

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at <u>http://www.nrc.gov/reading-rm.html</u>. Publicly released records include, to name a few, NUREG-series publications; Federal Register notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC regulations, and *Title 10, Energy*, in the Code of *Federal Regulations* may also be purchased from one of these two sources.

1. The Superintendent of Documents U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402–0001 Internet: bookstore.gpo.gov Telephone: 202-512-1800 Fax: 202-512-2250

 The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–553–6847 or, locally, 703–605–6000

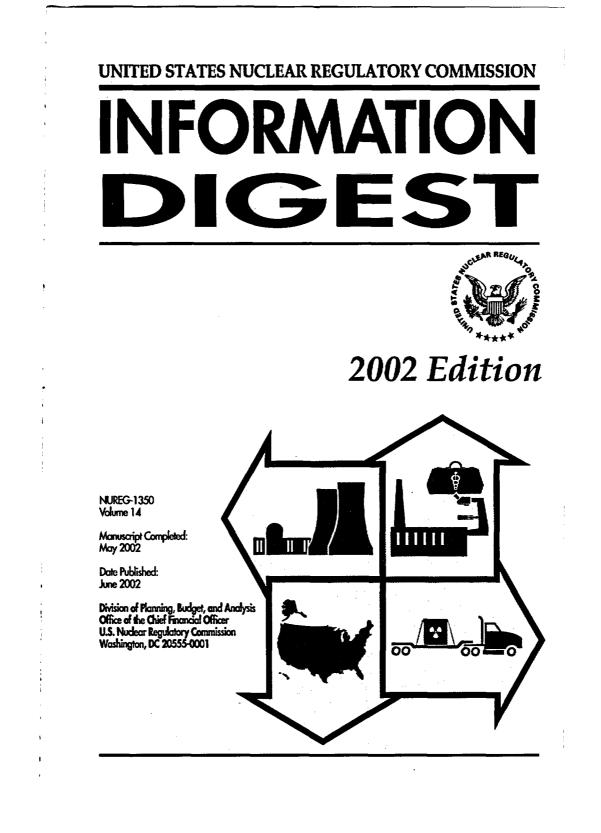
A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: Office of the Chief Information Officer, Reproduction and Distribution Services Section U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

E-mail: DISTRIBUTION@nrc.gov Facsimile: 301-415-2289

Some publications in the NUREG series that are posted at NRC's Web site address <u>http://</u> <u>www.nrc.gov/reading-rm/doc-collections/nuregs</u> are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

Non-NRC Reference Material


Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, *Federal Register* notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

> The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852-2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from— American National Standards Institute 11 West 42nd Street New York, NY 10036-8002 www.ansi.org 212-642-4900

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor-prepared publications in this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) brochures (NUREG/BR-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG-0750).

NUCLEAR REGULATORY COMMISSION

5 (% 1%

Ĵ

ii

推

Abstract

The "United States Nuclear Regulatory Commission Information Digest" (digest) provides a summary of information about the U.S. Nuclear Regulatory Commission (NRC), including the agency's regulatory responsibilities and licensed activities, and general information on domestic and worldwide nuclear energy. Published annually, the digest is a compilation of nuclear- and NRC-related data designed to serve as a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1979 through 2001, with exceptions noted. Information on generating capacity and average capacity factor for operating U.S. commercial nuclear power reactors is obtained from the NRC, as well as from various industry sources. Industry source information is reviewed by the NRC for consistency only, and no independent validation and/or verification is performed.

Comments and/or suggestions on the data presented are welcomed and should be directed to JoAnne M. Johnson, Division of Planning, Budget, and Analysis, Office of the Chief Financial Officer, United States Nuclear Regulatory Commission, Washington, DC 20555-0001. For detailed and complete information about tables and figures, refer to the source publications.

2002 INFORMATION DIGEST

iii

NUCLEAR REGULATORY COMMISSION

and the second second

iv

Contents

ţ

;

÷

Abstract	iii
For More Information	xi
NRC as a Regulatory Agency	1
Mission, Goals, and Statutory Authority	2
Principles of Good Regulation	5
Major Activities	6
Organizations and Functions	7
NRC Locations	9
NRC Fiscal Year 2002 Resources	13
U.S. and Worldwide Energy	19
U.S. Electricity	20
U.S. Electricity Generated by Commercial Nuclear Power	27
Worldwide Electricity Generated by Commercial Nuclear Power	30
Operating Nuclear Reactors	37
U.S. Commercial Nuclear Power Reactors	38
Oversight of U.S. Commercial Nuclear Power Reactors	47
Future U.S. Commercial Nuclear Power Reactor Licensing	52
U.S. Nuclear Research and Test Reactors	57
Nuclear Regulatory Research	59
Nuclear Regulatory Research	60
(Cont	inued)

-

2002 INFORMATION DIGEST

Nuc	lear Materials Safety
	U.S. Fuel Cycle Facilities
	U.S. Materials Licenses
	Nuclear Gauges
	Teletherapy Devices
	Commercial Product Irradiators74
	Uranium Milling
Inter	mational Activities
	International Activities
Radi	ioactive Waste
	U.S. Low-Level Radioactive Waste Disposal
	U.S. High-Level Radioactive Waste Disposal
	U.S. Nuclear Materials Transportation and Safeguards
	Decommissioning
Арр	endices
Abb	reviations Used in Appendices
A.	U.S. Commercial Nuclear Power Reactors
B.	U.S. Commercial Nuclear Power Reactors Formerly Licensed To Operate
C.	Canceled U.S. Commercial Nuclear Power Reactors
D.	U.S. Commercial Nuclear Power Reactors by Licensee
E.	U.S. Nuclear Research and Test Reactors Regulated by NRC
F.	Research and Test Reactors Under Decommissioning

NUCLEAR REGULATORY COMMISSION

vi

G. NRC Performance Indicators: Annual Industry Averages
H. Dry Spent Fuel Storage Designs: NRC Approved for General Use
I. Dry Spent Fuel Storage Licensees
J. World List of Nuclear Power Reactors
K. Nuclear Power Units by Reactor Type, Worldwide
L. Top Fifty Reactors by Capacity Factor, Worldwide
M. Top Fifty Reactors by Generation, Worldwide
N. Quick Reference Metric Conversion Tables
Glossary

Figures

;

.

ł

2002 INFORMATION DIGEST	vii
	(Continued)
10. U.S. Net Electric Generation by Source	24
9. Net Electricity Generated in Each State by Nuclear Power	23
8. U.S. Electric Generation by Energy Source	
7. U.S. Electric Capability by Energy Source	20
6. Recovery of NRC Budget Authority	17
5. NRC Personnel Ceiling	
4. NRC Budget Authority	
3. Distribution of NRC Budget Authority and Staff	
2. NRC Regions	
1. U.S. Nuclear Regulatory Commission Organization Chart	

Figures (Continued)
11. U.S. Electric Generating Capability by Source
12. U.S. Average Nuclear Reactor and Coal-Fired/Fossil Steam Plant Production Expenses
13. Net Generation of U.S. Nuclear Electricity
 Net Nuclear Electric Power as a Percent of World Nuclear Generation and Total Domestic Net Nuclear Electricity Generation
15. Operating Nuclear Power Plants Worldwide
16. Operating Nuclear Power Plants Worldwide (continued)
17. Typical Nuclear Reactor
18. U.S. Commercial Nuclear Power Reactors
19. NRC Region I Commercial Nuclear Power Reactors
20. NRC Region II Commercial Nuclear Power Reactors
21. NRC Region III Commercial Nuclear Power Reactors
22. NRC Region IV Commercial Nuclear Power Reactors
23. U.S. Commercial Nuclear Power Reactor Operating Licenses Issued by Year
24. NRC Inspection Effort at Operating Reactors
25. NRC Performance Indicators, Annual Industry Averages
26. U.S. Commercial Nuclear Power Reactors—Years of Operation
27. U.S. Commercial Nuclear Power Reactor Operating Licenses— Expiration Date by Year Assuming Construction Recapture
28. U.S. Nuclear Research and Test Reactor Sites
29. Research Budget Trends

NUCLEAR REGULATORY COMMISSION

Managarana and Sandarana an

viii

igures (Continued)	
0. Typical Fuel Fabrication Plant	66
81. Major U.S. Fuel Cycle Facility Sites	67
2. NRC Agreement States	71
3. Cross Section of a Fixed Fluid Gauge	72
14. Cobalt-60 Teletherapy Unit	73
35. Commercial Gamma Irradiator	74
16. Locations of Uranium Milling Facilities	77
87. Diagram of a Low-Level Waste Disposal Site	
18. U.S. Low-Level Waste Compacts and Facilities	
89. The Yucca Mountain Disposal Plan	87
10. Spent Fuel Generation and Storage After Use	
1. Nuclear Fuel Storage Pool Capacity	
2. Licensed/Operating Independent Spent Fuel Storage Installations	91
13. Dry Storage of Spent Fuel	
ables	
1. NRC Budget Authority	15
2. NRC Personnel Ceiling	
3. Electric Generating Capability and Electricity Generated in Each State by Nuclear Power	
4. U.S. Net Electric Generation by Source	
5. U.S. Electric Generating Capability by Source	
	(Continued
	entralis entralista (* 1979). Stati

:

Tables (Continued)
6. U.S. Average Nuclear Reactor and Coal-Fired/Fossil Steam Plant Production Expenses
7. U.S. Nuclear Power Reactor Average Capacity Factor and Net Generation
8. U.S. Commercial Nuclear Power Reactor Average Capacity Factor by Vendor and Reactor Type
9. Commercial Nuclear Power Reactor Average Gross Capacity Factor and Gross Generation by Selected Country
 Commercial Nuclear Power Reactor Average Gross Capacity Factor by Selected Country
 U.S. Commercial Nuclear Power Reactor Operating Licenses Issued by Year
12. U.S. Commercial Nuclear Power Reactor Operating Licenses— Expiration Date by Year
13. U.S. Materials Licenses by State
14. Locations of Uranium Milling Facilities
15. Site Decommissioning Management Plan and Other Complex Site List

NUCLEAR REGULATORY COMMISSION

76770

х

For More Information...

The U.S. Nuclear Regulatory Commission (NRC) offers a variety of programs to make the agency, licensee, and nuclear industry information available to the public.

The NRC's World Wide Web site (www.nrc.gov) contains a wide variety of information about the agency's regulatory programs. The areas covered include the licensing of power and research reactors, nuclear materials, and radioactive waste; agency radiation protection and emergency response activities; and the background and current status of all ongoing regulatory initiatives. The site also provides access to many publicly available agency documents and information collections, press releases, organizational charts and descriptions, headquarters and regional locations and addresses, the agency telephone directory, current agency regulations, planning and financial management reports, and areas devoted specifically to public comments and participation in the agency's regulatory process. To help the public locate information, the site provides an alphabetically arranged topical index of contents, a search engine, a site contents page arranged by program area, and a text menu of site contents. The agency also welcomes comments on its site. They can be submitted to nrcweb@nrc.gov.

The Electronic Reading Room on the NRC Web site allows the public to use the Internet to search for records that the NRC has already released to the public. This site uses the NRC's Agencywide Documents Access and Management System (ADAMS) to search two electronic libraries: the Public Legacy Library and the Publicly Available Records System (PARS) Library. When available, the Public Legacy Library will contain a selection of bibliographic descriptions and some full text files of NRC records released to the public prior to Fall 1999. Records in this library were copied from the NRC Bibliographic Retrieval System (BRS) and the Nuclear Documents System (NUDOCS), the two systems previously used by the public to search for NRC records. The BRS will remain available for searching until all of the records are in the Public Legacy Library. By contrast, PARS Library, contains all NRC publicly available records released since Fall 1999. The PARS Library contains both full-text and image records, and the public can perform full-text searches of the database, and can view, download, and print the files from there.

The NRC's Public Document Room (PDR) at NRC headquarters in Rockville, Maryland (OWFN 01-F21), has a complete collection of more than two million NRC documents released prior to the Fall of 1999 that are still retained as agency documents. The public may view documents at the PDR, and reference librarians are available to help in identifying, retrieving, organizing, and evaluating NRC documents from various resources and formats, including the Electronic Reading Room. Members of the public may also access the Electronic Reading Room libraries from computer terminals in the PDR. The PDR also provides

(Continued)

2002 INFORMATION DIGEST

xi

For More Information... (Continued)

reproduction services and, for a fee, the public can order copies of any of the records in the PDR or the Legacy and the Public PARS libraries.

Records indexed in the Public Legacy Library are maintained by the PDR in paper, microfiche or both. Additional microfiche collections of NRC documents released between January 1981 and the fall of 1999 are also maintained in certain libraries under the Government Printing Office's Federal Depository Library Program (FDLP), and in some other libraries throughout the country. For more information, contact the PDR by telephone at their toll-free number (800) 397-4209 or their local number (301) 415-4737. The PDR may also be contacted by Telecommunication Device for the Deaf (TDD) at (301) 415-8322 or toll-free at (800) 635-4512; Internet email at pdr@nrc.gov; fax (301) 415-3548; or U.S. Mail to: PDR, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001.

The public may also use the Freedom of Information Act (FOIA) and Privacy Act (PA) to obtain information that the NRC has not made publicly available. submit FOIA or PA requests in writing to: FOIA/PA Officer, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001. The FOIA requires the NRC to give the public access to records unless the information is exempt from disclosure (e.g., classified as national security, business proprietary, personal privacy, or investigative). A request must specifically state that it is a FOIA request, and it must adequately describe the specific records or type of records sought so that the NRC staff can conduct a search for the requested records by exerting a reasonable amount of effort. Disclosure will be made by providing a copy of the documents requested or by making copies of the requested documents available in the NRC's Headquarters Public Document Room. Detailed information concerning NRC policies and procedures for obtaining access to information under the FOIA and PA is available in Title 10, Part 9, of the Code of Federal Regulations, which is available in any public library. Information can also be found on the Internet at the FOIA/ PA homepage, reached through the "FOIA Requests" link at the NRC's Web site www.nrc.gov.

The agency makes the majority of its regulatory and technical publications available for sale at both the Government Printing Office and the National Technical Information Service. Copies of agency publications are also routinely sent to U.S. Depository Libraries throughout the United States and the Commonwealth of Puerto Rico.

