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EXECUTIVE SUMMARY

This report presents analytic solutions, numerical implementation and numerical illustra-

tions for the transport of radioactive decay chains of arbitary length in porous media of

limited and unlimited extent.

The transport of long radioactive decay chains is especially Important in the safety assess-

ment of geologic repositories of spent nuclear fuel in which there are several long chains

of the actinides. Failure to account for nuclides generated during transport may result in

the underestimation of releases prescribed by regulations. Hitherto no analytic solution

nor computer codes have been able to handle long chains. The solutions presented here

are exact and general.

It is important to derive solutions for the problem of chain transport In porous media of

limited extent for practical reasons. For example, the backfill layer in a nuclear waste

package or the damaged rock zone in a repository is a porous medium of finite extent. A

different solution is necessary because there may be different fluid flow conditions inside

the backfill and outside the backfill in the rock.

The analytic solutions for the problem of chains transport in finite and semi-infinite media

are complicated. Sophisticated numerical methods were required in order to implement

the solutions as computer programs. These steps are detailed in the report.

The main part of this report are illustrations of the solutions with problems in nuclear waste

disposal. We show the transport of two chains, 234U-.23 0Th-'_226Ra and 245Cm- 2 41Am--+ 237Np

- 23 3 U_2 2 9Th, from concentration-limited boundary condition and Bateman-type boundary

condition, in a porous region of limited extent such as a backfill and in a semi-infinite field.

These illustrations are examples of the capabilities and usefulness of these solutions.
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TRANSPORT OF RADIOACTIVE DECAY CHAINS
IN FINITE AND SEMI-INFINITE POROUS MEDIA

1. Introduction

In the prediction of radionuclide migration to determine compliance with regula-

tory standards[l], it may be necessary to consider radioactive decay chains explicitly.

Actinide isotopes in spent fuel are mostly members of radioactive decay chains.

Failure to account for the generation of daughter nuclides during the migration of the

chains may lead to under-estimating cumulative releases or release ratesl2] prescribed

by regulatory agencies. Available analytic solutions and computer codes such as

UCBNE10.2 and UCBNE25[3] have limitations. The UCBNE10.2 code can only com-

pute up to three members with dispersion, and although UCBNE25 gives a non-

recursive general solution for a chain of arbitrary length, it can only solve the prob-

lem without dispersion. Recently Chambre has generalized the above two solutions[4J

and made it possible to obtain non-recursive solutions for chain transport in porous

media of both finite and infinite spatial extent.

Transport in a finite domain is of interest for several reasons. In a practical

sense such a solution is needed in nuclear waste disposal to evaluate ground-water

flow in the region near waste packages, such as within the backfill or damaged rock

zone. It is also of general interest. Most systems of equations for ground-water con-

taminant transport invoke a concentration or flux boundary condition at some loca-

tion, most often at infinity. In this work we used a mixed boundary condition, allow-

ing the specification of concentration and flux at a specified location rather than at
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infinity. We are not aware of other solutions of this type.

The following analyses deal with the migration of radioactive chains of arbitrary

length in geologic media. The governing equations are sufficiently general to model

species transport by advection and dispersion in a water-saturated porous medium.

They can also be applied to diffusional transport of radioactive chains where advec-

tion is negligible.

The objectives of this study are: To obtain analytic solutions in closed form of

the transport of radioactive decay chains of arbitary length in porous media of finite

and semi-infinite extent; to implement the solutions in computer codes which are

practical to use; and use the computer codes for numerical illustrations to show the

usefulness of the analytic solutions in the U. S. nuclear waste repository program.

The formulation of the equation system and its solution form are given in Sec-

tions 2 and 3 for finite and semi-infinite media, respectively. The solutions give

nuclide concentrations in exact closed form (non-recursive) in finite and semi-infinite

media. Numerical illustrations of the solutions follow in the respective sections.
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2. Mass Transport through a Finite Medium

2.1. Theoretical Analysis

In a one-dimensional finite domain Dr with flow along the z direction and con-

sider the canonical system for O<z<L and t>0

K, ON, +V ON, +.,KIN, = D 2N1

K 2 at +v a2 -+X2K2N2 = D2 2 +.,KI,

.......................... ... ... ... ... ... ... ... ... (2.1)

K;at + a +jkN =D a 2 + jON. ON O2KN. i +Xlf
at '-az 19z

2

which is to be solved for N,=N.(z,t), the concentration of the i member, in a one-

dimensional domain Dr for times t>0. In fact, this system of equations is general that

we will also apply it to the case of (semi) infinite domain. D is the dispersion

coefficient of the individual species to be specified later, K; the species retardation

coefficient, Xi the decay constant and v the ground water pore velocity. The functions

N;(z,t), i=1,2, ... are subject to the initial conditions

N;(z,O) = 0, zDf (2.2)

and the type-III boundary conditions

.-D-c a;- +vcN;= vcNj°0j(t) for z=O, t>O (2.3)

where jj(t) 0 for t <0, and is the porosity of the medium

-D a +VCN = h[Ni-N.J(t)j for z=L, t>O (2.4)

where NJ(t) is the average concentration of the nuclide outside the span.
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Here h is the mass transfer coefficient describing the mass transport at z=L, into a

medium z>L, in which the ilk species concentration is a prescribed function Nj(t).

The boundary position z=L can, for example, be interpreted to represent the bio-

sphere boundary or the backfill-rock interface. As h varies from 0 to oc, the flux

through the boundary at z=L varies from zero to some maximum value causing the

species concentration to decrease there. The left hand side of both (2.3) and (2.4)

represent the total fluxes of species i through the boundaries z=0 and z=L, respec-

tively, while the right hand side represents the rate of supply of the same species in

terms of the prescribed integrable function Nj°5j(t) and N!(t) at z=O and z=L, respec-

tively. These functions describe the time release of the chain members from a waste

form surface located at z=0 and from the biosphere or backfill-rock interface located

at z=L. In case of no advection the terms involving v are dropped from (2.1) and

replaced by other parameters in (2.3) and (2.4) as will be discussed later.

The general form of the equation system (2.1) is

IcAoM; E AN; a2N.
D a+- d +viN;= 2+vi-,Nj-,, =1,2, - -- (2. 1a)

where

Vo=u, v D i, 1j1- Ki D i- (2.lb)

The aim is to obtain the general (non-recursive) analytical solution for Nj(z,t). On

account of the linearity of (2.1), the solution for the individual chain member Nj can

be represented as a sum of functions, which satisfy (2.1), and selected boundary condi-

tions (2.3) and (2.4). We specify
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Nl(z,f)- NI)(z,t)

N 2 (z,t) = Njl)(zt)+AT 2 )(zt)

N 3(z,t) = N)(zwt)+N t)+A(

and for an arbitrary i member

;-~

N,(z, t) = NfO(z, t)+ ZNf j)(z, t) (2.5)
j-1

Thus, in order to obtain the concentration of the i member, every function NM;)(z,t)

must be known. We begin with the construction of Nfl)(z,t). It is chosen to be a solu-

tion of (2.1a) (with v0= 0) which satisfies both the initial condition (2.2) and the boun-

dary condition (2.3). This determines N1 (z,t). To determine N2(z,t) we require two

solutions of (2.1a). N)(z,t) is chosen so that it obeys the initial condition (2.2) and

the homogeneous boundary condition (2.3) with N20=0. This function yields the con-

tribution to N2(z,t) which is due to the radioactive decay of its precursor N1(z,t).

NL2)(z,t) on the other hand is chosen to satisfy the inhomogeneous boundary condition

(2.3), as well as of course (2.2). Since the precursor contribution to N 2(z,t) is already

accounted for, the inhomogeneous term vNj is not included in (2.1a) when one solves

for N12)(z,t). One proceeds comparably in the construction of N3 (z,t). NS')(z,t) and

NS2)(z,t) are precursor contributions stemming from chain members Nl(z,t) and

N2(zt), respectively. Their solutions of (2.la) satisfy homogeneous boundary condi-

tions, with N30=0, while N33)(z,t) yields the contribution to N 3(z,t) due to the inhomo-

geneous boundary condition (2.3), with N,,O. However, for the determination of

N3)(z,t) the inhomogeneous term v2N2 is dropped from (2.1a).
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According to this decomposition of the problem, the functions Nji)(zt) must

satisfy the following equation system for zEDt, tO

K't Ni) +V aNi) +vNi=a2Nyj) +v

Dt at Dt Oz az2

vo=Ow ~,,....,, j<t... (2.6)

The functions are subject to

NPi)(z,O) = 0 (2.7)

- D i( ') + ve Ni)(O,t) = 6jNjvcj(t), j t (2.8)

Oz
.-Di Ne (Lt +vcN~J)(L,t) = [Nii)(L,f) - 6jNl(t)] i<t, t>0 (2.9)

where 68t is the Kronecker delta which vanishes for t j and is unity for t=j. Furth-

ermore

N(')(zt)o for t<j (2.10)

which assures that for e<j the inhomogeneous (source) term vj_1N_. vanishes. At

this point one can verify that the solution to (2.6) through (2.8) when substituted into

(2.5) will satisfy the original equation system (2.1) to (2.4) due to the linearity of this

system.

