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ABSTRACT

Calculations for the flow and solute transport through a single rough-surfaced frac-

ture are carried out. The fracture plane is discretized into square meshes to which vari-

able apertures are assigned. The spatially varying apertures in the single fractures are

generated using geostatistical methods, based on a given aperture density distribution

and a specified spatial correlation length. Constant head boundary conditions are

assumed for the flow in the single fracture. The fluid potential at each mesh intersection

is computed and the steady state flowrates between all adjacent meshes are obtained.

The calculations for flow in two-dimensions show that fluid flows unevenly in a single

fracture, and that it takes place in a few preferred paths. The solute transport is calcu-

lated using a particle tracking method. The channeling characteristics of fluid flow and

solute transport phenomena as a function of the fracture geometry .( aperture density

distribution and spatial correlation length) is demonstrated; and the implication to

experimental measurements are discussed. The two-dimensional solute transport results

are then interpretated in terms of a one-dimensional channel model: a system of indepen-

dent variable-aperture channels acting as flow paths for the solute transport. The result

that the two-dimensional breakthrough curves are reproducible by the one-dimensional

conceptual model sheds much light on the potential utility of the simple one-dimensional

channel model to interpret flow and solute transport in both two- and three-dimensional

fractured systems. This approach entails an enormous saving of computation effort.
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INTRODUCTION

In flow through low permeability fractured media, for both the laboratory and field

scales, there are evidences that flow takes place in a limited number of preferred paths.

This kind of channeling phenomena have been observed in both the flow through a sin-

gle fracture (Pyrak et al., 1985; Abelin et al., 1983; 1985; Bourke, 1987) and in a mul-

tifractured medium (Neretnieks, 1985). Where channeling of flow through fractures is

observed, it is clear that a porous medium description will be quite inadequate in

representing the fluid flow behavior in the medium. Under these circumstances, we have

described a theoretical approach (Tsang and Tsang, 1987) to treat the fluid flow as

through channels. These channels have variable apertures along its length, the apertures

of all the channels obey a given aperture density distribution function, and the spatial

variation of the apertures along each channel is governed by the same spatial correlation

length, X. We have made the further assumption that the width of the channels is typi-

cally one spatial correlation length, and that the apertures within the channel width take

on a constant average value. Such an assumption reduces the flow problem to one of

flow through a system of one-dimensional, tortuous channels with variable apertures

along their lengths.

The basic hypothesis of the channel model is that for a given experiment the data

may be analyzed as if flow and transport had taken place in a system of channels that

are statistically equivalent, that is, the channels are described by the same aperture den-

sity distribution and the spatial correlation length. The channels generated from a given

aperture density distribution and spatial correlation have the property that their

volumes per unit length are similar, yet the flow rates and residence times of tracer can

vary over a range of several orders of magnitude, due to the finite probability of the

occurrence of very small apertures along some of the channels (Tsang et al., 1987). This

channel model which describes flow and transport in two and three dimension by a sys-

tem of independent one-dimensional channels simplifies the computational effort enor-

mously. Current approaches for calculation of steady flow in a heterogeneous medium

involve discretization of the medium into an appropriate mesh of nodes and elements,

then solving the Laplace equation for fluid potentials. For large scale problems in two
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and three dimensions, this often demands the handling of very large matrices and may

exceed the storage capacity of even large computers. When storage is not a problem, the

computation may still be prohibitively time consuming. The conceptual channel model of

interpreting flow and transport data in terms of one-dimensional flow paths was

intended to sidestep these computation difficulties by incorporating as much physics as

possible into the model. The notion of solving directly for the flow paths of a hetero-

genous medium, as opposed to the conventional way of solving for the fluid potentials,

has also been suggested by Narasimhan (1985).

In the present work, we present our investigations of flow in two dimensions,

corresponding to the physical situation of flow in single fractures. The purpose of this

paper is three-fold. First, by solving for the flow exactly by Laplace equation in two-

dimensions, we would like to understand the flow characteristics in single fractures and

to identify the key parameters that control the channeling flow pattern, thus affording a

way to interpret single fracture field and laboratory experiments by Pyrak et al. (1985),

Abelin et al. (1983, 1985) and Bourke (1987), all of which exhibit channeling behavior.

Second, the results of the present calculations in two-dimension shed light on the vali-

dity of some of the simplifying assumptions in the conceptual channel model (Tsang and

Tsang, 1987), where we proposed one dimensional channel representation of flow in both

two- and three-dimensions when interpretating data. Third, since the preferred flow

paths or channels in three dimensional fractured media are probably composed of con-

nected paths in system of intersecting single fractures, the implications of our present

two-dimensional calculations on field tests in three-dimension will be discussed.

