

EFFECTS OF PELLET EXPANSION AND CLADDING HYDRIDES ON PCMI FAILURE OF HIGH BURNUP LWR FUEL DURING REACTIVITY TRANSIENTS

> T. Fuketa, T. Sugiyama, T. Nakamura, H. Sasajima and F. Nagase Japan Atomic Energy Research Institute

October 21, 2003 Nuclear Safety Research Conference Washington, DC, USA This presentation covers;

✓ Recent results from pulse tests in the NSRR
 OI-10 and -11 with MDA and ZIRLO[™], respectively

- Peak hoop strain at cladding failure in the NSRR experiments
- Tube burst test, ring-tensile test and NSRR test with unirradiated, artificially-hydrided cladding
- Future NSRR experiments including tests with fuels shipped from Europe and with newly developed high-temperature capsule

Transient measurements:

- Cladding surface temperature
- Coolant Water temperature
- Rod internal pressure
- Capsule internal pressure
- Fuel stack elongation
- Cladding elongation
- Cladding hoop strain
- Water column velocity

NSRR Experiments with irradiated LWR fuels

3

Test fuels	Fuel burnup (MWd/kg) 10 20 30 40 50 60					Number of tests	
PWR (14x14, 17x17)							26
BWR (7x7, 8x8)							16
ATR/MOX] []			5
JMTR pre-irradiated							22

- Hydride-assisted PCMI failure
- Fuel dispersal and mechanical energy generation
- Large rod expansion and fission gas release
- Possible MOX effect (Role of Plutonium agglomerates)

Tests Ol-10 and Ol-11

PWR 55 GWd/t lead-use fuel rods (Ohi unit 4)

Test ID	OI-10	OI-11			
Fuel type	PWR 2	PWR 17x17			
Cladding material	MDA	ZIRLO			
Initial enrichment	4.5%	4.5%			
Pellet grain size (µm)	~25	~8			
Operation period	4 cycles from M	Mar.97 to Mar.02			
Test rod sampling position	2nd span from the top				
Test rod burnup (GWd/t)	60	58			
Average / Max. heat rates (kW/m)	15.6 / 19.5	15.2 / 20.3			
Heat rate in last cycle (kW/m)	13.0	13.2			
Cladding oxide thickness (µm)	~30	~30			

Rod of OI-10 is 10 mm shorter in total and active lengths.

Tests OI-10 and OI-11

Test OI-11 - Post-pulse rod appearance -

Bottom

Fracture close to the welding position

Axial crack over the fuel stack

8

Тор

Tests OI-10 and OI-11 - Summary 1/2 -

- ✓ High burnup PWR fuels with new cladding were subjected to the NSRR experiments. Test OI-10 rod has an MDA (Mitsubishi Developed Alloy, Zr-0.8Sn-0.2Fe-0.1Cr-0.5Nb) cladding and Test OI-11 rod has a ZIRLO[™] cladding.
- A test rod of the OI-10 has a burnup of 60 GWd/t and cladding oxide thickness of ~30 µm. The fuel was pulseirradiated with conditions of 104 cal/g (0.44 kJ/g) for a peak fuel enthalpy and 5.6 ms for a pulse-width. The fuel remained intact in the OI-10.

Tests OI-10 and OI-11 - Summary 2/2 -

- A test rod of the subsequent OI-11 has a burnup of 58 GWd/t and cladding oxide thickness of ~30 µm. The fuel was tested with conditions of 157 cal/g (0.66 kJ/g) for a peak fuel enthalpy and 4.4 ms for a pulse-width. The Test OI-11 resulted in fuel failure, pellets fragmentation and mechanical energy generation. Transient records showed that a fuel enthalpy at a time of failure was higher than those observed in previously tested fuels with Zircaloy-4 cladding and exceeded 120 cal/g (0.50 kJ/g).
- Results from the two tests, no failure in the OI-10 and the higher failure energy in the OI-11, reflects the better performance of these new cladding materials in terms of corrosion, the thinner oxides and accordingly lower hydrogen content generated during irradiation in the PWR.