We now take the Laplace transform of (2.6) with respect to the time variable

and define

T(26),n u CtlNi)(zt)t; oj()_ ( j(t)dt

The transform of (.6), on utilizing the initial condition (.8), yields
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d2_(j) R) c -('-()

dz 2 D, dz D -v1 .. N1 . (2.11)

for TOM M)(za). It is convenient to remove the first-order derivative term by set-

ting

N1 (z,8)=e 2 1 ni(z) (2.12)

Then

dz2 - t S+Vt+( ) n) -v 1 _c 2 D D) (2.13)

With

P I S+ q- [V 1+( 2)2 V (2.13a)JD 2D1 2 D DI 11

(2.13) reduces to the compact form

d2nji)(zs) _ jseti)(z,6) =-v 1 _ 1nL)(zs)e~L 3 , •e
dz2

This differential-difference equation system with variable coefficients is the governing

equation of our problems. Also, (2.10) transforms to

Z4L\(z;s)-0, e•, (2.14)

The general solution to these equations is a matter of some complexity. Here we con-

sider two special cases of (2.13) which describe a number of physically important

models.

Equal Dispersion Coefficients

We assume the dispersion coefficients of the radioactive species in the medium

are equal, i.e., D1=D for all e. Then 7y vanishes, removing the complicating
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exponential term from (2.13), resulting

d2npi)(Z 8) - pAnA(z') = -vtInf-k(z'8), jt (2.15)
dz2

The boundary conditions transform to

-De nHO,') +hinjA(Os)=5jeNjvcsAs) je (2.16)
az

On i) (L,.s) vL (.7
Dc n +h2 nPi)(Ls)=jchd 2DN (.), (2.17)

with he seV, h2 =h- v. The corresponding equation system (2.1) together with (2.2)

to (2.4) describes the migration problem in the presence of advection and dispersion.

For a type-III boundary condition of the form (2.8) and (2.9), the general (non-

recursive) analytical solution for radioactive chains of arbitrary length has so far not

been available to us. As mentioned earlier, the most extensive model to date has been

the recursive three-member chain in a semi-infinite domain D., on which the com-

puter code UCBNE1O.2 is based. The other non-recursive solution/computer code,

UCBNE25, applies only for the case D=O in a semi-infinite domain. In this section we

shall solve the problem in Drf while in the next section a solution in D., will be

derived.

Negligible Ground-water Velocity

Consider again the governing equation (2.13) but now without advection, i.e.,

v=0. By (2.13a) -te vanishes, thus removing the variable coefficient term from the

differential-difference equation system. For this case, the species diffusion coefficient

Dt need not be identical in order to obtain an analytical solution. The advection-free
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formulation is applicable to the rock fracture problem where one wishes to account

for the diffusion of radioactive species into rock from water-filled fissures. Another

possible application can be found in the analysis of the diffusive migration of radionu-

clide chains with small half-lives in a water-saturated backfill region which surrounds

a waste form. Densely-packed backfill materials, such as bentonite, have very low

permeability to water flow so that the principal mechanism of transport through the

layer may occur by diffusion. In case of the rock fracture problem the domain can be

either Df or D., while in the backfill problem it is Df.

At the present time there appear to be insufficient data to apply the formulation

to the diffusion of species with anisotropic diffusion coefficients. For this reason we

conduct the analysis, assuming the radionuclides satisfy equation (2.15). The solution

given below can however be readily generalized to include unequal Die if desired.

Since the boundary conditions remain the same mathematical form as in (2.16)

and (2.17) it is seen that the advection-free problem is merely a special case of the

equal-dispersion problem obtained by setting v=O in the governing equation (2.13) and

replacing the dispersion coefficient with the diffusion coefficient. The two quantities

hl and h2 defined in (2.16) and (2.17) as well as their right hand side functions also

need to be specially assigned accordingly. In the following we shall concentrate on the

solution of the equal-dispersion/diffusion case, and the solution procedures used there

can also be applied to the problem in Do:>*

The Solution of the Problem in Df

The solution of the system of equations (2.15) in Df is constructed with help of a

finite Fourier transform with respect to the varibable z. We define
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nif)Q(m)=ftK(8mz) i)(zs)dz (2.18)

The Fourier kernel K(,8mz) satisfies the Sturm-Liouville system

d2K(OrnZ) +I3 nK(#mZ)=0 (2.19)
dz2

-De dK(P.,O) +h K(Pm ,)=0 (2.20a)

De (1mL) +h2 K(13mL)=O (2.20b)Dc dz

The j,,s are the positive eigenvalues of this system. The kernel has the form*

3ml.cos(I3z)+t sin(O.mz)

| AZ +a z 2|11 +r / (2.21)

where al= L, Ct2= 2 . The eigenvalues form a discrete, countable spectrum which is

given by the solutions of the transcendental equation

tan(,ImL)= Pn( - 1 2) m=1,2,* 

If one applies the kernel to every term of (2.15) and integrates with respect to z over

the interval (,L) there results in view of (2.18), since -1=0,

f d2 n$J(z ) K(6mz)dz - pt'nji)(fns) = -vjini j(#m,s) (2.22)

The integral term Jyields, with integration by parts,

jmt d2nji)(zs) F dn$) (z) J
0 2 MK1mz)dz= K. )dni(Jo dz2 [GimsZ) dz

'P. L. Chambrf, class notes taught in U. C. Berkeley.
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Iz-L
dK(O ,z) II

-nJI(z,86) (dz_62ni)(4 J)

Iz

By (2.20) and (2.21)

dK(1,6m,0) = K(P ) dK(,, =_,L)
dz dz -~,~ - C'21<(fl,)

(2.23)

(2.24)

so that

J=K(mL) [ dnP(Ls) +a2nji)(L8s)]

- K(;mO)[| ddnj)() - ain2(O s)]- )(ftm,8)

On applying equations (2.16) and (2.17) together with (2.21) results in

(2.25)

J=If(,6MIL)68Y-e Nh()+K(flmO)6jjN (8) - p n)(P8mJ)

When this is substituted into (2.22), one obtains the difference equation

nSS)(l~m>J)=62 +pI X iS!

(2.26)

(2.27)

where

K(9PmL) he K2Dn o)
94P.B~m .De he 2DNI(8 )+ De NJVC~txe) (2.28)

and h is the mass transfer coefficient defined in (2.4). Equation (2.14) transforms to

n$_\(P.,,s)=°, tj (2.14a)

Equation (2.27) is solved in a recursive manner by setting j=1 and letting E run from

t=1 to t=i. This process is repeated for j2,3, . . , i in order to obtain the solution

for the i members of the chain.
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Starting with j=1, and letting e run through the values 1,2, . . ,i, one takes

from (2.14a) nlJ)(,,,,s)=O, so that (2.27) yields

I ni / ) Vll(ftLs)
ms 2 + ,62 (:+.l)(#m2)

. . . . . . . . . . . . . . . . . .. ... .. .............. ..

*~1k3 ms (82 +pl)(+2)** (. +)

Next one takes j=2 and lets e run through the values 1,2, . . ,i. From (2.14a) one

has n[2)(,8m,)=0. Hence (2.27) yields

ny2)(#m,)= 92(6.

m22 42)(3m,8) I+'22(Pm18)

. . . . . . . . . . . . . . . . . . . ..................... ..

n 2)(:, a)= V2V3 . . . l-1g2(fm8)

( m+l2) (m+P3) . . . ;

Continuing in this manner one shows that in general,

nf)(S^J)A,(J)gj(:ms) ; i (2.29)
1(2 +p.)

where

;.-I

A~i)= llvm (2.30)
.- j

while for j=i one has



13

n{;)(,6 6) 8($mt8) (2.31)

Equations (2.29)-(2.31) represent the solution of the difference equations (2.27) and

(2.28).

We turn next to the Laplace inversion process with respect to the t variable. By

(2.13a), with D,,=D, one has Dil+Pn=+(8±6S) where

En=E (2M+q2)- (2.32)

Hence (2.29) becomes

Ki l +i , (2.33)

a-,

with

41) ) ]Y
-i- K U-j (2.34)

Now the inversion of J(s+6.)- is

L-l|X{ I H(s+ ~l) *~h66) (2.36)
n-j *-j

r$an

If one applies the convolution theorem to gj(fimt) and Je, with the * denoting the

convolution integral defined by

a(t) * bt)-f a(r)b(t-r)dr,

equations (2.29) and (2.30) yield,
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nUI)r,,t)= D CU) i(i> ) j (2.37)

r-i
rain

_ D 9(0t) (2.38)

This is followed by the Fourier inversion with respect to the z variable. The inverse

transform of (2.18) is given by (with now replaced by i in n))

nj)(zt)= K(Irz)fl)(Imt), i>j (2.39)
m-I

00
njY)(zt)= K(#,,z)njIi)(,,t) i= j (2.40)

m-I

The nj)(,6m,t) in the summation are taken from equations (2.37) and (2.38). The

inversion can be shown to be valid if njfi)(z,t) is continuous and satisfies Dirichlet con-

ditions on O<z<L with t>0. From (2.32) one separates the l2 dependence as follows

5.-8r=rjj#2 +7ym (2.41)

where

rrm=D I/M= [ | ( + )r,] (2.42)

There results with (2.37), (2.39), and (2.41), on substitution into (2.39) and (2.10), the

inverse function

nf')(z t)--Ci),7 zI((13Z)gj(/Jm,) * C~s

n(j)(z'= D t) *
rr-

Onr-inrodcin the en t
nfizt) K-K(,6.,)g(,6.,t) * 

On re-introducing the exponential multiplier of (2.12) into the last two equations one
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obtains all component parts of the solution for the chain member i. TheiK substitu-

tion into (2.5) yields the general, non-recursive solution in Dr,

Nj(zt)=e I:; [ZsK(Pm,z)gj( +,t) * c +

i-1 oaf,) ;o *i. z>O, t>O+Zc z j-i n-j m-I (rntfim+'nr)
r;)arein

(2.43)

It is readily verified that the dimensional terms in these equations have the following

units (cgs):

I~~mxZ)=[g;;]$w~ j fj2m=[9t/(M)J /2x =[ecen[8C 

CJ)=[sec i-i], r,="[cI2 /sec], fi&=[cm2 ], 7 =[Sc 1 ] D=[cin/sec]

It follows from this that Nj(z,)=[gm/cm3 ], as required. The form of the solution (2.43)

does not explicitly exhibit the steady state form of the solution Nj(z,oo). This limiting

form is contained in the convolution time integrals and it results on letting t-boo.