The NRC announces the schedules of staff meetings that are open to the public. Public notice will be made via the Internet using the NRC's Web site at <u>www.nrc.gov/ public-involve/public-meetings/meetingschedule.html</u>. Commission and Advisory Committee meetings, Open Predecisional Enforcement Conferences, and Atomic Safety and Licensing Board hearings that are published in the *Federal Register* are also noticed at this site. Recorded informa-

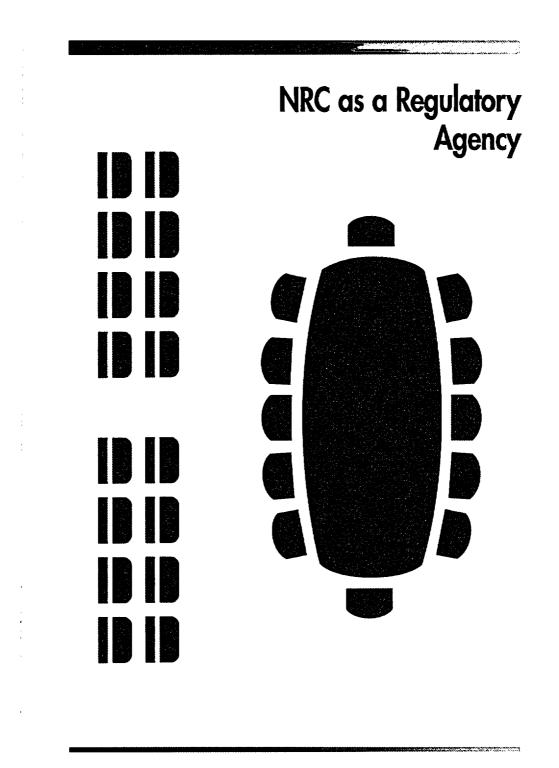
NUCLEAR REGULATORY COMMISSION

xii

tion about Commission meetings is available at (301) 415-1292.

The NRC is required to answer inquires from small entities concerning information on, advice about, and compliance with the statutes and regulations that affect them. The NRC is expected to interpret and apply the law, or regulations implementing the law, to specific sets of facts that are specified by the small entity. The NRC is required to establish a program to receive and respond to these types of inquiries. To help small entities obtain information quickly, the NRC has established a toll-free telephone number at (800) 368-5642.

To learn more about these and other sources of public information about agency activities, send for a free copy of "Citizen's Guide to U.S. Nuclear Regulatory Commission Information" (NUREG/BR-0010, Rev. 3), ATTN: Reproduction and Distribution Services Branch, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001.


2002 INFORMATION DIGEST

xiii

NUCLEAR REGULATORY COMMISSION

EXCEPTION CONTRACTOR CONTRACTOR OF CONTRACTOR

xiv

Mission, Goals, and Statutory Authority

Mission

The mission of the U.S. Nuclear Regulatory Commission (NRC) is to regulate the Nation's civilian use of byproduct, source, and special nuclear materials to ensure adequate protection of public health and safety, to promote the common defense and security, and to protect the environment. The NRC's scope of responsibility includes regulation of commercial nuclear power plants; research, test, and training reactors; fuel cycle facilities; medical, academic, and industrial uses of nuclear materials; and the transport, storage, and disposal of nuclear materials and wastes.

Strategic and Performance Goals

The NRC has developed strategic goals consistent with its mission. These strategic goals are supported by performance goals, which represent outcomes the NRC plans to achieve over the period covered by the strategic plan (FY 2000 - FY 2005).

Strategic Goals: The NRC will conduct an effective regulatory program that allows our Nation to use nuclear materials safely for civilian purposes and in a manner that protects the public and the environment by working to achieve the following strategic goals:

 Prevent radiation-related deaths and illnesses, promote the common defense and security, and protect the environment in the use of civilian nuclear reactors. (Nuclear Reactor Safety)

- Prevent radiation-related deaths and illnesses, promote the common defense and security, and protect the environment in the use of source, byproduct, and special nuclear material. (Nuclear Materials Safety)
- Prevent significant adverse impacts from radioactive waste to the current and future public health and safety and the environment, and promote the common defense and security. (Nuclear Waste Safety)
- Support U.S. interests in the safe and secure use of nuclear materials and in nuclear nonproliferation. (International Nuclear Safety Support)

The safe and secure use of nuclear materials for civilian purposes is the responsibility of NRC licensees¹ and Agreement State licensees, and the regulatory oversight of licensees is the responsibility of the NRC and the Agreement States. Thus, achieving these strategic goals requires the collective efforts of the NRC, the Agreement States, and licensees.

Performance Goals: The protection of public health and safety remains paramount among our goals and will drive our decisions. However, the NRC recognizes that it must consider other key considerations, including the

¹ "Licensees" as used in this strategic plan include persons required to be licensed (as defined in Section 11(s) of the Atomic Energy Act, as amended) as well as, where appropriate, applicants for licenses, certificate of compliance holders and applicants for certificates of compliance, contractors (including subcontractors, suppliers, consultants, and vendors), and all persons subject to NRC's regulatory jurisdiction.

NUCLEAR REGULATORY COMMISSION

NRC AS A REGULATORY AGENCY

effect of our decisions on the public's trust in our regulatory process, the industries we regulate, and our own effectiveness and efficiency. The agency has established performance goals to support the strategic goals for the Nuclear Reactor Safety, Nuclear Materials Safety, and Nuclear Waste Safety arenas: maintain safety, protect the environment and the common defense and security; increase public confidence; make NRC activities and decisions more effective, efficient, and realistic; and reduce unnecessary regulatory burden.

Collectively, these outcome-based performance goals are the key contributors to the strategic goals. The performance goals and their associated measures reflect the agency's move toward more outcome-based performance. Agency work (programs and activities) is being planned, managed, monitored, and assessed according to their contribution to the achievement of these performance goals, with public health and safety as the primary consideration. This assessment will form the basis to identify whether existing programs are successfully achieving the goals or whether revised or new initiatives are needed. Resources will accordingly be allocated to the work that is necessary to achieve the performance goals. The strategic plan is being used as one of the primary tools to communicate and institutionalize these changes.

NRC concluded the triennial update of the Fiscal Year 2000-2005 Strategic Plan and provided it to the Office of Management and Budget (OMB) and Congress on September 29, 2000. The next update is scheduled to be submitted to Congress in September of 2003. The Strategic Plan is published as NUREG-1614, Vol. 2, Part 1, and is available on the Web at <u>http://www.nrc.gov/ NRC/NUREGS/SR1614/V2/index.html</u>

Corporate Management Strategies

The NRC has established overarching corporate management strategies that help us work together more effectively, both within and across strategic arenas. These strategies also help the support offices better serve their customers within the agency to help them achieve the agency's goals. Our corporate management strategies describe the means by which we will conduct business to successfully implement the Strategic Plan and accomplish the agency's mission.

- Employ Innovative and Sound Business Practices;
- Sustain a High-Performing, Diverse Workforce;
- Provide Proactive Information Technology and Information Management Services; and
- Communicate Strategic Change.

Statutory Authority

The NRC was created as an independent agency by the Energy Reorganization Act of 1974, which abolished the Atomic Energy Commission (AEC) and moved the AEC's regulatory function to the NRC. This act, along with the Atomic Energy Act of 1954, as amended, provides the foundation for regulation of the Nation's commercial

2002 INFORMATION DIGEST

Mission, Goals, and Statutory Authority (Continued)

nuclear power industry. NRC regulations are issued under the United States Code of Federal Regulations (CFR) Title 10, Chapter 1. Principal statutory authorities that govern NRC's work follow:

- Atomic Energy Act of 1954, as amended
- Energy Reorganization Act of 1974, as amended
- Uranium Mill Tailings Radiation Control Act of 1978, as amended
- Nuclear Non-Proliferation Act of 1978
- Low-Level Radioactive Waste Policy Act of 1980
- West Valley Demonstration Project Act of 1980
- Nuclear Waste Policy Act of 1982

4

- Low-Level Radioactive Waste Policy Amendments Act of 1985
- Diplomatic Security and Anti-Terrorism Act of 1986
- Nuclear Waste Policy Amendments Act of 1987
- Solar, Wind, Waste and Geothermal Power Production Incentives Act of 1990
- Energy Policy Act of 1992
- Low-level Radioactive Waste Policy Amendments Act of 1995

The NRC and its licensees share a common responsibility to protect public health and safety. Federal regulations and the NRC regulatory program are important elements in the protection of the public. NRC licensees, however, have the primary responsibility for the safe use of nuclear materials.

NUCLEAR REGULATORY COMMISSION

NRC AS A REGULATORY AGENCY

Principles of Good Regulation

The NRC adheres to the following Principles of Good Regulation:

- Independence Nothing but the highest possible standards of ethical performance and professionalism should influence regulation. However, independence does not imply isolation. The NRC will seek all available facts and opinions from licensees and other interested members of the public. The many and possibly conflicting public interests involved must be considered. Final decisions must be based on objective, unbiased assessments of all information and must be documented with reasons explicitly stated.
- Openness Nuclear regulation is the public's business, and it must be transacted publicy and candidly. The public must be informed about and have the opportunity to participate in the regulatory processes as required by law. Open channels of communication must be maintained with Congress, other Government agencies, licensees, and the public, as well as with the international nuclear community.
- Efficiency The American taxpayer, the rate-paying consumer, and licensees are all entitled to the best possible management and administration of regulatory activities. The highest technical and managerial competence is required and must be a constant agency goal. NRC

must establish means to evaluate and continually upgrade its regulatory capabilities. Regulatory activities should be consistent with the degree of risk reduction they achieve. Where several effective alternatives are available, the option which minimizes the use of resources should be adopted. Regulatory decisions should be made without undue delay.

- Clarity Regulations should be coherent, logical, and practical. There should be a clear nexus between regulations and agency goals and objectives, whether explicitly or implicitly stated. Agency positions should be readily understood and easily applied.
- . Reliability --- Regulations should be based on the best available knowledge from research and operational experience. Systems interactions, technological uncertainties, and the diversity of licensees and regulatory activities must all be taken into account so that risks are maintained at an acceptably low level. Once established, regulation should be perceived by all stakeholders to be reliable and not unjustifiably in a state of transition. Regulatory actions should always be fully consistent with written regulations and should be promptly, fairly, and decisively administered so as to lend stability to the nuclear operational and planning processes.

2002 INFORMATION DIGEST

Major Activities

The NRC fulfills its responsibilities through a system of licensing and regulatory activities that include the following:

- Licensing the design, construction, operation, and decommissioning of nuclear plants and other nuclear facilities, such as nuclear fuel cycle facilities, uranium enrichment facilities, and test and research reactors
- Licensing the possession, use, processing, handling, and exporting of nuclear materials
- Licensing the siting, design, construction, operation, and closure of low-level radioactive waste disposal sites under NRC jurisdiction and the construction, operation, and closure of the geologic repositories for high-level radioactive waste
- Licensing the operators of civilian nuclear reactors
- Inspecting licensed and certified facilities and activities
- Certifying privatized uranium enrichment facilities
- Conducting research on light-water reactor safety to gain independent expertise and information for making timely regulatory judgments and for anticipating problems of potential safety significance

- Developing and implementing rules and regulations that govern licensed nuclear activities
- Investigating nuclear incidents and allegations concerning any matter regulated by the NRC
- Enforcing NRC regulations and the conditions of NRC licenses
- Conducting public hearings on matters of nuclear and radiological safety, environmental concern, common defense and security, and antitrust matters
- Developing effective working relationships with the States regarding reactor operations and the regulation of nuclear material
- Developing policy and providing direction on issues involving security at nuclear facilities, and interfacing with other federal agencies, including the Office of Homeland Security, on safety and security issues, and developing and directing the NRC program for response to incidents
- Collecting, analyzing, and disseminating information about the operational safety of commercial nuclear power reactors and certain nonreactor activities

NUCLEAR REGULATORY COMMISSION

Organizations and Functions

The NRC's Commission is composed of five members, with one member designated by the President to serve as Chairman. Each member is appointed by the President, by and with the advice and consent of the Senate, and serves a term of five years. The members' terms are staggered so that one Commissioner's term expires on June 30th every year. No more than three members of the Commission can be from the same political party. As of May 2002, the Commission is composed of the following members:

Commissioner	Expiration of Term
Richard A. Meserve, Chairman	June 2004
Greta Joy Dicus	June 2003
Nils J. Diaz	June 2006
Edward McGaffigan, Jr.	. June 2005
Jeffrey S. Merrifield	June 2002

The Chairman serves as the principal executive officer and official spokesman of the Commission. The Executive Director for Operations carries out the program policies and decisions made by the Commission.

The NRC's major program offices follow.

 Nuclear Reactor Regulation — Directs all licensing and inspection activities associated with the design, construction, and operation of nuclear power reactors and nonpower reactors

- Nuclear Material Safety and Safeguards — Directs all licensing inspection and environmental activities associated with nuclear fuel cycle facilities, uses of nuclear materials, storage and transport of nuclear materials, safeguarding of nuclear materials, management and disposal of low-level and high-level radioactive nuclear wastes, and decontamination and decommissioning of facilities and sites
- Nuclear Regulatory Research Provides independent expertise and information for making timely regulatory judgments, anticipating problems of potential safety significance, and resolving safety issues and provides support for developing technical regulations and standards. Collects, analyzes, and disseminates information about the operational safety of commercial nuclear power reactors and certain nuclear materials activities
- Office of Nuclear Security and Incident Response - Responsible for overall agency policy and activities involving security at nuclear facilities. Provides safeguards and security interface with other federal agencies and maintains the agency incident response program
- Regional Offices Conduct inspection, enforcement, investigation, licensing, and emergency response programs for nuclear reactors, fuel facilities, and materials licensees within regional boundaries that the Headquarters' offices originate

2002 INFORMATION DIGEST

Organizations and Functions (Continued)

- Office of the Chief Information Officer Responsible for the strategic use of information technology as a management tool across a spectrum of agency activities and for an agency-wide approach to information management, capital planning and performance-based management of information technology, and information management service functions
- Office of the Chief Financial Officer Responsible for NRC's Planning, Budget-

ing and Performance Management process and for all of the NRC's financial management activities

Inspector General — Provides the Commission with an independent review and appraisal of NRC programs and operations to ensure their effectiveness, efficiency, and integrity

Figure 1 is an organization chart of the NRC.

