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A Galerkin Finite-Element Flow Mb’dél to Predict the
Transient Response of a Radially Symmetric Aquifer

By Thomas E. Reilly

Abstract

A computer program developed to evaluate radial flow of
ground water, such as at a pumping well, recharge basin, or in-
jection well, is capable of simulating anisotropic, inhomogenous,

. confined, or pseudo-unconfined (constant saturated thickness)

conditions. Results compare well with those calculated from
published analytical and model solutions. The program is based
on the Galerkin finite-element technique.

A sample model run is presented to illustrate the use of
the program; supplementary material provides the program listing
as well as a sample problem data set and output. From the text
and other material presented, one can use the program to predict
drawdowns from pumping and ground-water buildups from
recharge in a radially symmetric ground-water system.

INTRODUCTION

Several aspects of ground-water hydrology that con-
cern radial flow address such questions as the distribution
of drawdowns near a pumnping well or ground-water buildup
beneath a circular recharge basin or at a recharge well. To
study and evaluate the performance of wells or basins and
determine short- and long-term effects of their operation
on the ground-water system, it is necessary to represent the
systern’s physical properties mathematically and to calculate
the response to given rates of pumping or withdrawal.

Questions concerning simple hydrologic situations can
be solved through published analytical solutions, which
generally provide accurate predictions. However, problems
concerning more complex flow systems such as multi-aquifer
systems require analysis by numerical methods. The purpose
of this report is to introduce a computer program capable
of solving many of the more complex radial-flow problems.
The program was developed in cooperation with the Nassau
County Department of Public Works, the Suffolk County
Department of Health Services, the Suffolk County Water
Authority, and the New York State Department of Environ-
mental Conservation.

MODEL ASSUMPTIONS AND CAPABILITIES

The numerical mode! of ground-water flow described
in this report simulates transient radial flow of ground water
in which the flow field is two dimensional and symmetric
around a central axis. Figure 1 illustrates the conceptual flow
system to be simulated by the model. The numericat tech-
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Figure 1. Conceptual model of aquifer flow system.

nique used to solve the transient radial flow equations is called

" the Galerkin finite-element method.

.. Use of the model requires certain assumptions. or
simplifications, which must be evatuated before the program
can be used successfully. These assumptions are

1. The flow field is radially symmetric.

2. No seepage face occurs in the well.

3. The saturated thickness of an unconfined aquifer does
not change significantly during pumping or
recharge. :

4. The aquifer is finite in extent. (A constant-potential
boundary far from the well or basin is generally
established in the model.)

Model assumptions and capabilities
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§. The well is pumped at either a constant rate or at
stepped rates.

6. The specific yield of the aquifer is a constant.

7. The coefficient of specific storage (S.) is a constant
over the entire model grid.

Even with these assumptions, few of which are entirely
true in the real system, the computer program can be used
to predict drawdowns or buildups resulting from a wide range
of conditions. The program is capable of simulating
anisotropic, inhomogeneous, confined, and pseudo-uncon-
fined (constant saturated thickness) conditions. (The pseudo-
unconfined aquifer is so called because the element configura-
tion in the model is constant, which means that, even though
the model nodes representing the free surface have a storage
coefficient representing unconfined or water-table conditions,
the saturated thickness does not decrease in response to
drawdowns. Thus, caution or **engineering judgment’’ must
be used when the predicted drawdown at the free surface
represents a significans percentage of the aquifer thickness.)
In addition, the well-bore geometry can be simulated, and
the well screen can be partiatly penetrating and screened in
zones of differing hydraulic conductivity.

Linear triangular elements are used to represent the
flow field. The radial section to be simulated is represented
as a net, or grid, of connected elements, as depicted in figure
2. The model program allows each element to be assigned
a value of the hydraulic conductivity in the radial (X,) and
vertical (X,) directions. [a contrast, the coefficient of specific
storage (S.) and the specific yield (S,) are treated as constants
throughout the grid: The treatment of the storage coefficients
as constants is not a restriction of the solution technique but
only the manner in which it was programmed; this is dis-
cussed later in the section ‘‘Possible Program
Modifications. "

THEORY

Solution of Radial Flow Equation by Galerkin Finite-

Element Methad

RS2
The equation that describes two~dimensional radial flow
of ground wate® [ cross section (Cooley, 1974, p. 20) is

3 3 2 B\ 5,8
ar (K.r ar) M az (K" Bz) s o' M

where
s = drawdown (L),
r = radial distance (L),
z = vertical distance (L),
¢t = time (D),
K.= radial hydraulic conductivity (LT*"),
K= vertical hydraulic conductivity (LT*"),
§.= coefficient of specific storage (L).

To simulate the continuous system, equation 1 is approx-
imated by a series of linear algebraic equations. These linear
equations are derived from the finite-element method by the
Galerkin method of weighted residuals (Pinder and Gray,
1977, p. 54).

The linear equations are generated by discretizing, or
dividing, the entire flow field, or aquifer cross section (fig.
1), into separate elements (linear triangular elements in this
model). The drawdown in the flow field can be approximated
through a linear basis function & (r, z), which is defined
separately for each element. The drawdown is approximated
as

- i
$= L g:, 0 & (r2) Q)

where
& = approximation of s,
N= number of elements,
M= number of nodes, /
¢j (7, 2) = linear basis function associated with node j i
element e, .

. 8Af) = time dependent coefficient associated with node j,

Substitution of # for s into equation 1 and rearrange-
ment of terms gives

d B\ 3 ([, 8 _o 3
57(&’;-3-’-)-0-3;(1(;5;) Sr % 0. 3)

The residual is the amount by which the equation with § varies
from the actual solution of zero. Therefore, the residual R
can be defined as:

e, 8\ 3 (e, 8\ _o, 3 n
R='ar(x"'ar +8z(x"az) S at ®

If 3 were exact, the residual would be zero. Galerkin's
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method attempts to force the residual toward zero over the
entire domain by weighting the residual by the basis func-
tion. The weighted residual equation is
£ f. Rodz dr=0 (i(=1.2.3....m). (5
Each node has an approximate solution § and therefore a
weighted residual equation. Because the number of nodes
equals the number of equations, with use of appropriate
boundary and initial conditions, this set of simultaneous
ordinary differential equations in time can be solved for 3.
The set of equations is derived by substituting for R
into our weighted residual equation (eq. 5), which gives

.U.{ 2 2 ( 33 sexea) Jor

+aiz[1c.r aﬂz-( ..é gs,(l)dtj(r,:))]d’?
-5 2( 33 :,(rw;(r.z))qb:} dzdr=0 (6

(for i=1,2,3,....m).

Before equation § can be simplified, the basis function
must be defined. For this model, the linear triangular ele-
ment was selected. The basis function (¢) is in the form of
a plane and is expressed as

d:(r.2) =a,+br+cz U]

where the coefficients are
a, = (ra — ng)i2A,
b, = (z-)2A,
¢ = (n-r)24,
A = area of triangular element,
and
i,j, k= element nodes, in counterclockwise order.

Thus, a basis function is defined for each node in each ele-
meat. A property of the basis function defined is

-
3

T Gl =) ®

where

i, j, and k are the three nodes in element e.
The basis function has a valus only over the element for
which it is defined and is zero gver all other elements. Its
value s unity at the node for which it is defined and decreases
linearly to zero at the other two nodes associated with the
element. Figure 3 depicts the basis function 1.

EXPLANATION

4-Node number

*Basic function
associatad with
slement ¢ and
node 4

3z
!
|
I
)
i
! o~Element numbder
I
|
|
I
|
|
T

.\;

Figure 3. Typical linear triangular basis function. u

CONFIGURATION

4

Twao additional assumptions that will allow for simpli-
fication of equation § are (a) both radial and vertical hydraulic
conductivity are defined as a constant in each element, and
(b) an average radius (7) is defined for each element. This
average radius (7) is defined as '

Fa(p+r,+n)ll 9
This average radius (7) was defined similarly by Pinder and
Gray (1977, p. 139). '
Substituting and using the notation for the inner
product as
J.J, ¢ 0t dzdr = (s.67) (10)

equation § can be written as

:.2. g [:;(I)K!F(%tl- ) +s(0K: ?(ia'_:z ¢1)

-sn{oe)2] =0 an

i =123....m

N2
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Because the basis function (¢) is a linear function, the
second derivative is trivial (zero on the interior of an ele-
ment). To circumvent this problem, Green's Theorem or In-
tegration by Parts (Pinder and Gray, 1977, p. 83) is used.
This changes the inner products 1o

(58 4) = () oSt

. ' = - ﬁo-m 'a‘

. ds (12a)

where '
f.ds represents 2 surfaoe mtcgral over the outer bound-
ary, and n, and n, are outward-pointing directional cosines.
These surface integrals (flux terms) become the forcing func-
tions of the problem for all flux boundaries. The surface in-
tegrals become zero for impermeable boundaries and are
readily defined for discharge and recharge boundaries.
Substituting the result of Green'’s Theorem into equa-
tion 11 results in the final form, which is a set of ordinary
differential equations: :

' m[s,(r)x'r‘(éﬁ- “')ﬂ,(:)x'r'(& 8¢i )

+8r,{05, 01 ) 240 A ) s )KF frq%ﬂm

-s,(t)K' fw—ﬁrx.ds] 0 (13)
i=123,....m)

The inner products are non-zero only when the node
indices i and j are part of the same element. Thus, the inner
products can be defined over an element. The integration
formulae for a linear triangular element are

(& “') bb, A (14)
(“ "") -ce A (14b)

(@ =06 (=D (140
(Goy=am Gen 4

When the integration formulae are substituted into equation
13 as indicated by the summation indices, the result is a set
of M (the number of unknowns) simultaneous ordinary dif-
ferential equations. Thus, application of the Galerkin finite-
element techmque has changed the continuous partial dif-
ferential equation into a set of nmultanews ordinary differen-
tial equations.

