Westinghouse Hanford Company:

Bolle Sala

HEDL-TME 85-22 UC-70

# RESULTS FROM CYCLES 1 AND 2 OF NNWSI SERIES 2 SPENT FUEL DISSOLUTION TESTS

HYDROLOGY DOCUMENT NUMBER 94

NEVADA NUCLEAR WASTE STORAGE INVESTIGATIONS — Prepared by NNWSI Project participants as part of the Civilian Radioactive Waste Management Project Office (WMPO) of the U.S. Department of Energy, Nevada Operations Office (DOE/NV). NNWSI Project work is sponsored by the Office of Geologic Repositories (OGR) of the USDOE Office of Civilian Radioactive Waste Management (OCRWM).

HANFORD ENGINEERING DEVELOPMENT LABORATORY — Operated by Westinghouse Hanford Company, P.O. Box 1970, Richland, WA, a Subsidiary of Westinghouse Electric Corporation. Prepared for the USDOE, Office of Civilian Radioactive Waste Management, under Contract No. DE-AC06-76FF02170, B&R No. DB-01-02.

## Hanford Engineering Development Laboratory

Operated by Westinghouse Hanford Company for the U.S. DOE

Contract No. DE-ACO6-76FF02170 A Subsidiary of Westinghouse Electric Corporation

P.O. Box 1970 Richland, WA 99352

#### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America Available from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy: A 06
Microfiched copy: A01

HEDL-TME 85-22 UC-70

# RESULTS FROM CYCLES 1 AND 2 OF NNWSI SERIES 2 SPENT FUEL DISSOLUTION TESTS

C.N. Wilson

Date Published: May 1987

NEVADA NUCLEAR WASTE STORAGE INVESTIGATIONS — Prepared by NNWSI Project participants as part of the Civilian Radioactive Waste Management Program (CRWM). The NNWSI Project is managed by the Waste Management Project Office (WMPO) of the U.S. Department of Energy, Nevada Operations Office (DOE/NV). NNWSI Project work is sponsored by the Office of Geologic Repositories (OGR) of the USDOE Office of Civilian Radioactive Waste Management (OCRWM).

HANFORD ENGINEERING DEVELOPMENT LABORATORY — Operated by Westinghouse Hanford Company, P.O. Box 1970, Richland, WA, a Subsidiary of Westinghouse Electric Corporation. Prepared for the USDOE, Office of Civilian Radioactive Waste Management, under Contract No. DE-AC06-76FF02170, B&R No. DB-01-02.

= U.S. Department of Energy =====

· ·

# RESULTS FROM CYCLES 1 AND 2 OF NNWSI SERIES 2 SPENT FUEL DISSOLUTION TESTS

C. N. Wilson

#### ABSTRACT

Pressurized Water Reactor (PWR) spent fuel rod segments from the H. B. Robinson Unit 2 and Turkey Point Unit 3 reactors were leach tested in Nevada Nuclear Waste Storage Investigations (NNWSI) reference J-13 water under ambient hot cell conditions. The test matrix included bare fuel plus the cladding, rod segments with artificially induced cladding defects, and undefected rod segments. The testing procedures are described and comprehensive radionuclide release results are presented and discussed.

The actinides Pu, Am, Cm and Np appear to have been released congruently as the UO2 oxide fuel matrix dissolved. Preferential U release measured in certain tests may be related to dissolution of oxidized UO2+x from the fuel surface, and/or greater solubility (and mobility) of U relative to the other actinides within defected cladding specimens. Uranium solubility measured in the J-13 water was much greater than that measured in deionized water in previous tests. All of the principal fission products analyzed (  $^{137}{\rm Cs}$  ,  $^{129}{\rm I}$  ,  $^{99}{\rm Tc}$  and  $^{90}{\rm Sr}$  ) were released preferentially relative to the actinides. Preferential release of activation product 14c was also measured, with a portion of the 14c release appearing to originate from the cladding exterior surface. Much greater fractional fuel dissolution appeared to have occurred with bare fuel particles than from fuel contained in defected cladding. Measured actinide release from test specimens containing small (~200 µm) laserdrilled holes through the cladding was not significantly greater than that observed from undefected specimens.

#### ACKNOWLEDGMENTS

Radiochemical analyses described in this report were performed by, or under the direction of, A. C. Leaf of the HEDL Chemistry and Analysis Section. These analyses are a major portion of the results reported.

Ž,

Spent fuel test specimens were prepared by N. H. Larson and M. E. Freed. Post-test ceramographic sections were prepared by R. D. Bell and C. E. Chamberlin. Scanning electron microscopy of fuel specimens was performed by B. Mastel. Hot cell setup and sampling operations were performed by R. T. Steele and D. V. Archer. Data base management activities for this work were performed by J. R. Stuart, E. Yatabe and B. Whitten. Technical editing of this report was provided by N. E. Kenny. Technical direction was provided by the author, who gratefully recognizes the good work and support contributed by the above and many additional unnamed HEDL personnel.

Tests described in this report were supported by the Waste Package Task of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project at Lawrence Livermore National Laboratory (LLNL). The LLNL technical monitors for this work are V. M. Oversby and H. F. Shaw.

# 

٩

\$

š

?

# CONTENTS CONTENTS

| •      | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| . 78 N |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page       |
|        | Abethaet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iii        |
|        | Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|        | Acknowledgments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iv         |
|        | Figures That we have all the property of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vii        |
| -      | Tables Symbol South Control of the C | ix         |
| • ;    | Acronyms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>X</b> . |
| 1.0    | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1          |
| 2.0    | TEST DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5          |
| i ,    | 2.1 TEST CONFIGURATION AND SAMPLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5          |
|        | 2.2 TEST SPECIMENS STATE OF THE STATE OF THE SPECIMENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7          |
|        | 2.3 FUEL CHARACTERISTICS AND HISTORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9          |
|        | 2.4 SAMPLE ANALYSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14         |
| 3.0    | RESULTS AND DISCUSSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23         |
|        | 3.1 URANIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26         |
|        | 3.2 PLUTONIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32         |
|        | 3.3 AMERICIUM AND CURIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37         |
|        | 3.4 NEPTUNIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43         |
|        | 3.5 CESIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45         |
|        | 3.6 TECHNETIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48         |
|        | 3.7 IODINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53         |
|        | 3.8 STRONTIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56         |
|        | 3.9 ACTINIDE AND FISSION PRODUCT RELEASE SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57         |
|        | 3.10 CARBON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61         |
|        | 3.11 COBALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64         |

## CONTENTS (Cont'd)

|     |                                                                                                                                             | Page                 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| ı   | 3.12 SOLUTION CHEMISTRY                                                                                                                     | 66                   |
|     | 3.13 SOLIDS CHARACTERIZATIONS                                                                                                               | 68                   |
|     | 3.13.1 SEM Characterization of Fuel Particles 3.13.2 Filters Examination 3.13.3 Rinse Residue Examination 3.13.4 Metallographic Examination | 68<br>70<br>71<br>74 |
| 4.0 | SUMMARY AND CONCLUSIONS                                                                                                                     | 81                   |
| 5.0 | REFERENCES                                                                                                                                  | 85                   |
|     | APPENDIX A RADIONUCLIDE INVENTORY AND RADIOCHEMICAL DATA                                                                                    | A-1                  |
|     | APPENDIX B SOLUTION CHEMISTRY                                                                                                               | B-1                  |

## FIGURES

| Figure |                                                                                                                                                                                        | Page |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | Test Configurations                                                                                                                                                                    | 6    |
| 2      | Sectioning Diagram for H. B. Robinson Spent Fuel Rod<br>Segment C5C Superimposed on <sup>137</sup> Cs Gamma Scan                                                                       | 11   |
| 3      | Microstructures of Irradiated Turkey Point and<br>H. B. Robinson Spent Fuels in the Unrestructured<br>Zone Near the Cladding                                                           | 13   |
| 4      | Uranium Concentration in Unfiltered Solution                                                                                                                                           | 29   |
| 5      | Uranium Concentrations for Turkey Point and<br>H. B. Robinson Bare Fuels Tests in J-13 Water                                                                                           | 30   |
| 6      | 239+240 <sub>Pu</sub> Activity in Unfiltered Solution                                                                                                                                  | 35   |
| - 7    | <sup>241</sup> Am Activity in Unfiltered Solution                                                                                                                                      | 39   |
| 8      | <sup>244</sup> Cm Activity in Unfiltered Solution                                                                                                                                      | 40   |
| 9      | <sup>137</sup> Cs Activity in Unfiltered Solution                                                                                                                                      | 46   |
| 10     | <sup>99</sup> Tc Activity in Unfiltered Solution                                                                                                                                       | 51   |
| 11     | Elemental Yields for Actinides and Fission Products in Spent Fuel at Discharge and at 1000 Years                                                                                       | 59   |
| 12     | SEM Photographs of Fracture Surfaces of (A) Unirradiated UO <sub>2</sub> Fuel Pellet, (B) Turkey Point Fuel After Cycle 1 Testing, and (C) H. B. Robinson Fuel Before Testing          | 69   |
| 13     | SEM Photograph of Pre-test H. B. Robinson Spent Fuel Fracture Surface Showing Region of Mixed Cleavage and Grain Boundary Fracture                                                     | 70   |
| 14     | (A) SEM Photograph of 0.4-um Polycarbonate Filter Used to Filter 181-Day H. B. Robinson Cycle 1 Bare Fuel Test Solution Sample and (B) Silica Flocs on an H. B. Robinson Fuel Particle | 72   |
| 15     | SEM Photograph of Bottom Inner Surface of 18-A Filter Cone Used to Filter 181-Day Cycle 1 H. B. Robinson Bare Fuel Test Solution Sample                                                | 73   |

## FIGURES (Cont'd)

| <u>Figure</u> |                                                                                                                                                                                                                                | <u>Page</u> : |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 16            | Fine Fuel Particle from H. B. Robinson Bare Fuel<br>Test Showing Remnants of Silica Layer Deposited on<br>the Particle Surface During the Test                                                                                 | 75            |
| 17            | Particles from Cycle 1 H. B. Robinson Bare Fuel Rinse<br>Residue Showing an Apparent Silica Gel Flake on Edge<br>and a Particle Coated with Very Fine UO <sub>2</sub> Grains                                                   | 76            |
| 18            | Polished Sections at Bare Fuel Particle Surfaces, (A) Turkey Point Fuel Tested for 250 Days in Deionized Water, (B) Turkey Point Fuel Tested 181 Days in J-13 Water, and (C) H. B. Robinson Fuel Tested 223 Days in J-13 Water | 77            |
| 19            |                                                                                                                                                                                                                                | • •           |
| 13.           | Polished Sections Through Slit Defect on (A) Turkey Point I-9-19 Specimen and (B) H. B. Robinson C5C-C                                                                                                                         |               |
| *:            | Specimen                                                                                                                                                                                                                       | 79            |

1.

# TABLES

| <u>Table</u> | ter of the second of the first second                                           | Page 😗        |
|--------------|---------------------------------------------------------------------------------|---------------|
| 1            | Series 2 Test Specimens and Company to the series of                            | 8             |
| 2            | Characteristics of H. B. Robinson Unit 2 and Turkey Point Unit 3 Fuels          | 10 T          |
| 3            | Series 2 Specimen Radionuclide Inventories                                      | 15            |
| 4            | Radiochemistry Methods                                                          | 16            |
| 5            | PWR Spent Fuel Radionuclide Inventories at 1000 Years                           | 17            |
| 6            | EPA Release Limits                                                              | 18            |
| 7            | Uranium Release Data                                                            | 31            |
| 8            | 239+240pu Release Data American Santa Carlo Maria                               | 36            |
| 9            | 241Am Release Data                                                              | 41            |
| 10           | 244Cm Release Data                                                              | 42 <u>.</u> , |
| 11           | 237 <sub>Np</sub> Release Data                                                  | 44            |
| 12           | 137 <sub>Cs Release Data</sub>                                                  | 47            |
| 13           | 99Tc Release Data                                                               |               |
| 14           | <sup>129</sup> I Activities Measured in Samples                                 | 54            |
| 15           | 129 <sub>I</sub> Release Data                                                   | 55            |
| 16           | <sup>90</sup> Sr Cycle 2 Release Data                                           | 56            |
| 17           | Summary of Total Measured Fractional Release for Actinides and Fission Products | 60            |
| 18           | <sup>14</sup> C Activities Measured in Samples                                  | 62            |
| 19           | <sup>14</sup> C Release Data from H. B. Robinson Fuel Tests                     | 63            |
| 20           | <sup>60</sup> Co Release Data                                                   | 65            |

3

ت

### ACRONYMS

| ATM   | Approved Testing Material                   |
|-------|---------------------------------------------|
| BCL   | Battelle Columbus Laboratories              |
| CFR   | Code of Federal Regulations                 |
| EBS   | Engineered Barrier System                   |
| EPA   | Environmental Protection Agency             |
| HEDL  | Hanford Engineering Development Laboratory  |
| HLW   | High-Level Waste                            |
| IC    | Ion Chromatography                          |
| ICP   | Inductively Coupled Plasma                  |
| LLNL  | Lawrence Livermore National Laboratory      |
| MCC   | Materials Characterization Center           |
| NAA   | Neutron Activation Analysis                 |
| NNWSI | Nevada Nuclear Waste Storage Investigations |
| NRC   | Nuclear Regulatory Commission               |
| PCI   | Pellet-Cladding Interaction                 |
| PNL   | Pacific Northwest Laboratory                |
| PWR   | Pressurized Water Reactor                   |
| SCC   | Stress Corrosion Cracking                   |
| SEM   | Scanning Electron Microscope                |
| WHC   | Westinghouse Hanford Company                |

# RESULTS FROM CYCLES 1 AND 2 OF NNWSI SERIES 2 SPENT FUEL DISSOLUTION TESTS

### 1.0 INTRODUCTION

7

ĉ

The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is investigating the suitability of the volcanic tuff at Yucca Mountain, Nye County, Nevada, for potential use as a disposal site for high-level nuclear waste. Lawrence Livermore National Laboratory (LLNL) is the lead contractor for the Waste Package Task of the NNWSI Project. Westinghouse Hanford Company (WHC) is a subcontractor to LLNL assisting them in determining the requirements for successful disposal of spent fuel rods at the Yucca Mountain Site. In the Spent Fuel Leaching/Dissolution Task at WHC, laboratory tests are being conducted with spent fuel specimens to characterize radionuclide release under NNWSI-relevant conditions.

The repository horizon under study by the NNWSI Project is in a densely welded and devitrified volcanic tuff formation that lies approximately 200 to 400 meters above the water table in the unsaturated zone. Contact of the spent fuel by water will not occur until the repository has cooled to below the 95°C boiling temperature at the repository elevation. At that time, which is predicted to be hundreds of years after disposal, a limited quantity of water infiltrating the rock could potentially enter a failed waste container and contact the spent fuel where cladding failures have occurred. Radionuclide release from spent fuel with failed cladding to water that may enter a failed storage container is being studied in the WHC tests, which are the subject of this report. The potential for transport of dissolved radionuclides from a failed waste package to the external environment is being evaluated by other NNWSI tasks.

The Nuclear Regulatory Commission (NRC) has stated the engineered barrier system (EBS) performance requirements in 10 CFR  $60^{(1)}$  licensing procedures for geologic repositories. The two principal EBS performance requirements contained in 10 CFR 60 (Section 60.113) are:

- 1) "Containment of HLW (high-level waste) within the waste packages will be substantially complete for a period ... not less than 300 years nor more than 1000 years after permanent closure of the geologic repository" (the containment period).
- 2) "The release rate of any radionuclide from the engineered barrier system (waste packages and the underground facility) following the containment period shall not exceed one part in 100,000 per year of the inventory of that radionuclide calculated to be present at 1000 years following permanent closure" (post-containment period).

In addition, the Environmental Protection Agency (EPA) has specified<sup>(2)</sup> cumulative release limits for radionuclides from a geologic repository (see Table 6).

In the WHC Spent Fuel Leaching/Dissolution Task, specimens of pressurized water reactor (PWR) spent fuel in configurations representing various degrees of cladding failure, have been tested in fused quartz vessels under ambient hot cell conditions. In the Series 1 Tests,\* specimens prepared from Turkey Point Reactor Unit 3 fuel were tested in deionized water.  $^{(3)}$  Cycle 1 of the Series 1 tests was initiated in July 1983 and terminated at approximately 240 days. At termination, the test apparatus was stripped with 8  $\underline{\text{M}}$  HNO3 and the strip solutions analyzed along with the final test solution. The test specimens were then restarted for a second cycle, which was terminated at 128 days during July 1984. Final results from both cycles of the Series 1 tests are reported in Reference 4.

The Series 2 tests, which are the subject of this report, were similar to the Series 1 tests except that: 1) the Series 2 tests were run in NNWSI reference J-13 well water, and 2) the test matrix duplicated each specimen configuration using both Turkey Point and H. B. Robinson spent fuels.

Cycle 1 of the Series 2 tests was started in June 1984 and terminated at

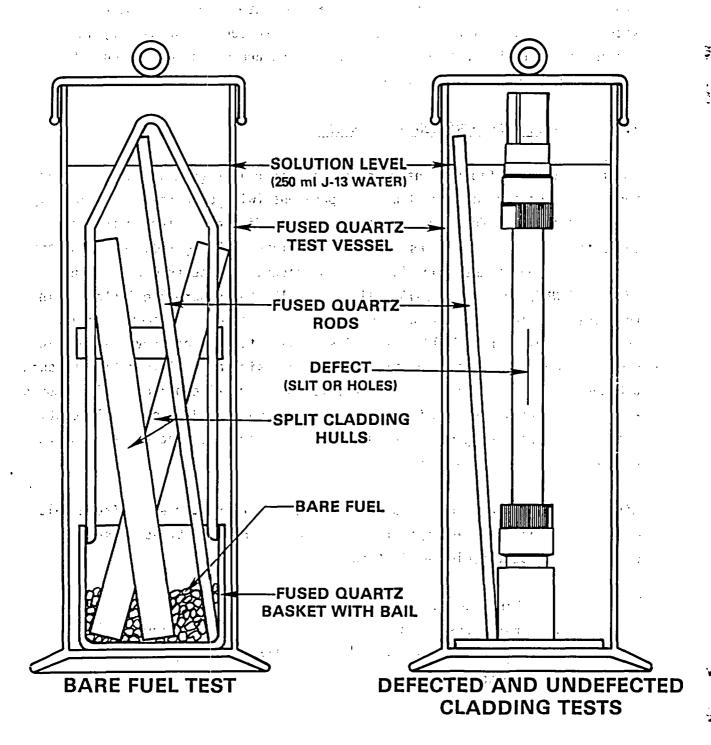
<sup>\*</sup>Originally entitled, "Spent Fuel Cladding Containment Credit Tests."

181 days for the Turkey Point fuel and at 223 days for the H. B. Robinson fuel. Cycle 2 of the Series 2 tests was terminated at 195 days for the Turkey Point fuel and at 202 days for the H. B. Robinson fuel. The two Series 2 bare fuel tests were continued for a third and fourth cycle. This report discusses the results from Cycles 1 and 2 of the Series 2 tests.

Series 3 tests<sup>(5)</sup> are being run in J-13 water in sealed 304 stainless steel vessels at 85°C using the same specimen configurations used in Series 1 and Series 2 tests.

The spent fuel used in these first three test series is young ( $\sim$ 10 years from discharge) and is representative of fuel to be initially placed in the repository. However, this fuel may possibly become degraded in the post-containment period repository environment. The possibility of degradation of the spent fuel by oxidation is suggested by thermodynamic considerations. Spent fuel oxidation under NNWSI repository relevant conditions is being studied in another task of the WHC program in support of NNWSI. (6) Use of spent fuel that has been degraded by oxidation is anticipated in a future spent fuel leaching/dissolution test series pending results from the ongoing WHC spent fuel oxidation studies.

### 2.0 TEST DESCRIPTION


The first cycle of the Series 2 tests was initiated and run in accordance with an approved test plan. (7) Supplemental procedures for test Cycle 1 termination and the subsequent Cycle 2 restart are given in Reference 8. The testing procedures are summarized here.

### 2.1 TEST CONFIGURATION AND SAMPLING

Two basic test configurations were used as shown in Figure 1: one for bare fuel specimens and one for clad fuel specimens (with or without artificially induced cladding defects) with water tight end fittings. The tests were conducted in fused quartz test vessels with loose fitting lids under ambient hot cell air and temperature ( $\sim 25^{\circ}$ C) conditions. The tests were run in 250 ml of NNWSI reference J-13 well water. The tests were "semi-static" in that the leachate solution was periodically sampled and the sample volume replenished with fresh J-13 water. The semi-static method provides solution radionuclide content as a function of time and simulates limited flow through a breached waste container. Fused quartz rods were also periodically removed and stripped with 8 M HNO3 to monitor progression of radionuclide plateout. The rod samples were gently rinsed with J-13 water before acid stripping to remove adhering test solution.

After several months, the tests were terminated and restarted in fresh J-13 water using the same test specimens. The following four types of samples were taken at test cycle termination:

- Final solution
- Final fused quartz rod
- Vessel and specimen rinse solution
  - Vessel acid strip solution



HEDL 8401-170.8

FIGURE 1. Test Configurations.

The final solution sample was taken by the same procedure as periodic solution samples but was considered, during subsequent radionuclide release evaluation, to represent the full 250 ml test solution volume. After final solution removal, the inside of the test vessels, test specimens, and specimen holders (bare fuel basket or clad specimen pedestal) were rinsed with fresh J-13 water. Bare fuel particles were rinsed by covering the particles with J-13 water in a small beaker, gently rocking, and decanting the rinse water; this procedure was repeated several times. All rinse water from a given test was collected as a combined rinse solution made up to 600-ml volume with additional J-13 water. After rinsing, the test vessels containing their respective bare fuel baskets or specimen pedestals were filled with 300 ml of 8  $\underline{M}$  HNO3 and left to sit overnight. The acid strip solution was sampled the next day, after pouring the acid back and forth between the test vessel and an appropriate clean container.

Two bare fuel particles were removed from each bare fuel test at cycle termination for mounting, sectioning and optical ceramographic examination. Rinse solutions from bare fuel tests were allowed to settle and samples of the residue (fine particulate sediment) were obtained for scanning electron microscopy (SEM) examination.

### 2.2 <u>TEST SPECIMENS</u>

The test matrix included eight test specimens, one each of four specimen configurations of two fuel types. The test specimens are identified in Table 1. All specimens were prepared from five-inch-long fuel rod sections. The four specimen configurations are:

- Undefected specimens with intact cladding and water-tight end fittings were run as control samples to indicate the amount of radionuclide release originating from residual cladding surface contamination and cladding crud deposits.
- Hole defect specimens contained two small ( $\sim 200-\mu m$  diameter) laser-drilled holes through the cladding near the center of the specimens. The ends of the hole defects specimens were also sealed with water-tight end fittings. The hole defects specimens

are intended to be representative of fuel rods containing small breaches, such as may result from pellet-cladding interaction (PCI) or stress corrosion cracking (SCC) cladding failures.

- Slit defect specimens contained a 0.006-inch wide by 1-inch long machined slit through the cladding near the specimen center and were sealed at the ends with water-tight end fittings. The slit defect specimens are intended to represent a more severe cladding failure, such as may occur if an SCC defect progressed to a relatively large crack, or cladding cracks that may result from postirradiation handling.
- Bare fuel specimens were prepared by machining axial slits through the cladding from end-to-end on opposite sides of the specimens, opening the split cladding, and removing the bare fuel particles from the cladding. The cladding hulls are included with the fuel particles in these tests as part of the test specimen. The bare fuel specimens are intended to represent the worst-case cladding failure, where the cladding has split open and the fuel has fallen out.

TABLE 1
SERIES 2 TEST SPECIMENS

| Specimen       | Specimen      | Fuel Type                                                   | Fuel Weight |
|----------------|---------------|-------------------------------------------------------------|-------------|
| Identification | Configuration |                                                             | (grams)     |
| C5C-A          | Undefected    | H. B. Robinson H. B. Robinson H. B. Robinson H. B. Robinson | 81.82       |
| C5C-C          | Holes Defect  |                                                             | 84.41       |
| C5C-E          | Slit Defect   |                                                             | 85.84       |
| C5C-H          | Bare Fuel     |                                                             | 83.10(a)    |
| I9-1           | Undefected    | Turkey Point                                                | 50.00(b)    |
| I9-12          | Holes Defect  | Turkey Point                                                | 50.93       |
| I9-19          | Slit Defect   | Turkey Point                                                | 48.98       |
| I9-24          | Bare Fuel     | Turkey Point                                                | 27.21(c)    |

<sup>(</sup>a)81.92 g for Cycle 2.

<sup>(</sup>b)Estimated weight. (c)26.66 g for Cycle 2.

An important part of the specimen preparation procedures was the removal from the cladding exterior surface of fine particulate contamination that results from sectioning and handling in contaminated hot cells. Such contamination would seriously bias the test results if not removed. The primary purpose of the undefected test specimens in the test matrix was to provide an indication of the released radioactivity originating from residual contamination on the cladding exterior surface. Before installing end fitting hardware on the undefected, laser-drilled, and slit defect specimens, the cladding surface was decontaminated to less than 50 cpm smearable alpha and less than detectable beta/gamma above the HEDL 327 Building background (~150 cpm in a lead shielded cave). The cladding exterior of the bare fuel specimens was also decontaminated to less than 50 cpm smearable alpha before axially splitting the cladding to remove the bare fuel.

The ends of the undefected, laser-drilled, and slit defect specimens were sealed using water-tight end fittings fabricated from modified Cajon Model SS-8-UT-A-10 Ultra Torr® vacuum adaptors. The end-fitting seal was made using ethylene propylene O-rings chosen for their radiation resistance and water compatibility. The top fittings of both the hole defects and slit defect specimens contained a small vent hole above the test solution level to allow the defected cladding specimens to fill with solution to the external test solution level.

### 2.3 FUEL CHARACTERISTICS AND HISTORY

The two fuel types used in the test matrix (see Table 1) were similar PWR fuels as indicated by the relevant fuel characteristics listed in Table 2. Both fuels were low gas release PWR fuels from the same vendor and approximately the same vintage.

The H. B. Robinson fuel was obtained through the Pacific Northwest Laboratory (PNL) Materials Characterization Center (MCC) as an "approved testing material" (ATM) for geological repository testing and was identified by

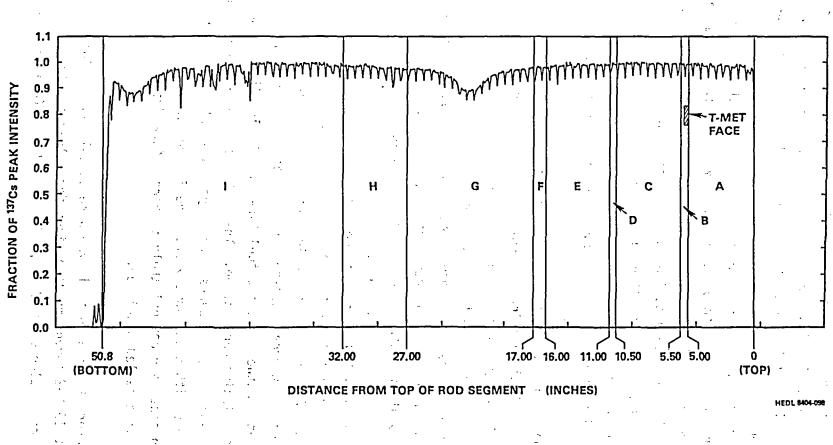
<sup>\*</sup>Ultra Torr is a registered trademark of Cajon Company, Macedonia, OH.

TABLE 2

CHARACTERISTICS OF H. B. ROBINSON UNIT 2 AND TURKEY POINT UNIT 3 FUELS

Ţ

| Characteristic          | H. B. Robinson            | Turkey Point               |
|-------------------------|---------------------------|----------------------------|
| Fuel Type               | PWR 15 x 15               | PWR 15 x 15                |
| Assembly Identification | B <b>0-</b> 5             | B-17                       |
| Discharge Date          | May 6, 1974               | November 25, 1975          |
| Nominal Burnup          | 30 MWd/kgU                | 27 MWd/kgU                 |
| Fission Gas Release     | 0.2%                      | 0.3%                       |
| Initial Enrichment      | 2.55 wt% <sup>235</sup> U | 2.559 wt% <sup>235</sup> U |
| Initial Pellet Density  | 92% TD (UO <sub>2</sub> ) | 92% TD (UO <sub>2</sub> )  |
| Initial Fuel Grain Size | ∿6 μm                     | √25 μm                     |
| Initial Rod Diameter    | 10.7 mm OD                | 10.7 mm OD                 |
| Cladding Material       | Zircaloy-4                | Zircaloy-4                 |
| Cladding Thickness      | 0.62 mm                   | 0.62 mm                    |
| PNL-MCC Identification  | ATM-101                   |                            |


PNL-MCC as ATM-101. (9) All four of the Series 2 test specimens, plus samples for burnup and metallographic characterization were sectioned from the ATM-101 rod segment identified as segment C5C, as shown in Figure 2. The C5C segment was the central one-third of the C5 rod from the B0-5 H. B. Robinson spent fuel assembly. The specimen axial locations from the C5C segment were chosen to avoid regions of nonuniform burnup at spacer grid locations.

The Turkey Point Reactor Unit 3 spent fuel specimens were sectioned from the I-9 rod of the B-17 assembly at Battelle Columbus Laboratories (BCL) in 1979. Sectioning diagrams and characterization data for the I-9 rod sections and other B-17 assembly fuel rods sectioned at this time are contained in Reference 10. Approximately one inch of fuel was removed from each end of the 5-inch-long rod sections at the time of sectioning. Therefore, the fuel weights as indicated in Table 1 are less than indicated for the H. B. Robinson sections, which contained a full 5 inches of fuel.

10

and the second





- A. Undefected Specimen
- B. Transverse-Metallographic
- C. Laser-Drilled Specimen
- D. Burnup
- E. Slit Specimen

- F. Longitudinal-Metallographic
- G. Spare (MCC Archive)
- H. Bare Fuel Specimen
- I. Spare (used in Series 3)

FIGURE 2. Sectioning Diagram for H. B. Robinson Spent Fuel Rod Segment C5C Superimposed on 137Cs Gamma Scan.

In addition, some fuel had been lost from Section I-9-24, accounting for its lighter weight relative to Sections 12 and 19. Fuel weights were calculated by subtracting the weight of 5 inches of cladding (16.40 grams) from the specimen weight. Section 1 was from the bottom of the fuel rod, and its fuel weight was estimated (since an accurate weight of the bottom end cap plus cladding was not available) to be approximately 50 grams. The use of an estimated fuel weight for the I-9-1 undefected specimen is not considered significant since  $^{137}$ Cs release data indicated no water entered the specimen during testing, and all release was assumed to be from cladding surface contamination. The bare fuel specimens were reweighed at the end of Cycle 1, after removing particles for radiometallurgical examination.

Grain size is probably the most significant difference between the two fuel types relative to potential leaching behavior. Initial as-fabricated grain size was estimated to be approximately 6 µm for the H. B. Robinson fuel versus 25 µm for the Turkey Point fuel, based on post-test radiometallographic examination of Series 2 specimens (see Figure 3). Both fuels had low gas release and exhibited little restructuring during irradiation. However, a small amount of central grain growth was observed in the finer-grained H. B. Robinson fuel. The additional specimen internal free volume in the Turkey Point holes and slit defect specimens relative to the H. B. Robinson specimens (which contained a full 5 inches of fuel) may also have been significant for these test configurations because of the resulting differences in specimen internal fuel-to-water ratios. Another possibly significant difference between the two fuel types is the length of time between specimen sectioning and testing. The H. B. Robinson specimens were sectioned from segment C5C a few weeks before Cycle 1 startup, and original C5 rod sectioning was within the same year. The I-9 rod Turkey Point specimens had been sectioned approximately 5 years before Cycle 1 startup and stored in air in a sealed metal can.

Radionuclide inventories for each fuel type were calculated by linear interpolation of ORIGEN-2 inventory data given for a 10-year old PWR fuel in Reference 9. A burnup value of 27.7 MWd/MTM reported in Reference 10 was



FIGURE 3. Microstructures of Irradiated Turkey Point and H. B. Robinson Spent Fuels in the Unrestructured Zone Near the Cladding. Cathodic vacuum etched to reveal grain structure. Neg 8507895-1cn

used for the Turkey Point fuel. A burnup value of 30.2 MWd/MTM was radio-chemically determined by WHC on the C5C-D section from the H. B. Robinson fuel. Inventory values for  $^{244}$ Cm,  $^{241}$ Am,  $^{239+240}$ Pu,  $^{237}$ Np,  $^{137}$ Cs, and  $^{99}$ Tc were also directly measured by radiochemical methods during burnup analysis on the C5C-D section.  $^{14}$ C was also directly measured on two H. B. Robinson sections. For consistency, the ORIGEN-2 calculated inventories were used for fractional release calculations on both fuel types. The ORIGEN-2 based inventory data for both fuels and radiochemically determined inventories for the H. B. Robinson fuel are given in Table 3.

### 2.4 SAMPLE ANALYSES

All solution chemical and radiochemical analyses performed by WHC followed approved procedures prepared for testing in support of geologic repositories. Principal nuclides analyzed are listed in Table 4 with detection limits. The ability to analyze less than one part in 100,000 of the test specimen inventory dissolved in the 250 ml of test solution was desired for all radiochemical methods used based on the NRC 10 CFR  $60^{(1)}$  requirement that "the release rate of any radionuclide ... shall not exceed one part in 100,000 per year of the inventory of that radionuclide calculated to be present at 1000 years." Relative 1000-year inventories in spent fuel for radionuclides with half-lives greater than one year and activity equal to or greater than <sup>129</sup>I are given in Table 5. Except for radium, thorium, and tin isotopes, an isotope of each radionuclide element listed in the EPA 40 CFR 191<sup>(2)</sup> cumulative release limits (see Table 6) is included in the Table 4 list of nuclides analyzed. The  $^{226}$ Ra,  $^{230}$ Th and  $^{232}$ Th isotope activities build up in spent fuel as actinide decay chain products and are not a significant component of spent fuel activity until after several thousand years, and were not practical to analyze for release in the current 126Sn will replace 79Se in Table 4 for specifically analyzed radionuclides in the Series 3 tests.

TABLE: 3 SERIES 2 SPECIMEN RADIONUCLIDE INVENTORIES(a)

| Inventories(uCi/groxide fuel) | H. B. Robinson ORIGEN-2 | H. B. Robinson<br>Measured(b)            | Turkey Point ORIGEN-2   |
|-------------------------------|-------------------------|------------------------------------------|-------------------------|
| Burnup (MWd/kgM)              | 30.2(b)                 | 30.2                                     | 27.7(c)                 |
| Uranium (µg/g oxide fuel)     | $8.40 \times 10^5$      | ele ele <del>n</del> ik sangang          | 8.48 x 10 <sup>5</sup>  |
| 244 <sub>Cm</sub>             | 1.38 x 10 <sup>3</sup>  | 1.43 x 10 <sup>3(d)</sup>                | 1.01 x 10 <sup>3</sup>  |
| 241 <sub>Am</sub>             | 1.56 x 10 <sup>3</sup>  | $1.63 \times 10^3$                       | 1.45 x 10 <sup>3</sup>  |
| 239+240 <sub>Pu</sub>         | $7.44 \times 10^2$      | 7.16 x $10^2$                            | $7.04 \times 10^{2}$    |
| 237 <sub>Np</sub>             | $2.42 \times 10^{-1}$   | 2.35 x 10 <sup>-1</sup>                  | 2.18 x 10 <sup>-1</sup> |
| 137 <sub>Cs</sub>             | $6.67 \times 10^4$      | 6.57 x 10 <sup>4</sup>                   | 6.11 x 10 <sup>4</sup>  |
| 129 <sub>I</sub>              | 2.65 x 10 <sup>-2</sup> | en e | $2.42 \times 10^{-2}$   |
| <sup>99</sup> Tc              |                         | 8.34 x 10 <sup>0</sup>                   | 9.74 x 10 <sup>0</sup>  |
| 90 <sub>Sr</sub>              | $4.37 \times 10^4$      | ·.                                       | $4.08 \times 10^4$      |
| <sup>79</sup> Se              | •                       |                                          | $3.02 \times 10^{-1}$   |
| 14 <sub>C</sub>               |                         | (e) 37 gg                                |                         |

The Control of the Co

<sup>(</sup>a)Calculated from ORIGEN-2 data in PNL-5109(9) assuming 10-year old fuel,

<sup>(</sup>e) C average of values measured on samples C5C-J; and C5B-C: Fuel =  $0.49 \mu Ci/g$ Cladding =  $0.53 \mu \text{Ci/g}$ .

TABLE 4
RADIOCHEMISTRY METHODS

| Radionuclide          | Method                                             | Detection (pCi/ml) | Limits<br>(ppb)      | 10 <sup>-5</sup> Inventory<br>(pCi/ml)* |
|-----------------------|----------------------------------------------------|--------------------|----------------------|-----------------------------------------|
| 244 <sub>Cm</sub>     | α-spectrometry                                     | 0.2                | 3 x 10 <sup>-6</sup> | 4580                                    |
| 241 <sub>Am</sub>     | α-spectrometry<br>following separation             | 0.2                | 6 x 10 <sup>-5</sup> | 4700                                    |
| 239+240 <sub>Pu</sub> | α-spectrometry                                     | 0.2                | 0.003                | 2350                                    |
| 237 <sub>Np</sub>     | α-spectrometry<br>following separation             | 0.2                | 0.3                  | 0.9                                     |
| 137 <sub>Cs</sub>     | γ-spectrometry                                     | 200                | 0.002                | 2.4 x 105                               |
| 129 <sub>I</sub>      | Neutron activation analysis                        | 10-5               | 0.0001               | 0.09                                    |
| <sup>99</sup> Tc      | β-proportional counting following separation       | 20                 | 1.2                  | 40                                      |
| 90 <sub>5r</sub>      | β-proportional counting following separation       | 20                 | 0.0001               | 1.4 x 10 <sup>5</sup>                   |
| 79 <sub>Se</sub>      | Liquid scintillation counting following separation | 20                 | 0.3                  | 1.2                                     |
| 60 <sub>Co</sub>      | γ-spectrometry                                     | 200                | 0.0002               | **                                      |
| 14 <sub>C</sub>       | Liquid scintillation counting following separation | 20                 | 0.004                | 2                                       |
| U                     | Fluorescence                                       |                    | 1                    | (3 ppm)                                 |

<sup>\*</sup>Assumes  $10^{-5}$  of H. B. Robinson test specimen inventory released to 250 ml. \*\* $^{60}$ Co inventory is variable.

· TABLE 5 PWR SPENT FUEL RADIONUCLIDE INVENTORIES AT 1000 YEARS(a)

|                 |              | % of Total            |              |
|-----------------|--------------|-----------------------|--------------|
| Radionuclide(b) | Ci/1000 MTHM | 1000-Year<br>Activity | Cumulative % |
| Am-241          | 894,500      | 51.33                 | 51.33        |
| Am-243          | 31,080       | 1.78(c)               | 53.11        |
| Pu-240          | 476,900      | 27.37                 | 80.48        |
| Pu-239          | 304,700      | 17.45                 | 97.96        |
| Pu-242          | 1,755        | 0.10                  | 98.07        |
| Pu-238          | 967          | 0.06                  | 98.12        |
| Tc-99           | 13,030       | 0.75                  | 98.87        |
| Ni-59           | 5,150        | 0.295                 |              |
| Ni-63           | 354          | 0.020                 |              |
| Zr-93           | 1,933        | 0.111                 |              |
| Nb-93m          | 1,836        | 0.105                 |              |
| Nb-94           | 1,240        | 0.071                 |              |
| C-14            | 1,372        | 0.079(d)              |              |
| U-234           | 1,984        | 0.114                 | . ·          |
| U-238           | 317          | 0.016                 |              |
| U-236           | 271          | 0.018                 |              |
| Np-237          | 1,000        | 0.057                 |              |
| Sn-126          | 772          | 0.044                 |              |
| Se-79           | 405          | 0.023                 |              |
| Cs-135          | 345          | 0.020                 |              |
| Sm-151          | 163          | 0.009                 |              |
| Pd-107          | 112          | 0.006                 |              |
| I-129           | 32           | 0.0018                |              |

<sup>(</sup>a)Based on ORIGEN-2 data reported in ORNL/TM-7431(11) for 33,000 MWd/MTM burnup PWR spent fuel, actinides plus fission products plus activation products.
(b)Radionuclides with 1000-year activity less than 129I or half-life less than 1 year omitted.
(c) Includes activity of 239Np daughter products.
(d) 14C activity may vary considerably depending on as-fabricated nitrogen impurities.

as-fabricated nitrogen impurities.

TABLE 6
. EPA RELEASE LIMITS

| Radionuclide                                                                                     | Cumulative<br>Release Limit<br>(Ci/1000 MTHM) |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 241 <sub>Am or</sub> 243 <sub>Am</sub>                                                           | 100                                           |
| 14 <sub>C</sub>                                                                                  | 100                                           |
| 137 <sub>Cs or</sub> 135 <sub>Cs</sub>                                                           | 1,000                                         |
| 129 <sub>I</sub>                                                                                 | 100                                           |
| 237 <sub>Np</sub>                                                                                | 100                                           |
| 238 <sub>pu</sub> , 239 <sub>pu</sub> , 240 <sub>pu</sub> , or 242 <sub>pu</sub>                 | 100                                           |
| 226 <sub>Ra</sub>                                                                                | 100                                           |
| <sup>90</sup> Sr                                                                                 | 1,000                                         |
| <sup>99</sup> Tc                                                                                 | 10,000                                        |
| 230 <sub>Th</sub> or <sup>232</sup> <sub>Th</sub>                                                | 10                                            |
| 126 <sub>Sn</sub>                                                                                | 1,000                                         |
| $233_{\text{U}}$ , $234_{\text{U}}$ , $235_{\text{U}}$ , $236_{\text{U}}$ , or $238_{\text{U}}$  | 100                                           |
| Any other alpha-emitting radionuclide with a half-life greater than 20 years                     | 100                                           |
| Any other radionuclide with a half-life greater than 20 years that does not emit alpha particles | 1,000                                         |

A brief summary of each radionuclide analysis procedure follows:

240+239ρu (and 244cm) — An accurately measured quantity (i.e., 100 to 500 με  $\pm$  1 με) of solution was evaporated onto a stainless steel "source disk," which was then counted for total alpha activity and analyzed by alpha energy spectrometry. The alpha spectrometry results were used to calculate the portions of the total alpha counts originating from each alpha energy peak. Three significant alpha spectrometry peaks generally resulted: 239+240pu, 238pu + 241Am and 244Cm. Results for all three alpha activities were reported.