Transient Hoop Strain Measurement

- Transient hoop deformation due to PCMI in early phase of RIA transient was measured with strain gauges on irradiated fuel rod.
- ✓ The hoop stain was about 0.4% at fuel enthalpy of about 80cal/g.

Cladding strains at failure

Peak strain measured in 70 to 80 cal/g was below 0.4%.
Residual strain of failed cladding was ~0%.

The deformation resulting in cladding failure in early phase of transient can be explained only by thermal expansion of fuel pellets

Tests with artificially-hydrided cladding

Radial cross-section of artificially hydrided cladding samples

Uniformly Hydrided Sample

Sample with Hydride Rim

Transient histories of sample internal pressure during tube burst tests

15

1.9 MPa/ms room temperature

Residual Hoop Strain as a function of Hydrogen Concentration

Tube Burst Test

16

Tube burst and ring-tensile tests with artificially-hydrided cladding

Hydrogen concentration (wtppm)

Tube burst, ring-tensile and pulse tests with artificially-hydrided cladding

Tests with artificially-hydrided cladding Summary

- 20
- Influence of hydriding of Zircaloy claddings on their failure behavior under RIA conditions was examined in out-of-pile mechanical tests and pulse tests with un-irradiated, artificially-hydrided claddings.
- Results suggest that strong influence of the hydrides but also irradiation induced embrittlement.
- In the mechanical tests, failure limits in hoop strain decreased significantly at increased hydrogen concentration. Sensitivity to the hydrogen content was larger under bi-axial stress conditions in tube burst tests and in pulse-irradiation tests.
- The sensitivity also varied depending on cladding materials. Recrystalized Zircaloy-2 cladding of BWR fuel rods generally shows larger failure strains than those of stress-relieved Zircaloy-4 cladding of PWR fuel rods. Stronger influence of hydrides, however, was observed in the BWR cladding than in the PWR cladding.
- Cladding failure limits under RIAs should be examined under bi-axial stress conditions which simulate cladding deformation due to PCMI.

Fuel rods to be tested in FY2004 to 2007

0	1
Ζ	
-	

Specification		Power plant	Burnup*	Cladding	Number of RIA test		
Fuel	Reactor	Туре	(country)	GWd/t	Cladding	RTRP**	HTHP***
UO2	PWR	17×17	OI, unit 4 (Japan)	~60	NDA	1	0
			Vandellos (Spain)	74	MDA	2	1
					ZIRLO	1	0
			McGuire (USA) R2 (Sweden)	71	NDA	1	0
			Graveline (France)	66 - 69	M5	1	1
	BWR	10×10	Leibstadt (Switzerland)	63	Zry-2	1	1
MOX	ATR	-	Fugen (Japan)	43	Zry-2	1	0
	PWR	14×14	Beznau (Switzerland)	59	Zry-4	1	1
				44	Zry-4	1	0
	BWR	8×8	Dodewaard (Netherlands)	46	Zry-2	1	0
* Seamen	Segment average for OI, Fugen and R2, rod average for the others.					11	4

* Segment average for OI, Fugen and R2, rod average for the others.

** Room-temperature/pressure. *** High-temperature/pressure.

Temperature effect on cladding ductility

 Influence of hydrogen concentration and temperature on the cladding ductility High-temperature capsule in NSRR experiments

22

High temperature capsule

Test fuel rod

- Rod length ~120 mm
- Stack length ~50 mm

Coolant water

- Stagnant
- 286 deg C, 7 MPa (BWR conditions)

Instrumentation

- Cladding surface thermocouple
- Coolant thermocouple
- Capsule pressure sensor

NSRR Test Schedule

NSRR experiments

Test at higher temperature Coolant water temperature From 20 (room temp.) to 90 deg C 286 deg C