FLOW AND TRANSPORT IN TWO DIMENSIONS

Fracture Aperture Generation

Here we outline the numerical model to calculate the fluid flow and solute transport

through a single fracture with variable apertures. The fracture plane is partitioned by

grids with a different aperture assigned to each square enclosed by grid lines. The
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assignment of the apertures is by means of geostatistical method which generates two-

dimensional field of a correlated distributed parameter. Little data is available on the

actual distribution of apertures in a single fracture. Surface profiling measurements on

12 cm cores of a natural fracture in granite (Gentier, 1986) seem to indicate that the

apertures follow a gamma distribution (Tsang and Tsang, 1987). Apparent apertures

that have been observed in cores or well logs measured by Bianchi and Snow (1968); and

apertures derived from permeability tests in granite (Bourke et al., 1985) were found to

follow a lognormal distribution. For the purpose of this study, the exact form of aper-

ture density distribution and covariance function are not critical, we chose a lognormal

distribution for the variable apertures in the plane of the single fracture and exponential

function for the spatial covariance of the apertures. We used the numerical code

COVAR (Williams and El-Kadi, 1986) to generate different aperture values in the frac-

ture plane divided into square meshes. COVAR uses the matrix decomposition method

to generate the log-normally distributed values of fracture apertures, b, which are first

transformed to the normal distribution, Y,

Y=loglob (1)

The values of Y are estimated from,

Y=L.E+v (2)

in which v is the mean of Y, c is a vector N [0,1] (i.e., normally distributed with mean of

zero and standard deviation of 1), and L is defined in terms of the covariant matrix

A LLT (3)

Equation (2) represents the generated process because the mean is given by

E [Y]=LE [HE+v=v (4)

and the covariance is given by

E [(Y-v)(Yv)TI=LE [,ET]LT=LLT=A (5)

in which E stands for the expected value. We used the exponential form of the covari-

ance function
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A=a2 exp-' I r j (6)

in which a2 is the variance of Y, r is the separation lag, and ax is the autocorrelation

parameter which has the dimension of inverse length. The exponential form of (6) indi-

cates that quantities within distance on the order of 2/ae will be correlated and thus we

may define the correlation length, X to be 2/a. The form of (6) indicates that the

covariance chosen is isotropic. An anisotropic form of the covariance function may also

be chosen.

Figures 1 and 2 show eight realizations of statistically generated apertures with

identical mean and variance of the log-normal aperture density distribution: the mean

v=1.7 , and the square root of variance a=O0.43. The mean corresponds to an aperture

of 101.7 = 50 jim. The square region of unit length in linear dimension therefore

represents a single fracture with spatially correlated variable apertures as a flow region.

Figure 1 differs from Figure 2 only in the spatial correlation length of the apertures. The

correlation length is expressed in terms of a fraction of the linear extent of the square

generated region. The spatial variation of the apertures in Figure 1 correspond to a

correlation length, X, of 0.1 of the linear dimension of the fracture flow region, those in

Figure 2 all correspond to a X, of 0.4 of the linear dimension of the fracture flow region.

The variation of the apertures is represented by the different shading in Figures 1 and 2,

the darker the shading, the smaller the aperture. That the spatial correlation of the

apertures are different in Figures 1 and 2 is quite apparent.

Fluid Flow Calculations

The fluid flow through these variable-aperture fractures shall be calculated for the

constant pressure head boundary conditions: with reference to the geometry as shown in

Figure 3a, the left boundary is kept at a higher potential P 1, the right boundary at a

lower potential P2 , with the no flow conditions imposed on the upper and lower boun-

daries. The steady laminar velocity of a viscous incompressible fluid through a pair of

smooth parallel walls separated by a distance b satisfies the equation (e.g., Snow, 1965),

V=- 1 b2VP (7)
1 2g
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where V is the Darcy velocity, it the dynamic fluid viscosity, and P is the fluid pressure.

Then the volumetric fluid flow is,

1 b3 WAP/L (8)
12y

where the pressure drop is A P over a length of L and W is the extent of the parallel

plates normal to the pressure variation. Equation (8) may be applied to each of the

squares enclosed by the grid lines such as shown in Figure 3a. In this regard, we assume

that the ratio of aperture to the grid spacing is much smaller than 1, so that conver-

gence or divergence in flow lines near the boundary between two grid squares does not

change the simple relationship given in Equation (8). Figure 3b shows a schematic

diagram of two adjacent nodes with apertures bi and bj respectively. When the

volumetric fluid flow rate from node i to node j is Qip we can write down the expression

for the pressure drop from node i to node j,

pi-p= Qi + Qi
I bi3AY 2 1 b3Ay A2

1t Ax 12p A

=Qii [6A Axy( 1 3 + 3 )]

=Qi; Ri (9)

where Rij is the resistance to flow between nodes i and j. The mass balance at each node,

i, may be written as

EQi=E R =0. (10)

Except for the nodes at the left and right boundaries of the fracture region, the pressure

at each node is an unknown to be solved. The system of Equations (10) with the pres-

sures as unknowns is solved using a sparse matrix solver (NAG Library of Mathematical

Routines). The solutions of the system of equations yield the pressure at each node, and

flow between adjacent nodes is then calculated using Equation (9).
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Equation (10) has the same form as the Kirchhoff's first rule for solving electrical

currents, which is not surprising since the equations governing the flow of electrical

currents and hydraulic flow are identical. There is a one-to-one correspondence between

the electrical current and the fluid volumetric flowrate, the voltage drop and the pres-

sure difference, and the electrical resistance and the fluid resistance as defined in Equa-

tion (9). So the problem of solving for the fluid flow through a variable-aperture single

fracture is equivalent to solving the electric current through a network of resistances.