 $^{241}$  Am  $^{238}$  Pu have similar alpha decay energies, a separation is required for  $^{241}$  Am analysis. A 500- $\mu \epsilon$  solution sample is reacted with 200  $\mu \epsilon$  of 5 M hydroxylamine hydrochloride and 100  $\mu \epsilon$  of 8 M HNO3 and passed through an anion exchange resin. The Pu is loaded onto the resin while the Am passes through the resin. The  $^{241}$  Am is then measured by alpha counting and alpha spectrometry after evaporating onto a stainless steel source disc that has been heated to dull red by flame from the bottom side to burn off organic and volatile residues.

The Am separation was not performed on periodic solution samples during Cycle 1 of the tests. A one-time determination of  $^{238}\text{Pu/}(^{239+240}\text{Pu})$  ratio was made on test solution from all but the undefected tests, and this ratio was used to calculate  $^{241}\text{Am}$  from  $^{238}\text{Pu}$  +  $^{241}\text{Am}$  and  $^{239+240}\text{Pu}$  data on the Cycle 1 periodic samples. Starting with the Cycle 1 termination samples, direct  $^{241}\text{Am}$  analysis following separation was performed on all samples.

Gamma Spectrometry -137Cs and 134Cs were measured in nearly all samples by gamma spectrometry.  $^{60}$ Co was also measured in many samples by gamma spectrometry, and some rod and strip samples from bare fuel tests also showed indications of other gamma-emitting isotopes. Quantitative gamma counting data were calculated from gamma energy peaks based on daily measurement of control standards of  $^{241}$ Am,  $^{137}$ Cs and  $^{60}$ Co mixtures run under the same geometry as the test samples.

 $^{237}$ Np -- Since  $^{237}$ Np activity in 10-year old spent fuel is much lower than other alpha-emitting isotopes and is interfered with by  $^{234}$ U alpha decay, a separation is required. Np is separated by cation exchange of  $^{1}$ Np followed by solvent extraction of  $^{1}$ Np into thenoyltrifluoracetone in xylene. The  $^{237}$ Np activity is then evaporated onto a stainless steel source disk that is heated to "a high heat" on a hot plate to burn off organic residues. The  $^{237}$ Np is counted using alpha counting and alpha spectrometry. The volume of sample used was 0.5 ml for Cycle 1  $^{237}$ Np analyses. Volumes for Cycle 2 were: 2.0 ml for 20-day, 0.5 ml for 62-day, 1.0 ml for 154-day, and 1.0 ml for all termination sample analyses.

 $^{99}$ Tc -- Since  $^{99}$ Tc decays solely by beta decay, spectrometry methods are not applicable and the  $^{99}$ Tc must be separated from other beta emitters to be counted. The Tc is oxidized to  $\text{TcO}_4^-$  with sodium dichromate and separated from most other radioactive species that adsorb onto a cation exchange resin. Tc is then extracted from the cation exchange effluent into hexone as tetraphenylarsonium pertechnate. A measured portion of the hexone is evaporated onto a stainless steel source disc under a heat lamp. The  $^{99}$ Tc activity is then counted using a gas flow beta proportional counter.

\*

 $\frac{90}{\rm Sr}$  -- Analysis for  $^{90}{\rm Sr}$  was begun during Cycle 2. Since  $^{90}{\rm Sr}$  is a beta emitter, separation is required. The  $^{90}{\rm Sr}$  is separated from other radioactive species by selective elution from a cation exchange resin using 2-methyllactic acid. Following separation, the growth of yttrium-90 is measured by beta counting. The  $^{90}{\rm Sr}$  is then calculated, based on the growth of the  $^{90}{\rm Y}$  daughter over a measured period of time. The technique of Roberts (1961) is used. (12)

 $\frac{79}{\text{Se}}$  -- Since  $^{79}\text{Se}$  is a beta emitter, separation is required before counting. The test sample is mixed with 0.5 M HNO $_3$  saturated with bromine and a Se carrier solution prepared by dissolving Se metal in HNO $_3$  and diluting to 0.5 M HNO $_3$ .  $^{79}\text{Se}$  is separated from other radioactive species by passing the prepared solution through a cation plus anion exchange resin column. The selenium in the column effluent is distilled from hydrobromic acid and precipitated as metal by reducing it with hydroxylamine hydrochloride. The metal is dissolved in nitric acid, and the  $^{79}\text{Se}$  is measured using liquid scintillation counting. ( $^{79}\text{Se}$  was below detectable limits in all Series 2 samples analyzed for  $^{79}\text{Se}$  and was later deleted from the list of radionuclides analyzed and replaced by  $^{126}\text{Sn.}$ )

14c -- Carbon-14 is separated from other radioactive species by distillation of carbon dioxide from an acidic oxidizing solution. The carrier gas (air) is passed through Ascarite II $^{\circ}$  to remove carbon dioxide. The distilled

<sup>\*</sup>Ascarite II is a registered trademark of Arthur H. Thomas Co., Philadelphia, PA.

 $^{14}\mathrm{C}$  dioxide is trapped in a liquid scintillation cocktail made basic with sodium hydroxide.

129I -- Because of its low concentration and long half-life (17,000,000 yrs),  $\overline{129}$  I activity in spent fuel leach solutions is much too low to detect by direct counting methods after separation. Therefore, a neutron activation analysis (NAA) procedure (performed by PNL) is used for <sup>129</sup>I. A measured volume of test solution and a "spike" solution containing 125I are absorbed into quartz wool in a gas phase separation column. The sample is evaporated from the quartz wool by flaming the outside of the column while flowing air through the column. The oxidized iodine vapor species are trapped by absorbtion onto activated charcoal. The column is then evacuated, the charcoal trap valved off from the vacuum, and then the charcoal trap is heated, reducing the iodine to  $I_2$ . The  $I_2$  vaporizes from the heated charcoal trap and is condensed in a liquid  $N_2$  cold trap. The column is sealed off above the liquid  $N_2$  cold trap creating a glass ampoule containing the separated  ${\rm I}_2$ . The ampoules are then activated by neutron irradiation in a nuclear reactor (Hanford N Reactor when available). The irradiated ampoules are then broken in CCl $_4$ , in which I $_2$  is soluble.  $^{126}$ I and  $^{130}$ I decay are then counted by gamma spectrometry over several  $^{130}$ I half-lives (12.4 hours), and the original preirradiation  $^{129}\mathrm{I}$  is calculated.

<u>Uranium</u> -- Uranium is determined using a Scintrex\* model UA-3 uranium analyzer. Diluted aqueous solutions containing a buffered complexing reagent are excited by a UV-emitting nitrogen pulsed laser, and the green uranium fluorescence emitted from the solution is measured. An increase in signal from the addition of a known uranium-containing standard solution to the diluted test solution is used to calculate uranium concentration. The method gives reproducible results for sample uranium concentrations down to 1 ppb.

<sup>\*</sup>Scintrex Ltd, Concord, Ontario, Canada

; .

· · 

. .

### 3.0 RESULTS AND DISCUSSION OF THE STATE OF T

;

A complete tabulation of radiochemical results reported in pCi activity units (µg for uranium) is contained in Appendix A. Tables of conversion factors and equations for calculating isotopic and elemental concentrations from pCi activity data and discussion of radiochemistry error estimates are also included in Appendix A. A complete tabulation of solution chemistry data (pH, cation and anion concentrations) is contained in Appendix B. Data for major radionuclides discussed below are presented in plots showing activities (concentration for U) in the unfiltered solution with time, and in tabular form showing the distribution of "measured release" components between the different sample types.

The first the second state of the second second

Commence of the second of the

indicens of Seal desertion by Tennin in Statement and its

Unfiltered solution concentrations for major radionuclides are plotted in Figures 4 through 10 for the four test configurations. Data points in these plots with arrows pointing downward are data reported as "less than" values. Circled data points have identical reported coordinate values but are vertically offset within the circle to show the individual data point symbols. Data lines are drawn to the actual data coordinates for the circled data points. When all data points within a circle are "less than" values, a downward arrow is drawn from the circle. If a single data point within a circle is a "less than" value, the downward arrow is drawn from that data point. Lines to data points within a circle are drawn into the circle, and lines not associated with data points within a circle through which the lines pass are blanked within the area of the circle (for an example, see Figure 10).

The activity (concentration for U) level that would be obtained if  $10^{-5}$  of the test specimen radionuclide inventory dissolved in the 250 ml of test solution is shown on each plot. Since the test specimen fuel masses varied significantly in the Turkey Point fuel tests, the activity corresponding to  $10^{-5}$  of the inventory dissolved in 250 ml of solution is shown for all three defected cladding configurations in the Turkey Point periodic solution sample plots. One  $10^{-5}$  inventory level is shown in the solution sample plots for the H. B. Robinson fuel tests since the fuel mass was nearly equal

 $(84 \pm 2 \text{ g})$  for all four specimens. The  $10^{-5}$  inventory level was chosen as a reference value to compute "fractional releases" and for comparison of release data since this value falls within the plotted range for all the radionuclides. This value cannot be directly compared to the NRC releaserate limit of 1 part in  $10^5$  per year of the 1000-yr inventory.

An accounting of the total measured release for uranium, actinide radionuclides and fission product radionuclides is given in Tables 7 through 16 based on radiochemical results tabulated in Appendix A. Data reported as "less than" values (below detection limit) are included in values given in Tables 7 through 16, and are indicated by a "less than" symbol where a significant portion of the value given is based on "less than" data. Totals that include "less than" values are not given as less than if the included "less than" values are less than 5% of the total value. A summary of Cycle 1 and 2 "total measured fractional release" values from Tables 7 through 16 is contained in Table 17. Activities of <sup>14</sup>C measured in test samples during Cycles 1 and 2 are given in Table 18. Less than data are not included in the release values calculated for <sup>14</sup>C and <sup>60</sup>Co activation products in Tables 19 and 20. Tables 7 through 20 are at the end of their respective radionuclide section.

The tabulated values listed for "Solution Samples" are the sum of the products of unfiltered solution activity/ml (concentration for U) times sample volume for all periodic solution samples taken during a test cycle, excluding the final solution sample taken at termination of the test cycle. The terminal "Final Solution" value is the activity/ml (concentration for U) of the unfiltered final solution sample taken at the end of a test cycle times 250 ml. The concentration of the "Final Solution" sample is given in parentheses below the "Final Solution" value in units indicated in the left

5

<sup>\*</sup>The Cycle 1 "Rod Samples" values also contain activity (mass for U) measured in the rod rinse solution from the 6-day rod sample. The 6-day Cycle 1 rod rinse sample was the only rod rinse solution analyzed and is reported in units per rod in Appendix A.

column. The "Rod Samples" value is the sum of the activity ( $\mu g$  mass for U) stripped from all rod samples taken during a test cycle.\* The terminal "Rinse" value is the activity/ml ( $\mu g$ /ml for U) measured in the collected terminal rinse solution times the 600-ml terminal rinse volume. The "Acid Strip" value is the activity/ml ( $\mu g$ /ml for U) measured in the 8 M HNO 3 vessel strip solution at cycle termination times the 300-ml acid strip volume. The "Total Release" value is the total measured release obtained by summing all the above release quantities for each sample type. Total measured fractional release (total release  $\div$  10<sup>-5</sup> inventory) is calculated for each radionuclide for both test cycles and for the sum total release for Cycles 1 and 2.

Specimen inventory values used for fractional release calculations were obtained by multiplying the Table 3 ORIGEN-2 based per gram fuel inventories times the fuel weights given in Table 1. The "% in Solution" value is the sum of the "Solution Samples" plus "Final Solution" values (x100%) divided by the "Total Release" value for each test cycle.

## 3.1 URANIUM

Solution uranium concentrations as shown in the Figure 4 semi-log plots reached relatively stable levels after a few days, with the most notable exception being an early peaking of uranium concentration in the Cycle 1 H. B. Robinson bare fuel test. Uranium concentrations generally correlated with the severity of the cladding defect, with concentration being greatest in the bare fuel tests, followed by the slit defect tests, followed by the hole defects tests. Greater uranium concentration in the undefected test versus hole defects in the Cycle 1 H. B. Robinson tests is most likely the result of greater residual cladding exterior surface contamination on the undefected specimen at the start of the tests. Much of the cladding exterior contamination present on the undefected specimen appears to have been removed during Cycle 1 by dissolution during the test and/or by postcycle rinsing. During Cycle 2, the uranium concentrations were approximately equal for the undefected and hole defects tests for both fuel types.

Greater uranium concentrations for the Cycle 1 Turkey Point "slit" and "holes" tests versus the respective H. B. Robinson tests may be related to the greater internal water-to-fuel volume ratio for the Turkey Point specimens, and also to the initial presence of a more oxidized fuel surface in the Turkey Point specimens, which experienced much more extensive exposure to air before testing.

A difference in the extent of initial fuel surface oxidation may be responsible for the observed differences in uranium concentration behavior between the H. B. Robinson and Turkey Point bare fuel tests, as indicated by the linear unfiltered uranium concentration plots in Figure 5. Uranium appears to have supersaturated during Cycle 1. Uranium concentration in the H. B. Robinson bare fuel test peaked at 4.5  $\mu$ g/ml on Day 6 and decreased to 1.2  $\mu$ g/ml at Cycle 1 termination as uranium apparently equilibrated with a phase having lower solubility than the phase initially present on the fuel surface. Uranium concentration in the Turkey Point bare fuel tests

began to decrease only after 120 days from 4.8  $\mu$ g/ml to 4.0  $\mu$ g/ml at Cycle 1 termination, suggesting that more of the higher solubility phase was initially present. The bare fuel was dried in air between Cycles 1 and 2.

۶ :

2

Uranium concentration in both bare fuel tests tended towards  $\sim 1~\mu g/ml$  in subsequent test cycles as the higher solubility surface phases were apparently depleted. During Cycle 2, unfiltered uranium concentration in the H. B. Robinson bare fuel test was 2.4  $\mu g/ml$  at day 20 and decreased to 2.0  $\mu g/ml$  at the end of Cycle 2. Uranium concentration in Cycle 2 of the Turkey Point bare fuel test was 1.4  $\mu g/ml$  in the initial 20-day sample; peaked at 2.6  $\mu g/ml$  in the 154-day sample, and dropped to 2.4  $\mu g/ml$  in the 195-day final solution sample. At the end of Cycle 3 (224 days), unfiltered uranium concentration was 1.4  $\mu g/ml$  and 1.2  $\mu g/ml$ , respectively, for the H. B. Robinson and Turkey Point bare fuel tests. Cycle 3 was terminated and Cycle 4 started on the same day; this did not allow the fuel to dry. The initial Cycle 4 sample (7 day) showed unfiltered uranium concentrations of 0.65  $\mu g/ml$  and 0.37  $\mu g/ml$ , respectively, for the H. B. Robinson and Turkey Point bare fuel tests. The 63-day Cycle 4 unfiltered uranium concentrations were 1.2  $\mu g/ml$  and 0.71  $\mu g/ml$ , respectively, for these two tests.

The uranium solubility behavior was significantly different in J-13 water than in deionized water in the Series 1 tests. Essentially all uranium measured in unfiltered J-13 water Series 2 solution samples passed through 0.4-µm and 18-A filters. In the Series 1 deionized water tests, real uranium solubility appeared to be  $\sim 0.001~\mu g/ml$  versus 1 to 2  $\mu g/ml$  in later Series 2 filtered samples. In Cycle 1 of the Series 1 bare fuel test, uranium peaked in unfiltered solution at 4.3  $\mu g/ml$  on Day 1, decreasing to the 0.3 to 0.6  $\mu g/ml$  range through Day 202, and then dropped to 0.003  $\mu g/ml$  in the 250-day final solution sample. (Series 1 Cycle 1 samples were not filtered until Day 202.) Uranium concentrations ranged from 0.001 to 0.004  $\mu g/ml$  in later Cycle 1 and all Cycle 2 0.4- $\mu m$  and 18-A filtered samples, suggesting that true uranium solubility in the deionized water tests was on the order of 0.001  $\mu g/ml$  or less and that excess uranium above this level was likely in a colloidal state that precipitated with time. Higher uranium solubility

Commence of the Court Superior and Court Court

in the Series 2 tests is attributed to the  $\sim 120~\mu g/ml$  of  $HCO_3^-$  ion in J-13 water that complexes with the uranium (likely with  $UO_2^{+2}$ ), stabilizing uranium in solution.

The uranium release accounting data in Table 7 indicate greater measured fractional release from Turkey Point fuel relative to H. B. Robinson fuel in all three defected cladding configurations. Again, more extensive pre-test exposure of the Turkey Point fuel to air may be involved. The larger specimen internal solution volume with good communication to external solution (through a relatively large defect) is probably also a contributing factor to the approximate order of magnitude greater "total measured fractional release" observed in the Turkey Point slit defect test versus the H. B. Robinson slit defect test.

Total release values tabulated for actinides in bare fuel tests in Tables 7-11 are likely to be conservative since fine undissolved fuel particles may have been components of the acid strip samples. Summing the uranium contained in solution samples plus the peak measured uranium concentration multiplied by 250 ml gives the minimum amount of uranium known to have been in solution. Dividing by  $10^{-5}$  of specimen inventory yields "soluble" fractional release values of 2.0 and 6.6, respectively, for Cycle 1 of the H. B. Robinson and Turkey Point bare fuel tests and 1.1 and 3.5, respectively, for Cycle 2 of these tests. The "% in solution" given for the Cycle 1 H. B. Robinson bare fuel test would increase from 14% to 35% based on the amount known to have been in solution rather than "solution samples" plus "final solution." Subtracting the soluble fractional release values from the total fractional release values listed in Table 7 (÷ 10<sup>-5</sup> Inv.) leaves ~3.7 and ~5.0, respectively, in the H. B. Robinson and Turkey Point Cycle 1 bare fuel tests, which may never have been in solution. Much of this component of the total release reported in Table 7 most likely results from fine undissolved fuel particles.

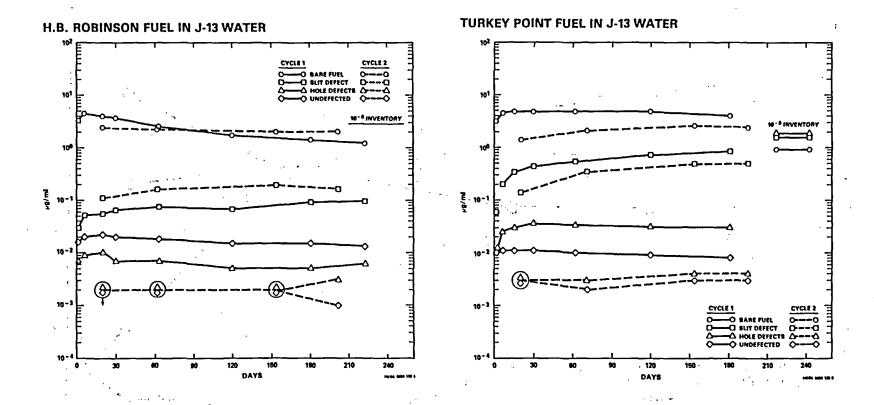
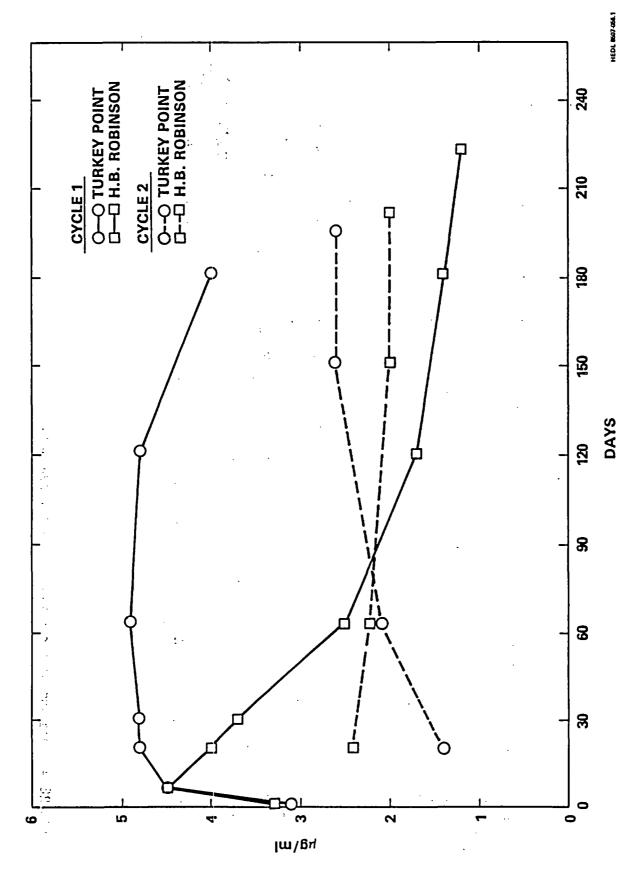




FIGURE 4. Uranium Concentration in Unfiltered Solution.



Uranium Concentrations for Turkey Point and H. B. Robinson Bare Fuels Tests in J-13 Water. FIGURE 5.

3

2

:

TABLE 7

| ί,    | ាក់ពីសុទី៩១ និងវិញ | RANIUM RELEASE DATA (µg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |       | May A. |
|-------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|--------|
|       |                    | the second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |       | 7. · · |
| · · · | CONTRACTOR         | Committee State of the State of | ! | . '!! |        |

| · · ·                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              | •                                                |                | •        |           | ,            |             |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|----------------|----------|-----------|--------------|-------------|
| 11.00                                     | Bare HBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fuel TP        | Slit D                                           | efect          | Holes:   | Defect_TP | Undef<br>HBR | ected<br>TP |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                |          |           |              | <del></del> |
| Cycle l                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                |          | •         |              |             |
| 2. 1. 1.                                  | ; (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                  | · i :          | · · ·    | •1        | 1 1811       | r *         |
| Solution Samples                          | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 351            | 6.59                                             | 35.8           | 0.63     | 2.27      | 1.67         | , 0.76      |
| Final Solution                            | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000           | 23.80                                            | 212.5          | 1.50     | 7.25      | 3.25         | 2.00        |
| [U (ppm)]                                 | (1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4.0)          | (0.09)                                           | (0.85)         | (0.006)  | (0.029)   | (0.013)      | (0.008)     |
| Rod Samples                               | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15             | 0.31                                             | 0.54           | <0.18    | <0.19     | <0.22        | <0.10       |
| Rinse                                     | * 1660 NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 366            | 1.80                                             | 10.2           | "0.60 €. | <0.60     | <0.60        | <0.6        |
| Acid Strip                                | ≠ <b>2700</b> √g≥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960            | 1.50                                             | :15 <b>.</b> 9 | 0.60     | 2.70      | 0.60         | <0.3        |
| Total Release                             | - 3949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .2692          | 34.00                                            | 274.9          | 3.51     | <13.01    | <6.34        | <3.76       |
| + 10 <sup>-5</sup> Inv.                   | 5.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                                  | 0.662          | 0.005    | <0.030    | <0.009       | <0.009      |
| % in Solution                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.19          |                                                  | 90.32          | 60.86    | 73.17     | 77.60        |             |
| · · · · · · · · · · · · · · · · · · ·     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              |                                                  | ,              | • • • •  | • •       |              | •           |
| Cycle 2                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                |          |           |              |             |
|                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | no ni b                                          | -m: 22-4       |          |           |              |             |
| Solution Samples                          | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 135            | 10.15                                            | 22 <b>.1</b>   | <0.13    | 0.22      | ; <0.13      | 0.18        |
| Final Solution                            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 600            | 40                                               | 125.0          | 0.75     | 1.00      | 0.25         | 0.75        |
| [U (ppm)]                                 | (2.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2.4)          | (0.16)                                           | (0.50)         | (0.003)  | (0.004)   | (0.001)      | (0.003)     |
| Rod Samples                               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2.4)          | <0.08                                            | <0.054         | <0.06    | <0.05     | <0.06        | <0.05       |
| Rinse                                     | 102 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 1.20                                             | 3.6            | 0.60     | <0.60     | 0.60         | <0.6        |
| Acid Strip                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                |          |           |              | <0.3        |
| Total Release                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                | `        |           | ·            | <1.88       |
| + 10 <sup>-5</sup> Inv.                   | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.13           | 0.073                                            | 0.363          | 0.008    | <0.005    | <0.0015      | <0.004      |
| % in Solution                             | 60.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78.78          | 95.29                                            | 97.42          | 14.57    | 56.22     | 36.54        |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  | •              | •        |           |              |             |
| Summary Cycle 1 &                         | . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lid on the     | : <b>i</b> . : : : : : : : : : : : : : : : : : : |                | 1 Tay 13 |           | 1.1451       | •           |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1967           | on Gibb                                          | 1000115        |          | år. Er    | 1 (          | ·           |
| Total Release                             | 5011 ±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3625           | 86.63n                                           | 425.9          | 9.55     | <15.18    | <7.38        | <5.64       |
| + 10 <sup>-5</sup> Inv.                   | 7.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.80          | 0.120                                            | 1.025          | 0.013    | <0.035    | <0.010       | <0.015      |
| •                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                | ,        |           |              |             |
| ,                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                |          |           |              |             |
| er en | the series of th | 2.2 g = 5 = 1. |                                                  | ; ;            |          |           | 1 14         |             |
|                                           | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 N 1 1    |                                                  |                |          |           | in Direction |             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | india.<br>National Autoria                       |                |          |           |              | ,           |
| ,                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              | ,                                                | . ,            |          |           |              | ٠           |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                |          |           |              |             |

Ş

.

### 3.2 PLUTONIUM

Plutonium isotopes account for  $\sim45\%$  of the gross ORIGEN-2 calculated (11) activity of spent fuel at 1000 years and  $\sim90\%$  of the gross activity at 10,000 years. The ORIGEN-2 calculated  $^{239+240}$ Pu inventories are 744  $_{\mu}$ Ci/g and 704  $_{\mu}$ Ci/g, respectively, for the H. B. Robinson and Turkey Point spent fuels tested.

As indicated in the Figure 6 semi-log plots, unfiltered Pu activity was much greater in the bare fuel tests than in the slit defect and hole defects tests for both fuel types. Plutonium activities were also generally greater in the slit defect tests than in the hole defects tests. Plutonium activity in the hole defects test was greater than the undefected test for the Turkey Point fuel, but not significantly different in the respective H. B. Robinson fuel tests. With the exception of the H. B. Robinson 62-day Cycle 2 bare fuel test sample and the Turkey Point slit defect test, Pu activities in solution samples were generally lower for Cycle 2 compared with Cycle 1.

The high <sup>239+240</sup>Pu activities measured in the initial unfiltered sample aliquots in the Cycle I bare fuel tests were most likely caused by fine undissolved fuel particles. After 30 days in the H. B. Robinson Cycle I bare fuel test, unfiltered <sup>239+240</sup>Pu activity settled to approximately 200 pCi/ml, later falling off to 112 pCi/ml at the end of the test cycle. After the initial I-day sample from the Turkey Point bare fuel test, unfiltered <sup>239+240</sup>Pu stabilized at approximately 500 pCi/ml for the duration of Cycle 1.\*

The hypothesis that the initially high unfiltered activities were caused by undissolved fuel particles is supported by data from the 6-day H. B. Robinson sample (the only initial sample with high unfiltered Pu activity to be

3

Ļ

<sup>\*</sup>The unfiltered alpha activity data points for  $^{239+240}$ Pu,  $^{241}$ Am and  $^{244}$ Cm from the Cycle 1 15-day sample from the Turkey Point bare fuel test were not plotted in Figures 6, 7, and 8 since these data appear quite high, indicating that this sample aliquot contained an undissolved fuel particle(s).

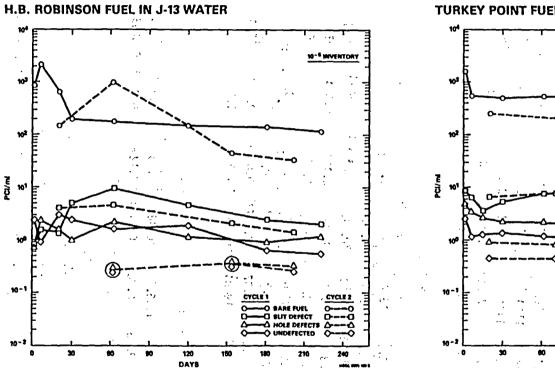
filtered), where \$\frac{239+240}{Pu}\$ activity peaked at 2130 pCi/ml in the unfiltered aliquot and was 178 pCi/ml in the 0.4-\text{\pm}\$ filtered aliquot. The 178 pCi/ml value is in the range in which the unfiltered \$\frac{239+240}{239+240}\$ Pu activity settled, beginning with the 30-day sample in this test. The undissolved particle hypothesis is also supported by the \$\frac{241}{Am^\*}\$ and \$\frac{244}{Cm}\$ data, which were measured from the same alpha counting "source disks" as the \$\frac{239+240}{239+240}\$ Pu data, and exhibited similar behavior to the \$\frac{239+240}{239+240}\$ Pu data. High unfiltered uranium values were not detected in the initial Cycle 1 bare fuel test samples since the laser fluorescence method used for uranium does not measure uranium in undissolved particles.

The approximate 500 pCi/ml <sup>239+240</sup>Pu activity measured in unfiltered and 0.4-µm filtered samples from the Cycle l Turkey Point bare fuel test corresponds to about 5 ppb Pu, which is much less than the 430 ppb EQ3/6 calculated Pu solubility in J-13 water reported by Kerrisk. (13) The Pu activities measured in the bare fuel tests may actually be just the Pu released to solution when the UO<sub>2</sub> fuel matrix dissolves in a system controlled by uranium solubility rather than a Pu solubility limit. However, the fraction of uranium inventory in solution in these tests was significantly greater than the fraction of <sup>239+240</sup>Pu inventory in solution. A slow decrease in Pu activity in later samples (during Cycles 1 and 2 in the H. B. Robinson bare fuel test) also suggests that Pu may have been equilibrating with a lower chemical activity "plate out" phase in these tests. Measured <sup>239+240</sup>Pu activities were generally lower in the H. B. Robinson bare fuel test than in the Turkey Point bare fuel test. Differences in apparent Pu solubility with the two bare fuel types are not currently explained.

Except for the previously discussed initial Cycle 1 bare fuel test samples, most  $^{239+240}$ Pu activity measured in unfiltered samples was also measured in 0.4-µm filtered samples. A lesser fraction of the unfiltered activity passed through the 18-Å filters. Solution activities measured in filtered solution samples from the bare fuel tests were summed and divided by the

The state of the state of the state of the state of

÷


<sup>\*</sup>Calculated from  $^{238}$ Pu +  $^{241}$ Am and  $^{239}$ + $^{240}$ Pu activities measured on the same alpha source disks, see Section 3.3.

unfiltered sum for the same samples to calculate average activities passing each filter size. The 6-day filtered sample from the H. B. Robinson bare fuel test was not included since it was not representative of the other samples that exhibited relatively consistent filtering behavior. The results are:

| Fuel Test      | Solution Sample                | Cycle 1 | Cycle 2 |
|----------------|--------------------------------|---------|---------|
| H. B. Robinson | Σ 0.4 μm<br>Σ unfiltered       | 80%     | 80%     |
|                | <pre>5 18 A 5 unfiltered</pre> | 30%     | 34%     |
| Turkey Point   | Σ 0.4 μm<br>Σ unfiltered       | 92%     | 95%     |
|                | Σ 18 A<br>Σ unfiltered         | 42%     | 76%     |

Comparison of filtered Pu activities with unfiltered activities was somewhat erratic in the slit, holes, and undefected tests, since activities in these tests generally ranged from below the  $\sim 0.2$  pCi/ml detection limit to 10 pCi/ml. Greater activities were reported for some filtered samples in these tests than for the unfiltered fraction of the same sample, which is presumably a result of counting statistics. Filtered sample data for Cycle 2 slit defect tests for both fuel types were relatively consistent and indicated that most Pu activity passed both the 0.4- $\mu$ m and 18-A filters at the few pCi/ml activity levels in these samples.

The Pu release accounting data tabulated in Table 8 indicates similar total measured fractional release for both bare fuel tests (8.4 x  $10^{-5}$  for H. B. Robinson and 8.88 x  $10^{-5}$  for Turkey Point). Total measured fractional release values for the slit and hole defects test were much less, ranging from 0.016 x  $10^{-5}$  to 0.033 x  $10^{-5}$  for these 4 tests. The percentage of measured Pu release in solution was generally lower than that for U. During Cycle 1, total measured Pu release from the H. B. Robinson hole defects specimen was actually less than from the undefected control. However, Pu release from this specimen did increase substantially during Cycle 2.



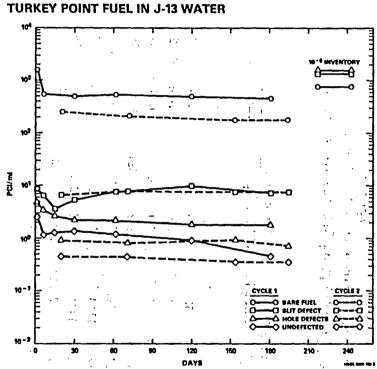



FIGURE 6. 239+240pu Activity in Unfiltered Solution.

TABLE 8
239+240pu RELEASE DATA (nCi)

|                         | Bare<br>HBR      | Fuel<br>TP | Slit (  | Defect<br>TP | Holes De    | fect.       | Undef<br>HBR | ected   |
|-------------------------|------------------|------------|---------|--------------|-------------|-------------|--------------|---------|
| Cycle 1                 |                  |            |         |              |             | <del></del> |              |         |
| Solution Samples        | 41               | 62.7       | 0.454   | 0.556        | 0.140 0     | .171 ·      | 0.154        | 0.092   |
| Final Solution          | 28               | 114        | 0.495   | 1.800        | 0.405 0.    | 450         | 0.135        | 0.113   |
| [Pu (ppb)]              | (1.2)            | (4.9)      | (0.021) | (0.077)      | (0.017) (0. | .019)       | (0.006)      | (0.005) |
| Rod Samples             | 59               | 21.6       | 0.332   | 0.621        | <0.05 0.    | .511        | <0.02        | 0.029   |
| Rinse                   | 254              | 62.7       | 1.70    | 11.6         | 1.          | .35         | 0.189        | <0.27   |
| Acid Strip              | 4054             | 1140       | 2.57    | -23.1        | 0.527 5.    | .27 🖺       | 0.662        | 1.31    |
| Total Release           | 4436             | 1401       | 5.551   | 37.68        | 1.122 7.    | .75         | 1.16         | 1.54    |
| ÷ 10 <sup>-5</sup> Inv. | 7.18             | 7.31       | 0.0087  | 0.109        | 0.0018 0.   | .0216       | 0.0019       | <0.0052 |
| % in Solution           | 1.56             | 12.61      | 17.10   | 6.25         | 48.57 8.    | .01         | 24.91        | ∿13     |
| Cycle 2                 |                  |            |         |              |             |             |              |         |
| Solution Samples        | 23.8             | 13.4       | 0.223   | 0.480        | 0.014 0.    | .058        | 0.014        | 0.027   |
| Final Solution          | 8.3              | 45.0       | 0.350   | 1.910        | 0.079 0.    | 180         | 0.068        | 0.090   |
| [Pu (ppb)]              | (0.36)           | (1.9)      | (0.015) | (0.082)      | (0.003) (0. | .008)       | (0.003)      | (0.004) |
| Rod Samples             | 173              | 5.4        | 0.059   | 0.151        | 0.014 0.    | .032        | 0.009        | 0.021   |
| Rinse                   | 235              | 26.5       | 1.46    | 0.351        | 0.786 0.    | .108        | 0.351        | <0.054  |
| Acid Strip              | 339              | 204.0      | 2.84    | 2.16         | 6.890 1.    | .010        |              | 0.338   |
| Total Release           | 779 <sup>-</sup> | 294.3      | 4.932   | 5.052        | 7.783 1.    | .388        | 0.442        | <0.53   |
| + 10 <sup>-5</sup> Inv. | 1.28             | 1.57       | 0.0077  | 0.0147       | 0.0124 0.   | .0039       | 0.0007       | <0.0015 |
| % in Solution           | 4.12             | 19.84      | 11.62   | 47.31        | 1.20 17.    | . 15        | 18.55        | ~22     |
| Sum Cycle 1 & 2         |                  |            |         |              | •           |             |              |         |
| Total Release           | 5215             | 1695.3     | 10.483  | 42.73        | 8.905 9.    | .140        | 1.60         | <2.34   |
| ÷ 10 <sup>-5</sup> Inv. | 8.46             | 8.88       | 0.0164  | 0.124        |             | .0255       | 0.0026       | <0.0066 |

36

## 3.3 AMERICIUM AND CURIUM

Americium-241 activity in spent fuel increases during the first ~100 years after reactor discharge as a result of <sup>241</sup>Pu decay. <sup>241</sup>Am accounts for approximately half of the gross activity of spent fuel at 1000 years. At 10,000 years, <sup>241</sup>Am with a 432-year half-life has decayed out and the only significant Am isotope remaining is <sup>243</sup>Am, which accounts for approximately 3% (including <sup>239</sup>Np daughter) of the total 10,000-year Ci activity. Curium-244 is a principal component of the actinide activity in the 10-year old fuel tested, but, with its 18-year half-life, decays away before the end of the 300-year minimum containment period specified in 10 CFR 60. Curium is discussed with Am because of its similar behavior in the current tests.

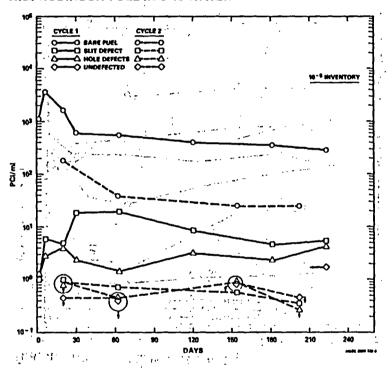
The Cycle 1  $^{241}$ Am\* and  $^{244}$ Cm unfiltered sample activity plots (Figures 7 and 8) are quite similar to that of the  $^{239+240}$ Pu data (Figure 6), all three of which were measured from the same alpha source disks. The peak observed in the 62-day Cycle 2 H. B. Robinson bare fuel test  $^{239+240}$ Pu and  $^{244}$ Cm data was not observed in the  $^{241}$ Am data, which was measured on different sample aliquots in Cycle 2.

The bare fuel test  $^{241}$ Am and  $^{244}$ Cm data for 0.4- $\mu$ m filtered and 18-A filtered solution sample fractions were summed for each test cycle and divided by the sum of the unfiltered activities for the same samples. (Same calculation performed on the  $^{239+240}$ Pu data omitting the 6-day H. B. Robinson sample for the same reason.) The results are:

J. C. 18 18

Other section is a section of the sect

<sup>\*</sup>Cycle l 241 Am data up to (but not including) the final solution samples were calculated from 241 Am + 236 Pu and 239+240 Pu data using 238 Pu/239+240 Pu ratios radiochemically measured for all except the undefected specimen tests. Therefore, only the final solution sample data points are plotted for the Cycle 1 undefected tests (shown with an arrow extending to the left).


| Bare Fuel Test | Solution Sample                      | Cycle                | $\frac{1}{44}$ $\frac{C_3}{241}$   | Cycle 2<br>241 <sub>Am</sub> 244 <sub>Cm</sub> |  |  |
|----------------|--------------------------------------|----------------------|------------------------------------|------------------------------------------------|--|--|
| bare ruel lest | Solution Sample                      | 241 <sub>Am</sub> 24 | 44 <sub>Cm</sub> 241 <sub>Ar</sub> | n 244Cm                                        |  |  |
| H. B. Robinson | Σ 0.4 μm<br>Σ unfiltered             | 75% 74               | 4% 58%                             | 66%                                            |  |  |
| N, 1           | <pre>     18 A     unfiltered </pre> | 3.2%                 | 0.7% 6.0%                          | 4.0%                                           |  |  |
| Turkey Point   | •                                    |                      |                                    |                                                |  |  |
|                | Σ 0.4 μm<br>Σ unfiltered             | 96% 9                | 3% 76%                             | 79%                                            |  |  |
|                | <pre>5 18 A 5 unfiltered</pre>       | 2.9% 1               | 2% 6.2%                            | 4.1%                                           |  |  |

As with Pu, most of the Am and Cm passed through the 0.4-µm filters. The percentage of Am and Cm passing through the 18-A filters was substantially less than with Pu. The Am and Cm may have been associated as large complexes or colloids prohibiting it from passing the finer filter. However, Am concentration even in the bare fuel tests was on the order of 0.1 ppb and Cm concentration was on the order of a few ppt (parts per trillion). At such low concentrations, Am and Cm may have been removed by sorption of very small amounts of Am and Cm on the 18-A membrane filters.

