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ABSTRACT

This report describes the development of the mass balance subroutines

used with the finite-element code, SAGUARO, which models fluid flow in

partially saturated porous media. Derivation of the basic mass storage and

mass flux equations is included. The results of the SAGUARO mass-balance

subroutine, MASS, are shown to compare favorably with the linked results of

FEMTRAN. Implementation of the MASS option in SAGUARO is decribed.

Instructions for use of the MASS option are demonstrated with three sample

cases.
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1.0 INTRODUCTION

The finite-element code, SAGUARO (Eaton, Gartling, and Larson, 1983),

has been used extensively to model groundwater flow in the partially

saturated porous media region near a proposed nuclear waste repository

site.* In modeling these types of problems, transient water fluxes are

calculated for. very long 'time periods. The accuracy of these long-time

calculations cannot be directly verified by experiments or by comparison

with analytic solutions as a result of the complexity of the problems

attempted. Hence, as an indicator of the accuracy of the hydrologic solu-

tion, mass-balance routines have been written and incorporated into the

SAGUARO code. These routines allow the user to specify regions, not neces-

sarily contiguous regions, over which to calculate the mass balance by

listing the grid elements making up that region. The exterior boundary

sides for mass-flux calculations are then automatically determined from this

element list.

The mass-balance calculation includes: (1) computation of the total

mass stored within the specified region at the current time, (2) the mass

flux through all the specified boundary sides, (3) the change in the mass

stored in the specified region during the last time step, and (4) the net

mass gain in the region, which is the difference between the change in mass

*The Nevada Nuclear Waste Storage Investigations Project, managed by the
Nevada Operations Office of the U. S. Department of Energy, is examining the
feasibility of siting a repository for high-level nuclear wastes at Yucca
Mountain, on and adjacent to the Nevada Test Site. This work was funded in
part by the NNWSI Project. The ultimate use of this information will be to
develop appropriate criteria for design of subsurface facilities and for
performance assessments of the site.
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stored and the mass flux through the boundaries. A zero net mass gain

indicates perfect conservation of the calculated mass.

The first section of this report is a brief description of the equa-

tions and techniques used to derive the mass-balance equations. Next is the

definition of the input to the program necessary to implement the MASS

options. The third section shows results from three test problems selected

to demonstrate the use of SAGUARO's MASS command and test the mass-balance

equation implementation.
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2.0 FORMULATION OF M4SS BALANCE EQUATIONS

The mass-balance procedure contains two calculations for a given time

step: (1) calculation of the total mass stored within the specified region,

and (2) calculation of the mass flux through the region boundary during this

time step.

2.1 Total Stored Mass

The region for calculation of stored mass is specified by a user-

defined input list (see Subsection 2.2). The total mass stored at time t

for each element in this region is calculated by

Ms = fpfEdA (1)

where pf is the liquid density and 6 is the volumetric moisture content

(volume of water / total unit volume). To evaluate this integral over a

region dA, the moisture content is expressed in terms of the finite-element

shape functions, e , and calculated moisture contents at node points at

specific times, O(xyt). The area dA is evaluated using the Jacobian, J,

and the normalized natural coordinates s and t for the element. Therefore,

e - eTe(t) (2)

and

dA = IJids dt. (3)

SAGUARO uses the Boussinesq approximation, which states
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pf = p.(1-g13&T) (4)

where P is the compressibility, pe is the density at the initial temperature

T., and AT = T - T,. For mass flux calculations, it is generally true that

gPAT <e 1, and thus, the water density is assumed to be constant. Using

this assumption, the original integral (1) becomes

pf eIfJIds dtO(t) (5)

with @(t) being the only time-dependent term. The time-invariant portion

of Equation (5) is calculated once per run, along with the geometric shape

functions in the FORWF subroutine. At each time step, the calculated

moisture content @(t) is used to evaluate the integral in Equation (5) to

solve for the total mass stored. The mass-stored value is then compared to

the value at the last time step to compute the change in mass stored.

2.2 Mass Flux Across the Boundary

The exterior sides defining the boundary of the mass-balance area are

derived automatically from the list of elements specified by the user. This

boundary may define a contiguous region or be made of disjoint parts. Flux

across the boundary of an arbitrary region is expressed in terms of the

natural coordinates (s,t) for an element; see Figure 1-la.
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Figure 1-1. Mass-Flux Coordinates
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The normalized flux qn is positive in a direction out of the element,

whereas the orthogonal fluxes qx and qy are positive up and to the right

(see Figure 1-lb). The mass-flux equations based on this sign convention,

where nx and ny are the x and y components of the unit normal vector n, are

derived as follows:

q= [(qxn, + q n )Al] At = [(qx a [y + q[a ) At

Therefore,

qn = [(qx ( yi+,- y:) - q( x. - x.)] At (6)

with x1,y1 and xi+ ,yi+l the Cartesian coordinates of points i and i+1,

respectively, and At is the length of a side dA. If u and v are the

horizontal and vertical components of the velocity, then the orthogonal

fluxes are given by

qx Pfuaverage = Pf(ui + ui+ 1)I2 (7a)

and qy = pfvaverage = pf(vi + vi+1)/2. (7b)

The total normal mass flux across an element boundary is

q = 112 pfAt[(ui + ui1,)(yi+l - y1) - (v: + vi1,)(xi+l - xi)). (8)
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3.0 PROGRAM INPUT REQUIREMENTS

The input data required to use the mass-balance option are given below.

