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ABSTRACT

In constrast to the saturated zone where f1u1d moves rapldly along
fractures, the fractures (w1th apertures large relatlve to the e1ze of matr1x
pores) will desaturate flrst durlng drainage proceas and the bulk of f1u1d |
flow would be through 1nterconnected pores in the matrix. W1th1n a part1a11y.
drained fracture, the presence of a relat1ve1y cont1nuous air phase will
produce practically an 1nf1n1te re81stance to 11qu1d flow in the dlrectlon o
parallel to the fracture. The re81dua1 11qu1d will be held by caplllary force
in regions eround fracture contact areas where the apertures are small. Normal
to the fracture surfaces, the drained portion of the fractures will reduce
the effective area for liquid flow from one matrix block to another matrix
block. A general statistical theory is constructed for flow along the fracture
and for flow between the matrix blocks to the fractures under partially saturated
conditions. Results are obtained from an aperture distribution model for
fracture saturation, hydraulic conductivity, and effective matrix-fracture flow
areas as functions of pressure. Drainage from a fractured tuff column is
simulated. The parameters for the simulations are deduced from fracture surface
characteristics, spacings and orientations based on core analyses, and from
matrix characteristics curve based on laboratory measurements. From the cases
simulated for the fractured, porous column with discrete vertical and horizontal
fractures and porous matrix blocks explicitly taken into account, it is obserued

that the highly transient changes from fully saturated conditions to partially

. saturated conditions are extremely sensitive to the fracture properties.

However, the quasi-steady changes of the fluid flow of a partially saturated,
fractured, porous system could be approximately simulated without taking the

fractures into account.
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GLOSSARY

Having physical properties that vary with direction.

A type of surface roughness appearing along the
fracture surfaces.

A distribution with two peaks.

The difference between the air-phase pressue and the
water-phase pressure across a meniscus. If the air-

" phase pressure is assumed to be atmospheric, capillary

pressure is gauge pressure.

Bulk velocity of fluid flow as described by Darcy's law,
representing an average over the area of the porous medium.

Inclination of the plane of fracture in a rock formation.

Having the same properties in all directions.

The interconnected mass of rock within which water
movement is governed by the laws of porous media flow.

Pressure expressed as the height of a column of water
that can be supported by the pressure.

A parameter in describing the extent to which a fluid-
flow departs from a smooth curve along the flow line.
Tortuosity results from the diversion of fluid flow
around nonconducting volumes in the flow region.
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NOMENCLATURE

fracture aperture

fracture aperture for a fracture under zero

. stress and with fracture surfaces in point-

contact and with zero contact area

fracture contact cutoff'apertupe, portions of
fracture with by less than by will be in
contact . .
saturation cutoff aperture, portions of
fracture with aperture greater than bg will
be desaturated T

fracture spacing

apparent fracture frequency

aperture distribution functions for é fracture
under stress, n(b + bg)

gravitational acceleration

pressure head

capillary head

hydraulic gradient

continuum saturated perméabilityv'
relative permeability

apérture distribution function for a fracture
under zero stress with fracture surface in
point-contact and with zero contact erea
volumetric flow rate

saturation

residual saturation

fracture width

width of liquid flow path between dry portions
(air pockets) in e fracture

[L]

(L]

(L]

[L]
L]
[1/L]

(1]
[L/t2]
(L]
(L]

- [1L2]

[1/L]
[L3/t]

[L]

L]
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NOMENCLATURE

surface tension [M/t2]

aperture distribution parameter of gamma
distribution [1/L]

fluid density [M/L3]

fraction of surface area occupied by liquid
water and contact areas

angle of contact between liquid surface and solid
surface

phase separation constriction factor, ratio of width
of liquid flow path to the nearest-neighbor dry

pocket distance

fluid viscosity [M/Lt]

fraction of fracture surface contact area

saturated condition S = 1

horizontal fracture set

partially saturated condition at saturation S
vertical fracture set

fracture

porous medium
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INTRODUCTION

The work described in this report was performed for Sandia National
Laboratorieé (SNL) as a part of the‘NeVada’Nﬁ&leéf'wésteistbrage'investif' ,
gations (NNSWI) Project. The NNWSI Project is administered by the U.S.
Department of Eﬁérgy'é (DOE) Nevada Uﬁératidﬁs Office. The project is'a
part'oflfhe'DOE'é'pradr;hufoﬁséféiy dispose of the radioactive waste from
nuclear power plants. DOE has determined that the ‘safest snd most feasible
method currently known for the disposal of such wastes is to emplace them in

mined geologic repositories. The NNWSI project is evaluating the suifabilitY”

lﬁf‘Yucéé:Mbuhtéih ‘on ‘and éajédeht to ‘the Nevada Test Site (NTS) in southern

Nevada'tﬁxdetéfﬁihéifhe‘féééibiiityA6f'dévelopiﬁgﬁélrépoéitory for high
level nuclear wastes. :

'fﬁé'ébjécfiVé'bf this report is to aid the performance assessment:
activities in the NNWSI Project by addressing the hydrologit mechanisms
governing ‘fluid flow in partially saturated, fractured, porous tuff st'Yucca
Mountain. ~The focus of this report 'is on the understanding how fréé;urés
and porous matrix affect the transient and steady-state fluid flow behavior.
The goal is to determine whether & partially ‘saturated; ffabfﬁféd,fporous"
tuff can be idealized as an equivalent continuum combining ‘properties of the
ffactufésﬂahd ﬁéirix;:bf?as"a'SYétem of{multiple continuain thch'the
fractures, matrix and their interactions are modeled.

One of the candidate horizons for a nuclear waste repository at Yucca
Mountain is the densely welded, devitrified, nonlithophysal zone of the
Topopah Spring Member above the water table. Densely wel@ed ash-flow

tuffs generally have low matrix hydraulic conductivities but tend to contain



numerous fractures that may be highly transmissive (Sinnock et al., 1984).
Fractures may be important either as conduits or as barriers for flow of
groundwater. In the saturated zone, water tends to move rapidly along
fractures. However, for a fractured unit above the water table, the fractures
(whose spertures are large relative to the size of the pores in the matrix)
should be dry and the bulk of the.groundwater movement should be through
interconnected pores in the matrix. Under this condition, as water moves

from one matrix block to another, the drained portions of the fractures will
reduce the effective area for water flow from one matrix block to another
matrix block.

