3/4.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.1.1 As a minimum, the reactor trip system instrumentation channels and interlocks of Table 3.3-1 shall be OPERABLE with RESPONSE TIMES as shown in Table 3.3-2.

APPLICABILITY: As shown in Table 3.3-1.

ACTION:

As shown in Table 3.3-1.

SURVEILLANCE REQUIREMENTS

4.3.1.1.1 Each reactor trip system instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations for the MODES and at the frequencies shown in Table 4.3-1.

4.3.1.1.2 The logic for the interlocks shall be demonstrated OPERABLE prior to each reactor startup unless performed during the preceding 92 days. The total interlock function shall be demonstrated OPERABLE at least once per 18 months during CHANNEL CALIBRATION testing of each channel affected by interlock operation.

4.3.1.1.3 The REACTOR TRIP SYSTEM RESPONSE TIME of each reactor trip function shall be verified to be within its limit at least once per 18 months. Each verification shall include at least one logic train such that both logic trains are verified at least once per 36 months and one channel per function such that all channels are verified at least once every N times 18 months where N is the total number of redundant channels in a specific reactor trip function as shown in the "Total No. of Channels" column of Table 3.3-1.

3/4.3.2 ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.2.1 The Engineered Safety Feature Actuation System (ESFAS) instrumentation channels and interlocks shown in Table 3.3-3 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3-4 and with RESPONSE TIMES as shown in Table 3.3-5.

APPLICABILITY: As shown in Table 3.3-3.

ACTION:

- a. With an ESFAS instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3-4, declare the channel inoperable and apply the applicable ACTION requirement of Table 3.3-3 until the channel is restored to OPERABLE status with the trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With an ESFAS instrumentation channel inoperable, take the ACTION shown in Table 3.3-3.

SURVEILLANCE REQUIREMENTS

4.3.2.1.1 Each ESFAS instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations for the MODES and at frequencies shown in Table 4.3-2.

4.3.2.1.2 The logic for the interlocks shall be demonstrated OPERABLE during the automatic actuation logic test. The total interlock function shall be demonstrated OPERABLE at least once per 18 months during CHANNEL CALIBRATION testing of each channel affected by interlock operation.

4.3.2.1.3 The ENGINEERED SAFETY FEATURES RESPONSE TIME of each ESFAS function shall be verified to be within the limit at least once per 18 months. Each verification shall include at least one logic train such that both logic trains are verified at least once per 36 months and one channel per function such that all channels are verified at least once per N times 18 months where N is the total number of redundant channels in a specific ESFAS function as shown in the "Total No. of Channels" Column of Table 3.3-3. The provisions of Specification 4.0.4 are not applicable to MSIV closure time testing. The provisions of Specification 4.0.4 are not applicable to the turbine driven auxiliary feedwater pump provided the surveillance is performed within 24 hours after the secondary steam generator pressure is greater than 680 psig.

BASES

3/4.3.1 and 3/4.3.2 PROTECTIVE AND ENGINEERED SAFETY FEATURES (ESF) INSTRUMENTATION

The OPERABILITY of the protective and ESF instrumentation systems and interlocks ensure that 1) the associated ESF action and/or reactor trip will be initiated when the parameter monitored by each channel or combination thereof exceeds its setpoint, 2) the specified coincidence logic and sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance consistent with maintaining an appropriate level of reliability of the Reactor Protection and Engineered Safety Features instrumentation and, 3) sufficient system functional capability is available from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliability, redundance and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions. The integrated operation of each of these systems is consistent with the assumptions used in the accident analyses.

The Trip Setpoints are the nominal values at which the bistables are set. Any bistable is considered to be properly adjusted when the "as-left" value is within the band for CHANNEL CALIBRATION accuracy (i.e., ± rack calibration + comparator setting accuracy).