Boundary Conditions

Constant-head (zero drawdown) boundaries are readily
handled in the finite-clement method. The nodes that are set
at a constant zero drawdown are not unknowns, and the equa-
tions associated with those nodes drop out of the set of
simultaneous equations.

Flux boundaries (Neumann boundary conditions) enter
into the finite element representation of the radial-flow equa-
tion by means of the surface integrals generated by using
Green's Theorem (eq. 12). For linear triangular elements,
the surface integral, which can be represented in general
terms as

1= f (&*_) & ds, as)

can be integrated to become the followmg (Pmder and Gray,
1977, p. 124)

[ = %’_ (16)

where

q = average value of .g_". applied along the side, and
n
1 = length along the side.

In examining the flux boundaries that occur in the radial-
flow problem, the evaluation of the surface integrals is iden-
tical o equation 16.

Ground-water discharge to the well is treated as a flux
across the boundary of the elements at the well-screen loca-

" tion. The surface integral is reduced as

395 L
- L SAOK: Po12in s f oK a an
from Darcy ‘s law, K,%{- = q,, which is the flux across
the well boundary. r
Then

-Ff oqds = - rqSz2) = (18)

where
%~% = length of the element along the well screen,
and )
q.= flux through element e.

At the well, the boundary of the element is at 7, (well radius),
and the sum of all flows from the elements must be equal
to total discharge (Q).

Examining q; more closely and again using Darcy's
law, it can be shown that

2. 0 |
=" TxrZ-2) 19



where

Q. = flow through element e.
Substituting this result into the right-hand side of equation
18 gives

i - %) =- {;Q_:((:____;_. 20)

If 7=r,, then
~7Jioq ds = @ 1ax. @n
Therefore. the surface integral along the well simplifies down

1o equation 21.

The discharge from an individual element (Q,) is
calculated in 2 manner similar to that used for a model
prepared for the U.S. Geological Survey by Intercomp
Resource Development and Engineering, Inc. (1976, p.
B.2)'. The discharge of an element (Q,) in relation to the
entire discharge (Q) is proportional to the transmissivity of
the element divided by the transmissivity of the entire screen
length. Thus,

QK(z.~z.
251( (o - )

Q. = (22)

where
Q. is the discharge from the eth element,

NE is the number of elements with boundaries at the well,

Q s the total discharge, and
(za—2) is the length of the element boundary at the well.

Therefore, the model allocates discharge rates 2long the well
bore according to equation 22 for wells screened in aquifers
of varying hydraulic conductivity. This boundary condition
is not exact; it only approximates the theoretical withdrawal
distribution of the well. The correct boundary condition is

an equal drawdown along the well bore. Therefore, the model

results will be somewhat in error if this condition is not
realized.

Recharge is treated as a flux across the top surface of
the aquifer. The surface integral in this case reduces as

733 ok 2- . =27Rr,~r)a./4x,
ol 2 23
where e
Q= m:fmge in flux units (f/day).

The term 2377, —»,) represents the surficial area of the top
element, where the average circumference is 2z7, and (r,—7)
is the width of the element at the surface. Therefore, 2xR 7,
—r,) is simply an approximation of z(7,* —r.), which is the

¢ Use of trade names is for identification purposes only and does not
imply endorsement by the U.S. Geological Survey.

[ Theory

actual surface area. The recharge at the surface ther
simplifies as

- fK"” d».n.ds = = (r} - nl) q/4 \/

This is actually the same expression as the well discharge
{or recharge) because =(7,*—r,')q, is the amount of water
being added into the element.

The water in storage released by the movement of the
free surface (water table) can be simulated. although the ac-
tual movement of the free sucface is not sirulated. Thus.
the solution for unconfined aquifers is valid only when the
drawdown equals a small percentage of the total aquifer
thickness.

For the unconfined boundary condition, the surface in-
tegral for the top boundary is reduced by a few assumptions.
These were first described by Boultoa (1954) and later by
Staliman (l963). who show that

LR ()+x[( - @5

where .

§, is called the specific yield and represents the volume
of water which the rock or soil, after being saturated, will
yield by gravity divided by the volume of the rock or soil
(Lohman, 1972). This assumes that once a particle of water
is on the free surface, it never leaves that surface. The addi-
tional assumption that the squared derivatives are m ™
smaller than the first-order derivatives gives . /

as
s a: Koz 26
The surface integral for the top horizontal boundary can
therefore be evaluated as
- =7 'y a
-f. Kfz'g-sbﬂ.ds' f,S,r dnds= -'1'1-2-’—.-)5—-5:-
@n

where
r* indicates the radial distance of a free surface node.
By the same analysis for the surface area as in the
recharge term, the boundary can be approximately evaluated
as

e
A5 2 28)

Matrix Equations

The preceding section describes the finite-clement equa-
tions that are used to generats a system of simultaneous or-
dinary differential equations from the general equation for
radial flow of ground water in cross section. The equations
are produced by calculating an element matrix (a set of cc

N4
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- ficients for ihat element). Because all elements contain three

nodes, each element is associated .with a three-by-three
matrix. The coefficients for each element are then assembl-
ed into one '‘global’’ coefficient matrix, which represents
the entire radial section of aquifer.

The global matrix equation to be solved (Pinder and
Gray, 1977, p. 81) can be represented by

o) + B {E2) =t @)

where o
[A] = a,, which is made up of terms of the form

[ 3¢, Qg,_ a¢. a_d;,_)]
az

ar ar
[B] = b, which is made up of terms of the form

S0 +es],

{F} = f., which is made up of terms of the form

f}[.&ﬁ as],

fori=1,2....M
andj =1,2..... M

o = coefficient assocnatcd with the unconfined boundary
condition,
Ji = flux term.

The time derivative is then approximated using a backward
difference formulation. When the finite difference approx-
imation is used for the time derivative, the set of ordinary

differential equations becomes & set of simultancous algebraic
“equations. The backward difference approximation is uncon-

ditionally stable and is represented simply as

0 o g -9 (30)

dt 'lol = 'l

where
k is the time level

The matrix equa:mnnlhenbcwnuen

a1 {#"}+mB] {f——} <F} . 06D

or simply, o

( ta1+—2-m1) {,»-} Bt m o
Let: ,

(A1 B1 ) =(Lis) (3a)

(4Fy+—-B1{s} )=trHs). (33b)
The final matrix equation is

(LHS) {s} = (RHS} (39)

from which the drawdown at the new time step can then be
solved. The technique used for this model is a direct solu-
tion technique. ;

. The method that is used to generate the global matrices
is actually less complicated than in equation 13. Because the,
inner products are zero when i and (or) j are not nodes of
element e, the global matrix can be calculated more easily

by using a modified form:

EZ[s,(:)K'r (-ﬁ -a-d—"->+ DK, r(g'a—’- ae:

P

3:,(:

+57,(¢; ¢') -3 (DK F* Ld:%!f-n,ds

—~SADK,F* frﬂ'—"'"aaf ,d:]so

T i=1,2,3) (13 modified)

where

i=l,2, 3md J=1,2, 3 are the three nodes in element e,
and
N = number of elements.

Thus, for each element, a three-by-three element matrix is
defined. These matrices are then summed over all elements
to obtain the global matrix to be used in the final matrix
equations.

COMPUTER PROGRAM -

The input and output of the program data are not com-
plex, and changes in the basic computer code to improve
input-output or to add additional information should be
straightforward to implement. The computer code consists
of four routines—the main, subroutine CHECK, subroutine
MLTBM., and subroutine SOLVE, which are listed in sup-
plemental data I. A brief summary of each follows.

Main

- The main program runs the input, output, and equa-
tion setup. The equation setup is the calculation of the coef-
ficients for the boundary conditions and the global coeffi-

cient matrices.

To save computer storage, the program uses banded

matrix storage. The global coefficient matrix has a half band

width equal to the largest difference between two adjacent
node numbers. To run the program, the global array must
be dimensioned properly (dimensions are given in sup-

Computer program ?



plemental data IV), but the program calculates the band
width, and the operator should note the size required.

Subroutine CHECK

This subroutine checks the input data to sce if they meet
the requirements as stated in supplemental data Il (Data In-
put Formats) and in the section ‘‘Design Considerations for
the Finite-Element Grid. ** Data are checked for three criteria:
(1) consistent constant head information, (2) proper vertical
coordinate system, and (3) proper ordering of nodes in an
element. If the input data fail to meet one of these criteria
the reason is printed, and the program is terminated.

Subroutine MLTBM

This small subroutine multiplies an array stored in a
transformed banded manner with a vector.

Subroutine SOLVE

This subroutine solves the final matrix equation and
returns the drawdown solution. This routine was originally
programmed by James O. Duguid of the Oak Ridge National
Laboratory, (R. B. Wells, J. W. Mercer, and C. R. Faust,
written cornmun., 1976). SOLVE accepts a fully banded non-
symmetric matrix. During the solution process, the routine
is called twice. The first call upper triangularizes the matrix
using the Gauss-Doolittle method, and the second call solves
the triangularized form by back substitution.