In this report, we will (1) describe a conceptual model for the hydrology
of a partially saturated, fractured, porous medium; (2) construct a general
statistical theory for flow along the fractures and for flow between the
matrix blocks and the fractures under partially saturated conditions; (3)
present the results obtained from a simple statistical aperture distribution
model for fracture saturation, hydraulic conductivity, and effective matrix-
fracture flow area as functions of pressure; (4) review the available data for
the fractured Topopah Spring Member and the needs for additional data to
improve and validate the statistical theory; (5) summarize the recent updates
of. the numerical code TRUST for handling partially saturated, fractured,
porous flow systems; and (6) present the results of simulations of a fractured

tuff column in response to drainage.

»w
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CONCEPTUAL MODEL

To study the flow of water in a partially saturated fractured .porous
medium, we first formulate a conceptual model based on the basic principles:
qf soil physics. Tuff is a‘consolidated%rock made up essentially of cemented
volcanic ash. The primary pore size of the tuff at Yucca Mountain ranges -
from a few to a few tens of microns (Blair et al., 1984). Even st a depth
of several hundred meters in such-a formation, the fractures:are likely to'~
have apertures ranging from several tens to several hundreds of microns.”
Thus fractured tuff will have a strongly bimodal: pore size distribution. It
is well established in the field of soil physics that in partially saturated:
porous media, the fluid pressure in the water phase is less ‘than atmospheric
pressure and that the fluid saturation in the porous medium is a strong
function 'of the water phase pressure. The relation between fluid pressure
and saturation is governed by surface tension between the 1iquid*and:£he
solid ‘phases and by the effective capillary radii of ‘the pores. Indeed, it
is accepted knowledge that as the water phase pressure in’' the porous medium
is decreased below atmospheric pressure, the largest pores will desaturate
first, followed by the ‘desaturation of successively smaller pores.

- If one recognizes that the‘largefpores'desafurate‘first“during the
drainage process, it is easy to infer that the fractures"in afractured
porous medium will tend to remain dry under conditions of partial saturation :°
and that water will be held by capillarity in the finer pores of.the matrix: -
Moreover, because natural fractures are characterized by rough surfaces, the!"
aperture ‘of a fracture is seldom spatially constant and will be very small
near asperities. Thus one would expect that asperities will cause "islands":

of water film to be held within the fracture plane. Within a fracture that



is partially saturated in this fashion, the presence of a relatively contin-
uous air phase will produce an almost infinite resistance to liquid flow in
a direction parallel to the fracture. Therefore, as a:fracture begins to
desaturate, its effective hydraulic conductivity will decline abruptly by
several to many orders of magnitude. It is reasonable to expect that during
fracture desaturation the effective hydraulic conductivity of the fractures .
will rapidly become smaller than that of the porous matrix, which needs
fairly large capillary pressures to initiate desaturation.

An interesting consequence of this dramatic reduction in fracture
permeability is that water will tend to flow across fractures from one
matrix block to another instead of flowing along the fractures. Thus, one
may expect flow lines to circumvent dry portions of the fractures (Figure 1).
The fractures will thus introduce a macroscopic tortuosity in the system.

If this reasoning is sound, one may grossly quantify the effects of the
fractures in terms of an overall tortuosity factor, a task that may prove to
be somewhat simpler than characterizing a saturated fractured system as an
equivalent anisotropic medium.

In order to quantitatively evaluate the hydrology of a fractured
porous medium, three basic relations are required: (1) the relation between -
fluid pressure head (which is less than atmospheric under partial saturation)
and fracture saturation, (2) the relation between fluid pressure head and
fracture conductivity, and (3) the proportion of the fracture surface that
remains wetted. To date, no data are experimentally available for these
relations for the Yucca Mountain rocks. In order to gain insight into the
problem, it is necessary to develop these relations on theoretical grounds

using fracture roughness characteristics and surface tension characteristics.
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Figure 1. Conceptual model of partially saturated, fractured, porous medium
" showing schematically the flow lines moving around the dry portions
pfAthe fractures.



The capillary theory and flow law for rough fractures are the building blocks
with which we construct our development of theoretical formulae for fracture
saturation, hydraulic conductivity, and effective fracture surface area.
Capillary pressure determines the water-phase pressure at which a given
size fracture or pore will drain. From force balance, the height of rise

for an idealized parallel-plate, smooth-wall fracture withraperture b is

_ _ 2acos8
hy = -h = =p0= . (1)

With the gravitational acceleration g, wéter density p, surface tension a,
and the angle of contact © between liquid surface and solid surface re-
maining constant at ambient temperature, the capillary headlhc or the
pressure head h is inversely proportional to the aperture b. We use 6 = 0°,
a = 0.07183 kg/secz, p = 1000 kg/m>, and g = 9.80665 m/sec2 in our calcula-
tions. Using the capillary theory for a set of parallel, smooth-wall fractures
at given negative pressure head, h, fractures with apertures larger than that
deterﬁihed by Equatibn 1 will be drained (Evans and Huang, 1982).

If the capillary theory is applied to a real fracture with rough wall
and variable aperture, this equétiqn indicates that the sections of large
aperture will drain first as the magnitude of the capillary suction increases
(or the pressure head becomes more negative). Two important phenomena will
occur as the fracture desaturates§ (1) along the fracture surface, air
pockets will form and impede the flow, thereby reducing its effective
pefmeébilify for liquid flow, (2) normal to the fracture surface, the flow
between adjacent matrix blocks across the fractures will occur only through
the sections of the fracture that remsin saturated. Unsaturated portions

withiﬁ the fractures will then become barriers to liquid flow both along the

fractures and normal to the fractures between the adjacent matrix blocks.
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In this simple conceptualization, we ignore film flow on partially

saturated rock surfaces, vapor transport from evaporation-condensation

“across the liquid phases, drying processes of ‘isolated liquid pockets

surrounded by gaseous phases, and solubility of -air in water. It is -
possible to extend the quantitative statistical theory to be presented in
the next section to include these phenomena. However, for simplicity, we
will ignore these mechanisms and focus on the consequences induced by the
desaturation of fractures on the liquid fluid flow through partially
saturated; fractured, porous tuff.