Alternately if one sets =O in (2.33) (for i ) and proceeds with the Fourier inversion

with respect to z, following the indicated steps, one is led to Nj(z,co). The resulting

series can in some instances be summed in terms of elementary functions.

2.2. Numerical Evaluations

We illustrate the theory with an application of the solution in the finite span

Dt: O<z<L. It is assumed that the chains originate at the repository boundary z=O,

i.e., there is no other source in the span. The boundary condition at z=O will be of

type I, which is a special case of the one specified in (2.3). The other boundary
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condition at z=L will be retained in its generality. Both type I and type III boundary

conditions will be applied to z=L while two kinds of initial conditions for

Nj(O,t), i=1,2, * * * will be used.

2.2.1. Case 1: Constant Concentration at Boundaries

In the first example we use the backfill in a nuclear waste package as the porous

medium of finite extent. At z=O is the waste form-backfill interface and at z=L is the

outer edge of the backfill, or the backfill-rock interface. We use the following boun-

dary conditions:

N.(O,t)=Nj?, t>O, i=1,2, - * * (2.44)

Nj(L,t)=O, t>O, i=1,2, * * - (2.45)

(2.44) means that the waste package holds intact long enough that all members in the

specified decay chain have reached either their solubility limits or the secular equili-

brium before they start leaching out. (2.45) implies that a sink (e.g., a strong water

flow) exists outside the backfill. Later, this type I boundary condition at z=L will be

replaced by the general form of (2.4). As mentioned before, these boundary conditions

are the special forms of (2.3) and (2.4) for which the original problem was solved. By

specializing the parameters in the previous section, the solution to the present prob-

lem is obtained by a limiting precedure.

First the kernel function K(#6mZ) is constructed from the equation system (2.19)

and (2.20) with homogeneous boundary conditions of type I. The comparison shows

that in the present case D-+O in (2.20a) and (2.20b), so that at-*oo, a2 -+.oo With this

(2.21) yields in the limit the kernel function
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K(P.,z)= V/2sin(fl:) (2.46)
L

The eigenvalues 8, are determined from

sinpmL=O

with the positive solutions

m ~r
m=1,2, (2.47)

Now the theory developed above, and specifically the set of equations (2.23) to (2.27),

assumes that the boundary conditions for K(1 m~z) at z=O and z=L are of type III, i.e.,

of the forms of (2.20a) and (2.20b). Since in the present case the boundary conditions

are of type I and thus do not involve the derivative term one must formally make the

following limiting replacements in (2.28):

K(j4mPL) 1 9K(imL) K(im.,O) 1 K(f9mO) (248)
De h2 Oz De h, az

where in this case h1=cv, h2=h - v. Further, a comparison of (2.45) with (2.4) shows

that N,(t)--o so that NI()-O. This leaves only the second term in (2.28) which

reduces in time domain with the above to

gtPm.)= NYf iLPO N (2.49)

With f(,6mz) and g,(,imt) determined the solution of the problem is given by (2.43)

which reduces to

N;(z, t)= e 2 L - N£ ; ( )+~~ (4LKt b
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+ ZCi')NQ Z E- _(m-C4r')m z>O, t>o, i=1,2, -..
i-i 3-j m-i rrl02

r-i

(2.50)

Next we will show that Equation (2.50) is a special (limiting) case of the more

general solution of type III boundary condition at z=L. Here we use the general form

of (2.4), with N1=0, instead of (2.45) at z=L, i.e.,

-Dc ' X +veNj(L,t) = hN,(L,t), t>O (2.51)

which means the material is transported into a medium with zero average concentra-

tion outside the domain Df. This is true if the finite domain is surrounded by an

infinite medium, e.g., a backfill layer surrounded by rock. Since in this case D=0 only

in (2.20a), we have

ye
h-2A2 A 2

a1=0, t2De De

and the kernel becomes

K(.Z)= e sin(flz), (2.52')

where

t"m= C2 (2.53)

The eigenvalues pm are now determined from
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tan#mL=- m (2.54)
a2

which is to be solved numerically. With the help of (2.48) now evaluated at z=0, one

has

gdft mst)=:m flNi° (2.55)

The final result from (2.50) and (2.55) is

2D_ 2___ 1,msin,6mz 
N;(z )=c2DDJN [2 i (1-c ')+

+~ '- ,U8N i 2 P MsinftMz lct) z>0, t>0, i=1,2, -
i-I n-s' rn-it m 17(rntrnm+-y5 )6

r-j
ran

(2.56)

When h, the mass transfer coefficient, becomes very large, i.e., h-too, which is

simulated by a very strong water flow outside the domain Df and results in a large

mass transfer rate into the outside region, one finds from the definition of a2 , that

a2 -e°°. From (2.53) one has m40 and hence from (2.52) and (2.55)

c(fm ,z) \/ sin(.z); gt(Pm ,)/ 'i Lm N?

which are identical to (2.46) and (2.49), respectively, and the transcendental equation

(2.54) returns to sinflmL=0 with the positive solutions specified in (2.47).. Therefore,

the final solution (2.56) reduces to (2.50). This demonstrates that the boundary con-

dition (2.45) and hence the solution (2.50) is a limiting case of the more general form

(2.51) and (2.56) by letting h-.oo.

. .1. . ... : -... . . --__� -I ' A. . .. I ... 1. -.. . . -; ... I --� I I '� .. .. 4 1. :. I I I .. �1. 1. , -'. - . � � , . " __ - . .I . .. . ..- . .. . _'. -." ." " - . I . - _. ._. --- .-
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Two computer codes were developed for the above two cases. UCBNE50 is used

for equation (2.50) for infinite h and UCBNE51 is used for equation (2.56) for finite h.

The following results are calculated using these programs.

Numerical Examples

The decay chains considered in this report are 245Cm_* 241 Am- 23 Np-. 233 U-.229 Th

and 234U. 23Th-22'Ra. The first one is chosen to show that our solution and algo-

rithm are capable of computing the transport of a chain of more than three members,

while the second one is an important chain as far as nuclear waste disposal and the

human environment are concerned. The domain we consider in this and the next sec-

tion is the backfill layer in a nuclear waste package. Because nuclear waste reposi-

tories are likely to be located in regions of low ground water flow, we will assume a

zero pore water velocity (=0) in the calculations though the solution and the com-

puter code are not limited by this assumption.

The mass transfer coefficient, h, needs more consideration. Because we are not

aware of any experimental data available for this parameter, two previous analyses

are used to estimate a value [2]. Both analyses give the same result (_10-4 m/yr)

which will be used as the basis for comparisons. For parametric studies another value

of h used in the calculations is 104 m/yr, which simulates a very strong water flow

outside the backfill.

The values for other parameters are for a potential wet-rock repository in

basalt[5]. The values are: backfill thickness L=30 cm, diffusion coefficient D=105

cm2 /sec =3.15xI0-2 m 2 /yr, and porosity of the backfill =0.3. Other parameters used



21

in these calculations are listed in the following tables and in the figures.

Figure 1 shows the concentration of the 234U. 230Th-*22 'Ra chain, normalized to

Nj, as a function of distance at 10 years. 234U travels faster than the other two

nuclides due to the smaller retardation coefficient. At 10 years none of the nuclides

have reached the outer boundary of the backfill, even for the fastest moving 234U. At

this time the boundary condition (2.51) has no effect at all. In fact, this figure is valid

for all values of h at this time. This suggests that the semi-infinite medium solution

to be discussed later can be used to evaluate nuclide concentrations during the early

time period.

In (2.50) and (2.56), the solutions include multiple summations and one of which

is an infinite series. Since we cannot in reality compute an infinite series, some error

bound must be imposed to stop the calculations. Here we use 10 as our criterion.

Thus when the sum of twenty (20) consecutive terms is less than 105 times the total

sum, the computation of the infinite series is stopped. Since the number of terms

Parameters for Calculations

Nuclides 234U 230Th 22ORa

If; 120 1500 300
T 1p (yrs) 2.47X105 8x104 1600- 1 '1 . 10

Nuclides 245Cm 241Am 237Np 233U 229Th
1fj 150 1020 60 120 1500

T1/2 (yrs) 8500 430 2.14xIo0 1.59X10 5 7430
1 0.1 1 1 1r -a
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required is dependent upon the parameters used, it is difficult to predict the exact

value of this number. However, one can see from the form of the solution that the

sine series would converge very slowly at small t, since it behaves as sin(nz)/n for large

n, as in (2.32) and (2.47). This means a large number of terms is needed to make such

calculations. To avoid this difficulty use the semi-infinite medium solution for early

time calculations. The semi-infinite solution will be derived in the next section and is

much more convenient to use. It contains no infinite series and is more economic in

computations. We will discuss this further in Section 3.

Figure 2 shows the concentration field at 1000 years. At this time 34U has

reached steady state and the backfill is no longer retarding its migration. Since the

decay of 234U is slow (T/2=2.47x10S years) its concentration is practically constant

over the whole backfill. On the other hand, although 22'Ra is also in its equilibrium

state (to be shown in Figure 4) the decay effect is readily observable from the concen-

tration drop through the backfill (- 20%). 230Th, however, is not in its equilibrium

state due to the high retardation coefficient (f=1500). The concentration profile of

230Th is still rising at this time and will reach its steady state at about 104 years, as

will be seen in next two figures. Another important fact is that for h=104 m/yr the

outer edge of the backfill acts as an insulated surface since the concentration gradient

at z=L is nearly zero, as shown in Fig. 2.