Figure 3c shows the electrical resistance analog of the fluid flow between adjacent nodes

shown in Figure 3b.

Solute Transport

After the steady state fluid flowrates are obtained, the solute transport through the

fracture is calculated using a particle-tracking technique (Schwartz et al., 1983; Robin-

son, 1984). A large number of particles are introduced in the known flow field at the

fracture inlet (i.e., the left boundary of the square flow region as shown in Figure 3a).

Particles coming to an intersection are distributed in the outlet branches (resistors) with

a probability proportional to the flowrates (electrical current). Each particle is followed

through the network of resistors. The residence time for the particle to traverse from

one node to the next is determined by the flowrate between the adjacent nodes and the

volume involved,

-(bi+bj)A xAy
t 2j=2 (11)

nQij

where n is half the number of branches at each node. In our choice of square mesh, n

equals 2. Summing the residence times tij traversed by the particle over the entire path

from inlet to outlet (i.e., the right boundary of the square flow region in Figure 3a) gives

the total residence time of the particle. In this calculation, we focus on the effects of the

different residence times along the different pathways on the dispersion of tracer tran-

sport through the fracture. We therefore do not include the effects of molecular diffusion,

matrix diffusion or local dispersion within each channel in our calculations.
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RESULTS

Fluid Flow

Solutions of Equations (9) and (10) yield the pressure at each nodal point and the

volumetric flowrate between adjacent nodes. The plots in Figures 4 and 5 correspond to

the flowrates in the fractures with aperture variation as shown in Figures 1 and 2 respec-

tively. Figures 4a through 4d display flowpaths for apertures with spatial correlation

length 0.1, and Figures Sa through 5d are for cases with correlation length of 0.4. Hence

the aperture variation in Figure la gives rise to the flowrate distribution displayed in

Figure 4a, and that of Figure 2a gives rise to flowrates in Figure 5a, and so forth. The

flowrates between the nodes vary over several orders of magnitudes, the large range of

values arise from the fact that the local resistance to the fluid flow varies as the inverse

of the local aperture raised to the third power, and the lognormal distribution of aper-

tures originally assumed for the fracture plane already takes on a wide range of values.

To display the variation of the large range of flowrates over the entire fracture, the

volumetric flowrates are plotted in Figures 4 and 5, where the thickness of the lines join-

ing nodes is made to vary as the square root of the flowrate; the thicker the lines, the

larger the flowrates. The plots in Figures 4 and 5 show the following features. One, they

all display the preferred paths of large volumetric flowrates that are formed because of

the variation of the apertures within the single fracture plane. Two, the different spatial

correlation of the variable apertures gives rise to different flow patterns. Figures 4a

through 4d display flowpaths for apertures with spatial correlation length 0.1, and Fig-

ures 5a through 5d are for cases with correlation length of 0.4. We note that there is a

tendency for all the flow paths of large flowrates to coalesce into a "channel" on the

order of one spatial correlation length in width, and the spacing between these large

flowrate "channels" also is on the order of the spatial correlation length of the fracture

apertures.
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Particle Tracking

Solute transport phenomena are investigated by tracking the particles advected

through the fracture. Recall that the boundary conditions employed to solve the flow

through the system is the constant head boundary condition, that is, all the nodes on

the left hand boundary (Fig. 3a) are maintained at the higher pressure P1, and all the

nodes on the right boundary are maintained at the lower constant pressure P2. Particles

are let in at the left hand boundary and collected at the right hand boundary. A plot of

the number of particles collected at all the outlets on the right hand boundary at

different arrival times constitutes the breakthrough curve. Calculations have been carried

out for total number of input particles ranging from several hundreds to 10000 in order

to investigate the effect of the number of particles on the breakthrough curves. We

found that calculations using 1000 particles are more than adequate since they already

yield breakthrough curves that have very little spurious artifacts due to the finite

number of particles employed. The breakthrough curves for total number of 1000 parti-

cles are indistinguishable from those with 10000 input particles.