STATISTICAL THEORY FOR PARTIALLY SATURATED FLOW IN ROUGH FRACTURES =

lhe scale of primary interest ln our study is'ot the crder ct the size
of matrix blocks separated by discrete fractures. The“much‘smaller scale |
around individual fracture asperities is not of practlcal lnterest for
flu1d flow assessment modellng, and a statlst1cal averaglng procedure,
applled over thlS smaller scale, is assumed to be sufflclent to take 1nto
account the controlllng mechanlsms governlng the desaturatlon of sectlons of.
1arger apertures and the resultant reductlon in fracture and matrlx flows.

The statistical descrlptlon of a rough-wall, varlable-aperture fracture
beg1ns with the aperture dlstrlbutlon function n(bo) for a fracture under
zero stress (Tsang and Witherspoon, 1981). Under zero stress, the fracture
surfaces are in point contact with zero contact area between the walls and
allﬂSpaces”betueen'the fracture surfaces can transmit: fluid.” The!aperture -
distribution function n(bg)  can be measured by scanning the open' fracture: -
surfaces and tracing the roughness profiles. The mismatch between the

roughness profiles between the two surfaces yields the aperture distribution

function n(bg) (Tsang, 1984).



For in situ fractures, the stress is greater than zero and the fracture
surfaces will be in contact. The fraction of contact area, w, of the total
area of the fracture at any stress can be expressed as

bc
w = f n(bo)db0 . (2)
o .

The averaging over sperture is equivalent to normalized areal integration
over fracture surface plane. All the portions of fracture with initial
aperture less than the contact cutoff aperture by, will be in contact. The
aperture under stress will be b = by -~ be in the open sections of the
fracture. The aperture distribution of the fracture under stress will be
denoted by f(b), which is

f(b) = n(b + bg) . : (3)

For fully saturated flow of water in the fractures, the cubic law,
derived from the solution (Boussinesq, 1868) of an idealized parallel plate
represéhtation of the fracture, is valid from experiméntal studies on a set
of értificially induced tension fractures of hardrock samples (Witherspoon et
al., 1980). For laminér flbw through a fracture with lateral width W and

with uniform aperturé b, the volumetric flow rate Q is

3
g L] 2-9. L] P—- L] 1
Q =W " 12 1 y (4)
where i is the hydraulic gradient and p is the fluid viscosity. For a
fracture with variable aperture, one may generalize the cubic law by replacing

the cube of the single value for the aperture by an average <b3>

bmax

<b3>1=f b f(b)db . (5)

b .
min
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If this generalization of the cubic law is assumed valid, then this average
determines the saturated conductivity of a varisble-aperture fracture. The
subscript 1 denotes the saturated condition S = 1;

The basic assumption in using <b3> is tna£ all the flow paths within a
fracture are parallel to the direction of flow (Tsang and Witherspoon,
1981). The tortu031ty of flow paths, 1ntroduced by the presence of contact
area forc1ng the flu1d to circulate around it, is not teken into account.
For fractures with a small percentage of contact area, the generalized cubic
law may be a good formula to describe the 'flow through a variable-aperture
fracture. Recent numerical experiments with random flow path network
simulations show that the generalized cubic law overestimates the fracture
conductivity for fractures with h1gh percentage of contact area (Tsang,
1984). The tortu051ty of flow paths within a rough fracture becomes an
important factorl1n deFermlnlng fracture conduct1v1ty and additional
resistance due to the.presence of large contaet area must be taken into
account. In this study, we assume that in the portions of the fractures
away from the immediate vicinity}of,contact areas, the average flow through
the open channels can stili‘be Gescribed by <b3>1.

As the fracture desaturates under a negative pressure head, h, the portions
of the fractures with'aperfure greater than the saturation cutoff aperture bg,

bs-:: - -z—ag—;ﬁ— , ‘ (6)

will be desaturated and unable to transmit liquid flow. The portions with
large apertures are likely to be located away from the contact areas, with
the water remaining around the'contaet;areas.“fFigﬁre'2,sngne schematically the

changes of liquid pheSerconfiguration on a fraétbre(eUrfaeemplanefduring the



Figure 2.
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0<T<|
Continuous
liquid phase
bW g
. —wW—1

T=0
Cut off

T=0
Discontinuous
liquid phase

XBL 842-9615 -7
Desaturation of fracture surface showing schematically the changes
in the fracture plane of liquid phase (shaded areas) configuration
from continuous phase at high saturation (top) to discontinuous
phase at low saturation (bottom) with liquid forming rings around
contact areas (blackened areas). At the cutoff transition (middle),
the ratio 7 of the liquid flow path Wg to nearest-neighbor

air-pocket separation W is zero (see Figure 3 for a unit area
around one contact).
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desaturation process. If the liquid phase is continuous (Figure 2, top),
the liquid can flow along the fracture plane with effective width of flow
determined by the width of the neck (Wg in Figure 2) between nearest-
neighbor dry areas (air pockets). The ratio of neck width, Wg, to the
nearest-neighbor distance, W, can be quantified as an effective phase-separ-
ation constriction factor to take int; account the blockage of flow by the
air.pockets and the change of flow paths in swinging around these dry
areas.

For the particular geometry‘showh iﬁ Figure 2, the phase-separation
constriction factor T = Wg/W can be determined by #He root of the
equation |

T4 (14 12) (%- - tan-1 (t)) -0 )

where 0 is the effective fraction of areazocéupied by the liquid water and
contacﬁvareas (see Figure 3 for the deviatién of this formula). if o is
less tﬁan't/h, the liquid phase.is discontinuous 6d‘thg:f;actﬁfé surféce and’
liquid cahnoﬁ flow along the fracture (Figure 2, bottom).n,Thergfore,'o =n/4
ortT =20 determinéé the cutofF for fracture flow for a partially saturated
fracture (Figure 2, middle). |

Within the liquid phase away from thé immediate vicinity of contact areas,

the effective average cube aperture is

b

S
. . S .t §

b . R Y S S PR P O
- min _ R R SRl P - .