The Trip Setpoints used in the bistables are based on the analytical limits stated in the UFSAR. The selection of these Trip Setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances, instrumentation uncertainties, instrument drift, and severe environment errors for those Reactor Protection System (RPS) channels that must function in harsh environments as defined by 10 CFR 50.49, the Trip Setpoints and Allowable Values specified in the Technical Specification Limiting Conditions for Operation (LCO's) are conservatively adjusted with respect to the analytical limits. The methodology used to calculate the Trip Setpoints is consistent with Instrument Society of America standard ISA-S67.04-1982, which is endorsed via NRC Regulatory Guide 1.105, Rev. 2. The actual nominal Trip Setpoint entered into the bistable is more conservative than that specified by the Allowable Value to account for changes in random measurement errors detectable by a CHANNEL FUNCTIONAL TEST. One example of such a change in measurement error is drift during the surveillance interval. If the measured setpoint does not exceed the Allowable Value, the bistable is considered OPERABLE.

Setpoints in accordance with the Allowable Value ensure that the safety analyses which demonstrate that safety limits are not violated remain valid (provided the unit is operated within the LCO's at the onset of any design basis event and the equipment functions as designed).

The Trip Setpoints and Allowable Values listed in the LCO's incorporate all of the known uncertainties applicable for each channel. The magnitudes of these uncertainties are factored into the determination of each Trip Setpoint. All field sensors and signal processing equipment for these channels are assumed to operate within the allowances of these uncertainty magnitudes.

The surveillance requirements specified for these systems ensure that the overall system functional capability is maintained comparable to the original design standards. The periodic surveillance tests performed at the minimum frequencies are sufficient to demonstrate this capability. Specified surveillance intervals and surveillance and maintenance outage times have been determined in accordance with WCAP-10271, "Evaluation of Surveillance

BASES

Frequencies and Out of Service Times for the Reactor Protection Instrumentation System," and Supplements to that report. Surveillance intervals and out of service times were determined based on maintaining an appropriate level of reliability of the Reactor Protection System and Engineered Safety Features instrumentation.

The verification of response time at the specified frequencies provides assurance that the reactor trip and the engineered safety features actuation associated with each channel is completed within the time limit assumed in the safety analysis. No credit is taken in the analysis for those channels with response times indicated as not applicable (i.e., N.A.).

Response time may be verified by actual response time tests in any series of sequential, overlapping or total channel measurements, or by the summation of allocated sensor response times with actual response time tests on the remainder of the channel. Allocations for sensor response times may be obtained from: (1) historical records based on acceptable response time tests (hydraulic, noise, or power interrupt tests), (2) inplace, onsite, or offsite (e.g. vendor) test measurements, or (3) utilizing vendor engineering specifications. WCAP-13632-P-A, Revision 2, "Elimination of Pressure Sensor Response Time Testing Requirements" provides the basis and methodology for using allocated sensor response times in the overall verification of the channel response time for specific sensors identified in the WCAP. Response time verification for other sensor types must be demonstrated by test.

The allocation for sensor response times must be verified prior to placing the component in operational service and re-verified following maintenance that may adversely affect response time. In general, electrical repair work does not impact response time provided the parts used for repair are of the same type and value. One example where response time could be affected is replacing the sensing assembly of a transmitter.

3/4.3.3 MONITORING INSTRUMENTATION

3/4.3.3.1 RADIATION MONITORING INSTRUMENTATION

The OPERABILITY of the radiation monitoring channels ensures that 1) the radiation levels are continually measured in the areas served by the individual channels and 2) the alarm or automatic action is initiated when the radiation level trip setpoint is exceeded.

The isolation alarm/trip setpoint for the Containment Purge and Pressure Relief system during MODE 6 is established to ensure that in the event of a fuel handling accident inside containment, prompt isolation will occur to ensure calculated offsite doses remain below 10CFR100 limits. Prompt isolation will also ensure that Control Room doses following a fuel handing accident will remain below GDC-19 limits. The alarm/trip setpoint value of Table 3.3-6 for the R12A while in Mode 6 will be established based upon isolating the Containment Purge and Pressure Relief System when containment gaseous activity levels reach 50% of the more conservative 10CFR20 concentration limits for release to unrestricted areas. These concentration limits are specified in 10CFR20, Appendix B, Table II, Column 1. A setpoint based on 50% of the 10CFR20 concentration limits will be low enough to ensure that prompt Containment Purge and Pressure Relief system isolation occurs during a fuel handling accident and high enough to prevent unnecessary Containment Purge and Pressure Relief system isolations caused by routine outage activities.