Figure 3 shows the normalized concentration as a function of time at the outer

edge of backfill. Figure 4 shows the flux, normalized to Np, of each member at both

ends of backfill as a function of time. The solid curves represent the mass fluxes at

inner surface while the dashed curves the mass fluxes at outer surface. Bo I igures
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show that 234U and 22ORa reach their steady state at about one thousand years while

230Th reaches the steady state at about ten thousand years. Although Fig. 2 shows

that 22ORa has decayed about 20% in the backfill (the concentration at z=L is 80% of

that at z=0) it does not guarantee that the mass flux out of the backfill also decreased.

In fact, Fig. 4 shows that the radium flux at z=L is one order of magnitude greater

than uranium and thorium, in spite of the shorter half life of 211a.

Figure 5 shows the effect of a much higher mass transfer coefficient at z=L, with

h changed to 104 m/yr. At 1000 years, not only 234U and 2'"Ra have reached their

steady states but 30Th is also almost at its equilibrium state, as'can be seen in the

next two figures. The concentration at outer boundary (z=L) drops to such a low

level that it can be regarded as zero for all practical purposes. This conclusion has

been cross-checked by computations using UCBNE50 based on the solution (2.50).

Therefore, we will not show seperately the results from UCBNE50, since the results

for h=104 M/yr can be well applied to the case of infinite h (i.e. UCBNE50). Figures 6

and 7 show the concentration at the outer boundary and mass flux at both interfaces

as functions of time, respectively, for h=104 M/yr. In Fig. 6 we have also included the

corresponding concentration profile for h=10-4 m/yr (the dashed curves) as a com-

parison. The concentration difference for different h is about six orders of magnitude,

and the radium concentration is closer to that of uranium in the large h case than in

the small h case. This implies that the large h condition will accelerate the speed of

reaching the steady state and the decay effect has very little significance. In fact, Fig.

7 shows that the mass fluxes at z=L are very close to those at z=O at large times

(>1000 years) that one can treat all three members as stable nuclides. Comparing
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Fig. 7 with Fig. 4 one sees that the mass fluxes increase about two orders of magni-

tude in the large h case. Though not shown here, we have also made calculations for

h=1 m/yr and the resultan mass fluxes are identical to those for h=104 m/yr case. In

other words, a mass transfer coefficient of 1 m/yr is large enough to simulate the

strong water flow outside the backfill.

To show the capacity of the solution to compute a chain of more than three

members, we also present the results for the 2 45Cm- 241Am- 237Np- 233U-229 Th chain.

Figure 8 shows the concentration profile as a function of distance at 10 years. As in

Fig. 1, at this time the nuclides have not reached the outer surface and the boundary

condition at z=L plays no role in the nuclide migrations. Therefore, the semi-infinite

medium solution can also be applied to this time period. The profile of each member

is solely determined by the individual retardation coefficient, and decay has not

affected the results.

Figures 9 and 10 show the concentration profiles as a function of distance at

1000 years. In Fig. 9 the h value used is 10-4 m/yr, while in Fig. 10 it is 104 m/yr.

Since 24 Am has a short half life (430 years) at 1000 years more than 75% of the

released amount has decayed to 237Np. On the other hand, 237Np has a very long half

life (2.14x106 years) and it accumulates in the backfill. For the small h value in Fig.

9, with the boundary at z=L acting as an insulated interface, the increase of 237Np is

very significant. For a large value of h in Fig. 10, h accelerates the speed of reaching .

steady state, and the decay effect is not as pronounced as in the small h case, as dis-

cussed previously. Hence when the mass transfer coefficient is sufficiently large all the

members of this chain except 241Am can be treated as stable nuclides.
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The analytic solutions and the computer codes are not limited by the zero pore

water velocity assumption. We made additional calculations for the non-zero velocity

case and found that for v=0.01 m/yr, the difference between the zero velocity results

and the non-zero results are less than 5%, while for v=0.001 m/yr, the difference is

less than 1%, for all times throughout the backfill.

Next we investigate a different boundary condition at the inner surface.

2.2.2. Case 2: Bateman-Type Boundary Condition

In this case, a congruent dissolution, band release mode is assumed. The boun-

dary concentration at z=O obeys the Bateman equation

Ni(Ot)= tBjjc A", (2.57)

while the boundary condition at z=L remains the same form as in (2.51). The Bate-

man constant Bi1 in (2.57) is

Bij= ,N. p-.g\xt i)

where N,', is the initial concentration of the ml nuclide and the product term in the

denominator is defined as unity when m=j=i. Examining equation (2.28) one sees

that the only change should be made is to replace Ni with (2.57). The results are

gi(mt)=m Bje~j

and

.. .: 9i~mat)* c4^t= +t jm~i X
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If we let Aj=68-Xj= D +2 where qK j=q2 ) i=

( TV )2+ K(aj) then (2.56) changes to

D.kfBkt ZN,(zL)- i k _1 2Lt, j ,n1IIi
Nj~zi)=c 2DIf £B rn-I L+fm Aik- - k)

+ C ) kBike&t '' s1 t °- l mSinfmZ ( |
j-1 k-i ,-_ m-I +t TrnrIm+-nr)An

r 
ro

z>O, >0, i=1,2, - * (2.58)

Equation (2.58) has been programmed into a computer code named UCBNE52, and is

used to make our numerical calculations in the following examples.

Numerical Examples

For parameters values used in these calculations see the previous section. For a

Bateman-type boundary condition, we need to know the initial boundary concentra-

tion of each member. To reveal the importance of decay in this case, we make the

following assumptions. In both 2 34U- 23 0Th-.-'Ra and

245cm-.2 41Am_ 2 37 Np-- 233U--29Tli chains, all the daughters have initially no inventory

in the waste canister, i.e., Nj(0,0)=0 for i>2. The mother members (234U and 245Cm)

have a initial concentration of unity, i.e., N1 (0,0)=1. Although we adopt these values

as our input data, we want to emphasize that neither the solution (2.58) nor the com-

puter code UCBNE52 is limited by this choice. One can select any reasonable values

for the initial boundary concentrations in the chain.
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Figures 11 through 15 are for the 23 4U-.230 Th-226Ra chain. In these figures the 

values are 104 m/yr. The vertical scale now is logarithmic to show the very small

amounts of the daughter nuclides. Figure 11 shows the concentration profile, normal-

ized to N 1(0,0), as a function of distance at 10 years for the 234 U_- 230Th--226Ra chain.

Because initially there is no thorium, all 230Th come from the decay of 234U. This

figure shovs very little 230Th in the field, since all of it comes from the decay of 234U

and 234U has a very long half life. The concentration of 22'Ra cannot be shown in this

figure because its value is wvell below the lower limit of the graph (10). The solution

(2.58) has one more summation term than Eq. (2.56). This implies a longer computa-

tion time is required to use this solution than the semi-infinite solutions implemented

in UCBNE50 and UCBNE51. Hence the semi-infinite medium solution should be used

whenever possible to economize the computing time. At this early time period one

observes that the semi-infinite medium'solution.is a very good replacement for the

exact solution (2.58) as mentioned in last section. It means the boundary condition at

outer end (2.51) has not entered into the solution, and Fig. 11 can also be applied to

other values of h. The semi-infinite medium solution for this kind of boundary condi-

tion will also be presented in Section 3.

Figure 12 shows the concentration profile at 1000 years. At this time 234U has

reached its steady state while 23OTh and 228 Ra are still rising. One interesting thing is

that the 22'Ra shows a maximum inside the backfill. This is because 230Th has a higher

retardation coefficient than 26Ra inside the backfill, while in the waste form there is

no retardation effect at all. Therefore, the production rate of 22'Ra inside the backfill

is greater than the rate in the waste form, for they both originate from the decay of
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230Th, and 230Th is nearly constant throughout the backfill due to the flat profile of

2 3 4
U.

Figure 13 shows the concentration profile at t=106 years. Since 234U has a half

life of 2.47x105 years, one can see the decay effect starting to take place. The profile

of 234U is still flat but at a lower value than at 1000 years. 230Th and 22'Ra on the

other hand are still rising until one half of 234U has all decayed. Then the concentra-

tions of all three members decrease.

Figures 14 and 15 show the concentration and flux profiles, both normalized to

N(O,0), respectively, as functions of time at both interfaces of the backfill. In Fig. 14

the solid curves indicate the concentrations at waste surface (z=0) while the dashed

ones the concentrations at z=L. The dotted curve is the 234U concentration at z=L for

h=104 m/yr as a comparison. The 23ITh and 221Ra concentrations for a large value of

h are less than the lower limit of the plot (o0-) and are not shown here. Due to the

interior maximum of 2-8Ra discussed above, the concentration at z=L is greater than

that at z=0 after a few hundred years, which is the time to establish the flatness of

the 234U profile. After several million years, all three members will have decayed out

due to the Bateman-type boundary conditions. As in the case of constant boundary

concentrations, the large h represents a strong flow outside the backfill, and the con-

centration at z=L falls to a very small value (about six orders of magnitude smaller

than for the small h case).

In Fig. 15 the solid curves represent the mass fluxes at z=0 and the dashed ones

the fluxes at z=L. We also plotted the mass fluxes of 220Ra for high h at both ends by

the dotted curves for comparison. For low h we only show 234U and 230Th fluxes since
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22'Ra flux is too low to be shown. One can see that after 1000 years 234U has already

reached a state that the mass flux at z=o becomes almost equal to that at z=L, which

means the backfill can no longer retard the migration of uranium. This state is called

the saturated state. On the other hand, 2 0Th does not show the same phenomeno and

the backfill still provides some degree of retardation effect for 2 Th. This is also true

for 22ORa though not shown here. The decay effect is strongly exhibited on thorium

flux at z=o, since it has even a higher value than its mother, 234U, after one thousand

years.