EVALUATION OF THE MODEL

To insure that the model theory and programming are
correct, comparisons were made between results from this
model and those obtained from published problem solutions.
Although the comparisons with analytical solutions by Theis
(Lohman, 1972), and Hantush (Walton, 1970, p. 370) were
done for simple examples, the close fit indicates that the
model is sound. The comparison of model results to the sim-
ple analytical solutions is also intended to give some insight
into the discretization errors of the finite-element model.

In a3 more complex test, results of Stallman’s (Lohman,
1972) analog-model type curves were compared with results
obtained by the model described in this report, and again,
zhesum!amyofmxltsmdmmadunndeluvahd.m
comparison with Stailman’s model results is primarily in-
tended to check the trends in the response of the finite-
element model to a complex prodlem. Although there may
be better solutions available to compare the results of the
finite-element model against, the purpose of this comparison
is only to further substantiate that the finite-element model
can simulate complex two-dimensional radial solutions. A
discussion of both tests follows.

8 Evaluation of the model

Comparison with Analytical Solutions

[n comparing the model results to Theis’ ana’
solution, the radial cross section was set to resemble as
ly as possible the conditions of the analytical solution. The
only condition that could not be met was that of an infinite
aquifer, because the model must have a radial boundary at
a finite distance. For comparison with the analytical solu-
tions, a zero-drawdown boundary 10,000 ft from the center’
of the radial section was sirnulated.

To verify the model response for a well pumping under
transient artesian conditions, model results were compared
with the Theis type curve (from Lohman, 1972). The Theis
solution is for a fully penetrating well in an infinite confined
aquifer with no vertical movement of water. The model
results were transformed into Theis' dimensionless coeffi-
cients 4 and W(u) from their relationship to drawdown and
time:

As 1
4T @ (35a)
W) = %_r_ ® (355

where
r = radial distance from well,
§ = storage coefficient,
T = transmissivity,
Q= well discharge,
¢ = time,

s = drawdown. \/

Transformed model results for two different simula-
tions are plotted against the Theis type curve in figure 4.
The first simulation is plotted with circles, and the first point
plotted is the worst comparison point. The second simula-
tion used the same aquifer conditions as the first, except that
a smaller initial time step (DELT) was used. This second
simulation is plotted with squares and indicates that part of
the error in the first simulation was probably due to the trun-
cation error associated with the time derivative. Thus, the
smatler initial time step gives a better match with the Theis
type curve.

The next check on the model response was to evaluate
its accuracy in predicting water-table mounding beneath a
circular recharge basin. In this check, the assumption of no -
recharge, which was used in formulating the upper uncon-
fined boundary, was violated in that both the recharge flux
and free-surface boundary conditions were used simul-
taneously.

The simplified form of Boulton s free-surface equation
(eq. 26) is

3: ds
S~k
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Figure 4. Comparison of model results with Theis’ dimensionless analytical solution.

which relates two expressions for the rate of downward
movement at the surface (Bennett and others, 1967). Boulton
evaluated the substantial time derivative at the free surface,
which made it necessary to assume that & particle of water
always stays on the free surface. However, an equation
analogous to the simplified equation (eq. 26) can be derived
using a mass balance on an elemental volume at the free sur-
face. This analogous equation allows recharge at the free sur-
face and relates the boundary flux to the storage term and
the recharge rate, which can be written:

_xa:'ff"’j;‘:a:_m - ‘ 16
R zlw M0 9
where :
W(r) is the recharge rate.
This equation relates three expressions for the rate of down-
ward movement at the free surface. Thus, comparison of the
model results to the analytical solution for a recharge mound
derived by Hantush (Walton, 1970) provides a check on the
appropriateness of the boundary condition as expressed in
equation 36.

To reproduce Hantush's solution, a simulation was

made for a one-dimensional homogenous aquifer with the
following properties:
b = thickness of aquifer = 700 ft,
R = radius of basin = 100 ft,
W= recharge rate = 10 fi/d,
K= radial hydraulic conductivity = 100 fi/d,
K= vertical hydraulic conductivity = 1,000,000 fi/d -
(The reason for the high vertical hydraulic con-
~ ductivity is to approximate no vertical head
gradient—the Dupuit assumption {Lohman,
lm' p‘ lll)v
§,= specific storage = 0,
§,= specific yield = 0.3.
Model results are compared with Hantush 's solution in figure
5. The results show a reasonably close match between the

- analytical solution and the model results.

Comparison with Mode! Solutions

To fully evaluate the accuracy of the model results, it
was necessary to simulate a pumping well in an unconfined,
anisotropic aquifer. Stallman (Lohman, pl. 6. 1972) de-
veloped dimensionless type curves for such a case, with five
families of curves, each for a different vertical screen setting.

Evaluation of the model 9
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Figures 6 and 7 compare results from the model
described in this paper to results generated by Stallman's
electric-analog model. Figure 8 indicates drawdowns at the
water table, and figure 7 indicates drawdowns at the bottom
of the aquifer. Model results are for various psi (¥) values:

-iVE e
where

b = thickness of aquifer,

r = radial distance of observation point from centee,
K. = radial hydraulic conductivity,

K, = vertical hydraulic conductivity.

As can be seen in figures 6 and 7, the predicted
response of the aquifer has the same characteristics for both
solutions. The responsa at the watee table is very different
from the predicted response at the bass of the aquifer and
both solutibs produce the same trends. Since Stallman'’s
analog md:l’wusubjectmemnduemspace discretiza-
tion and inAccuracies associated with the electrical com-
ponents (resistors and capacitors usually have accuracies in
the range of +10 percent) and the finite-clement method
presented is subject to errors due to space and time discretiza-
tion, the results wers expected to be slightly different. Tak-
ing this into account, the results appear to compare well even
though some differences exist.

10 * Evaluation of the model

Observations on Model Behavior

Although the model worked well in all *

noteworthy features emerged during some of th

1. The average radius in the integration formula (eq. 9
an approximation. Zienkiewicz (1971, p. 79-80).
served that because a fairly fine subdivision is requis
with linear triangular elements, this *‘one-point’’
tegration is satisfactory. With a coarse element me:
however, errors about the trug solution become :
parent, and in some cases the predicted drawdown w
be slightly smaller or larger than in the actual syste:
depending on'the three radius values of each eleme:
In the tests involving comparison with the analytic
solutions, most errors were insignificant comparad
the magnitude of the drawdowa.

2. The FORTRAN computer code was written for the CC
7600 computer?® at Brockhaven National Laboratorie
In most test cases, it ran for the minimum charge. Tl
computer code should be capable of running on mo
computers with no necessary modifications, but the co
may vary considerably among computer centers.

Possible Program Modifications

The computer program presented contains assumptior
that satisfied the author’s needs for local application
not satisfy the user's needs; for example, the assu
a constant coefficient of specific storage (§,) over the'entir
grid. However, this constant in the program could easily b
changed into an array that could assign a different specific
storage to each element, and this can be accomplished by
simply adding a read statement to read a specific storage for
each element and changing the specific-storage constant ir
the calculation of the element matrices to an array associatec
with each element.

Two major modifications are being evaluated for future
implementation. Although they would require extensive
reprogramming, they could offer major advantages. The firs:
would involve use of a logarithmic transformation on the
radial coordinate system so that the flow system could be
evaluated without use of the average-radius (¢q. 9) approx-
imation. As discussed in the previous section, this approx-
irnation introduces some error, and the logarithmic coordinate
transformation should eliminate it. The second modification
would simulate the vertical movement of the free surface (the

21759 of brand names is for identification purposes only and does not imply
endorsement by the U.3. Geological Survey.

| ' : — -
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Figure 6. Comparison of water-table drawdowns as predicted by Stallman’s analog mode! and the Calerkin finite-element model.

solution of the nonlinear problem), which may probably be
accomplished by an iterative technique in which the element
configuration heaves (or distorts) in the vertical dimension.

DESIGN CONSIDERATIONS FOR THE
FINITE-ELEMENT GRID

In designing a finite-element grid, two types of design
constraints must be met—those imposed by the mathematical
procedures and those imposed by the computer-programming
procedure. Both should be understood before the user at-
tempts to make use of the program.

Three design considerations are associated with the
mathematical methods uséd.- First, because the solution
presented involves linear triangular elements and requires
use of an average radius for each element, the flow field
should be represented in as much detail as possible (a fine
grid). Second, the solution technique assumes that the nodal

order for each element is specified in counterclockwise direc-

tion (also noted in supplemental data II). Third, as men-
tioned previously, the global coefficient matrices are sparse-
banded, and the smaller the band width, the more efficient
the solution technique for both time and storage requirements.

The band width is determined by the largest difference be-
tween two node numbers in an element. Thus, an cfficient
nodal order improves the efficiency of the solution. The pro-
gram also outputs the band width for the user to check the
array dimeasions.

Two additiona! design considerations are necessary
because of the way in which the mathematical procedure was
programmed, and both must be met for the program to work.
The first is that the constant zero-drawdown nodes must be
numbered first, which means that if constant drawdown is

-to be represented by three nodes, they must be nodes 1, 2

and 3. The second consideration is that the vertical coordinate
system must start with zero at the free surface and increase
in a positive manner to indicate the depth of the node below
the top boundary. This second restriction is due solely to the
manner in which the surface area of the top boundary is
calculated.

SAMPLE SIMULATION

To illustrate the use of the mode), the radial cross sec-
tion shown in figure 8 was simulated. The cross section
shown is typical of Long Island, New York, and is composed

Sample simulation "
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of two aquifers separated by a confining unit. The element
configuration used to simulate this section is shown in figure
2.