As shown in Tables 9 and 10, total measured fractional releases and percentages in solution for  $^{241}\text{Am}$  and  $^{244}\text{Cm}$  were similar for most of the test cycles. The two highest unfiltered  $^{241}\text{Am}$  activities were the 15-day Cycle 1 Turkey Point bare fuel sample (7340 pCi/ml calculated, but not plotted in Figure 7 because of the questionably high value) and the 6-day H. B. Robinson bare fuel sample (3710 pCi/ml calculated). The respective Am concentrations for these activities would be ~2.6 ppb and ~1.4 ppb, which are close to the calculated 2.4 ppb (1.0 x  $10^{-8}$  M) Am solubility in J-13 water reported by Kerrisk.  $^{(13)}$  However, these samples are thought to have contained undissolved fuel particles. Calculated 0.4- $_{\mu}$ m filtered  $^{241}$ Am activity for most of Cycle 1 of the Turkey Point bare fuel tests was about 1000 pCi/ml, corresponding to an Am concentration of 0.35 ppb concentration, which is about the highest filtered sample Am concentration determined in the Series 2 tests. As with Pu, the greatest fraction of specimen  $^{241}$ Am inventory measured in solution was in the Turkey Point bare fuel test.

3





#### TURKEY POINT FUEL IN J-13 WATER

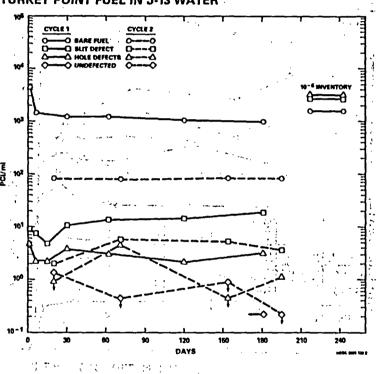
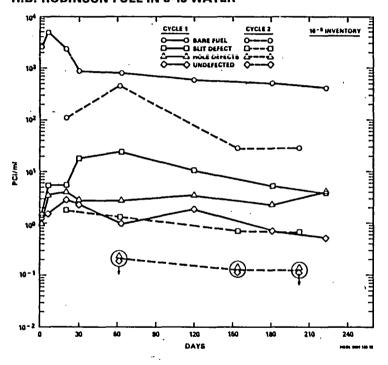




FIGURE 7. 241Am Activity in Unfiltered Solution.

#### H.B. ROBINSON FUEL IN J-13 WATER



#### **TURKEY POINT FUEL IN J-13 WATER**

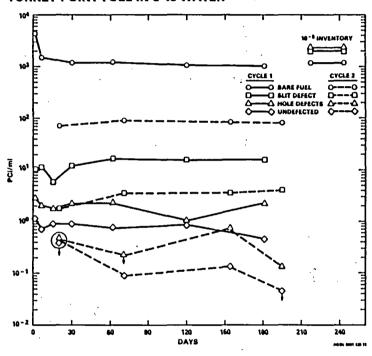



FIGURE 8. 244Cm Activity in Unfiltered Solution.

4 15 11-6

TABLE 9 241Am RELEASE DATA (nCi)

| . 3*                    | Bare<br>HBR | Fue1<br>TP | Slit De | fect<br>TP | Holes I    | Defect<br>- TP | Undefe<br>HBR | cted<br>TP   |
|-------------------------|-------------|------------|---------|------------|------------|----------------|---------------|--------------|
| Cycle l                 |             |            |         |            |            |                |               |              |
| Solution Samples        | 91.9        | 138        | 1.07    | 0.87       | 0.22       | 0.22           |               | ==           |
| Final Solution          | 71.4        | 243        | 1.35    | 4.62       | 1.07       | 0.79           | 0.428         | 0.563        |
| [Am (ppt)]              | (105)       | (348)      | (2.0)   | (6.62)     | (1.57)     | (1.13)         | (0.61)        | (0.81)       |
| Rod Samples             | 132         | 42.1       | 0.73    | 1.18       | 0.05       | 0.98           |               | - <u>-</u> - |
| Rinse                   | 532         | 111        | 2.70    | 32.7       | <0.54      | 4.05           | 1.05          | 0.541        |
| Acid Strip              | 9595        | 2180       | 5.94    | 49.7       | 0.81       | 11.20          | 2.16          | 1.35         |
| Total Release           | 10422       | 2714       | 11.79   | 89.07      | <2.69      | 17.24          | 3.64          | 2.45         |
| ÷ 10 <sup>-5</sup> Inv. | 8.04        | 6.88       | 0.0088  | 0.126      | <0.002     | 0.023          | 0.0029        | 0.0034       |
| % in Solution           | 1.57        | 14.04      | 20.53   | 6.16       | <b>~48</b> | 5.86           |               |              |
| Cycle 2                 |             |            |         |            |            |                |               |              |
| Solution Samples        | 3.6         | 5.4        | 0.05    | 0.29       | <0.05      | <0.12          | <0.040        | <0.058       |
| Final Solution          | 6.2         | 21.1       | 0.09    | 0.90       | <0.07      | 0.28           | 0.113         | <0.056       |
| : [Am (ppt)]            | (9.1)       | (30.1)     | (0.13)  | (1:32)     | (<0.1)     | (0.40)         | (0.17)        | (<0.08)      |
| Rod Samples             | 59.4        | 38.4       | 0.34    | 0.38       | 0.09       | 0.13           | 0.072         | 0.035        |
| Rinse                   | 139         | 50.5       | <0.16   | 2.05       | 0.43       | 0.32           | <0.16         | 0.243        |
| Acid Strip              | 773         | 400        | 6.35    | 3.24       | 17.6       | 1.89           |               | 0.878        |
| Total Release           | 981         | 515        | 6.99    | 6.86       | 18.2       | 2.74           | <0.39         | <1.27        |
| + 10 <sup>−5</sup> Inv. | 0.77        | 1.33       | 0.0052  | 0.0097     | 0.014      | 0.0037         | <0.0003       | <0.0018      |
| % in Solution           | 1.00        | 5.15       | 2.00    | 17.35      | :          | 13.65          |               | 7.7          |
|                         |             | ŧ.         |         | · (        |            |                |               |              |
| Sum Cycle 1 & 2         | ·           |            |         |            |            |                |               |              |
| Total Release           | 11403       | 3229       | 18.78   | 95.93      | 20.9       | 19.98          | 4.03          | <3.72        |
| ± 10 <sup>-5</sup> Inv. | 8.81        | 8.21       | 0.014   | 0.136      | 0.016      | 0.027          | 0.0032        | <0.005       |

41

TABLE 10
244Cm RELEASE DATA (nCi)

| - <u>-</u>              | Bare<br>HBR | e Fuel           | Slit D  | efect<br>TP | Holes   | Defect<br>TP    | Undei   | ected<br>TP |
|-------------------------|-------------|------------------|---------|-------------|---------|-----------------|---------|-------------|
| Cycle 1                 |             |                  |         |             |         |                 |         |             |
| Solution Samples        | 125         | 138              | 1.23    | 1.02        | 0.26    | 0.14            | 0.141   | 0.064       |
| Final Solution          | 102         | 250 <sub>(</sub> | 0.98    | 3.94        | 1.00    | 0.56            | 0.158   | 0.113       |
| [Cm (ppt)]              | (3.5)       | (8.6)            | (0.05)  | (0.20)      | (0.05)  | (0.03)          | (0.008) | (0.006)     |
| Rod Samples             | 145         | 38.3             | 0.81    | 1.14        | 0.02    | 0.88            | 0.023   | 0.044       |
| Rinse                   | 565         | 104              | 2.68    | 24.6        | :       | 3 <b>.</b> 25 . | 0.459   | 0.270       |
| Acid Strip              | 8973        | 1610             | 5.81    | 36.9        | 0.81    | 9.05            | 1.89    | 1.76        |
| Total Release           | 9910        | 2140             | 11.51   | 67.60       | 2.09    | 13.88           | 2.67    | 2.25        |
| + 10 <sup>-5</sup> Inv. | 8.64        | 7.79             | 0.0097  | 0.137       | 0.0018  | 0.027           | 0.0024  | 0.0045      |
| % in Solution           | 2.29        | 18.13            | 19.23   | 7.34        | 60.29   | 5.05            | 11.20   | 7.87        |
| Cycle 2                 |             |                  |         |             |         |                 |         |             |
| 1 2                     |             |                  |         |             | -       |                 |         |             |
| Solution Samples        | 11.8        | 5.4              | 0.08    | 0.20        | <0.008  | 0.031           | 0.008   | <0.014      |
| Final Solution          | 7.0         | 20.3             | 0.17    | 1.01        | 0.034   | 0.034           | <0.034  |             |
| [Cm (ppt)]              | (0.24)      | (0.97)           | (0.009) | (0.05)      | (0.002) | (0.002)         |         | (<0.0006)   |
| Rod Samples             | 388         | 34.4             | 0.25    | 0.37        | 0.049   | 0.067           | 0.049   | 0.041       |
| Rinse                   | 678         | 36.8             | 4.32    | 0.40        | 2.41    | 0.135           | 1.27    | <0.054      |
| Acid Strip              | 732         | 285              | 6.62    | 2.97        | 17.30   | 1.30            |         | 0.595       |
| Total Release           | 1817        | 382              | 11.44   | 4.95        | 19.80   | 1.567           | 1.36    | <0.715      |
| ± 10 <sup>−5</sup> Inv. | 1.61        | 1.42             | 0.0097  | 0.010       | 0.0170  | 0.003           | 0.0012  | <0.0014     |
| % in Solution           | 1.04        | 6.73             | 2.19    | 24.44       | 0.19    | 3.35            |         |             |
| Sum Cycle 1 & 2         |             | ۶.               | . ,     |             |         |                 |         | •           |
| Total Release           | 11727       | 2522             | 22.95   | 72.55       | 21.89   | 15.45           | 4.03    | <2.96       |
| + 10 <sup>-5</sup> Inv. | 10.25       | 9.21             | 0.0194  | 0.147       | 0.0188  | 0.030           | 0.0036  | <0.0059     |

# 3.4 <u>NEPTUNIUM</u>

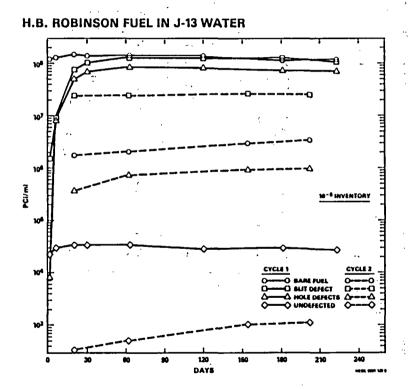
The primary Np isotope of concern for repository storage of spent fuel is  $^{237}$ Np. Activity of  $^{237}$ Np (2.14 x  $^{10}$  year half-life) increases with time for several thousand years as a product of  $^{241}$ Am (432-years half-life) decay. At 1000 years and 10,000 years,  $^{237}$ Np accounts for about 0.06% and 0.25%, respectively, of the total ORIGEN-calculated (11) Ci activity of PWR fuel. Although  $^{237}$ Np is a small portion of the total activity for the first 10,000 years, its expected solubility in groundwater and long half-life give cause for concern relative to long-term repository release.  $^{239}$ Np represents a greater fraction of the calculated total activity ( $^{10.9}$ % at 1000 years, 1.4% at 10,000 years). However,  $^{239}$ Np with its short ( $^{10.9}$ 2 day) half-life is a transient state in the  $^{243}$ Am to  $^{239}$ Pu decay chain and is considered as part of the  $^{243}$ Am activity in this report.

Release of Np from spent fuel would be expected to be congruent with U and the other actinides (Pu, Am and Cm). The bulk concentration of Np in the oxide fuel matrix in the 10-year old fuels tested is only  $\sim 0.03\%$  by weight and should be soluble in the oxide matrix phase at this low concentration. As previously stated,  $^{237}$ Np concentration increases as a result of  $^{241}$ Am decay, which in turn increases for  $\sim 100$  years as a result of  $^{241}$ Pu decay (13-year half-life). However, since neither Am or Pu are expected to phase segregate from the initial oxide fuel matrix,  $^{237}$ Np should remain uniformly distributed in the oxide fuel matrix until such time this matrix is disrupted by reaction with external components (i.e., oxidation).

Because of its low concentration in the fuel and long half-life, <sup>237</sup>Np activity was very low when analyzed. Only samples from the bare fuel tests provided sufficient <sup>237</sup>Np activity to allow an estimate of fractional release. Based on the measured and estimated release data for the bare fuel tests given in Table 11, and comparison with the Pu, Am, and Cm tabulated release data, Np does appear to be released congruently with the other actinides. The summed Cycles 1 and 2 total <sup>237</sup>Np releases for either bare fuel test corresponds to <28 pCi/qm.

TABLE 11
237<sub>Np</sub> RELEASE DATA (pCi)

|                         | Bar<br>HBR | e Fuel<br>TP | Slit Defect                | Holes Defect<br>HBR TP | Undefected<br>HBR TP |
|-------------------------|------------|--------------|----------------------------|------------------------|----------------------|
| Cycle l                 |            | `            |                            | 1100                   |                      |
| Solution Samples        | <25        | 55           |                            |                        | . : %                |
| Final Solution          | <112       | 112          | •                          |                        |                      |
| [Np (ppb)]              | (<0.64)    | (0.64)       | •                          |                        | • •                  |
| Rod Samples .           | <10        | <            | 237 <sub>Np</sub> activity | was generally below    | the detection        |
| Rinse                   | <270       | <135         | limit in sample            | s from the slit def    | ect, hole defects    |
| Acid Strip              | 946        | 135          | and undefected             | ·                      |                      |
| Total Release           | <1363      | <437         |                            |                        |                      |
| + 10 <sup>-5</sup> Inv. | <7.0       | <7.4         |                            |                        |                      |
| % in Solution           |            |              |                            |                        |                      |
|                         |            |              |                            |                        | •                    |
| Cycle 2                 | •          |              |                            |                        |                      |
| Solution Samples        | 20         | <14          |                            |                        |                      |
| Final Solution          | 90         | 90           | •                          |                        |                      |
| [Np (ppb)]              | (0.5)      | (0.5)        |                            | •                      |                      |
| Rod Samples             | 2          | 2            |                            |                        |                      |
| Rinse                   | <135       | <135         |                            |                        |                      |
| Acid Strip              | 68         | <68          | ;                          | •                      | <b>v</b> *           |
| Total Release           | <315       | <309         |                            | •                      |                      |
| + 10 <sup>-5</sup> Inv. | <1.6       | <5.2         |                            |                        |                      |
| % in Solution           |            |              |                            |                        |                      |
| Sum Cycle 1 & 2         |            | . •          |                            |                        |                      |
| Total Release           | <1678      | -746         |                            |                        |                      |
| + 10 <sup>-5</sup> Inv. |            | <746         |                            |                        | • • • •              |
| + IO INV.               | <8.6       | <12.6        |                            |                        | •                    |


\:;

## 3.5 CESIUM

 $^{137}$ Cs and  $^{134}$ Cs account for ~20% of the total Ci activity and most of the gamma activity in the ~10-year old spent fuel tested. At 1000 years, the only significant Cs activity remaining is  $^{135}$ Cs, which has a 3 x  $^{106}$  year half-life and accounts for ~0.02% of total Ci activity at 1000 years and about 0.08% of the Ci activity at 10,000 years.

Fission product Cs is partially released from the fuel during irradiation and segregates to grain boundaries and to the fuel-cladding gap. "Gap inventory" Cs dissolves immediately when contacted by water. The very low  $^{137}\text{Cs}$  activities measured in solution for the undefected tests relative to bare fuel and defected cladding tests plotted in Figure 9 indicate that the end fitting seals did not leak in the undefected tests, and that release from these two tests can be assumed to be from exterior cladding contamination. Most of the measured  $^{137}\text{Cs}$  release occurred at the beginning of Cycle 1 and was retained in solution. As indicated in Table 12,  $\sim 98\%$  to 99% of the Cs in the slit defect and hole defects tests was in solution. The slightly lower percentages indicated in solution in the bare fuel tests were likely caused by undissolved fuel particles contributing to the  $^{137}\text{Cs}$  activity measured in the rinse and acid strip samples.

Cesium release in the Turkey Point bare fuel tests was ~0.3% of specimen inventory, which is the approximate fractional fission gas release value reported (10) for this fuel. Fractional 137Cs release in the Turkey Point hole defects test (<0.01%) was much lower than expected and not currently explained. (Perhaps the I-9-12 specimen had been contacted by water or alcohol during previous undocumented handling at BCL.) Fractional release for the H. B. Robinson bare fuel, slit, and hole detects specimens (~0.8%, 0.8%, and 0.4%, respectively) was greater than the reported 0.2% fission gas release value (9) for ATM-101 and greater than measured with the Turkey Point fuel. The ~250% greater fractional 137Cs release with H. B. Robinson fuel is attributed to its finer grain size (6 µm for



# TURKEY POINT FUEL IN J-13 WATER

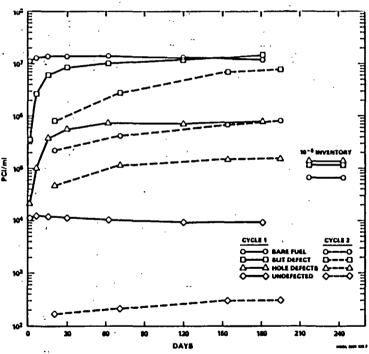



FIGURE 9. 137Cs Activity in Unfiltered Solution.

**6** 3

H. B. Robinson versus 25  $\mu m$  for Turkey Point). The greater grain boundary area and shorter diffusion distances to grain boundaries likely resulted in greater grain boundary  $^{137}\text{Cs}$  inventories, and possibly greater fuel-cladding gap inventories as Cs was transported along grain boundaries to the gap during irradiation.

TABLE 12
137Cs RELEASE DATA (μCi)

and the state of t

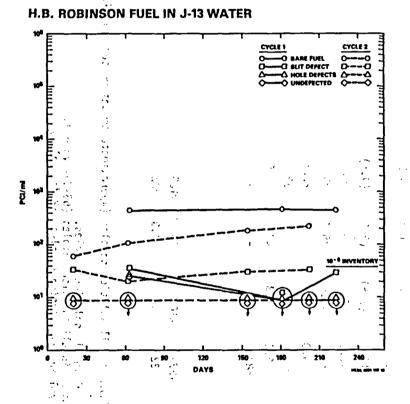
| 1                       |        | Fuel    | C14+          | Defect | Holes      | o ja €<br>Dofoct | linda       | fected         |
|-------------------------|--------|---------|---------------|--------|------------|------------------|-------------|----------------|
|                         | HBR    | TP      | HBR           | TP     | HBR        | TP               | HBR         | TP             |
| Cycle 1                 |        |         | 25.74         | '; 'Cı |            |                  | , ,         |                |
|                         | ,      | i tin   |               |        |            | • •              | ٠.          |                |
| Solution Samples        | 12600  | 1010 GF | 9650          | 644    | 6130 _ · · | 41.7             | 2.98        | 0.81           |
| Final Solution          | 28200  | 3080    | 28000         | 3525   | 17500      | 195              | 6.80        | 2.33           |
| [Cs (ppb)]              | (3277) | (357)   | (3248)        | (409)  | (2024)     | (23)             | (0.78       | ) (0.27)       |
| Rod Samples             | 28     | 2.6     | 7             | 1.4    | 101        | 0.1              | 0.03        | 0.007          |
| Rinse                   | 1560   | 786     | 357           | 120    | 240        | 3.2              | 0.25        | 0.15           |
| Acid Strip              | 612    | 138 😂 🕜 | 28            | 19.6   | 36         | 1.5              | 0.12        | 0.08           |
| Total Release           | 43000  | 5017    | 38042         | 4300   | 23916      | 241.5            | 10.2        | 3.38           |
| ÷ 10 <sup>-5</sup> Inv. | 776    | 308     | 664 .         | 144    | 425        | 7.76             | 0.19        | <b>0.11</b>    |
| % in Solution           | 94:88  | 81.52   | 98.97         | 96.95  | 98.80      | 98.01            | 95.88       | 92.90          |
|                         |        |         | i, i          |        | `\$'       |                  | · ·         |                |
| Cycle 2                 |        | :       | : - 5         | • 1    |            | <u> </u>         |             |                |
|                         |        |         | :             | គ្នាត់ |            |                  |             |                |
| Solution Samples        | 151    | 30      | 1630          | 249    | 44.5       | 7.0              | 0.04        | :              |
| Final Solution          | 840    | 204     | 6300          | 1960   | 241        | 39               | 0.28        |                |
| [Cs (ppb)]              | (98)   | (24)    | (731)         | (227)  | (28)       | (4.5)            | (0.32       |                |
| Rod Samples             | 2.0    | · 0.3   |               |        | 0.1        | 0.02             |             | 2 <0.002       |
| Rinse C                 | 50.5   | 14.2    |               | 41.9   | 4.7        | •                | - <0.05     |                |
| Acid Strip              | 24.9   | 13.4    | 4.9           | · . •  | 1.8        | 0.27             |             | 0.03           |
| Total Release           | 1070   | 262     | 8018          | 2253   | 292        | 47<br>20. 0      | <0.37       |                |
| + 10 <sup>-5</sup> Inv. | 19.6   | 16.1    | . 140         | 75     | 5.2        | 1.51             | <0.00       |                |
| % in Solution           | 92.80  | 89.31   | 98.90         | 98.05  | 97.77      | 98.09            | . 3         | 54.29          |
| <i>₹</i>                | 1000   | · · · · | A D. T.       |        |            |                  | ₹ ÷         | 4 <sup>5</sup> |
| Sum Cycle 1 & 2         |        |         | (11),231 (10) | ٠. ,٠  | a'⊅ r ×    | • • •            | <sub></sub> |                |
| Total Release           | 44070  | 5279    | 46060         | 6553   | 24208      | 288              | 10.6        | 3.9            |
| ÷ 10 <sup>-5</sup> Inv. | 796    | 324     | 804           | 219    | 430        | 9.27             | 0.20        | 0.12           |

# 3.6 TECHNETIUM

Technetium-99, with a 213,000-year half-life, accounts for 0.75% of the total Ci activity of spent fuel at 1000 years and  $\sim 3\%$  at 10,000 years. (11) Release of  $^{99}$ Tc from spent fuel is of particular interest since Tc compounds are predicted to be quite soluble in NNWSI groundwater. (13)

The radiochemical detection limit for  $^{99}\text{Tc}$  was just adequate for analysis of  $10^{-5}$  of specimen inventory in solution. Significant  $^{99}\text{Tc}$  activities were reported for most solution samples analyzed during Cycles 1 and 2 of the bare fuel and slit defect tests.  $^{99}\text{Tc}$  activities were generally below the detection limit in samples from the hole defects and undefected tests.  $^{99}\text{Tc}$  activities measured in unfiltered solution samples are plotted in Figure 10. Essentially all of the  $^{99}\text{Tc}$  activity measured in unfiltered samples was also measured in the 0.4- $\mu$ m and 18-Å filtered samples, indicating that the  $^{99}\text{Tc}$  activity was in true solution, most likely as  $\text{TcO}_4$ .

Since  $^{99}$ Tc was not analyzed on all Cycle 1 solution samples, the "Solution Samples" release value given for the Cycle 1 bare fuel and slit defect tests in Table 13 is the total volume for all solution samples taken times an average activity for samples on which  $^{99}$ Tc was measured. ( $^{99}$ Tc was measured on all unfiltered Cycle 2 solution samples.) Total measured fractional  $^{99}$ Tc release (Cycles 1 and 2) is estimated at  $^{32}$ 2 x  $^{10}$ 5 and  $^{40}$ 0 x  $^{10}$ 5, respectively, for the H. B. Robinson and Turkey Point bare fuel tests versus  $^{48}$ 8 to  $^{10}$  x  $^{10}$ 5 for the actinides (Pu, Am, Cm, and Np) in the bare fuel tests, corresponding to a  $^{99}$ Tc preferential release factor of 4 to 5 in these tests. A total fractional  $^{99}$ Tc release of  $^{20}$ 0 x  $^{10}$ 5 was estimated for the Turkey Point slit defect test (Cycles 1 and 2) versus  $^{20}$ 1 x  $^{10}$ 5 for Pu, Am, and Cm, corresponding to a  $^{99}$ Tc preferential release factor of about 150. Relative to uranium, Tc was preferentially released by a factor of  $^{20}$ 0 in this test. Similar preferential Tc release relative to the actinides was observed in the H. B. Robinson slit defect test.


٠,

The preferential release observed for Tc may result from grain boundary leaching. Very high preferential Tc release (∿12 times actinide release) was observed in the Series 1 bare fuel tests, where visible grain boundary a dissolution was observed in post-test fuel particle characterization. (4) Dissolution of phase-separated Tc from open porosity is another possible source for preferential Tc release. The stable thermodynamic state for Tc should be the metallic state at the oxygen potentials that are present in LWR fuel during irradiation. To should show a tendency to phase separate and with other metallic fission products when the temperature during irradiation is sufficiently high to allow diffusion and secondary phase formation. Fission product Mo (which also tends to separate into metallic phase during irradiation) was measured at slightly above detectable levels by inductively coupled plasma (ICP) emission spectrometry analysis of solution samples. Although the Mo ICP data are not precise enough for quantitative comparison, they do suggest preferential Mo release on the order of that observed for Tc in the Cycle 1 H. B. Robinson bare fuel test.

Preferential dissolution factors were previously calculated  $^{(14)}$  for  $^{99}$ Tc in the two Cycle 1 bare fuel tests by comparing the fractional  $^{99}\mathrm{Tc}$  inventories known to have been in solution with the fractional inventory of uranium known to have been in solution. For uranium, the "known to have been in solution" value was calculated by summing the "Solution Samples" values (given in Table 7) and the maximum solution concentration times 250 ml. For  $^{99}$ Tc, it was assumed that no precipitation from solution occurred and the "known to have been in solution" value was the sum of the "Solution Samples" and "Final Solution" values given in Table 13. Since similar fractional  $^{99}$ Tc and U inventories were calculated for the sum of the "Rinse" and "Acid Strip" values, these values were assumed to be primarily composed of undissolved fine fuel particles. This evaluation resulted in Cycle 1 preferential  $^{99}{\rm Tc}$ dissolution factors of 8.7 for the H. B. Robinson bare fuel test and 3.8 for the Turkey Point bare fuel test. The greater preferential <sup>99</sup>Tc dissolution factor calculated for the H. B. Robinson bare fuel was attributed to the finer grain size of this fuel. Performing the above described calculation

for the Cycle 2 bare fuel tests gave <sup>99</sup>Tc preferential dissolution factors of 6.9 and 1.5, respectively, for the H. B. Robinson and Turkey Point bare fuel tests. These results are similar to the Cycle 1 results, indicating greater preferential <sup>99</sup>Tc release with the finer grained H. B. Robinson fuel. The <sup>99</sup>Tc preferential dissolution factors calculated for the H. B. Robinson and Turkey Point slit defect tests are 28.5 and 23.8, respectively, for Cycle 1 and 14.3 and 13.7, respectively, for Cycle 2. These values are not much different for the two fuel types tested in the slit defect tests where less fractional fuel dissolution occurred than in the bare fuel tests.





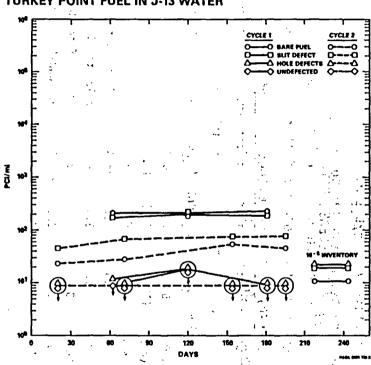



FIGURE 10. 99 Tc Activity in Unfiltered Solution.

TABLE 13 99Tc RELEASE DATA (nCi)

|                           | Bare<br>HBR       | Fuel TP           | Slit<br>HBR        | Defect<br>TP          | Holes Defect                  | Undefected<br>HBR TP |
|---------------------------|-------------------|-------------------|--------------------|-----------------------|-------------------------------|----------------------|
| Cycle 1                   |                   |                   |                    |                       |                               |                      |
| Solution Samples          | 43 <sup>(a)</sup> | 15 <sup>(b)</sup> | 3.5 <sup>(c)</sup> | ) <sub>13.9</sub> (d) |                               |                      |
| Final Solution            | 113               | 53                | 7.3                | 50.7                  |                               |                      |
| [ <sup>99</sup> Tc (ppb)] | (26)              | (12.4)            | (1.7)              | (11.9)                |                               |                      |
| Rod Samples               | <0.3              | 1                 | <0.3               |                       |                               |                      |
| Rinse                     | 18.1              | 11.6              | 10.5               | <5.4                  | <sup>99</sup> Tc activity was | generally            |
| Acid Strip                | 28.4              | 6.1               | 3.5                | <b>Q.</b> 7           | below the detection           |                      |
| Total Release             | <b>~203</b>       | <b>~</b> 86       | <b>~</b> 25        | <73                   | samples from the              | noles defect         |
| ; 10 <sup>-5</sup> Inv.   | ~23.3             | مر 32             | ~2.8               | <15.3                 | and undefected tes            | its.                 |
| % in Solution             | ~77               | <b>~</b> 79       | <b>~43</b>         |                       | :                             |                      |
| Cycle 2                   |                   |                   |                    |                       |                               |                      |
| Solution Samples          | 8.0               | 2.4               | 1.86               | 4.2                   |                               |                      |
| Final Solution            | 56                | 11.3              | 8.45               | 19.1                  |                               |                      |
| [ <sup>99</sup> Tc (ppb)] | (13)              | (2.6)             | (2.0)              | (4.5)                 |                               |                      |
| Rod Samples               | <0.1              | <0.1              | <0.1               | <0.1                  | *                             |                      |
| Rinse                     | <5.4              | <5.4              | <5.4               | <5.4                  |                               |                      |
| Acid Strip                | 4.0               | <2.7              | <2.7               | <2.7                  |                               |                      |
| Total Release             | <74               | <22               | <18.5              | <32                   |                               |                      |
| + 10 <sup>-5</sup> Inv.   | <8.6              | <8.3              | <2.1               | <6.6                  |                               |                      |
| % in Solution             | <b>~87</b> .      | ••                |                    |                       |                               |                      |
| Sum Cycle 1 & 2           | ·                 |                   |                    |                       |                               |                      |
| Total Release             | <b>2</b> 77       | <108              | <44                | <105                  | ,                             |                      |
| + 10 <sup>-5</sup> Inv.   | -32               | <b>41</b>         | <4.9               | <22                   | ₹                             |                      |

<sup>(</sup>a)Assumes 0.45 nCi/ml in all solution samples (approximate amount measured in 63,181 and 223-day samples).
(b)Assumes 0.2 nCi/ml in all solution samples.
(c)Assumes 36.5 pCi/ml in all solution samples (63-day value).
(d)Assumes 185 pCi/ml in all solution samples (62-day value).

# 3.7 IODINE

Iodine-129 (half-life 17,000,000 years) is the lowest activity radionuclide measured in the present study ( $\sim 0.025~\mu \text{Ci/g}$  oxide fuel) and required neutron activation analysis for detection. Although  $^{129}\text{I}$  has a relatively low activity, it may be relatively mobile in either the vapor phase or in solution and may become incorporated into the biosphere.

Activities of <sup>129</sup>I measured in Cycle 1 and 2 test samples are given in pCi/ml in Table 14. The activity in solution if  $10^{-5}$  of the 129I inventory in a H. B. Robinson specimen dissolved in the 250 ml of test solution would be  $\sim 0.09 \text{ pCi/ml}$ . All of the solution samples analyzed for  $^{129}\text{I}$  taken from bare fuel tests, the Turkey Point slit defect test, and Cycle 1 of the H. B. Robinson slit defect test exceeded 0.09 pCi/ml.  $^{129}$ I was not measured on the Cycle 1 vessel strip solution because it was thought that the iodine would be lost as  $I_2$  in the  $HNO_3$  stripping procedure. However, the quantity of  $^{129}$ I found in the Cycle 2 acid strip samples indicates that some of the  $^{129}$ I activity does "plate out" of solution and is retained in the HNO $_3$  strip solution. The measured 129 I activities are considered to be a lower limit for these tests since the actual state of iodine in the test solutions is not known and some portion of the released 129I may be lost from the unsealed test vessels as a volatile species (possibly  $I_2$ ). The higher relative  $^{129}\mathrm{I}$  activity measured in an initial solution sample from H. B. Robinson bare fuel, which was tested at 25°C in sealed vessels in the Series 3 tests, further suggests that some <sup>129</sup>I may have been lost and not measured in the presently reported Series 2 tests.

The total activities of  $^{129}$ I contained in the different sample types on which  $^{129}$ I was measured were calculated to estimate the minimum "measured" release.  $^{129}$ I activity measured on a single periodic solution sample was assumed for all periodic solution samples taken during the test cycle. The final solution activity for Cycle I Turkey Point fuel tests was assumed for all Cycle I Turkey Point periodic solution samples since  $^{129}$ I was not determined for any of these samples. The resulting release and fractional release data are given

in Table 15. The greatest "measured" fractional release was  $41.2 \times 10^{-5}$  of specimen inventory for the Turkey Point bare fuel test. Much less fractional release was observed in the holes defect and undefected tests than in the bare fuel and slit defect tests. Releases from the holes defected specimens are not significantly greater than that from the undefected specimens. This suggests that much of the measured release was from cladding crud and/or residual cladding contamination in the holes defect tests and not from the fuel.

TABLE 14
129I ACTIVITIES MEASURED IN SAMPLES (pCi/m1)

| Fuel*                    | Cycle            | Days                     | Sample<br>Type                         | Bare Fuel                          | Slit                            | <u> Holes</u>                     | Undefected                     |
|--------------------------|------------------|--------------------------|----------------------------------------|------------------------------------|---------------------------------|-----------------------------------|--------------------------------|
| HBR<br>HBR               | ]<br>]           | 63<br>223                | Solution<br>Solution                   | 0.523<br>0.718                     | 0.292<br>0.377                  | 0.00191<br>0.00617                | 0.0060<br>0.00541              |
| HBR<br>HBR<br>HBR<br>HBR | 2<br>2<br>2<br>2 | 154<br>202<br>202<br>202 | Solution<br>Solution<br>Rinse<br>Strip | 0.432<br>0.466<br>0.0141<br>0.0298 | 0.0357<br>0.0473<br><br>0.00485 | 0.00471<br>0.00517<br>0.00179     | 0.0072<br>0.00893              |
| TP                       | . 1              | 181                      | Solution                               | 0.590                              | 0.289                           | 0.0260                            | 0.0076                         |
| TP<br>TP<br>TP           | 2<br>2<br>2<br>2 | 154<br>195<br>195<br>195 | Solution<br>Solution<br>Rinse<br>Strip | 0.186<br>0.219<br>0.0073<br>0.0191 | 0.169<br>0.217<br>0.010         | 0.00533<br>0.00658<br><br>0.00136 | 0.0061<br>0.0117<br><br>0.0017 |

<sup>\*</sup>HBR = H. B. Robinson, TP = Turkey Point.

TABLE 15

129 | RELEASE DATA (pCi)

| £                       |          |            |                            | Defect              |           |           | Undef        | ected    |
|-------------------------|----------|------------|----------------------------|---------------------|-----------|-----------|--------------|----------|
| Cycle 1                 | HBR      | TP         | HBR                        | TP                  | HBR       | <u> </u>  | HBR          | <u> </u> |
| 1.                      |          |            | •. • • .                   |                     | ,         | : 'Sc.,   |              | : 1.1.   |
| Solution 'Samples*      | 50       | 44         | 27.7                       | <sup>c</sup> . 21.7 | 0.18      | 1.95      | 0.57         | 0.57     |
| Final Solution          | 180      | 148        | 94.3                       | 72.3                | 1.54      | 6.50      | 1.35         | 1.90     |
| [I (ppb)]::."           | ∵ (5.8)  |            |                            |                     | (0.05)    |           | (0.04)،      | (0.06    |
|                         | 230 ;    |            |                            |                     | 1.72      |           |              | .2.47    |
| ÷ 10 <sup>-5</sup> Inv. | 10.5     |            |                            |                     | 0.077     |           |              | . 0.20   |
|                         | y by dis | . 4        |                            |                     | , , , ,   | 4.        | 157          |          |
| Cycle 2                 |          |            |                            |                     |           |           |              |          |
| Solution Samples*       | 28       | 12         | 2.3                        | 11.0                | 0.31      | 0.35      | 0.47         | i        |
| Final Solution          | 117      | 55         |                            | 54.0                |           | 1.65      | 2.23         | 2.93     |
| [I-(ppb)]               | (3.8)    |            |                            |                     | (0.04)    |           |              |          |
|                         |          | (1.8)      | (0.4)                      | (1.8)               | (0.04)    | •         | (0.07)       | *        |
| Rinse                   | 8.5      | 4.4        |                            |                     |           |           | <b></b> ,; . | •        |
| Acid Strip              | 8.9      | 5.7        | 1.45                       | 3.0                 | 0.54      |           |              | 0.51     |
| Total Release           | 162      | 77         |                            | ⊨.68•0              | 2.14      |           | 2.70         | 3.84     |
| ÷ 10 <sup>-5</sup> Inv. | 7.5      | 12.0       | 0.69                       | 5.7                 | 0.096     | 0.20      | 0.12         | 0.32     |
| % in Solution           | 89       | 87         | 90                         | 96                  | 75        | 83        |              |          |
| Sum Cycle 1 & 2         | :        |            | ,                          |                     |           |           |              |          |
| 2000                    | 149 249. |            | در افروسیان<br>در افروسیان | <u>.</u>            | _ g_ *'   |           |              |          |
| Total Release           | 392      | 269        | 138                        | 162                 | 3.86      | 10.86     | 4.62         | 6.31     |
| + 10 <sup>-5</sup> Inv. | 18       | 41.2       | 6.1                        | 13.6                | 0.17      | 0.88      | 0.21         | 0.52     |
| $\gamma_{i,j} = 0$      | RC.      | <b>,</b> : | N                          | 251                 | 7. 13     | •         | 1 30 00      |          |
| <u> </u>                | CA Y     | . :        | ∂ . ₹'                     |                     | 100       | 0.57      | to state.    | to in    |
| *Final solution ac      | tivities | assumèd t  | for Cycle                  | 1 Turkey            | Point per | iodic so  | lution san   | ples.    |
|                         | ì        |            | £ 100                      | 5.0                 | •         |           |              |          |
|                         | .′       | •          |                            | 6.11                | 3. ·      |           |              |          |
|                         | ٠,       | e [1]      | •                          | \$.:                | - , - f   | 1         | ,,           | 15 (1.5) |
|                         |          | . 3.       | : '                        | 01 1                | *         | · · · · · | 1. 1 h +     | ring     |
|                         | -        |            | :                          | <b>c</b> . · ·      | 1         | . ^       | .: .         |          |
|                         |          |            |                            |                     |           |           |              |          |

1, 1 3, 4 3, 5 3, 5 3, 5

## 3.8 STRONTIUM

 $^{90}$ Sr accounts for ~14% of the total Ci activity of the ~10-year old fuel tested and is a pure beta emitter. Because of its relatively short 28.1-year half-life,  $^{90}$ Sr will have essentially decayed out before the end of minimum 300-year 10 CFR 60 containment period.

Radiochemical separation for and measurement of  $^{90}$ Sr was not started until the 154-day sample of Cycle 2. Cycle 2  $^{90}$ Sr release data were calculated and are given in Table 16. The  $^{90}$ Sr activity measured in the 154-day sample was assumed for prior Cycle 2 samples in calculating the "solution samples" release value. Cycle 2 "total release" values indicate that  $^{90}$ Sr was released preferentially relative to the actinides. The greatest preferential release was in the H. B. Robinson slit defect test where, during Cycle 2,  $^{90}$ Sr fractional release was  $^{370}$ 0 times the measured uranium fractional release and  $^{3000}$ 0 times that measured for plutonium. Since, like Cs, Sr is relatively soluble, it is likely that even greater preferential release of  $^{90}$ Sr occurred during Cycle 1, when most of the "free" Sr would have been dissolved.

TABLE 16

90Sr CYCLE 2 RELEASE DATA

|                         | Bare Fuel |       | Slit Defect |       | Holes Defect |           | Undefected |         |
|-------------------------|-----------|-------|-------------|-------|--------------|-----------|------------|---------|
| Cycle 2                 | HBR       | TP    | HBR         | TP    | <u>HBR</u>   | <u>TP</u> | HBR        | TP      |
| \$ . **                 |           |       |             |       |              |           |            |         |
| Solution Samples*       | 155       | 22.2  | 195         | 8.52  | 0.46         | 0.08      | 0.01       | 0.01    |
| Final Solution          | 630       | 89.0  | 800         | 75.50 | 2.83         | 0.19      | 0.50       | 0.25    |
| [Sr (ppb)]              | (32.6)    | (4.6) | (41.4)      | (3.9) | (0.146)      | (0.010)   | (0.026)    | (0.013) |
| Rod Samples             | 1         | 0.3   | 0.4         | 0.03  | <0.01        | <0.01     |            |         |
| Rinse                   | 71        | 5.4   | 13.0        | 4.60  | <0.46        | 0.43      |            |         |
| Acid Strip              | 30        | 15.7  | 1.2         | 0.35  | 0.66         | <0.23     |            | 1       |
| Total Release           | 887       | 132.6 | 1010        | 89.00 | <4.41        | <0.94     |            |         |
| ÷ 10 <sup>-5</sup> Inv. | 24.8      | 12.2  | 26.9        | 4.45  | <0.12        | <0.05     |            |         |
| % in Solution           | 88.5      | 83.9  | 98.6        | 94.4  | >75          | >30       |            |         |
|                         |           |       |             |       |              |           |            |         |

<sup>\*</sup>Based on 154-day sample.