Not only are we interested in the tracer breakthrough curves, but we are particu-

larly interested in the manifestation of the channeling phenomena in tracer measure-

ments. Therefore, in Figures 6 and 7 we present the spatial distribution of the tracer col-

lection in the outlets. The horizontal x-axis corresponds to the spatial axis of the right

(exit) boundary in Figure 3a. The origin on the horizontal axis in Figures 6 and 7

corresponds to the bottom right corner of the flow region in Figure 3a; and x=1.0

corresponds to the top right corner of the flow region. The vertical axis in Figures 6 and

7 gives the number of particles collected at the exit co-ordinates. The results are shown

for a total number of 2000 input particles. Note the patterns of the histograms in Fig-

ures 6 and 7 and, in particular, the relationship of their shapes with the different spatial

correlation lengths of the fracture apertures which are 0.1 and 0.4 respectively. We can

perhaps see a trend of the tracer concentration distributed spatially in "channels" of

spatial width on the order of a spatial correlation length and spaced also on the order of

one correlation length.
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In general, the breakthrough curves of tracer transport in two dimensions through

these variable-aperture fractures have a fast rise at early times, since the majority of

particles take the fast flow paths; then there is a long tail in the breakthrough curve due

to a small fraction of particles meandering through the fracture, including in their

flowpaths many sections with extremely small volumetric flowrates. To see the tracer

breakthrough characteristics as a function both of time and space, we did the following.

The times at which 25%, 50%, 75%, and 100% of the particles have arrived at the exit

boundary are denoted respectively by to0 25, to0 5, to0 7 5, and t1 0. Figures 8a through 3d

show the spatial distribution of particles collected at times t0o 2 5 , to0 5 , to0 7 5 and t 1 0 respec-

tively. Each figure is a contour plot of the number of particles. The x axis represents the

spatial axis of the left hand boundary in Figure 3a, which is the boundary for inlets. The

y axis represents the spatial axis of the right hand boundary, which is the boundary for

outlets. In experimental measurements, information as to the position of the outcoming

tracer at different times can be gathered; hence the y coordinate of the tracer concentra-

tion in Figure 8 correspond to the kind of data that may be collected if channeling

phenomena are present. On the other hand, the position from which the outcoming

tracer originates is contained in the x coordinates in Figure 8; this information can be

obtained experimentally only when different tracers (e.g., different dyes) are introduced

at different locations at the input boundary. The contours denote the particle number

densities that enter or exit the single fracture. Contour curves of the same nature as Fig-

ure 8, but only at t 10 are displayed in Figures 9 through 11 for different realizations of

spatial aperture distribution. We have labeled this kind of plot as "transfer matrix",

since it contains the information involving the transfer of particles from the entrance

boundary to the exit boundary. Figures 8 and 9 are contour plots of the transfer matrix

for two different realizations of aperture variation with the spatial correlation 0.1, and

Figures 10 and 11 are for realizations with the spatial correlation 0.4 of the linear dimen-

sion of the flow region. The contours in Figures 8, 9, 10 and 11 are derived from the

aperture distribution as shown in Figures lc, id, 2b, and 2d respectively. The channeling

phenomenon of tracer transport in a single fracture with variable apertures is well

demonstrated in these figures: the fast flow paths for tracer transport tend to coalesce
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into "channels" with width and spacing on the order of one spatial correlation length. A

comparison of Figures 8 and 9 with figures 10 and 11 clearly shows the difference

between the cases with correlation 0.1 and 0.4. This kind of plots of measurable data

may be a means to estimate the spatial correlation lengths of the system.

Figures 12 and 13 show the percentage of the particle breakthrough along the exit

line as a function of time normalized to the mean residence time, tm, for four realizations

of spatial correlation 0.1 and 0.4 respectively. Here tm is calculated by taking the average

of all the residence times of the 2000 particles. It is interesting to note that firstly the

different realizations give similar values within a narrow band, and secondly the results

for spatial correlation of 0.1 and 0.4 are similar, so that one may suggest that such a

plot is insensitive to the spatial correlation length.

INTERPRETATION OF 2-D RESULTS BY THE 1-D CHANNEL MODEL

It is of interest to know the aperture values along the flow paths actually taken by

each of the particles. Our calculation involved tracking 400 particles through the single

fracture, grouping them in quadrants according to their residence times within the frac-

ture. Statistical analysis were done on the apertures along the actual flow paths. The

mean and standard deviation on the logarithm of the apertures were computed. Calcula-

tions were carried out for all eight realizations of the single fracture (Figs. 1 and 2) and

the results are tabulated in Tables 1 and 2. Although all eight realizations were gen-

erated with the same aperture density parameters (mean, logb 0 =1.7, and standard devi-

ation, a=0.43), Table 1 shows that mean and standard deviation of actual log aperture

values in the fracture for these realizations can be quite different from each other. It

also show that apertures along the particle flow paths take on a larger mean and smaller

standard deviation than the apertures over the whole fracture. We note that the dis-

tinction between the "fast" and "slow" particles is that the variance of the aperture dis-

tributions of the actual flow paths taken by the particles seem to increase for the