Supplemental data [l and V give the input formats and
data used for this model run. The well screen is in the bot-
tom 2§ feet of the upper aquifer. The coefficients used for
the simulation are

12 Sample simulation

K. (vertical hydraulic conductivity of upper M
aquifer) = 27.0 ft/d,

X, (horizontal hydraulic conductivity of upper aquifer)
= 270.0 fi/d '

K, (vertical hydraulic conductivity of confining unit)
= (.00! fv/d,




-

K. (horizontal hydraulic conductivity of confining unit)
= 0.01 fid,

K, (vertical hydraulic conductivity of lower aquifer)
= 1.4 fud,

K. (horizontal hydraulic conductivity of lower aquifer)
= 50.0 fu/d,

© (pumping rate) = 1.0 fi%/s,

S, (specific yield) = 0.285,

S, (specific storage) = 1.0 x 10™ fr™"

The results for one time step are presented in supplemen-
tal data V1. The results simply present the total time into the
simulation and the drawdown for each node in the finite-
element configuration.

CONCLUSIONS

The Galerkin finite-element radial-flow ground-water
model described can simulate anisotropic, inhomogeneous,
confined, and pseudo-unconfined aquifer conditions. Com-

Constant
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penetrating -
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3 .
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Figure 8. Radial cross section of aquifer for sample simulation.

parisons between radial-flow model results and published
solutions are satisfactory. The program described allows
more freedom in representing the field conditions than
previously published methods.

The program, names of variables, data input formats,
and array dimensioning are described in the supplemental
data. From the text and supplemental data, one can use the
program and modify the input and output of data as necessary
to obtain accurate predictions.
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SUPPLEMENTAL DATA |
FORTRAN IV Program Listings

A. Main Program
PROGRAM RAD( INPUT, QUTPUT, TAPES=INPUT, TAPE&=0UTPUT, TAPE7=0UTPUT)

MAN

DIMENSION NG(2B8.3), PR(288), PZ(288), RE(170), ZE(170), IFLUX(]170MAN
1), 1GC170), IRCH(170), NSCON(170). F(170)., S1(170), S3(1&4), SS(16MAN
26), F2(186), WE1(144,21), WTRAL1(1464,21), R(I), 2(3), ZI(3), RI(3).MAN
3 L(3), W(3,3), WR(I, J), WZ(3,J), WH(3,3), WSTI(I, ), NND(30), TITLEMAN

4(20) MAN
gniﬁiillilililiiili-}lll'l!lii!.liil!!illiliiﬁ!lli!!lﬁi}ﬁl!!iéi!i!i&iQQI' MAN
MAN
c A GALERKIN FINITE-ELEMENT FLOW MODEL FOR THE TRANSIENT MAN
c 'RESPONSE OF A RADIALLY SYMMETRIC AQUIFER MAN
c i MAN
c PR, PZ = FT/DAY . IE, RE=FT ; G=CFS ; TIME sDAYS MAN
c _GRCH=FT/DAY (+ MEANS RECHARGE : =- MEANS DISCHARGE) . MAN
c ’ MAN
¢ CONSTANT DRAWDOWN NODES MUST BE NUMBERED FIRST MAN
c (1.E. .23 ......... ) MAN
c PPR=PRIMARY RADIAL HYDKRAULIC CONDUCTIVITY MAN
c PPZaPRIMARY VERTICAL HYDRAULIC CONDUCTIVITY MAN
c ND1F=# OF DIFFERING HMYDRAULIC CONDUCTIVITY ELEMENTS MAN
¢ NE=# OF ELEMENTS; NN=#% OF NODES: NCH=# OF CONSTANT DRAWDOWN NODES ~MAN
c NG=# OF NODES DISCHARGING: NND=NODES DISCH. MAN
c IF NODE HAS AN ‘UNCONFINED’ BOUNDARY PUT A ‘1‘ IN COL. 3% MAN
c IF NODE HAS A RECHARGE TOP BOUNDARY PUT A ‘1’ IN COL. 40 MAN
c IF NODE HAS A CONSTANT ZERO DRAWDOWN PUT A “1° IN COL. 4S MAN
C i MAN
C!-‘l!i.&Qli!il}!ii.!!l!60.!!"0.!{!!!ilililliil!I.!*Qli!i.!.lﬁl!l.i!(il MAN
c MAN
c CALCULATE CONSTANTS MAN
c MAN
TPI=3. 141642 MAN
CONV1=1440. #60. MAN
c MAN
READ (S.11) TITLE MAN
11 FORMAT (20A4) MAN
WRITE (&,12) TITLE MAN
12 FORMAT (1M1, 10X, 20A4) MAN
- READ (S.13) PPR.PPZ, IPP MAN
13 FORMAT (2F10. 0, 110) MAN
READ (S,14) S.3Y MAN
14 FORMAT (2F10.0) MAN
. WRITE (&, 1%) 8 MAN
1S FORMAT (1HO, 3&6H coerrxcxsur OF SPECIFIC srunace-.exz s, SH 1/FTIMAN
WRITE (&, 16) SY MAN
16 FORMAT -(1HO. 17H SPECIFIC YIELD =, F10. 4) MAN
WRITE™16.17) PPR.PPZ MAN
17 FORMAT .C(1HO, 38K THE PRIMARY HYDRAULIC CONDUCTIVITY = ,F10. :.:zn RMAN
1ADIALLY &, F10.3.21H VERTICALLY (FT/DAY)) MAN
READ (8, 18) NE. NN, NCH. NG, NDIF MAN
18 FORMAT (31%) MAN
19 FORMAT (1HO.IS.13H ELEMENTS .IS.9H NODES .13,22H CONSTANT VAMAN
1LUE NODES. IS, 18H NODES DISCHARGING. IS, 23H ELEMENTS OF DIFF. H.C.) MAN
IF (NG.EG.O) GO TO 24 MAN
WRITE (6, 20) MAN
20 FORMAT (1MHO. 17HDISCHARGING NODES) MAN
DO 23 I=1,NG ‘ MAN
READ (S, 21) NND(I) MAN

16 Supplemental data

570
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FORTRAN 1V Program Listings—Continued.
A. Main Program—Continued.

21 FORMAT (1D MAN SBQU
WRITE (4,22) NND(I) MAN 590
22 FORMAT (1X,19) MAN 500
23 CONTINUE MAN 510
24 DO 23 I=1.NE MAN 520
PR(I)=PPR : MAN 430
PZ(1)=PPZ MAN 530
2% CONTINUE MAN &30
MAN 540
DEFINE ELEMENTS OF DIFFERENT CONDUCTIVITIES MAN &70
, MAN 480
IF (NDIF.E£Q.0) 60 TO 31 MAN 490
WRITE (&, 26) MAN 700
26 FORMAT (1HO, 1X, 394 ELEMENTS WITH DIFFERENT CONDUCTIVITIES) MAN 710
WRITE (6&.27) MAN 720
27 FORMAT (1HO, 1X., 7HELEMENT, 3X. 11HRADIAL H.C.. 39X, 13HVERTICAL H.C.) MAN 730
DO 30 X=1,NDIF MAN 740
READ (5,28) IE,PR(IE),PZ(IE) MAN 730
23 FORMAT (110.2F10.0) MAN 750
WRITE (6,29) IE.PRCIE),P2(IE) MAN 770
29 FORMAT (1X.19%, 10X.F10. 3, 10X, F10. 3) MAN 780
30 CONTINUE MAN 790
MAN BCO
READ NODAL ORDER OF EACH ELEMENT MAN B10
MAN 820
31 WRITE (4,32) , MAN 830
32 FORMAT (1HO, 7HELEMENT, 10X, 1 1KNODAL ORDER) MAN 840
DO 33 I=1,NE MAN 830
READ (9,33) IE,NG(IE: 1), NG(IE, 2),NG(IE, D) MAN B&0
33 FORMAT (419) MAN B70
WRITE (4.34) IE,NG(IE, 1),NG(IE, 2),NG(IE, D) MAN 880 \\_//
34 FORMAT (3X, I3, 35X, 3(2X, I3)) MAN B90
33 CONTINUE MAN 900
MAN 910
READ NODAL COORDINATES FOR EACH NODE MAN 920
MAN 930
WRITE (&, 38) MAN 940
346 FORMAT (1HO, 17HNODAL INFORMATION) MAN 930
WRITE (4,37) MAN 950
37 FORMAT (1X, 4HNODE, 10X, 1HR, 10X, 1HZ, 10X, 1CHUNCONF INED, 10X, 148HSURFACEMAN 970
1 RECHARGE. 10X. 13HCONSTANT HEAD) MAN 980
DO 40 J=1. NN MAN 990
19¢J)=0 MAN1000
READ (9,39) IND,RECIND), ZE(IND), IFLUXCIND), JRCH(IND), NSCONCIND)  MAN1010
38 FORMAT (110, 2F10. 0,313 : MAN1020
WRITE (&,39) IND,RE(IND), ZECIND), IFLUX(IND), IRCH(IND), NSCON(IND) MAN1030
39 FORMAT - %iX. 13, 2F20. 2, 3¢13X, I19)) MAN1030
40 CONTINGE MAN1050
R MAN10&0
CHECK INS DATA FOR CONSISTANCY MAN1070
MAN1080
CALL CHECK(NE. NN, NCH, N@. RE, ZE, NSCON, 1ERR) MAN1070
IF (1ERR.EQ.1) GO TO 93 MAN1100
. MAN1110
DEFINE DISCHARGING NODES MAN1120
MAN1130
IF (NQ.EQ.O) GO TO 34 MAN1140
DO 41 K=, NQ MAN1130
IG(NND(R) )=} MAN1160
N4

Supplemental data L}
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FORTRAN 1V Program Listings—Continued.