The relative permeability for the fracture, defined as the ratio of conductivity

at saturation S to that at saturated condition S = 1, is therefore
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ws
tan 6 =y = T

W 2 2
S W
R = (—2‘) + (-f)
1 UMWy oo2 2meg8, 2
4 x 2‘(w3 X 2) + wR™ ( > ) = W

T+ (1+ rz) G% -‘tan'11) =0

XB8L842-9612

Figure 3. A unit area around a contact (blackened area) surrounded by
liquid' (shaded area) and air (clear areas in the corners). The
phase-separation constriction factor r is derived based on geometric
calculations.
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b5 - B
kr(h) =T — . (9)

<b.>1

>Thé'satufatiohvof the fraétufe iéJHetérMihed'by the fraction of ffagtufe
opening occupied by the liquid water. Since the averaging over abérthféé is
equivalent to areal integration over fracture surfacé:plahes; and. fracture volume

is the product of aperture and area, we have

<b>S .

<b>1

S(h) = 'l»(10)

Flow frqﬁ‘the matrix;ingo thgffractuge and_ﬁhrquh the fracture into the
next métrix block can occur onlyuin theAééturatea.sectidhs and in the contact
areas. Since séctiohs with apertures less than the ggtu:ation.cutoff aperture bg
will be saturated, the'effective f:act?qn of area fo;ifréciuré-mattix flow is

b
alh) = w + J/. (s . an

b_.
min

.Equations 9, 10 and 11 :can be used to determine kr,;s,;and o for.
any given aperture distribution. No data are available for tuff.to. determine
the aperture distribution functions n(bg) or f(b). Recent analysis of natural
granite fractures shéﬂéitﬁaipﬁ(bA) tékgg;oﬁf;'skégéd—éﬁabe; with long tails
toward :large apertures (Tsang,1984). A one-parameter distribution, the gamma
distribution, could fit the aperture measurements well.. The gamma distribution

is simply . - -



14—

1y -Bb
_ w2 o .
n(bo) =8 bo e (12)
With this simple functional form, analytic expressions for the fracture relative
permeability, kpy saturation, S, and effective fracture-matrix flow area, o,

can be derived:

6(4 + 5bc)
3> = ——5—C exp (-8b) (13)
B o4
1
ke(h) = T 2285
c

[za - exp(-Bbg) (24 + 24Bbg + 1282bg2 + 483bg> + s‘*bs‘*)]

+ Bbg 6 - exp(Bbg) [(6 + 6Bbg + 38Zbg2 + 83b53)]} (14)

1 .
s(h) = Wi{[z - exp(-8bg) (2 + 28bg + szsz)]

+8bg [l - exp(-Bbg) (1 + Bbs)]} ' (15)

o(h)

1 - exp(-Bbo-8bg) (1 + Bb, + Bbg). (16)
where the contact cutoff aperture, by, is determined by the root of the equation

1 - exp(-Bbc) 1+ Bbc) = W, (17)

The parameters 8 and bb are determined from available tuff properties discussed in

the next section.

PROPERTIES OF THE TOPAPAH SPRING MEMBER

To model fluid flow through partially saturated, fractured, porous tuff of
the Topopah Spring Member, we need data on discrete fractures, fracture network,

and matrix properties. The data used in this analysis are based on the data
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provided by SNL (Hayden, et al., 198}), supplemented by data iﬁ the
literature. For_thpse properties needed.for:the simulation butAnot\yet
available, the.fp:mplae p;esented in this rePort are used. UAl}.paramgters
in the fprmulae‘apg determined by the data. The formulationvand statistical
theory in ;his report can agcqmmodate detailed fracture and matrix data, and

no adjustable parameter needs to be introduced in the simulations.

Matrix Data
The data are mainly from laboratory measurements of core samples from
different boreholes at Yucca Mountain:
" o matrix séturéted permeéBility 3.263'x 1017 n2 or"
3.2 x 10-8 cm/sec from borehole USW-GU3, = - '
o matrix saturation 0.8 or Bﬁ%,'Fréh boreholes USW-GU3 and ‘USW-G&,

o ‘matrix characteristic curve -

(1-5 -
(1-5) 1 "BLis  Led 0 (8)
S=(1- —_—
AU M E L] P S _ L
. 0 matrix relative permeability . 4 _
,k(s) . 5 B - L. . i . A . . o
m 7 atB1 A2 Y. | Janl B 2 Pt
= [1 + |an|B 1 - |—— (19
k(1) Im,,‘~.|,] 1 [1;+:JAh[B o - ?
‘- where Spo= 9.6 x 1074 . . o
A = 7:027 x 10-3.1/m
B = 1/0.45 = 1.818
A = 1 - 1/8 = 0.55 .
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These values were obtained by a least square fit (Peters and Gauthier, 1984)

to the empirical data from borehole USW-GU3 with the equation used by van
Genuchten (1980). In our simulations, the matrix saturation will vary

between the fully saturated condition, S = 1, and the in situ matrix saturation,
S = 0.8, a range far away from the residual saturation, S,, which usually

is poorly measured and poorly fitted. The relative permeability formula

is derived from the characteristic curve formula by van Genuchten (1980)

following the theory of Mualem (1976).

Fracture Network Data

Fracture patterns, orientations, and spacings have been measured in bore-
hole cores and from surface mapping. The fracture data of the Topopah Spring
Member (Spengler and Chornack, 1984) from borehole USW-G4 include:

o apparent fracture frequency, f = 4.36/m, and

o distribution of fracture inclination (dipping angle between 0° and 90°)

as shown in Figure 4.