### 3.9 ACTINIDE AND FISSION PRODUCT RELEASE SUMMARY

The radionuclides discussed in the preceding sections are either actinides produced by progressive neutron activation of uranium and subsequent decay, or fission products. As such, these radionuclides are produced uniformly\* throughout the UO<sub>2</sub> fuel matrix during irradiation. If all of these radionuclides remained fixed at their original sites of production in the fuel matrix, they would be released congruently as the fuel matrix dissolves. However, many of the fission products are only sparingly soluble in the oxide fuel matrix and tend to segregate into secondary phases during irradiation. The extent of secondary phase segregation increases with increasing temperature during irradiation. Relative radionuclide yields, and the variety of different elements with differing chemical properties represented, are shown figure 11. A summary of fractional release (total release divided by 10<sup>-5</sup> inventory) values calculated in Tables 7 through 16 for the actinides and fission products is given in Table 17.

Within the probable accuracy of the current testing methods, the actinides Pu, Am, Cm, and Np appear to have been released congruently in all of the tests. Preferential uranium release was indicated relative to the other actinides in the Turkey Point bare fuel test and the two slit defect tests. An important factor probably contributing to these apparent preferential releases is the higher solubility of U relative to the other actinides in these tests. Much of the Pu, Am, Cm and Np released as the oxide fuel matrix dissolved, either did not dissolve, or may have precipited back onto the fuel surface or within the defected cladding specimens, and was not measured. This hypothesis is supported by the "% in solution" values calculated for the actinides in Tables 7-10, which show a greater fraction of the measured uranium release to be in solution where it is readily measured. Greater apparent preferential U dissolution of the Turkey Point fuel relative to the H. B. Robinson fuel is attributed to much more extensive exposure of the Turkey Point fuel to air before testing. Dissolution of

<sup>\*</sup>Disregarding minor radial distribution gradients arising from radial neutronic flux and spectral variations within the fuel.

UO<sub>2+x</sub> from the fuel surface probably resulted in initial supersaturation of U relative to the bulk fuel matrix. Much of the initially dissolved U precipitated in the H. B. Robinson bare fuel test and may not have been recovered from the fuel in the rinse samples, possibly explaining the lack of measured preferential U release in this test. In the holes defected tests, measured actinide release was not much greater than in the undefected tests, so any preferential release from within the holes defected specimens may have been masked by release from residual cladding surface contamination. Also, actinide levels measured in the holes and undefected tests were near or often below detection levels, reducing the significance of conclusions that can drawn from these data.

The fractional release data do not conclusively indicate the existance of any actinide phase segregation that would cause non-congruent actinide release from fuel as it dissolves from its as-irradiated state. Nevertheless, degradation of the oxide fuel matrix phase by exposure to an oxidizing environment before contact of the fuel with water may lead to actinide segregation, and differences in actinide solubilities may affect transport by solution from the fuel surface.

All of the fission product radionuclides measured showed preferential release relative to actinides. The greatest preferential release was observed with Cs, in which the several tenths of a percent "gap inventory" was rapidly released at the beginning of Cycle 1. An additional lesser preferential Cs release occurred in Cycle 2, which may have been associated with grain boundary leaching and exposure of additional segregated phases as fuel dissolution progressed. Although based on limited data,  $^{90}$ Sr appeared to show preferential release similar to that of Cs in Cycle 2 of the bare fuel tests and may have also shown a substantial early preferential release in Cycle 1 had it been measured. Although there is some uncertainty concerning the portion of released fission product iodine actually measured, quantities indicating preferential  $^{129}$ I release were measured in both Cycles 1 and 2. Preferential  $^{90}$ Tc release was confirmed in Cycles 1 and 2 of the bare fuel and slit defect tests and is thought to occur primarily as a result of grain boundary leaching and the dissolution from exposed phase-segregated metallic particles.

\*;

Of the fission products measured,  $^{137}$ Cs,  $^{134}$ Cs and  $^{90}$ Sr will decay out during the containment period.  $^{135}$ Cs,  $^{129}$ I and  $^{92}$ Tc will be present at nearly the same activities during the post-containment period. Fission product  $^{79}$ Se was also analyzed for but not detected. If  $^{79}$ Se were released congruently with the uranium and remained in solution, then  $^{79}$ Se activity in the bare fuel test solution samples would have been just slightly less than its detection limit, suggesting that there may not have been a significant preferential release of  $^{79}$ Se in these tests.

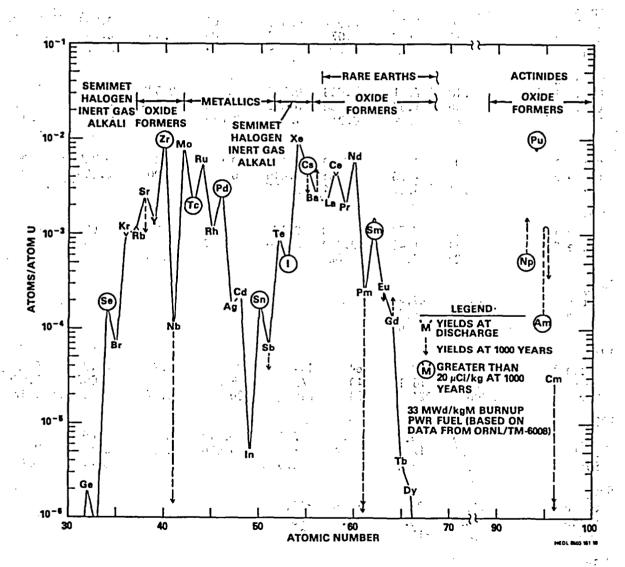



FIGURE 11. Elemental Yields for Actinides and Fission Products in Spent Fuel at Discharge and at 1000 years. Circled elements have isotopes with greater than 20  $\mu$ Ci/kg activity at 1000 years.

TABLE 17
SUMMARY OF TOTAL MEASURED FRACTIONAL RELEASE
FOR ACTINIDES AND FISSION PRODUCTS\*

|                                                    |                       | Bare Fuel              |                         | Slit Defect          |                          | Holes Defect            |                             | Undefected<br>HBR TP         |  |
|----------------------------------------------------|-----------------------|------------------------|-------------------------|----------------------|--------------------------|-------------------------|-----------------------------|------------------------------|--|
| Nuclide & Cycle                                    |                       | <del></del>            | 11011                   | <del></del>          |                          | - <del></del>           |                             | <del>':'</del>               |  |
| Uranium<br>Cycle l<br>Cycle 2<br>Sum               | 5.66<br>1.54<br>7.20  | 11.67<br>4.13<br>15.80 | 0.047<br>0.073<br>0.120 | 0.363                | 0.005<br>0.008<br>0.013  | 0.030<br>0.005<br>0.035 | 0.009<br>0.002<br>0.010     | <0.009<br><0.004<br><0.015   |  |
| 239+240p <sub>u</sub><br>Cycle l<br>Cycle 2<br>Sum | 7.18<br>1.28<br>8.46  | 7.31<br>1.57<br>8.88   | 0.009<br>0.008<br>0.017 | 0.015                | 0.002<br>0.012<br>0.014  | 0.022<br>0.004<br>0.026 | 0.002<br>0.001<br>0.003     | <0.005<br><0.002<br><0.007   |  |
| 241 <sub>Am</sub><br>Cycle 1<br>Cycle 2<br>Sum     | 8.04<br>0.77<br>8.81  | 6.88<br>1.33<br>8.21   | 0.009<br>0.005<br>0.014 | 0.010                | <0.002<br>0.014<br>0.016 | 0.023<br>0.004<br>0.027 | 0.0029<br><0.0003<br>0.0032 | 0.003<br><0.002<br><0.005    |  |
| 244 <sub>Cm</sub><br>Cycle l<br>Cycle 2<br>Sum     | 8.64<br>1.61<br>10.25 | 7.79<br>1.42<br>9.21   | 0.010<br>0.010<br>0.020 | 0.010                | 0.002<br>0.017<br>0.019  | 0.027<br>0.003<br>0.030 | 0.0024<br>0.0012<br>0.0036  | 0.0045<br><0.0014<br><0.0059 |  |
| 237 <sub>Np</sub><br>Cycle l<br>Cycle 2<br>Sum     | <7.0<br><1.6<br><8.6  | <7.4<br><5.2<br><12.6  |                         |                      |                          |                         |                             |                              |  |
| 137 <sub>Cs</sub><br>Cycle 1<br>Cycle 2<br>Sum     | 776<br>19.6<br>796    | 308<br>16.1<br>324     | 664<br>140<br>804       | 144<br>75<br>219     | 425<br>5.2<br>430        | 7.76<br>1.51<br>9.27    | 0.19<br><0.007<br>0.20      | 0.11<br>0.006<br>0.12        |  |
| 129 <sub>I</sub><br>Cycle 1<br>Cycle 2<br>Sum      | 10.5<br>7.5<br>18     | 29.2<br>12.0<br>41.2   | 5.4<br>0.7<br>6.1       | 7.9<br>5.7<br>13.6   | 0.077<br>0.096<br>0.17   | 0.69<br>0.20<br>0.88    | 0.09<br>0.12<br>0.21        | 0.20<br>0.32<br>0.52         |  |
| <sup>99</sup> Tc<br>Cycle 1<br>Cycle 2<br>Sum      | ~23<br><8.6<br><32    | ~32<br><8.3<br><41     | ~2.8<br><2.1<br><4.9    | <15.3<br><6.6<br><22 |                          |                         |                             |                              |  |
| 90 <sub>Sr</sub><br>Cycle 2                        | 24.8                  | 12.2                   | 26.9                    | 4.45                 | <0.12                    | <0.05                   |                             | •                            |  |

<sup>\*</sup>Units in parts per 100,000 of test specimen inventory; less than (<) symbols indicate totals containing >5% data reported as less than values, approximately ( $\sim$ ) symbols indicate totals containing estimated values.

7.

#### 3.10 CARBON

Carbon-14 (half-life of 5730 years) is an activation product produced during irradiation by the (n,p) reaction on nitrogen impurities, and from the (n,a) reaction on  $^{17}0.\,^{(15)}$  ORIGEN calculations for spent fuel  $^{14}\text{C}$  inventories depend on the assumed initial  $^{14}\text{N}$  impurity levels in the fuel and cladding, which are not generally known and may vary between individual fuel samples. Carbon-14 was radiochemically measured separately on fuel and cladding for two samples from the H. B. Robinson C5 spent fuel rod (same rod used for the Series 2 test specimens). The average of the analyses gave 0.53  $_{\mu}\text{Ci/g}$  for the cladding and 0.49  $_{\mu}\text{Ci/g}$  for the fuel. This quantity of  $^{14}\text{C}$  corresponds to 530 Ci/1000 MTHM.  $^{14}\text{C}$  is of particular concern since it is mobile in the gas phase as CO2 and in groundwater as HCO3, and has a high potential for incorporation into the biosphere.

Activities of  $^{14}$ C measured in test samples during Cycles 1 and 2 are given in Table 18. These activities are considered the lower limits of the actual  $^{14}$ C activities, since  $^{14}$ C in solution as  $\text{HCO}_3^-/\text{CO}_3^-$  would be in equilibrium with  $\text{CO}_2$  in the air over the test solution and the test vessels were capped with loose fitting lids that may have allowed  $^{14}$ C loss to the atmosphere. There was no correlation between  $^{14}$ C release and defect severity in the H. B. Robinson Cycle 1 tests, suggesting that the  $^{14}$ C may have been released by the cladding rather than the fuel. The H. B. Robinson Cycle 2 and Turkey Point fuel data in Table 18 suggest that part of the  $^{14}$ C release in these test cycles did originate from the fuel. However, lower  $^{14}$ C activity in the Turkey Point undefected test (Cycles 1 and 2) may be due to the fact that the I-9-1 fuel section used for this specimen was the bottom end of the fuel rod and may have had less  $^{14}$ C on its cladding surface.

Carbon-14 fractional release data were calculated for the H. B. Robinson fuel tests using the radiochemically measured fuel and cladding <sup>14</sup>C inventories and are given in Table 19. (Fractional release data for the Turkey Point fuel tests are omitted from Table 19 because <sup>14</sup>C inventory data were not obtained

for this fuel.) Since <sup>14</sup>C was only measured on one periodic solution sample prior to cycle termination, this single value is assumed for all solution samples in calculating the "solution samples" values for Table 19. Approximately twice as much <sup>14</sup>C release was measured in the H. B. Robinson slit and holes defect tests as in the bare fuel and undefected tests.

The undefected specimen data suggest that a significant portion of the  $^{14}\mathrm{C}$  release originates from the cladding external surface. Activation of cladding nitrogen impurities and  $^{17}\mathrm{O}$  in the  $\mathrm{ZrO}_2$  passive layer on the cladding surface are possible sources for this  $^{14}\mathrm{C}$ . Another probable source is the reactor primary cooling water, which contains a relatively large  $^{17}\mathrm{O}$  inventory.  $^{14}\mathrm{C}$  deposited onto the cladding external surfaces from the primary coolant during irradiation may be the predominant source of  $^{14}\mathrm{C}$  released from the undefected fuel specimens, since dissolution of the cladding or the very insoluble Zircaloy or  $\mathrm{ZrO}_2$  surface layer would not be required for such release. As a component of deposited cladding "crud,"  $^{14}\mathrm{C}$  inventory on the cladding surface may be quite variable.

TABLE 18

14C ACTIVITIES MEASURED IN SAMPLES (pCi/ml)

|              |       | , .         | Sample   |           |      |              |            |
|--------------|-------|-------------|----------|-----------|------|--------------|------------|
| <u>Fuel*</u> | Cycle | <u>Days</u> | Type     | Bare Fuel | Slit | <u>Holes</u> | Undefected |
| HBR          | 1     | 63          | Solution | 19.8      | 13.1 | 5.41         | 22.5       |
| HBR          |       | 223         | Solution | 25.7      | 55.9 | 96.4         | 19.8       |
| HBR          | 2     | 154         | Solution | 22.5      | 75.7 | 68.0         | 14.0       |
| HBR          | 2     | 202         | Solution | 24.3      | 68.9 | 44.6         | 7.2        |
| HBR          | 2     | 202         | Rinse    | 5.41      | 3.6  | 4.9          | 9.9        |
| TP           | 1     | 181         | Solution | 52.7      | 72.1 | 16.7         | 9.0        |
| TP           | 2     | 154         | Solution | 54.1      | 34.7 | 32.9         | 7.7        |
| TP           | 2     | 195         | Solution | 45.0      | 35.6 | 34.2         | 11.3       |
| TP           | 2     | 195         | Rinse    | 5.86      | 2.25 | 2.70         | 2.7        |

<sup>\*</sup>HBR = H. B. Robinson, TP = Turkey Point.

TABLE 19

14C RELEASE DATA (nCi)
FROM H. B. ROBINSON FUEL TESTS

|                           | Bare Fuel | Slit_Defect | Holes Defect | Undefected |
|---------------------------|-----------|-------------|--------------|------------|
| Cycle l                   |           |             |              |            |
|                           |           |             |              |            |
| Solution Samples*         | 1.9       | 1.2         | 0.5          | 2.1        |
| Final Solution            | 6.4       | 14.0        | 24.1         | 5.0        |
| [ <sup>14</sup> C (ppt)]  | (5.8)     | (12.5)      | (21.6)       | (5.0)      |
| Total Release             | 8.3       | 15.2        | 24.6         | 7.1        |
| ` ÷ 10 <sup>-5</sup> Inv. | 17        | 30          | 49           | 15         |
|                           |           |             |              |            |
| Cycle 2                   |           | . •         |              |            |
| •                         |           | : .         |              |            |
| Solution Samples*         | 1.5       | 4.9         | 4.4          | 0.9        |
| Final Solution            | 6.1       | 17.2        | 11.2         | 1.8        |
| [ <sup>14</sup> C (ppb)]  | (5.4)     | (17.0)      | (10.0)       | (1.6)      |
| Rinse                     | 3.2       | . 2.2       | 2.9          | 5.9        |
| Total Release             | 10.8      | 24.3        | 18.5         | 8.6        |
| ÷ 10 <sup>-5</sup> Inv.   | 21        | 48          | 37           | : 18       |
|                           |           |             |              |            |
| Sum Cycle 1 & 2           |           |             |              |            |
|                           |           |             |              |            |
| Total Release             | 19.1      | 39.5        | 43.1         | 15.7       |
| : 10 <sup>-5</sup> Inv.   | 38        | 78          | 86           | 32         |
| * .                       |           |             | •            |            |

<sup>\*14</sup>C measured in 63-day Cycle 1 sample and 154-day Cycle 2 sample assumed for all periodic solution samples for those Cycles.

 $\mathcal{C}_{\mathbf{a}} = \{\mathbf{c}_{\mathbf{a}}, \dots, \mathbf{c}_{\mathbf{a}}, \dots, \mathbf{c}_{\mathbf{a}}\} = \{\mathbf{c}_{\mathbf{a}}, \dots, \mathbf{c}_{\mathbf{a}}, \dots, \mathbf{c}_{\mathbf{a}}\}$ 

# 3.11 <u>COBALT</u>

Cobalt-60 is an activation product produced by neutron activation of <sup>59</sup>Co and (n,p) reaction on <sup>60</sup>Ni. With a 5.26-year half-life, <sup>60</sup>Co will decay out long before the end of the containment period. However, the relatively high gamma energy (1.3 MeV) associated with its decay requires heavy shielding for attenuation. Since <sup>60</sup>Co is an activation product, its inventory and distribution in young spent fuel may vary considerably depending on cobalt and nickel impurity levels in the fuel and cladding, the use of nickel containing alloys for in-reactor hardware, and upon the efficiency of <sup>60</sup>Co removal from the reactor coolant.

A tabulation of  $^{60}$ Co activity actually measured in various samples is contained in Table 20. Much greater release of  $^{60}$ Co occurred in the Turkey Point fuel tests than in the H. B. Robinson fuel tests. Also, greater release occurred from the defected specimens than from the undefected specimens, indicating the fuel, the gap, or the cladding inner surface as a significant source. Excess release from the defected specimens relative to undefected specimens was particularly notable with the Turkey Point fuel. The 287 µCi of <sup>60</sup>Co release measured in the Turkey Point bare fuel test is greater than the measured release for all other radionuclides except 13/Cs in these tests. This is interesting since "crud" layers plated out from the reactor coolant are usually thought of as primary sources of  $^{60}$ Co activity. Considering the relative increase in  $^{60}$ Co release going from undefected to holes to slit to bare fuel tests in comparison with the actinide release data, the data suggest that cobalt or nickel may have been a significant impurity in the as-fabricated Turkey Point fuel. Another possible source of excess <sup>60</sup>Co inventory in the Turkey Point fuel specimens may have been prior handling in contaminated hot cells at BCL where the specimens were originally prepared for pressurized stress rupture testing. Turkey Point fuel from the same assembly showed similar  $^{60}$ Co release in the Series 1 tests conducted a year earlier. (4)

TABLE 20
60Co RELEASE DATA (μCi)

the control of the co

|                              | Ba<br>HBR | re Fuel<br>TP | HBR      | it Defect<br>TP      | Holes<br>HBR                     |                 | Unde:       | fected TP |
|------------------------------|-----------|---------------|----------|----------------------|----------------------------------|-----------------|-------------|-----------|
| Cycle 1                      | .,        | ·             | , , ,    | - , - <del>- ,</del> |                                  | · <del></del> , |             | •         |
|                              |           |               |          | 6 3 year             |                                  |                 |             | . :       |
| Solution Samples             | þd        | 34.7          | bd       | 3.69                 | bd                               | 0.45            | 0.013       | 0.07      |
| Final Solution               | bd        |               | bd       | 11.7                 | bd                               | 1.85            | 0.037       | 0.21      |
| [ <sup>60</sup> Co (ppt)]    |           | (544)         |          | ਵਾ (41) ਾ <i>'</i>   | 1, <del>- 4</del> )              | (6.5)           | (0.13)      | (0.7)     |
| Rod Samples                  | · 0.      | 03: *** 0.4   | ⊷ bd     | > {0.04              | , bd                             | 0.004           | Ьd          | 0.004     |
| Rinse                        | bd        | 47.6          | bd       | 0.68                 | bd                               | 0.09            | , bd ,      | Ъđ        |
| Acid Strip                   | bd        | 5.0           | bd       | 2.12                 | bd                               | 0.29            | bd          | 0.07      |
| Total Release                |           | 242           | **       | 18.2                 |                                  | 2.68            | 0.05        | 0.35      |
| % in Solution                |           | 78            |          | 34                   |                                  | 86              | 100         | 79 ·      |
| X.                           | : •       |               | ***.     | 1 10 0               | 1.                               | •               |             |           |
| Cycle 2                      |           |               | •        | 1. Fry               | 100                              | *               |             | ⋰,        |
| · i · · · · ·                | •,        |               | 7        |                      | e e e                            | it is a         |             | 12        |
| Solution Samples             | 0.        | .21 9.1       | þd       | 0.40                 | bd                               | 0.04            | bd          | 0.003     |
| Final Solution               | 1.        | 16 32.9       | bd       | 1.84                 | bd                               | 0.12            | Ьd          | 0.018     |
| [ <sup>60</sup> Co (ppt)]    | (4.       | 1) (116)      | <u> </u> | (6.5)                |                                  | (0.4)           | ·,          | (0.06)    |
| Rod Samples                  | bd        | 0.6           | bd       | 0.02                 | bd ·                             | 0.001           | bd .        | 0.001     |
| Rinse .                      | · Þd      | 1.6           | bd       | 0.14                 | bd                               | ⊕bd             | .,.bd       | bd        |
| Acid Strip                   | bd        | 1.1           | bd       | 0.27                 | bd .                             | 0.04            | Ьd          | Ьd        |
| Total Release                | 1.        | 37 45         |          | 2.7                  |                                  | 0.20            |             | 0.022     |
| % in Solution                |           | 93            |          | 84                   |                                  | 80              |             | 95        |
| 25 2                         | 10 2000   |               |          | 37 6 8 10°           | $M: \mathcal{M} \to \mathcal{M}$ |                 | <b>.</b>    | 200       |
| Sum Cycle 1 & 2              | 21        | 1 10 10 m     | . 🧘 :    | Assistant Little     | . :                              |                 | :           | · 5,51    |
| and the second of the second | 1736 m    | i             |          | ican do.             | ed late                          | . 3             |             | 5100      |
| Total Release                | ,1.       | 40 287        |          | 20.9                 | 7 . d 📆 (                        | 2.88            | 0.05        | 0.37      |
| \$ 12 m                      | tri, .    | 1008 T 2003   | · ·      | ar fire a            | : 1 (2 to 1)                     | . Fyr           | O te,       | 1         |
| bd = below detec             | tion limi | <br> +   (5)  | (j )     |                      | in 15                            | 1               | · [ . s i . |           |
| ppt = parts per 1            |           |               |          |                      | •                                |                 |             | •         |

· ·

HE DESIGNATED TO THE TRAIN OF THE PROTECTION OF THE STATE SWITTER CONTRACTOR OF THE SWITTER SW

:

÷

# 3.12 SOLUTION CHEMISTRY

The starting J-13 water and selected periodic solution samples from each test were analyzed by ICP emission spectrometry for metal cations and by ion chromatography (IC) for anions. All solution samples were measured for pH. Total and inorganic carbon were also measured on most samples receiving ICP and IC analyses. Inorganic carbon ( $\mu g/ml$  carbon) was assumed to be 100%  $C0_3^{-}$ , and equivalent  $C0_3^{-}$  was calculated by multiplying the inorganic carbon value by 5 (i.e., to convert from 12 g atomic weight to 60 g mole weight for  $C0_3^{-}$ ). Complete solution chemistry data (pH, ICP, IC and  $C0_3^{-}$ ) for all Cycle 1 and 2 solution samples receiving ICP and IC analyses are given in Appendix B. ICP, IC and carbon analyses were performed on 0.4- $\mu m$  filtered sample fractions only.

The solution chemistry data indicate that the overall chemistry of the J-13 water changed very little during any of the tests. The initial pH of the J-13 water barrel (fresh full barrel) was 7.2 when first sampled at HEDL just before Cycle 1 start. The chemistry shifted slightly basic to pH  $\sim$ 8.5 during Cycle 1. After using several gallons of J-13 water from the barrel, the water in the barrel also apparently shifted slightly basic because of equilibration with air, and the pH of the J-13 water at the start of Cycle 2 was  $\sim$ 8.0. The pH shifted to  $\sim$ 8.5 during the Cycle 2 tests (the same pH value reached during Cycle 1).

Silicon concentration in solution was of particular interest since the tests were run in fused silica vessels. Except for a 20% to 30% drop in Si in the 30-day and 120-day Cycle 1 H. B. Robinson samples, Si concentration remained relatively constant at 30 to 32 µg/ml during the tests. Later SEM characterization of residue rinsed from fuel particle surfaces indicated that Si (most likely as a silica gel) deposited onto the fuel surfaces. Apparently, silica dissolved from the vessel at about the same rate that it deposited on the fuel particles, maintaining a constant (equilibrium?) silica concentration in solution.

÷

Another minor solution change that occurred, apparently because of radiolysis, was conversion of some of the initial  $NO_3$  to  $NO_2$ . The  $NO_2$  values reported are best estimates since  $NO_2$  calibration standards were not used in the IC analyses. The source of  $NO_2$  is thought to be primarily  $NO_3$  radiolysis rather than dissolved air radiolysis, since the measured  $NO_3$  in solution usually decreased with increasing  $NO_2$ .

The initial ICP analyses through Cycle 1 of the H. B. Robinson tests included Al, B, Ca, Cr, Fe, Gd, K, Li, Mg, Mo, Na, Si, U and Zn. (These initial 14 elements are those analyzed on solution samples from spent fuel testing in support of the basalt repository.) Two sets of ICP analyses were run on the 223-day Cycle 1 H. B. Robinson samples. In the second set, Cr, Gd, Li, U, and Zn were replaced by Nd, Pd, Ru, Sr and Zr. Cr and Gd were deleted since they were always below detection limits and Li was deleted because it was usually reported as a "less than" value, but Li concentration was apparently at about its 0.016  $\mu$ g/ml detection limit. Uranium was deleted since the laser fluorescence method used on all samples was more sensitive. The Nd, Pd, Ru and Sr are major fission product elements that were not measured radiochemically. (Radiochemical measurement of  $^{90}$ Sr was started later in the Cycle 2 tests). Zr was also of interest since the tests included the cladding.

The final Cycle 1 solution samples, and all Cycle 2 samples, used the second 14-element ICP analyses set. Nd, Pd, Ru and Zr measured in the later ICP analyses are not included in Appendix B since they were always below detection limits. Cr, Gd, and Li measured in the initial ICP analyses are also excluded from Appendix B for the same reason.

## 3.13 SOLIDS CHARACTERIZATION

. .

Four types of solids characterization were performed: 1) SEM of small fractured fuel particles, 2) SEM examination with energy dispersive x-ray (EDX) microanalysis of filters used to filter solution samples, 3) SEM and EDX analysis of bare fuel rinse residues obtained at the end of test cycles, and 4) post-test radiometallurgical examination of polished sections from test specimens.

, <u>'</u>k

Ŷ,

# 3.13.1 SEM Characterization of Fuel Particles

SEM photographs of the fracture surface on small particles of the Turkey Point and H. B. Robinson spent fuels are compared with the fracture surface of an unirradiated  $\rm UO_2$  fuel pellet in Figure 12. Unirradiated  $\rm UO_2$  is a hard ceramic material that exhibits transgranular cleavage when fractured. The irradiated fuel is friable and commonly fractures along grain boundaries, as shown in Figures 12B and 12C. Accumulation of fission products at the grain boundaries during irradiation is thought to cause the change in fracture properties. Areas of cleavage fracture and mixed cleavage and grain boundary fracture (see Figure 13) were observed in some spent fuel particles thought to be from near the outer radial regions in the fuel where irradiation temperature is lower and less fission product migration to grain boundaries occurs.

The non-homogeneous chemical microstructure resulting from fission product migration and secondary phase separation is thought to cause the incongruent dissolution behavior observed with spent fuel. The spent fuel dissolution data reported here suggest congruent release of actinides as the oxide fuel matrix dissolves and indicate preferential leaching of fission products Tc, Cs, Sr and I, and activation product <sup>14</sup>C. Fission products expected to have low solubility in the oxide fuel matrix are metallic fission products: Mo, Tc, Ru, Rh, Pd, Ag, Cd and Sn; inert gases: Kr and Xe; and others, including Se, Cs, Rb, Sr, Ba, Te and I. (See Figure 11.) Very small fission gas bubbles in the fuel matrix and along grain boundaries may provide nucleation sites for condensed fission product phases, which may coalesce and grow, depending on local irradiation temperature.

69

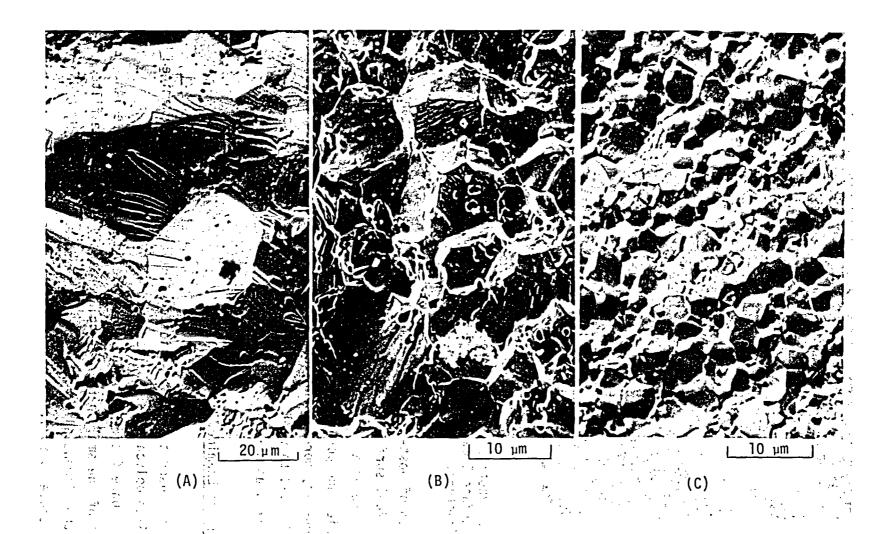
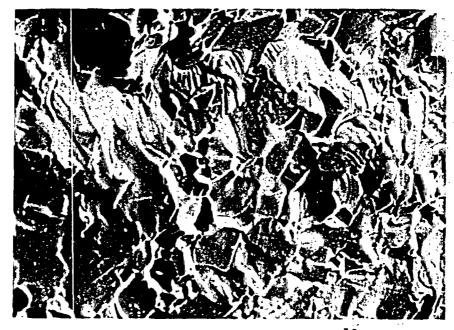




FIGURE 12. SEM Photographs of Fracture Surfaces of (A) Unirradiated UO<sub>2</sub> Fuel Pellet, (B) Turkey Point Fuel After Cycle 1 Testing, and (C) H.B. Robinson Fuel Before Testing.



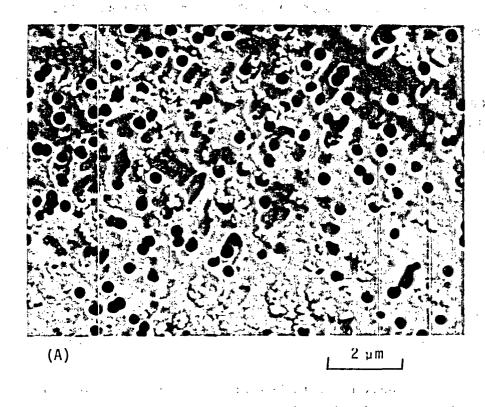
10·μm

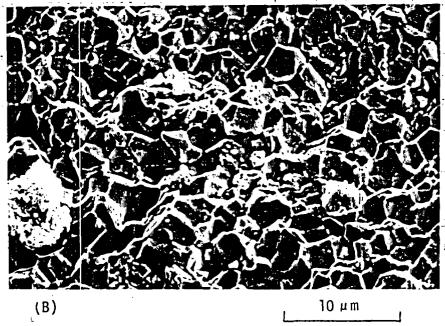
FIGURE 13. SEM Photograph of Pre-test H. B. Robinson Spent Fuel Fracture
Surface Showing Region of Mixed Cleavage and Grain Boundary
Fracture.

SEM examination of post-test fuel particles did not reveal substantial alteration of fuel surface characteristics in dense regions exhibiting cleavage fracture as a result of testing. Several regions exhibiting open grain boundaries and possibly enhanced porosity as a result of testing were examined. However, more extensive examination of both pre-test and post-test fuel is needed to verify the extent of microstructural alteration that may have occurred as a result of testing.

# 3.13.2 Filters Examination

Selected filters used to filter periodic solution samples were examined by SEM. The 0.4- $\mu$ m polycarbonate filter used on the 181-day Cycle 1 H. B. Robinson bare fuel test solution sample is shown in Figure 14A. EDX microanalysis of the small particle agglomerates visible on the filter showed only the element Si (lighter elements present, such as H, C and O, are not detectable by EDX).

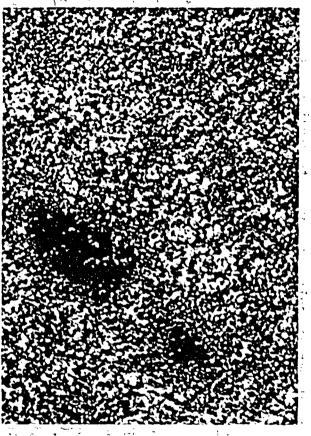

14 . 4:

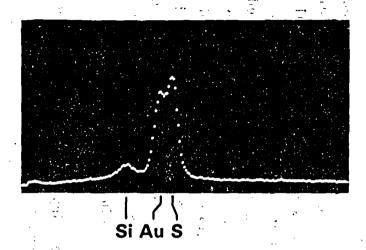

SEM examination data on a portion of the 18-A membrane cone filter used on the same 181-day Cycle 1 H. B. Robinson bare fuel test solution sample are shown in Figure 15. The filter portion shown is near the bottom tip of the filter where most of the filtered material would collect as solution is centrifically forced through the filter. The filter surface is nearly completely covered by the fine filtered floc. EDX analysis showed only the elements Si, Au and S. The low intensity of the Si K-line peak relative to the Au M-line peak (~200 A of Au was sputtered onto the specimen surface) and the sulfur K-line peak originating from the underlying filter membrane, suggests that the dried silica floc has very low density.

#### 3.13.3 Rinse Residue Examination.

When rinsing the H. B. Robinson bare fuel particles in a 250-ml beaker at the end of Cycle 1, the rinse water became dark and turbid. The fuel particles were rinsed with just enough J-13 water in the beaker to cover the particles. The beaker was rocked back and forth allowing the particle to slide side-to-side in the water. The rinse procedure was repeated 10 times and the rinse water became slightly grey even after the tenth rinse. The collected rinse water was allowed to settle overnight, sampled, and then decanted from the settled residue in the bottom of the 1000-ml rinse water collection beaker. The dried particulate residue weight was 186 mg. The rough loose granular appearance of the H. B. Robinson bare fuel particle surface shown in Figure 14B suggests that many fuel grains may have been released from the surfaces of these particles.

When Cycle 1 of the Turkey Point bare fuel test was terminated, the rinse procedure was modified and the fuel was only rinsed five times in the 250-ml beaker. Residue weight from the Cycle 1 Turkey Point bare fuel rinse was only 12.3 mg. Lesser quantities of residue appeared to have settled from the bare fuel rinse solutions at the end of Cycle 2. Although rinse solution residue was visible at the end of Cycle 2, the quantity appeared to be much less than that from Cycle 1 and was not collected and weighed.




3.

3

FIGURE 14. (A) SEM Photograph of 0.4- $\mu$ m Polycarbonate Filter Used to Filter 181-Day H. B. Robinson Cycle 1 Bare Fuel Test Solution Sample. EDX analysis showed only the element Si in the small particles visible on the filter (assumed to be colloidal silica flocs). (B) Silica Flocs on an H. B. Robinson Fuel Particle.





EDX SPECTRUM
Si — FROM SOLUTION SAMPLE
S — FROM FILTER
Au — GOLD COATED SPECIMEN

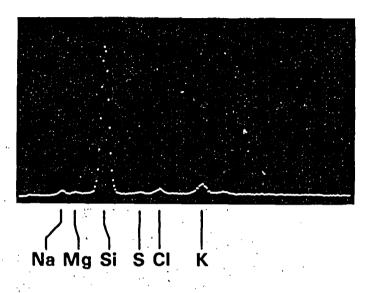
2 μm

HEDL 8502-021.20

FIGURE 15. SEM Photograph of Bottom Inner Surface of 18-A Filter Cone used to Filter 181-Day Cycle 1 H. B. Robinson Bare Fuel Test Solution Sample. Energy dispersive x-ray (EDX) spectra shows only Si in the filtered material, plus gold from specimen coating and S from the filter. Neg 8500845-2

An SEM image of the larger particles in the Cycle 1 H. B. Robinson bare fuel test rinse residue is shown in Figure 16. The particle is a small fuel fragment that has been coated by a surface layer of material that cracked and partially spalled when dried. EDX analysis of the surface layer showed primarily the element Si. The layer appears to be a silica gel layer ranging from 10  $\mu$ m to 25  $\mu$ m in thickness. Similar layers were observed on several other fuel particles. Figure 17 shows flakes of the silica material with fine UO<sub>2</sub> particles adhering to the surfaces which had apparently interfaced with fuel. Similar appearing silica layers were also observed on fuel particles in the Cycle 1 Turkey Point bare fuel rinse residue. The quantity of Si involved in the deposited layers would appear to be a significant portion of (or greater than) the  $\sim$ 7.5 mg of Si contained in the 250-ml of J-13 water. Dissolution of the fused silica test vessel must have occurred during the test to maintain the  $\sim$ 30  $\mu$ g/ml Si in the test solution.

The effect of a silica gel coating on the leaching behavior of fuel is not known. Most previous ambient temperature spent fuel leaching has been conducted with bare fuel particles in fused silica vessels. Series 3 NNWSI spent fuel leach testing will be conducted in stainless steel vessels. One vessel will be run at ambient hot cell temperature to provide a comparison with the Series 2 results.


# 3.13.4 Metallographic Examination

At the end of each test cycle, particles of bare fuel were removed from the test, metallographically mounted, polished, and optically examined. Particular attention was given to examination of the particle section edge for evidence of grain boundary dissolution. Significant localized grain boundary dissolution was observed in Series 1 Turkey Point bare fuel particles tested in deionized water. However, no significant evidence of grain boundary dissolution was visible by optical metallographic examination of Series 2 H. B. Robinson or Turkey Point bare fuel particles at the ends of Cycles 1 or 2. Micrographs of bare fuel particle sections at the particle surface are shown in Figure 18. The probable explanation for the failure to find evidence of grain boundary dissolution in polished sections of Series 2 bare

3,

# **100** μm

# ● SPOT 1 EDX SPECTRUM



 SPOT 2 EDX SPECTRUM SHOWS ONLY URANIUM

HEDL 8502-021,2

FIGURE 16. Fine Fuel Particle from H. B. Robinson Bare Fuel Test Showing Remnants of Silica Layer Deposited on the Particle Surface During the Test. Neg 8500845-3

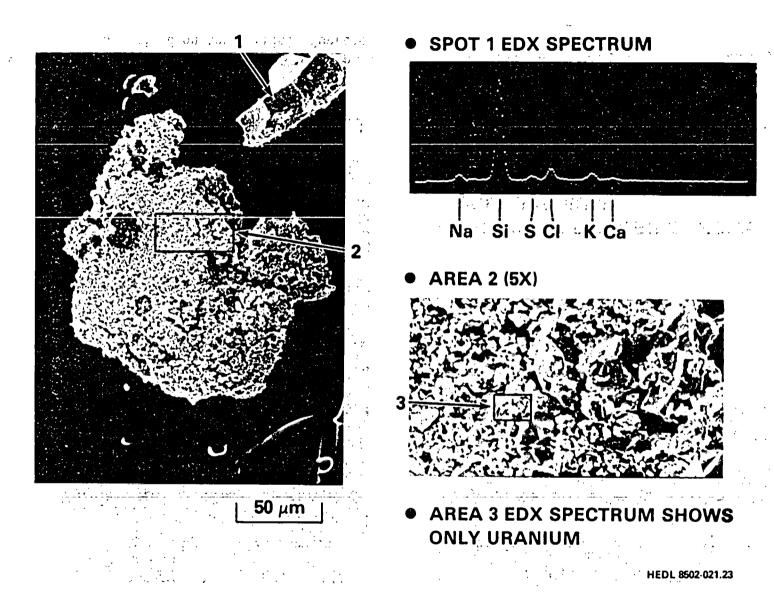



FIGURE 17. Particles from Cycle 1 H. B. Robinson Bare Fuel Rinse Residue Showing an Apparent Silica Gel Flake on Edge and a Particle Coated with Very Fine  $\rm UO_2$  Grains. Neg 8500845-5

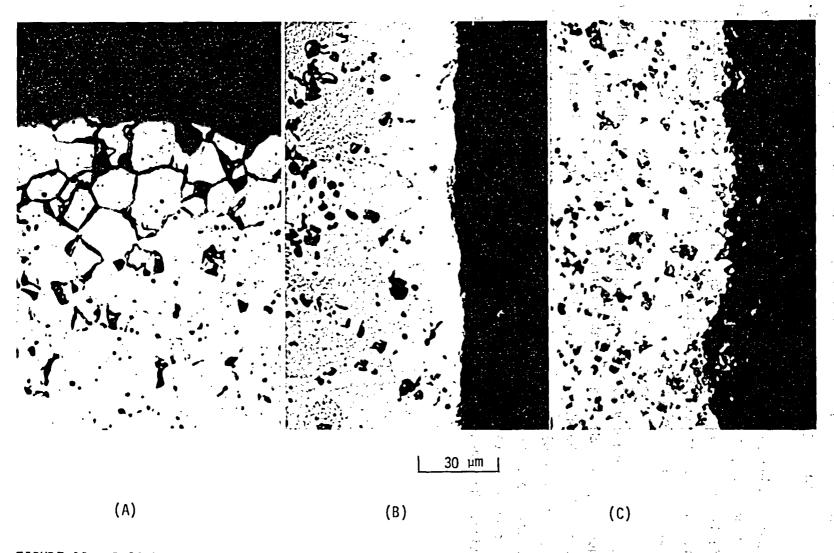



FIGURE 18. Polished Sections at Bare Fuel Particle Surfaces, (A) Turkey Point Fuel Tested for 250 days in Deionized Water, (4) (B) Turkey Point Fuel Tested 181 Days in J-13 Water, and (C) H. B. Robinson Fuel Tested 223 Days in J-13 Water. (All tested at ambient hot cell temperature; all micrographs taken at 750X.)

fuel particles may be that loose grains were removed from the fuel particle surface by the more aggressive rinsing procedure used in the Series 2 tests.