A. Main Program—Continued.

CONTINUE
DEFINE TOTAL TRANSMISSIVITY OF SCREEN LENGTH

TRTOT=0.

DO 4% J=1,NE

DO 44 I=1,3

IF (IGQ(NG(J, I)). NE. 1) QO TO 43

IF (1.€G.1) GO TO 42

IF (IGI(NG(J. I-1)).NE. 1) GO TO 44
TI=PR(J)I*ABS(ZE(NG(J: 1)) =ZE(NG (U, I=-1)))
GO TO 43

IF C(IQ(NG(J,J)).NE. 1) GO TO 44
TIsPR(JI®ABS(ZE(NG(J, 1) )=ZE(NC(JU, 3)))
TRTOT=TRTOT+TI

CONTINUE

CONTINUE

DETERMINE HALF BAND WIDTH AND NEEDED MATRIX WIDTH

IHBW1=0

DO SO I=1.NE

DO 49 uJ=1,23

IF (J.EG.1) €O TO 47

IF (NSCON(NG(I,J=~1)).EQG. 1) GO TO 4%
IF (NSCON(NG(I,J)).EG. 1) GO TO 49
IHBUSTIABS(NG(I, J)=NG(I,J=-1))

€0 YO 48

IF (NSCONC(NG(I, 1)}).EG. 1) GO TO 4%
IF (NSCON(NG(I,3)).EQ. 1) CO TO 4%
IHBW=IABS(NG(I, 1)=NGC(I, J))

IF (IHBW. LT. IHBW1) GO TO 49
IHBW1=IHBNW

CONTINUVE

CONTINUE

Ma2eIHBWL+1

WRITE (&.51) IHBWIWM

MAN1170
MAN11B0
MAN11%0
MAN1200
MAN1210
MAN1220
MAN1230
MAN1240
MAN1250
MAN1260
MAN1270
MAN1 280
MAN1290
MAN1300
MAN1310
MAN1320
MAN1330
MAN1340
MAN1350
MAN13460

* MAN1370

MAN1380
MAN1390
MAN1400
MAN1410
MAN1420
MAN1430
MAN1440
MAN1430
MAN1460
MAN1470
MAN1480
MAN1490
MAN13500
MANLS1O
MANE 520
MAN1530

S1 FORMAT (1HO, 22HTHE HALF BAND WIDTH IS,18,32H AND THE WIDTH OF THEMAN1540

s

1 MATRIX 18.13)

DO 352 II=1,NN
§1(11)=0.0
CONTINUE
MMaNN-NCH

SET-UP PUMPING PERIOD

- S
TITU0=0. 0
0Q 90 NPP=i, IPP
DO S3 II=1.NN
F{11)=0.0

Supplemental data

MAN1S30
MAN1360
MAN1S$70
MAN1580
MAN1S5%0
MAN1600

MAN1610
MAN1620
MAN1630
MAN1640
MAN1650
MAN1 660
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FORTRAN 1V Program Listings—Continued.
A. Main Program—Continued,

53 CONTINUVE

sS4

93
%8

7
38

39

&0

61

42

63
64
&3

&6

PR

READ (3, 34) Q, QRCH. DELT, TMAXF, TS5M, NTS
FORMAT (35F10.0,110)
DT=DELT

TM=0. 0

DO 33 I=1,NTS

THaTM+DT

1F (TM. GE. TMAXF) GO TD 354
DT=TSM#DT

CONTINUVE

GO TO 97
DELTsTMAXF/TM*DELT

NTS=}

WRITE (&, 58) NPP,DELT,NTS

FORMAT (1M1, 14HPUMPING PERICD, 110./,20H INITIAL TIME STEP =,F10. 3,
15H DAYS. /7, 4464 NUMBER OF TIME STEPS IN THIS PUMPING PERIQOD =, 110)

WRITE (4. 39) Q

FORMAT (1HO, 13HDISCHARGE= ,E12. 3, &M CF3)
WRITE (&,60) QGRCH

FORMAT (3O, 10HRECHARGE= ,F7. 2,84 FT/DAY)
Q=G+CONV1

VALUE OF SINK MATRIX

QTOT=0. 0

DO &3 u=i,NE

DO 61 U=1, 3

L{JISNG(K, J)

R(JI=RE(L(J)Y)

T(J)=ZE(L (D))

CONTINUE

DO &4 [=1,3

DO 43 JU=1.3

IF (IQ(L(J)).NE. 1) GO TO 42

IF (1Q(L(I)).NE. 1) GO TO 42
BLEN-SQRT((ABS(R(!)-R(J!))OGZO(ABS(Z(I)-Z(J)))GOZ)
FILCD) )=QePR(K)#BLEN/(2. *TRTOT)+F(LLL))
QTOT=Q+PR(K)*BLEN/ (2. *TRTOT)+QTQT

IF C(IRCH(L(JI).NE. 1) GO TO &3

IF C(IRCH(L(I)).NE. 1) GO TO 43

AREA=3. 14142ABS(R(J) #32=-R(I)#22Q)

FIL(1) I=GRCHIAREA/Z. +F(L(T))

CONTINUE

CONTINUE .

CONTINUE- -

DO &84 Imi,MM

F2( )= ¢ I+NCH)

CONTINUE

CHECK DISCHARCE

Supplemental data

MAN1&70
MAN1&80
MAN14690
MAN1700
MAN1710
MAN1720
MAN1730
MAN1730
MAN1730
MAN17&0
MANL770
MAN1780
MAN1790
MAN180C0O
MAN1B10
MAN1820
MAN1830
MAN1840
MAN1830
MAN186&0
MAN1870
MAN1880
MAN1890
MAN1200
MAN1910
MAN1920
MAN1930
MAN1940
MAN1930
MANL 2460
MAN1970
MAN1980
MAN1990
MANQ000
MANZ010
MAN2020
MANZ2030
MANZ040
MAN2030
MANZ04&0
MANR070
MANR080
MANQ070
MANZ2100
MAN2110
MANZ120
MAN2130
MAN140
MANR1 30
MAN2140
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FORTRAN 1V Program Listings—Continued.
A. Main Program-éohtinued.

QTOT=GTOT/CONVY
WRITE (&.,67) GTOT
&7 FORMAT (1HO, 28H CALCULATED WELL DISCHARGE =,F10. 2, 4H CFS)

START TIME LOOP

TIME=Q. O
00 €89 IT={,NTS

INITIALIZE VARIABLES

DO &9 I=1.MM
DO &8 J=i1: M
 WTRAL1(I,J)=0.0
We1(1,J)=0.0
&8 CONTINUE
&9 CONTINUE -
D0 79 K=1.NE
DO 70 J=1,3
L(JI=NGQ(K, J)
R(JI=RE(L(J))
ZCI=ZEL (YD)
70 CONTINUE

AVERAGE DISTANCE R OF ELEMENT
REAR=(R (1)+R(2)+R(3))/3.

DO 72 I=1.3
0O 71 J=1,3
W(I,J)=0. 0
71 CONTINUE
72 CONTINUE
Z1(1)=Z(2)-2(3)
ZI(2)=2(2)=2(1)
ZI(3)=T(1)=2(2)
RI(1)=R(3)-R(D)
RI(2)=R(1)=R(I) ,
RIC(I)=R(2)-R(1)
DEL=(ZI(1)8R(1)+ZI(2I4R(2I+T1(I)*R(I))/2.

CALCULATE ELEMENT MATRICIES

D0 78 I=4.3
0027 J=1,3
WRLL. JI=TPISRDARSPR(K)ZI(I)ZIC(JS) /(4. #DEL)
U1 JIuTPI#RBARSPZ(K)ISRICII®RI(J) /(4. «DEL)
IF¢I.EQ. ) €0 TO 73
NAT(I. J)uSeTPIaR(I)#DEL/(DELT#12. )
€0 YO 74
73 WST(1, J)uSeTPISR(I)#DEL/ (DELT#6. )
74 WL, JIuWRLL, JISWILL, )
IF (I.NE.J) QO TQ 76
IF (IFLUX(L(I)).NE. 1) GO TO 76
AREA=0Q. 0
DO 78 KK=1,3
IF (KK.EG. 1) @O TO 73
IF (IFLUX(L(KK)).NE. 1) €O TQ 73
AREA=3. 14146#ABS(R(II#R(I)-R{KK)I#R(KK)})

Supplemental data

MAN2170
MAN2180
MAN2190
MAN2200
MAN2210
MAN2220
MAN2230
MAN2240
MAN2250
MAN2260
MAN2270
MAN2280
MAN2290
MAN2300
MAN2310
MAN2320
MAN2330
MAN2340
MAN23%0
MAN2340
_ MAN2370
MAN2380
MAN2390
. MAN2400
MAN2410
MAN2420
MAN2430
MAN2440
MAN2450
MAN2440
MAN2470
MAN2480
MAN24%0
MAN2300
MAN2510
MAN2520
MAN2530
MAN2340
MAN2SS0
MAN2%540
MAN2S70
MANZ2%80
MAN2590
‘AN2600
MAN24310
MAN2&20
MAN2430
MAN2&40
MAN2&50
MAN2640
MAN2670
MAN2680
MAN24S0
MAN2700
MAN2710
MANZ720
. MAN2730
MANZ2740
MANZ2790
MANZ2760
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FORTRAN 1V Program Listings—Continued.
A. Main Program—Continued.