Figure 4 shows that the fracture inclinations in densely welded Topopah
Spring Member may be grouped into two catagories. 56% of the fractures have
steep dipping inclinations (>45°) and can be classified as nearly vertical
fractures. 44% of the fractures have low dipping inclinations (<45°) and may
be classified as nearly horizontal. The averages of the cosine of the dip

angles for each group in the distribution of Figure 4 are:

0.2689 (20)

<COS>y
<COS>y = 0.9183 . (21)
The subscripts V and H represent the nearly vertical and nearly horizontal

group, respectively. These cosine averages, together with the overall
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Figure 4. Inclination of fractures in densely welded Topopah
Spring Member based on compilation of 1434 fracture
data (Spengler and Chornack 1984).
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apparent fracture spacing of f = 4.36/m in borehole USW-G4, are used to

determine ‘the spacings of the nearly vertical and nearly horizontal fracture

sets:
<C0$>v
DV = -—?——- = 0.2203 m (22)
<CUS>H
DH = —f._- = 0.47B6 m . (23)

These. spacings are used in the simulations to determine the dimensions and
size of the matrix blocks partitioned by the fractures.

Ffom surface mapping, tﬁére.are two nearly vertical fracture sets dipping
steeply (60° - 90°), one strikés north-northwest, one strikes north-northeast
(Scott et al., 1982). The NNW set has higher density but may tend to have
smaller apertures than those with NNE trends. The regional stress field is
oriented with the maximum horizontal compressive stress in the NE direction
(Carr, 1974). Data are not available to distinguish between the hydraulic
properties of the two sets. We assume that the contributions from each set to
the equivalent continuum saturated conductivity (cube of aperture divided by
spacing) are equal.; We also assume that equivalent fracture continuum
conductivity is isotropic. All these simplifying assumptions about the
fracture network can be relaxed easily when additional and more detailed
field data become availabie.

Along a given direction in three dimensional space, two fracture sets

contribute to the equivalent continuum conductivity, kf. We have

k <b3>

f = e—
2 T 120 (24)

for each set with spacing D.
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The interconnection of fractures inréha'welded thf:ia'damonstrafed |
by hydrologic tests near Yucca:Mountain,-ﬁhiaﬁwahows~£ha£'the'Qolumé of
water removed during pumping tests.is ﬁUCH graatar than the volume of
the fractures close to the drill holes (Taaraaraan,.i§83)1 ‘The several
orders of magnitude diffefance between the labaratary:measurémanéa:6f
matrix pérmaabilify’and the field measureménts of in 8ita”aerMeabiiity,rm‘
discussed in the next paragraph supporta the assumptlon that fractures form
a continuous, connected network that prov1des an effective pathway for fluid

movement under saturated conditions.

Fracture Permeaaility

The data base for fracture paiheaailityiis;faken from results of a
Performance Assessment Working Group (PAWG) meeting held in San Francisco on

06/23-24/83 (Tyler, 1983):

o.  fracture continuum saturated permeability kg =.1.0197 x 10'11_m2

or 10-2 cm/sec (range 10~2 - 10-4 cm/sec) °

This fracture saturated cohddctiQifylis deduced from well testing in well
J3-13 anaqié'aSSuaed‘to:rapreaahfjtﬁa'eqaiaalaht ffactufe/éoniinﬁﬁﬁj(s. |
Sinnock, SNL, personal communlcatlon, 10/10/83 Thordarson, 1983) ‘Well h
3-13 is located in a low-standlng structural block w1th part of the Topopah
Spr1ng Member saturated. " The h1gh in situ conduct1v1ty of the Topopah

Spring Member in Well 3213 may 'be caused in part by'the pféSenca of faults
and associated fractures. In the NTS;;ﬁighiy'faabturad: densely welded =~
tuffs have effective hydraulic‘éohaaatigities that are appfoximatéiyr5 or 6
orders of magnitude larger than the matrix hydraulic conductivities (Winograd

and Thordarson, 1975). However, knowledge of hydrologic properties of
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unsaturated unit at Yucca Mountain is incomplete. Preliminary analysis of

air permeability tests on borehole UE25A-4 indicates that the densely welded
Topopah Spring Member may be more conductive than the values quoted by
Winograd and Thordarson (1975) (P. Montazer, USGS, personal communication

in Environmental Assessment Planning Meeting, 10/25/83). We tentatively

chose 10~2 cm/sec as the saturated value of hydraulic conductivity k¢ of

the fracture continuum. This parameter is one of the most important hydrologic

data in determining the flow field at Yucca Mountain.

Discrete Fracture Data

The data for fracture surface roughness and aperture distributions are
being measured, but not yet available. We used an indirect data from

borehole USW-G4 core analysis (Spengler and Chornack, 1984) that indicates:
o Fracture coatings w = 12% with zeolites, clay, calcite.

fhe fracture coatings of 12% are assumed to correspond to the fraction
of in situ contact area. The identification of fracture coating with
contact area is a novel assumption. Further study will examine the credibility
of this identification. The contact area canlalso be determined independently
with Flow—stress-fracture displacement measurements. For granite and
basalt, the fractional contact aréas at 20 MPa normal stress are in the
range of 15 - 20%. (Tsang and withe:spoon, 1981; Iwai, 1976). The fractional
contact area of 12% for tuff, based on the assumption that hydrochemical
alterations occur in contact areas which remain at continuous contact with

water for a long time, may be a reasonable estimate.
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FRACTURE SATURATION, PERMEABILITY AND EFFECTIVE FRACTURE-MATRIX FLOW AREA

With the available data and explicit formulase derived for the gamma
aperture distribution, the partially saturated fracture properties as functions
of negative pressure head can be calculated and used in the TRUST program. In
summary, the calculational steps are:

(1) With w = 12%, Bb, is determined by Eq. 17.