NUCLEAR REGULATORY COMMISSION

あいだいれいかい しまくがそうようどう

NRC AS A REGULATORY AGENCY

NRC Locations

Headquarters:

Rockville, Maryland 301-415-7000

Operations Center:

Rockville, Maryland 301-816-5100

The NRC maintains an Operations Center that is a focal point for NRC communications with its licensees, State agencies, and other Federal agencies concerning operating events in the commercial nuclear sector. The Operations Center is staffed 24 hours a day by NRC operations officers.

Regional Offices:

The NRC has four regional offices located throughout the United States as illustrated in Figure 2.

Region I: King of Prussia, Pennsylvania 610-337-5000

Region II: Atlanta, Georgia 404-562-4400 Region III: Lisle, Illinois 630-829-9500

Region IV: Arlington, Texas 817-860-8100

Resident Sites:

At least two NRC resident inspectors who report to the appropriate regional office are located at each nuclear power reactor site. (Refer to Figure 17 for a map of the U.S. commercial nuclear power reactor sites.)

Technical Training Center:

Chattanooga, Tennessee 423-855-6500

2002 INFORMATION DIGEST

••• 9

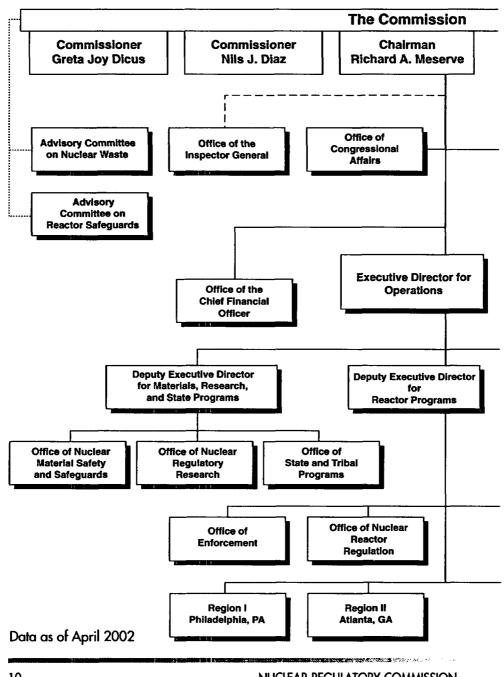
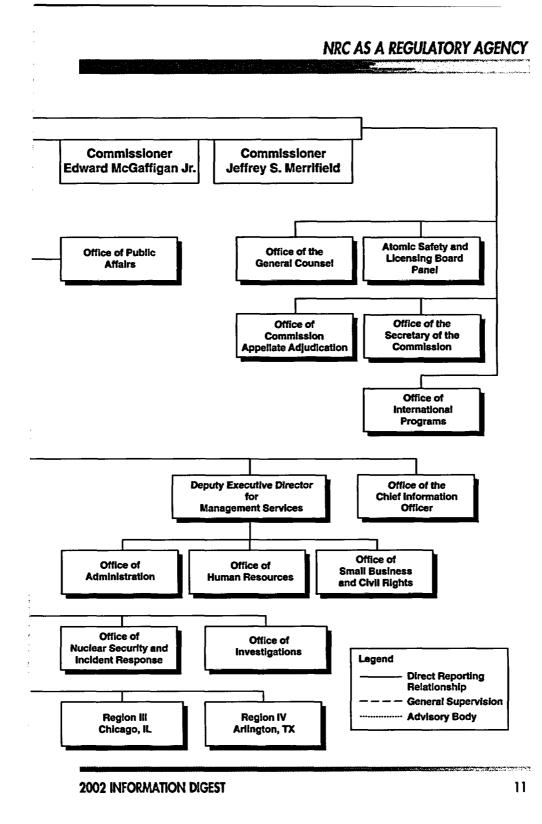
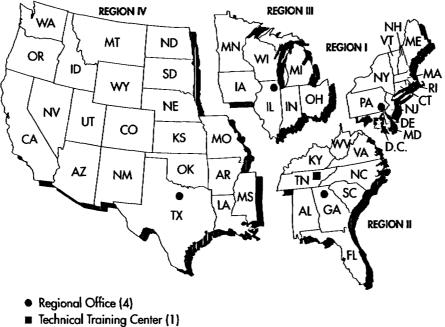



Figure 1. U.S. Nuclear Regulatory Commission Organization Chart


10

NUCLEAR REGULATORY COMMISSION

Figure 2. NRC Regions

El Headquarters (1)

Note: Alaska and Hawaii are included in Region IV. Source: Nuclear Regulatory Commission

NUCLEAR REGULATORY COMMISSION

NRC AS A REGULATORY AGENCY

NRC Fiscal Year 2002 Resources

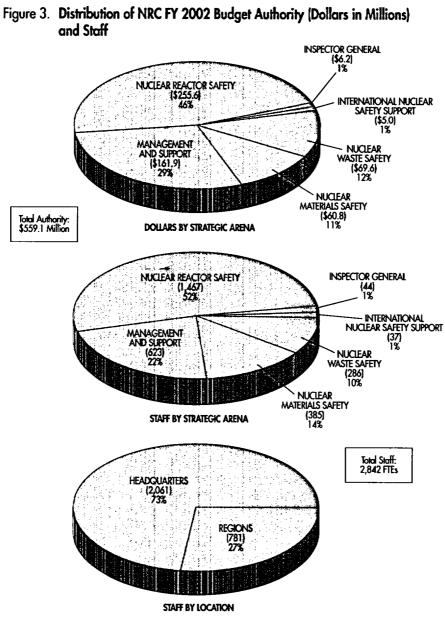
Appropriation

For Fiscal Year (FY) 2002, Congress appropriated \$559.1 million for the NRC. The NRC's FY 2002 personnel ceiling is 2,842 full-time equivalent (FTE) staff.

The NRC allocates funds and staff to the following strategic arenas (see Figure 3):

- Nuclear Reactor Safety
- Nuclear Materials Safety
- Nuclear Waste Safety
- International Nuclear Safety Support
- Management and Support

The Office of the Inspector General (OIG) receives its own appropriation, the amount of which is included in the NRC appropriation.


Civil Penalties

The NRC's enforcement program supports the agency's overall safety mission in protecting the public and the environment. Consistent with that purpose, the NRC uses enforcement action as a deterrent to emphasize the importance of compliance with regulatory requirements and to encourage prompt identification and prompt, comprehensive correction of violations. The NRC's enforcement program is governed by the NRC Enforcement Policy, published as NUREG-1600. The available primary enforcement sanctions are: notices of violation; civil penalties; orders to modify, suspend, or revoke licenses; and orders restricting individuals from participating in licensed activities. The NRC ranks violations according to their level of significance. Violations are assigned a severity level, ranging from Severity Level IV for those of more than minor concern to Severity Level I for the most significant, or they are associated with findings assessed through the Significance Determination Process (a key element of the reactor

Source: U.S. Nuclear Regulatory Commission

2002 INFORMATION DIGEST

oversight process, or ROP) which are assigned a color of green, white, yellow, or red based on increasing risk significance. Civil penalties are normally assessed for Severity Level I and II violations and knowing and conscious violations of the reporting requirements of Section 206 of the Energy Reorganization Act. Civil penalties are also considered for Severity Level III violations. Although civil penalties are not normally used for violations associated with the ROP, civil penalties (and the use of severity levels) are considered for issues that are willful, have the potential to impact the regulatory process, or have actual consequences. The NRC imposes different levels of civil penalties based on a combination of the type of licensed activity, the type of licensee, the severity level or significance of the violation, and other criteria, including identification, corrective action, and discretion. In FY 2001, the NRC assessed approximately \$340,000 in civil penalties. These civil penalties are deposited in the U.S. Treasury and are not used by the NRC.

Note: Percentages are rounded to the nearest whole number. Source: Nuclear Regulatory Commission

NUCLEAR REGULATORY COMMISSION

NRC AS A REGULATORY AGENCY

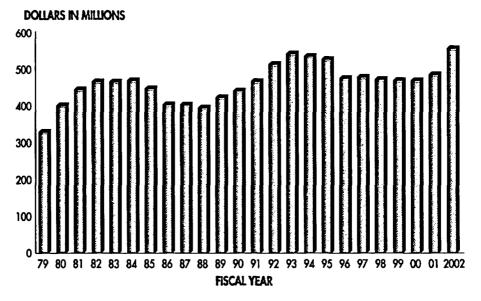
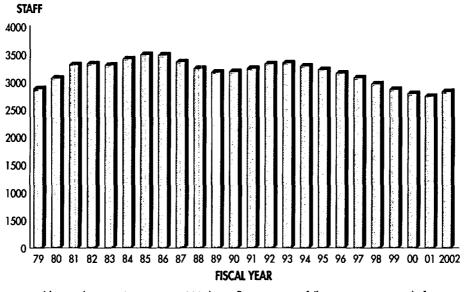

Fiscal Year	Actual Dollars	Fiscal Year	Actual Dollars
1979	327	1991	465
1980	399	1992	513
1981	441	1993	540
1982	466	1994	535
1983	465	1995	524
1984	466	1996	473
1985	444	1997	477
1986	400	1998	477
1987	401	1999	470
1988	393	2000	470
1989	420	2001	487
1990	439	2002	559

Table 1. NRC Budget Authority (Dollars in Millions), FYs 1979-2002

4

;

Note: Dollars are rounded to the nearest million. Source (Table 1 and Figure 4): Nuclear Regulatory Commission

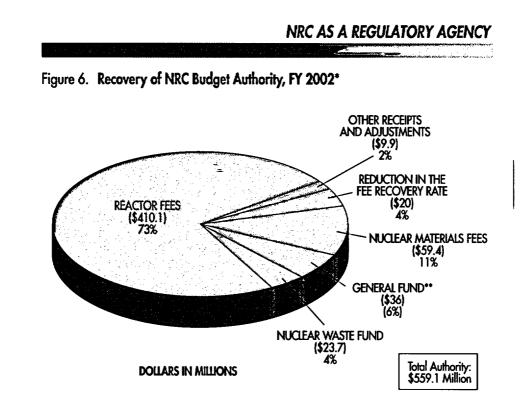

2002 INFORMATION DIGEST

دمین 15

Table 2. NRC Personnel Ceiling, FYs 1979-2002

Fiscal Year	Staff	Fiscal Year	Staff
1979	2,888	1991	3,240
1980	3,066	1992	3,335
1981	3,300	1993	3,343
1982	3,325	1994	3,293
1983	3,303	1995	3,218
1984	3,416	1996	3,160
1985	3,491	1997	3,061
1986	3,491	1998	2,977
1987	3,369	1999	2,881
1988	3,250	2000	2,801
1989	3,180	2001	2,763
1990	3,195	2002	2,842

Figure 5. NRC Personnel Ceiling, FYs 1979-2002



NUCLEAR REGULATORY COMMISSION

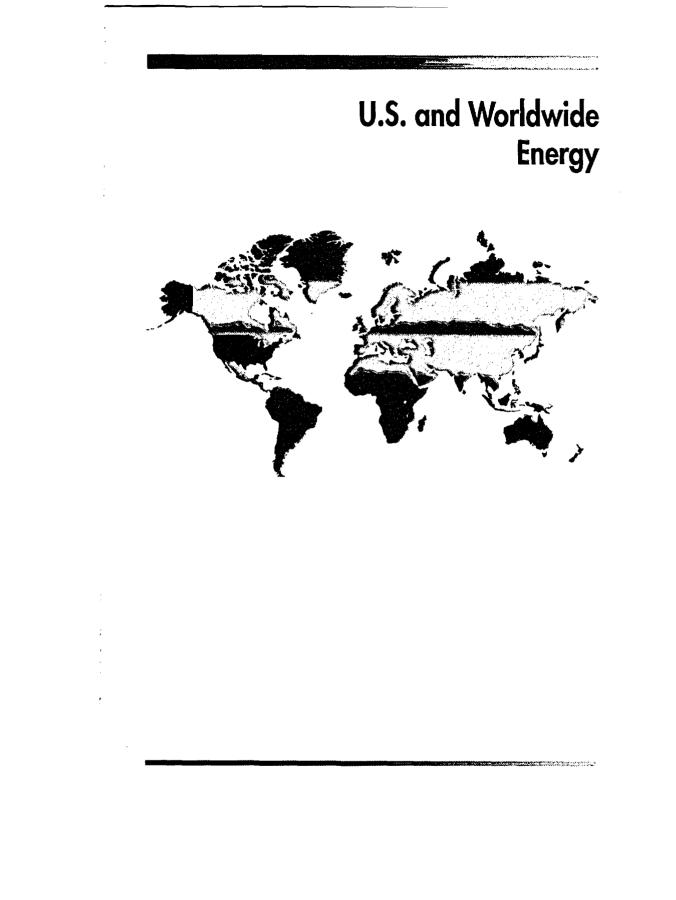
NESSIN STEELE CONTRACTOR

The Omnibus Budget Reconciliation Act of 1990 (OBRA-90), as amended, required the NRC to recover 100 percent of its budget authority, less appropriations from the Nuclear Waste Fund, for FYs 1991–2000 by assessing fees to its licensees. The FY 2001 Energy and Water Development Appropriations Act amended OBRA-90 to decrease the NRC's fee recovery amount. This reduction is being phased in at two percent per year beginning in FY 2001 through FY 2005. In 2002, the fee recovery amount is reduced to 96 percent. The NRC budget authority to be recovered from fees in FY 2002 is \$479.5 million. The annual fees assessed to the major dasses of NRC licensees in FY 2002 follow:

Class of Licensee Operating Power Reactor Fuel Facility Uranium Recovery Facility Transportation Approval Materials User Range of Annual Fees \$2,869,000*** \$390,000 to \$4,073,000 \$7,600 to \$77,700 \$7,300 to \$72,800 \$690 to \$26,200

*Based on the proposed FY 2002 fee rule.