73 CONTINUE MAN2770
Wi, J)==-SYSAREA/ (2. *DELT) MAN2780
MANZ790
ASSEMBLE ELEMENT MATRICIES INTO GLOBAL MANZB800
MANZS10
76 IF (NSCON(L(J?).EQ. 1) GO TO 77 MANZ820
IF (NSCCNC(L(I)).EQ. 1) 6O TO 77 MANZ2830
II=aNG(K, I)-NCH MANZ2340
JJuNG (K, J)=NCH ) MAN2850
MTRANSJJ-11+(M+1)/2 MANZ2840
MAN2870
GLOBAL TRANSIENT MATRIX MANZS80
MANZB90
WTRAL(I1, MTRAN)=WST(I, J)+WII, J)+WTRALI(II, MTRAN) MAN2900
MANQ?10
GLOBAL MATRIX MANZ?20
MANR930
WEL(I1, MTRANY=WW(L, J)+WGL1 (11, MTRAN) MAN2920
77 CONTINUE MANZF30
78 CONTINUE MAN2960
79 CONTINUE MANZ970
MAN2980
MANR9]0
SUM OF GLOBAL AND TRANSIENT COEFFICIENT MATRICIES MAN3000
ON LEFT HAND SIDE MANI010
MAN3020
DO 81 Isi, MM MAN3030

DO 80 uJm1. M MAN3040 -
WGEL(1, JI=WTRAL(L, JI+WORI(I. J) MAN30S0
80 CONTINUE MAN30560
81 CONTINUE MAN3070
MAN3080
MULT. OF MATRICIES ON RIGHT HAND SIDE MAN3090
MAN3100
DO 92 I=i, MM MAN3110
S3(1)=S1(I+NCH) MAN3120
-835(1)=0.0 MAN3130
82 CONTINUE MAN3130
CALL MLTBM(WTRAL.S3.S5.MM. M) MAN3130
DO 83 t=1, MM MAN3140
SH(1)=SS(I)+F2(]) MAN3170
83 CONTINUE MAN3180
MAN3190Q
SOLUTION MAN3200
‘??EL MANJZ210
CALL SOLVE(1,WG1, S93, MM, IHBW1, MM, M) MAN3220
CALL SOLVE(2, W01, S3, MM, INBUWL, MM. M) MAN3230
NNNsNCH+Y MAN3240
DO 84 IaNNN, NN MANJI2350
S1¢(1)353(I-NCH) MAN32460
84 CONTINUE MAN3270
TIMEaTIME+DELY MANI280
TIMM=TIME»1440. MAN3290
ACTTsTIME+TITO MAN3300
MAN3310
CUTPUT MAN3320
MAN3330
WRITE (48.83) ACTT MAN3340
8% FORMAT (1M1, 30HTOTAL TIME IN THE SIMULATION =, F10. 3, 3H DAYS) MAN3330
WRITE (4.8646) TIME, TIMM MAN3340
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FORTRAN IV Program Listings—Continued.
A. Main Program—Continued.
86 FORMAT (1HO, 1BHTHE DRAWDOWN AFTER.E10.3,94 DAYS OR, £10. 3, 26HMIN. MAN3370

1IN THE PUMPING PERIOD) MAN3380
WRITE (6.87) - MAN3J390
87 FORMAT (1HO. 10X, 12H NODE NUMBER. $X, 8HDRAWDOWN, 10X. 12H NODE NUMBER, MAN3400
15X, BHDRAWDOWN, 10X, 12H NODE NUMBER, 3X, BHDRAWDOWN) MAN3410
WRITE (6.88) ((1,51(1)), I=1,NN) MAN3420
88 FORMAT (10X. IS5, 10X, F10, 3.10!.15.10! F10. 3. 10X, 15, 10X, F10. MAN3430
DELT=DELT*TSM MANJ440
89 CONTINUE ' MAN3450
TITO=TIME+TITO ' MAN3460
S0 CONTINUE MAN3470
G0 TQ 93 MAN3480
91 WRITE (6.92) ’ MAN3490
92 FORMAT (1H1, 49H#+TERMINATION OF PRDGRAH DUE TO INPUT DATA ERRORS) MAN3SOO
93 STOP MAN3S10

0o0on

o0n GOO00

(s XN Xs)

22

END ' : MANJS20~

8. Subroutine CHECK

SUBROUTINE CHECK(NE, NN, NCH, NG, RE, ZE, NSCON, 1ERR) CHK
DIMENSION NGC(NE, 3), RE(NN), ZEC(NN), NSCONINN) CHK,

) CHK

THIS SUBROUTINE CHECKS THE ELEMENT INPUT DATA FOR CONSISTANCY CHR

: CHK

{ERR=Q : CHK
NCK=0 , _ CHK

. _ : CHK

CHECK NUMBER AND ORDER OF CONSTANT HEAD NODES CHK

: CHK

FIRST CHECK IF CONSTANT HEAD NODES ARE THE FIRST NODES NUMBERED CHK
CHK

DO 10 I=1,NCH , CHK
NCK=aNSCON( I ) +NCK . : CHK

10 CONTINUE . CHK
IF{NCK. EQ. NCH) €0 TO 30 : : CHRK
IERR=}] . ) . CHK
WRITE (&, 20) NCH. NCK CHK

20 FORMAT(1H1.20H=#% PROGRAM EXPECTED. 19, 39H CONSTANT HEAD NODES BUT CMK
1ONLY THE FIRST,13,28H NODES WERE FLAGGED AS SUCH) CHK
CHK

THEN CHECK THE TOTAL NUMBER OF CONSTANT HEAD FLAGS . CHK

. CHK

30 NCK=0 ‘ CHK
DO 40 Is=t,NN : CHK
NCKaNSCON( 1) +NCK CHK

40 CONTINUVE o ’ CHK
IF{NCK. EQ. NCH) €0 TD &0 CHK
IERR=L CHK
WRITE(&, SO) CHR

S0 FORMAT(1HO, 71H#»#sTOTAL NUMBER OF CONSTANT HEAD FLAGS DOES NOT AGRECHK
1E WITH NCH(® CODED)) CHK

. C CHK

NEXT CHECK IS5 TO INSURE THAT ALL ELEMENTS ARE NUMBERED CHK
COUNTERCLOCKWISE CHK

4 o : CHK
60 DO 100 K=1,NE . CHK
LeNG(K. 1) CHK
MaNG (K, 2) CHK
NaNG{K, ) i CHK

Supplemental data
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70 FORMAT(1HO. 1 7H#»»*EITHER ELEMENT. 3. 23H

FORTRAN IV Program Listings—Continued.
B. Subroutine CHECK—Continued.

A=(RE(L)=RE(N))#ZE(M)+(RE(M)-RE(L))I#ZE(N)+(RE(NI~RE(M) ) #ZE(L)

IF(A.LT.0.) GO TO 100
IERR=1 .
WRITE(S.70) K

CHK
CHA
CHK
CHK

1S NUMBERED CLOCKWISE, /, 11CHK

1X, 92HOR THE VERTICAL COORDINATES ARE NOT POSITIVE DOWNWARD STARTINCHK

20 WITH IERQ AT THE TOP BOUNDARY)

100 CONTINUE

RETURN
END

C. Subroutine MLYBM

SUBROUTINE MLTBM(A. B, R, MM, M)
DIMENSION A(MM. M), BIMM), R(MM)

MULT. OF A JANDED MATRIX(ORIGINALLY MMaMM)
WITH A VECTOR MATRIX

( COMPACTED BANDED MATRIX OF Ma#MM AND VECTOR CF MM#1 )

DO 1 I=1, MM

R(1)=0.

DO 2 Jai. M
KaJel~(M+1)/2
IF(K.LT. 1) GO TO 2
IF(K. GT.MM) GO TO 2
R(I)=AL1., JI)®DIK)I+RII)
CONTINUE

CONTINUE

RETURN

END

D. Subroutine SOLVE

SUBROUTINE SOLVE (KKK, B, R, NEQ, IHALFDB, NDIM, MDIM)
FVBBRBBRVRRBRRBRRBRRRNBARRRRRRBRPRBARRRRRDRRBRD

ASYMMETRIC BAND MATRIX EGUATION SOLVER

ORIGINALLY PROGRAMED BY JAMES 0. DUGUID

KKK=1 TRIANGULARIZIES THE BAND MATRIX B
KKK=2 SOLVES FOR RIGHT SIDE R, SOLUTION RETURNS IN R

DIMENSION B(NDIM, MDIM), R(NDIM)
NRS=NEG-1

IHBP=IHALFB+1

IF (KKK, £Q.2) €0 TO 30

-

TRIANGULARLIZE MATRIX A USING DOCLITTLE METHOD

¥

DO 20 Kei, NRS
PIVOT=B(R, IHBP)
KK=K+>1

KC=IMBP

DO 10 I=KK.NEQ
KC=KC-1

IF (KC.LE.0) GO TO 20
C=-B(1, KCI/PIVOT '
B(I.KC)I)=C

KI=KC+1
LIM=KC+IHALFB

DO 10 J=KI.LINM
JCIHBP+J-KC

Supplemental data

CHRI
CHRK
CHK
CHRK

T
MLT
MT
mMmT
MLT
ML
MLT
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410
420
430
430
430
450
470
480
430
300~

010
020
030
040
030
060
070
Q80
090
100
110
120
130
140
130
160
170
180
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FORTRAN 1V Program Listings—Continued.
D. Subroutine SOLVE—Continued.