Micrographs showing polished sections through the H. B. Robinson and Turkey Point slit defect specimens are shown in Figure 19. Examination of the fuel at the fuel-cladding gap and along fuel cracks did not reveal any unusual appearing features that could be related to fuel dissolution in these sections from the slit defect tests.

Micrographs of cathodic vacuum etched sections from the slit defect specimens (see Figure 3), and SEM data indicated different as-fabricated initial grain size for the Turkey Point and H. B. Robinson fuels. Average initial grain size appeared to be  $\sim 6~\mu m$  for the H. B. Robinson fuel versus  $\sim 25~\mu m$  for the Turkey Point fuel. Some grain growth (i.e., to a 7-10  $\mu m$  range) appears to have occurred in the central region of the H. B. Robinson fuel during irradiation. No significant grain growth was observed in the Turkey Point fuel.

79

FIGURE 19. Polished Sections Through Slit Defect on (A) Turkey Point I-9-19 Specimen and (B) H. B. Robinson C5C-C Specimen.

٤.

|      |      | •                     |
|------|------|-----------------------|
|      |      | : :                   |
|      |      | •                     |
|      |      |                       |
|      |      |                       |
|      |      |                       |
|      |      |                       |
|      |      |                       |
|      |      | ***                   |
|      |      | .*                    |
|      |      |                       |
|      |      |                       |
|      |      |                       |
|      |      |                       |
| •    |      | ,                     |
|      |      |                       |
|      |      | *                     |
|      | •    |                       |
|      |      |                       |
|      |      |                       |
|      |      | and the second second |
|      |      |                       |
|      |      |                       |
|      |      |                       |
|      |      |                       |
| -    |      |                       |
| . •  |      |                       |
| *    |      |                       |
|      |      |                       |
| · -, |      | <i>i</i> .            |
| **   |      |                       |
| *    |      |                       |
| •    | •• • | ,                     |
|      |      |                       |
| •    |      |                       |
|      |      | . :                   |
| •    |      |                       |
|      |      | • •                   |
| •    |      |                       |
|      |      |                       |
|      |      | •                     |
| • •  |      | •                     |
| •    |      | *                     |
| ••   |      | *                     |
| •    |      | -                     |
|      |      | •                     |
| •    |      |                       |
|      |      | .*                    |
|      |      |                       |
|      |      | •                     |
|      |      |                       |
| <br> |      |                       |
| •    |      |                       |
|      |      |                       |

# 4.0 SUMMARY AND CONCLUSIONS

PWR spent fuel specimens were tested in NNWSI reference J-13 well water under ambient hot cell air and temperature conditions in fused quartz vessels. Four specimen configurations and two fuel types were tested. The specimen configurations were: 1) bare fuel plus the cladding, 2) fuel rod segments with water tight end fittings and a machined slit (0.006 inches wide by one inch long) through the cladding, 3) fuel rod segments with water-tight end fittings and small laser-drilled holes (~200 µm diameter) through the cladding, and 4) undefected fuel rod segments with water-tight end fittings. The four specimen configurations were tested using both H. B. Robinson and Turkey Point reactor spent fuels. The tests were semistatic in that periodic solution samples were taken and replenished with fresh J-13 water.

ng gashging, nengasik tahun 1986 bilan

After approximately 6 months, the first cycle of the tests was terminated, the specimens and apparatus rinsed, the vessels stripped in  $8\underline{M}$  HNO $_3$ , and the tests restarted in fresh J-13 water for a second cycle. Periodic solution samples, periodic fused quartz rod samples, terminal rinse samples, and terminal vessel acid strip samples were radiochemically analyzed and release values determined for major radionuclides of importance for spent fuel disposal. Results from test Cycles 1 and 2 of the Series 2 tests are reported.

and the section of the property of the second

The principal observations and conclusions from the Series 2 spent fuel dissolution tests are summarized below:

1) The actinides Pu, Am, Cm, and Np appear to be released congruently. Observed preferential releases of U relative to the other actinides were attributed to higher relative U solubility (i.e, higher percentage of released U in solution where it is readily measured) and to initial preferential U dissolution from oxidized UO<sub>2+x</sub> on the fuel surface. There was no conclusive evidence indicating actinide phase segregation in as-irradiated spent fuel that may result in non-congruent actinide release.

- 2) Highest observed uranium concentration was 4.8  $\mu$ g/ml. However U concentration tended to equilibrate towards a 1 to 2  $\mu$ g/ml range, apparently as a higher solubility UO<sub>2+x</sub> phase was depleted from the fuel surface and U solubility became controlled by a phase having lower U activity.
- 3) True (filtered) uranium solubility was much higher in J-13 water than in the deionized water used in the Series 1 tests. Most uranium measured in J-13 water Series 2 unfiltered samples was also measured in 0.4- $\mu$ m and 18-A filtered samples. Most Pu, Am, and Cm activity in unfiltered samples passed through the 0.4- $\mu$ m filter, and much of the Pu activity also passed through the 18-A filters.
- Most of the measured radionuclide release to solution occurred during the first few days of a test cycle with some species (e.g., U) then decreasing in concentration as lower chemical activity phases begin to control solubility.
- All of the principal fission product radionuclides measured ( $^{137}$ Cs,  $^{129}$ I,  $^{99}$ Tc, and  $^{90}$ Sr) were found to be released preferentially relative to the actinides.
- Activation product  $^{14}\text{C}$  was preferentially released (H. B. Robinson tests) relative to the actinides. A portion of the measured  $^{14}\text{C}$  release appears to originate from the external surface of the cladding.
- 7) Much lower fractional actinide release was measured in the slit and holes defect tests than in the bare fuel tests.
- 8) Actinide release measured in the tests with small laser-drilled holes through the cladding was not significantly greater than with undefected specimens.

Э.

- 9) A significant quantity of loose fuel grains was rinsed from the surface of bare fuel particles during test cycle termination, possibly loosened by grain boundary dissolution during the test.
  - 10) Silica, which appears to dissolve from the fused silica test vessels, deposited onto the bare fuel specimens during the tests.
  - 11) The J-13 water chemistry remained relatively stable during the tests.

\*\*\* T

1

:

¥,

# 5.0 REFERENCES STATE OF THE PROPERTY OF THE PR

1. <u>Code of Federal Regulations</u>, "Disposal of High-Level Radioactive Wastes in Geological Repositories - Licensing Procedures," Title 10, Chapter 1, Part 60, June 30, 1983 (cited as 10 CFR 60).

- 2. Code of Federal Regulations, "Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes," Federal Register, Vol. 50, No. 182 (September 19, 1985), pp. 38066-38089, Environmental Protection Agency, (40 CFR P191).
- 3. C. N. Wilson, <u>Test Plan for Spent Fuel Cladding Containment Credit Tests</u>, HEDL-TC-2353-2, Hanford Engineering Development Laboratory, Richland, WA, November 1983.
- 4. C. N. Wilson, <u>Results from NNWSI Series 1 Spent Fuel Leach Tests</u>, HEDL-TME 84-30, Hanford Engineering Development Laboratory, Richland, WA, May 1985.
- 5. C. N. Wilson, <u>Test Plan for Series 3 NNWSI Spent Fuel Leaching/Dissolution Tests</u>, <u>HEDL-7577</u>, Hanford Engineering Development Laboratory, Richland, WA, April 1986.
- 6. R. E. Einziger and R. E. Woodley, "Low-Temperature Spent Fuel Oxidation Under Tuff Repository Conditions," <a href="Proceedings of the Waste Management 85 Conference">Proceedings of the Waste Management 85 Conference</a>, Tucson, AZ, March 24-28, 1985, Vol. 1, pp. 505-512, 1985.
- 7. C. N. Wilson, <u>Test Plan for Series 2 Spent Fuel Cladding Containment Credit Tests</u>, <u>HEDL-TC-2353-3</u>, Hanford Engineering Development Laboratory, Richland, WA, October 1984.
- 8. "Termination of the Second Run NNWSI C5C and I-9 Tests," EDT-A-12113, C. N. Wilson (WHC) to V. M. Oversby (LLNL), Hanford Engineering Development Laboratory, Richland, WA, August 6, 1985.
- 9. J. O. Barner, <u>Characterization of LWR Spent Fuel MCC-Approved Testing Material ATM-101</u>, PNL-5109, Pacific Northwest Laboratory, Richland, WA, June 1984.
- 10. R. B. Davis and V. Pasupathi, <u>Data Summary for the Destructive</u>

  Examination of Rods G7, G9, J8, I9 and H6 from Turkey Point Fuel

  Assembly B17, HEDL-TME 80-85, Hanford Engineering Development
  Laboratory, Richland, WA, April 1981.
- 11. A. G. Croff and C. W. Alexander, <u>Decay Characteristics of Once-Through LWR and LMFBR Spent Fuels</u>, <u>High Level Wastes</u>, and <u>Fuel Assembly Structural Material Wastes</u>, <u>ORNL/TM-7431</u>, Oak Ridge National Laboratory, Oak Ridge, TN, November 1980.

- 12. F. P. Roberts, The Determination of Radiostrontium by Ion Exchange, HW-69511, Hanford Engineering Development Laboratory, Richland, WA, 1961.
- 13. J. F. Kerrisk, Solubility Limits on Radionuclide Dissolution at a Yucca Mountain Repository, LA-9995-MS, Los Alamos National Laboratory, Los Alamos, NM, May 1984.
- 14. V. M. Oversby and C. N. Wilson, "Derivation of a Waste Package Source Term for NNWSI from the Results of Laboratory Experiments," UCRL-92096, presented at Materials Research Society 1985 Symposium on the Scientific Basis for Nuclear Waste Management, Stockholm, Sweden, September 9-11, 1985.
- 15. D. O. Campbell and S. R. Buxton, "Hot Cell Studies of Light Water Reactor Fuel Reprocessing," CONF 761103-13, American Nuclear Society Meeting, Washington, DC, November 15-19, 1976.

•

A P P E N D I X × A 1/25 L 200 L 200 L 200 L

# RADIONUCLIDE INVENTORY AND RADIOCHEMICAL DATA

# TABLES

| <u>Table</u> |                                             | Page |
|--------------|---------------------------------------------|------|
| A.1          | Activity-Concentration Conversion Factors   | A-4  |
| A.2          | C5C-H Bare Fuel Test Radiochemical Data     | A-9  |
| A.3          | C5C-E Slit Defect Test Radiochemical Data   | A-11 |
| A.4          | C5C-C Holes Defect Test Radiochemical Data  | A-13 |
| A.5          | C5C-A Undefected Test Radiochemical Data    | A-15 |
| A.6          | I-9-24 Bare Fuel Test Radiochemical Data    | A-17 |
| A.7          | I-9-19 Slit Defect Test Radiochemical Data  | A-19 |
| A.8          | I-9-12 Holes Defect Test Radiochemical Data | A-21 |
| A. 9         | I-9-1 Undefected Test Radiochemical Data    | A-23 |

#### APPENDIX A

# RADIONUCLIDE INVENTORY AND RADIOCHEMICAL DATA

# A.1 RADIONUCLIDE INVENTORY DATA

Specimen radionuclide inventories used for most calculations in this report were calculated from ORIGEN-2 data given in PNL-5109 (A1) for the ATM-101 H. B. Robinson Unit 2 PWR fuel 10 years after reactor discharge. Since the Turkey Point fuel was very similar (same vendor, same design, similar vintage and same 2.55% <sup>235</sup>U initial enrichment), these ORIGEN-2 data were considered appropriate for both fuels. A factor of 0.8815 was then applied to convert the inventories from a per gram metal basis to a per gram fuel basis. The resulting per gram fuel radionuclide inventories are given in Table 3 of the text. Specimen weights required for calculating per specimen radionuclide inventories are contained in Table 1 of the text.

# A.2 RADIOCHEMICAL DATA

With the exception of uranium, all radiochemical data were reported as disintegrations per minute (dpm) per ml of solution or per rod sample. Data were converted from dpm to pCi units using the conversion factor of 1 pCi equal to 2.22 dpm. Since the primary concern was radioactivity release, most data evaluations were based on the pCi activity levels of each radionuclide rather than concentrations. The pCi activity results for all radionuclide determinations, and uranium results as  $\mu g/ml$  (ppm) or  $\mu g/rod$ , are given for each individual test in Tables A-2 through A-9 of this appendix.

C 10 2 10 10

For chemical and equilibria considerations, it is usually more useful to consider elemental concentrations rather than radionuclide activities. Concentrations may be calculated using Equations (A.1) and (A.2). The  $\mu g/pCi$  and isotope/element conversion factors for Equation A.1 are contained in Table A.1.

TABLE A.1
ACTIVITY-CONCENTRATION CONVERSION FACTORS

| Radionuclide      | ug/pCi                  | Turkey Point* | H. B. Robinson* |
|-------------------|-------------------------|---------------|-----------------|
| <sup>14</sup> c   | $2.24 \times 10^{-7}$   |               |                 |
| 60 <sub>Co</sub>  | $8.82 \times 10^{-10}$  |               |                 |
| 79 <sub>Se</sub>  | $1.44 \times 10^{-5}$   | 0.105         | 0.106           |
| 90 <sub>Sr</sub>  | $7.07 \times 10^{-9}$   | 0.546         | 0.546           |
| <sup>99</sup> Tc  | 5.87 x 10 <sup>-5</sup> | 1.000         | 1.000           |
| 129 <sub>I</sub>  | 6.13 x 10 <sup>-3</sup> | 0.76          | 0.76            |
| 137 <sub>Cs</sub> | 1.16 x 10 <sup>-8</sup> | 0.40          | 0.40            |
| 237 <sub>Np</sub> | $1.42 \times 10^{-3}$   | 0.999         | 0.99999         |
| 238 <sub>Pu</sub> | 5.72 x 10 <sup>-8</sup> | 0.012         | 0.014           |
| 239 <sub>Pu</sub> | 1.63 x 10 <sup>-5</sup> | 0.595         | 0.577           |
| 240 <sub>Pu</sub> | $4.41 \times 10^{-6}$   | 0.255         | 0.263           |
| 241 <sub>Am</sub> | 3.09 x 10 <sup>-7</sup> | 0.863         | 0.840           |
| 244 <sub>Cm</sub> | $1.20 \times 10^{-8}$   | 0.930         | 0.930           |

<sup>\*</sup>Isotope-to-element mass ratio based on ORIGEN-2 data in PNL-5109 interpolated to 27.7 MWd/kgM for Turkey Point and 30.2 MWd/kgM for H. B. Robinson burnup, 10 years after discharge.

Elemental Concentration 
$$(\mu g/ml) = \frac{Activity (pCi/ml) \times (\mu g/pCi)}{isotope/element}$$
 (A.1)

For conversion to molarity:

Molarity (mole/
$$\ell$$
) =  $\frac{m_{eff} - \mu g/ml}{1000 \times atomic mass}$  (A.2)

For calculation of Pu concentration from  $^{239}$ Pu +  $^{240}$ Pu pCi/ml data using Equation (A.1), the  $^{239}$ Pu (or  $^{240}$ Pu) pCi/ml value is needed. The  $^{239}$ Pu/ ( $^{239}$ Pu +  $^{240}$ Pu) activity ratio should be 0.374 for the H. B. Robinson fuel and 0.389 for the Turkey Point fuel based on the PNL-5109 ORIGEN-2 data.

## A.3 RADIOCHEMISTRY ERROR ESTIMATES

The primary sources of error in the reported radiochemistry data are:

- Volume measurement errors incurred during sample aliquot preparations
- Recovery errors involved in radiochemical separations
- Counting statistics

A summary of estimated error resulting from these factors is given below:

•  $239+240_{Pu}$ ,  $238_{Pu}$  +  $241_{Am}$ ,  $244_{Cm}$ 

Method: Direct plate followed by total alpha counting and alpha spectrometry.

Volume Errors: +2%

Recovery: 100% (no separation required)

Counting Statistics at  $\pm 1\sigma$ :

1 dpm/m1 (0.45 pCi/m1) =  $\pm 60\%$ 10 dpm/m1 (4.5 pCi/m1) =  $\pm 8\%$ 100 dpm/m1 (45 p Ci/m1) =  $\pm 2.5\%$ 1000 dpm/m1 (450 pCi/m1) =  $\pm 1.5\%$ 

The counting statistics for 1, 10 and 100 dpm/ml are based on a  $100-\mu$  aliquot plate counted for 480 minutes with a background of 0.2 cpm. The 1000 dpm/ml counting statistic is based on a  $100-\mu$  aliquot plate counted for 100 minutes with a background of 1 cpm. (Higher activity plates are counted on higher background counters, saving newer, lower-background counters for low activity samples.)

# 241<sub>Am</sub>

Method: Separation by anion exchange, plate, alpha count, and alpha spectrometry.

Volume Errors: +3%

Recovery: 97 + 2%

Counting Statistics: Same as above for direct plate alpha since  $\ensuremath{\mathsf{S}}$ 

the same volumes, counting times, and

₹.

.

equipment are used.

# 237<sub>Np</sub>

Method: Separation by cation exchange and solvent extraction.

Volume errors: +2%

Recovery: 98 <u>+</u> 2%

Counting Statistics at  $\pm 1\sigma$ :

1 dpm/m1 (0.45 pCi/m1) =  $\pm 30\%$ 10 dpm/m1 (4.5 pCi/m1) =  $\pm 6\%$ 100 dpm/m1 (45 p Ci/m1) =  $\pm 4\%$ 1000 dpm/m1 (450 pCi/m1) =  $\pm 1\%$ 

The  $^{237}$ Np counting statistics for 1 and 10 dpm/ml are based on a 200-µ2 aliquot plate counted for 480 minutes with a background count of 0.2 cpm. Counting statistics for 100 and 1000 dpm/ml are based on a 100-minute count with a background of 1 cpm.

television of the second

# 99<sub>Tc</sub>

Method: Separation by cation exchange and solvent extraction followed by beta proportional counting.

THE PROPERTY OF WITHOUT AND ADMINISTRA

the bearing the

A transfer of the state of the

Volume Error: +4%

Recovery: 94 ± 2%

Counting Statistics:

Lower limit 20 dpm/ml at  $2\sigma$ 100 dpm/ml (45 pCi/ml) =  $\pm$ 11% at  $1\sigma$ 1000 dpm/ml (450 pCi/ml) =  $\pm$ 1.6% at  $1\sigma$ 

The <sup>99</sup>Tc counting statistics are based on a 500-µ£ aliquot extracted into 5 m£ with 2 m£ plated for beta counting. Counting time is 100 minutes with a background of 30 cpm.

# 137<sub>Cs</sub>, 134<sub>Cs</sub>, 60<sub>Co</sub>

Method: Gamma spectrometry

Volume Errors: +2%

Recovery: 100% (no separation required)

Counting Statistics at +10:

1000 dpm/m1 (450 pCi/m1) =  $\pm 20\%$ 10,000 dpm/m1 (4500 pCi/m1) =  $\pm 8\%$ 100,000 dpm/m1 (45,000 pCi/m1) =  $\pm 2\%$ 10<sup>6</sup> dpm/m1 =  $\pm 1$ 

Based on 1-me aliquot counted for 60 minutes.

#### Uranium

Method: Scintrex UA-3 uranium analyzer, laser-excited fluorescence.

Overall error is estimated to be  $\pm 10\%$  at  $1\sigma$  when the instrument is operating in its optimum range. The lower limit is 0.001 µg/ml (+0.001 µg/ml) using a 100 µl sample aliquot.

۶.

# A.4 REFERENCES

Al. J. O. Barner, <u>Characterization of LWR Spent Fuel MCC-Approved Testing Material ATM-101</u>, <u>PNL-5109</u>, <u>Pacific Northwest Laboratory</u>, <u>Richland</u>, <u>WA</u>, <u>June 1984</u>.

TABLÉ A.2
C5C-H BARE FUEL TEST RADIOCHEMICAL DATA

|                                 |                                   |                    |                         |                                                          |                      |              | Pu                                                       | -239+Pu-24                       | 0        | An                                                       | -241+Pu-23           | 8         | <u>.</u>                                                 | _Am-241*                         | <del></del> |                                                          | Cm-244                           |          |                                                          | Cs-137               |                      |                                                          | Cs-134                           | <u> </u> |
|---------------------------------|-----------------------------------|--------------------|-------------------------|----------------------------------------------------------|----------------------|--------------|----------------------------------------------------------|----------------------------------|----------|----------------------------------------------------------|----------------------|-----------|----------------------------------------------------------|----------------------------------|-------------|----------------------------------------------------------|----------------------------------|----------|----------------------------------------------------------|----------------------|----------------------|----------------------------------------------------------|----------------------------------|----------|
| DAY                             | Sample<br>Type                    | VOLUME<br>ml       | pН                      | UNFILTER                                                 | 0.4 um               | 18 A         | UNFILTER                                                 | 0.4 um                           | 18 A     | UNFILTER                                                 | 0.4 um               | 18 4      | UNFILTER                                                 | 0.4 um                           | 18 A        | UNFILTER                                                 | 0.4 um                           | 18 A     | UNFILTER                                                 | 0.4 um               | 18 A                 | UNFILTER                                                 | 0.4 um                           | 18 A     |
| 1<br>6<br>6<br>8<br>20          | Sol<br>Sol<br>Rod<br>Rinse<br>Sol | 5<br>10<br>**<br>5 | 7.742<br>7.958<br>8.262 | 3.30E+00<br>4.50E+00<br>5.20E+00<br>1.70E+00<br>4.00E+00 | 3.80E+00             | 3.70E+00     | 8.60E+02<br>2.13E+03<br>8.15E+03<br>2.62E+03<br>6.40E+02 | 1.78E+02                         | 9.82E+01 | 3.97E+03<br>8.29E+03<br>3.64E+04<br>1.21E+04<br>3.04E+03 | 1.03E+03             | 2.432+02  | 2.12E+03<br>3.71E+03<br>1.88E+04<br>6.43E+03<br>1.66E+03 | 6.44E+02                         | 3.17E+01 .  | 2.61E+03<br>4.82E+03<br>2.12E+04<br>7.07E+03<br>2.30E+03 | 8.74E+02                         | 9.46E+00 | 1.22E+08<br>1.33E+08<br>1.01E+06<br>3.36E+06<br>1.49E+08 | 1.28E+08             | 1.18E+08             | 7.34E+06<br>8.02K+06<br>5.81E+04<br>1.89E+05<br>8.42E+06 | 7.75E+06                         | 7.12E+06 |
| 30<br>30<br>63<br>63<br>120     | Sol<br>Rod<br>Sol<br>Rod<br>Sol   | 15<br>25<br>15     | 8.207<br>8.221<br>8.542 | 3.70E+00<br>4.90E+00<br>2.50E+00<br>4.60E+00<br>1.70E+00 |                      | 2.30E+00     | 1.02E+04<br>1.78E+02<br>8.15E+03                         | 1.94E+02<br>1.29E+02<br>1.22E+02 | 4.86E+01 | 1.03E+03<br>4.36E+04<br>9.32E+02<br>3.63E+04<br>7.21E+02 |                      | 1.202+02  | 2.17E+04<br>5.49E+02<br>1.87E+04                         | 5.42E+02<br>3.53E+02<br>3.19E+02 | 1.50E+01    | 2.52E+04<br>8.02E+02<br>2.05E+04                         | 7.57E+02<br>5.23E+02<br>4.68E+02 | 1.08E+01 | 1.73E+06<br>1.38E+08<br>1.18E+06                         |                      |                      | 9.05E+04<br>7.79E+06<br>5.90E+04                         | 7.70E+06<br>7.84E+06<br>6.71E+06 | 7.61E+08 |
| 120<br>181<br>181<br>223<br>223 | Rod<br>Sol<br>Rod<br>Sol<br>Rod   | 20<br>250          | 8.458<br>8.495          | 4.60E+00<br>1.40E+00<br>7.90E+00<br>1.20E+00<br>6.90E+00 | 1.40E+00<br>1.20E+00 |              | 1.35E+04                                                 | 9.64E+01<br>7.52E+01             |          | 3.05E+04<br>6.58E+02<br>5.86E+04<br>1.11E+03<br>3.99E+04 | 4.82E+02<br>2.91E+02 |           | 2.95E+04                                                 | 2.74E+02<br>1.51E+02             |             | 3.34E+04                                                 | 3.71E+02<br>2.31E+02             |          | 6.13E+06                                                 |                      | 1.07E+08<br>1.08E+08 | 3.03E+05                                                 | 5.95E+06<br>5.32E+08             |          |
| 223<br>223                      | Rinse<br>Strip                    | 600<br>300         |                         | 9.00E+00                                                 | 1.10E+00             |              | 1.35E+04                                                 | 4.23E+02                         |          | 6.22E+04                                                 | 1.82E+03             |           | 3.20E+04                                                 | 8.87E+02                         |             | 2.99E+04                                                 | 9.41E+02                         |          | 2.04E+06                                                 | 2.61E+08             |                      | 9.19E+04                                                 | 1.17E+05                         |          |
|                                 |                                   | . •                |                         | CYCLE 2, T                                               | est restai           | RTED IN FRES | SH J-13 WATE                                             | R                                |          |                                                          |                      |           |                                                          |                                  |             |                                                          |                                  |          |                                                          |                      |                      |                                                          |                                  |          |
| 20<br>20                        | Sol<br>Rod                        | 20 .               | 8.427                   | 2.40E+00<br>7.50E-01                                     | 2.40E+00             | 2.40E+00     | 1.47E+02<br>3.08E+03                                     | 1.40E+02                         | 6.94E+01 | 4.50E+02<br>1.51E+04                                     | 3.93E+02             | 1.351+02  | 9.10E+03                                                 | 6.94E+01                         |             | 9.14E+03                                                 | 7.12E+01                         |          | 1.78E+06<br>2.08E+05                                     |                      |                      | 7.84E+04<br>8.20E+03                                     | 7.97E+04                         | 7.39E+04 |
| 62<br>62                        | Sol<br>Rod                        | 20                 | 8.460                   | 2.20E+00<br>1.40E+01                                     |                      |              | 9.86E+02<br>1.68E+05                                     |                                  |          | 2.46E+03<br>7.70E+05                                     |                      | ļ         | 3.95E+04                                                 | 2.16E+01<br>1.22E+01             |             | 3.77E+05                                                 | 3.02E+02<br>1.89E+01             |          | 9.91E+05                                                 |                      | 2.05E+06             | 3.13E+04                                                 | 8.96E+04                         |          |
| 154<br>202                      | Sol<br>Sol                        | 25<br>250          | 8.200<br>8.560          | 2.00E+00                                                 | 2.00E+00             |              |                                                          | 3.20E+01<br>2.66E+01             |          | 1.31x+02<br>1.08E+02                                     | 9.19E+01<br>6.94E+01 | 1         |                                                          | 1.08E+01                         |             |                                                          | 1.26E+01                         |          |                                                          | 2.92E+06<br>3.33E+06 |                      |                                                          | 1.16E+05<br>1.26E+05             |          |
| 202<br>202                      | Rod<br>Rinse                      | 600                |                         | 3.50E+00                                                 | 1.70E-01             |              | 1.06E+03                                                 | 3.92E+02                         |          | 4.821+03                                                 | 1.94E+03             |           | 1.08E+04                                                 | 2.32E+02                         |             | 2.21E+03                                                 | 1.13E+03                         |          | 8.38E+05                                                 | 8.42E+04             |                      | 2.55E+04                                                 | 3.35E+03                         |          |
| 202                             | Strip                             | 300                |                         | 1.00E+00                                                 |                      |              | 1.13E+03                                                 |                                  |          | 5.328+03                                                 |                      | ļ         | 2.58E+03                                                 |                                  |             | 2.44E+03                                                 |                                  |          | 8.29E+04                                                 |                      |                      | 3.30E+03                                                 |                                  |          |
|                                 |                                   |                    |                         |                                                          | Co-60                |              |                                                          | SrY-90                           |          |                                                          | Np-237               |           |                                                          | Tc-99                            |             |                                                          | Se-79                            |          |                                                          | C-14                 |                      |                                                          | I-129                            |          |
| DAY                             | SAMPLE<br>TYPE                    | VOLUME<br>ml       | Яq                      | UNFILTER                                                 | 0.4 um               | 18 A         | UNFILTER                                                 | 0.4 um                           | 18 A     | UNFILTER                                                 | 0.4 um               | 18 Å      | UNFILTER                                                 |                                  | 18 A        | UNFILTER                                                 | 0.4 um                           | 18 A     | UNFILTER                                                 | 0.4 um               | 18 A                 | UNFILTER                                                 | 0.4 um                           | 18 A     |
| 1<br>6<br>8                     | Sol<br>Sol<br>Rod                 | 5<br>10            | 7.742<br>7.958          |                                                          |                      |              |                                                          |                                  |          |                                                          |                      |           |                                                          |                                  |             |                                                          |                                  |          |                                                          |                      |                      |                                                          |                                  |          |
| 20                              | Rinse<br>Sol                      | **<br>5            | 8.262                   |                                                          |                      |              |                                                          |                                  |          |                                                          |                      |           |                                                          |                                  |             |                                                          |                                  |          |                                                          |                      |                      |                                                          |                                  |          |
| 30<br>30                        | Sol<br>Rod                        | 15                 | 8.207                   |                                                          |                      |              |                                                          |                                  |          |                                                          |                      |           |                                                          |                                  |             |                                                          |                                  |          |                                                          |                      |                      |                                                          |                                  |          |
| 63<br>63<br>120                 | Sol<br>Rod<br>Sol                 | 25<br>15           |                         | <1.80E+04<br>1.43E+03<br><3.38E+04                       |                      |              |                                                          |                                  |          | 6.31E-01<br>2.70E+00                                     | 3.60E-01             | <4.50E-01 | 4.50E+02<br><9.01E+01                                    | 4.50E+02                         | 4.50E+02    | <1.58E+01<br><1.35E+02                                   |                                  |          | 1.98E+01                                                 |                      |                      | 5.23E-01                                                 |                                  |          |
| 120<br>181                      | Rod<br>Sol                        | 20                 | 8.458                   | <1.08E+04                                                |                      |              |                                                          |                                  |          | <4.50E+00<br><4.50E-01                                   | <4.50E-01            | <4.50E-01 |                                                          | 4.82E+02                         | 4.28E+02    | <1.35E+02                                                |                                  |          |                                                          |                      |                      |                                                          |                                  |          |
| 181<br>223<br>223               | Rod<br>Sol<br>Rod                 | 250                | 8.495                   | 1.07E+04<br><2.94E+04<br>1.45E+04                        | <3.35E+04            | <2.94E+04    |                                                          |                                  |          | 2.25E+00<br><4.50E-01                                    | <4.50E-01            | (4.50E-01 | <9.01E+01<br>4.50E+02                                    | 4.95E+02                         | 4.50E+02    | <9.01E+01<br><9.01E+00                                   |                                  |          | 2.57E+01                                                 |                      |                      | 7.18E-01                                                 |                                  |          |
| 223                             | Rinse<br>Strip                    | 600<br>300         |                         |                                                          | <6.22E+03            |              |                                                          |                                  |          | 3.15E+00                                                 | <4.50E-01            | ,         | 9.46E+01                                                 | 3.02E+01                         |             |                                                          |                                  |          |                                                          |                      |                      |                                                          |                                  |          |
|                                 |                                   | •                  |                         | CYCLE 2, T                                               | EST RESTAF           | TED IN FRES  | H J-13 WATE                                              | R                                |          |                                                          |                      | Ì         |                                                          |                                  |             |                                                          |                                  |          |                                                          |                      |                      |                                                          |                                  |          |
| 20<br>20<br>62                  | Sol<br>Rod<br>Sol                 | 20<br>20           | 8.427<br>8.460          | 2.66E+03<br><1.04E+04<br>3.50E+03                        |                      |              |                                                          |                                  |          |                                                          |                      | 4.05E-01  |                                                          | 7.07E+01<br>1.04E+02             |             |                                                          |                                  |          |                                                          |                      |                      |                                                          |                                  |          |
| 62<br>154                       | Rod<br>Sol                        | 25                 | 8.200                   | 3.44E+03                                                 |                      |              | 2.38E+06                                                 |                                  |          |                                                          |                      |           | 1.85E+02                                                 |                                  |             |                                                          |                                  |          | 2.25E+01                                                 |                      |                      | 4.32E-01                                                 |                                  |          |
| 202<br>202                      | Sol.<br>Rod                       | 250                | 8.560                   | 4.64E+03                                                 | 3.81E+03             | 3.07E+03     | 2.52E+06                                                 |                                  |          |                                                          | 4.05E-01             | 2.708-01  |                                                          |                                  | 2.20E+02    | <4.50E+00<br><4.50E+01                                   |                                  |          | 2.438+01                                                 |                      |                      | 4.66E-01                                                 |                                  |          |
| 202                             | Rinse<br>Strip                    | 600<br>300         |                         | •                                                        |                      | •            | 9.01E+05.<br>9.91E+04                                    | 1.18E+05                         |          | 2.21E+00<br>2.25E-01                                     | <2.25E-01            |           | <9.01E+01<br>1.35E+01                                    | <9.01E+00                        |             | <4.50E+00                                                | <4.50E+00                        |          |                                                          | 5.41E+00             |                      | 1.41E-02<br>2.98E-02                                     |                                  |          |

UNITS: Solution samples (Sol) in pCi/ml for all but Uranium, ug/ml for Uranium.

Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium.

Rinse in same units as solution samples, sample was rinsed in 600 ml J-13 water.

Strip in same units as solution samples, test vessel was stripped with 300 ml 8M HNO3.

<sup>\*</sup> Am-241 values through 181-day rod sample calculated from Pu-239+Pu-240 and Am-241+Pu-238 values using Pu-238/(Pu-239+Pu-240) activity ratio of 2.154.

\*\* Rod rinse sample reported in pCi/rod (ug/rod for Uranium).

TABLE A.3
C5C-E SLIT DEFECT TEST RADIOCHEMICAL DATA

| TO.                   |                          |            |                |                                                    | n                                       | 1 11 11 11                                         |                                                            |                                                 |                                        | •                                       |
|-----------------------|--------------------------|------------|----------------|----------------------------------------------------|-----------------------------------------|----------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|----------------------------------------|-----------------------------------------|
|                       | SAMPLE                   | VOLUME     |                | U                                                  | Pu-239+Pu-240                           | Am-241+Pu-238i                                     | Am-241*                                                    | Cm-244                                          | Cs-137                                 | Cs-134                                  |
| DAY                   | TYPE                     | ml         | рĦ             | UNFILTER 0.4 um 18 A                               | UNFILTER 0.4 um 18 A                    | UNFILTER 0.4 um 18 A                               | UNFILTER 0.4 um 18 A                                       | UNFILTER 0.4 um 18 A                            | UNFILTER 0.4 um 18 A                   | UNFILTER 0.4 um 18 A                    |
| 1<br>6                | Sol<br>Sol               | 5<br>10    | 7.792<br>7.808 | 3.00E-02<br>5.20E-02 5.60E-02 5.90E-02             | 8.11E-01<br>1.53E+00 9.91E-01 <9.01E-01 | 2.70E+00<br>9.01E+00 4.14E+00 <9.01E-01            |                                                            | 1.31E+00<br>5.41E+00 1.89E+00                   | 1.50E+06<br>9.10E+06 8.29E+06 7.79E+06 | 8.38E+04<br>5.32E+05 4.86E+05 4.50E+05  |
| 6<br>6                | Rod<br>Rinse             | **         |                | 5.70E-02<br>2.00E-02                               | 6.49E+01<br>9.91E+00                    | 3.17E+02<br>4.55E+01                               | 1.81E+02<br>2.47E+01                                       | 1.88E+02<br>2.88E+01                            | 6.26E+04<br>2.81E+05                   | 3.94E+03<br>1.56E+04                    |
| 20                    | Sol                      | 5          | 8.247          | 5.50E-02                                           | 1,405+00                                | 7.66E+00                                           | 4.73E+00                                                   | 5.41E+00                                        | 7.61E+07                               | 4.27E+06                                |
| 30<br>30              | Sol<br>Rod               | 15         | 8.408          | 6.50E-02 5.80E-02 5.70E-02 5.60E-02                | 4.95E+00 1.40E+00 1.89E+00<br>8.29E+01  | 2.88E+01 7.21E+00 2.84E+00<br>3.34E+02             | 1.60E+02                                                   | 1.80E+01 4.37E+00 <4.50E-01<br>1.91E+02         | 1.01E+08 1.00E+08 9.32E+07<br>5.41E+05 | 5.72E+06 5.54E+06 5.18E+08<br>2.32E+04  |
| 63<br>63              | Sol<br>Rod               | 25         | 8.195          | 7.30E-02 7.30E-02 6.70E-02<br>8.30E-02             | 9.46E+00 1.26E+01 1.26E+01<br>5.41E+01  | 3.92E+01 5.72E+01 5.63E+01<br>1.98E+02             | 8.48E+01                                                   | 2.43E+01 3.74E+01 3.74E+01<br>1.22E+02          | 1.31E+08 1.30E+08 1.25E+08<br>1.36E+06 | 7.43E+06 7.52E+06 7.16E+06<br>7.07E+04  |
| 120                   | Sol                      | 15         | 8.530          | 6.80E-02 7.60E-02 6.40E-02                         | 4.59E+00 3.87E+00 4.64E+00              | 1.83E+01 1.38E+01 8.11E+00                         |                                                            | 1.05E+01 8.69E+00 <4.50E-01                     | 1.28E+08 1.27E+08 1.21E+08             | 6.62E+06 6.49E+06 6.22E+06              |
| 120<br>181            | Rod<br>Sol               | 20         | 8.460          | 3.20E-02<br>9.10E-02 9.10E-02 8.60E-02             | 2.25E+01<br>2.39E+00 2.61E+00 3.15E+00  | 8.11E+01<br>9.59E+00 1.16E+01 9.01E+00             |                                                            | 4.23E+01<br>5.27E+00 5.32E+00 <4.50E-01         | 1.32E+08<br>1.23E+08 1.03E+08 1.17E+08 | 4.95E+04<br>6.08E+06 4.91E+06 5.68E+06  |
| 181<br>223<br>223     | Rođ<br>Sol<br>Rođ        | 250        | 8.496          | 2.30E-02<br>9.50E-02 9.00E-02 9.00E-02<br>3.60E-02 | 5.50E+01<br>1.98E+00 1.94E+00 3.33E+00  | 2.51E+02<br>8.11E+00 8.78E+00 9.01E+00<br>1.81E+02 |                                                            | 1.42E+02<br>3.92E+00 3.69E+00 <4.50E-01         | 2.04E+06<br>1.12E+08 9.82E+07 1.11E+08 | 8.56E+04<br>5.50E+06 4.68E+06 5.41E+06  |
| 223                   | Rinse                    | 600        |                | 3.00E-03                                           | 4.32E+01<br>2.84E+00                    | 5.86E+00                                           | 1.07E+02                                                   | 1.01E+02                                        | 1.80E+06                               | 6.67E+04                                |
| 223                   | Strip                    | 300        |                | 5.00E-03                                           | 8.56E+00                                | 3.428+01                                           | 4.50E+00<br>1.98E+01                                       | 4.46E+00<br>1.94E+01                            | 5.95E+05<br>9.23E+04                   | 2.83E+04<br>4.08E+03                    |
|                       |                          |            |                | CYCLE 2, TEST RESTARTED IN FRES                    | H J-13 WATER                            |                                                    |                                                            |                                                 |                                        |                                         |
| 20                    | Sol                      | 20         | 8.436          | 1.10E-01 1.30E-01 1.10E-01                         | 4.05E+00 4.05E+00 4.05E+00              | 1.04E+01 9.01E+00 8.56E+00                         | 9.01E-01 4.50E-01 <1.35E+00                                | 1.80E+00 9.01E-01 <4.50E-01                     | 2.45E+07 2.36E+07 2.27E+07             | 1.09E+06 1.06E+06 1.06E+06              |
| 20<br>62              | Rod<br>Sol               | 20         | 8.474          | <pre>&lt;2.00E-02 1.60E-01 1.70E-01 1.60E-01</pre> | 2.70E+01<br>4.50E+00 4.50E+00 3.15E+00  | 1.20E+02<br>1.13E+01 1.04E+01 8.11E+00             |                                                            | 8.51E+01<br>1.35E+00 9.01E-01 <2.25E-01         | 1.06E+05<br>2.42E+07 2.51E+07 2.51E+07 | <7.21E+03<br>1.07E+06 1.12E+06 1.12E+06 |
| 62<br>154             | Rod<br>Sol               | 25         | 8.210          | 2.90E-02<br>1.90E-01 1.90E-01 1.50E-01             | 3.11E+01<br>2.07E+00 2.21E+00 2.07E+00  | 1.82E+02<br>4.19E+00 4.95E+00 4.50E+00             | 1.17E+02<br>5.86E-01 <4.50E-01 <4.50E-01                   | 1.64E+02<br>7.21E-01 6.31E-01 <4.50E-02         | 3.58E+05<br>2.63E+07 2.54E+07 2.40E+07 | <1.21E+04<br>1.04E+06 1.07E+08 9.64E+05 |
| 202<br>202            | Sol<br>Rod               | 250        | 8.550          | 1.60E-01 1.50E-01 1.50E-01<br>3.20E-02             | 1.40E+00 1.53E+00 1.40E+00<br>4.50E-01  | 3.83E+00 3.69E+00 3.15E+00                         |                                                            | 6.76E-01 5.41E-01 <2.25E-01                     | 2.52E+07 9.32E+05 2.36E+07             | 9.86E+05 3.78E+04 9.37E+05              |
| 202<br>202            | Rinse<br>Strip           | 600<br>300 |                | 2.00E-03<br>4.00E-03                               | 2.43E+00<br>9.46E+00                    | 1.08E+01<br>3.92E+01                               | 1.42E+02<br><2.70E-01<br>2.12E+01                          | 9.01E-01<br>7.21E+00<br>2.21E+01                | 5.09E+05<br>1.37E+05<br>1.64E+04       | 2.58E+04<br>4.33E+03                    |
|                       |                          |            |                |                                                    |                                         |                                                    | 2.125701                                                   | 2.215.01                                        | 1.032703                               |                                         |
|                       |                          |            |                |                                                    | a w aa                                  |                                                    |                                                            |                                                 |                                        |                                         |
| 549                   | SAMPLE                   |            | _ •••          | Co-60                                              | SrY-90                                  | Np-237                                             |                                                            | Se-79                                           | C-14                                   | I-129                                   |
| DAY                   | TYPE                     | ml<br>E    | pH<br>7 702    | UNFILTER 0.4 um 18 A                               | UNFILTER 0.4 um 18 A                    | UNFILTER 0.4 um 18 A                               | UNFILTER 0.4 um 18 A                                       | UNFILTER 0.4 um 18 A                            | UNFILTER 0.4 um 18 A                   | UNFILTER 0.4 um 18 A                    |
| 6                     | Sol<br>Sol<br>Rod        | 5<br>10    | 7.792<br>7.806 |                                                    |                                         |                                                    |                                                            |                                                 |                                        |                                         |
| 6<br>20               | Rinse<br>Sol             | **<br>5    | 8.247          |                                                    |                                         |                                                    |                                                            |                                                 |                                        |                                         |
| 30                    | Sol                      | 15         | 8.406          |                                                    |                                         |                                                    |                                                            |                                                 |                                        |                                         |
| 30<br>63              | Rod<br>Sol               | 25         | 8.195          | <1.80E+04 <1.80E+04 <1.80E+04                      |                                         | <4.50E-01 <4.50E-01 <4.50E-01                      | 3.65E+01 3.87E+01 3.56E+01                                 | <1.58E+01                                       | 1.31E+01                               | 2.92E-01                                |
| 63<br>120             | Rod<br>Sol               | 15         | 8.530          | <2.93E+04 <2.93E+04 <2.93E+04                      |                                         | 9.018+00                                           | <9.01E+01                                                  | <1.35R+02                                       |                                        |                                         |
| 120                   | Rod                      |            |                | <1.04E+04                                          |                                         | <4.50E+00                                          | <9.01E+01                                                  |                                                 | 1                                      |                                         |
| 181<br>181            | Sol<br>Rod               | 20         | 8,460          |                                                    |                                         | <4.50E-01 <4.50E-01 <4.50E-01 <4.50E-01            | <pre>&lt;9.01E+00 &lt;9.01E+00 2.48E+01 &lt;9.01E+01</pre> | <9.01E+01                                       |                                        |                                         |
| 223<br>223            | Sol<br>Rod               | 250        | 8.496          | <2.95E+04 <2.94E+04 <2.94E+04 <1.04E+04            |                                         | <4.50E-01 <4.50E-01 <4.50E-01                      | 2.93E+01 1.98E+01 2.79E+01                                 | <9.01E+00                                       | 5.59E+01                               | 3.77E-01                                |
| 223                   | Rinse                    | 600        |                | <1:18E+03                                          |                                         | <4.50E-01                                          | 1.76E+01                                                   |                                                 | •                                      |                                         |
| 223                   | Strip                    | 300        |                | <1.04E+03                                          |                                         | <4.50E-01                                          | 1.17E+01                                                   |                                                 |                                        |                                         |
|                       |                          |            |                | CYCLE 2, TEST RESTARTED IN FRES                    | H J-13 WATER                            |                                                    |                                                            |                                                 |                                        |                                         |
|                       |                          |            | 8.436          | <8.22E+03 <8.22E+03 <6.22E+03                      |                                         | <2.25E-01 <2.25E-01 <2.25E-01                      | 3.38E+01 2.30E+01 2.84E+01                                 |                                                 |                                        |                                         |
| 20<br>20              | Sol<br>Rod               | 20         |                |                                                    |                                         |                                                    | 0.077.01 0.077.01 0.007.01                                 |                                                 |                                        |                                         |
| 20<br>62              | Rod<br>Sol               | 20         | 8.474          | <1.04E+04                                          |                                         | <2.25E-01 <2.25E-01 <2.25E-01                      | 2.07E+01 3.33E+01 3.06E+01                                 |                                                 | <u>;</u>                               |                                         |
| 20                    | Rod                      |            | 8.474<br>8.210 | (1.042704                                          | 3.01E+06                                | <2.25E-01 <2.25E-01 <2.25E-01                      | 3.06E+01                                                   |                                                 | 7.57E+01                               | 3.57E-02                                |
| 20<br>62<br>62<br>154 | Rod<br>Sol<br>Rod<br>Sol | 20         |                | (1.042704                                          | 3,20E+06                                | <2.25E-01 <2.25E-01 <2.25E-01                      | 3.06E+01<br>3.38E+01 2.88E+01 2.88E+01                     | <4.50E+00                                       | 7.57E+01<br>6.89E+01                   | 3.57E-02<br>4.73E-02                    |
| 20<br>62<br>62        | Rod<br>Sol<br>Rod        | 20<br>25   | 8.210          | (1.042704                                          |                                         | }                                                  | 3.06E+01                                                   | <4.50E+00 . <4.50E+01 . <4.50E+00 . <4.50E+00 . |                                        |                                         |

UNITS: Solution samples (Sol) in pCi/ml for all but Uranium, ug/ml for Uranium.

Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium.

Rinse in same units as solution samples, sample was rinsed in 600 ml J-13 water.

Strip in same units as solution samples, test vessel was stripped with 300 ml 8M HNO3.

<sup>\*</sup> Am-241 values through 181-day rod sample calculated from Pu-239+Pu-240 and Am-241+Pu-238 values using Pu-238/(Pu-239+Pu-240) activity ratio of 2.097.
\*\* Rod rinse sample reported in pCi/rod (ug/rod for uranium).

TABLE A.4
C5C-C HOLES DEFECT TEST RADIOCHEMICAL DATA

| <b>Q</b> ;        |                       |              |                | U _                                        |             | Pu-                                | 239+Pu-240 | <b></b>              | Am                                | -241+Pu-23 | 18                   |                                    | Am-241*_  |                      |                        | Cm-244    |                       | ·                                | Cs-137   | •        |                                   | Cs-134   | <u></u>  |
|-------------------|-----------------------|--------------|----------------|--------------------------------------------|-------------|------------------------------------|------------|----------------------|-----------------------------------|------------|----------------------|------------------------------------|-----------|----------------------|------------------------|-----------|-----------------------|----------------------------------|----------|----------|-----------------------------------|----------|----------|
| DAY               | Sample<br>Type        | VOLUME<br>ml | рĦ             | UNFILTER 0.4 um                            | 18 A        | UNFILTER                           | 0.4 um     | 18 A                 | UNFILTER                          | 0.4 um     | 18 Å                 | UNFILTER                           | 0.4 um    | 18 A                 | UNFILTER               | 0.4 um    | 18 A                  | UNFILTER                         | 0.4 um   | 18 A     | UNFILTER                          | 0.4 um   | 18 A     |
| 1<br>6<br>8       | Sol<br>Sol<br>Rod     | 5<br>10      | 7.851<br>7.835 | 7.00E-03<br>9.00E-03 8.00E-03<br><2.00E-02 | 8.00E-03    | 7.21E-01<br>2.30E+00               |            | •                    | 2.66E+00<br>7.21E+00<br>Alpha<18  | Alpha<1.8  | Alpha<1.             | 1.26E+00<br>2.75E+00               |           |                      | 9.91E-01<br>3.47E+00   |           |                       | 3.54E+04                         | 7.84E+06 | 7.43E+06 | <7.66E+02<br>4.95E+05<br>1.65E+03 | 4.50E+05 | 4.30E+05 |
| 6<br>20           | Rinse<br>Sol          | **<br>5      | 8,226          | 1.00E-02<br>1.00E-02                       |             | <9.01E+00<br>1.53E+00              |            |                      | 7.21E+00                          |            | P .                  | 4.23E+00                           |           |                      | 3.96E+00               |           |                       | 2.30E+05<br>4.95E+07             |          |          | 1.25E+04<br>2.83E+06              |          |          |
| 30<br>30          | Sol<br>Rod            | 15           | 8.171          | 7.00E-03 7.00E-03<br>3.70E-02              | 7.00E-03    | 9.91E-01<br>5.41E+00               | 6.76E-01   |                      | 4.28E+00<br>3.47E+01              | 3.51E+00   | ŀ                    | 2.35E+00<br>2.42E+01               | 2.20E+00  |                      | 2.70E+00<br>1.49E+01   | 1.94E+00  |                       | 6.94E+07<br>5.59E+05             | 7.03E+07 | 6.35E+07 | 3.83E+06<br>2.84E+04              | 3.88E+06 | 3.50E+08 |
| 51<br>63<br>63    | Sol<br>Sol<br>Rod     | 2<br>25      | 8.179          | 7.00E-03 6.00E-03<br>6.20E-02              | 7.00E-03    | 2.25E+00                           | 1.80E+00   | 2.70E+00<br>3.15E+00 | 5.86E+00<br>Alpha<14              | 9.91E+00   | 7.21E+00<br>1.35E+01 | 1.48%+00                           | 6.41E+00  | 1.96E+00<br>7.39E+00 | 2.70E+00               | 4.95E+00  | <2.25E-01<br>9.01E-01 | 8.42E+07<br>1.34E+06             | 8.42E+07 | 8.02E+07 | 4.73E+06<br>6.67E+04              | 4.73E+06 | 4.64E+06 |
| 120               | Sol                   | 15           | 8,563          | 5.00E-03 5.00E-03                          | 5.00E-03    | 1.13E+00                           | 1.62E+00   | 1.581+00             | 5.41E+00<br>Alpha<14              | 6.17E+00   | 3.47E+00             | 3.22E+00                           | 3.022+00  | 4.078-01             | 3.38E+00               | 3.38%+00  | <4.50E-01             | 7.97E+07<br>1.93E+06             | 7.881+07 | 7.30E+07 | 4.09E+06<br>7.88E+04              | 4.19E+06 | 3.75E+08 |
| 120<br>181        | Rod<br>Sol            | 20           | 8.406          | <2.00E-02<br>5.00E-03 5.00E-03             | 5.00E-03    | 9.01E-01                           | 9.01E-01   | <4.50E-01            |                                   | 3.15E+00   | 4.50E-01             | 2.30E+00<br>8.64E+00               | 1.40E+00  |                      | 2.25E+00<br>7.86E+00   | 1.80E+00  | <4.50E-01             |                                  | 6.94E+07 | 7.25E+07 | 3.55E+06<br>1.57E+05              | 3.35E+06 | 3.54E+06 |
| 181<br>223        | Rod<br>Sol            | 250          | 8.497          | <2.40E-02<br>6.00E-03 6.00E-03             | 6.00E-03    | 1.35E+00<br>1.62E+00               | 1.35E+00   | 8.56E-01             |                                   | 6.76E+00   | 2.16E+00             |                                    | 3.11E+00  | <1.35E+00            | 4.01E+00               | 3.15E+00  | <4.50E-01             |                                  | 6.94E+07 | 6.76E+07 |                                   | 3.34E+06 | 3.28E+06 |
| 223<br>223<br>223 | Rod<br>Rinse<br>Strip | 600<br>300   |                | <2.00E-02<br>1.00E-03<br>2.00E-03          |             | 1.76E+00                           |            |                      | Alpha<14<br>Alpha<1.4<br>5.86E+00 |            |                      | <1.35E+01<br><9.01E-01<br>2.70E+00 |           |                      | 2.70E+00               |           |                       | 2.32E+06<br>4.00E+05<br>1.20E+05 |          |          | 1.03E+05<br>1.67E+04<br>5.72E+03  |          |          |
|                   |                       |              |                | CYCLE 2, TEST RESTART                      | ted in Fres | H J-13 WATER                       | ı          |                      |                                   |            |                      |                                    |           |                      |                        |           |                       |                                  |          |          |                                   |          |          |
| 20                | Sol                   | 20           | 8.420          | <2.00E-03 <2.00E-03 <                      | (2.00E-03   | 4 502400                           |            |                      | Alpha<1.4 / 2.84E+01              | Alpha<1.4  | Alpha 1.4            | <9.01E-01<br>9.91E+00              | <1.35E+00 | <1.35%+00            | 2.03E+01               |           |                       | 3.66E+05<br><9.50E+03            | 3.69E+05 | 3.43E+05 | 1.68E+04                          | 1.61E+04 | 1.46E+04 |
| 20<br>62          | Rod<br>Sol            | 20           | 8.440          | <pre>&lt;2.00E-02 2.00E-03 2.00E-03</pre>  | 1.00E-03    | 4.50E+00<br>2.70E-01<br>9.01E+00   | 3.60E-01   |                      |                                   | 8.56E-01   | Alpha <.9            |                                    | <4.50E-01 | <4.50E-01            | <2.25E-01<br>2.66E+01  | <2.25E-01 |                       |                                  | 7.52E+05 | 7.21E+05 | <6.08E+03<br>3.13E+04             | 3.28E+04 | 3.38E+04 |
| 62<br>154         | Rod<br>Sol            | 25           | 8.200          | <pre>&lt;2.00E-02 2.00E-03 2.00E-03</pre>  | 2.00E-03    | 3.60E-01                           | 3.60E-01   | 4.50E-02             |                                   | 8.56E-01   | 1.35E-01             | <9.01E-01                          | <9.01%-01 | <9.01E-01            | 1.35E-01               | 1.80E-01  | <4.50E-02             |                                  | 8.92E+05 | 8.24E+05 | <6.08E+03<br>3.49E+04             | 3.64E+04 | 3.32K+04 |
| 202<br>202        | Sol<br>Rođ            | 250          | 8.540          | 3.00E-03 2.00E-03<br>2.40E-02              | 3.00E-03    | 3.15E-01<br>9.01E-01               | 2.25E-01   | 1.80E-01             | 9.91E-01<br>3.15E+00              | 6.76E-01   | 4.50E-01             | <2.70E-01<br>4.28E+01              | <2.25E-01 | <2.25E-01            | 1.35E-01<br>2.25E+00   | 1.35E-01  | <1.35E-01             | 9.64E+05<br>5.18E+04             | 9.46E+05 | 9.10E+05 | 3.64E+04                          | 3.70E+04 | 3.55E+04 |
| 202<br>202        | Rinse<br>Strip        | 600<br>300   |                | 1.00E-03<br>1.50E-02                       |             | 1.31E+00<br>2.30E+01               |            |                      | 7.21E+00<br>1.09E+02              |            |                      | 7.21E-01<br>5.86E+01               |           |                      | 4.01E+00<br>5.77E+01   |           |                       | 7.75E+03<br>5.99E+03             |          |          | <7.21E+02                         |          |          |
|                   |                       |              |                |                                            |             |                                    |            |                      |                                   |            | ĵ                    |                                    |           |                      |                        |           |                       |                                  |          |          |                                   |          |          |
|                   |                       |              |                | Co-60                                      |             |                                    | SrY-90_    |                      |                                   | Np-237_    | ļ                    |                                    | Tc-99     |                      |                        | Se-79     |                       |                                  |          |          |                                   | I-129    |          |
| DAY               | Sample<br>Type        | VOLUME<br>ml | ffq            | UNFILTER 0.4 um                            | 18 A        | UNFILTER                           | 0.4 um     | 18 A                 | UNFILTER                          | 0.4 um     | 18 A                 | UNFILTER                           | 0.4 um    | 18 A                 | UNFILTER               | 0.4 um    | 18 A                  | UNFILTER                         | 0.4 um   | 18 A     | UNFILTER                          | 0.4 um   | 18 A     |
| 1                 | Sol                   | 5            | 7.851          |                                            |             |                                    |            |                      |                                   |            |                      |                                    |           |                      |                        |           |                       |                                  |          |          |                                   |          |          |
| 6                 | Sol<br>Rod            | 10<br>**     | 7.835          |                                            |             |                                    |            |                      |                                   |            | }                    |                                    |           |                      |                        |           |                       |                                  |          |          |                                   |          |          |
| 20                | Rinse<br>Sol          | 5            | 8.226          |                                            |             |                                    |            |                      |                                   |            |                      |                                    |           |                      |                        |           |                       |                                  |          |          | •                                 |          |          |
| 30<br>30          | Sol<br>Rod            | 15           | 8.171          |                                            |             |                                    |            |                      |                                   |            | -                    |                                    |           |                      |                        |           |                       |                                  |          |          |                                   |          |          |
| 51<br>63<br>63    | Sol<br>Sol<br>Rod     | 2<br>25      | 8,179          | <1.80E+04 <1.80E+04 <                      | (1.80E+04   |                                    |            |                      | <4.50E-01<br><4.50E+00            | <4.50E-01  | <4.50E-01            | 2.39E+01<br>1.35E+02               | 1.58E+01  | 2.07E+01             | <1.58E+01<br><1.35E+02 |           |                       | 5.41E+00                         |          |          | 1.91E-03                          |          |          |
| 120<br>120        | Sol<br>Rod            | 15           | 8.563          | <1.53E+04 <1.53E+04 <                      | (1.53E+04   |                                    |            |                      | <4.50E+00                         |            | ł                    | <9.01E+01                          |           |                      | <1.35E+02              |           |                       |                                  |          |          |                                   |          |          |
| 181<br>181        | Sol<br>Rod            | 20           | 8.408          |                                            |             |                                    |            |                      | <4.50E-01 <                       |            | 1                    | <9.01E+00<br><9.01E+01             |           |                      | <9.01E+01              |           |                       |                                  |          |          |                                   |          |          |
| 223               | Sol                   | 250          | 8.497          | <1.51E+04 <1.54E+04 <                      | (1.54E+04   |                                    |            |                      | <4.50E-01                         | <4.50E-01  | <4.50E-01            | <9.01E+00                          | <9.01E+00 | <9.01E+00            | <9.01E+00              |           |                       | 9.64E+01                         |          |          | 8.17E-03                          |          |          |
| 223<br>223<br>223 | Rod<br>Rinse<br>Strip | 600<br>300   |                | <1.04E+04<br><1.04E+03<br><1.04E+03        |             |                                    |            |                      | <4.50E-01<br><4.50E-01            |            |                      | 1.04E+01<br>1.44E+01               |           |                      |                        |           |                       |                                  |          |          |                                   |          |          |
|                   |                       |              |                | CYCLE 2, TEST RESTAR                       | TED IN FRES | H J-13 WATE                        | R          |                      |                                   |            | ļ                    |                                    |           |                      |                        |           |                       | :                                |          |          |                                   |          |          |
| 20                | Sol                   | 20           | 8.420          | <1.04E+03 <1.04E+03 <                      | <1.04E+03   |                                    |            |                      | <4.50E-02                         | <2.25E-01  | <2.25E-01            | <9.01E+00                          | <9.01E+00 | <9.01E+00            |                        |           |                       |                                  |          |          |                                   |          |          |
| 20<br>62          | Rođ<br>Sol            | 20           | 8.440          | <1.04E+04                                  |             |                                    |            |                      | <4.50E-01                         | <2.25E-01  | <2.25E-01            | <9.01E+00                          | 1.04E+01  | <9.01E+00            |                        |           |                       | •                                |          |          |                                   |          |          |
| 62<br>154         | Rod<br>Sol            | 25           | 8.200          |                                            |             | 7.03E+03                           |            |                      |                                   |            |                      | <9.01E+00                          |           |                      |                        |           |                       | 6.80E+01                         |          |          | 4.71E-03                          |          |          |
| 202               | Sol                   | 250          | 8.540          |                                            |             | 1.138+04                           |            |                      | <2.25E-01<br>5.41E+00             | <2.25E-01  | <2.25E-01            | <9.01E+00<br><9.01E+01             | 1.31E+01  | <9:01E+00            | <4.50E+00<br><4.50E+01 |           |                       | 4.46E+01                         |          |          | 5.17E-03                          |          |          |
| 202<br>202<br>202 | Rod<br>Rinse<br>Strip | 600<br>300   |                |                                            |             | <7.66E+03<br><7.66E+02<br>2.21E+03 |            |                      | <2.25E-01<br><2.25E-01            |            | ,                    | <9.01E+00<br><9.01E+00             |           |                      | <4.50E+00<br><4.50E+00 |           |                       | 4.95E+00                         |          |          | 1.79E-03                          |          |          |

UNITS: Solution samples (Sol) in pCi/ml for all but Uranium, ug/ml for Uranium.

Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium.

Rinse in same units as solution samples, test was rinsed with 600 ml of J-13 water.

Strip in same units as solution samples, test vessel was stripped with 300 ml 8M HNO3.

<sup>\*</sup> Am-241 values through 181-day rod sample calculated from Pu-239+Pu-240 and Am-241+Pu-238 values using Pu-238/(Pu-239+Pu-240) activity ratio of 1.942.

\*\* Rod rinse sample reported in pCi/rod (ug/rod for Uranium).

TABLE A.5 C5C-A UNDEFECTED TEST RADIOCHEMICAL DATA

| œ.                                     |                                        |                    |                         | n                                                                                                              | Pu-239+Pu-240                                                                                                  | Am-241+Pu-238                                                                                                     | Am-241                                                                               | Cm-244                                                                                                            | Cs-137                                                                                                                     |                                                                                                                               |
|----------------------------------------|----------------------------------------|--------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| DAY                                    | SAMPLE<br>TYPE                         | VOLUME<br>ml       | pН                      | UNFILTER 0.4 um 18 A                                                                                           | UNFILTER 0.4 um 18 A                                                                                           | UNFILTER 0.4 um 18 A                                                                                              | UNFILTER 0.4 um 18 A                                                                 | UNFILTER 0.4 um 18 A                                                                                              | UNFILTER 0.4 um 18 A                                                                                                       | UNFILTER 0.4 um 18 A                                                                                                          |
| 1<br>6<br>6<br>6                       | Sol<br>Sol<br>Rod<br>Rinse             | 5<br>10<br>**      | 7.718<br>7.944          | 1.60E-02<br>2.00E-02 2.00E-02 1.90E-02<br>2.00E-02<br>2.00E-02                                                 | 2.43E+00<br>9.01E-01 1.26E+00 2.52E+00<br><9.01E+00                                                            | 6.31E+00<br>3.78E+00 3.83E+00 6.31E+0<br>Alpha(18<br><9.01E+00                                                    |                                                                                      | 1.44E+00<br>1.58E+00 5.41E-01                                                                                     | 2.27E+04<br>2.98E+04 2.51E+04 2.24E+04<br>9.32E+02<br>3.25E+03                                                             | 1.13E+03<br>1.46E+03 1.38E+03 1.23E+03<br>6.31E+02<br>(6.31E+02                                                               |
| 20<br>30<br>30<br>63<br>63             | Sol<br>Sol<br>Rod<br>Sol<br>Rod        | 5<br>15<br>25      | 8.158<br>8.078<br>8.906 | 2.20E-02<br>2.00E-02 1.90E-02 1.90E-02<br>5.60E-02<br>1.80E-02 1.70E-02 1.80E-02<br>6.00E-02                   | 2.97E+00<br>2.43E+00 2.03E+00 1.53E+00<br>2.70E+00<br>1.62E+00 1.80E+00                                        | 1.08E+01<br>8.11E+00 5.86E+00 3.83E+0<br>1.94E+01<br>5.41E+00 4.41E+00 Alpha<1.<br>Alpha<14                       | 8                                                                                    | 2.88E+00<br>2.43E+00 7.68E-01 <4.50E-01<br>8.11E+00<br>9.91E-01 1.04E+00                                          | 3.41E+04<br>3.36E+04 3.46E+04 3.20E+04<br><7.21E+03<br>3.45E+04 3.47E+04 3.24E+04<br>2.72E+03                              | 1.89E+03<br>1.81E+03 1.82E+03 1.83E+03<br><6.31E+03<br>1.84E+03 1.88E+03 1.82E+03<br><6.31E+02                                |
| 120<br>120<br>181<br>181<br>223<br>223 | Sol<br>Rod<br>Sol<br>Rod<br>Sol<br>Rod | 20<br>250          | 8.530<br>8.405<br>8.428 | 1.50E-02 1.50E-02 1.40E-02 <2.00E-02 1.50E-02 1.50E-02 1.40E-02 <2.40E-02 1.30E-02 1.30E-02 1.30E-02 <2.00E-02 | 1.89E+00 9.46E-01 1.67E+00<br>4.50E+00<br>6.31E-01 1.17E+00 1.22E+00<br>1.35E+00<br>5.41E-01 9.46E-01 8.56E-01 | 6.17E+00 3.29E+00 3.92E+0<br>2.43E+01 2.34E+00 3.20E+00 2.57E+0<br>6.31E+00 2.16E+00 3.29E+00 1.94E+0<br>Alpha(14 | 0                                                                                    | 1.89E+00 9.01E-01 <4.50E-01<br>1.31E+01<br>7.21E-01 9.91E-01 <4.50E-01<br>2.25E+00<br>6.31E-01 1.08E+00 <4.50E-01 | 2.88E+04 2.95E+04 2.69E+04<br>8.60E+03<br>2.99E+04 2.84E+04 2.68E+04<br>2.51E+03<br>2.72E+04 2.75E+04 2.69E+04<br>2.50E+03 | 1.51E+03 1.37E+03 1.39E+03<br><6.31E+03<br>1.90E+03 1.27E+03 1.16E+03<br><6.08E+02<br>1.22E+03 1.37E+03 1.01E+03<br><6.08E+02 |
| 223<br>223                             | Rinse<br>Strip                         | 600<br>300         |                         | <1.00E-03<br>2.00E-03                                                                                          | 3.15E-01<br>2.21E+00                                                                                           | 1.22E+00<br>1.17E+01                                                                                              | 1.76E+00<br>7.21E+00                                                                 | 7.68E-01<br>6.31E+00                                                                                              | 4.188+02<br>4.02E+02                                                                                                       | <6.08E+01<br><6.40E+01                                                                                                        |
|                                        |                                        |                    |                         | CYCLE 2, TEST RESTARTED IN FRESI                                                                               | H J-13 WATER                                                                                                   |                                                                                                                   |                                                                                      |                                                                                                                   |                                                                                                                            |                                                                                                                               |
| 20<br>20<br>62<br>62<br>154            | Sol<br>Rod<br>Sol<br>Rod<br>Sol        | 20<br>20<br>25     | 8.426<br>8.365<br>8.15  | <pre>&lt;2.00E-03 &lt;1.00E-03 &lt;2.00E-03 &lt;2.00E-02 2.00E-03</pre>                                        | 3.60E+00<br>2.70E-01 3.60E-01 5.86E-01<br>5.41E+00<br>3.60E-01 4.95E-01 1.35E-01                               | Alpha<1.4 Alpha<1.4 Alpha<1.<br>2.07E+01<br>5.41E-01 8.11E-01 1.35E+0<br>4.23E+01<br>8.56E-01 1.04E+00 3.15E-0    | 2.12E+01<br>4.50E-01 <4.50E-01 <4.50E-01<br>2.97E+01<br>4.50E-01 <9.01E-01 <9.01E-01 | 1.40E+01<br><2.25E-01 <2.25E-01 <2.25E-01<br>3.51E+01<br>1.35E-01 1.80E-01 <4.50E-02                              | 3.40E+02 4.24E+02 2.36E+02<br><6.35E+02 5.00E+02 4.50E+02 4.86E+02<br>5.23E+02 1.02E+03 9.23E+02                           | <pre>&lt;6.08E+01 &lt;6.31E+01 &lt;6.31E+01 &lt;6.31E+02 &lt;6.71E+01 &lt;6.08E+01 &lt;6.40E+01 &lt;6.08E+02</pre>            |
| 202<br>202<br>202<br>202               | Sol<br>Rod<br>Rinse<br>Strip+          | 250<br>600         | 8.52                    | 1.00E-03 1.00E-03 1.00E-03<br>1.70E-02<br>1.00E-03                                                             | 2.70E-01 4.50E-01 3.60E-01 <2.25E-01 5.86E-01                                                                  | 5.86E-01 1.08E+00 6.31E-0<br><1.80E+00<br>3.47E+00                                                                | 1 4.50E-01 <2.25E-01 <2.70E-01<br>2.07E+01<br><2.70E-01                              | <1.35E-01 1.80E-01 <1.35E-01 <4.50E-01 2.12E+00                                                                   | 1.10E+03 1.09E+03 1.19E+03<br><8.13E+02<br><7.84E+01                                                                       | 7.48E+01 <8.11E+01 <8.76E+01 <6.08E+02 <6.08E+01                                                                              |
|                                        |                                        |                    |                         | Co-60                                                                                                          | SrY-90                                                                                                         | Np-237                                                                                                            | Tc-99                                                                                | Se-79                                                                                                             | C-14                                                                                                                       | 1-129                                                                                                                         |
| DAY                                    | SAMPLE<br>TYPE                         | VOLUME<br>ml       | рН                      | UNFILTER 0.4 um 18 A                                                                                           | UNFILTER 0.4 um 18 A                                                                                           | UNFILTER 0.4 um 18 A                                                                                              | UNFILTER 0.4 um 18 A                                                                 | UNFILTER 0.4 um 18 A                                                                                              | UNFILTER 0.4 um 18 A                                                                                                       | UNFILTER 0.4 um 18 A                                                                                                          |
| 1<br>6<br>6<br>6<br>20                 | Sol<br>Sol<br>Rod<br>Rinse<br>Sol      | 5<br>10<br>**<br>5 | 7.718<br>7.944<br>8.156 |                                                                                                                |                                                                                                                |                                                                                                                   |                                                                                      |                                                                                                                   |                                                                                                                            |                                                                                                                               |
| 30<br>30                               | Sol                                    | 15                 | 8.076                   |                                                                                                                |                                                                                                                |                                                                                                                   |                                                                                      |                                                                                                                   |                                                                                                                            |                                                                                                                               |
| 63<br>63<br>120                        | Rod<br>Sol<br>Rod<br>Sol               | 25<br>15           | 8.906<br>8.530          | 1.44E+02 2.15E+02 1.90E+02<br>2.53E+02 1.54E+02 1.40E+02                                                       |                                                                                                                | <4.50E-01 <4.50E-01 <4.50E-0 <4.50E-0                                                                             | 1 2.61E+01 1.67E+01 2.79E+01 <9.01E+01                                               | <1.58E+01<br><1.35E+02                                                                                            | 2.25E+01                                                                                                                   | 6.04E-03                                                                                                                      |
| 120<br>181<br>181                      | Rod<br>Sol<br>Rod                      | 20                 | 8.405                   | <1.04E+04<br>2.87E+02 1.99E+02 1.50E+02                                                                        |                                                                                                                | <pre>&lt;4.50E+00 &lt;4.50E-01 5.41E-01 &lt;4.50E-0 &lt;4.50E+00 </pre>                                           | <9.01E+01                                                                            | <1.35E+02<br><9.01E+01                                                                                            |                                                                                                                            |                                                                                                                               |
| 223<br>223                             | Sol<br>Rod                             | 250                | 8.428                   | 1.47E+02 1.89E+02 8.51E+01<br><1.04E+03                                                                        |                                                                                                                | <4.50E-01 <4.50E-01 <4.50E-0                                                                                      | 1 <9.01E+00 <9.01E+00 <9.01E+00                                                      | <9.01E+00                                                                                                         | 1.98E+01                                                                                                                   | 5.41E-03                                                                                                                      |
| 223<br>223                             | Rinse<br>Strip                         | 600<br>300         |                         | <1.04E+02<br><1.04E+02                                                                                         |                                                                                                                | <4.50E-01<br><4.50E-01                                                                                            | 1.40E+01<br><9.01E+00                                                                |                                                                                                                   |                                                                                                                            |                                                                                                                               |
|                                        |                                        |                    |                         | CYCLE 2, TEST RESTARTED IN FRES                                                                                | SH J-13 WATER                                                                                                  |                                                                                                                   | ·<br>·                                                                               |                                                                                                                   | :                                                                                                                          |                                                                                                                               |
| 20                                     | Sol                                    | 20                 | 8.426                   | <1.04E+02 <1.04E+02 <1.04E+02 <1.04E+02 <1.04E+03                                                              |                                                                                                                | <4.50E-02 <4.50E-02 <4.50E-0                                                                                      | 2 <9.01E+00 <9.01E+00 <9.01E+00                                                      |                                                                                                                   | 1                                                                                                                          |                                                                                                                               |
| 20<br>62<br>62                         | Rod<br>Sol<br>Rod                      | 20                 | 8.365                   |                                                                                                                |                                                                                                                | <4.50E-01 <4.50E-01 <4.50E-0                                                                                      | ,                                                                                    |                                                                                                                   |                                                                                                                            |                                                                                                                               |
| 154                                    | Sol                                    | 25                 | 8.15                    |                                                                                                                | 1.49E+02                                                                                                       | <2.25E-01 <2.25E-01 <2.25E-0                                                                                      | <9.01E+00                                                                            | <b></b>                                                                                                           | 1.40E+01                                                                                                                   | 7.21E-03                                                                                                                      |
| 202<br>202<br>202<br>202               | Sol<br>Rod<br>Rinse<br>Strip+          | 250<br>600         | 8.52                    |                                                                                                                | 1.98E+03<br><7.66E+03<br><7.66E+02                                                                             | 9.01E-01<br>(2.25E-01                                                                                             | <pre>49.01E+00 &lt;9.01E+00 &lt;9.01E+00 &lt;9.01E+01 &lt;9.01E+00</pre>             | <4.50E+00<br><4.50E+01<br><4.50E+00                                                                               | 7.21E+00<br>9.91E+00                                                                                                       | 8.938-03                                                                                                                      |

UNITS: Solution samples (Sol) in pCi/ml for all but Uranium, ug/ml for Uranium.

Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium.

Rinse in same units as solution samples, sample was rinsed in 600 ml J-13 water.

Strip in same units as solution samples, test vessel was stripped with 300 ml 8M HNO3.

Rod rinse sample reported in pCi/rod (ug/rod for Uranium).
The C5C-A vessel broke during Cycle 2 terminal rinsing and was not stripped.

TABLE A.6
1-9-24 BARE FUEL TEST RADIOCHEMICAL DATA

23

|                                                        |                                           |                |                                  |                                                                                                    |                      |                                  | Pu                                                       | -239+Pu-24                                               | 0                    | Ат                                                                               | -241+Pu-23            | 8                    |                                                                                  | Am-241*_              |                      |                                                          | Cm-244               |                      |                                                                                  | _Cs-137              |                      |                                                                        | Cs-134               |                      |
|--------------------------------------------------------|-------------------------------------------|----------------|----------------------------------|----------------------------------------------------------------------------------------------------|----------------------|----------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------|----------------------------------------------------------------------------------|-----------------------|----------------------|----------------------------------------------------------------------------------|-----------------------|----------------------|----------------------------------------------------------|----------------------|----------------------|----------------------------------------------------------------------------------|----------------------|----------------------|------------------------------------------------------------------------|----------------------|----------------------|
|                                                        |                                           | LUME<br>m1     | pН                               | UNFILTER O                                                                                         | ),4 um               | 18 A                             | UNFILTER                                                 | 0.4 um                                                   | 18 A                 | UNFILTER                                                                         | 0.4 um                | 18 A                 | UNFILTER                                                                         | 0.4 um                | 18 A                 | UNFILTER                                                 | 0.4 um               | 18 A                 | UNFILTER                                                                         | 0.4 um               | 18 A                 | UNFILTER                                                               | 0.104<br>0.4 um      | 18 A                 |
| 1 Sc<br>6 Sc<br>8 Rc<br>15 Sc<br>30 Sc                 | ol<br>ol<br>od<br>ol                      | 10<br>5        | 7.926<br>8.162<br>8.144<br>8.320 | 8.30E+00<br>4.80E+00                                                                               |                      | 4.20E+00<br>5.40E+00             | 9.14E+03<br>4.32E+03                                     | 4.86E+02<br>5.00E+02                                     |                      | 7.30K+03<br>2.45E+03<br>3.29E+04<br>1.51E+04<br>2.11K+03                         |                       | 1                    | 4.44E+03<br>1.47E+03<br>1.65E+04<br>7.34E+03<br>1.24E+03                         |                       |                      | 4.44E+03<br>1.50E+03<br>1.53E+04<br>7.52E+03<br>1.20E+03 | 1.00E+03             | 3.068+01             | 1.12E+07<br>1.30E+07<br>6.35E+05<br>1.42E+07<br>1.42E+07                         | 1.32E+07             | 1.25E+07             | 9.32E+05<br>1.09E+06<br>4.45E+04<br>1.16E+06<br>1.13E+06               | 1.09E+08             | 1.052+08             |
| 30 Ro<br>62 Sc<br>82 Ro<br>120 Sc<br>120 Ro            | ol<br>od                                  |                | 8.288<br>8.429                   | 2.40E+00<br>4.90E+00<br>1.60E+00<br>4.80E+00<br>1.10E+00                                           |                      |                                  | 4.14E+03<br>5.27E+02<br>2.91E+03<br>4.86E+02<br>2.06E+03 | 4.55E+02<br>4.59E+02                                     |                      | 1.65E+04<br>2.17E+03<br>1.05E+04<br>1.93E+03<br>8.15E+03                         | 1.73E+03<br>1.70E+03  |                      | 9.06E+03<br>1.23E+03<br>5.33E+03<br>1.06E+03<br>4.46E+03                         |                       |                      | 7.84E+03<br>1.22E+03<br>4.91E+03<br>1.06E+03<br>4.04E+03 | 8.87E+02             |                      | 3.97E+05<br>1.42E+07<br>3.86E+05<br>1.28E+07<br>5.27E+05                         |                      |                      | 3.23E+04<br>1.13E+06<br>2.48E+04<br>9.50E+05<br>3.84E+04               |                      |                      |
| 181 Sc<br>181 Rc<br>181 Rir<br>181 St                  | od<br>nse 6                               | 50<br>00<br>00 | 8.458                            | 3.20E+00                                                                                           | . 10E-01             |                                  | 3.32E+03<br>3.79E+03                                     | 4.11E+02<br>1.05E+02                                     | 2.17E+02             | 1.77E+03<br>1.30E+04<br>1.44E+04                                                 | 1.57E+03<br>3.79E+02  | 4.64E+02             | 9.73E+02<br>6.80E+03<br>7.25E+03                                                 | 8.24E+02<br>1.85E+02  | 7.61E+01             | 6.17E+03                                                 | 8.51E+02<br>1.73E+02 | 7.84E+01             | 1.23E+07<br>7.07E+05<br>4.59E+05                                                 | 1.24E+07<br>1.31E+06 | 1.25E+07             | 8.42E+05<br>4.91E+04<br>3.17E+04                                       | 8.56E+05<br>9.05E+04 | 8.78E+05             |
| 71 Sc<br>71 Rc<br>154 Sc<br>195 Sc<br>195 Rc<br>195 Ri | od<br>ol<br>ol<br>ol<br>ol<br>od<br>ose 6 | 20<br>25       | 8.462<br>8.485<br>8.490<br>8.490 | 1.40E+00 1.<br>1.50E+00 2.<br>1.0E+00 2.<br>3.90E-01 2.<br>6.40E+00 2.<br>40E+00 2.<br>1.10E+00 6. | .40E+00<br>.00E+00   | 1.40E+00<br>2.00E+00<br>2.60E+00 | 2.48E+02<br>1.95E+03<br>2.07E+02<br>1.50E+03<br>1.73E+02 | 2.36E+02<br>1.89E+02<br>1.73E+02<br>1.71E+02<br>4.41E+01 | 1.46E+02<br>1.34E+02 | 5.18E+02<br>1.32E+04<br>4.28E+02<br>1.16E+04<br>3.65E+02<br>3.78E+02<br>1.47E+04 | 3.92E+02<br>3.48E+02  | 2.49E+02<br>2.16E+02 | 8.15E+01<br>1.36E+04<br>8.11E+01<br>1.04E+04<br>8.51E+01<br>8.42E+01<br>1.45E+04 | 7.21E+01<br>6.49E+01  | 5.41E+00<br>3.33E+00 | 1.10E+04                                                 |                      | 4.05E+00<br>2.25E+00 | 2.26E+05<br>1.14E+05<br>4.23E+05<br>3.79E+04<br>6.94E+05<br>8.15E+05<br>1.24E+05 | 4.27E+05<br>6.76E+05 | 3.99E+05<br>6.40E+05 | 1.46E+04<br><1.02E+04<br>2.82E+04<br><1.24E+04<br>4.18E+04<br>4.64E+04 | 2.75E+04<br>4.32E+04 | 2.48E+04<br>3.70E+04 |
|                                                        |                                           | LUME<br>m1     | pН                               |                                                                                                    | Co-60                | 18 A                             | UNFILTER                                                 | SrY-90<br>0.4 um                                         | 18 A                 | UNFILTER                                                                         | Np-237<br>0.4 um      | 18 A                 | UNFILTER                                                                         | _Tc-99                | 18 A                 | UNFILTER                                                 | Se-79<br>0.4 um      | 18 A                 | UNFILTER                                                                         |                      | 18 A                 | UNFILTER                                                               | I-129<br>0.4 um      | 18 A                 |
|                                                        | ol<br>od<br>ol                            | 10<br>5        | 7.928<br>8.162<br>8.144<br>8.320 | 3.41E+04<br>1.83E+05 1.<br><6.76E+02<br>3.53E+05<br>4.95E+05 4.                                    |                      |                                  |                                                          |                                                          |                      |                                                                                  |                       |                      |                                                                                  |                       |                      |                                                          |                      |                      |                                                                                  |                      |                      |                                                                        |                      |                      |
| 62 Re<br>120 Se                                        | ol<br>od                                  |                | 8.288<br>8.429                   | 5.41E+04<br>5.59E+05 5.<br>2.95E+04<br>6.17E+05 6.<br>9.05E+04                                     |                      |                                  |                                                          |                                                          |                      | 1.80E+00<br>9.46E-01                                                             | 1.04E+00              | 1.17E+00             | 1.98E+02<br>2.03E+02                                                             | 2.25E+02              | 2.03E+02             |                                                          |                      |                      |                                                                                  |                      |                      |                                                                        |                      |                      |
|                                                        | od<br>nse 8                               | 50<br>00<br>00 | 8.458                            | 6.17E+05 6.<br>2.30E+05 7.<br>1.66E+04                                                             | .04E+05<br>.93E+04   | 5.54E+05                         |                                                          |                                                          |                      | <4.50E-01                                                                        | 4.50E-01<br><2.25E-01 | 4.50E-01             | 2.12E+02<br>2.03E+01                                                             | 1.89E+02<br>1.94E+01  | 1.89E+02             | <9.01E+00                                                |                      |                      | 5.27E+01                                                                         |                      |                      | 5.90E-01                                                               |                      |                      |
|                                                        |                                           |                |                                  | CYCLE 2, TEST                                                                                      | T RESTAR             | ted in Fres                      | H J13 WATER                                              |                                                          |                      |                                                                                  |                       | 1                    |                                                                                  |                       |                      |                                                          |                      |                      |                                                                                  |                      |                      |                                                                        |                      |                      |
| 71 Se<br>71 Re                                         | od<br>ol<br>od                            | 20             | 8.462<br>8.485<br>8.490          | 1.21E+05 1.<br>6.26E+04<br>1.50E+05 1.<br>9.82E+04<br>1.45E+05 1.                                  | .55E+05              | 1.222+05                         | 3.42E+05                                                 |                                                          |                      |                                                                                  |                       |                      | 2.30E+01<br>2.79E+01<br>5.41E+01                                                 |                       |                      |                                                          |                      |                      | 5.41E+01                                                                         |                      |                      | 1.86E-01                                                               |                      |                      |
| 195 Sc<br>195 Ro<br>195 Ri<br>195 St                   | ol 2<br>od<br>nse 6                       |                | 8.490                            | 1.32E+05 1.<br>4.73E+05 2.<br>3.52E+03                                                             | . 36E+05<br>. 69E+03 | 1.13E+05                         | 3.56E+05<br>2.61E+05<br>5.23E+04                         | 9.01E+03                                                 |                      | 3.60E-01<br>1.80E+00<br><2.25E-01                                                |                       | 3.60R-01             | 4.50E+01<br><9.01E+01                                                            | 7.21E+01<br>(9.01E+00 | 5.86E+01             | <9.01E+00<br><9.01E+00<br><9.01E+00                      | 9.01E+00             |                      | 4.50E+01                                                                         | 5.86E+00             |                      | 2.19E-01<br>7.31E-03<br>1.91E-02                                       |                      |                      |

UNITS: Solution samples (Sol) in pCi/ml for all but Uranium, ug/ml for Uranium.

Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium.

Rinse in same units as solution samples, sample was rinsed in 600 ml J-13 water.

Strip in same units as solution samples, test vessel was stripped with 300 ml 8M HNO3.

<sup>\*</sup> Am-241 values through 120-day rod sample calculated from Pu-239+Pu-240 and Am-241+Pu-238 values using Pu-238/(Pu-239+Pu-240) activity ratio of 1.792.

TABLE A.7
1-9-19 SLIT DEFECT TEST RADIOCHEMICAL DATA

|                                                                                      |                                                                                              |                                |                                                             |                                                                                                                                                                                                                                                                  |                                                                                     | Pu                                           | -239+Pu-24                                   | 0                    | Ал                                                                    | -241+Pu-2                                      | 38                                           |                                                                                                | _Am-241*                                   |                                  |                                                          | Cm-244_              |                        | <del></del>                                  | Cs-137               |                                              |                                                | _Cs-134_             |                                              |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------|-----------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------------------------------|----------------------|------------------------|----------------------------------------------|----------------------|----------------------------------------------|------------------------------------------------|----------------------|----------------------------------------------|
| DAY                                                                                  | SAMPLE<br>TYPE                                                                               | VOLUME<br>ml                   | pН                                                          | UNFILTER 0.4 um                                                                                                                                                                                                                                                  | 18 A                                                                                | UNFILTER                                     | 0.4 um                                       | 18 A                 | Unfilter                                                              | 0.4 um                                         | 18 A                                         | UNFILTER                                                                                       | 0.4 um                                     | 18 A                             | UNFILTER                                                 | 0.4 um               | 18 A                   | UNFILTER                                     | 0.4 um               | 18 A                                         | UNFILTER                                       | 0.4 um               | 18 A                                         |
| 1<br>6<br>6<br>15<br>30                                                              | Sol<br>Sol<br>Rod<br>Sol<br>Sol                                                              | 5<br>10<br>5<br>15             | 8.021<br>8.157<br>8.169<br>8.325                            | 6.00E-02<br>2.00E-01 2.00E-01<br>4.30E-01<br>3.40E-01<br>4.40E-01 4.40E-01                                                                                                                                                                                       |                                                                                     | 4.64E+02<br>3.60E+00                         | 4.32E+00<br>5.41E+00                         |                      | 1.77E+03<br>1.22E+01                                                  |                                                | 2.12E+00<br>3.15E+00                         | 9.24E+00<br>7.49E+00<br>8.35E+02<br>4.86E+00<br>1.07E+01                                       |                                            |                                  | 1.04E+01<br>1.13E+01<br>8.38E+02<br>5.86E+00<br>1.22E+01 |                      | 2.25E-01<br><4.50E-01  | 6.58E+04<br>8.17E+06                         |                      | 2.70E+06<br>8.33E+06                         | 4.73E+03<br>5.14E+05                           |                      | 2.17E+05<br>6.67E+05                         |
| 30<br>62<br>62<br>120<br>120                                                         | Rod<br>Sol<br>Rod<br>Sol<br>Rod                                                              | 20<br>20                       | 8.315<br>8.448                                              | 4.30E-02<br>5.40E-01 5.30E-01<br>1.80E-02<br>7.20E-01 6.90E-01<br>3.00E-02                                                                                                                                                                                       |                                                                                     | 1.26E+01                                     | 7.21E+00<br>9.01E+00                         |                      | 3.85E+02<br>2.93E+01<br>5.36E+01                                      | 2.48E+01                                       | 6.98E+00<br>7.66E+00                         | 1.82E+02                                                                                       | 1.67E+01                                   | 1.23E+00                         | 1.82E+02<br>1.67E+01<br>2.16E+01                         | 1.49E+01             |                        | 2.08E+05<br>1.01E+07<br>2.85E+05             | 1.05E+07             | 9.64E+06<br>1.23E+07                         | 2.35E+04                                       |                      | 7.79E+05<br>9.32E+05                         |
| 181<br>181<br>181<br>181                                                             | Sol<br>Rod<br>Rinse<br>Strip                                                                 | 250<br>600<br>300              | 8.473                                                       | 8.50E-01 8.10E-01<br><2.00E-02<br>1.70E-02<br>5.30E-02                                                                                                                                                                                                           | 8.202-01                                                                            | 7.21E+00<br>2.97E+01<br>1.94E+01<br>7.70E+01 | 9.01E+00                                     | 3.602+00             | 2.84E+01<br>1.25E+02<br>8.60E+01<br>2.60E+02                          | 2.75E+01                                       | 6.76E+00                                     | 1.85E+01<br>1.03E+02<br>5.45E+01<br>1.66E+02                                                   | 1.49E+01                                   | 1.35E+00                         | 1.58E+01<br>6.26E+01<br>4.10E+01<br>1.23E+02             | 1.31E+01             | 9.01E-01               | 1.41E+07<br>5.50E+05<br>2.00E+05<br>3.19E+04 | 1.41E+07             | 1.39E+07                                     | 1.05E+06<br>3.65E+04<br>1.40E+04<br>2.23E+03   | 1.07E+06             | 1.01E+06                                     |
|                                                                                      |                                                                                              |                                |                                                             | CYCLE 2, TEST RESTAR                                                                                                                                                                                                                                             | TED IN FRES                                                                         | H J-13 WATE                                  | R                                            |                      |                                                                       |                                                | ,                                            |                                                                                                |                                            |                                  |                                                          |                      |                        |                                              |                      |                                              |                                                |                      |                                              |
| 20<br>20<br>71<br>71<br>154                                                          | Sol<br>Rod<br>Sol<br>Rod<br>Sol                                                              | 20<br>20<br>25<br>250          | 8.460<br>8.460<br>8.500<br>8.480                            | 1.40E-01 1.30E-01<br>1.40E-02<br>3.50E-01 3.50E-01<br><2.00E-02<br>4.90E-01 4.80E-01<br>5.00E-01 5.00E-01                                                                                                                                                        | 3.30E-01<br>4.20E-01                                                                | 2.57E+01<br>7.66E+00<br>5.32E+01<br>7.66E+00 | 4.50E+00<br>7.66E+00<br>7.66E+00<br>6.31E+00 | 4.50E+00<br>3.20E+00 | 1.20E+02<br>1.62E+01<br>2.08E+02<br>1.62E+01                          | 1.67E+01<br>1.62E+01                           | 9.46E+00<br>7.66E+00<br>5.18E+00<br>5.41E+00 | 7.48E+01<br>5.86E+00<br>1.22E+02<br>5.36E+00                                                   |                                            | <1.35E+00<br><4.50E-01           | 1.80E+00<br>6.76E+01<br>3.60E+00<br>1.27E+02<br>3.60E+00 | 2.70E+00<br>3.15E+00 | <4.50E-01<br><9.01E-02 | 1.14E+04<br>2.81E+06<br>2.05E+04<br>7.07E+06 | 2.72E+06<br>6.89E+06 | 7.88E+05<br>2.68E+06<br>6.62E+06<br>7.70E+08 | <9.46E+02<br>1.85E+05<br><1.34E+03<br>4.30E+05 | 1.81E+05<br>4.27E+05 | 5.41E+04<br>1.74E+05<br>4.07E+05<br>4.64E+05 |
| 195<br>195<br>195                                                                    | Rod<br>Rinse<br>Strip                                                                        | 600<br>300                     |                                                             | <2.00E-02<br>8.00E-03<br>1.00E-03                                                                                                                                                                                                                                |                                                                                     | 7.21E+01<br>5.86E-01<br>7.21E+00             |                                              | 0.002.00             | 2.97E+02<br>1.62E+00<br>2.48E+01                                      | 1.332.01                                       |                                              | 1.80E+02<br>3.42E+00<br>1.08E+01                                                               | 5.812+01                                   | (4.502-01                        | 1.71E+02<br>6.76E-01<br>9.91E+00                         | 2.516400             | (2.256-01              | 2.60E+05<br>6.98E+04<br>6.71E+03             | 7,00700              | 1,102.00                                     | 1.41E+04<br>3.83E+03<br>4.12E+02               | 11012100             |                                              |
|                                                                                      |                                                                                              |                                |                                                             |                                                                                                                                                                                                                                                                  |                                                                                     |                                              |                                              |                      |                                                                       |                                                |                                              |                                                                                                |                                            |                                  |                                                          |                      |                        |                                              |                      |                                              |                                                |                      |                                              |
|                                                                                      | a wor z                                                                                      | war mæ                         |                                                             | Co-60                                                                                                                                                                                                                                                            | <del></del>                                                                         |                                              | SrY-90                                       |                      |                                                                       | Np-237                                         |                                              |                                                                                                | Tc-99                                      | <del></del>                      |                                                          | Se-79                | ···                    |                                              | C-14                 |                                              |                                                | I-129                |                                              |
| DAY                                                                                  | SAMPLE<br>TYPE                                                                               | VOLUME<br>ml                   | ΡĦ                                                          | Co-60                                                                                                                                                                                                                                                            | 18 A                                                                                | UNFILTER                                     | SrY-90<br>0.4 um                             | 18 A                 | UNFILTER                                                              | Np-237<br>0.4 um                               | 18 A                                         | UNFILTER                                                                                       | Tc-99<br>0.4 um                            | 18 A                             | UNFILTER                                                 | Se-79<br>0.4 um      | 18 A                   | UNFILTER                                     | C-14<br>0.4 um       | 18 A                                         | UNFILTER                                       |                      | 18 A                                         |
| DAY  1 8 8 15 30                                                                     |                                                                                              |                                | pH<br>8.021<br>8.157<br>8.169<br>8.325                      |                                                                                                                                                                                                                                                                  | 4.01E+03                                                                            | UNFILTER                                     |                                              | 18 A                 | UNFILTER                                                              |                                                | 18 Å                                         | UNFILTER                                                                                       |                                            | 18 A                             | UNFILTER                                                 |                      | 18 A                   | UNFILTER                                     |                      | 18 A                                         | UNFILTER                                       |                      | 18 A                                         |
| 1<br>6<br>6<br>15                                                                    | TYPE<br>Sol<br>Sol<br>Rod<br>Sol                                                             | m1<br>5<br>10<br>5             | 8.021<br>8.157<br>8.169                                     | UNFILTER 0.4 um<br>1.43E+03<br>3.59E+03 2.68E+03<br><1.04E+03<br>1.75E+04                                                                                                                                                                                        | 4.01E+03<br>2.37E+04                                                                | UNFILTER                                     |                                              | 18 A                 | UNFILTER                                                              |                                                | 18 A                                         | UNFILTER                                                                                       |                                            | 18 A                             | UNFILTER                                                 |                      | 18 A                   | UNFILTER                                     |                      | 18 A                                         | UNFILTER                                       |                      | 18 A                                         |
| 1<br>6<br>8<br>15<br>30                                                              | TYPE Sol Sol Rod Sol Sol Rod                                                                 | m1<br>5<br>10<br>5<br>15       | 8.021<br>8.157<br>8.169<br>8.325                            | UNFILTER 0.4 um  1.43E+03 3.59E+03 2.68E+03 <1.04E+03 1.75E+04 4.73E+04 4.20E+04 3.57E+03                                                                                                                                                                        | 4.01E+03<br>2.37E+04<br>6.04E+04                                                    | UNFILTER                                     |                                              | 18 A                 | <4.50E-01                                                             | 0.4 um                                         | 18 A <9.01E-01                               | 1.85E+02                                                                                       | 0.4 um                                     | 18 A                             | UNFILTER                                                 |                      | 18 A                   | UNFILTER                                     |                      | 18 A                                         | UNFILTER                                       |                      | 18 A                                         |
| 1<br>6<br>6<br>15<br>30<br>30<br>62<br>62<br>120                                     | Sol<br>Sol<br>Rod<br>Sol<br>Sol<br>Rod<br>Sol<br>Rod<br>Sol                                  | m1 5 10 5 15 20                | 8.021<br>8.157<br>8.169<br>8.325                            | UNFILTER 0.4 um  1.43E+03 3.59E+03 2.68E+03 <1.04E+03 1.75E+04 4.73E+04 4.20E+04 3.57E+03 7.88E+04 7.52E+04 3.92E+03 6.35E+04 6.58E+04                                                                                                                           | 4.01E+03<br>2.37E+04<br>6.04E+04<br>5.77E+04                                        | UNFILTER                                     |                                              | 18 A                 | <4.50E-01                                                             | 0.4 um                                         | <9.01E-01                                    | 1.85E+02<br>2.07E+02                                                                           | 0.4 um                                     | 2.07E+02                         | UNFILTER                                                 |                      | 18 A                   | UNFILTER 7.21E+01                            |                      | 18 A                                         | UNFILTER                                       |                      | 18 A                                         |
| 1<br>6<br>8<br>15<br>30<br>30<br>62<br>62<br>120<br>120<br>181<br>181                | TYPE Sol Sol Rod Sol Rod Sol Rod Sol Rod Sol Rod Rod Rod Rod                                 | m1 5 10 5 15 20 20 250 600     | 8.021<br>8.157<br>8.169<br>8.325<br>8.315<br>8.448          | UNFILTER 0.4 um  1.43E+03 3.59E+03 2.68E+03 2.1.75E+04 4.73E+04 4.73E+04 3.57E+03 7.88E+04 3.92E+03 6.35E+04 8.11E+03 4.68E+04 2.48E+04 1.14E+03                                                                                                                 | 4.01E+03<br>2.37E+04<br>6.04E+04<br>5.77E+04<br>4.42E+04                            |                                              | 0.4 um                                       | 18 A                 | <4.50E-01 <9.01E-01 <4.50E-01 <2.25E-01                               | 0.4 um                                         | <9.01E-01                                    | 1.85E+02<br>2.07E+02<br>2.03E+02<br><9.01E+00                                                  | 0.4 um                                     | 2.07E+02                         |                                                          |                      | 18 A                   |                                              |                      | 18 A                                         |                                                |                      | 18 A                                         |
| 1<br>6<br>6<br>15<br>30<br>30<br>62<br>120<br>120<br>120<br>181<br>181<br>181        | TYPE  Sol Sol Rod Sol                | m1 5 10 5 15 20 20 250 600     | 8.021<br>8.157<br>8.169<br>8.325<br>8.315<br>8.448          | UNFILTER 0.4 um  1.43E+03 3.59E+03 2.68E+03 (1.04E+03 1.75E+04 4.73E+04 4.20E+04 3.57E+03 7.88E+04 3.92E+03 6.35E+04 8.11E+03 4.68E+04 2.48E+04 1.14E+03 7.07E+03  CYCLE 2, TEST RESTAR  5.05E+03 5.41E+03                                                       | 4.01E+03 2.37E+04 6.04E+04 5.77E+04 4.42E+04 TED IN FRES                            |                                              | 0.4 um                                       | 18 A                 | <4.50E-01 <9.01E-01 <4.50E-01 <2.25E-01 <4.50E-01                     | 0.4 um                                         | <9.01E-01<br><4.50E-01                       | 1.85E+02<br>2.07E+02<br>2.03E+02<br><9.01E+00                                                  | 0.4 um 1.94E+02 1.98E+02                   | 2.07E+02<br>2.21E+02             |                                                          |                      | 18 A                   |                                              |                      | 18 A                                         |                                                |                      | 18 A                                         |
| 1<br>6<br>8<br>15<br>30<br>30<br>62<br>120<br>120<br>120<br>181<br>181<br>181<br>181 | TYPE Sol Sol Rod Sol | m1 5 10 5 15 20 20 250 600 300 | 8.021<br>8.157<br>8.169<br>8.325<br>8.315<br>8.448<br>8.473 | UNFILTER 0.4 um  1.43E+03 3.59E+03 2.68E+03  <1.04E+03 1.75E+04 4.73E+04 4.20E+04 3.57E+03 7.88E+04 7.52E+04 3.92E+03 6.35E+04 6.58E+04 8.11E+03 4.68E+04 4.42E+04 2.48E+04 1.14E+03 7.07E+03 CYCLE 2, TEST RESTAR  5.05E+03 5.41E+03 2.77E+03 6.76E+03 7.07E+03 | 4.01E+03 2.37E+04 6.04E+04 5.77E+04 4.42E+04 TED IN FRES                            |                                              | 0.4 um                                       | 18 A                 | <4.50E-01 <9.01E-01 <4.50E-01 <2.25E-01 <4.50E-01 <2.25E-01           | 0.4 um                                         | <9.01E-01<br><4.50E-01                       | 1.85E+02<br>2.07E+02<br>2.03E+02<br><9.01E+00<br><9.01E+00                                     | 0.4 um 1.94E+02 1.98E+02                   | 2.07E+02<br>2.21E+02<br>4.50E+01 |                                                          |                      | 18 A                   |                                              |                      | 18 A                                         |                                                |                      | 18 A                                         |
| 1<br>6<br>8<br>15<br>30<br>30<br>62<br>120<br>120<br>120<br>181<br>181<br>181<br>181 | TYPE  Sol Sol Rod Rinse Strip        | m1 5 10 5 15 20 20 250 600 300 | 8.021<br>8.157<br>8.169<br>8.325<br>8.315<br>8.448<br>8.473 | UNFILTER 0.4 um  1.43E+03 3.59E+03 2.68E+03 <1.04E+03 1.75E+04 4.73E+04 4.20E+04 3.57E+03 7.88E+04 7.52E+04 3.92E+03 6.35E+04 6.58E+04 8.11E+03 4.68E+04 4.42E+04 2.46E+04 1.14E+03 7.07E+03  CYCLE 2, TEST RESTAR  5.05E+03 5.41E+03 2.77E+03                   | 4.01E+03 2.37E+04 6.04E+04 5.77E+04 4.42E+04 TED IN FRES 4.38E+03 5.14E+03          |                                              | 0.4 um                                       | 18 A                 | <4.50E-01 <9.01E-01 <4.50E-01 <2.25E-01 <4.50E-01 <2.25E-01           | 0.4 um                                         | <9.01E-01 <4.50E-01 <2.25E-01                | 1.85E+02<br>2.07E+02<br>2.03E+02<br><9.01E+00<br><9.01E+00                                     | 0.4 um 1.94E+02 1.98E+02                   | 2.07E+02<br>2.21E+02<br>4.50E+01 |                                                          |                      | 18 A                   |                                              |                      | 18 A                                         |                                                | 0.4 um               | 18 A                                         |
| 1<br>6<br>6<br>15<br>30<br>62<br>120<br>120<br>181<br>181<br>181<br>181<br>181       | TYPE  Sol Sol Rod Sol Rod Sol Rod Sol Rod Sol Rod Ron Sol Rod Rinse Strip                    | m1 5 10 5 15 20 20 250 600 300 | 8.021<br>8.157<br>8.169<br>8.325<br>8.315<br>8.448<br>8.473 | UNFILTER 0.4 um  1.43E+03 3.59E+03 2.68E+03 <1.04E+03 1.75E+04 4.73E+04 4.73E+04 3.57E+03 7.88E+04 3.92E+03 6.35E+04 8.11E+03 4.68E+04 1.14E+03 7.07E+03  CYCLE 2, TEST RESTAR  5.05E+03 5.41E+03 2.77E+03 6.76E+03 4.29E+03 4.29E+03                            | 4.01E+03 2.37E+04 6.04E+04 5.77E+04 4.42E+04 TED IN FRES 4.38E+03 5.14E+03 3.79E+03 | H J-13 WATE                                  | 0.4 um                                       | 18 A                 | <4.50E-01 <9.01E-01 <4.50E-01 <2.25E-01 <4.50E-01 <2.25E-01 <2.25E-01 | 0.4 um <9.01E-01 <4.50E-01 <2.25E-01 <4.50E-01 | <9.01E-01 <4.50E-01 <2.25E-01                | 1.85E+02<br>2.07E+02<br>2.03E+02<br><9.01E+00<br><9.01E+00<br>4.50E+01<br>6.76E+01<br>7.66E+01 | 0.4 um 1.94E+02 1.98E+02 4.95E+01 6.76E+01 | 2.07E+02<br>2.21E+02<br>4.50E+01 | <9.01E+00                                                |                      | 18 A                   | 7.21E+01                                     |                      | 18 A                                         | 2.89E-01                                       | 0.4 um               | 18 A                                         |

UNITS: Solution samples (Sol) in pCi/ml for all but Uranium, ug/ml for Uranium.

Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium.

Rinse in same units as solution samples, sample was rinsed in 800 ml J-13 water.

Strip in same units as solution samples, test vessel was stripped with 300 ml 8M HNO3.

<sup>\*</sup> Am-241 values through 120-day rod sample calculated from Pu-239+Pu-240 and Am-241+Pu-238 values using Pu-238 /(Pu-239+Pu-240) activity ratio of 2.028.

|                              |                                 |                    |                                  |                                                            |                      |                      | Pu                                                       | -239+Pu-24           | 0                 | Am                                           | -241+Pu-23           | 18        |                                                          | _Am-241*                            |           |                                                          | _Cm-244              |              |                                              | Cs-137               |                                  | *****                                                     | Cs-134               | ···                  |
|------------------------------|---------------------------------|--------------------|----------------------------------|------------------------------------------------------------|----------------------|----------------------|----------------------------------------------------------|----------------------|-------------------|----------------------------------------------|----------------------|-----------|----------------------------------------------------------|-------------------------------------|-----------|----------------------------------------------------------|----------------------|--------------|----------------------------------------------|----------------------|----------------------------------|-----------------------------------------------------------|----------------------|----------------------|
| DAY                          | SAMPLE<br>TYPE                  | VOLUME<br>ml       | Нq                               | UNFILTER                                                   | 0.4 um               | 18 A                 | UNFILTER                                                 | 0.4 um               | 18 A              | UNFILTER                                     |                      | 18 Å      | UNFILTER                                                 |                                     | 18 A      | UNFILTER                                                 | 0.4 um               | 18 A         | UNFILTER                                     | 0.4 um               | 18 A                             | UNFILTER                                                  | 0.4 um               | 18 A                 |
| 1<br>6<br>6<br>15<br>30      | Sol<br>Sol<br>Rod<br>Sol<br>Sol | 5<br>10<br>5<br>15 | 7.962<br>8.138<br>8.170<br>8.315 | 1.20E-02<br>2.40E-02<br>1.10E-01<br>2.90E-02<br>3.60E-02   |                      |                      | 4.95E+00<br>3.47E+00<br>4.26E+02<br>2.66E+00<br>2.25E+00 | 1.89E+00<br>3.60E+00 | 2.25 <b>K</b> +00 | 1.55E+03<br>6.76E+00                         | 5.86E+00<br>9.46E+00 | •         | 8.28E+02<br>2.26E+00                                     | 2.65E+00<br>3.36E+00                |           | 2.88E+00<br>2.07E+00<br>7.52E+02<br>1.80E+00<br>2.25E+00 | 1.31E+00<br>2.70E+00 | (4.50E-01    | 3.14E+03<br>3.81E+05                         |                      | 1.06E+05<br>5.36E+05             | 1.62E+03<br>8.06E+03<br><6.31E+02<br>2.94E+04<br>4.59E+04 | 7.16E+03<br>4.43E+04 |                      |
| 30<br>62<br>62<br>120<br>120 | Rod<br>Sol<br>Rod<br>Sol<br>Rod | 20<br>20           | 8.343<br>8.462                   | <2.00E-02<br>3.30E-02<br>1.80E-02<br>3.10E-02<br><2.00E-02 |                      |                      | 3.02E+01                                                 | 1.94E+00<br>2.34E+00 |                   | 5.54E+01                                     | 6.58E+00             | 1.80E+00  | 2.19E+01<br>3.10E+00<br>5.12E+01<br>2.22E+00<br>1.59E+01 | 3.30E+00<br>2.79E+00                |           | 2'.12E+01<br>2.30E+00<br>4.55E+01                        | 1.58E+00<br>2.16E+00 | (4.50E-01    | 2.45E+04                                     |                      | 6.85E+05<br>6.94E+05             | 1.46E+03                                                  | 5.90E+04<br>5.14E+04 |                      |
| 181<br>181<br>181<br>181     | Sol<br>Rod<br>Rinse<br>Strip    | 250<br>600<br>300  | 8.478                            | 2.90E-02<br><2.00E-02<br><1.00E-03<br>9.00E-03             | 2.90E-02             | 2.90E-02             | 1.80E+00<br>2.39E+01<br>2.25E+00<br>1.76E+01             | 2.25E+00             | <4.50E-01         | 6.31E+00<br>9.86E+01<br>1.08E+01<br>6.58E+01 | 6.31E+00             | <9.01E-01 | 3.15E+00<br>6.31E+01<br>6.76E+00<br>3.74E+01             | 1.35E+00                            | 9.01E-01  | 2.25E+00<br>4.46E+01<br>5.41E+00<br>3.02E+01             | 1.802+00             | <4.50E-01    | 7.79E+05<br>4.95E+04<br>5.36E+03<br>5.14E+03 | 7.79E+05             | 7.86E+05                         | 5.27E+04<br>3.04E+03<br>3.25E+02<br>2.76E+02              | 5.32E+04             | 5.14E+04             |
|                              |                                 |                    |                                  | CYCLE, 2, TE                                               | ST RESTAR            | TED IN FRES          | H J-13 WATE                                              | R                    |                   |                                              |                      | į         |                                                          |                                     |           |                                                          |                      |              |                                              |                      |                                  |                                                           |                      |                      |
| 20<br>20<br>71<br>71<br>154  | Sol<br>Rod<br>Sol<br>Rod<br>Sol | 20<br>20<br>25     | 8.453<br>8.425<br>8.510          | 3.00E-03<br>1.10E-02<br>3.00E-03<br><2.00E-02<br>4.00E-03  | 3.00E-03<br>4.00E-03 | 3.00E-03<br>3.00E-03 | 1.04E+01<br>9.46E-01                                     | 7.21E-01<br>9.46E-01 | 5.41E-01          | 3.928+01<br>2.218+00<br>5.418+01<br>2.578+00 | 1.62E+00<br>1.89E+00 | 1.04E+00  | 5.09E+01<br>4.50E+00<br>4.23E+01<br><4.50E-01            | <1.35E+00<br><9.01E-01<br><4.50E-01 | <4.50E-01 |                                                          | <2.25E-01            | <2.25E-01    | 2.12E+03<br>1.16E+05<br>5.95E+03<br>1.48E+05 | 1.13E+05<br>1.46E+05 | 4.49E+04<br>1.10E+05<br>1.36E+05 | <pre>&lt;6.40E+02 7.84E+03 &lt;6.08E+02 8.92E+03</pre>    | 8.875+03             | 6.89E+03<br>8.47E+03 |
| 195<br>195<br>195<br>195     | Sol<br>Rod<br>Rinse<br>Strip    | 250<br>600<br>300  | 8.540                            | 4.00E-03<br><2.00E-02<br><1.00E-03<br>1.00E-03             | 4.008-03             | 3.00E-03             | 7.21E-01<br>1.26E+01<br>1.80E-01<br>3.38E+00             | 6.31K-01             | 4.958-01          | 1.35E+00<br>5.27E+01<br>4.05E-01<br>1.22E+01 | 1.498+00             | 9.46K-01  | 1.13E+00<br>3.47E+01<br>5.41E-01<br>6.31E+00             | <4.50E-01                           | <4.50K-01 | 1.35K-01<br>2.21E+01<br>2.25E-01<br>4.32E+00             | <2.25E-01            | (4.50K-U2    | 1.568+05<br>7.93E+03<br>1.01E+03<br>9.05E+02 | 1.528+05             | 1.478+05                         | 6.002403                                                  | 9.10E+03             | 6.42E+U3             |
|                              | CAMBIT                          |                    |                                  |                                                            | _Co~60               |                      |                                                          | SrY-90               |                   |                                              | _N1:-237             |           |                                                          | Tc~99                               |           |                                                          | Se-79                | <del> </del> |                                              | C-14                 |                                  |                                                           | I-129                |                      |
| DAY                          | Sample<br>Type                  | VOLUME<br>ml       | рH                               | UNFILTER                                                   | 0.4 um               | 18 A                 | UNFILTER                                                 | 0.4 ಬಹ               | 18 A              | UNFILTER                                     | 0.4 um               | 18 A      | UNFILTER                                                 | 0.4 um                              | 18 A      | UNFILTER                                                 | 0.4 um               | 18 A         | UNFILTER                                     | 0.4 um               | 18 A                             | UNFILTER                                                  | 0.4 um               | 18 A                 |
| 1<br>6<br>8<br>15<br>30      | Sol<br>Sol<br>Rod<br>Sol<br>Sol | 5<br>10<br>5<br>15 | 7.962<br>8.138<br>8.170<br>8.315 | 9.23E+02<br>7.97E+02<br><1.04E+03<br>1.21E+03<br>2.95E+03  |                      |                      |                                                          |                      |                   |                                              |                      |           | Ī                                                        |                                     |           |                                                          |                      |              |                                              |                      |                                  |                                                           |                      |                      |
| 30<br>62                     | Rod<br>Sol                      | 20                 | 8.343                            | 0 775+02                                                   | 0 005103             | e 400+03             |                                                          |                      |                   |                                              |                      |           |                                                          |                                     |           |                                                          |                      |              |                                              |                      |                                  |                                                           |                      |                      |
| 62<br>120<br>120             | Rod<br>Sol<br>Rod               | 20                 | 8.462                            | 9.77E+03<br>8.56E+02<br>9.37E+03<br>2.09E+03               |                      | 7.70E+03             |                                                          |                      |                   | <4.50E-01<br><9.01E-01                       | <9.01E-01            | <9.01E-01 | 1.17E+01<br><1.80E+01                                    | <1.80E+01                           | <1.80E+01 |                                                          |                      |              |                                              |                      |                                  |                                                           |                      |                      |
| 181<br>181<br>181<br>181     | Sol<br>Rod<br>Rinse<br>Strip    | 250<br>600<br>300  | 8.478                            | 7.39E+03<br>1.27E+03<br>1.53E+02<br>9.73E+02               | 7.61E+03             | 6.44E+03             |                                                          |                      |                   | <2.25E-01 <4.50E-01 <2.25E-01                | (2.25E-01            | <2.25E-01 | <9.01E+00<br><9.01E+00<br><9.01E+00                      | 1.35E+01                            | <9.01E+00 | <9.01E+00                                                |                      |              | 1.67E+01                                     |                      |                                  | 2.60E-02                                                  |                      |                      |
|                              |                                 |                    |                                  | CYCLE 2, TE                                                | ST RESTAR            | TED IN FRES          | H J-13 WATE                                              | R                    |                   |                                              |                      |           |                                                          |                                     |           |                                                          |                      |              |                                              |                      |                                  |                                                           |                      |                      |
| 20                           | Sol                             | 20                 | 8.453                            | 5.99E+02                                                   | 5.59K+02             | 4.238+02             |                                                          |                      |                   | <2.25K-01                                    | (2, 25E-01           | <2.25E-01 | <9.01E+00                                                | <9.01E+00                           | <9.01E+00 |                                                          |                      |              |                                              |                      |                                  |                                                           |                      |                      |
| 20<br>71                     | Rod<br>Sol                      | 20                 | 8.425                            | <1.04E+03<br>6.53E+02                                      |                      |                      |                                                          |                      |                   | <2.25E-01                                    |                      |           |                                                          | <9.01E+00                           |           |                                                          |                      |              |                                              |                      |                                  |                                                           |                      |                      |
| 71<br>154                    | Rod<br>Sol                      | 25                 | 8.510                            | <1.32E+03<br>5.50E+02                                      | 6.13E+02             | 4.04E+02             | 1.22E+03                                                 |                      |                   |                                              |                      |           | <9.01E+00                                                |                                     |           |                                                          |                      |              | 3.29E+01                                     |                      |                                  | 5.33E-03                                                  |                      |                      |
| 195<br>195                   | Sol<br>Rod                      | 250                | 8.540                            | 4.73E+02                                                   | 4.10E+02             | 4.47E+02             | 7.66E+02                                                 |                      |                   | <2.25R-01                                    | (2, 25K-01           | <2.25E-01 |                                                          | <9.01E+00                           | <9.01E+00 | <9.01E+00                                                |                      |              | 3.42E+01                                     |                      |                                  | 6.58E-03                                                  |                      |                      |
| 195                          | Rinse<br>Strip                  | 600<br>300         |                                  | 9.41E+02<br>1.40E+02                                       |                      |                      | <8.11E+03<br>7.21E+02<br><7.66E+02                       |                      |                   | 2.70E+00<br><2.25E-01<br><2.25E-01           |                      |           | <9.01E+01<br><9.01E+00<br><9.01E+00                      |                                     | •         | <9.01E+01<br><9.01E+00<br><9.01E+00                      |                      |              | 2.70E+00                                     |                      |                                  | 1.36E-03                                                  |                      |                      |

UNITS: Solution samples (Sol) in pCi/ml for all but Uranium, ug/ml for Uranium.

Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium.

Rinse in same units as solution samples, sample was rinsed in 800 ml J-13 water.

Strip in same units as solution samples, test vessel was stripped with 300 ml 8M HNO3.

<sup>\*</sup> Am-241 values through 120-day rod sample calculated from Pu-239+Pu-240 and Am-241+Pu-238 values using Pu-238/(Pu-239+Pu-240) activity ratio of 1.693.