"slower" particles. The larger variance implies that a larger range of apertures, both

large and small, are present along the particle flow paths. However, it is the occurrence

of the small apertures that gives rise to the large residence times and makes the particles
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"slow." Although the fastest particles have the largest mean and smallest standard devi-

ation, the variation of the mean and standard deviation among the quadrants are not

large, and the values in Tables 1 and 2 indicate that average values of the mean and

standard deviation can be used to characterize the log apertures along the flow paths of

all the particles, be they slow or fast. We also calculated the aperture density distribu-

tions for the flow paths and for the fracture, for the eight realizations. Figures 14 and 15

show typical normalized aperture density distributions for the fracture (broken curve),

and for the particle flow paths (solid curve). These figures illustrate clearly that the

smallest apertures are avoided in two-dimensional flow through a fracture. However, it

is also important to note that the particles cannot avoid the small apertures entirely.

In our earlier work (Tsang and Tsang, 1987), we used a system of one dimensional

channels, statistically generated with a given aperture distribution and a spatial correla-

tion length, to interpret the fluid flow and solute transport in two- and three-dimensions.

We apply the methodology outlined there, employing a lognormal aperture distribution

with parameters for the actual particle paths as given in Tables 1 and 2 to generate a

system of one dimensional channels. The tracer concentration transport as a function of

time, assuming a step function tracer input are plotted in Figure 16 for the fractures

corresponding to Figures 1 and 2. Only 7 realizations are plotted, with the omission of

the case shown in Figure 2b, where the channel is too close to the upper no-flow boun-

dary, resulting in an aberration of the aperture density function. When Figure 16 is com-

pared with Figures 12 and 13, which show breakthrough curves derived from particle

tracking in two-dimension, it is found that the breakthrough curves shown in Figure 16

from the one-dimensional calculation fall within the same range as those from two-

dimensional calculations in Figures 12 and 13. Furthermore, the shape of the break-

through curves are also similar, with fast rise at early times and a rather long tail. To

facilitate the comparison between the one-dimensional and two-dimensional calculations

we plot them together in Figure 17. The filled dots are results for the averages of the

two-dimensional calculations for the seven realizations. The open circles are the aver-

ages of the one-dimensional channel model calculations using the aperture density distri-

butions given in Tables 1 and 2. The vertical bars give the limits of the spread of the
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values of the seven realizations. The agreement between the one- and two-dimensional

calculations is good. Since this kind of plot is a measure of dispersivity of tracer tran-

sport through the fracture, our results seem to indicate that the variable-aperture, one-

dimensional channel model can reproduce the two-dimensional tracer transport disper-

sivity.

We also took the aperture density distribution from Tables 1 and 2 and con-

structed a system of constant-aperture channels and computed the breakthrough. This

is the traditional bundle of flowtubes channel model (for example, Neretnieks,1983). The

results are shown as open squares in Figure 17. Finally if the entire fracture has only

one constant aperture, then the plot in Figure 17 would be a step with tracer concentra-

tion equals 0 before t/tm =1 and 100% after, implying a piston flow with zero disper-

sivity. The results for the tracer breakthrough through such a parallel plate representa-

tion of a single fracture are shown as open triangle in the figure.

Table 3 presents the mean residence times from the different calculations for a

number of realizations. The second column gives the expected values obtained by divid-

ing total fracture aperture volumes by the calculated mean flowrates in two dimensions.

The third column gives the mean particle residence times from the breakthrough curves

derived from particle tracking in two dimensions. These agree within a few percent of

the values in column 2. The fourth column gives the mean residence times from the

breakthrough curves derived from the one-dimensional variable aperture channel model.

we note that the mean residence times are within factor of 2 as those derived from the

actual two-dimensional transport. The last column gives the mean residence times

obtained from the breakthrough curves derived from a system of constant-aperture

channels. The mean residence times in this last column are typically two or three orders

of magnitude smaller than that predicted from both the two-dimensional and one-

dimensional variable aperture channel calculations. This is easy to understand since in

the constant aperture channel representation, the larger the aperture, the shorter the

residence time, therefore the average is heavily weighted by the residence times of the

largest constant aperture channels.
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DISCUSSIONS

Flow in Single Fractures

The calculated flow patterns shown in the previous section bear strong resemblance

to field observations made on a single fracture by Bourke (1987). Packer tests were car-

ried out in a single granitic fracture with dimensions of about 2 m in a Cornwall quarry.

Five boreholes are drilled in the plane of the fracture. By packing off 8 cm sections of

each borehole, pressure interference tests between adjacent boreholes were performed.

Based on observed communication between different sections of the five boreholes, it was

deduced that there is strong flow channeling in the single fracture (Figure 18). Two

major flow channels were observed, with only about 10-20% of the fracture plane parti-

cipating in the flow. This observation can be understood in terms of our model.