General Fund appropriations are for activities related to homeland security.
 Includes Spent Fuel Storage/Reactor Decommissioning FY 2002 annual fee of \$239,000.
 Note: Percentages are rounded to the nearest whole number.
 Source: U.S. Nuclear Regulatory Commission


2002 INFORMATION DIGEST

2.821112

NUCLEAR REGULATORY COMMISSION

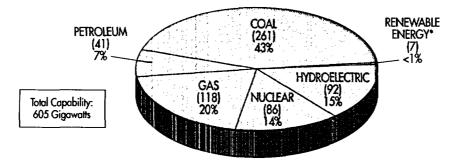
U.S. Electricity

Capability and Net Generation:

U.S. electric generating capability totaled approximately 605 gigawatts in 2000. Nuclear energy accounted for approximately 14 percent of this capability (see Figure 7).

U.S. net electric generation totaled approximately 3,800 gigawatthours in 2000. Nuclear energy accounted for approximately 20 percent of this generation (see Figure 8).

In 2001, U.S. net electric generation totaled approximately 3,777 gigawatt-hours. Nuclear energy accounted for approximately 20 percent of this generation (see Figure 8).


In 2000, 104 nuclear reactors licensed to operate in 31 States generated approximately one-fifth of the Nation's electricity (see Table 3).

- Seven States relied on nuclear power for more than 50 percent of their electricity, an increase of one over the previous year.
- Thirteen additional States relied on nuclear power for 25 to 50 percent of their electricity.

Since 1991, nuclear electric generation has increased by 25 percent and coal-fired generation has increased 22 percent, while electricity generated by all other sources has increased by 23 percent (see Table 4 and Figure 10).

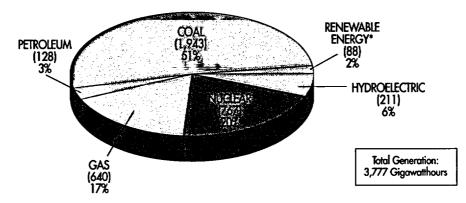
In 2000, electricity from coal and nuclear sources, which accounted for 57 percent of the U.S. generating capability, produced 72 percent of the net electricity generated in 2000 (see Table 5 and Figure 11).

Figure 7. U.S. Electric Capability by Energy Source, 2000

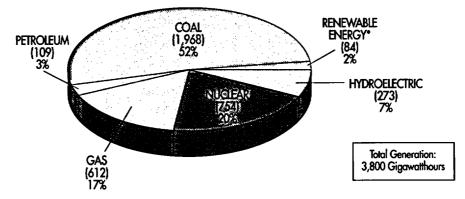
 Renewable energy includes geothermal, wood and wood waste, refuse, wind, solar energy and nonwood waste.

Note: Net summer capability. Percentages are rounded to the nearest whole number. Numbers rounded to the nearest thousand.

Source: DOE/EIA Existing Capacity and Planned Capacity at U.S. Electric Utilities by Energy Source, Table 1 http://www.eia.doe.gov.


NUCLEAR REGULATORY COMMISSION

U.S. AND WORLDWIDE ENERGY


Average Production Expenses

The production expense data presented herein include all nuclear, fossil, and coalfired utility-owned steam electric plants (see Table 6 and Figure 12). In 2000, production expenses averaged \$18.29 per megawatthour for nuclear reactors and \$22.45 per megawatthour for fossil steam and coal-fired plants.

U.S. Electric Generation by Energy Source, 2000

Renewable energy includes geothermal, wood, and nonwood waste, wind, and solar energy.
 Renewable conventional hydroelectric power is included in hydroelectric power.
 Source: http://www.eia.doe.gov, DOE/EIA Monthly Energy Review, (Mar 2002), Table 7.2 (page 99)

2002 INFORMATION DIGEST

Electric Generating Capability and Electric Utility Generated in Each State by Nuclear Power, 2000
in Each Sidle by Noclear Power, 2000

	Percent 1	Vet Nuclear		Percent Net Nuclear		
State	Capability	Generation	State	Capability	Generation	
Alabama	22	27	Missouri	7	13	
Arizona	25	34	Nebraska	21	30	
Arkansas	19	28	New Hampshire	51	62	
California	18	41	New Jersey	0	72	
Connecticut	92	96	New York	20	41	
Florida	10	19	North Carolina	21	34	
Georgia	17	28	Ohio	8	12	
Illinois	57	73	Pennsylvania	45	59	
lowa	6	11	South Carolina	36	56	
Kansas	12	20	Tennessee	19	28	
Louisiana	14	27	Texas	7	13	
Maryland	0	20	Vermont	65	86	
Massachusetts	0	0	Virginia	22	43	
Michigan	17	21	Washington	5	9	
Minnesota	18	28	Wisconsin	12	21	
Mississippi	17 32		Others*	0	0	

*There are 19 States and the District of Columbia with no nuclear generating capability.

Note: Net summer capability. Capability is the percent of electricity the State is capable of producing with nuclear energy. Generation is the percent of all sources of electricity actually produced with nuclear energy. Percentages are rounded to the nearest whole number.

Source: DOE/EIA Inventory of Power Plants in the United States, Table 17 http://www.eia.doe.gov, and DOE/EIA Electric Power Monthly, Table 12 http://www.eia.doe.gov.

22

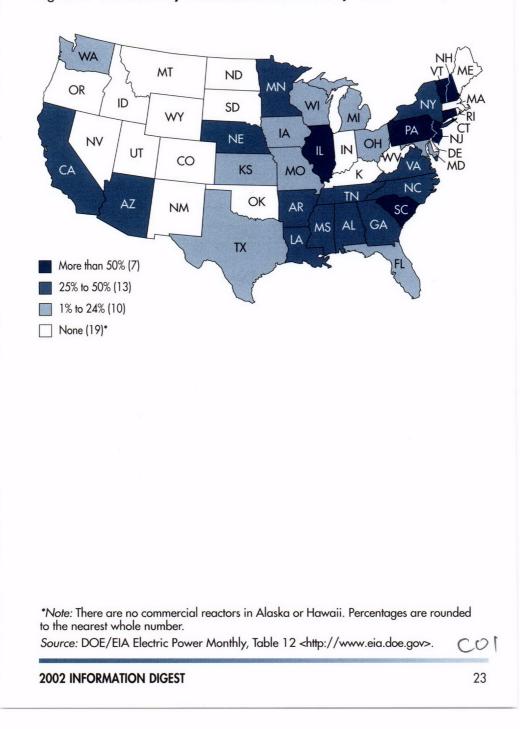
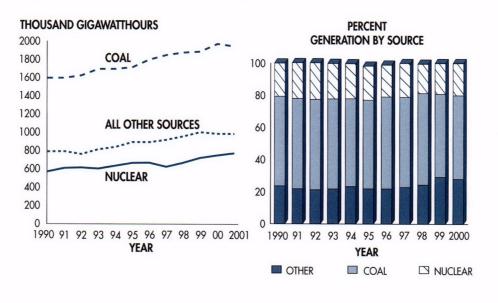



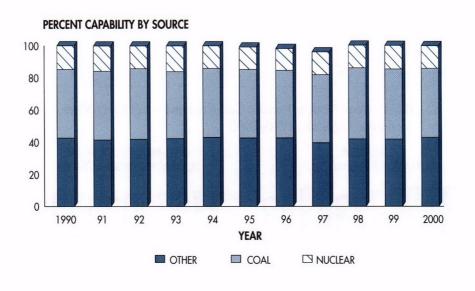
Figure 9. Net Electricity Generated in Each State by Nuclear Power, 2000

Table 4. U.S. Net Electric Generation (Thousand Gigawatthours) by Source, 1990–2001

Year	Coal Petroleum		Gas	Hydroelectric	Nuclear
1990	1,590	124	378	290	577
1991	1,590) 119		285	613
1992	1,621	99	418	249	619
1993	1,690	112	428	276	610
1994	1,692	106	478	257	640
1995	1,710	1,710 75 512 308		308	673
1996	1,796	82	470 344		675
1997	1,844	93	497	355	629
1998	1,873	127	549	319	674
1999	1,884 124		34 124 570 313		728
2000	1,965 109		611	269	754
2001	1,943	128	640	211	767

Figure 10. U.S. Net Electric Generation by Source, 1990-2001

Note: Table 4 and Figure 10 are revised to include all U.S. electric power sectors. Source (Table 4 and Figure 10): DOE/EIA Monthly Energy Review, (March 2002), Table 7.2, page 99.

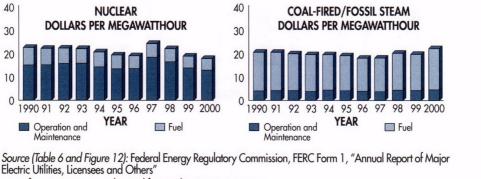

C02

24

Coal Petroleum Gas		Gas	Hydroelectric	Nuclear	
300	77	120	91	100	
300	72	126	92	100	
301	72			99	
301			96	99	
301 70 134 96		96	99		
301	64	142	97	100	
302	70	135	94	101	
303	70	137	76	100	
300	00 63 125 94		94	97	
278	49	118	93	95	
261	41	118	92	86	
	300 300 301 301 301 301 302 303 300 278	300 77 300 72 301 72 301 70 301 70 301 64 302 70 303 70 300 63 278 49	300 77 120 300 72 126 301 72 127 301 70 132 301 70 134 301 64 142 302 70 135 303 70 137 300 63 125 278 49 118	300 77 120 91 300 72 126 92 301 72 127 93 301 70 132 96 301 70 134 96 301 64 142 97 302 70 135 94 303 70 137 76 300 63 125 94 278 49 118 93	

Table 5. U.S. Electric Generating Capability (Gigawatts) by Source, 1990-2000	Table 5.	U.S. Electric Genera	ng Capability	r (Gigawatts) b	y Source,	1990-2000
---	----------	----------------------	---------------	-----------------	-----------	-----------

Figure 11. U.S. Electric Generating Capability by Source, 1990–2000


Note (Table 5 and Figure 11): Net summer capability. Percentages are rounded to the nearest whole number. Source (Table 5 and Figure 11): DOE/EIA Inventory of Power Plants in the United States, 2000, Table 1 .

2002 INFORMATION DIGEST

Year	Operation and Maintenance	Fuel	Total Production Expenses
Nuclear:			
1990	14.65	7.24	21.89
1991	14.72	6.75	21.47
1992	15.35	6.24	21.59
1993	15.26	6.02	21.28
1994	14.01	6.02	20.03
1995	13.49	5.74	19.23
1996	13.76	5.49	19.25
1997*	18.90	5.89	24.79
1998	16.19	5.42	21.61
1999	14.06	5.17	19.23
2000	13.34	4.95	18.29
Coal-Fired:			
1990	4.30	15.84	20.14
1991	4.39	15.85	20.24
1992	4.33	15.37	19.70
1993	4.32	15.31	19.63
1994	4.32	14.88	19.20
1995	4.24	14.51	18.75
1996	4.03	14.20	18.23
1997*	3.96	14.03	17.99
Fossil Steam:**			
1998	4.59	16.01	20.60
1999	4.59	15.62	20.21
2000	4.76	17.69	22.45

Table 6. U.S. Average Nuclear Reactor and Coal-Fired/Fossil Steam Plant Production Expenses (Dollars per Megawatthour), 1990-2000

Figure 12. U.S. Average Nuclear Reactor, Coal-Fired and Fossil Steam Plant Production Expenses, 1990–2000

*Data for prior years was obtained from Utility Data Institute, Inc.

**Includes coal and fossil fuel. Plant production expenses are no longer available for coal-fired fuel exclusively. CO4

26

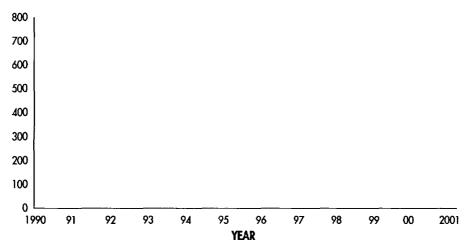
U.S. Electricity Generated by Commercial Nuclear Power

In 2001, net nuclear-based electric generation in the United States produced a total of 767,000 gigawatthours (see Table 7 and Figure 13).

In 2000, the average U.S. net capacity factor was 88 percent. It increased to 90 percent in 2001. Since 1990, the average capacity factor has increased 40 percent (see Table 7).

- Capacity factor is the ratio of electricity generated to the amount of energy that could have been generated (see Glossary).
- Ninetynine percent of U.S. commercial nuclear reactors operated above a

capacity factor of 70 percent in 2001 (see Table 8).


 In 2001, Westinghouse (WEST) reactors had the highest average capacity factors compared to those of the other three vendors. The 48 WEST reactors had an average capacity factor of 91 percent. The average capacity factors for the other three vendors were the following: 7 Babcock & Wilcox reactors — 88 percent, 35 General Electric reactors — 89 percent, and 14 Combustion Engineering reactors — 87 percent, (see Table 8).

2002 INFORMATION DIGEST

Table 7. U.S. Nuclear Power Reactor Average Capacity Factor and Net Generation, 1990–2001

Number of		Average Annual	Net Generation of Electricity			
Year	Operating Reactors	Capacity Factor (Percent)	Thousands of Gigawatthours	Percent of Total U.S.		
1990	111	68	577	19.1		
1991	111	71	613	20.0		
1992	110	71	619	20.1		
1993	109	73	610	19.1		
1994	109	75	640	19.7		
1995	109	79	673	20.1		
1996	110	77	675	19.6		
1997	104	74	629	18.0		
1998	104	78	674	18.6		
1999	104	86	728	19.6		
2000	104	88	754	19.8		
2001	104	90	767	20.0		

Figure 13. Net Generation of U.S. Nuclear Electricity, 1990–2001 THOUSAND GIGAWAITHOURS

Note (Table 7 and Figure 13): Average annual capacity factor is based on net maximum dependable capacity. See Glossary for definition.

Source (Table 7 and Figure 13): 1990-2001 Net Electricity based on Mar 2002 DOE/EIA - Monthly Energy Review Table 7.2, page 99, and licensee data as compiled by the Nuclear Regulatory Commission.