The format of this section is identical to the one used in the SAGUARO

user's manual (Eaton, Gartling, and Larson, 1983). Reference should be made

to this manual to completely understand the structure of the input data.

3.1 Mass Command Card

The MASS command requests the computation, at every time step, of a

mass balance over a defined region. To allow for an arbitrary region,

possibly non-contiguous, the MASS command allows selection of individual

grid elements. The selection of elements may be set up by using one or more

of the following command cards:

MASS.delimiter tvpe.nl.n2....n50.

where

delimiter type is an alphanumeric name indicating how the element

arguments are to be interpreted. If delimiter type = SINGLE, each argument

is an individual element number. If delimiter type = RANGE, every two

arguments are interpreted as a pair, specifying an inclusive series of

elements to be included in the mass balance (i.e., MASS,RANGE,5,9,14,18.

specifies elements 5,6,7,8,9,14,15,16,17,18).

nl,n2,n3,...,n5O is a list of element numbers indicating which elements

are to be included in the mass-balance calculation. A maximum of 50 in-

dividual elements or 25 element ranges may be specified on a single MASS

conmand card. There is no restriction on the number of MASS commands or the

mixing of MASS cards of different delimiter types in the same input deck.
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The MASS command cards must be placed somewhere between the SETUP and FORWF

command cards to be processed correctly. If no MASS command cards are

encountered before the FORWF card, then mass-balance calculations are not

performed.
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4.0 TEST PROBLEM RESULTS

The objective of these test problems is demonstrating the use of the

MASS command in SAGUARO and verifying the accuracy of its algorithm

implementation. The test problems presented here include: (1) a simple

three-by-three element grid with constant fluid flux in the top and out the

bottom of a fully saturated region, (2) a multiple-material, one-dimensional

problem in which the boundary mass flux is an imposed condition, and (3) a

two-dimensional drainage problem used in benchmarking studies (Hayden,

1984). Mass-balance results (Eaton and Martinez, in preparation) that were

calculated in FEMTRAN (Martinez, 1985) for hydrologic flow fields calculated

with SAGUARO were used for comparison in Problem 3.

4.1 Problem 1. Three-by-Three Element Grid

This problem consisted of a fully saturated three-by-three element grid

with each element side being 1 m in length (Figure 2). A fixed velocity

boundary condition of 0.127 m/s. was applied at the top and bottom bound-

aries. The vertical sides are impermeable. This should give a total mass

flux of zero. The fluxes were calculated across four individual element

sides. The density of water is 1,000 kg/m3, and the time step is 0.04 s.

The vertical mass flux through each horizontal element side should, there-

fore, be

qy = pvA&t =-5.08kg/time step. (9)

The values computed with the MASS command compared to this result to better

than eight significant places (the displayed accuracy). The fluxes through

13



the top and bottom sides of each element summed to zero. The horizontal

mass flux through the vertical side of each element should also be zero

because no driving force is applied. Horizontal fluxes ranging from 1. x

10 10 to 1. x 10 14 kg/time step were computed. These nonzero horizontal

small fluxes resulted from machine roundoff and other numerical

inaccuracies. The total residual flux through all the boundary sides over

the whole region was computed to be 2.3 x 10- 10 kg/time step.
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Figure 4-1. Three-by-Three Element Grid for.Problem I
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4.2 Problem 2. One-dimensional Infiltration with Multiple Material Strata

This is a simplified one-dimensional model of infiltration in multi-

layered tuff (Figure 4-2), using properties given by Eaton (1983). One

hundred elements divided into five distinct material strata are used. A

-8constant Darcy velocity influx of 3.17 x 108 m/s is applied at the top

surface. All other boundaries are held impermeable (i.e., the problem is

analogous to filling a bucket containing porous material). Each element is

10 m wide by 1 m deep, varying in height. The water density is 994 kglm3.

The time step is 3.15 x 107 s (1 yr). Thus, the mass flux through the top

boundary can be calculated to be

q = pvAAt = 9925.6kg/time step.

Computed mass-balance results for every 5 yr are shown in Table 4-1.