Pyrak-Nolte et al. (1987) studied apertures of a single fractures in 5.2-cm core sam-

ples in the laboratory. They injected molten Wood's metal into the single fracture and

let it solidify, then they opened up the fractures and examine the two fracture surfaces

using a scanning electron microscope. Composites from SEM micrographs of fracture

surfaces allow identification of the areas that are open to flow, as indicated by white

areas in Figure 19. The black shading in Figure 19 indicates contact areas with zero

fracture aperture. Note the resemblance of the general character of Figure 19 to that of

Figure 2, where we show statistically generated variable apertures in a single fracture,

with spatial correlation length of 0.4. One feature in Figure 19 is the "pools" of open

apertures (white areas) available for fluid flow. However, the open areas only indicate

that the apertures are non-zero, they contain no information as to the magnitude of the

apertures, and hence the large "pools" in Figure 19 do not necessarily imply areas of uni-

formly large flow rate. On the other hand, Figure 2 does contain information on the

magnitudes of the apertures and thus fluid flow may be derived as shown in Figure 5. In

our model, these "pools" of open apertures observed experimentally (Fig. 19) results in a

localized group of intersected flow paths (Fig. 20a). Such patterns are typically found in

Figures 4 and 5. Such a situation as shown in Figure 20a can also be represented by

flow along streamlines through the pools as shown in Figure 20b. In Figure 20b, the
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longer the streamlines, the slower are their flow velocities, and the flow velocity is never

zero. However, if the velocity in the pool is very small, then the pool becomes essentially

a static reservoir of water, whose main role is not to provide streamline paths, but to

exchange solute with the major flow line by diffusion (Fig. 20c). These "stagnant pools"

were proposed by Neretnieks (1985). Our present calculation does not take account of

the process represented in Figure 20c.

Now let us compare exit tracer mass flowrates for spatial correlation, X equals 0.1

(Fig. 6) and those for X equal to 0.4 (Fig. 7). The spacings between locations of max-

imum mass flowrate and between locations of zero mass flowrate appear to bear a rela-

tionship with the spatial correlation of the variable apertures in a single fracture. Hence

to obtain a crude estimate of the correlation length one may monitor the spacings of

tracer exit points along a fracture trace in the ceiling or wall of a drift. a drift. However,

the duration of the experiment should be long enough for exit concentrations to reaching

a stationary value or a value comparable to the inlet concentration. The transfer matrix

patterns (Fig. 8-11) also suggest that useful information such as the relevant spatial

correlation length which governs the spacing of flow channels may be obtained from

experimental setup which aims at "line measurements" rather that "point measure-

ments". The transfer matrix may be constructed if experiments are performed with a

line of input points on the high-pressure side of the single fracture and a line of observa-

tion points on the opposite low-pressure side. Different tracers are then injected at

different points in packed-off sections along the input line, and long-term tracer observa-

tions are made along the exit line.

It is also of interest to measure and compare the distribution of fluid flowrates with

that of tracer mass flowrates along an exit line, when tracer is released at one point on

the high- pressure input line. Generally they are not the same. Our calculation for the

fracture with the aperture variation of Figure la gives results as shown in Figure 21.

The calculation is for tracer released at only one location (y=.77) on the entry line of

the fracture. In Figure 21, the unfilled bars denote the relative fluid flowrates along the

exit line, and the filled bars give the relative mass flowrates. Abelin et al. (1985) moni-

tored fluid and tracer arrivals along a single fracture trace in the ceiling of a drift in the
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Stripa mine. The collection points of fluid and tracer were placed at 0.7m interval.

Tracer was injected through a bore hole into the single fracture at a point about 5m

above the drift ceiling. It was found that both fluid and tracer emerged only at a few

spots along the fracture trace, with about 90% of the flowrate carried by less than 20 %

of the 0.7m observation sections. Furthermore, at a number of observation point where

large fluid flowrate were obtained, no tracer was observed. If the tracer had been

released all along the input line, the fluid flow exit distribution will be similar to tracer

exit distribution after a time period much longer than the tracer mean residence time.

In this regard it may be suggested that the fluid flow exit patterns may be more useful

in determining fracture spatial correlation lengths which controls the flow pattern when

channeling is present.

We would like to make some general remarks in the "relevant" spatial correlation

length that controls the channeling flow pattern. The two-dimensional calculations

presented above show that the spatial correlation of the apertures controls the width

and spacing of the flow channels. If the spatial correlation length is very small compared

to the dimension of the flow region at which measurements are taken, channeling

phenomena should disappear and porous medium behavior should prevail. The fact that

there exist experimental evidences of flow channeling in scales ranging from centimeters

in the laboratory to meters and tens of meters in the field suggests to us that at different

scales of measurement, the "relevent" spatial correlation length that governs the chan-

neling flow pattern is on the same order of magnitude as the measurement scale. In

other words, if the aperture variation in a single fracture were a fractal (Wang and

Narasimhan, 1987; Brown, 1987), then at larger and larger measuring scale, larger and

larger irregularity is encountered, and it is the largest possible irregularities on the scale

of measurement that control the flow pattern.