NUCLEAR REGULATORY COMMISSION

Capacity Factor	1999	Licensed to Operate 2000	2001		Percent of Net Nuclea Generated 2000	r
Above 70 Percent	97	99	101	97	9 9	99
50 to 70 Percent	4	2	1	3	1	<u> </u>
Below 50 Percent	3	3	2	>1	>1	>1
Total	104	104	104	100	100	100

 Table 8.
 U.S. Commercial Nuclear Power Reactor Average Capacity Factor by Vendor and Reactor Type, 1999–2001

	-	icensed f Operate	;	C (Verage apacity Factor Percent	r }	Ne G	ercent o t Nucle enerate	ar d
Vendor:	1999	2000	2001	1999	2000	2001	1999	2000	2001
Babcock & Wilcox	7	7	7	89	93	_ 88_	6	6	6
Combustion Engineering	14	14	14	87	91	87	15	14	13
General Electric	35	35	35	85	88		33	33	33
Westinghouse Electric	48	48	48	86	87	91	46	47	48
Total	104	104	104				100	100	100
Reactor Type:									
Boiling-Water Reactor	35	35	35	90	88	89	35_	33	33
Pressurized-Water Reactor	69	69	69	84	89	90	65	67	67
Total	104	104	104				100	100	100

Note: Average capacity factor is based on net maximum dependable capacity. See Glossary for definition. Refer to Appendix A for the 1996–2001 average capacity factors for each reactor. Percentages are rounded to the nearest whole number.

Source: Licensee data as compiled by the Nuclear Regulatory Commission

2002 INFORMATION DIGEST

29

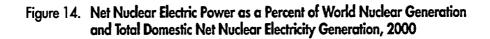
72732374.76247244

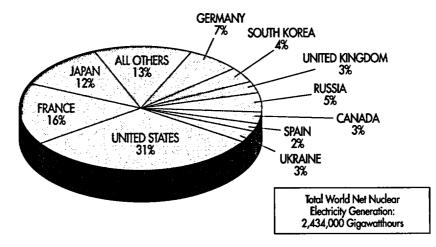
Worldwide Electricity Generated by Commercial Nuclear Power

In 2001, 441 operating reactors in 33 countries had a maximum dependable capacity of 401,970 megawatts electric (net MWe).

 Refer to Appendix J for a world list of nuclear power reactors and Appendix K for nuclear power units by reactor type, worldwide.

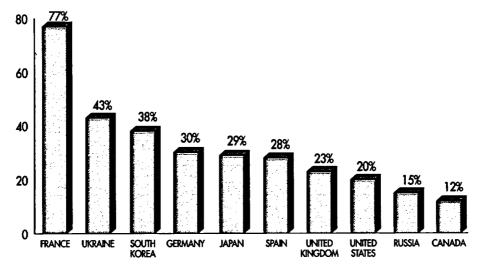
Major producers of nuclear electricity during 2000 were the United States and France.


- Approximately 31 percent of the world's net nuclear-generated electricity was produced in the United States (see Figure 14).
- France produced approximately 16 percent of the world's net nuclear-generated electricity. The nuclear portion of its total domestic electricity generation was approximately 77 percent (see Figure 14).


Of the countries cited here, reactors in South Korea (93 percent), U.S. (88 percent), and the Germany (87 percent) had the highest gross capacity factors in 2001. Reactors in the United States had the greatest gross generation at 795 thousand gigawatthours. France was the next highest producer at 409 thousand gigawatthours (see Table 9).

 Refer to Appendix L for a list of the top fifty units by gross capacity factor, worldwide, and Appendix M for a list of the top fifty units by gross generation, worldwide.

Over the past ten years, the average annual gross capacity factor has increased 28 percentage points in the United States, 32 percentage points in Germany, and increased 16 percentage points in France (see Table 10).


NUCLEAR REGULATORY COMMISSION

PERCENT OF WORLD NUCLEAR GENERATION

Note: Percentages are rounded to the nearest whole number. Source: DOE/EIA International Energy Information, Tables 2.6, 2.7, 2.8, 6.1 http://www.eia.doe.gov>.

2002 INFORMATION DIGEST

31

Table 9.	Commercial Nuclear I	Power Reactor A	Average Gross	Capacity Factor and
	Gross Generation by	Selected Countr	y, 2001	

Country	Number of Operating Reactors	Average Gross Capacity Factor (Percent)	Total Gross Nuclear Generation (Thousand Gigawatthours)	Number of Operating Reactors in Top 50 by Capacity Factor	Number of Operating Reactors in Top 50 by Generation
Canada	21	53	77	0	0
France	57	73	409	0	9
Germany	19	87	171	1	10
Japan	52	79	319	9	3
Russia	30	67	134	0	0
South Korea	16	93	112	4	0
Sweden	11	84	72	0	0
Ukraine	13	74	76	0	0
United States	104	88*	795	28	27

Source: Excerpted from Nucleonics Week©, February 14, 2002, by McGraw-Hill, Inc. Reproduced by permission. Further reproduction prohibited.

Table 10. Commercial Nuclear Power Reactor Average Gross Capacity Factor by Selected Country, 1991–2001

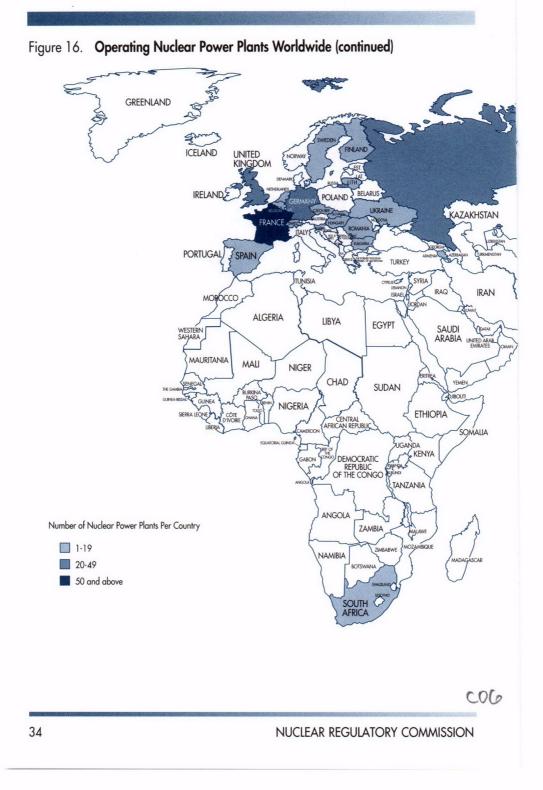
Average oross Annoal Cupacity racion (reicenn)											
Country	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Canada	72	68	70	76	68	65	61	50	52	50	53
France	63	63	69	67	71	74	72	73	71	72	73
Germany	66	72	69	72	71	79	83	79	88	87	87
Japan	72	72	73	74	79	80	82	83	79	79	79
Russia	**	**	**	**	**	**	**	**	61	67	67
South Korea	**	**	**	**	**	**	**	**	88	90	93
Sweden	85	67	62	76	73	79	75	78	78	66	84
Ukraine	**	**	**	**	**	**	**	**	65	69	74
United States	69 {71	69 71	71 73	73 75	77 79	75 77	70 73	76 78	85 86	87 88	88 90}*

Average Gross Annual Capacity Factor (Percent)

*For comparison, U.S. average gross capacity factor is used. The 2001 U.S. average net capacity factor is 90 percent. Brackets { } denote average net capacity factor. See Glossary for definition. **Data not available.

Note: Percentages are rounded to the nearest whole number.

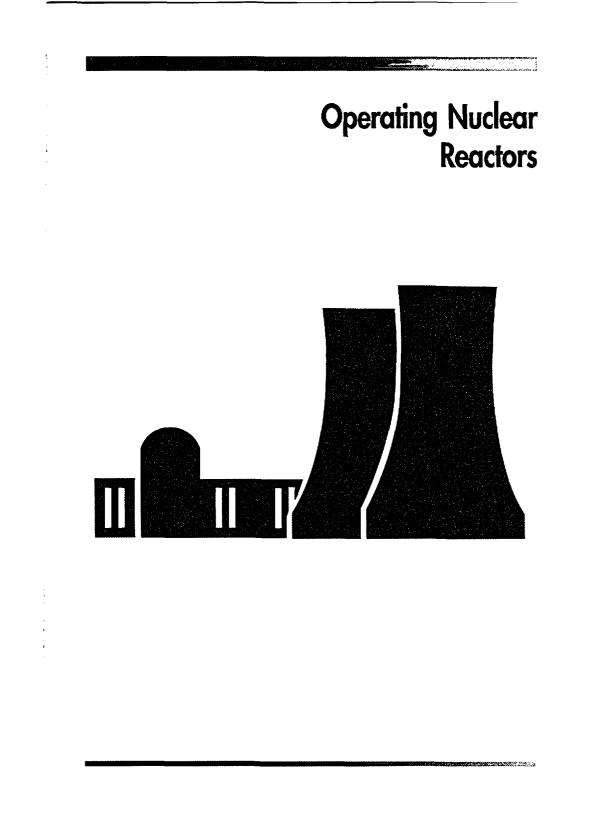

Source: DOE/EIA Commercial Nuclear Power, 1991 (DOE/EIA-0438), Table 18 (page 40). Excerpted from *Nucleanics Week*©, February 14, 2002, by McGraw-Hill, Inc. Reproduced by permission. Further reproduction prohibited. Licensee data as compiled by the Nuclear Regulatory Commission.


NUCLEAR REGULATORY COMMISSION

32

. .

. .



NUCLEAR REGULATORY COMMISSION

U.S. Commercial Nuclear Power Reactors

There are as of December 2001, 104 commercial nuclear power reactors licensed to operate in 31 States (see Figures 18, 19, 20, 21, and 22):

- The above number includes Browns Ferry Unit 1, which has no fuel loaded and requires Commission approval to restart.
- Refer to Appendices A-F for a listing of currently operating, formerly operating, research and test reactors and canceled U.S. commercial nuclear power reactors.

Diversity — Although there are many similarities, each reactor design can be considered unique. A typical light-water reactor is shown in Figure 17:

- 4 reactor vendors
- 35 licensees
- 80 different designs
- 65 sites

Experience—The 104 reactors licensed to operate during 2001 have accumulated 2,153 reactor-years of experience (see Table 11 and Figure 23). An additional 357 reactor-years of experience have been accumulated by permanently shutdown reactors.

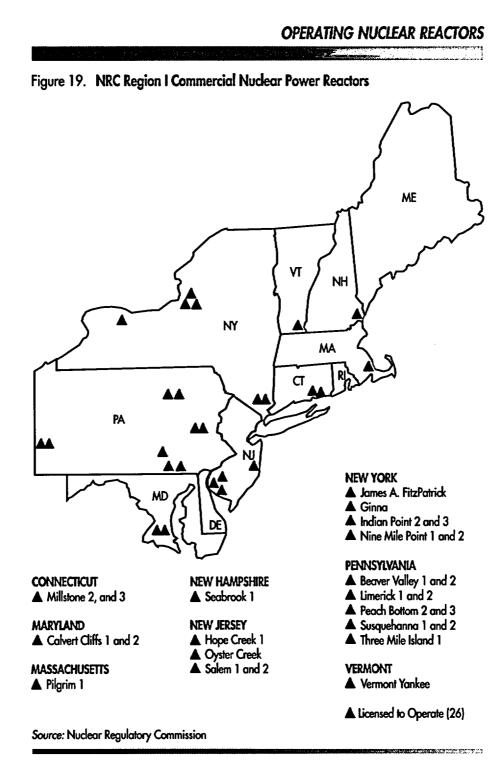
Principal Licensing and Inspection Activities

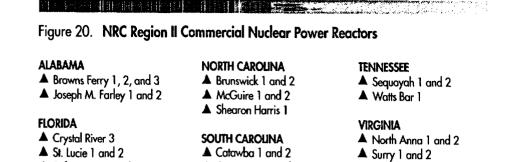

- The NRC depends primarily on reactor and facility inspections as the basis for its independent determination of licensee compliance with NRC regulations.
- On average, approximately 3,400 hours of inspection effort were expended at each operating reactor during FY 2001 (see Figure 24).
- Approximately 15 separate license changes are requested per power reactor each year:
 - More than 1,600 separate reviews were completed by the NRC in FY 2001.
- Approximately 4,500 reactor operators are licensed by the NRC:
 - Each operator is requalified before renewal of a 6-year license.
- Approximately 3,000 source documents concerning events are reviewed by the NRC annually.
- The NRC oversees the decommissioning of nuclear power reactors. Refer to Appendix B for their decommissioning status.