10 BL{I. J)=B(1, J)+C#B (K, JC)
20 CONTINUE
GO TO 100

MODIFY LOAD VECTOR R

o000

30 NN=NEG+1
IBAND=2s IHALFB+1
DO 70 [=2,NEG
JC=IHEP-1+1
Ji=1 o
IF (JC.LE.O0) GO TO 40
G0 TO 30 ’
40 JC=1
JI=[-IHBP+1
S0 SuM=0.0
DO 60 J=JC. IHALFB
SUM=SUM+B( 1, J)#R(JI)
&0 JI=JI+1
70 R(I)=R(1)+SUM

C BACK SOLUTION

R{(NEQ)=R (NEQ)/B(NEG. IHBP)
DO 90 IBACK=2, NEG
I=sNN-1BACK
JP=l
KR=IHEP+1 L
MR=MINO( IBAND, IHALFB+IBACK)
sUM=0. 0
DO 80 J=KR, MR
JPaJP+1
€0 SUMaSUM+EB(T1., J)#R(JP)
90 R(1)=(R(1)=-8SUM)/B(L., IHBP)
100 RETURN
END

SoL

300
J10
320
330
340
350
360
370
380
390
400
410
420
430
440
4350
450
470
480
490
S00
S10
Sa0
530
540
950
560
570
S80
590
600
610
620
630
&40
650-

'SUPPLEMENTAL DATA II'
Definition of Selected Program Variables

A = srea of element wsed to check nodal ecder

ACTT = total tine 1s slmulaction

ARZA = surfacs srea of os olemsat sloag thé top Bouadary

LN - uu_;;;‘ stress batvess tve @odes

convy = oq’pnl- taceer

oLL - u-ﬁmlu elemant

BELY ~ stme liu (ars) ’

OT = dusay time 9Cep uoed {n secting wp pusping pecied

7 = vecter teacsiniag tha Clux toras (a 3ll wodes ea the cight hand side

of sguation

72 « vectec contaialag tha flux terns Cor sll ushnowa nodes on the right hand

olde dhﬂutm
EL = elomant mmbder .
LERR © erver ﬂ.‘u tor lm; uk;
LFLUX = unconfined boundacy flag

24 . Supplementaldata .

INEVL = half dand wideh -

1¥0 = neda nuabder

PP = maber d puaping peciods

Q- dl.ul'nvrpv wousdary flag

IR - mnm boundary flag

L = global soda maber ia en ¢lesent

N = band wideh of gledal matricies

ot = suaber of waknewms

WIRAN = cransferaed colums lecatien for the toapacted banded mactin
NCR = aumber of senstast hesd mdss

¥OLF = avadec of ol with & 416¢
the pecinary brdesulie conductivity

A€ « mabee of slemance
NC = artay etering nodsl ecder for each elemant

N « nunber of nodes

hydrsullc conductivity than



WD = noded alang the vell screes
NPP = pupping pericd maber

NQ = nusbet of nodes slong the well screes

NSCON - flag for conscant head nodes

NTS = nunbder of time steps 1n pusping period

PPN - the primsry hydraulie e;n‘nllvity in the redtal direction
PPZ =~ the priaery hydraulic conductivity im the vertical direction
MR = the hydraulic conductivity In the cadial direction

PZ = the hvdraulic conductivity in the vertical direction

Q = diecharge of the wvell (cfs)

QRCR = cecharge rete of the basim (fet/4)

QTOT = calculsted discharge of well after dlstribucion slong the well bore
R = radius of the nedes for an elesent

RBAR = average radive for an alement

RE - radial distance of node

Rl = coeffictent for calculation of slement avrays

$ - Specific storage Sq (fe=l)

SY = spectfic yiold Sy (ynitless)

$1 « dravdowns

33 = drawdowns at uoknows nodes st previous tiee step

$3 = vector representing right hand side of (inal macrts equation

Tl = tncrement of cransatssivity slong well ecreen for an elenant
TIME - tocal tine of pumping pericd i days

TIMH - total time of pumping partiod {n minutes
TITLE - citle to be priated at start of computer output

THAXF - maxieus tiae of sisulation (days)

It ~ constant

TRTOT = total transaissivity slong the well screen
TSH < time-step multiplier

W = element matrin for uaconfined storage coetftciencs

WGl - globa) macriz lor nom=tine dependent coetficteants and also total matrix

on the left hand side of final matrix equatiow
VR - elemant metrix for rodisl direction cosfficiants
VST = element astrix fer storage coeffictents
WIRAL = global matris fer tise dependant coefficients
WW = gus of VR ang W2
UZ - elesent matrix for vertical directiom coefficients
Z - vertical lecatton of the nodes for an element
2T =~ vertical locatton of & node

Z1 = coefficiant for calculation of elenent arveys

SUPPLEMENTAL DATA Ul
Data Input Formats

Croup 1: Title and probles setup

Card Columns Forzmat
1 1-80 20A4
2 1-10 F10.0
11-20 r10.0
21-30 110

Vaciable Definition

TITLE Any titls the user wishas to
print cn one line at start
of output.

PR Primscry radial hydraulic
conductiviey (fc/d)

n Prizary vertical hydraulic
conductivity (fe/d)

¢4 4 mumbsr of pumping pericds

Nota: PPR and PPZ ars the hydraulic conductivities assignsd to all slesants
unless radefined in data Group J.

s 1-10 £10.0
o 11-20 r10.0
. 1-3 13
-10 13
11-13 13
16-20 13
21-23 13

sY

NCR

NQ

NDIF

Coefficiant of coapressive
storags (S.) 4a ge-1

Specific yteld (unitless)

Nunber of slements in finits
elenent nesh .

Nunber of nodes {n finits
slemant nesh

Nuaber of constant-head nodes
ia finits element mesh

Number of nodss associated
with wvell screen

Nusder of elements having
different hydraulic condue~
tivities than the pricary ones
on card 2

Supplemental data
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Data Input Formats—Continued.

Group 2: Nodes slong the well screen
NQ number of cards

Cakd I - Colusas Format Variable - Definttion
- 1-5 15 NNO(L) Node that (s alang vell

screen. All nodes aslong
screen musc be idencified
because vater (s withdrawn
only fros elenencs with gtwo
nodes along screen.

Group 3: Elements of different hydraulfe conductivities

- OLF number of catds

Caed Columns M Vartable Deftnteion
-~ I-t0 tio LE Elenent nuader
11-20 F10.0 m(Lle) Radial hydraulic conductivity
of elezanc (fc/d)
=30 f10.0 P2(18) Vertical Wydraulic

conductivity of element (ft/d)

Group 4: Nodal configuracion of each elenant

NE nuaber of cecds

Card Columns foroat Vacisble Befinition
- 1-5 [1$] 4 3 €lement nuader

6-10 13 NG(1Z,1) First sods of triangular
elenent.

1113 13 NG(1L,2) Second node in counter-clock~
vise direction of trisngular
elesant.

16-20 L3 NC(1E,3) Third acde iz counter~clock~
wise diraction of triangular
elesent.

See note on nods suabars in Daca Geoup S.

Geoup 3: Lecsticn of each nods and !h!: for constant hesd, uanconfined

NN auader of cards

Car¢ Columns Formae Vartadle  Deftnteion
- 1-10 tie .0} - Hode n‘nht
11-20 F10.0 RE(IND) Rsdial locattion of aode (ft)
-3¢ no.o . 2E(1IMD) Verctcal locstion of noda (ft)

a3 1§ ] IFLUX(IND) If sat to 1, aode is created
. - as uacoafined and
spacitic-yield doundary
condition is applied.

40 ts IRCH(IND) - If sat te 1, node is part of &
; cachacge boundary. Thts is
for ground-water mounding
probless and is only the top
‘boundary. Rscharge occurs
only to alements with two
nodes en top boundary.

&3 1s NSCON(IND) . 12 set to 1, sode Ls
. considered to be & constant
sero drawdown (constanc head).

l-p'orun: Kote: For this prograa, constantedrawdown nodss (coastant head) must
ba the first nodes numbersd and must be sequentizl. The progran sssumes that
Lf there are four constanc-head nodas (NCK = &), they are nodes t, 2, 3, sad 4.

Supplemental data




Data Input Formats—Continued.
Croup 6: Pumping period {nfornation \/

IPP nunbder of cards

Card Columns Format V-rhbl; Definition
- 1-10 F10.0 Q Puoping rate (ftd/g)
11-20 Fl10.0 QRCH Recharge race (ft/d)
21-30 Fl10.0 DELT Initial time scep (days)
31-40 F10.0 THAXF Maximua length of pumping

pericd (days)

41-50 r10.0 TSM Tina-scep muleipliar (sach
tine sctep after DELT is
ouleipliad by TSM).

51-60 110 NTS Number of time steps (n
pumping period.

The program has tvo options for the pumping period:
1. To simulate s given number of time steps, set THAXF to a valus
larger than the expected simulacion periocd. The program will uss NTS,
TSM, and DELT as coded.
. 2. To sioulats s given pumping period, et NTS larger thaan the nuaber
requirad for ths sizulation period (for sxsmple, 100). The progras
will computs the exact DEILT (which will da < DELT coded) and NIS to

arrive exactly at TMAXF on ths last tiss step.

SUPPLEMENTAL DATA IV
Array Dimensioning
Sevaral of the arrays sust ba dimansicned for esach specific grid setup.