Implications of Results on Flow in Multi-Fracture Systems

In our earlier work (Tsang and Tsang, 1987), we hypothesized that the flow in sin-

gle fractures and the flow in intersecting multi-fracture systems may be analyzed on the

same basis; i.e., as flow along one-dimensional channels of variable aperture. From the
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discussions above, we demonstrated (Fig. 17 and Tables 1 through 3) that the flow and

tracer transport in two-dimensional single fracture can be represented by transport

through variable-aperture, one-dimensional channels for the cases considered.

For the multi-fractured systems, the channel width is still expected to be of the

order of the aperture correlation length in the single fracture. Spacing between channels,

on the other hand, would depend more on fracture spacings and characteristics of

different fracture sets. Thus it is expected to be much larger, of the order of fracture

spacings. In the case of very tight systems where many of the fractures are not hydraul-

ically conducting, the channel spacing should be even larger, of the order of the spacing

of conducting fractures. The spacing of these conducting channels defines the effective

spatial correlation length for flow and transport in three dimensions.

With the above comment on the effective correlation length, many of the results

and discussions on single fractures in previous sections are directly applicable to the

multi-fracture media. Thus the usefulness and importance of making tracer measure-

ments with line tracer injection and line or areal observation of tracer emergence is obvi-

ous. This kind of measurements should enable one to make transfer matrix plots and

may give an indication of the effective correlation length. If channeling is of primary

importance in a particular flow system, then the spacing between conducting channels,

which is related to the effective correlation length, is a key parameter. This information

cannot be obtained by point measurements readily. Hence areal or line fluid flow and

tracer emergence measurements with a number of injection points with different tracers

will be very relevant.
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Table 1. Statistics for apertures along actual particle
of Figures la-d.

paths, and for the entire fracture

Correlation Realization 511 Realization 512

Mean Standard Dev. Mean Standard Dev.
) = 0.1 (log bo) (a) (log bo) (a)

Fracture 1.74 0.41 1.59 0.46
Aperture

Fastest 25% 2.03 0.34 1.89 0.33
particles

Second 25% 2.00 0.36 1.90 0.37
particles .

Third 25% 1.99 0.38 1.89 0.36
particles .

Slowest 25% 1.97 0.39 1.84 0.43
particles

All 2.00 0.37 1.88 0.38
particles

Correlation Realization 513 Realization 514

Mean Standard Dev. Mean Standard Dev.
X = 0.1 (log bo) (a) (log bo) (a)

Fracture 1.76 0.42 1.75 0.43
Aperture

Fastest 25% 2.09 0.29 2.17 0.28
particles

Second 25% 2.06 0.30 2.14 0.30
particles

Third 25% 2.02 0.32 2.03 0.35
particles

Slowest 25% 1.98 0.36 1.94 0.37
particles

All 2.04 0.32 2.07 0.34
particles .
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Table 2. Statistics for apertures along actual particle paths, and for the entire fracture
of Figures 2a-d.

Correlation Realization 541 Realization 542

X = 0.4 Mean Standard Dev. Mean Standard Dev.
_ = 0.4 (log bo) (a) (log bo) (a)

Fracture 2.11 0.38 1.38 0.41
Aperture

Fastest 25% 2.43 0.32 1.86 0.41
particles . _.

Second 25% 2.43 0.31 1.89 0.42
particles

Third 25% 2.36 0.29 1.81 0.42
particles

Slowest 25% 2.33 0.34 1.61 0.43
particles

All 2.39 0.32 1.79 0.43
particles

Correlation Realization 543 Realization 544

Mean Standard Dev. Mean Standard Dev.)X= 0.4 (log bo) (a) (log bo) (1)

Fracture 1.45 0.38 1.70 0.43
Aperture

Fastest 25% 1.95 0.34 2.12 0.33
particles

Second 25% 1.93 0.35 2.15 0.33
particles

Third 25% 1.86 0.35 2.13 0.36
particles

Slowest 25% 1.68 0.39 2.04 0.38
particles

All 1.85 0.38 2.11 0.36
particles .
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Table 3. Mean residence times calculated from (a) mean fracture volume divided by
mean calculated flow rates, (b) mean article travel times from 2-D calcula-
tions, (c) mean residence times from a system of statistically equivalent 1-D
variable-aperture channels and (d) mean residence times from a system of
constant-aperture channels.