(2) With ke = 1.0197 x 10~11 n2 = 10~2 cm/sec, and spacing Dy, Dy
of Eqs. 22, 23, the B's are determined by:

(4 + Bbc) exp(-Bbc)

g3 = Bk (25).
The results are

By = 1.041 x 10% 1/m , (26)

By = 0.8039 x 104 1/m . - (27)

The aperture distribution functions with these distribution parameters
are plotted in'Figure 5. The contact cutoff aperture, by, is derived to
be 0.05707 mm for the vertical fractures and 0.07391 mm for the horizontal

" fractures. The average apertures, defined as the cubic root of the cube

averaye, [<b3>1]1/3, are

by = 0.2380 mm -~ - - o (28)

by =0.3082mm . (29)

(3) Witﬁybs given by Eq. 6, and the formulse of Eqs. 14, 15 and 16, the
frgcthp‘gaturétion, diS@?eFe f;actyreipermgabiléty,'krS?/12,7€nd ‘
effecti?e ffacfﬁre-matri* flow area can be QAIE;iatea as functions
of negative pressure head. These relationships are plotted in
Figures 6, 7, and 8. The matrix saturation of Eq. 18 and permeability

of Eq. 19 are also plotted for comparison.
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Figure 6 shows that fractures can desaturate easily with a small
suction of -10-1 m. " The saturation in the matrix w111 remain high. If
the in situ matrix saturation is 0.8, then the negative pressure head in
Topopah Spring Member is -111.6 m. With such a large suction, the fracture
saturations will be essentially zero.

Figure 7 shows that the fracture permeabilities are very sensitive to
suction. If fully saturated, the permeability of each discrete fracture is
8 orders:of magnitude greater than the matrix permeability._'The equivalent
fracture continuum permeability is 3.1x10° greater than the patrix perne-
ability. With small suctions in the range -1O°1yto;3101‘m,fthe discrete
fracture permeabilities decrease drastically.  ‘The ﬁatrik permeability
decreases much more gently as the pressure head becomes more negative.. Near
fully saturated conditions, the fractures will control the fluid flow. As
: desaturation proceeds and the fracture: permeability of each discrete fracture
become less than the matrix permeability, the matrix will control the flow.
For in situ suction of -111.6 m in the Topopah Spring Member, fracture flow
is negligible and matrix flow dominates. |

Two sets of discrete fracture permeabilities are plotted in Figure 7, one
with the phase-separatlon constriction factor T of Eq. 7 taken into account,
one w1th T =1. "The phase-separatlon constriction factor takes into account
the effects of blockage of flow by air pockets, the flow-path distortion
around the ‘air pockets and the presence of a discontinuous liquid phase with
fluid remaining stationary around fracture surface contacts. The cases with

=1 1gnore the blockage effects and take 1nto account only the generalized .

cubic law fcr fracture flow.‘ Nith T,_ 1, we overestimate the fracture
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permeabilities gnd igno;e the zero fracture permeability cutoff. The
effects of thié phase-separation constriction factqr'will be discusse& in
the simulation results.

The matrix flow also will be impeded when it crosses the fractures.
The matrix-fracture flow is limited by the available area in the fracture
surfaces for fluid to_transmit’through. Figure 8 shows that the effective
fracture-matrix floy area decreases and quickly approaches the limiting
contact area fraction, w, as the pressure head decreases. The.effective
fracture-matrix flow area reduces the available area for matfix flow across.
the matrix-fracture interfaces. With liquid flow from one matrix block to
another restricted to cross the interfaces through reduced areas, the flow
lines will bunch around asperities and flow paths will be more tortuous in a

partially saturated, fractured porous medium.

TRUST COMPUTER PROGRAM

To implement the éonceptual model and statistical formulation, the
computer code TRUST (Narasimhan et al., 1978) has been updated in several
respects. Additional  characteristic curves and relative permeability
curves were programmed. The van Genuchten (1980) formulae'are needed to
simulate the matrix blocks. The gamma distribution formulae will be used
for the discrete fracture grid blocks. 'Also included are the hyperbolic
characteristic curves used by Pickens et al. (1979).

The areas between neighboring nodes are multiplied by a new effective
area factor to account for the changes of flow areas in fracture-matrix
connections. Two options are programmed for the effective area factor: the
gamma distribution effective area formula or any tabulated data. If experi-

mental data on fracture aperture distributions are available, it may be more
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convenient to integrate numerically over the measured distribution and
generate tabulated data for the effective fracture-matrix flow area.

With the use of extended memory, the modeling capabilities are
increased to handle 2500 nodes and 5000 connections. All the arrays which
depend on the nodal numbers and connection numbers are grouped together in
the main program so that these arrays can be easily re-dimensionalized.

In addition to the efficient iterative solver, TRUST also can use the
MA28 package for direct solution of the linear equations with a sparse
variant of Gaussian elimination (Duff, 1977). All arrays for the MA28
routine are in large core memory. The direct solver is also used in the new

version of the TRUST program to solve the steady fluid flow field.

FRACTURED TUFF COLUMN SIMULATIGONS

A test case was set up to simulate the fluid flow in partially saturated,
fractured, porous tuff. Simulations of vertical drainage within the Topopah
Spring Member were performed. Two vertical fracture sets and one horizontal
fracture set partitioned the tuff formation into blocks as shown in Figure
9. Figure 9 shows 5X5X3 blocks with each block's dimension being 0.2201 m x
0.2201 m x 0.4783 m. The fracture apertures, 0.2380 mm for the vertical
fractures and 0.3082 mm for the horizontal fractures, are emphasized
100-fold in Figure 9. To simulate vertical drainage, only one vertical
column bounded by four vertical fractures needs to be modeled. By symmetry,
the midplanes of the bounding vertical fractures are no-flow boundaries.

The horizontal fractures, normal to the direction of general flow, are

explicitly simulated. On the local scale, lateral flow is allowed between

"
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the vertical fractures and the matrix blocks. The horizontal cross section
of the column is further partitioned into 6 nested elements and the vertical
cross section of each block is sliced into 9 sections (Figure 10). The
partition of horizontal nested elements is similar to that used in the MINC
program (Pruess and Narasimhan, 1982) without grouping the matrix elements
from different blocks together. The grid elements are small near the
fractures and large toward the middle of the matrix block as shown in Figure
10 and tabulated in Table 1. 203 elements and 370 connections are used in
the grid.

Thé conductances at the interfaces are determined by the harmonic
means of the permeability values of the neighboring nodes weighted by the
distances from the node centers to the interfaces. For the connections
between the fracture and matrix, the distances from the fracture nodes to
the interfaces are set to zero so that normal flow from matrix Elocks to
fractures is controlled by matrix permeability. The available area for flow
across the fracture-matrix interfaces is determined by fracture saturations.
At the limit that the fractures are completely desaturated, the available
area is the contact area between adjacent blocks for matrix flow from one
block to the next. The outermost matrix node for one block is connected to
the fracture and is not directly connected to the matrix node in the next
block in the simulations.