The arrays can be divided into six different groups:

(1) Arrays associatad vith the nuadsr of elemencs (NE)
ARRAY XAME (S120)
a) NG (NE, 3)
) 1 (ML)
¢) P2 (NR)

(2) Arrays associatad with the total nuaber of nodes (KN).
ARRAY KAME (S1za)

Yai. a) 1B (€] )]

et ») 28 (nm)

e BETE
e

“’L e) IRCH (NN)

£) NSCON (NN)

)r (xn)

h) 31 (xn)

(3) Arrays associatsd with the nuzder of unknowa nodes (!01)e The number
of unknown nodes (M) squals the number of nodss (NN) sinus the number

of ant head nodes (NCH). Therefors, MM=NN-NCM.
ARRAY NAME (Siza)

a) 83 M)

b) 3 (1)

e) F2 (:o1)

(4) The compacted glodal arrays associatad vith the nunder of unknowa
nodes (121) and the band width of the global cosfficient matrix (M).
The band width (M) §s equal to twice the largest diffarance detween . \/
tvo adjacent node nuaders plus ons.
- ARRAY NAME (S{ze)
a) WGl (rae,1)
b) WIRAD (20¢,M)
Supplemental data 27
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Array Dimensioning—Continued.

($) Array asscclated with che number of nodes along the well screen (NQ).

i ; This accay ls dimensioned at SO ta the program, which should be
\/ - suffictent for most problems. S
ARRAY NAME (Stze) S
a) NNO (NQ)
(8) Atrn;sumgt(gi:.’ conscant size cegacdless of prodlem.

a) ()}

b} 2z (3)

c) 2t ()

d) At 3)

e) L 1)

£y (3,3)

g) W (3,3)

h) Wz (3,3)

L) wu (1,3)

3 st (3,3)
k} TITLE (20)

SUPPLEMENTAL DATA V
input Data for Test Problem

SAMPLE MODEL SIMULATION OF A LONC ISLAND. NEW rORK FUMP TEST 232

3. 1 4
270 ar 3¥ WA W 1 e
00001 29 236 30 [}
<8 1170 L) 4 w7 23 N 18
1a? Ws . 18
158 237 30 1 e
189 . =3¢ %0 1 4
168 229 % 14
180 1} 1 ] - 2 t A
191 o L 3T 281 W 14
tge Nt ot . 2042 %0 14
193 Ot DoY) 203 %0 (9 )
134 qH 221 ' 208 0 18
193 N (Y021 . WS 30 14
19s Ol L0 ’ 24a %0 1 8
197 vl RU1) a8? 1 4
k/ 19yd 08 wit 28 90 14
1w® [*§% R0 > 209 % 14
(% T 37 S ’ 23 9% 18
19t 2 onrt . 2%1 % 18
IR 9. U1 232 9%0. 14
192 ) noy - 233 % 1 4
15 L BT ~aGt 238 %0 14
125 I8 RN} 233 % 18
1@, 3 bl ] 33 16
97 Rl w 237 38 1 4
- I N 296 %0 1. &
199 21 Ul 239 30. 14
My S8 i 30 30 18
PUTY b1 ¥ st W L s
&a ot a2 sz N [
255 OF i 263 %0 14
S04 [} il 208 99 [ }
289 gt tal 2% 0 t s
PO ” =3t 266 90 1 &
&5 o L . 207 % Lt s
e N ot 268 50 1 s
ELAEE 1) W 2Ly 3O 1 4
219 61 oG 270 %9 ) .
ar . 7 w9 )
“t2 Ot [ 7] 272 % ()
M ot s 273 50 )
24 ot b 201 a*e %0 1 8
219 a4 oGt a1y %0 )
;e ”t -] ] 28 %0 1 6
N4 1} [ 1% arr %0 13
s N "re. 278 99 1 e
<ty (IR avs 90 [
& ¥ 1 4 WO %0 18
FA . N (3 aa 14
add W 146 M ¥ 1 e
azy 1 3 ! W L e
et [ 286 %0 Tt e
W %0 14 208 ¥ ()
28 W 14 2 % (SN
2r % [ L - 287 %0 1 e
28 % L s 8 0. FO )
229 99 14 1 170 149 180
0 Y (4 2 180 1Y 137
L= 1. ) 14 3 197 1% W0

/ - -
28 Supplementa! data




168
11
18?7
te7

159
187
138
197
1%
182
156
148
199
130
149
158
187
149
147
19
147
148
14%
194
149
149
140
149
139
147
138

143

Input Data for Test Problem—Continued.

%
*?
S8
L4
100
10
109
103
104
109
1-
107
1c8
199
110
(R ¥}
(S
13
114
1%
(33
"z
119

0
at
80
a8
ee
79
(=]
74
73
n
[ ]]
r2
71
7
7o
70
74
69
o4
72
2
L%
[ 2
r0
r»
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il

30

103 106 vy
%% 04 ey
% 9 g
02 e g
87 6 78

0 3 9
n ¥ 30
n N
LH] N a
Q &) N
N 4 k-4
TR
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? 11 [
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3 [ a

10¢ 103 oy
" 103 9
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L1 ] (2] ns
[ 7Y L) as
e ¢ 73
"I e @
de 63 M
77 a3 78
76 83 ae
as 73 7s
77 76 8
e 7s .7
[ 14 74 73
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‘e 37 "
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74 av
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17 3¢ 23

Input Data for Test Problem—Continued.
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tnput Data for Test Problem—Continued.
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147
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10l
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SUPPLEMENTAL DATA VI
Selected Output for Test Problem

SAMPLE MODEL SIMUAATION OF A LUNG ISLAND. NEW YOAK PUMP TEST
CIEFFICIENT OF SPCCIFIC SIORAGEs  10000E-0% 1/FT
SPECIFIC VIELD = 2300
TE PF[HA*!' HMYORAGL IC CONDUCTIVITY & 270 05 RADIALLY & 27 000 VERTICALLY 'FT/DAY)
is8 ELEMENTS 170 NODES 4 CONSTANT VALUE NODES 4 NODES CISCHARGING (09 ELEMENTYI X [ IFIF
DIECHARGING NQLES
1¥-%4
186
169
154

ELEMENTS wiTw DIFFERENT CONDUCTIVITIES

CLEMENT RAGIAL M < VENTICAL M €
+8C 010 nNot
181 oo ot
142 ato Qo1
163 610 N
134 910 col
(ae 010 " 201 .
188 c10 002
187 o10 no1
128 210 "ol
189 312 oM
170 oto wot
T 910 ool
190 10 001
143 210 001
1d a0 oot
199 010 oot
178 010 oot
187 200 ool
138 €10 oot
128 010 ) Got
260 010 oot
201 010 - 001
202 210 ool
202 010 volt
304 210 ' oot
POt 010 "01
208 10 001
207 oo oot
208 J10 ool
209 ‘ 010 oot
‘210 010 ool
21 010 oot
212 oo ool
213 . 010 001
21e 010 . 001
a1s 016 . 001
e 010 : 001
217 010 .. 001
118 30 000 : 1 400
219 SC 000 1. 400
220 S0 000 1. 400
a1 s . 30 000 1. 400
223 £ 80,000 1. 600
223 - - | %0.000 1 400
- S0 000 t 400

224 s

THE HALF GAND WIOTM IS 10 AND THE WIOTH OF THE MATRIX [§ 21t

pUMR ING PERIOD 1
INITIAL TIME STEF » 00777 DAYS
NUMBER OF TIME STEPS IN THMIS PUMPING PERIOD = 12

DISCHARGEs -~ 100Q0F+01 c+S
RECHARGE ~Q 00 F1/0AV
CALCULATED WELL DISCHARGE -1 00 CFS

b .
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TOTAL TIME IN THE SIMULATION »

THE DRAWDOWN AFTER

NQDE NUMBER
1

130
133
136
139
142
149
148
191
134
19?7
te0
153
186
169

36%°K-01

o
-]

- 2

e

Selected Output for Test Program—Continued.

DAYS OR

" BRAWDOWN

000
000

L )4

438

Q37 DAYS

SJE+02MIN [N THE PuMPING PERIOD

NODE NUMBER
2

3

-}
13
16
1?
20
23
Y
9
2
3
39
41
LY}
47
so
33
%
39
[+
69
(Y]
71
k2]
77
80
83
Be
89
22
9
%9
101
104
107
110
113
118
11®
132
123
138
1
138
137
140
143
145
189
132
193
139
18
164
187
170

DRAWDCHN

]

-a

L L

000
000
000
Q00
000
000
ono
000
oo2
000
000
014
001
001

NODE NUMBER DRAWDOWN
3 o coo
) 000
] 000
12 000
13 000
19 000
21 GO0
24 000
7 002
0 000
a3 ale
=Y o113
e o000
2 047
49 oa9
49 000
L1 183
S4 [}
%7 Qco
60 33
&3 243
(-4 000
14 373
72 aro
73 000
8 L 411
81 3463
4 Q00
- 14 1 3%
90 700
93 Goo
2% 1 9a2
99 248
102 Q00
199 2 o080
1008 993
113 Coo
114 2 &%
117 an
120 073
123 o3
126 4 278
129 349
132 . 001
133 3 770
138 1 1648
t4s . 000
144 7 029
147 3 782
130 . 073
139 003
138 8 507
139 73
162 001
163 10 313
148 1.177

“U S GOVERNMENT PRINTING CFFICE. 1984~777-084

Supplemental data

33