The strong water flow can enhance the mass fluxes at the outer surface of

backfill, as can be seen from the dotted curves. Later we will show that for a large

value of A, 22ORa has the lowest mass fluxes in the chain at both interfaces. But these

lowest mass fluxes are still higher than the mass fluxes of 234U evaluated at the small

value of h after 105 years. Note that the mass flux of 22Ra at z=L is higher than that

at z=o for both values of h due to its faster production inside the backfill than in the

waste form.

Figures 16 and 17 show the concentration profiles as a function of distance for

h=l 4 m/yr at 1000 and o years, respectively. Strong water flow will decrease the

concentrations at the outer interface, which in turn increases the mass fluxes there,

the interior maximum of 22Ra is no longer seen. Instead, one finds that the concen-

tration profiles approach the secular equilibrium after 105 years, as seen in Fig. 17.

Figure 18 shows the mass fluxes, normalized to NI(0,o), at both ends of backfill

as functions of time for h=104 M/yr. Again one observes that the large value of h will

accelerate the speed of reaching the saturated state and the decay effect inside backfill
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has less significance than for the small h case. Compared with Fig. 15 one observes

that the time to reach the saturated state for 234U has been reduced from 1000 years

to 100 years. Even 230Th now shows some degree of saturation after 30000 years,

which is not observed in the small h case. We also see that for a large value of h,

mTh fluxes are always less than those of 234U, in contrast to the situation shown in

Fig. 15. As mentioned before, 22'Ra fluxes are the lowest among all three members,

but the flux at z=L is higher than that at z=O after a few years due to its faster pro-

duction rate in the backfill.

To show the capacity of handling longer chain, we also made some calculations

on the 245Cm-a.241Am-- 23 7Np-2 3 U-.229Th chain. Figure 19 shows the normalized con-

centration profiles as functions of distance at 10 years. It is seen that at this time

period one can use the semi-infinite medium solution to calculate the concentration

profile as in 234U chain. Hence this figure can be applied to arbitrary h values. One

important thing to note is that 237Np also shows an interior maximum as 22'Ra in

234U- 230Th-22Ra chain. It is due to the higher retardation coefficient of 241Am (1020)

than that of 237Np (60). Furthermore, a faster production rate of 237Np appears inside

the backfill than in the waste form. The last two members in the chain, 23U and

2'"Th, have concentrations too low to be shown at this early time.

Figures 20 and 21 show the concentration profiles at 105 years for h=10-4 and 104

m/yr, respectively. In Fig. 20 one notes that all members have reached their

saturated states at this time except 241 Am due to its short half life (130 years). Since

245Cm has a half life of only 8530 years, one sees that both 245Cm and 241Am concentra-

tions drop to very low values at this time and keep decreasing. On the other hand,



1e

10°

0

03~

0 -2~~~~~~~~-22y
0c.D 3.15X 102 10i,\r

o X d) - =)0.3\
0U

Y! :, C _ - L =0.3 m
td O' C-3 4mygo o o lO - < h = 10-4n/yr

Pa ^ t)J i,\ 245Cm >241 M-+237 233U__22Th\245 Cm-+ Np-
wX 1 N \ K1 150 1020 80 120 1500

3~ - 4A 

> i .l )0 N 0 1 0 0 0 0

0D

10~~~~~~~~~~~~~~~~~~~~

2 O~.OO0 0.05 0.10 0.15 0.20 0.25 0.30

Distance, m



10-0 237Np D= 3.15X10-2 m 2 /yr
'.3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .

0

L =0.3 m
WJ N 

1 -C ; : _ h-= 104n /yr
0Q

0A 

(~~ '-IC. -2 2 3 3 U.41U 2 245Cm. 24 1Am- 237Np +23 3U+ 2 29 Th
so 0 fi _ Ki 150 1020 60 120 1500

0~~0
Ni0 1 0 0 0 0

0a 0 =3

3J am 2 2 9 Th
0 -o0

Hi I0 N1s1 _ 2 4 5cm

0 0

8 0

C r 6

P

0.00 0.05 0.10 0.15 0.20 . 0.25 0.30
Distance, m

.. I.I "I



k . II I

10°
D 3.15 X10 2 m 2 /yr

0~~~~1 101h 10 M y

0

Ki 150 1020 60 120 1500

o ~~0 

N
>

10

Ci~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,

fr*~~ 10.00.05 0.10 0.15 0.20 0.25 0.30

Distance, m



52

237Np has the longest half life in the chain (.14X10 8 years), it thus remains at a rela-

tively high concentration value and its daughters, 23U and 229Th, are still increasing at

this time.

In Fig. 21 one can see that the large value of h accelerates the speed of satura-

tion and the decay effect of each member is not as important. Even 241'Am shows some

degree of saturation and it is in the secular equilibrium condition with its mother,

245Cm. 233U and 229Th have not yet reached the secular equilibrium, but the tendency

is apparent. The equilibrium condition will be established after few hundreds of

thousand years. Though not shown here, all previous discussions on the effect of h

can be applied to current situation. For example, for a large value of h, all members

have lower concentrations and higher mass fluxes at z=L than for the small value of

h.
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3. Mass Transport through a Semi-infinite Medium

3.1. Theoretical Analysis

All the equations obtained in last section can be applied to present case with

only minor changes. That is, we can obtain a set of equations (3.1)-(3.43) identical to

(2.1)-(2.43) with some modifications, which will be discussed as follows.

The boundary condition at z-+oo (since we are working on a semi-infinite

medium) is changed to

a =O(C-k,) for z-oo, k>O, r=0,1, * * (3.4)
0z7

Or in terms of Njf) and nj) one has

?N~i)(z1)=o(C-k) for zoo, k>O, r0,1, (3.9)
19z T

9nii) (Z's) =O(e), for z-ioo, k>O, r=O,1, * * * (3.17)
azI,

Now we introduce an infinite Fourier transform with respect to the z variable

nii)(p,s)=J"lK(pz)nfi)(zs)dz (3.18)

The Fourier kernel K(p,z) satisfies

.~~~~~~ ,z _

dK(Pz +p 2K(pz)=-O O<Z<oo (3.19)

-De dK(pzQ) +hjK(p,0)=0 (2.20)

and instead of (2.20b), K(p,z) satisfies a boundedness condition as zoo. The solution
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to this problem is given by*

K(pz)= /cos(pz)+clsin(pz) (3.21)
W (p2+a2)1/2

p replaces the eigenvalues f3,, in (12.19), and it constitutes a continuous spectrum of

range O<p<oo. One now transforms (3.15) with help of (3.18). This leads to a set of

steps comparable to (2.22)-(2.27), except that L is replaced by o. On account of the

boundedness of K(p,z) and its derivatives and in view of (3.17) the contribution to Jat

z=oo vanishes leaving us with

nY)(n'8_= (p, S)+6tjgt(P,3)] j~(3.27)

where

gA~P"9)= K(pO) N\lvEs0(,9l) (3.28)

and

njj(p,s)=O, e<

The steps of the solution of the difference equation (3.27) are identical to those in Sec-

tion 2 leading, on inverting with respect to t, to equations (3.29)-(3.38), with P(m

replaced by p. However, the Fourier inversion with respect to z transforms to

nj4)(z,t)=KfK(p,z)n.)(p,t)dp, i> f (3.39)

nt)(et)= K(p,)n )(pt)dp, i= (3.40)

Hence all steps between equations (.41) to (.43) remain unchanged and one obtains

P. L. Chambrf, class notes taught in U. C. Berkeley.
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the corresponding equations (3.41}(3.43), except flm replaced by p and the summation

, by f'() dp. The result is the general, non-recursive solution in D,,.:

N;(zt)=e 2D ED [S7K(pz)gj(pt) * c dp+

+~~~ s~~)8:K(p,z)gj(p,t) * cioto >,i=2**-
+ z ij J ,O•<Co, t>O, =1,2, -

j-I n-j 17(rnrP2+-In,)

r }
r#n

(3.43)

with g(p,t) prescribed by (3.28). One can verify by dimensional arguments of the

right hand side of (3.43) that Nj(z,t)=[gm/cn 3 ].

3.2. Numerical Evaluations

In this section, the general solution (3.43) obtained above will be applied to two

special cases so that one can have some insight into this analysis. In either case, a

type-I boundary condition will be used at the waste surface and a suitable form of the

resulting solution will be derived to make the computational work easier and more

practical.

3.2.1. Case 1: Constant Concentration at Boundaries

In this case we assume that the waste package holds intact long enough that all

members in the specified decay chain have reached either their solubility limits or the

secular equilibrium before they start leaching out. The boundary condition at z=O is

then N.(O,t)=NP and
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K(P I Z) sin(pz), g(p, t)= Xp ,

Hence the convolution integral becomes

g.(pt) * et = T ZpNPa.4IrdT = p 1d r )

and the solution is reduced to

N 17)cD D 2{ oJpsin(1- )+,8t)N
Ii p+ 0.N8Z

xj 0 psin(pz) -J 1 dp z>O, t>O, i=1,2, .

r-j
r7ix

Although (3.44) is the correct formula, it is not practical for computing. For

instance, the first exponential term on the right hand side may be arbitrarily large

and exceed the computer limit (e.g., 1038 in a VAX-8600 machine) as the distance z

increases. On the other hand, as z increases, the frequency of sin(pz) increases too.