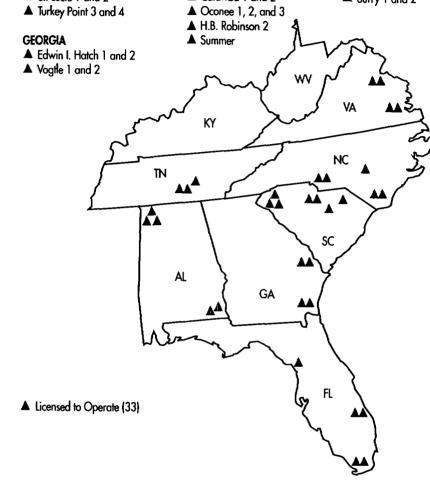
Figure 17. Typical Nuclear Reactor

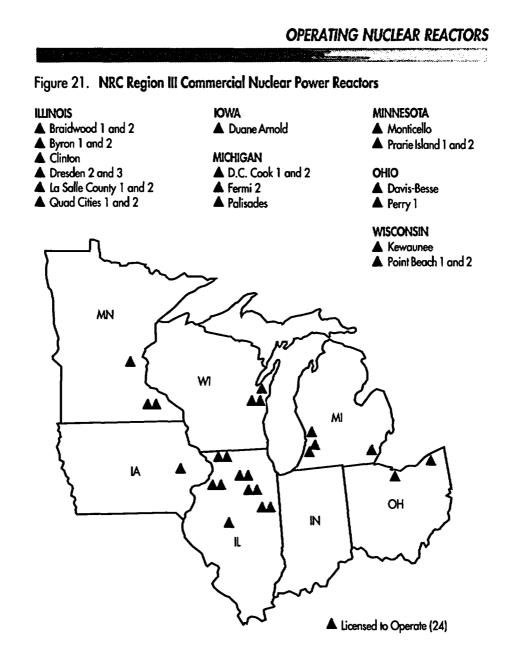
How Nuclear Reactors Work

In a typical commercial pressurized light-water reactor (1) the reactor core creates heat, (2) pressurizedwater in the primary coolant loop carries the heat to the steam generator, and (3) the steam generator vaporizes the water in a secondary loop to drive the turbine, which produces electricity. Boiling-water reactors are similar to pressurized-water reactors but use the same loop to cool the reactor and to deliver steam to the turbine. The reactor's core is cooled by water, which is force-circulated by electrically powered pumps. Emergency cooling water is supplied by other pumps, which can be powered by onsite diesel generators. Other safety systems, such as the containment building air coolers,




▲ Licensed to Operate (104)


Note: Includes Browns Ferry Unit 1, which has no fuel loaded and requires Commission approval to restart. There are no commercial reactors in Alaska or Hawaii. Source: Nuclear Regulatory Commission


2002 INFORMATION DIGEST

Source: Nuclear Regulatory Commission

Source: Nuclear Regulatory Commission

2002 INFORMATION DIGEST

43

u se e concentration de la concentration de

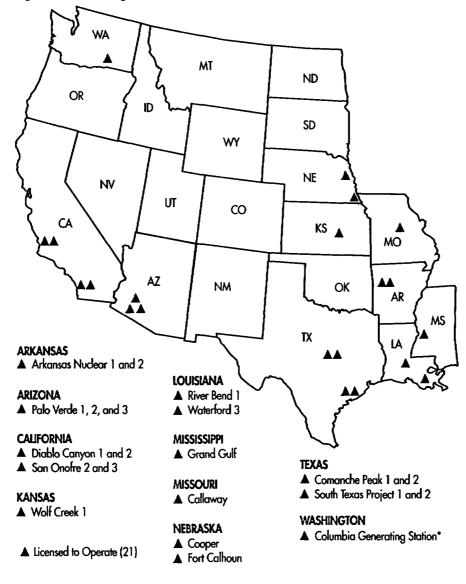


Figure 22. NRC Region IV Commercial Nuclear Power Reactors

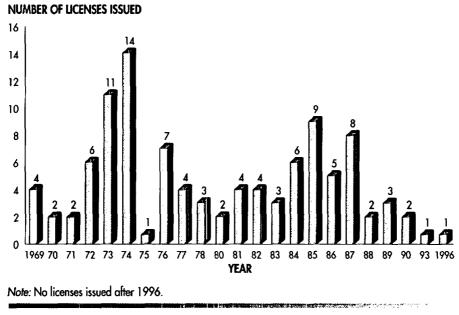
*Formerly Washington Nuclear 2 Note: There are no commercial reactors in Alaska or Hawaii. Source: Nuclear Regulatory Commission

NUCLEAR REGULATORY COMMISSION

CHARLES CHARLES AND SOLD SHE WATCH STOLEN

Table 11. U.S. Commercial Nuclear Power Reactor Operating Licenses Issued by Year

Year	Reactor Name	Number of Licenses Issued	Total Number of Operating Licenses	Year	Reactor Name	Number of Licenses Issued	Total Number of Operating Licenses
1969	Dresden 2 Ginna Nine Mile Point 1 Oyster Creek	4	4	1976	Beaver Valley 1 Browns Ferry 3 Brunswick 1 Calvert Cliffs 2	7	47
1970	H.B. Robinson 2 Point Beach 1	2	6		Indian Point 3 Salem 1		
1971	Dresden 3 Monticello	2	8	1977	St. Lucie 1 Crystal River 3	4	51
1972	Palisades Pilgrim 1 Quad Cities 1	6	14		Davis-Besse D.C. Cook 2 Joseph M. Farley 1		
	Quad Cities 2 Surry 1 Turkey Point 3			1978	Arkansas Nuclear 2 Edwin I. Hatch 2 North Anna 1	3	54
1973		11	25	1980	North Anna 2 Sequoyah 1	2	56
	Indian Point 2 Kewaunee Oconee 1 Oconee 2			1981		4	60
	Peach Bottom 2 Point Beach 2 Surry 2 Turkey Point 4			1982		4	64
1974	Vermont Yankee Arkansas Nuclear 1 Browns Ferry 2	14	39	1983		3	67
	Brunswick 2 Calvert Cliffs 1 Cooper D. C. Cook 1 Duane Arnold Edwin I. Hatch 1			1984	Callaway Diablo Canyon 1 Grand Gulf 1 La Salle County 2 Susquehanna 2 Washington Nuclea	6 r 2	73
	James A. FitzPatrick Oconee 3 Peach Bottom 3 Prairie Island 1 Prairie Island 2 Three Mile Island 1			1985		9	82
1975	Millstone 2	1	40		River Bend 1 Waterford 3 Wolf Creek 1		
							on page 46)


2002 INFORMATION DIGEST

;

U.S. Commercial Nuclear Power Reactor Operating Licenses Issued by Year (Continued)

Year	Reactor Name	Number of Licenses Issued	Total Number of Operating Licenses	Year	Reactor Name	Number of Licenses Issued	Total Number of Operating Licenses
1986	Catawba 2 Hope Creek 1 Millstone 3	5	87	1989	Limerick 2 South Texas Project Vogtle 2	3	100
	Palo Verde 2 Perry 1			1990	Comanche Peak 1 Seabrook	2	102
1987	Beaver Valley 2 Braidwood 1 Byron 2	8	95	1993 1996	Comanche Peak 2 Watts Bar 1	1 1	103 104
	Clinton Nine Mile Point 2				e: Data as compiled atory Commission	by the Nucl	ear
	Palo Verde 3 Shearon Harris 1 Vogtle 1			Year i	Limited to reactors li s based on the date	the initial fu	
1988	Braidwood 2 South Texas Project 1	2	97	opera	ting license was issue	ed.	

Figure 23. U.S. Commercial Nuclear Power Reactor Operating Licenses Issued by Year

46

Oversight of U.S. Commercial Nuclear Power Reactors

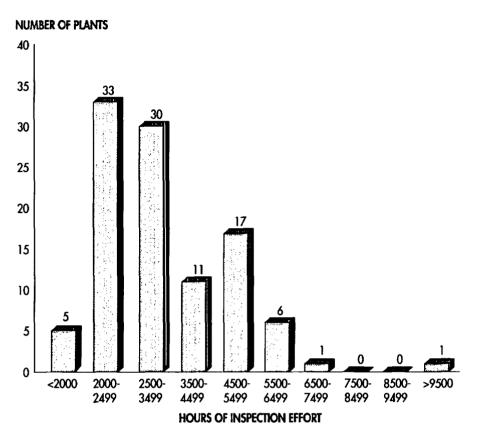
Reactor Oversight Process

The NRC itself does not operate nuclear power plants. Rather, it regulates the operation of the nation's 104 nuclear power plants by establishing regulatory requirements for the design, construction and operation of such plants. To ensure that the plants are operated safely within these requirements, the NRC licenses the plants to operate, licenses the plant operators, and establishes technical specifications for the operation of each plant.

The NRC provides continuous oversight of plants through its reactor oversight process (ROP) to verify that they are being operated in accordance with NRC rules and regulations. The NRC has full authority to take whatever action is necessary to protect public health and safety and may demand immediate licensee actions, up to and including a plant shutdown.

The ROP is described on the NRC's web site and in NUREG-1649, Revision 3, "Reactor Oversight Process." In general terms, the ROP uses both inspection findings and performance indicators (PIs) to assess the performance of each plant within a regulatory framework of seven cornerstones of safety. The ROP recognizes that issues of very low safety significance inevitably occur, and plants are expected to effectively address these issues. The NRC performs a baseline level of inspection at each plant. The NRC may perform supplemental inspections and take additional actions to ensure significant performance issues are addressed. A summary of the NRC's inspection effort is shown in Figure 24. The latest plant-specific inspection findings and PI information can be found on the NRC's web site.

In FY 2000, the NRC integrated its previously distinct programs for inspection, assessment, and enforcement programs into the current ROP. The ROP takes into account improvements in the performance of the nuclear industry over the past twenty-five years and improved approaches of inspecting and evaluating the safety performance of NRC licensed plants. The improvements in plant performance can be attributed both to efforts within the nuclear industry and successful regulatory oversight.

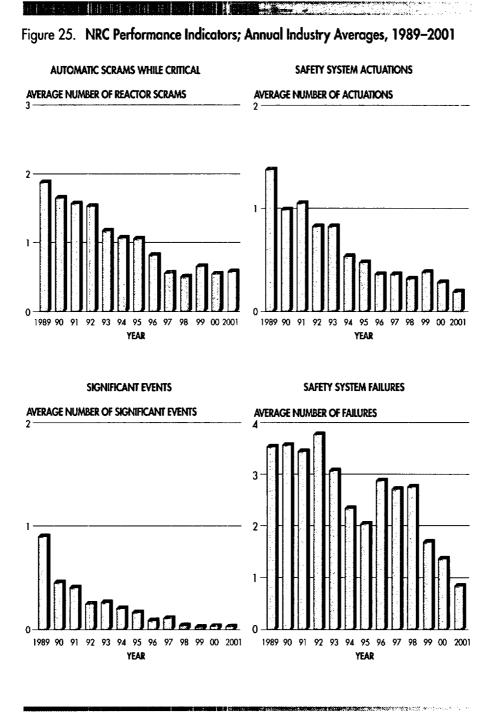

The revised ROP is more risk-informed. objective, predictable, understandable, and focused on the areas of greatest safety significance. Key features of the new program are a risk-informed regulatory framework, risk-informed inspections, a significance determination process to evaluate inspection findings, performance indicators, a streamlined assessment process, and more clearly defined actions the NRC takes for plants based on their performance. The NRC incorporated lessons learned from a pilot program of the revised ROP conducted at nine reactor sites in 1999 and began implementation of the revised ROP for all plants in April 2000. The NRC has continued to refine the ROP as experience has been gained.

(Continued on page 49)

2002 INFORMATION DIGEST

Figure 24. NRC Inspection Effort at Operating Reactors, FY 2001*

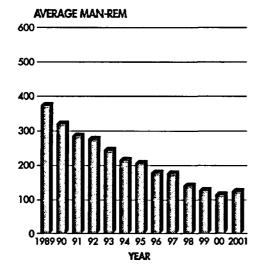
•FY 2001 data includes regular and overtime hours. Includes Browns Ferry 1. Source: Nuclear Regulatory Commission


NUCLEAR REGULATORY COMMISSION

Oversight of U.S. Commercial Nuclear Power Reactors (Continued)


Industry Performance Indicators

In addition to evaluating the performance of each individual plant, the NRC compiles data on overall performance using various industry-level performance indicators, as shown in Figure 25 and Appendix G. The indicators can provide additional data for assessing trends in industry performance.


2002 INFORMATION DIGEST

NUCLEAR REGULATORY COMMISSION

COLLECTIVE RADIATION EXPOSURE

Note: Data represent annual industry averages, with plants in extended shutdown excluded. Data are rounded for display purposes. These data may differ slightly from previously published data as a result of refinements in data quality.

OPERATING NUCLEAR REACTORS

Source: Licensee data as compiled by the Nuclear Regulatory Commission

2002 INFORMATION DIGEST

ì

51

NET A STATE AND A STATE AND A

Future U.S. Commercial Nuclear Power Reactor Licensing

Reactor Aging and License Renewal:

Based on the Atomic Energy Act, the NRC issues licenses for commercial power reactors to operate for up to 40 years and allows these licenses to be renewed for another 20 years. The first 40-year operating license will expire in the year 2006. Approximately 10 percent of the remaining operating plants will expire by the end of the year 2010, and more than 40 percent will expire by the year 2015. The age of operating reactors and their average maximum dependable capacity is illustrated in Figure 25.

The decision whether to seek license renewal rests entirely with nuclear power plant owners, and will be based on the plant's economic situation and whether it can meet NRC requirements. Extending reactor operating licenses beyond their current 40-year terms will provide a viable approach for electric utilities to ensure the adequacy of future electricity-generating capacity that offers significant economic benefits when compared to the construction of new reactors.

In December 1991, the NRC issued the rule and associated documentation that describe the requirements a licensee must be able to demonstrate for the NRC to make a determination that the plant can continue to be operated for up to 20 additional years beyond the expiration of its 40-year license. The NRC issued an amendment to the license renewal rule that became effective on June 7, 1995. The amendment to the rule provides a more stable and predictable regulatory process for license renewal by focusing the license renewal safety review on the management of the adverse effects of aging on certain systems, structures, and components during the period of extended operation.

In a separate rulemaking, the NRC revised the scope of environmental effects for license renewal to enhance the agency's environmental review process for reactor license renewal. The final, revised rule became effective on September 5, 1996.

The NRC has developed improved regulatory guidance and standard review plans to standardize the content of license renewal applications and improve the efficiency and effectiveness of the NRC's evaluation for both the safety and environmental reviews.

The first license renewal application was submitted in April 1998 by Baltimore Gas and Electric (BGE) for its Calvert Cliffs units. Duke Energy Company (Duke) submitted a renewal application for its Oconee units in July 1998. Calvert Cliffs' renewed licenses were issued in March 2000 and Oconee's was issued in May 2000.

Additionally, in February 2000, Entergy Operations, Inc., submitted an application for Arkansas Nuclear One, Unit 1; in March 2000, Southern Nuclear Operating Company, Inc., submitted an application for Edwin I. Hatch, Units 1 and 2; and in September 2000, Florida Power and Light submitted an application for Turkey Point, Units 3 & 4. The renewed license for Arkansas Nuclear One, Unit 1 was issued in June 2001. Additional renewal applications were submitted by Virginia Electric and Power in May 2001 for Surry Units 1 and 2 and North Anna, Units 1; by Duke Energy in June 2001 for Catawba 1 and 2 and McGuire 1 and 2; and by Exelon in July 2001 for Peach Bottom, Units 2 and 3.

