

EFFECTS OF PELLET EXPANSION EFFECTS OF PELLET EXPANSIONAND CLADDING HYDRIDES ON PCMI FAILURE OF HIGH BURNUP LWR FUEL ON PCMI FAILURE OF HIGH BURNUP LWR FUELDURING REACTIVITY TRANSIENTS DURING REACTIVITY TRANSIENTS

> T. Fuketa, T. Sugiyama, T. Nakamura, H. Sasajima and F. Nagase **Japan Atomic Energy Research Institute**

October 21, 2003 Nuclear Safety Research Conference Washington, DC, USA

This presentation covers;

1

 \checkmark Recent results from pulse tests in the NSRR OI-10 and -11 with MDA and ZIRLO™, respectively

- \checkmark Peak hoop strain at cladding failure in the NSRR **experiments**
- \checkmark Tube burst test, ring-tensile test and NSRR test with unirradiated, artificially-hydrided cladding
- ✔ Future NSRR experiments including tests with fuels shipped from Europe and with newly developed high-temperature capsule

Transient measurements:

- Cladding surface temperature
- Coolant Water temperature
- Rod internal pressure
- Capsule internal pressure
- Fuel stack elongation
- Cladding elongation
- Cladding hoop strain
- Water column velocity

NSRR Experiments with irradiated LWR fuels NSRR Experiments with irradiated LWR fuels ³

- 9 **Hydride-assisted PCMI failure**
- \checkmark **Fuel dispersal and mechanical energy generation**
- \checkmark **Large rod expansion and fission gas release**
- 9 **Possible MOX effect (Role of Plutonium agglomerates)**

Tests OI Tests OI-10 and OI 10 and OI-11 ⁵

PWR 55 GWd/t lead-use fuel rods (Ohi unit 4)

Rod of OI-10 is 10 mm shorter in total and active lengths.

Tests OI-10 and OI-11

Test OI-11Post-pulse rod appearance -

Bottom

 \mathbb{G} Fracture close to the welding position

Axial crack over the fuel stack

Tests OI-10 and OI-11 -Summary 1/2 -

- \checkmark High burnup PWR fuels with new cladding were subjected to the NSRR experiments. Test OI-10 rod has an MDA (Mitsubishi Developed Alloy, Zr-0.8Sn-0.2Fe-0.1Cr-0.5Nb) cladding and Test OI-11 rod has a ZIRLO™ cladding.
- \checkmark A test rod of the OI-10 has a burnup of 60 GWd/t and cladding oxide thickness of \sim 30 μ m. The fuel was pulseirradiated with conditions of 104 cal/g (0.44 kJ/g) for a peak fuel enthalpy and 5.6 ms for a pulse-width. The fuel remained intact in the OI-10.

Tests OI-10 and OI-11 -Summary 2/2 -

- \checkmark A test rod of the subsequent OI-11 has a burnup of 58 GWd/t and cladding oxide thickness of ~30 µm. The fuel was tested with conditions of 157 cal/g (0.66 kJ/g) for a peak fuel enthalpy and 4.4 ms for a pulse-width. The Test OI-11 resulted in fuel failure, pellets fragmentation and mechanical energy generation. Transient records showed that a fuel enthalpy at a time of failure was higher than those observed in previously tested fuels with Zircaloy-4 cladding and exceeded 120 cal/g (0.50 kJ/g).
- \checkmark Results from the two tests, no failure in the OI-10 and the higher failure energy in the OI-11, reflects the better performance of these new cladding materials in terms of corrosion, the thinner oxides and accordingly lower hydrogen content generated during irradiation in the PWR.

Transient Hoop Strain Measurement Transient Hoop Strain Measurement

- \checkmark Transient hoop deformation due to PCMI in early phase of RIA transient was measured with strain gauges on irradiated fuel rod.
- \checkmark The hoop stain was about 0.4% at fuel enthalpy of about 80cal/g.

Cladding strains at failure

12

Peak strain measured in 70 to 80 cal/g was below 0.4%. Residual str ain of f ailed cladding was ~0%.

The deformation resulting in cladding failure in early phase of transient can be explained only by thermal expansion of fuel pellets

Tests with artificially Tests with artificially -hydrided hydrided cladding cladding

Radial cross-section of artificially hydrided cladding samples

Uniformly Hydrided Sample

Sample with H ydride Rim

Transient historiesof sample internal pressure during tube burst tests

15

1.9 MPa/ms room temperature

Residual Hoop Strain 16 **as a function of Hydrogen Concentration**

Tube Burst Test

Tube burst and ring-tensile tests with artificially-hydrided cladding

Hydrogen concentration (wtppm)

Tube burst, ring-tensile and pulse tests with artificially-hydrided cladding

Tests with artificially-hydrided cladding Summary

- 20
- \checkmark Influence of hydriding of Zircaloy claddings on their failure behavior under RIA conditions was examined in out-of-pile mechanical tests and pulse tests with un-irradiated, artificially-hy drided claddings.
- \checkmark Results suggest that strong influence of the hydrides but also irradiation induced embrittlement.
- \checkmark In the mechanical tests, failure limits in hoop strain decreased significantly at increased hydrogen concentration. Sensitivity to the hydrogen content was larger under bi-axial stress conditions in tube burst tests and in puls e-irradiation tests.
- \checkmark The sensitivity also varied depending on cladding materials. Recrystalized Zircaloy-2 cladding of BWR fuel rods generally shows larger failure strains than those of stress-relieved Zircaloy-4 cladding of PWR fuel rods. Stronger influence of hydrides, however, was observed in the BWR cladding than in the PWR cladding.
- \checkmark Cladding failure limits under RIAs should be examined under bi-axial stress conditions which simulate cladding deformation due to PCMI.

Fuel rods to be tested in FY2004 to 2007 Fuel rods to be tested in FY2004 to 2007

* Segment average for OI, Fugen and R2, rod average for the others.

** Room-temperature/pressure. *** High-temperature/pressure.

Temperature effect on cladding ductility

- Influence of hydrogen concentration and temperature on the cladding ductility

¾ High-temperature capsule in NSRR experiments

High temperature capsule High temperature capsule

Test fuel rod

- Rod length ~120 mm

23

- Stack length ~50 mm

Coolant water

- Stagnant
- 286 deg C, 7 MPa (BWR conditions)

Instrumentation

- Cladding surface thermocouple
- Coolant thermocouple
- Capsule pressure sensor

NSRR Test Schedule NSRR Test Schedule

NSRR experiments NSRR experiments

25

Test at higher temperature From 20 (room temp.) to 90 deg C Coolant water temperature 286 deg C