The upper boundary is a no-flow boundary. The lower boundary is a
constant suction boundary. The guction head is maintained at -111.6 m, the
in situ suction. Initially the system is fully saturated with pressure
determined by hydrostatic equilibrium. The potential everywhere is zero
and fluid is stationary. At t = OF, the negative suction head at the

lower boundary begins to induce transient changes in the fluid flow field
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. C Figure 10. Discretization of one matrix block.
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Table 1. Spacings of grid used in partially saturated,
fractured, porous tuff simulations

Node Index I, 8z2(m) Material
1,11,21 4.6325 x 10~2 Tuff Matrix
2,12,22 1.9146 x 10-2 "

3,13,23 4.7866 x 10-2 "
4,14,24 9.5732 x 10~2 "
5,15,25 1.4360 x 10~1 "
6,16,26 9.5732 x 10~2 "
- 7,17,27 4.7866 x 10~2 "
8,18,28 1.9146 x 10-2 "
9,19,29 4.6325 x 10-3 "
10,20 3.8024 x 10-%4 Horizontal Fracture
Node Index Iyy Axy(m) Material
1.19 x 10-4 Vertical Fracture

oaownpuUN-=20

4.3362 x 10-4
2.2394 x 10-3
5.8140 x 10-3
1.27614 x 10-2
2.3666 x 10-2
1.3033 x 10-1

Tuff Matrix
n
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throughout the fractured, porous tuff column. The TRUST program automatically
controls the time steppings and iterations of nonlineér fracture and matrix .
properties. For the full simulations of the fracturea;matrix{drainage over
a time span of 10 years the program requfreé 42 CPU sec on Lawrence
Berkeley Laboratory's CDC7600 computer.

 Five cases of flow in fractured, porous tuff were studied: (1) a fractured,
porous column with the phase-separation constriction factor taken into
account (QS_T(h) £1) (2) a fractured, porous column without phase-separation
constriction factor (t = 1), (3) a matrix column without fractures, (4) a
discrete fracture network without matrix and with T féctor and (5) a discrete
ffacture network without matrix and yiﬁhout T factor.“ The results are
presented in plots of pressure head, satﬁration, perméability, effective
fracture-matrix flow area, and Darcy velocity versus time at different
locations (Figures 11-16). The locations of interests are the middle of the
matrix block (point A), the middle of the vertical fracture (point B), the
middle of the upper horizontal fracture (point C) and the middle of the
lower horizontal fracture (point D) as shown in the inserts of the plots.
We also plofted the velocities at the matrix-fraeture interfaceé at tﬁeée

mid-points and along the fractures at the fracture intersections.

Pressure Drop

Figure 11 shows the pressure drop at differeﬁéslacations in response to
the négative suction at the lower boundary. The pfeésure heads decrease
from the initial positive hydroétatic pressure and become negative at 10->
yéars for Case 1 and the pressufe heads decrease more gradually at earlier

times for Case 2. After the pressure drop at 10'5'Year5'for Case 1, a small
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but noticeable increase ﬁn pressufe is observed in the simulated results ’
before large decreases at later times. ‘
As pressures becomé negative following initial desaturations, the
. pressure, changes are controlled mainly by the matrix,{ Cases 1, 2, and 3 afé

essentially the same after 10-2 years. Theflower fracture, Point D,

[ 3%

is closer to the suction boundafy and has more negative pressure thaﬁ the -
higher elevation points. At the same eleva@ion, the matrix pressure at
Point A and the vertical fracture pressure at Point B are approximately;thg
same. Therefore, pressure changes can be simulated with métrﬁx properties
is not of interest.

Very different results are obtained if the changes in a fractured-
porous system are simulated only»through the discrete fracture network
(Cases 4 and 5 in Figure 11). :Taking into account the phase-separation
constriction effects (Case 4), the fractures remain at pressures near zero
during the entire simulation period of 10° years. If the phase-separation
constriction factor is not taken into account (Case 5), the fractures will
respond to the negative suction, but at extremely long timés as a result of
the highly ﬁonijnear fra¢§9pé characteristic curves. Without tbé‘bregéhce
of_matri# blocks to acf as flow channels for fluid to change prgésdres, |

unrealistic results are obtained.

R Saturation Change

L1 XY

Figure 12 illustrates the saturation cﬁanges?at different points

for the five cases. In Cases 1:and 2 for the fractured, porous tuff column,
the fracture saturation drops sbruptly at eérly times. The matrix changeé
more slowly from the initial fully saturated condition of S =1 to the '

final ambient saturation of S = 0.8, The desaturation of fractures are
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sensitive to the phase-éeparation-constriction facﬁor. In Case\1 and Case 4’
with 0 T(h) <1, the saturation changes at different fracture locations
occur essentially at the same time while for Case 2 and Case 5 with T = 1,
the upper horizontal fracture (Point C) desaturates first, followed by '
desaturation at vertical fracture (Eoint Bj of middle elevation and the lower '
horizontal fracture (Point C) desaturates last. Case 4 in Figure 12 showé
that fracture saturation does drop from S = 1 to nearly S = 0 with the small
pressdre_changes illustrated in Case 4 of Figure 11.

The rates of the simulated saturation changes shed light:on the feés-
ibility of laboratory studies of fracturea-tuf% broperties. For the
1.44 m long tuff column simulated.in this analysis, alchange in matrix
saturation of A4S = 0.2 requires 102 to 1 year for the matrix to respond
to the suction on the lower boundary. If the experimeﬁts vere carried out
over shorter time spans, the observation of saturation changes would be
unreliable. On the other hand, saturation changes in the fractures will
occur very abruptly. Therefore, instruments to detect saturation changes

must have high resolution to detect the desaturation processes.