(Continued on page 56)

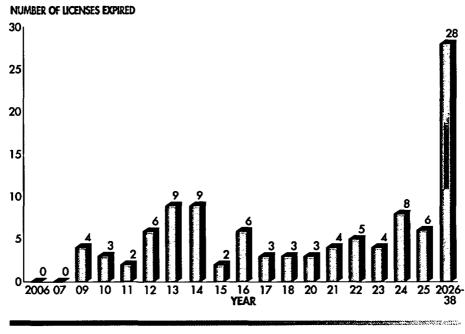
NUCLEAR REGULATORY COMMISSION

YEARS OF COMMERCIAL OPERATION	NUMBER OF REACTORS	AVERAGE CAPACITY (MDC)
△ 0-9	2	1,134
▲ 10-19	41	1,097
A 20-29	51	837
▲ 30-34	10	579

Note: There are no commercial reactors in Alaska or Hawaii. Calculated data as of 12/01.	
Source: Nuclear Regulatory Commission	C09
2002 INFORMATION DIGEST	53

Table 12. U.S. Commercial Nuclear Power Reactor Operating Licenses— Expiration Date by Year

		Number of			Number of
V	Reactor	Licenses	~	Reactor	Licenses
Year	Name	Expired	Tear	Name	Expired
2009	Dresden 2	4	2016	Beaver Valley 1	6
	Ginna			Browns Ferry 3	•
	Nine Mile Point 1			Brunswick 1	
	Oyster Creek	_		Crystal River 3	
2010	H.B. Robinson 2	3		Salem 1	
	Monticello		•••	St. Lucie 1	
2011	Point Beach 1	•	2017		3
2011	Dresden 3 Palisades	2		D.C. Cook 2	
2012	Pilgrim 1	6	2010	Joseph M. Farley 1	•
2012	Quad Cities 1	0	2018	Arkansas Nuclear 2 North Anna 1	2
	Quad Cities 2		2020	North Anna 2	3
	Surry 1		2020	Salem 2	3
	Turkey Point 3			Sequoyah 1	
	Vermont Yankee		2021	Diablo Canyon 1	4
2013	Browns Ferry 1	9		Joseph M. Farley 2	4
	Fort Calhoun			McGuire 1	
	Indian Point 2			Sequoyah 2	
	Kewaunee		2022		5
	Peach Bottom 2			San Onofre 2	
	Point Beach 2			San Onofre 3	
	Prairie Island 1			Summer	
	Surry 2 Turkey Dates 4			Susquehanna 1	
2014	Turkey Point 4	9	2023	La Salle County 2	4
2014	Browns Ferry 2 Brunswick 2	Ŷ		McGuire 2	
	Cooper			St. Lucie 2	
	D. C. Cook 1		2024	Columbia Generating Station Byron 1	8
	Duane Arnold		2024	Callaway	8
	James A. FitzPatrick			Catawba 1	
	Peach Bottom 3			Grand Gulf 1	
	Prairie Island 2			Limerick 1	
	Three Mile Island 1			Palo Verde 1	
2015	Indian Point 3	2		Susquehanna 2	
	Millstone 2			Waterford 3	
			2025	Diablo Canyon 2	6
				Fermi 2	
				Millstone 3	
				Palo Verde 2	
				River Bend 1	
				Wolf Creek 1	


NUCLEAR REGULATORY COMMISSION

WYW CONTRACTOR OF CONTRACTOR OF

OPERATING NUCLEAR REACTORS

	Reactor	Number of Licenses		Reactor	Number of Licenses
Year	Name	Expired	Year	Name	Expired
2026	Braidwood 1 Byron 2 Catawba 2	9	2033	Comanche Peak 2 Oconee 1 Oconee 2	3
	Clinton Hope Creek 1 Nine Mile Point 2 Perry 1		2034	ANO 1 Calvert Cliffs 1 Edwin Hatch 1 Oconee 3	4
	Seabrook 1 Shearon Harris 1		2035 2036	Watts Bar Calvert Cliffs 2	1
2027	Beaver Valley 2 Braidwood 2	5	2048	Edwin Hatch 2	i
	Palo Verde 3 South Texas Project 1 Vogtle 1		for co	assumes that the maxir nstruction recapture ha it expiration date. This	s been added to the
2028	South Texas Project 2	1	reado	rs eligible for construct	ion reconture See
2029	Limerick 2 Vogtle 2	2	Glosse	ary for definition.	
2030	Comanche Peak 1	1	Souro	Limited to reactors lice: e: Data as compiled by atory Commission	•

2002 INFORMATION DIGEST

,

Future U.S. Commercial Nuclear Power Reactor Licensing (Continued)

The Babcock and Wilcox, Westinghouse, and Boiling Water Reactor Owners Groups have established generic license renewal programs that have developed and submitted technical reports for NRC approval. The Nuclear Energy Institute has established working groups to interact with the NRC on improvements to the license renewal rule implementation guidance, and resolution of generic renewal issues.

The NRC has conducted research providing the technical bases to ensure that critical reactor components, safety systems, and structures provide adequate reliability as reactors age. Research results continue to be useful in assessing safety implications of agerelated degradation during the 40-year license and in supporting safety decisions associated with license renewal.

New Nuclear Reactor Licensing

In 1989, the NRC introduced a new licensing process (10 CFR Part 52) as an alternative to the traditional two-step licensing process in Part 50. Part 52 sets forth the process for review of Early Site Permits (ESP), Standard Design Certifications, and Combined Licenses for nuclear power facilities. A combined license involves issuance of a combined construction permit and a conditional operating license for a nuclear power facility.

The NRC has implemented modifications to the organizational structure with the creation of the New Reactor Licensing Project Office (NRLPO) to process new plant applications within the Office of Nuclear Reactor Regulation (NRR) and the creation of the Advanced Reactor Group within the Office of Nuclear Regulatory Research.

NRLPO will perform several activities to ensure that NRC is prepared to review new applications. These activities include assessing the actions necessary to prepare for ESP applications; updating current rulemaking activities for 10 CFR Parts 51 and 52 licensing processes; performing a review of the construction inspection program for construction of new power plant reactivation; and performing pre-application and new application reviews.

NRLPO is working with the Advanced Reactor Group to perform pre-application reviews currently ongoing and anticipated which include: General Atomics' Gas Turbine-Modular Helium Reactor design, Framatome's European designed boiling water reactor or pressurized water reactor; and the International Reactor Innovative and Secure design also known as IRIS.

NRC staff is currently reviewing Westinghouse's design certification application for their AP1000 passive advanced light-water reactor design. In the past, NRC has provided design certifications for three reactor designs that can be referenced in an application for a nuclear power plant. These designs include:

- 1. GE Nuclear Energy's Advanced Boiling Water Reactor design;
- 2. Westinghouse's System 80+ design; and
- 3. Westinghouse's AP600 design.

NUCLEAR REGULATORY COMMISSION

OPERATING NUCLEAR REACTORS

An ESP provides for resolution of site safety, environmental protection, and emergency preparedness issues, independent of a specific nuclear plant review. Three companies have indicated that they will apply for early site permits in 2003. They are Exelon Generation Company, Dominion Generation, and Entergy Operations, Incorporated. Additional information on the advanced reactors mentioned above is available on the NRC's Web Site at <u>http://www.nrc.gov/</u> reading-rm/doc-collections/fact-sheets/nextgen-reactors.html.

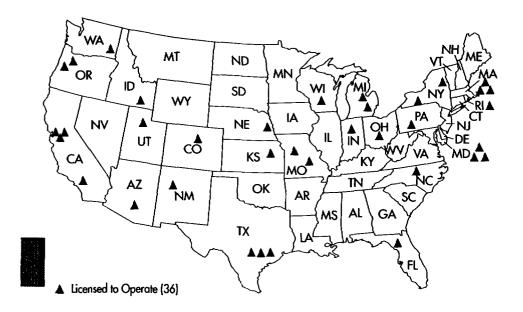
U.S. Nuclear Research and Test Reactors

Nuclear research and test reactors are designed and utilized for research, testing, and educational purposes:

- in the performance of research and testing in the areas of physics, chemistry, biology, medicine, materials sciences, and related fields
- in educating people for nuclear-related careers in the power industry, national defense, health service industry, research, and education

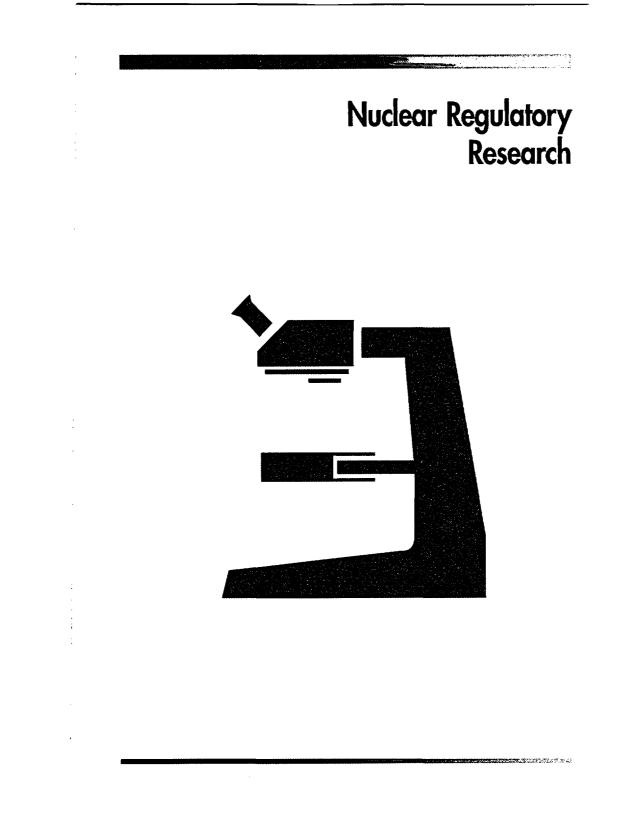
There are 36 research and test reactors licensed to operate in 23 States (see Figure 28):

• 12 research and test reactors are being decommissioned.


- 4 research and test reactors have possession-only licenses.
- Since 1958, 73 licensed research and test reactors have been decommissioned.
- Refer to Appendix F for a listing of U.S. nuclear research and test reactors with operating licenses.

Principal Licensing and Inspection Activities

- The NRC licenses approximately 285 research and test reactor operators. Each operator is requalified before renewal of a 6-year license.
- The NRC conducts approximately 45 research and test reactor inspections each year.

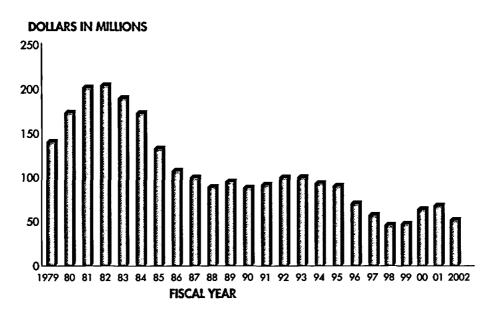

2002 INFORMATION DIGEST

Note: There are no research and test reactors in Alaska or Hawaii. Source: Nuclear Regulatory Commission

NUCLEAR REGULATORY COMMISSION

Nuclear Regulatory Research

NRC's regulatory research program seeks to provide independent information and expertise to support realistic safety decisionmaking, to assess the safety significance of potential technical issues, to prepare the agency for the future by evaluating potential safety issues involving new designs and technology. As such, the research program is both confirmatory of existing safety margins and anticipatory of future concerns. The challenges and influences that govern NRC's regulatory research program include changes in the practices and performance of the regulated industry, increased economic pressures on licensees, emergence of new safety issues as the industry continues to mature, availability of new technologies, and public awareness and involvement in the regulatory process. The NRC's research program is key to providing the capability to face these challenges. Accordingly, the NRC must have highly skilled, independent expertise, and accurate information necessary to formulate sound


technical solutions and make timely and realistic regulatory judgments.

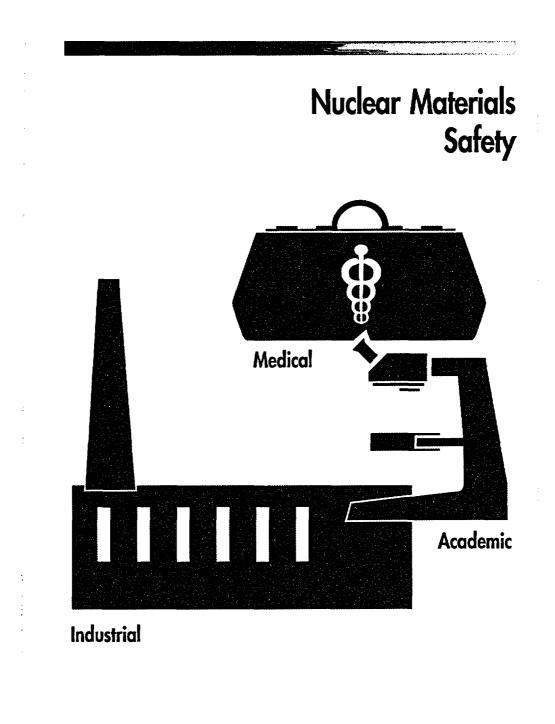
Although the significant reduction of the research program over the years reflects a changing environment and maturing industry, it is also presenting a challenge to the ability to address issues in the future. The current NRC research program focuses on supporting the NRC's review of emerging technologies (e.g., digital instrumentation and control systems), and including research that addresses advanced reactor designs, understanding and resolving nuclear plant aging issues arising out of operating experience, decommissioning licensed facilities, understanding the risks associated with nuclear facilities, including providing an independent review of operating experience to identify potential safety concerns, and providing the technical basis to support the NRC to move to a more risk-informed regulatory framework.

NUCLEAR REGULATORY COMMISSION

NUCLEAR REGULATORY RESEARCH

The NRC research program provides the independent expertise and information necessary for making timely regulatory judgments, anticipating problems of potential safety significance for which new or expanded knowledge can assist NRC in pursuing its mission, and provides support for developing regulations and regulatory guides pertaining to Commission policy or technical requirements. Over the years, the research program has been significantly reduced to reflect the changing environment and the maturing industry.

2002 INFORMATION DIGEST


61

and the second secon

. _____

NUCLEAR REGULATORY COMMISSION

U.S. Fuel Cycle Facilities

The NRC licenses and inspects all commercial nuclear fuel facilities involved in the processing and fabrication of uranium ore into reactor fuel. A typical fuel fabrication plant is illustrated in Figure 30.