SALEM - UNIT 2

B 3/4 3-1a

Amendment No. 241

3/4.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.1.1 As a minimum, the reactor trip system instrumentation channels and interlocks of Table 3.3-1 shall be OPERABLE with RESPONSE TIMES as shown in Table 3.3-2.

APPLICABILITY: As shown in Table 3.3-1.

ACTION:

As shown in Table 3.3-1.

SURVEILLANCE REQUIREMENTS

4.3.1.1.1 Each reactor trip system instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations during the MODES and at the frequencies shown in Table 4.3-1.

4.3.1.1.2 The logic for the interlocks shall be demonstrated OPERABLE prior to each reactor startup unless performed during the preceding 92 days. The total interlock function shall be demonstrated OPERABLE at least once per 18 months during CHANNEL CALIBRATION testing of each channel affected by interlock operation.

4.3.1.1.3 The REACTOR TRIP SYSTEM RESPONSE TIME of each reactor trip function shall be verified to be within its limit at least once per 18 months. Each verification shall include at least one logic train such that both logic trains are verified at least once per 36 months and one channel per function such that all channels are verified at least once every N times 18 months where N is the total number of redundant channels in a specific reactor trip function as shown in the "Total No. of Channels" column of Table 3.3-1.

3/4.3.2 ENGINEERED_SAFETY FEATURE ACTUATION SYSTEM_INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.2.1 The Engineered Safety Feature Actuation System (ESFAS) instrumentation channels and interlocks shown in Table 3.3-3 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3-4 and with RESPONSE TIMES as shown in Table 3.3-5.

APPLICABILITY: As shown in Table 3.3-3.

ACTION:

- a. With an ESFAS instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3-4, declare the channel inoperable and apply the applicable ACTION requirement of Table 3.3-3 until the channel is restored to OPERABLE status with the trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With an ESFAS instrumentation channel inoperable, take the ACTION shown in Table 3.3-3.

SURVEILLANCE REQUIREMENTS

4.3.2.1.1 Each ESFAS instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations during the MODES and at the frequencies shown in Table 4.3-2.

4.3.2.1.2 The logic for the interlocks shall be demonstrated OPERABLE during the automatic actuation logic test. The total interlock function shall be demonstrated OPERABLE at least once per 18 months during CHANNEL CALIBRATION testing of each channel affected by interlock operation.

4.3.2.1.3 The ENGINEERED SAFETY FEATURES RESPONSE TIME of each ESFAS function shall be verified to be within the limit at least once per 18 months. Each verification shall include at least one logic train such that both logic trains are verified at least once per 36 months and one channel per function such that all channels are verified at least once per N times 18 months where N is the total number of redundant channels in a specific ESFAS function as shown in the "Total No. of Channels" Column of Table 3.3-3. The provisions of Specification 4.0.4 are not applicable to MSIV closure time testing. The provisions of Specification 4.0.4 are not applicable to the turbine driven auxiliary feedwater pump provided the surveillance is performed within 24 hours after the secondary steam generator pressure is greater than 680 psig.

BASES

3/4.3.1 and 3/4.3.2 PROTECTIVE AND ENGINEERED SAFETY FEATURES (ESF) INSTRUMENTATION

The OPERABILITY of the protective and ESF instrumentation systems and interlocks ensure that 1) the associated ESF action and/or reactor trip will be initiated when the parameter monitored by each channel or combination thereof exceeds its setpoint, 2) the specified coincidence logic and sufficient redundancy is maintained to permit a channel to be out of service for testing or maintenance consistent with maintaining an appropriate level of reliability of the Reactor Protection and Engineered Safety Features instrumentation and, 3) sufficient system functional capability is available from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliability, redundance and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions. The integrated operation of each of these systems is consistent with the assumptions used in the accident analyses.

The Trip Setpoints are the nominal values at which the bistables are set. Any bistable is considered to be properly adjusted when the "as-left" value is within the band for CHANNEL CALIBRATION accuracy (i.e., \pm rack calibration + comparator setting accuracy).