This causes the integrand to increase its oscillations, so that the resulting integration

is not accurate enough due to the accuracy limit of the computer (e.g., 14 digits in

double precision in a VAX machine). To give a numerical illustration, take v=1

m/yr, z=500 m,D=1 m 2/yr, then the exponential term becomes e 50, which cannot be

handled by the computer and the calculation would be aborted. To overcome these

difficulties, one has to convert (3.44) to some other suitable form. One approach is to

use the error functions to replace the integrals and combine the results with the first

exponential term. The conversion procedure is given in Appendix A. The coded

results are in the computer program UCBNE40, and used in the following examples.
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Numerical Examples

As in the finite medium calculations, we investigate two chains,

2 34U. 230Th_-. Ra and 24 Om_- 241Am- *37Np--+ 233U- 229Th. All parameters remain the

same as in the previous sections except the following changes. The semi-infinite rock

porosity is =3X10-3, the pore water velocity is v=1 m/yr, and the dispersion

coefficient is D=50 m 2 /yr. However, the solution and the code are not limited by

these choices and can handle any combination of parameters.

Figures 22-24 show the concentration profiles, normalized to A, as functions of

distance for the 234U- 230Th-.22Ra chain at 10, 1000, and 105 years, respectively. At

10 years, the effect of decay is not apparent. 234U travels at the fastest rate because of

its smallest retardation coefficient, and covers the largest distance (about 10 meters).

=Th and 22'Ra follow the same behavior as 234U.

At 1000 years, one begins to see the decay effect Of 234U in the field and the con-

centration profile for 230Th shows a bend at 30 meters, at which point the derivative

of the mass flux with respect to distance becomes negative, i.e., the mass flux of 230Th

decreases. This is due to the fact that at this distance, a significant amount of 234U

has decayed to 230Th, which causes the concentration gradient to become smaller for

thorium. Additional calculations on thorium alone show that if there is no 234U, 230Th

itself cannot travel farther than 30 meters at 1000 years due to its retardation. Hence

after 30 meters all thorium comes from uranium in the field. From Fig. 23 one can

also see that the decay of 230Th occurs mostly within 20 meters. Since during this

range 2-Ra has a very high concentration one cannot see the increase in its concentra-

tion from thorium decay. The traveling speed is still governed by the retardation
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coefficient as can be seen in Fig. 23.

Neither 230Th nor 22'Ra can travel very far even at 105 years, as shown in Fig. 24,

since thorium has a high retardation coefficient while radium has a short half life.

Seperate calculations on thorium and radium show that all 230Th and 20'Ra will decay

out within one kilometer, had there been no uranium present. The turning points in

both thorium and radium profiles are due to uranium decay. Beyond these points the

thorium and radium all come from the decay of the mother nuclide, 234U. Another

important observation is that at t=105 years 'Ra falls behind 230Th in the field. This

is due to the relatively short half life of 2-8Ra, i.e., the decay effect of 226Ra is stronger

than the retarding effect of 230Th in the field, though both effects limit their migration

distance. One can also see that after these turning points thorium and radium tend

to reach their equilibrium condition as time goes on. This will be discussed in the

next figure.

Figure 25 shows the normalized concentrations as functions of time at a distance

of one kilometer. Here we use a leach time of 105 years in the calculations. It should

be pointed out that the actual radium concentrations are one order of magnitude

larger than what is shown here, since the normalization factor for radium (the boun-

dary concentration) is 10 while the normalization factors for the other two members

are unity. From the discussion of the last figure we know that were not for the

uranium present, neither thorium nor radium would have migrated as far as one

kilometer, hence all thorium and radium concentrations in this figure are derived

from the decay of 234U. Also, one observes that 0Th and 22'Ra are at secular equili-

brium at this point. Since 234U has the lowest retardation coefficient, the leading and
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trailing edges all appear earlier than m0Th and 221Ra. This is also true for radium, but

it appears at very low concentration range and cannot be shown here.

Figure 26 shows the normalized concentrations for the

245Cm-.24 Am--+2 37Np-.2 33U. _ 229Th chain as functions of distance at 105 years. One

can see that the traveling speeds are basically following the same rule, i.e., the higher

the retardation coefficient the slower the migration speed, except 24'Am due to its very

short half life. The decay from 24'Am also results in the increase of 237Np concentra-

tion in the field for the latter has the longest half life in the chain. From this figure

one infers that both 2 'Am and 229Th would not travel farther than few hundred

meters if the parent nuclides were not present in the field. Hence because of the turn-

ing points present in 24'Am and 229Th profiles, they are produced from the decay of the

mother member after these turning points.

Figure 27 shows the normalized concentration profiles as functions of time at

1000 meters with the leach time equal to 105 years. Since 24'Am and 229Th themselves

do not travel this far one can expect that they will be at secular equilibrium condi-

tions with their parent nuclides. This is confirmed in this figure. The leading and

trailing edges of each member is determined by its retardation coefficient, hence 2 3 7 Np

appears first, then 233U, and then 24SCm. This rule cannot be applied to 241Am and

2'9Th since they are produced from their mother members at this time.

3.2.2. Case 2: Bateman-Type Boundary Condition

As in the finite domain case, a congruent dissolution, band release mode is

assumed. The boundary concentrations at z=0 obey the Bateman equation
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Nj(O,f)= tB~je-Y J,
f-I

and

gi(Pt)= _7p Bjj -eJ

Hence

gM(pst) * = !Vp, B jfc-J(t"')c4 Srdr= p jl

Let

Anj=n-\ = D (P 2+q 2)-A\ = D (p2+fn2_~~~~K f n+~j)

where

2.=q.2_ l'n ,2 =( )2+ I-n(,, (3.32')
qnj D 2D D

then (3.44) changes to

Nj(z, t)(1-c 
Ki a 1k- I 0 Ak + -I k-I

psin(pz) (l ) dp >O 1>0, i=1,2, (3*4-

R- 1(rnrp2+7Ynr) Ak(3.44-)
r-j
ran

Again some conversions must be made to make the computations workable and

practical analogous to those made in the last section. The detailed procedure is

shown in Appendix B. The analytic solutions for this case have also been successrllv

implemented in the computer code UCBNE-11 which is used in the following examps
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Numerical Examples

All parameters remain the same as in the previous sections except the boundary

conditions at z=o is replaced by the Bateman equation (2.57). The initial boundary

concentrations are the same as in the corresponding finite medium problem, i.e., unity

for mother members and zero for all daughters. As shown in Appendix B, the solu-

tion and the program are not limited by this choice, and can be applied to any values

of initial concentrations.

Figures 28-30 show the concentration profiles, normalized to N(0,O), as functions

of distance for 234U. 230Th--_22'Ra chain at 10, 1000, and 105 years, respectively. In

Fig. 28 we see only a small amount of 230Th present near the waste surface originating

from the decay of 234U, while the 22
ORa concentration is too low to be shown. By com-

paring this figure with Fig. 22 one sees that the uranium profile is practically identical

in these two figures. In fact, even at 1000 and 105 years one still sees this same result

because of its long half life. ence we conclude that for 234U the solution for

Bateman-type boundary condition will result in the same concentration profile as

from the solution for constant boundary concentration case up to 105 years.

At 1000 years a significant amount of mTh and some 2'8Ra begin to appear as

shown in Fig. 29. The decay of 234U in the waste form is the driving force for 230Th

migration in the field. Due to the high retardation effect of 230Th it cannot travel

beyond a few tens of meters if there is no 234U in the field. Hence the turning in the

thorium profile indicates the decay of uranium in the field, i.e., after 20 meters the

230Th concentration totally comes from 234U.
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Figure 30 shows that at 105 years 234U begins to decay though by a small

amount, and 230Th and 226Ra have risen to a significant amount. Like the correspond-

ing results for finite medium in Fig. 13, 226Ra shows an interior maximum due to the

faster production rate in the field than in the waste form (cf. Fig. 13). This figure also

indicates that after 200 meters, the decay of 230Th and 22'Ra become important and

the profiles are produced from the decay of 234U after this distance. In fact, one can

see that both 2 0Th and 22'Ra would not migrate beyond 1000 meters by themselves.

Figure 31 shows the normalized concentration profiles as a function of time at

1000 meters with a leach time of 105 years. From the last figure we know that at this

distance all 230Th and 22'Ra are produced from the decay of "4U in the field. Hence

230Th and 226Ra are already at secular equilibrium. We see that Fig. 31 is actually the

same as Fig. 25, because 234U can be regarded as a stable species at this distance.

Figure 32 shows the normalized concentration profiles as a function of distance

for the 24 5Cm- 24 Am_237Np-233U-229Th chain at 105 years. As in Fig. 26 one finds

that 237 Np travels fastest due to its low retardation coefficient and its longest half life.

At 105 years almost all 245Cm and 241Am have decayed away, but the normalized con-

centration of 237Np rises to nearly unity for it has not yet started decaying. Again in

this figure we see that the migration distance is inversely dependent upon its retarda-

tion coefficient except for 241Am and 229Th. They cannot travel very far due to short

half life or large retardation coefficient. In fact, this figure shows basically the same

features as exhibited in Fig. 26, except at the waste surface.

Figure 33 shows the normalized concentration profiles as a function of time at

1000 meters with a leach time of 105 years. Only four members are shown in this
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graph because 24'Am concentration is too low to be plotted. We find that 233U and

"9Th are at secular equilibrium after 2x105 years since at this distance all thorium

comes from the decay of uranium. This is also true for 245Cm and 241'Am. The general

features of this figure are similar to those in Fig. 27 and all discussions provided there

can also be applied here.