Permeability Change

Figure 13 shows the permeability changes at different points for the
five cases. The permeability changes illustrate even more drastically than
the saturation changéélﬁhe contrast in behavior between fractures and porous
matrix. Case 1 indicatés that fraciures wiil stop transmitting fl&id 10-> |
years after the suctioa beginstas the fracture pefmeability vanishes. The .
matrix permeability changes by less than an order;of magnitude from the

initial condition of S = 1 to the final condition of S = 0.8. Initially the
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fracture permeabilities of each discrete fracture are ﬁore than 8 orders of
magnitude greéter than the matrix pgrmeability. "The fracture permeability
changes are sensitive to the'bhaSe-séparation constriction factor as shown in
the difference between Case 1 with 0< 1 (h) <1 and Case 2 wifh't = 1. For
Case 2, the fractures will temain'conductive at the‘final gmbiént conditions
with the permeabilities moré than 4 orders of magnitudé smaller than the
matrix permeability. :However, Case 2 witht = 1 does not acqbunt for the
possibility that the liquid phase may become discontinuoﬁs, thereby blocking -

flow.

Effective Fracture - Matrix Flow Area Change

[

Figure 14 illustratés thé changes in fhe effectiQe area at the midpoints
of fractures for flow across the matrix-fracture interfaces for Case 1 and
Case 2. As the fractures desaturété; the wetted”afearbhnfﬁe fracture
surfaces decreases. At complete deééturétion; oniy the chtact area, which
isw = 12% of fracture surface in-these simulatiéns, is évailable for fluid
flow from one matrix across f;gctures to the next matrix block. This
reduction in effectlve fracture-matrix flow area may 31gn1f1cant1y change

the actual flow paths for f1u1d movement.

Darcy Velocity Chg;ges in Fractures

Figure 15 111ustrates the changes in Darcy ve1001t1es at the fracture
intersections for Case 1 and Case_Z.;,Before the fractures desaturate,
fluid mainly flows downﬁé:d aiong tﬁé-vertical fractugés. " The downward
velocity increases répidly and peaks just before the fractures desaturate.
After the tran51t10n to matrlx flow, flu1d veloc1t1es 1n fractures are
essentially zero. The flows in the fracture at different locatlons aré

sensitive to the phase-separation constriction factor. In Case 2 witht =1,
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the fluid moves more easily through the fractures before desaturation thaﬁ
in Case 1 with 0< t(h) <1. The differences in velocities at different
locations for Case 2 .are more pronounced than for Case 1. The fluid in
horizontal fractures moves towards the vertical fractures before they are
drained. Just before vertical fracture flow stops, horizontal flow peaks.
This is more evident in Case 2 than in Case 1. This again indicates that
fracture flow in the transition from saturated to desaturated condition is

sensitive to the details of fracture-flow characteristica.

Darcy Velocity Changes in Fracture-Matrix Interfaces

Figure 16 illustrates- the changes in Darcy velocities across the
fracture-matrix interfaces at the mid-points of fractures. The fracture-
matrix flow velocities are much smaller than the fracture flow velocities in
Figure 15. Before the fractures desaturate, the fluid in the matrix flows
toward the fractures to supply the fluid in the fractures which is drained
rapidly by the suction. At the saturated-desaturated transition, these
matrix-fracture flows change drastically. After the transition, the fluid
mainly moves vertically from upper matrix blocks, across horizontal fractures,
and into lower matrix blocks. The horizontal flow also reverses direction
from a initial matrix-to-fracture flow to a small but significant fracture-
to-matrix flow. After the transition, the fracture no longer transmit fluid
and become a small fluid storage source to feed the matrix blocks as they
drain.

After the fractures desaturate, the Darcy velocities from one matrix
block across the fracture into the next matrix block are essentially the
same as those ca}culated by a matrix-only model, aslillustrated in Case 3,

Figure 16 for a tuff matrix column without fractures. The agreement among

(3]
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the velocities in Cases 1, 2, and 3 strongly indicate that the fluid flow
field of a partially saturated fractured, porous formation can be simulated
without taking fractures into account, if the transition region from saturated

to unsaturated condition is not of concern. PR

SUMMARY . <

From the cases simUiated fof a fractured, porous tuff column with
discrete fractures and porous blocks explicitly taken into account, the
quasi-steady changes of the fluid flow field of a partially saturated,
fractured, porous system could be simulated approximately without taking
fractures into account. However, the highly transient changes in flow from
fully saturated conditions to partially saturated conditions are extremely
sensitive to the fracture properties. On the one hand, the ambient, steady-
state flow field of a partially saturated, fractured porous tuff system
probably can be understood without detailed knowledge'of the discrete
fracture network properties. Under large suctions, thé porous matrix is the
main conduit for fluid Flbw. On the other hand, detailed information on
fracture network geometry and discrete fracture characteristics is needed to
fully understand the responses of a fractured-porous system to perturbations
such as an extreme flood event, which may cause transitions between partially
saturated and fully saturated conditions.

Only one set of material properties has been simulated for the Topopah
Spring Member. Not all of the required properties for simulations of the
fractured tuff are available;, Wé have developed a statisfical theory and 3
have deriQed explicit forﬁﬁlae for‘the frécture characteristibs based on
well established capillarity theory and recent advances in rough fracture

flow laws. The input data for the fracture properties, such as the spacing
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and the aperture distribution parameters are der1ved from avallable fracture
data. Some of the s1mp118t1c assumptlons about fracture propertles can be
easily modified as more data become avallable. We expect that we w111 gain
add1t10nal phy81ca1 1n31ght as we study more reallstlc 81mu1at10ns.

We believe that our basic conceptual model based on an extens1on of soil
physics of heterogeneous systemsfto,a fractured,:porous medium, is sound.
Some of the detailed descriptions and assumptions, such as the reduction of
the effectlve fracture—matrlx flow area and the ex1stence of a d1scont1nuous'
11qu1d phase on the fracture surfaces, should become better establ1shed as
experimental verlflcatlon and more detailed numer1ca1 51mu1at10ns are '{
obtained. The tools needed for detalled numer1ca1 s1mulat10ns are available.
The logical task now is to closely couple these capab111t1es and modellng
exercises with experimental 1nvestlgatlons to better understand and assess
the impact of airepository on the_bydrology‘of‘the partially saturated

fractured, porous tuff formations.
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