The Trip Setpoints used in the bistables are based on the analytical limits stated in the UFSAR. The selection of these Trip Setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances, instrumentation uncertainties, instrument drift, and severe environment errors for those Reactor Protection System (RPS) channels that must function in harsh environments as defined by 10 CFR 50.49, the Trip Setpoints and Allowable Values specified in the Technical Specification Limiting Conditions for Operation (LCO's) are conservatively adjusted with respect to the analytical limits. The methodology used to calculate the Trip Setpoints is consistent with Instrument Society of America standard ISA-S67.04-1982, which is endorsed via NRC Regulatory Guide 1.105, Rev. 2. The actual nominal Trip Setpoint entered into the bistable is more conservative than that specified by the Allowable Value to account for changes in random measurement errors detectable by a CHANNEL FUNCTIONAL TEST. One example of such a change in measurement error is drift during the surveillance interval. If the measured setpoint does not exceed the Allowable Value, the bistable is considered OPERABLE.

Setpoints in accordance with the Allowable Value ensure that the safety analyses which demonstrate that safety limits are not violated remain valid (provided the unit is operated within the LCO's at the onset of any design basis event and the equipment functions as designed).

The Trip Setpoints and Allowable Values listed in the LCO's incorporate all of the known uncertainties applicable for each channel. The magnitudes of these uncertainties are factored into the determination of each Trip Setpoint. All field sensors and signal processing equipment for these channels are assumed to operate within the allowances of these uncertainty magnitudes.

The surveillance requirements specified for these systems ensure that the overall system functional capability is maintained comparable to the original design standards. The periodic surveillance tests performed at the minimum frequencies are sufficient to demonstrate this capability. Specified surveillance intervals and surveillance and maintenance outage times have been determined in accordance with WCAP-10271, "Evaluation of Surveillance Frequencies and Out of Service Times for the Reactor Protection

BASES

Instrumentation System," and Supplements to that report. Surveillance intervals and out of service times were determined based on maintaining an appropriate level of reliability of the Reactor Protection System and Engineered Safety Features instrumentation.

The verification of response time at the specified frequencies provides assurance that the reactor trip and the engineered safety features actuation associated with each channel is completed within the time limit assumed in the safety analysis. No credit is taken in the analysis for those channels with response times indicated as not applicable (i.e., N.A.).

Response time may be verified by actual response time tests in any series of sequential, overlapping or total channel measurements, or by the summation of allocated sensor response times with actual response time tests on the remainder of the channel. Allocations for sensor response times may be obtained from: (1) historical records based on acceptable response time tests (hydraulic, noise, or power interrupt tests), (2) inplace, onsite, or offsite (e.g. vendor) test measurements, or (3) utilizing vendor engineering specifications. WCAP-13632-P-A, Revision 2, "Elimination of Pressure Sensor Response Time Testing Requirements" provides the basis and methodology for using allocated sensor response times in the overall verification of the channel response time for specific sensors identified in the WCAP. Response time verification for other sensor types must be demonstrated by test.

The allocation for sensor response times must be verified prior to placing the component in operational service and re-verified following maintenance that may adversely affect response time. In general, electrical repair work does not impact response time provided the parts used for repair are of the same type and value. One example where response time could be affected is replacing the sensing assembly of a transmitter.

3/4.3.3 MONITORING INSTRUMENTATION

3/4.3.3.1 RADIATION MONITORING INSTRUMENTATION

The OPERABILITY of the radiation monitoring channels ensures that 1) the radiation levels are continually measured in the areas served by the individual channels and 2) the alarm or automatic action is initiated when the radiation level trip setpoint is exceeded.

The isolation alarm/trip setpoint for the Containment Purge and Pressure Relief system during MODE 6 is established to ensure that in the event of a fuel handling accident inside containment, prompt isolation will occur to ensure calculated offsite doses remain below 10CFR100 limits. Prompt isolation will also ensure that Control Room doses following a fuel handing accident will remain below GDC-19 limits. The alarm/trip setpoint value of Table 3.3-6 for the R12A while in Mode 6 will be established based upon isolating the Containment Purge and Pressure Relief System when containment gaseous activity levels reach 50% of the more conservative 10CFR20 concentration limits for release to unrestricted areas. These concentration limits are specified in 10CFR20, Appendix B, Table II, Column 1. A setpoint based on 50% of the 10CFR20 concentration limits will be low enough to ensure that prompt Containment Purge and Pressure Relief system isolation occurs during a fuel handling accident and high enough to prevent unnecessary Containment Purge and Pressure Relief system isolations caused by routine outage activities.