One very important point about these calculations is that this code UCBNE41

can be used to replace the popular three-member-chain calculation programs

UCBNE1O.2 and UCBNE10.3 because it can compute the concentration profile of any

member without any numerical difficulties and can also be applied to a chain of arbi-

trary length. Though not shown in the above figures, it can actually produce the

results of the dispersion-free code UCBNE25 by setting the dispersion coefficient to a

very small value (e.g., 10-4 m 2 /yr). One cannot set D equal to zero in UCBNE41 for a

singularity will occur as seen from the solution form developed in Appendix A. But

for very small values of D the results indeed have the same graphical trends as those

from UCBNE25, with only the small rounding appearing at the leading and trailing

edges. These are usually produced by the dispersion-free calculations.
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4. Conclusions

In this report, the general non-recursive solutions for the transport of radioactive

decay chains are obtained. The first half of the report deals with transport in a finite

span such as a backfill layer, while the second half analyzes mass transport in a semi-

infinite domain. Two decay chains, 234U-+ 30Th-22-Ra and

245Cm -.24Am-2 37Np-. 233U- 922Th, are used in the numerical examples.

A mass transfer coefficient h=104 m/y obtained in two previous studies is used

in the finite span calculations. The outer boundary of the backfill acts like an

impermeable surface at this value of h, since the flux at this position is nearly zero.

Another value of h, 104 m/yr, is also used to simulate a strong water flow outside the

backfill. The mass transfer rate for this value of h is at least two orders of magnitude

greater than that for h=10 m/yr. Since normally the underground water velocity is

low ( 1 m/yr, which is equivalent to h<10 m/yr), the mass flux uut of the backfill

is quite small.

At early times (<10 years), the finite medium calculations can be replaced by

the semi-infinite medium solution, since the nuclides have not yet reached the

backfill/rock interface. We would recommend that future users of these codes do this

to reduce computing time and cost, though the finite medium codes UCBNE50,

UCBNE51, and UCBNE52 can make the calculations without numerical difficulties.

The zero velocity assumption in backfill used in previous chapters are justified

by the finite medium calculations. For pore water velocity v=0.01 m/yr, the relative

error introduced by the zero velocity assumption is less than 5%; while for v=0.001

m/yr it is less than 1%. Since the pore water velocity normally encountered in
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repositories is of the order of 10- to 10-9 m/yr, it is believed that the use of the no-

flow assumption in backfill calculations is sensible.

In both finite and semi-infinite media calculations, 22ORa always shows an interior

maximum within the field. This phenomenon is due to the combined effects of tran-

sport, decay, and retardation of radium and its precursors, and can be seen only in

the chain calculations. Hence to get more details in the radionuclide migration

analysis, this kind of chain calculations becomes necessary.

In several figures, the concentration of a daughter nuclide built up so much in

the field that it exceeds the concentration at the source. This would mean a back

diffusion of the nuclide towards the source, due to an improperly specified boundary

condition. Such a phenomenon occurs mostly in backfill with the lower value of the

mass transfer coefficient. Calculations not reported here show that stronger flows

outside the backfill would tend to weaken this phenomenon.

In semi-infinite medium calculations, the nuclides with high retardation

coefficients, such as 230Th, 226Ra, 2 Am, and 229Th, would not travel farther than 1000

meters in the field without transport of their precursors. This means that essentially

all these nuclides come from their mothers at this distance. In the numerical exam-

ples, the mother members, such as 234U and 233U, which need a few hundred thousand

years to travel this far, are already in secular equilibrium with the daughters. Hence

only the concentrations of the mother nuclides are required to get the entire concen-

tration profiles after 1000 meters.

Before this analysis became available, sometimes a "compression" method was

used to transform a long chain to a 3-member chain by neglecting the short-lived
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members in order to use the existing code UCBNE1O.2. Now a tool is provided to

examine whether this approach is valid or necessary. If not, one has to turn to the

solutions obtained here to make more precise calculations.

Possible extensions of the current study would be to include different

disperison/diffusion coefficients for each member of the chain. Another might be to

utilize non-constant mass transfer coefficients h. The analysis could also be extended

to cover different hi for each member.
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Appendix A: Numerical Implementation of Equation (3.44)

In this appendix we discuss the conversions needed to implement the analytic

solutions obtained in the main text. The solution for Ni (z , ) is given by

Dx 21inp ) 'p(z"), -6it ->o O =12 

00 pDsin(N J sin()( )dp + 2 c 1
.,

0
)

1I (rP p +-Yn) 6,i

To implement this solution two transformations* are needed

0 p isin(pz) d) (- (3 45
fJ 0 p+q 2 2 (345

fp sin(pz d = [ 26 -8 2c -9z -qz erfc( z V - q q )r/2]

(3.46)

Now from the definition of th(3.32) and with the help of (3.45) and (3.46) one gets

00p sin(pz ) 1 6 6t)d

Ki psin(pz) -K

7r Ki C _qi Zerfi -. (,\t+ LL..)/+e"h"erfc[____(___+__~ 1 2

4 D 2VDZ7[ Z ' 4DK 2 Vb/D ;7+Gvt+ 4D~i )/

(3.47)

Hence the first term on the right hand side of (3.44) is converted to

*Gradshteyn, 1. S., and Ryzhik, 1. M., "Table or Integrals, Series, and Products," Eqs. (3.723.3) and (3.954.1),
pp. 406, 497, Academic Press, 1980.
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Ni 0 -(qi- " )z A ~~(q1-i.2-)z z _____

-° [rf , , Z - ( t+ C 2] D erfc[ \ t + ID/ )/ ]
C) 2DVDKt7I-< 2V/Thi7IK48)

(3.48)

For the second term on the r.h.s. we do the following:

1 1 1 _ _ _ _ _ _

= (i +) 
i p 2+-t., ) 6fl1pD+ 2)

F -i r 

1

rI(p2+d ,2 )
r- r

(3.49)

where

q"2 r=n.

and

.)2_''t' ' ( ' w ' ) r74n , r =j J +l, . . . i;
D I(1 -X,

H( ) Hj(I-#-
rFn if .- r3 F= 1.( rn a rf , .,, %

(3.50)

(3.51)

Also

=tp1 inr En I I +di) r jr , Er= 1j(d2

r -J. e-J

w])+d

(3.52)

Hence

Jo p sin(pz)
fo i p2

0 (rnr P +Ynr )
r=j
r n

(1-C 5'') dp

63

-F3 0E. j p sin(pz ) -(ga.2+ p ~Dt/1K,,
rFj flF +
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nFD' ~ EDT zr ( nr-d[2)Dt/K, d 

_d., zZ /~7Td.~, zZ 4d[D7?I]
-c^ erfc( VT2/D77 d 7 l)-C erfc( +D J +dnr V7

=Fn ' EDr { 2rcd,, (1-GDr (t Gnr (t ) X

X [c f( dr v'W71? ) z erfc( 2 + d \/D_7A)] (3.53)

where

G( X.,-K, X, r

Ga (t )- _4q.2,r)DtK. K* -Kr r ,

- 1, r=n (3.54)

Therefore, the second term on the r.h.s. of (3.44) becomes

D '- ( ' 'E? e ( .. ) Gnr (t )-; EC(r)N E 2D (1-G., (t ))+ X

2D D ,.7 2D 

X IC erfc( t dnr D D f ) + ef( 2VDt +dvr VTT7 )]}

(3.55)

Let S (z ,t ) and Pi (z ,t ) represent the first and the second terms on thc right hand

side of (3.44), respectively, N; (z ,t ) becomes

N; (z ,t )=Si (z ,t )+Pi (z ,t ), z >0, t >0, i =1,2, * - - (3.56)

with S (z ,t ) given in (3.48) and P ( ,t ) given in (3.55).

If we use Ai(j) defined in (3.30) to replace QU) in (3.44), Pi can be rewritten as
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Pi (z ,t )= S Ai (i)Ni° tiF 3 Enr { (1-GN (t ))+ ) X
j-I n-j rt Ej

[ ( 2D A ) f( 2D + 7r ] iI er 'PT i r VDT K. Cerc 2 vTt-FKA nrVMt C

(3.57)

with

ll (- Il ) A (f. K) (3.58)
v-j K. Wp;
to n to a

It will be shown later that S (z ,t) is always bounded, and after some reordering the

final form can be evaluated by computer without any difficulty. P (z ,t), however,

still has some problem when put in computer though the integrals are gone. This is

due to the numerical values of dnr and G (t ). From the definition of d (3.50) one

can see that it may have any value, even imaginary (for dn2<0). On the other hand,

(3.54) shows that G (t) may be either positively or negatively very large value and

(3.57) cannot be handled by the computer. Therefore, a further reduction is needed.

From (3.51) one observes that when n=r the first term in the braces in (3.57)

vanishes since Gnr (t )=1. For n 4r and with the definition of E3, (3.52) one gets

F E= '2 2

(Kn Kw) II (dn2d 2)
j v-j

v~~~ ~ i, v ni,, ~~
1 1~2 

(n v da.-,n

v t
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K., 1 2- n4r, i=j+l

Now let's expand d2_d"2 and df-d.2 as follows:

22 * X. -X, If. K, X. -X 
dn rd, = D I -K. )± D -Ifr

(3.59)

Kn

D

Kn.

D 

-K (. -X w )(If. -Ifr )+If (. -,\,)(K. Ifw )
I- (IC -Kw) )(K.-Kr ) -

[K. X (Kr -K. )+K X r(K Kn )+Kw'\. (K- -K, ) r
L ~~(If. -- f ) )(IC -K, ) I.r7Z Z

(3.60)

rnnd2 D D C _IIC r

K, (KK,\. X- X
D K. -K, -K I

(3.61)

Substituting (3.60) and (3.61) back into (3.59) one obtains for n zr

K )i`( -K, -'to(Kn-K)

t

( D )(K. -Ir)
K'-'j

Fn Enr N
i i

Wscj Ujto
sr nW 7 

(I. X. -Ir, X)

D - (Kn -X ) i -y-l/AIC I\. IC, I )
--, i>j+1

P1 [K, X, (Kc, -Iwe )+K,. Xi. (K,,, -K,, )±K,, )xt (K,, -K )]
toi

r
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Xn Kr ,(3.62)

For n =r, following similarly derivations one gets

HI (K4 xv~-Kn xn ) (3.63)

Hence from (3.62) by interchanging n and r one sees that for n 7r

Fn Enr F Er. (3.64)

Equation (3.64) is our key formula to make (3.57) computable for any combination of

the parameters: D, v, K; I, X, z, and t.