TABLE A.9
I-9-1 UNDEFECTED TEST RADIOCHEMICAL DATA

|                              |                                 |                   |                         |                                                            |                   |                    | Pu                                            | -239+Pu-24                       | 0        | Am                                                       | -241+Pu-23 | 18                    |                                                | Am-241                              |           |                                                           | Cm-244_         |           |                                               | Cs-137                           |          | <u></u>                                          | _Cs-134  | · <del></del> |
|------------------------------|---------------------------------|-------------------|-------------------------|------------------------------------------------------------|-------------------|--------------------|-----------------------------------------------|----------------------------------|----------|----------------------------------------------------------|------------|-----------------------|------------------------------------------------|-------------------------------------|-----------|-----------------------------------------------------------|-----------------|-----------|-----------------------------------------------|----------------------------------|----------|--------------------------------------------------|----------|---------------|
| DAY                          | Sample<br>Type                  | VOLUME<br>ml      | pН                      | UNFILTER                                                   | 0.4 um            | 18 A               | UNFILTER                                      | 0.4 um                           | 18 A     | UNFILTER                                                 | 0.4 um     | 18 A                  | UNFILTER                                       | 0.4 um                              | 18 A      | UNFILTER                                                  | 0.4 um          | 18 A      | UNFILTER                                      | 0.4 um                           | 18 A     | UNFILTER                                         | 0.4 um   | 18 A          |
| 1<br>6<br>6<br>15            | Sol<br>Sol<br>Rod<br>Sol        | 5<br>10<br>5      | 7.932<br>8.060<br>8.126 | 1.00E-02<br>1.10E-02<br>2.00E-02<br>1.10E-02               | 1.10E-02          | 1.10E-02           | 2.52E+00<br>1.13E+00<br>1.26E+00              | 4.95E-01                         | 8.11E-01 | 4.50E+00<br>2.75E+00<br>Alpha<12                         | 1.26E+00   | 1.53E+00              |                                                |                                     |           | 1.17E+00<br>7.21E-01                                      | 3.158-01        | <4.50E-02 | (9.48E+02                                     | 1.21E+04                         | 1.118+04 | 9.32E+02<br>8.51E+02<br><6.31E+02                | 8.381+02 | 8,51E+02      |
| 30                           | Sol                             | 15                | 8.253                   | 1.10E-02                                                   | 1.008-02          | 1.00%-02           | 1.352+00                                      | 9.01E-01                         |          | 3.20E+00<br>3.15E+00                                     | 2.251+00   | Alpha<.9              |                                                |                                     |           | 9.01E-01<br>9.01E-01                                      | 9.01E-01        |           | 1.20E+04<br>1.17E+04                          | 1.16E+04                         | 1.09E+04 | 7.75E+02<br>8.38E+02                             | 6.85E+02 | 7.52E+02      |
| 30<br>82<br>62<br>120<br>120 | Rod<br>Sol<br>Rod<br>Sol<br>Rod | 20<br>20          | 8.306<br>8.424          | <2.00E-02<br>1.00E-02<br>1.80E-02<br>9.00E-03<br><2.00E-02 |                   | 9.00E-03           | 1.17E+00<br>2.88E+00<br>9.01E-01<br>1.89E+01  | 9.91E-01<br>7.21E-01             | 4.95E-01 | Alpha<9 3.65E+00 7.97E+00 3.15E+00 8.60E+01              |            | Alpha<1.4<br>1.08E+00 |                                                |                                     |           | 7.66E-01<br>2.52E+00<br>9.01E-01<br>3.60E+01              |                 | 3.15E-01  | 1.13E+03                                      | 1.05E+04<br>8.83E+03             |          | 6.44E+02<br><6.31E+02<br>5.59E+02<br><6.98E+02   |          |               |
| 181<br>181<br>181<br>181     | Sol<br>Rod<br>Rinse<br>Strip    | 250<br>600<br>300 | 8.440                   | 8.00E-03<br><2.00E-02<br><1.00E-03<br><1.00E-03            | 9.002-03          | 9.00E-03           | 4.50E-01<br>6.76E+00<br><4.50E-01<br>4.37E+00 | 9.018-01                         | 1.35E+00 | _                                                        | 2.701+00   | 9.01E-01              | 2.25E+00<br><1.13E+01<br>9.01E-01<br>4.50E+00  | 2.70E+00                            | <1.35E+00 | 4.50E-01<br>5.86E+00<br>4.50E-01<br>5.86E+00              | 9.01E-01        | <4 50E-01 |                                               | 9.28E+03                         | 8.871403 | 8.04E+02<br><6.08E+02<br><6.08E+01<br><8.65E+01  | 5.68E+02 | 5.72E+02      |
|                              |                                 | i                 |                         | CYCLE 2, T                                                 | EST RESTA         | ARTED IN FRE       | SH J-13 WAT                                   | ER                               |          |                                                          |            |                       |                                                |                                     |           |                                                           |                 |           |                                               |                                  |          |                                                  |          |               |
| 20<br>20<br>71<br>71<br>154  | Sol<br>Rod<br>Sol<br>Rod<br>Sol | 20<br>20<br>25    | 8.460<br>8.480<br>8.490 | 3.00E-03<br>1.10E-02<br>2.00E-03<br><2.00E-02<br>3.00E-03  | 2.00E-03          | 2.00E-03           | 8.11E+00<br>4.50E-01<br>5.41E+00              | 9.01E-01<br>4.50E-01<br>3.15E-01 | 5.865-01 | 1.35E+00<br>3.51E+01<br>9.01E-01<br>2.34E+01<br>7.21E-01 | 9.01E-01   |                       | 2.57E+01<br><4.50E-01<br>6.76E+00              | <1.35E+00<br><4.50E-01<br><9.01E-01 | <4.50E-01 | <4.50E-01<br>1.85E+01<br>9.01E-02<br>1.13E+01<br>1.35E-01 | 9.01E-02        | <2 25E-01 | <7.43E+02<br>2.15E+02<br><6.49E+02            | 2.08E+02<br>2.42E+02<br>2.90E+02 | 2.06E+02 | <6.08E+01<br><6.08E+02<br><6.08E+01<br><6.08E+02 |          |               |
| 195<br>195<br>195<br>195     | Sol<br>Rod<br>Rinse<br>Strip    | 250<br>600<br>300 | 8.460                   | 3.00E-03<br><2.00E-02<br><1.00E-03<br><1.00E-03            | 2.00E-03          | 2.00E-03           | 3.60E-01<br>7.21E+00<br><9.01E-02<br>1.13E+00 | 2.708-01                         | 2.708-01 | 4.95E-01<br>2.97E+01<br>2.70E-01<br>4.19E+00             | 4.05E-01   | 4.50E-01              | <2.25E-01<br><2.25E+00<br>4.05E-01<br>2.93E+00 | <2.25E-01                           | 4.05E+00  | <4.50E-02<br>1.17E+01<br><9.01E-02<br>1.98E+00            | <4.50E-02       | <4 50E-02 | 3.14E+02<br><7.21E+02<br>8.92E+01<br>1.06E+02 | 3.19E+02                         | 2.481402 |                                                  |          |               |
|                              |                                 |                   |                         |                                                            | Co-60_            |                    |                                               | SrY-90                           |          |                                                          | Np-237_    |                       |                                                |                                     |           |                                                           |                 |           | l                                             |                                  |          |                                                  |          |               |
| DAY                          | Sample<br>Type                  | VOLUME<br>ml      | рĦ                      | UNFILTER                                                   | 0.4 um            | 18 A               | UNFILTER                                      | Sr1-30<br>0.4 um                 | 18 A     | UNFILTER                                                 |            | 18 Å                  | UNFILTER                                       | Tc-99<br>0.4 um                     | 18 A      | UNFILTER                                                  | Se-79<br>0.4 um | 18 A      | UNFILTER                                      | C-14<br>O.4 um                   | 18 A     | Milhti mpn                                       | I-129    |               |
| 1<br>6<br>6                  | Sol<br>Sol<br>Rod               | . 5<br>10         | 7.932<br>8.060          | 1.05E+03<br>1.12E+03<br><1.04E+03                          | 1.07E+03          | 7.16E+02           |                                               |                                  |          |                                                          |            |                       | · · · · · · · · · · · · · · · · · · ·          | 0.1 um                              | 10 A      | ONFIDIEN                                                  | 0.4 um          | 10 A      | UNITED EX                                     | 0.4 da                           | 10 X     | Unfilter                                         | 0.4 um   | 18 A          |
| 15<br>30                     | Sol<br>Sol                      | 5<br>15           | 8.126<br>8.253          | 1.14E+03<br>9.28E+02                                       | 9.59 <b>E</b> +02 | 5.54E+02           |                                               |                                  |          |                                                          |            | !                     |                                                |                                     |           |                                                           |                 |           |                                               |                                  |          |                                                  |          |               |
| 30<br>82                     | Rod<br>Sol                      | 20                | 8.306                   | 9.32E+02                                                   | 1.01E+03          | 7.25E+02           |                                               |                                  |          | <4.50E-01                                                |            |                       | <9.01E+00                                      |                                     |           |                                                           |                 |           |                                               |                                  |          |                                                  | -        |               |
| 82<br>120<br>120             | Rod<br>Sol<br>Rod               | 20                | 8.424                   | <1.04E+03<br>7.39E+02<br>1.67E+03                          | 7.75E+02          | 6.35E+02           |                                               |                                  |          | <9.01E-01                                                | 9.01E-01   | <9.01E-01             | <1.80E+01                                      | <1.80E+01                           | <1.80E+01 |                                                           |                 |           |                                               |                                  |          |                                                  |          |               |
| 181<br>181                   | Sol<br>Rod                      | 250               | 8.440                   | 8.20E+02 (<br>2.32E+03                                     | 6.71E+02          | 4.82E+02           |                                               |                                  |          | <2.25E-01 <                                              | 2.25E-01   | <2.25k-01             | <9.01E+00                                      | <9.01E+00                           | <9.01E+00 | <9.01E+00                                                 |                 |           | 9.01E+00                                      |                                  |          | 7.60E-03                                         |          |               |
| 181<br>181                   | Rinse<br>Strip                  | 300<br>300        |                         | <1.04E+02<br>2.42E+02                                      |                   |                    |                                               |                                  |          | <4.50E-01<br><2.25E-01                                   |            |                       | <9.01E+00<br><9.01E+00                         |                                     |           |                                                           |                 |           | ÷                                             |                                  |          |                                                  |          |               |
|                              |                                 |                   |                         | CYCLE 2, TES                                               | ST RESTAR         | TED IN FRES        | H J-13 WATER                                  | R                                |          |                                                          |            |                       |                                                |                                     |           |                                                           |                 |           | ,<br>;<br>,                                   |                                  |          |                                                  |          |               |
| 20                           | Sol                             | 20                | 8.460                   | <1.22E+02 <1                                               | 1.04E+02          | <1.08 <b>K</b> +02 |                                               |                                  |          | <2.25E-01 <                                              | 2.25E-01   | <2.25B-01             | <9.01E+00                                      | <9.01E+00                           | <9.01E+00 |                                                           |                 |           | i                                             |                                  |          |                                                  |          |               |
| 20<br>71<br>71               | Rod<br>Sol                      | 20                | 8.480                   | <1.04E+03                                                  |                   | 9.59E+01           |                                               |                                  |          | <2.25E-01                                                |            |                       |                                                |                                     |           |                                                           |                 |           |                                               |                                  |          |                                                  |          |               |
| 71<br>154                    | Rođ<br>Sol                      | 25                | 8.490                   | <1.04E+03<br>1.11E+02                                      |                   |                    | 1.62E+02                                      |                                  |          |                                                          |            |                       | <9.01E+00                                      |                                     |           |                                                           |                 |           | 7.66E+00                                      |                                  |          | 6.17E-03                                         |          |               |
| 195<br>195                   | Sol<br>Rod                      | 250               | 8.460                   | 7.16E+01<br>8.29E+02                                       |                   | 8.74E+01           | 9.91X+02<br><8.11X+03                         |                                  |          | <2.25%-01 <                                              | 2.25K-01   | <2.258-01             | <9.01E+00<br>1.89E+02                          | <9.01E+00                           | 1.80E+01  | <9.01E+00<br><9.01E+01                                    |                 |           | 1.13E+01                                      |                                  |          | 1.17E-02                                         |          |               |
| 195<br>195                   | Rinse<br>Strip                  | 600<br>300        |                         |                                                            |                   |                    | <7.21K+02<br><7.66E+02                        |                                  |          | <2.25E-01<br><2.25E-01                                   |            | •                     | <9.01E+00<br><9.01E+00                         |                                     |           | <9.01E+00<br><9.01E+00                                    |                 |           | 2.708+00                                      |                                  |          | 1.69E-03                                         |          |               |

UNITS: Solution samples (Sol) in pCi/ml for all but Uranium, ug/ml for Uranium.
Rod samples in pCi/rod for all but Uranium, ug/rod for Uranium.
Rinse in same units as solution samples, sample was rinsed in 600 ml J-13 water.
Strip in same units as solution samples, test vessel was stripped with 300 ml 8M HNO3.

aud 14 Touris (1987) - Maria Maria Touris (1988) - Andrew Maria

| ,-         | : .                |                 |      |                |          |          |      |      |
|------------|--------------------|-----------------|------|----------------|----------|----------|------|------|
| .1 :       |                    | •               |      |                |          | , ž      | •    |      |
| 1.1        |                    | ,: <sup>-</sup> |      | •              |          |          | ₹    | ٠.   |
| Para S     | $\mathcal{F}_{ij}$ |                 | AP   | P E N D I      | X. B     | 1. 1. 1g | 11.7 |      |
| ,          |                    |                 |      |                | \$       | 100      |      |      |
| •          |                    |                 |      |                | •        | 1        | ŧ    |      |
| • •        |                    |                 |      | 11.0           | 7 14     | •        |      |      |
| 1. 4       |                    |                 | SOLU | TION CHEM      | ISTRY    | , •      |      | •    |
| Du.        |                    |                 |      | Č.f.           |          | (*       | : .  | į    |
|            |                    |                 |      |                |          |          |      |      |
| . 1. 1     |                    | <b>\</b>        |      | à r            | ; »      |          | QF   |      |
|            |                    |                 |      |                |          |          |      |      |
|            |                    |                 |      |                |          |          |      |      |
|            |                    |                 |      |                |          |          |      |      |
|            |                    |                 |      |                |          |          | . •  |      |
|            |                    |                 |      | <del>-</del> • | -        |          | ٠    |      |
| <i>:</i> . | •                  |                 |      | ;              | . 11.    |          | -    |      |
|            |                    |                 |      |                |          | · •      |      | •    |
| • • • •    |                    | A               |      | 8.21           | <b>(</b> | · Q*     | ,    | nt e |
| 0.331      | 2. 250             | .1 . :          |      | 3.24           | 1.15     | •        |      | О.   |
|            |                    |                 |      |                |          |          |      |      |

and the second of the second

CHARTS IND ORTHOR CONTRACTOR AND CONTRACTOR

TABLE B.1

SOLUTION CHEMISTRY\* FOR THE C5C-H H. B. ROBINSON BARE FUEL TEST

|                 |                        | Cycle      |             |             |                        | cle 2       |             |
|-----------------|------------------------|------------|-------------|-------------|------------------------|-------------|-------------|
|                 | Starting<br>J-13 Water | 30<br>Days | 120<br>Days | 223<br>Days | Starting<br>J-13 Water | 154<br>Days | 202<br>Days |
| рН              | 7.2                    | 8.2        | 8.5         | 8.5         | 8.0                    | 8.2         | 8.56        |
| A1              | 0.11                   | 0.09       | 0.10        | <0.08       | <0.08                  | <0.08       | <0.08       |
| В               | <0.10                  | <0.01      | 0.09        | 0.26        | 0.21                   | 0.21        | 0.23        |
| Ca              | 15.0                   | 12.7       | 12.1        | 12.3        | 11.2                   | 12.6        | 12.4        |
| Fe              |                        | 0.21       | 0.15        | 0.08        | <0.01                  | <0.01       | <0.01       |
| K               | 5.5                    | 4.5        | 2.8         | 2.2         | 1.95**                 | 5.46        | 5.2         |
| Mg              | 2.1                    | 1.8        | 2.1         | 2.0         | 0.93                   | 2.00        | 2.00        |
| Мо              | 0.08                   | 0.26       | 0.21        | 0.20        | <0.02                  | 0.08        | 0.08        |
| Na              | 49.5                   | 41.6       | 44.5        | 45.5        | 43.1                   | 45.1        | 44.1        |
| Sr              |                        |            |             | 0.06        | 0.04                   | 0.05        | 0.05        |
| Si              | 31.9                   | 24.5       | 26.2        | 32.7        | 30.6                   | 36.4        | 36.2        |
| Cl              | 7.3                    | 7.8        | 7.3         | 7.6         | 7.4                    | 7.7         | 7.5         |
| F               | 2.7                    | 2.4        | 2.1         | 2.2         | 2.3                    | 2.4         | 2.1         |
| P0 <sub>4</sub> | 2.8                    |            |             |             |                        |             |             |
| NO <sub>2</sub> |                        | ∿0.5       | ∿0.5        | ∿0.6        |                        | ∿1.4        | ~1.7        |
| NO3             | 8.7                    | 7.4        | 8.1         | 8.3         | 8.3                    | 7.1         | 6.6         |
| S0 <sub>4</sub> | 18.8                   | 18.8       | 18.6        | 18.5        | 18.6                   | 18.6        | 19.8        |
| co3             | 118.0                  |            | 120.0       | 118.0       | 121.5                  | 112.0       | 112.0       |

<sup>\*</sup>Units in  $\mu g/ml$ , 0.4  $\mu m$  filtered.

<sup>\*\*</sup>Low value attributed to analytical error.

TABLE B.2

SOLUTION\* CHEMISTRY FOR THE C5C-E H. B. ROBINSON SLIT DEFECT TEST

| <u> </u>                      | Cycle 1             |                |                        | ycle 2_     |             |
|-------------------------------|---------------------|----------------|------------------------|-------------|-------------|
| Starting<br><u>J-13 Water</u> | 30 120<br>Days Days | 223<br>Days    | Starting<br>J-13 Water | 154<br>Days | 202<br>Days |
| pH 7.2                        | 8.4 8.5             | 8.5            | 8.0                    | 8.2         | 8.55        |
| A1 0.11                       | 0.11 0.10           | <0.08          | <0.08                  | <0.08       | <0.08       |
| B <0.10 1                     | <0.01 0.12          | 0.26           | 0.21                   | 0.25        | 0.26        |
| Ca 15.0                       | 12.7 11.9           | 12.8           | is 11.2                | 12.4        | 13.1        |
| Fe                            | 0.82 0.68           | 6 0.57         | <0.01                  | <0.01       | <0.01       |
| K 5.5                         | 8.3 4.5             | 2.9            | 1.95**                 | 5.6         | 5.0         |
| Mg 2.1                        | 1.9 1.9             | 2.1            | 0.93                   | 2.0         | 2.1         |
| Mo 0.08                       | 0.06 0.03           | <0.02          | <0.02                  | 0.085       | 0.089       |
| Na 49.5                       | 40.4 41.4           | 46.5           | 43.1                   | 43.0        | 45.2        |
| Si 31.9                       | 22.0 23.6           | 31.0           | 30.0                   | 31.4        | 33.4        |
| Sr                            |                     | 0.061          | 0.04                   | 0.061       | 0.065       |
| C1 7.3                        | 7.1 6.3             | ÷-7 <b>.</b> 2 | 7.4                    | 7.8         | 7.4.        |
| F 2.7                         | 2.4 2.1             | 2.2            | 2.3                    | 2.4         | 2.1         |
| PO <sub>4</sub> 2.8           |                     | · es 4s        |                        |             |             |
| NO <sub>2</sub>               | ~2.7 ~1.9           | <b>~1.4</b>    |                        | ∿1.6        | ~1.8 -      |
| NO <sub>3</sub> 8.7           | 4.5 5.6             | ÷ 5.7          | 8.3                    | 6.6         | 5.7         |
| SO <sub>4</sub> 18.8          | 18.2 18.3           | 718.2          | 18.6                   | 18.7        | 19.0        |
| co <sub>3</sub> 118.0         | 123                 | 122            | - 121.5                | 115         | 114.5       |

<sup>\*</sup>Units in μg/ml, 0.4 μm filtered.

<sup>\*\*</sup>Low value attributed to analytical error.

TABLE B.3

SOLUTION\* CHEMISTRY FOR THE C5C-C H. B. ROBINSON HOLE DEFECTS TEST

|                         | Cycle 1             |             | C                      | ycle 2       |               |
|-------------------------|---------------------|-------------|------------------------|--------------|---------------|
| Starting<br>J-13 Water  | 30 120<br>Days Days | 223<br>Days | Starting<br>J-13 Water | 154<br>Days  | 202<br>Days   |
| pH <sub>.c.:</sub> 7.2  | 8.2 8.56            | 8.5         | . 8.0                  | 8.20         | 8.54          |
| A1; 0.11                | 0.09 0.08           | <0.08       | <0.08                  | <0.08        | <0.08         |
| B <0.10                 | <0.01 0.05          | 0.19        | 0.21                   | 0.21         | 0.20          |
| Ca 15.0                 | 13.0 12.0           | 12.8        | 411.2                  | 12.7         | 13.0          |
| Fe                      | 0.44 0.32           | 0.30        | <0.01                  | <0.01        | <0.01         |
| K 5.5                   | 4.8 2.7             | <0.5        | 1.95**                 | 4.2          | 6.4           |
| Mg: 2.1                 | 1.9 2.0             | 2.1         | 0.93                   | 2.0          | 2.0           |
| Mo . 0.08               | 0.05 < 0.02         | <0.02       | <0.02                  | <0.02        | <0.02         |
| Na 49.5                 | 44.2 44.4           | 43.5        | 43.1                   | 41.4         | 43.6          |
| Si 31.9                 | 23.6 24.5           | 30.1        | 30.0                   | 33.6         | 32.4          |
| Sr:                     |                     | 0.042       | 0.04                   | 0.04         | 0.042         |
| C1 7.3                  | 7.0 7.5             | 7.4         | 7.4                    | 7.8          | 7.3           |
| F 2.7                   | 2.4 2.2             | 2.2         | 2.3                    | 2.4          | 2.1           |
| PO <sub>4</sub> 2.8     |                     |             |                        |              |               |
| NO <sub>2</sub>         | <b>~2.8 ~2.3</b>    | ∿1.9        | **                     | <b>~2.</b> 1 | <b>∿3.2</b> , |
| NO3 . 8.7               | 4.4 5.4             | <b>5.5</b>  | 8.3                    | 6.4          | 5.7           |
| \$0 <sub>4</sub> , 18.8 | 18.2 . 18.7         | 18.5        | 18.6                   | 19.2         | 19.3          |
| CO <sub>3</sub> 118.0   | 122                 | 118.5       | 121.5                  | 113          | 113.5         |

<sup>\*</sup>Units in  $\mu g/ml$ , 0.4  $\mu m$  filtered.

<sup>\*\*</sup>Low value attributed to analytical error.

TABLE B. 4

SOLUTION\* CHEMISTRY FOR THE C5C-A H. B. ROBINSON UNDEFECTED TEST

| Cycle 1                        | <u> </u>    | <u>. Tij in de gester</u> | Cy                     | cle 2                |
|--------------------------------|-------------|---------------------------|------------------------|----------------------|
| Starting 30<br>J-13 Water Days | 120<br>Days | 223                       | Starting               | 154 202<br>Days Days |
| <u> </u>                       |             | <u> </u>                  | 10 11400.              |                      |
| pH 7.2 8.08                    | 8.53        | 8.43                      | 8.0                    | 8.15 8.52            |
| A1 0.11 0.08                   | <0.08       | <0.08                     | <0.08                  | <0.08 <0.08          |
| B <0.10 <0.01                  | 0.06        | 0.22                      | 0.21 <sup>f.&gt;</sup> | 0.20 0.18            |
| Ca 15.0 12.7                   | 12.3        | 13.0                      | 11.2                   | 12.9 13.0            |
| Fe 0.06                        | <0.01       | <0.01                     | <0.01                  | 0.024 < 0.01         |
| K 5.5 3.4                      | 3.5         | 3.9                       | 1.95**                 | 5.8 6.7              |
| Mg 2.1 2.1                     | 2.0         | 2.1 '                     | 0.93                   | 2.1 2.1              |
| Mo 0.08 0.04                   | <0.02       | <0.02                     | <0.02 :03              | <0.02 <0.02          |
| Na 49.5 40.9                   | 47.7        | 46.5                      | 43.1                   | 42.3 41.3            |
| Si <sup>1,1,1</sup> 31.9 23.4  | 26.2        | 31.0                      | 30.0                   | 32.4                 |
| Sr 4-3-3                       | ***         | 0.04                      | 0.04                   | 0.041 0.041          |
| C1 7.3 7.1                     | 7.0         | 7.5                       | 7.4                    | 7.7 7.2              |
| F 2.7 2.3                      | 2.2         | 2.2                       | 2.3                    | 2.4 - 2.1            |
| PO <sub>4</sub> 2.8            |             |                           |                        |                      |
| NO <sub>2</sub> ~3.4           | ∿3.4        | <b>~2.8</b>               | ton dan                | ∿1.8 ∿2.0            |
| NO <sub>3</sub> 8.7 3.6        | 4.3         | 4.5 :-                    | 8.3                    | 6.5 5.7              |
| S04 18.8 1.1 18.1              | 18.6        | 19.1                      | 18.6                   | 19.8 21.6            |
| <b>4</b>                       | 121         |                           | 121.5                  | 113 114.5            |

<sup>\*</sup>Units in μg/ml, 0.4 μm filtered.

<sup>\*\*</sup>Low value attributed to analytical error.

TABLE B.5

SOLUTION\* CHEMISTRY FOR THE I-9-24 TURKEY POINT BARE FUEL TEST

|                 |                        | Cycle 1    |              |                        | Cycle 2     |             |
|-----------------|------------------------|------------|--------------|------------------------|-------------|-------------|
|                 | Starting<br>J-13 Water | 30<br>Days | 181<br>Days  | Starting<br>J-13 Water | 154<br>Days | 195<br>Days |
|                 |                        |            | • •          | <u> </u>               | <del></del> |             |
| рН              | 7.2                    | 8.32       | 8.46         | 8.0                    | 8.49        | 8.49        |
| A1              | 0.11                   | 0.89       | 0.14         | <0.08                  | <0.08       | <0.08       |
| В               | <0.10                  | <0.01      | 0.20         | 0.21                   | 0.23        | 0.17        |
| Ca              | 15.0                   | 12.3       | 13.1         | 11.2                   | 12.6        | 11.6        |
| Fe              |                        | 0.11       | 0.14         | <0.01                  | 0.012       | <0.01       |
| K               | 5.5                    | 1.3        | 3.5          | 1.95**                 | 4.7         | 4.8         |
| Mg              | 2.1                    | 2.0        | 2.0          | 0.93                   | 2.0         | 2.0.        |
| Мо              | 0.08                   | <0.02      | 0.104        | <0.02                  | 0.036       | 0.042       |
| Na              | 49.5                   | 54.9       | 46.9         | 43.1                   | 45.6        | 44.2        |
| Si              | 31.9                   | 31.4       | 31.8         | 30.0                   | 33.1        | 30.6        |
| Sr              |                        |            | 0.049        | 0.04                   | 0.043       | 0.042       |
| C1              | 7.3                    | 6.2        | 7.6          | 7.4                    | 7.7         | 7.3         |
| F.              | 2.7                    | 2.4        | 2.2          | 2.3                    | 2.4         | 2.3         |
| P0 <sub>4</sub> | 2.8                    |            |              |                        |             |             |
| $NO_2$          |                        |            | <b>~0.</b> 4 |                        | ∿0.4        | ∿0.2        |
| NO3             | 8.7                    | 7.1        | 8.1          | 8.3                    | 9.2         | 8.3         |
| s0 <sub>4</sub> | 18.8                   | 21.1       | 18.8         | 18.6                   | 19.1        | 19.1        |
| co3             | 118.0                  |            | 117          | 121.5                  | 118         | 119         |

<sup>\*</sup>Units in  $\mu g/ml$ , 0.4  $\mu m$  filtered.

<sup>\*\*</sup>Low value attributed to analytical error.

TABLE B.6:

SOLUTION\* CHEMISTRY FOR THE .

I-9-19 TURKEY POINT SLIT DEFECT TEST

|                        | cle l               |                        | rcle 2               |
|------------------------|---------------------|------------------------|----------------------|
| Starting<br>J-13 Water | 30 181<br>Days Days | Starting<br>J-13 Water | 154 195<br>Days Days |
| pH 7.2                 | 8.32 8.47           | 64 / 8.0               | 8.50 8.48            |
| A1 0.11                | <0.08 0.16          | <0.08                  | <0.08                |
| B <0.10                | <0.01 0.19          | 0.21                   | 0.21 1/1 0.16        |
| Ca 15.0                | 11.6 12.6           | 11.2                   | 12.6 12.0            |
| Fe 😀                   | 0.32 >0.26          | <0.01                  | 0.01 <0.01           |
| K 5.5                  | 5.1                 | 1.95**                 | 5.9 4.2              |
| Mg 2.1                 | 2.0 2.0             | 0: <b>0.93</b> 3.      | 2.1 E. 2.16          |
| Mo / 0.08              | <0.02 0.115         | <0.02                  | 0.03                 |
| Na 49.5                | 48.8 47.2           | 7. <b>43.1</b>         | 44.1 43.5            |
| Si 31.9                | 31.0 32.3           | 30.0                   | 31.7 28.8            |
| Sr Military            | <b></b> 0.041       | 0.04                   | 0.041 0.039          |
| C1° 7.3                | 6.0 7.4             | 7.4                    | 7.4 7.1,             |
| F 2.7                  | 2.3 2.2             | 2.3                    | 2.4 2.2              |
| PO <sub>4</sub> · 2.8  |                     |                        |                      |
| NO <sub>2</sub>        | ~1.6                | ••                     | ∿1.3 ∿1.2            |
| NO <sub>3</sub> 8.7    | 3.8 . 5.9           | 8.3                    | 7.9 6.8              |
| SO <sub>4</sub> 18.8   | 19.9 718.8          | 8 E18.6                | 19.0 18.7            |
| CO <sub>3</sub> 118.0  | 123                 | 121.5                  | 119 (118)            |

<sup>\*</sup>Units in μg/ml, 0.4 μm filtered.

<sup>\*\*</sup>Low value attributed to analytical error. \*\*Broke of bounds is a new off

TABLE B.7

SOLUTION\* CHEMISTRY FOR THE I-9-12 TURKEY POINT HOLE DEFECTS TEST

| · · ·                  | Cycle l     |             |            | Cycle 2     |             |
|------------------------|-------------|-------------|------------|-------------|-------------|
| Starting<br>J-13 Water | 30 4        | 181         | Starting   | 154<br>Days | 195         |
| 0-13 water             | <u>Days</u> | <u>Days</u> | J-13 Water | Days        | <u>Days</u> |
| pH` 7.2                | 8.31        | 8.48        | 8.0        | 8.51        | 8.54        |
| A1 0.11                | <0.08       | 0.15        | <0.08      | <0.08       | <0.08       |
| B <0.10                | <0.01       | 0.19        | 0.21       | 0.19        | 0.15        |
| Ca: 15.0               | 11.7        | 13.0        | 11.2       | 12.8        | 11.8        |
| Fe                     | 0.19        | 0.19        | <0.01      | 0.017       | <0.01       |
| K 5.5                  | 5.1         | 5.6         | 1.95**     | 6.7         | 5.4         |
| Mg 2.1                 | 1.9         | 2.0         | 0.93       | 1.9         | 2.1         |
| Mo 0.08                | <0.02       | 0.027       | <0.02      | <0.02       | <0.02       |
| Na. 49.5               | 50.0        | 46.4        | 43.1       | 43.9        | 43.6        |
| Si 31.9                | 29.9        | 34.1        | 30.0       | 32.3        | 30.5        |
| Sr                     |             | 0.041       | 0.04       | 0.041       | 0.039       |
| C1 7.3                 | 6.0         | 7.4         | 7.4        | 7.8         | 7.2         |
| F 2.7                  | 2.3         | 2.2         | 2.3        | 2.4         | 2.2         |
| PO <sub>4</sub> 2.8    |             |             |            |             | <b></b>     |
| NO <sub>2</sub>        |             | ∿1.8        |            | ∿1.5        | ∿1.4        |
| NO <sub>3</sub> 8.7    | 4.5         | 5.6         | 8.3        | 7.9         | 6.5         |
| SO <sub>4</sub> 18.8   | 19.7        | 18.8        | 18.6       | 19.5        | 18.9        |
| CO <sub>3</sub> 118.0  |             | 114.5       | 121.5      | 118         | 117         |

<sup>\*</sup>Units in  $\mu g/m1,~0.4~\mu m$  filtered.

<sup>\*\*</sup>Low value attributed to analytical error.

TABLE B.8

SOLUTION\* CHEMISTRY FOR THE
I-9-1 TURKEY POINT UNDEFECTED TEST

|                 | •          | Cycle 1 |       |            | Cycle 2 |             |
|-----------------|------------|---------|-------|------------|---------|-------------|
|                 | Starting   | 30      | 181   | Starting   | 154     | 195         |
|                 | J-13 Water | Days    | Days  | J-13 Water | Days    | <u>Days</u> |
| рΗ              | 7.2        | 8.25    | 8.44  | 8.0        | 8.49    | 8.46        |
| A1              | 0.11       | <0.08   | 0.14  | <0.08      | <0.08   | <0.08       |
| В               | <0.10      | <0.01   | 0.21  | 0.21       | 0.22    | 0.16        |
| Ca              | 15.0       | 12.6    | 12.6  | 11.2       | 12.3    | 12.2        |
| Fe              |            | 0.34    | 0.34  | <0.01      | <0.01   | <0.01       |
| K               | 5.5        | 4.7     | 9.3   | 1.95**     | 6.0     | 6.0         |
| Mg              | 2.1        | 1.9     | 2.0   | 0.93       | 2.1     | 2.2         |
| Мо              | 0.08       | <0.02   | 0.035 | <0.02      | <0.02   | <0.02       |
| Na              | 49.5       | 47.6    | 46.8  | 43.1       | 43.1    | 45.6        |
| Si              | 31.9       | 32.1    | 33.5  | 30.0       | 32.1    | 29.1        |
| Sr              |            |         | 0.041 | 0.04       | 0.042   | 0.038       |
| C1              | 7.3        | 6.2     | 7.5   | 7.4        | 7.4     | 7.2         |
| F               | 2.7        | 2.4     | 2.2   | 2.3        | 2.4     | 2.2         |
| P0 <sub>4</sub> | 2.8        |         |       |            |         |             |
| NO <sub>2</sub> |            | ~2.4    | ~1.9  | er ==      | ∿1.8    | ∿1.9        |
| NO <sub>3</sub> | 8.7        | 7.1     | 5.6   | . 8.3      | 6.1     | 6.1         |
| S0 <sub>4</sub> | 18.8       | 21.1    | 19.7  | 18.6       | 19.0    | 18.9        |
| co3             | 118.0      |         | 121   | 121.5      | 118     | 119         |

<sup>\*</sup>Units in μg/ml, 0.4 μm filtered.

<sup>\*\*</sup>Low value attributed to analytical error.

\$ ×

.

#### EXTERNAL DISTRIBUTION

UC-70 (300)

DOE-HQ/Office of Civilian Radioactive Waste Management Forrestal Building Washington, DC 20585

BC Rusche, Director

- RW-1

## DOE-HQ/Office of Geologic Repositories (12) Washington, DC 20585

| DH  | Alexander |   |   |   | RW-232   |
|-----|-----------|---|---|---|----------|
| ٧J  | Cassella  |   |   |   | RW-222   |
| JJ  | Fiore     | , |   |   | .,RW-221 |
| MW  | Frei      |   |   |   | RW-231   |
| BG  | Gale      |   |   | · | RW-223   |
| RW  | Gale      |   |   |   | RW-40    |
| -TH | Isaacs    |   |   |   | RW-22    |
| Α.  | Jelacic   |   | , |   | RW-233   |
| SH  | Kale      |   | • | • | RW-20    |
| JP  | Knight    |   |   |   | . RW-24  |
| G.  | Parker :  |   | - |   | RW-241   |
| R.  | Stein     |   | • |   | - RW-23  |

DOE/Chicago Operations Office Crystalline Rock Project Office 9800 South Cass Avenue Argonne, IL 60439

SA Mann, Manager

DOE/Nevada Operations Office P.O. Box 14100 Las Vegas, NV 89114-4100

M. Blanchard
PM Bodin, Office of
Public Affairs (12)
BW Church, Director, Health
Physics Division
DF Miller, Director, Office
of Public Affairs
LP Skousen
DL Vieth, Director, Waste
Management PO (4)
M. Valentine

DOE/Salt Repository Project Office 505 King Avenue Columbus, OH 43201

JO Neff, Manager

Argonne National Laboratory
Chemical Technology Division
9700 S. Cass Avenue
Argonne, IL 60439

J. Bates

Battelle Columbus Laboratory. (4)
Office of Nuclear Waste Isolation
505 King Avenue
Columbus, OH 43201

S. Basham JA Carr D. Stahl, Prog Mgr ONWI Library

Berkeley Nuclear Laboratories Fuel and Sodium Chemistry Section Berkeley, Glouscestershire GL 13 9PB, UK

KA Simpson, Section Head

400 600

Brookhaven National Laboratory Nuclear Waste Management Division Associated University, Inc. Upton, NY 11973

D. Schweitzer

City of Boulder City P.O. Box 367 Boulder City, NV 89005

Director of Community Planning

City of Caliente (5) P.O. Box 158 Caliente, NV 89008

J. Foremaster

City of Henderson Henderson, NV 89015

City Manager

City of Las Vegas 400 E. Stewart Avenue Las Vegas, NV 89101

Economic Development Dept

City of North Las Vegas P.O. Box 4086 North Las Vegas, NV 89030

Community Planning & Development

Clark County 225 Bridger Avenue, 7th Floor Las Vegas, NV 89155

Dept of Comprehensive Planning

Commission of the European Communities 200 Rue de la Loi B-1049 Brussels, Belgium

Desert Research Institute
Water Resources Center
P.O. Box 60220
Reno. NV 89506

J. Fordham

Desert Research Institute
Water Resources Center
2505 Chandler Avenue, Suite 1
Las Vegas, NV 89120

M. Mifflin

Desert Research Institute 7010 Dandini Blvd Reno, NV 89512

CM Case

Fenix & Scisson Inc (2)
Las Vegas Branch
P.O. Box 15408
Las Vegas, NV 89114

JA Cross, Manager MS-514 SD Murphy, NNWSI MS-514

Holmes & Narver Inc (2) Energy Support Division P.O. Box 14340 Las Vegas, NV 89114

> AE Gurrola, Gen Mgr MS-580 JP Pedalino, NNWSI MS-605

Institut for Chemische Techologie Der Nuklearen Entsorgung Kernforschungsanlage 1ct. Postfach 1913 5170 Julich, Federal Republic of Germany

R. Odoj

Lawrence Berkeley Laboratory Field Systems Group Leader Bldg 50B/4235 Berkeley, CA 94720

EP Binnall

| رائيل دار الاستان و منظوم الاستان الاست<br>الاستان المنظم الاستان                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gradius of the American State of the State o |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lawrence Livermore National Laboratory (176) P.O. Box 808 Livermore, CA 94550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nuclear Regulatory Commission (5) Division of Waste Management Washington, DC 20555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| W. Bourcier L. Ramspott<br>C. Bruton M. Revelli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M. Bell MS-905-SS T. Jungling MS-623-SS Chief, Repository Proj Branch Document Control Center NTS Section Leader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| K. Eggert - L. Schwartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nuclear Regulatory Commission 1050 East Flamingo Road, Suite 319 Las Vegas, NV 89109 PT Prestholt, Site Rep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L. Hansen H. Tewes K. Jackson R. Van Konynenburg K. Knauss B. Viani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nuclear Regulatory Commission<br>7915 Eastern Avenue<br>Silver Springs, MD 20910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D. Lappa H. Weed W. Lin A. Wijesinghe D. McCright D. Wilder W. McKenzie T. Wolery C. Merzbacher J. Yow T. Nelson WP Library (10) W. O'Connell NWM Library (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Seth Coplan  Nye County P.O. Box 153 Tonopah, NV 89049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P.O. Box 90<br>Pioche, NV 89043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Planning Department  Oak Ridge National Laboratory P.O. Box X Oak Ridge, TN 37831-6305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lincoln County Commission  Los Alamos National Laboratory (4)  P.O. Box 1663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JO Blomeke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Los Alamos, NM 87545  DT Oakley, NNWSI F-619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pennsylvania State University Materials Research Laboratory University Park, PA 16802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mountain West Research-Southwest Inc<br>398 South Mill Avenue, Suite 300<br>Tempe, AZ 85281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Della Roy (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) (1987) |
| E. Anderson Company of the Company o | P.O. Box 14400<br>Las Vegas, NV 89114-4400<br>DL Fraser, Gen Mgr MS-555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Div. 450<br>Gaithersburg, MD 20899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V. Gong, NNWSI MS-615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

C. Interrante Bldg 223/Rm A-245

Sandia National Laboratories (6) P.O. Box 5800 Albuquerque, NM 87185

TO Hunter, NNWSI (4) Org 6310 RW Lynch Org 6300 Div 9761

Savannah River Laboratory (2) Aiken, SC 29808

> J. Plodinec Bldg 773-A E. Hennelly Bldg 773-25A

Science Applications Internat'l Corp (3) 1626 Cole Boulevard, Suite 2/0 Golden, CO 80401

TG Barbour

Science Applications Internat'l Corp 820 Estes Street Lakewood, CO 80215

WS Twenhofel

Science Applications Internat'l Corp (3) Technical Project Office for NNWSI 101 Convention Center Drive, Suite 407 Las Vegas, NV 89109

SAIC-T&MSS Library (2) ME Spaeth

State of Nevada (4)
Nuclear Waste Project Office
Evergreen Center, Suite 252
1802 N. Carson Street
Carson City, NV 89701

CH Johnson, Tech Prog Mgr RR Loux Jr, Director (3) State of Nevada Office of the Governor Capitol Complex Carson City, NV 89710

T. Hay, Exec Asst

Stephens & Associates 10424 Windfall Ct. Damascus, MD 20872

KW Stephens

Svensk Karnbranslehantering AB Box 5864 S-10248 Stockholm, Sweden

Dr. Lars Werme

Systems Support, Inc. P.O. Box 1432 Manassas, VA 22110

R. Moller

University of California College of Engineering Berkeley, CA 94720

TH Pigford

U.S. Geological Survey (5)
P.O. Box 25046
421 Federal Center
Denver, CO 80225

VW Glanzman
WW Dudley Jr, NNWSI
LR Hayes, NNWSI (3)

U.S. Geological Survey Engineering Geology 106 National Center 12201 Sunrise Valley Drive Reston, VA 22092

JR Rollo, Deputy Asst Dir

Roy F. Weston Inc (2) 955 L'Enfant Plaza SW, Suite 800 Washington, DC 20024

> WM Hewitt, Prog Manager Technical Information Center

Roy F. Weston Inc 2301 Research Blvd Rockville, MD 20850

E. Benz

West Valley Nuclear Services Co, Inc Soldification Engineering P.O. Box 191 West Valley, NY 14171-0191

J. Pope, Manager

Whiteshell Nuclear Research Establishment
Fuel Waste Technology Branch
Atomic Energy Canada Ltd
Pinawa Manitoba ROE 1LO, Canada

L. Johnson D. Shoesmith

FP Sargent

### INTERNAL DISTRIBUTION

|                                                           |               | <b>' '</b>                                    |                                            |
|-----------------------------------------------------------|---------------|-----------------------------------------------|--------------------------------------------|
| DOE-RL/Office of Asst Mgr for Commercial Nuclear Waste (4 |               | Rockwell Hanford Opera<br>Richland, WA 99352  | tions (8)                                  |
| P.O. Box 550<br>Richland, WA 99352                        |               | RL Gilchrist<br>GT Harper                     | CDC-2/3000<br>450 Hills St/3000 Area       |
| JH Anttonen,<br>Deputy Asst Mgr                           | FED/582-A     | BJ King (2)<br>WL Neal                        | Library/PBB/1100<br>450 Hills St/3000 Area |
| OL Olson, Director,                                       |               | EH Randklev                                   | 450 Hills St/3000 Area                     |
| BWI Division                                              | FED/650-A     | SA Rawson                                     | 450 Hills St/3000 Area                     |
| RD Izatt, Program<br>Manager, MRS                         | FED/655-C     | PF Salter                                     | 450 Hills St/3000 Area                     |
| PE Lamont, BWIP Waste Pkg Monit                           | FED/594       | Westinghouse Hanford C<br>Hanford Eng Dev Lab | <u>o</u> (37)                              |
|                                                           | • <b>&gt;</b> | P.O. Box 1970                                 | •                                          |
| Pacific Northwest Laboratory                              | (21)          | Richland, WA 99352                            |                                            |
| P.O. Box 999                                              |               | TM Aturned                                    | 11/V C                                     |
| Richland, WA 99352                                        |               | JM Atwood<br>WF Brehm                         | W/X-5<br>W/C-53                            |
| CR Allen                                                  | 3764/300      | HC Buchanan                                   | W/A-59                                     |
| MJ Apted                                                  | PSL/1303      | RE Einziger                                   | W/A-38                                     |
| WW Ballard                                                | RO/1181       | DG Farwick                                    | W/B-110                                    |
| JO Barner                                                 | PSL/1513      | T. Hikido                                     | W/A-72                                     |
| DJ Bradley                                                | PSL/1102      | ED Jenson                                     | W/C-33                                     |
| JR Burnell                                                | 3764/204N     | RL Knecht                                     | W/A-39                                     |
| TD Chikalla                                               | RO/1176       | MJ Korenko                                    | W/C-90                                     |
| TT Claudson                                               | R0/1102       | AC Leaf                                       | W/C-33                                     |
| DG Coles                                                  | 324/1617      | B. Mastel                                     | W/A-60                                     |
| MD Freshley                                               | PSL/1157      | WY Matsumoto                                  | W/C-33                                     |
| WJ Gray                                                   | PSL/1301      | JJ McCown                                     | W/C-33                                     |
| MR Kreiter                                                | R0/1257       | HD Smith                                      | W/A-38                                     |
| JL McElroy                                                | RO/1222       | RT Steele                                     | W/C-33                                     |
| GL McVay                                                  | PSL/1106      | RW Stromatt                                   | W/C-33                                     |
| J. Mendel                                                 | PSL/1604      | JR Stuart                                     | W/C-40                                     |
| LG Morgan                                                 | PSL/1305      | LE Thomas                                     | W/A-65                                     |
| PW Riemus                                                 | 3764/300      | NH Uziemblo                                   | W/A-55                                     |
| WA Ross                                                   | 3764/208      | ET Weber                                      | W/C-94                                     |
| JW Shade                                                  | PSL/1311      | CN Wilson (10)                                | W/A-38                                     |
| JL Straalsund                                             | PSL/1277      | RE Woodley                                    | ₩/C-31                                     |
| DM Strachan                                               | PSL/422       | HH Yoshikawa                                  | W/C-96                                     |
|                                                           | -             | Central Files (2                              | ) W/C-110                                  |
|                                                           |               | Documentation (3                              | ) W/C-123 <b>≈</b> ,                       |
|                                                           |               |                                               |                                            |