Run Mean Residence Time

Expected Variable Constant Aperture
2-D Aperture Aperture

Channel Channel

511 0.58 0.57 0.82 0.004
512 1.42 1.38 1.64 0.012
513 0.34 0.33 0.39 0.007
514 0.32 0.30 0.41 0.006
541 0.07 0.07 0.06 0.0005
542 2.23 2.23 3.10 0.007
543 0.84 0.85 1.15 0.0047
544 0.30 0.30 0.35 0.003
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a) Run 511 b) Run 512
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Figure la-d. Statistically generated apertures with a spatial correlation length of 0.1
in the plane of a single fracture of linear dimension 1.0.
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a) Run 541 b) Run 542
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Figure 2a-d. Statistically generated apertures with a spatial correlation length of 0.4
in the plane of a single fracture of linear dimension 1.0.
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Rj = 6 Ax 1 + 1
bi3 bj3

Figure 3.

XBL 873-10019

(a) Schematic diagram for flow through a single fracture with different
aperture values assigned to areas bounded by grid lines.
(b) Schematic diagram for two adjacent nodes of different apertures: bi
and bj and the fluid flow Qij between them.
(c) Electric analog of fluid flow between adjacent nodes.
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a) Run 511 b) Run 512
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XBL 875-9670

Figure 4a-d. Fluid flow rates for the fractures with aperture variation as shown in
Figure 1. The thickness of the lines is proportional to the square root
of the flowrate.
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a) Run 541 b) Run 542
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Figure 5a-d. Fluid flow rates for the fractures with aperture variation as shown in
Figure 2. The thickness of the lines is proportional to the square root
of the flowrate.
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Histograms of particle number as a function of position on the collec-
tion line, for fractures with spatial correlation length of 0.1.

Figure 6.
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Histograms of particle number as a function of position on the collec-
tion line, for fractures with spatial correlation length of 0.4.

Figure 7.
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25% transfer matrix
run 513

0-
w!=

Injection point

XBL 875-9674

Figure 8a. Contours of particle number density as a function of tracer entrance
location and collection location, for a fracture with aperture variation
as shown in Figure Ic at t25, when 25 % of the input particles have

arrived at the exit boundary.
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Figure 8b. Contours of particle number density as a function of tracer entrance
location and collection location, for a fracture with aperture variation
as shown in Figure 1c at toS when 50 % of the input particles have
arrived at the exit boundary.
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Figure 8c. Contours of particle number density as a function of tracer entrance
location and collection location, for a fracture with aperture variation
as shown in Figure Ic at t75 , when 75 % of the input particles have
arrived at the exit boundary.
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Figure 8d. Contours of particle number density as a function of tracer entrance
location and collection location, for a fracture with aperture variation
as shown in Figure 1c at t 1 0, when 100 % of the input particles have
arrived at the exit boundary.
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Figure 9. Contours of particle number density as a function of tracer entrance
location and collection location, for a fracture with aperture variation
as shown in Figure 1d.



-36-

Transfer matrix
run 542

4-

LU

Injection point

XBL 875-9679

Figure 10. Contours of particle number density as a function of tracer entrance
location and collection location, for a fracture with aperture variation
as shown in Figure 2b.
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Figure 11. Contours of particle number density as a function of tracer entrance
location and collection location, for a fracture with aperture variation
as shown in Figure 2d.
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Figure 12. Tracer breakthrough curves from particle tracking in fractures with
correlation length 0.1. Time is normalized to mean residence time, tm.
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Figure 13. Tracer breakthrough curves from particle tracking in fractures with

correlation length 0.4. Time is normalized to mean residence time, tm.
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Figure 14. The aperture density distributions for apertures along particle paths,
and over the entire fracture of Figure la.
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Figure 15. The aperture density distribution for apertures along particle paths,
and over the entire fracture of Figure 2a.
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Figure 16. Tracer breakthrough curves from one-dimensional variable-aperture
channel calculations for the seven realizations of apertures as shown in
Figure 1 and 2.



I ' ^

BREAKTHROUGH CURVES
SEVEN REALIZATIONS

100

LU

Li
(-)

Li
C-
4y
H-

80

60

40

20

0
0 0.5 1 1.5 2

TIME / MEAN RESIDENCE TIME
2.5 3

Figure 17. Tracer breakthrough curves from two-dimensional calculation (0), one-

dimensional variable-aperture channel calculation (0), constant-
aperture channel calculation (0), and parallel-plate fracture calculation
(A). Vertical bars give limits of values from different realizations.
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Figure 18. Plan view of fracture with flows into five boreholes and suggested flow

channels (Bourke,1987).



-45-

C Approximate Scale
Ii
0.4 mm

Figure 19. Compositive from SEM micrographs of fracture surfaces (Pyrak-Nolte
et al., 1987).
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(a) Representation of flow "pool" in the electrical resistor analog.
(b) Pools of water with flow stream lines.
(c) Stagnant "pool" of water, having diffusive exchange with flow lines.

Figure 20.
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Histogram of flowrate (unfilled bars) and particle number (filled bars) as
a function of exit location.

Figure 21.
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