Since n and r both range from j to i as seen in (3.57), for every F Enr, n r,

there exists exactly one corresponding Fr Er.. In addition, d =drf from (3.50), and

G., (t)=Gr. (t) from (3.54). Therefore, for n =j,j+1, . . . , i; r=j,j+l, . . ., i

Fn Enr (2D (l-Gnr (t ))+F, Er, 2D 2 ^ (l-Grn (t ))=0 (3.65)

That is, the summation of the first term in braces in (3.57) from j to i is zero. Thus

Pi (z ,t )=- AiNj F. E., Gr (t )X
_;- n-j r-j

X[C erfc( 2 VT 7t -dnrV/ )+ 2 erfc( V +dmr V~77I)]

(3.66)

To remove the difficulty caused by G (t) we make followving rearrangement.

K ( 2 ^d2) - t + t 2
Sinc = -c. ^ =c t 4DK K rSince Gnr (t) = = C C from (3.32), we have
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C (t )e V~~ e2G ()C2D 2' =CFX -2VrF52/7. Z (3.67)

Also, when n =r, G,, (t )=1, d =gn and

~ t )2 2

e2D R4A ~tK(2D~f,)2 8x t(GK. 2/i) 2NT RE (368

Consequently, with Xi+ qI=27-, (3.48) and (3.66) are reduced to

Si(z, ) INie _'___ )a ' ' '

X [H( Z +i/ )+?)H ( Z -qfi JDT77?; ] (3. 69)2 ~ ~ ~ ~ ~ ~ ~ ~ 2

X[H( +dnVTTh7 i)+H( -dn v'DT/I)] (3.70)

2VT77kf ' 2 IDT7if

where

H(x)=e 2 erfc(x) (3.71)

For >0, H(x) is always bounded.

z
Consider the case 2 DF7-K; <d,r 7 [K.., which makes the argumcnt in H

function negative, for some r 4 n . Since erfc(-x )=2-erfc(x), one has

(D )s erfc( 2 zNTI-C -d2 (T7T]) )=erfc(d /tTK 2Z7R

(3.72)

Now G (1 )=C-(_ r)Dt -=c K.-K, o K. -K, +2D -, )
nr - - - - -- > --- IVI L UI 111 C
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appears in (3.70). If z is also less than d,, J.ff7R, then from our key for-

mula (3.64), this extra term will be canceled out. For 7 >dn V/i7iF, one

can show with little effort that
a

K -K,,\ t +( -dn)z <O, for d >O and 7 <d, V/T 7k. (3.73)

Hence when (3.72) is combined with G, (t ), one has

G., (t ) 2D erfc( f -d., VT-7 .)=2c
- KX-K, t+(-2 -d.,)z z

(3.74)

For n=r,

dnr dnn f r= [( )2+ I' ] > 12

L2D D 2D
(3.75)

So (3.72) is still bounded. With the help of (3.74) and (3.75) one obtains the comput-

able form for NM(z,t) in terms of Si(z,t) and Pi(z,t) (3.56) for all real dr:

Si (z ,t)= 1 N;°c Ah 2V/N7i) x
2

X[H( + fi VTT+iT77)+H( z -qjVT7?] for z >

_ 1 -)N~ ({ c \/ 7 -i 2v 7R 7 )2

= NO1 2 c 2D "+C 4KX

X [H ( O l + q+ VZT7 )-H ( V T/ -( 2V T )] } for < q .v'T17



A-9

(3.76)

P; (z ) U)Nj° O F. S E., IW(z dn \fb)77r) (3.77)
j2 n-j rj

where

-X.~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .

X[H( +d., VT/DT7K-)+( 2 Z -dar VTT7I7?)], for > d/Dt /t7I;

- ,.JTt4( R)z )t(\/F Z

-K -Kr t(2D d,,,w KX. 2 / XN~

for 2 <dnrD7n, nP7r;

2J7

=2c 2D + 2V X )]2

X [H (( Zt7 + qn nTIler ))-H ( 7 qn R |) 

for Z <qn \/tbT7Rn, n =r (3.78)

Error Functions of Complex Arguments

For d <0, d is a pure imaginary number, and we have error functions of

complex arguments from (3.78). Since
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H(2 +iy )-e (z4iy)2 erfc(x +iy )=c z2-_y2 i2zy erfc(x +iy ),

H(z -iy )=c (-iy) 2erfc(z -fy )=e Z2 12
i27z erfc(x -fy )=H(z +iy) (3.79)

the sum H(x +iy)+H(z-iy)=2 (R cos2xy -Isin2Xy)=real, where R and I are the

real and imaginary parts of erfc(x +iy), respectively. Now in (3.70),

Z , Y = 2d V. /K7 I7>K |, z2 -y 2 = KR - Dt /K,, (-d,,), 2zy = j d,, z l, and

R and are given in the approximate forms* with the relative error bound <10-10:

A =erfc(z _C 2 1-cos2zy +c 4

C 2.y 2 2 gn (3.80)

where

f,, =2z [-cosh(ny )cos(2xy )]+n sinh(ny )sin(2z!y)

g,, =2z cosh(ny )sin(2zy )+n sinh(ny cos(2zxy) (3.81)

Therefore,

H(z +iy )+H(x-iy)

= 2[c' y2 Rcos2xy-c' 2 1 sin2xy

2 2{ [H(Z)1-cos 2x - X

_ n2 2

nc 2e 4 -2Z cos2xyA (n y )+n sin2xyN(n ) 1cos(2Y)+ xX 2 2 COS('-)Xy )+-X~
*M. Abramowitz and 1. A. Stegun, editors, "Handbook or Mathematical Functions," p. 299, Dover Publica-

tions, Inc. New York, 1972.
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X{ ,2 sin2zy+ 2 2zsin2zyM(n,Y)+ncos2xyN(n,y) (3.82)

t~~x n-i n+4z2

where

M(nY)=c cosh(ny)= c 2

2L [42Y. 1)2AP+ +)2]

N(n ,y)=c 4 sinh(ny )= c 2 2(3.83)

Hence the complete solution for N (z ,t) for any combination of the parameters are

given in (3.56), (3.76), (3.77), (3.78), (3.82), and (3.83), and is always bounded.

For the case I -K, and n 4r F E -0 from (3.62) and I d, I -oo from

(3.50). Thus H( ± /d., Vdtar774 )- for both d real and imaginary, and

G(z , ,v 077?)-*O. Hence the singularity is not present.
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Appendix B: Numerical Implementation of Equation (3.44')

To facilitate the numerical implementation of Equation (3.44') we follow the

same procedure as in Appendix A, with q replaced by qnk defined in Eq. (3.32') and

Nj; replaced by >3 eBik . One obtains the comparable equations (3.45') - (3.83')
k-i

with the following changes:

K- -K tXr

Gr (t ) = Ka"

= 1, r =n

r74n

(3.54')

2 2 Kn X, -Kr \, X)/k Kn -K,
dnndnrD IC. n

D i (K-Kr ) i-- /[K )-X, X)k (IK f.)]
FEn = ; , for n

HI [If X (K, -K. )+ K, X, (If. -ICn )+K,, X (K,, -1,)]

on
w ir

[Kn, X.4C,.X),.-XD(Kn ,Kr )] for n r, = i +1

Fn Enn= iD=

ti

G, (t )e 2D 2VTF7r)2 TFI - 72

(3.61 ')

:r, i>j+l;

(3.62')

(3.63')

-(3.67')

±1.02 -(I-X CDt-(g- DU2./i7R 2 ' Ki7 )
C 2D = , Ck) f40 5 2 ) 

(3.68)
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The final solutions are given by

N; (z , )=Si (z , t )+Pi (z , ), i1,2, . . . , z >., t >0 (3.56')

with

Si (z ,t)= B c aA AD j 2I/i X
2 -I

x[H( s +qk k/Dt /I7 +H ( -qjk qVDT7A7)], for Z > qjk VT7 7

- -I

z
X[H( Z +q;* VTDt/K; )-H(q; Jt7 2 )] } for 2< 7A < VT qitT7

(3.76')

and

Pj(Zpt)=l A;(')Bi~kE. SFn Er (z, d.,,/V T77c)
2ji-I k-I n-j r-j

(3.77')

where

2VW7X' 

X[H( z + dV F71-)-.) 2 Vdr ] Z VTt[K. for 2jr V7A >d71t;
2 2 DV ttI 2'Th z

K.X ) -Kr X, t-(.d 3 )

__e K. -K 2 s e ~ 1DK.'2yVT/K 3, 
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X[H(( 2 /K, + ('

for Z < dn r 7 tF7 n 4r;

=2 CDK. 2+Vi7R- X

X [H(( z +q7k 77))-H( | -q U ) I/D! / '1n |)]

for <qfnk IDt7, n =r (3.78')

For d",<o or q,2 <0, i.e., for error functions with complex arguments, Eqs. (3.82')

and (3.83') are identical to (3.82) and (3.83) with z= 2' X = dnrV71I

or y= Iqnk VDT7 .

It can also be shown that for q >0, 2D <1. Hence AN (z,t ) is given

by (3.56') and (3.76')-(3.83') with any combination of the parameters, and is always

bounded.
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