The calculation of the mass flux at the boundary quickly converges to

9925.6 kg/time step. The difference between the change in mass stored per

time step and the boundary mass flux (net gain) indicates the degree of

convergence of the hydrological solution at any time step. The normalized

net gain (net gain/stored mass * 100) is a percentage-error term that is

small for all time steps. Under upon the prescribed boundary conditions and

initial moisture distribution, the entire region fills in approximately 73

yr. The total stored mass for a completely saturated grid is solved

analytically to be 2.72 x 106 kg. According to Table 4-1, the calculated

stored mass value is converging to this value. At the time the region fully

saturates, calculations become nonphysical because of the imposed boundary

conditions (no flow at bottom, constant infiltration at top).
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TABLE 4-1..
Computed Mass

Conservation Values

* .~. I . .- Normalized
Time Stored Mass A Mass Flux Net Gain Net Gain
(years) (kg) (kg/tstep) (kgltstep) (kg) - ()

5 2060690 10409 -10614 -206 - .
10 2111980 10199 -10260 -61 .00289
15 2162480 10079 -10071 8 .00037
20 2212740 10012 -9935 77 .00348
25 2263020 10042 -9926 116 .00513
30 2313170 10042 -9926 -117 .00506
35 2363480 10068' -9926 143 .00605
40 2413860 10069 -9926 144 .00597
45 2463630 9846 -9926 -80 -. 00325
50 2510880 8919 -9926 -1007 -. 04011
55 2553890 9619 -9926 -307 -. 01202
60 2602400 9731 -9926 -194 -. 00746
65 2650770 9600 -9926 -326 -. 01230
70 2698140 9250 -9926 -676 -. 02505

where

Stored Mass = total mass.stored within the region

A Mass - change in the.mass stored within the region
during the last time step

Flux - mass flux through all boundary sides during
last time step

Net Gain A A mass - flux

Normalized Net Gain = net gain/stored mass

17
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Figure 4-2. Element Grid for One-Dimensional Multi-Strata Problem
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4.3 Problem 3. Two-Dimensional Drainage Problem

This drainage problem was first posed by Pickens et al, 1979, and was

used extensively in the NNWSI COVE benchmarking series (Hayden, 1984; Eaton

and Martinez, in preparation). A mass-balance calculation was made by

linking the hydrologic solution of SAGUARO to the solute transport code

FEMTRAN (Eaton, 1983) and was used as the basis of comparison. A finite-

element grid of 221 elements was used for these solutions (see Figure 4-3)

in which the initial stored mass is 7,500 g. Initial and boundary condi-

tions are identified in Figure 4-4. The first 4 hr of this transient

solution were compared. Mass-balance values computed by FEMTRAN are shown

in Table 4-2. Some numerical error is always introduced when coupling

results of SAGUARO to FEMTRAN because of limits that format constraints

place on accuracy. The mass balances that SAGUARO calculated with the MASS

command are shown in Table 4-3. The net gains of both sets of mass

balances are compared graphically in Figure 4-5. A net mass gain of zero

implies perfect mass balance. The results of SAGUARO compare favorably with

the results of FEMTRAN.
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TABLE 4-2

FEMTRAN Mass Balance

Normalized
Time Flux A Mass Net Gain Net Gain
(min) (g/tstep) (g/tstep) (g) (%)

2.7 -5.7 -9.6 -3.9 0.052
12. -30.3 -31.3 -1.0 0.013
30. -67.3 -62.6 4.7 0.063
60. -110.3 -97.2 13.1 0.175

120. -138.9 -123.5 15.4 0.205
180. -111.5 -103.7 7.8 0.104
240. -94.6 -84.0 10.6 0.141

TABLE 4-3

SAGUARO Mass Balance

Normalized
Time Flux A Mass Net Gain Net Gain
(min) (g/tstep) (g/tstep) (g) (M)

2.6
13.
30.
60.

120.
180.
240.

-5.9
-30.2
-65.9
-108.7
-137.4
-110.6
-93.0

-7.2
-29.9
-62.1

-100.2
-126.4
-102.7
-86.9

-1.3
0.3
3.8
8.5

11.0
7.9
6.1

-0.017
0.004
0.051
0.113
0.147
0.105
0.081

where

Stored Mass = total mass stored within the region

A Mass = change in the mass stored within the region
during the last time step

Flux = mass flux through all boundary sides during
last time step

Net Gain - A mass - flux

Normalized Net Gain = net gain/stored mass

20
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5.0 CONCLUSIONS

The mass-balance routine described in this report has been developed to

assess the accuracy of results calculated by the finite-element code

SAGUARO. The computer time required to execute the mass-balance calcula-

tions is minimal, and the input data requirements are straightforward.

In Problem 1. the implementation of the mass-balance calculations in a

saturated two-dimensional flow field was verified with an analytical solu-

tion. The mass flux across all interior and exterior element sides and the

total mass stored were correctly calculated by the mass-balance subroutine.,

Problem 2 was used to verify the mass-balance calculations in SAGUARO

for time-dependent problems with multiple material strata. The actual mass-

balance values for the run were known a priori and compared to the,

mass balances calculated by the new subroutine.

Results of a more complex sample calculation, Problem 3, show that the

net mass balances calculated with the new subroutine in SAGUARO are more

accurate than those calculated by FEMTRAN. In general, the mass balances

calculated in SAGUARO are closer to zero than the corresponding balances

calculated by FEMTRAN. The results imply that the mass balances calculated

with the new subroutine in SAGUARO are better than mass balances obtained by

coupling SAGUARO and FEMTRAN.
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