peclet number. for unsaturated flow (gravity/diffusion), and

- focused on the possible divergence of the nonlinear solver in



479

severe cases such as infiltration in dry heterogeneous sotls

(sharp fronts).

It was felt that the complexity of the unsaturated flow
problem, and the associated numerical issues, required a careful
testing of the unsaturated flow simulator. The last part of
Section 5.4 was devoted to numerical tests with increasingly
complex problems of transient infiltration. Thesg numerical
experiments included specialized tests for checking certain
features of the code such as the variable time step and the
variable domain procedures, mass balance tests, comparisons with
analytical solutions, and a number of infiltration experiments
with homogeneous and uniformly layered soils, mostly in two
dimensions. Our 6vera11 conclusion from these numerical
experiments is that the unsaturated flow simulator appears as a
reliable and flexible tool for the detailed simulation of fairly

complex transient infiltration problems.

The encouraging résults obtained here need however to
be confirmed for the case of truly large realizations of random
soil systems. This will be the subject of Chapter 7, where we
- will analyze in detail the solutions obtained from large
single-realization simulations of flow in random soils, with
three-dimensional grids on the order of ten thousand to several

hundred thousand nodes. On the other hand, the forthcoming

[} .
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Chapter 6 will be devoted to a systematic statistical enalysis of
the solutions obtained from lgrge single-realization simulations
of saturated flow. Note that -both Chapter 6 and Chapter 7 will
focus mostly on physical .interpretation and mathematical analysis
of nﬁmerical solutions, and only ocqasionally on some numerical
issues. It is assumed at this stage that the- flow simulator has
been fully tested, both in the saturated and unsaturatedA flow

regimes.