There are seven major fuel fabrication and production facilities licensed to operate in six States (see Figure 31):

- Uranium Fuel Fabrication Facilities:
 - Global Nuclear Fuel Americas, LLC (Wilmington, North Carolina)
 - Westinghouse Electric Company, LLC Nuclear Fuel Division (Columbia, South Carolina)
 - Nuclear Fuel Services, Inc. (Erwin, Tennessee)
 - Framatome Fuels (Lynchburg, Virginia)
 - BWX Technologies Naval Nuclear Fuel Division (Lynchburg, Virginia)
 - Framatome ANP Richland, Inc. (Richland, Washington)
- Uranium Hexafluoride Production Facility:
 - Honeywell International, Inc. (Metropolis, Illinois)

In addition, NRC regulates the two gaseous diffusion uranium enrichment facilities, which

are leased by the United States Enrichment Corporation from the Department of Energy (DOE). NRC promulgated regulations for the gaseous diffusion plants in 10 CFR Part 76 in September 1994. The two plants came under NRC regulation on March 3, 1997.

- Gaseous Diffusion Enrichment Facilities:
 - U. S. Enrichment Corporation (Paducah, Kentucky)
 - U. S. Enrichment Corporation (Portsmouth, Ohio)*

NRC regulates 14 other facilities that possess significant quantities of special nuclear material (other than reactors) or process source material (other than uranium recovery facilities).

NRC is also engaged in a cooperative effort with the DOE on processing and solidification of high-level radioactive waste for longterm isolation. Since 1980, the West Valley Demonstration Project Act has required NRC to oversee the protection of public safety for the high-level waste vitrification demonstration project at the Western New York Nuclear Center, West Valley, New York. Under a joint project between the DOE and the New York State Energy Research and Development Authority, the West Valley Demonstration Project began converting liquid high-level waste into glass logs in July 1996.

In 1996, NRC also initiated a cooperative project with the DOE's Tank Waste

*Currently in cold standby and not used for enrichment.

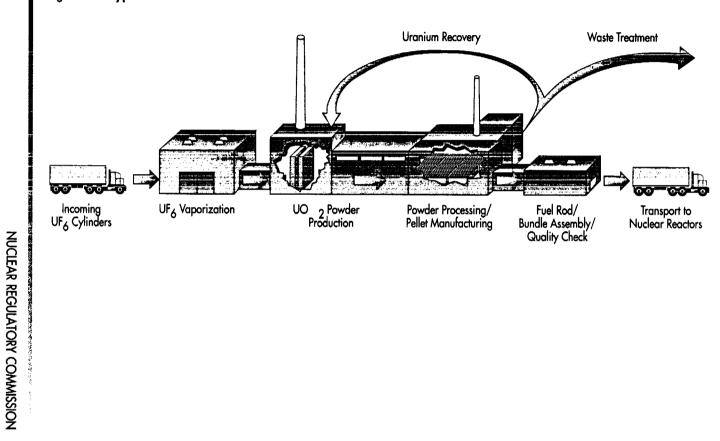
NUCLEAR REGULATORY COMMISSION

Remediation System Privatization Project in Hanford, Washington. Under a memorandum of understanding (MOU) signed in early 1997, the NRC provided technical, safety, and regulatory review assistance to DOE's efforts for regulating the construction and operation of the proposed vitrification facility. In June 2000, DOE terminated the privatization contract and replaced it with a management and operating contract. This effectively completed the MOU and ended NRC's participation, although the NRC has indicated its willingness to participate in the future if NRC expertise is needed.

- Proposed Mixed Oxide Fuel Fabrication Facility:
 - Duke Cogema Stone & Webster (Aiken, South Carolina)

The Nuclear Regulatory Commission is reviewing an application for construction of a mixed oxide (MOX) fuel fabrication facility at the Department of Energy's Savannah River Site.

The Department of Energy announced plans to construct this MOX facility through a contract with the consortium of Duke Engineering & Services, COGEMA Inc., and Stone & Webster (known as DCS). If NRC grants the license, DCS could build and operate the MOX facility. The facility is intended to convert surplus U.S. weaponsgrade plutonium, supplied by the Department of Energy, into fuel for use in commercial nuclear reactors. Such use would render the plutonium essentially inaccessible and unattractive for weapons use.


DCS submitted an environmental report on the MOX facility in December 2000, and submitted its request for authorization to construct the facility in February 2001.

Before deciding whether to authorize construction, the NRC will prepare an environmental impact statement and will conduct a technical evaluation of the application to determine whether it meets NRC requirements.

Principal Licensing and Inspection Activities:

- NRC issues approximately 75 new, renewal, license amendments, and safety and safeguards reviews for fuel cycle facilities annually.
- NRC routinely conducts safety, safeguards, and environmental protection inspections of approximately 15 fuel cycle facilities or sites.

2002 INFORMATION DIGEST

6 Figure 30. Typical Fuel Fabrication Plant

NUCLEAR MATERIALS SAFETY

Figure 31. Major U.S. Fuel Cycle Facility Sites

- Uranium Fuel Fabrication Facility (6)
- Uranium Hexafluoride Production Facility (1)
- ▲ Gaseous Diffusion Enrichment Facility (2)

Note: There are no fuel cycle facilities in Alaska and Hawaii. Source: Nuclear Regulatory Commission

2002 INFORMATION DIGEST

67

U.S. Materials Licenses

Approximately 21,000 licenses are issued for medical, academic, industrial, and general uses of nuclear materials (see Table 13):

Reactor-produced radionuclides are used extensively throughout the United States for civilian and military industrial applications, basic and applied research, the manufacture of consumer products, civil defense activities, academic studies, and for medical diagnosis, treatment and research. NRC and Agreement State regulatory programs are designed to assure that licensees safely use these materials, and do not endanger public health and safety or cause damage to the environment.

- Approximately 5,000 licenses are administered by the NRC.
- Approximately 16,300 licenses are administered by the 32 States that participate in the Agreement States Program. An Agreement State is one that has signed an agreement with the NRC that authorizes the State to regulate the use of radioactive materials within that State (see Figure 32). Minnesota, Pennsylvania, and Wisconsin are actively working toward becoming Agreement States.

Medical and Academic — The NRC and Agreement States issue licenses to hospitals and physicians for the use of radioactive materials in diagnosing and treating patients. Academic institutions use radioactive materials for education and biomedical research. The facilities, personnel, program controls and equipment in each application are reviewed to ensure the safety of the public, patients, and occupationally exposed workers. In nuclear medicine, diagnostic procedures include *in vitro* tests (the addition of radioactive materials to lab samples taken from patients) and *in vivo* tests (direct administration of radioactive drugs to patients). Therapeutic treatments include the use of drugs to treat certain medical conditions such as hyperthyroidism and certain forms of cancer.

NRC issues licenses to academic institutions for educational and research purposes. Licensed activities include receipt of radioactive material, classroom demonstrations by qualified instructors, supervised laboratory research by students, and the use of certain neutron sources and source material in sub-critical assemblies.

Industrial — Radionuclides are used in a number of industrial and commercial applications including industrial radiography, gauging devices, gas chromatography, well logging, and smoke detectors. The radiography process uses radiation sources to determine structural defects in metallic castings and welds. Portable and fixed aauges use a radiation detector and indicator to measure density and thickness of an object on the indicator. Such measurements determine the thickness of paper products, fluid levels of oil and chemical tanks, moisture and density of soils and material at construction sites, and in manufacture items such as satellites and missiles. Gas chromatography uses low energy sources for identifying the constituent

NUCLEAR REGULATORY COMMISSION

elements of substances. It is used to determine the components of complex mixtures such as petroleum products, smog and cigarette smoke, and in biological and medical research to identify the components of complex proteins and enzymes. Well logging devices use a radioactive source to trace the position of materials previously placed in a well. This process is used extensively for oil, gas, coal, and mineral exploration.

General Licenses — A general licensee is a person or organization that acquires, uses, or possesses a generally licensed device (GLD) and has received the device through an authorized transfer by the device manufacturer/distributor, or by change of company ownership where the device remains in use at a particular location. A generally licensed device is a device containing radioactive material that is typically used to detect, measure, gauge, or control the thickness, density, level, or chemical composition of various items. Examples of such devices are gas chromatography (detector cells), density gauges, filllevel gauges, and static elimination devices. See NRC website at: <u>General Licenses</u> <u>Frequently Asked Questions page for more</u> information. NRC registers and tracks generally licensed devices to increase control and accountability of the devices and to prevent them from becoming orphan sources.

Principal Licensing and Inspection Activities

- NRC issues approximately 3,500 new licenses, renewals, or license amendments for materials licenses annually.
- NRC conducts approximately 1,500 health and safety inspections of its nuclear materials licensees annually.

2002 INFORMATION DIGEST

69

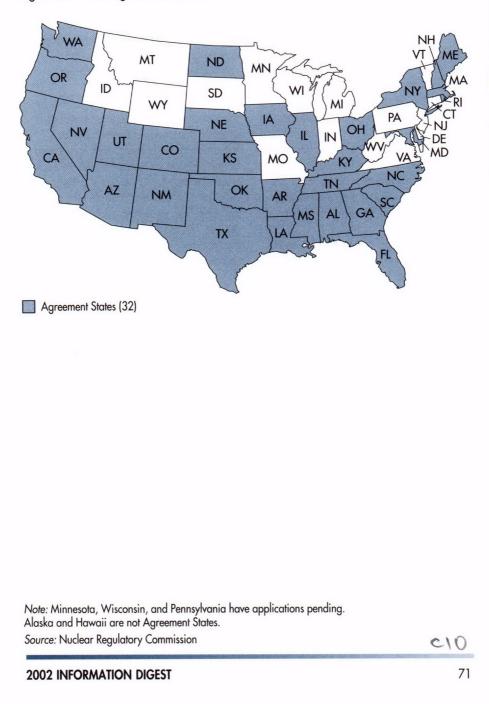

State	Number of Licenses			Number of Licenses	
	NRC	Agreement States	State	NRC	Agreement States
Alabama	20	430	Montana	77	0
Alaska	47	0	Nebraska	6	140
Arizona	17	292	Nevada	5	240
Arkansas	7	257	New Hampshire	9	82
California	55	2,137	New Jersey	520	0
Colorado	22	337	New Mexico	15	218
Connecticut	194	0	New York	53	1,366
Delaware	62	0	North Carolina	20	696
District of Columbia	46	0	North Dakota	10	61
Florida	20	1,321	Ohio	45	710
Georgia	17	502	Oklahoma	39	244
Hawaii	57	0	Oregon	10	464
Idaho	84	0	Pennsylvania	741	0
Illinois	46	742	Rhode Island	2	60
Indiana	282	0	South Carolina	17	362
lowa	4	183	South Dakota	44	0
Kansas	14	318	Tennessee	25	555
Kentucky	11	401	Texas	52	1,510
Louisiana	11	479	Utah	10	200
Maine	2	130	Vermont	35	0
Maryland	61	561	Virginia	383	0
Massachusetts	34	533	Washington	17	407
Michigan	514	0	West Virginia	183	0
Minnesota	161	0	Wisconsin	262	0
Mississippi	8	315	Wyoming	88	0
Missouri	294	0	Others*	164	0
			Total	4,922	16,253

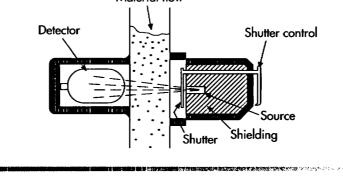
Table 13. U.S. Materials Licenses by State

*"Others" includes territories such as Puerto Rico, Virgin Islands, and Guam. Note: Agreement States data are latest available as of February 2002.

NUCLEAR REGULATORY COMMISSION

Nuclear Gauges

Fixed Gauges — The cross section shows a fixed fluid gauge installed on a process pipe (see Figure 33). Such devices are widely used in beverage, food, plastics, process and chemical industries to measure the densities, flow rates, levels, thicknesses, and weights of a wide variety of materials and surfaces.


Nuclear gauges are used as non-destructive devices to measure physical properties of products and industrial proceses to ensure environment, quality control and low-cost fabrication, construction and installations.

Fixed gauges consist of a radioactive source that is contained in a source holder safely. When the source holders' shutter is opened manually or by activating a remote electrical button, a beam of radiation is directed at the material or product being processed or controlled. A detector mounted opposite to the source, measures the radiation passing through the media of the material or the product. The required information is shown on a local read out or is displayed on a computer monitor. The type and strength of radiation energy are selected to ensure that the passage of the radiation does not cause any detectable changes in the material and does not radioactively contaminate the material.

Portable gauges — consist of a radioactive source or sources and detector mounted together in a portable shielded device. When the device is being used, it is placed on the object to be measured and the source is either inserted into the object or the gauge relies on a reflection of radiation from the source to bounce back to the bottom of the gauge. The detector in the gauge measures the radiation, either directly from the inserted source or the reflected radiation. The amount of radiation the detector measures indicates the thickness, density, moisture content or some other property which is displayed on a local read out or on a computer monitor. The top of the gauge has sufficient shielding to protect the operator while the source is exposed and when the measuring process is completed, the source is retracted or a shutter closes minimizing exposure from the source.

Material flow

Figure 33. Cross Section of a Fixed Fluid Gauge

NUCLEAR REGULATORY COMMISSION

Teletherapy Devices

Teletherapy is one of the primary radiation oncology treatment modalities. Teletherapy devices provide external high radiation beams for treatment of cancerous tumors. Both the primary tumor and the areas to which cancer may have spread (regional lympatic) may be treated at the same time.

The Cobalt-60 source is in the equipment's head, which is surrounded by lead or depleted uranium shielding, with a port for treatment (see Figure 34).

Treatment distance between the source and the skin of the patient is 80 to 120 centime-

ters. Cesium-137 teletherapy units were formerly used by a few facilities. Few, if any, of these units remain as the average penetrating energy is approximately half of that provided by the cobalt sources.

Linear accelerators are replacing the Cobalt-60 units. A 4 MeV linear accelerator can provide about the same energy as a Cobalt-60 unit, but with a higher output (100 to 300 rad/min). Higher energy accelerators are now being used (6 MeV to 30 MeV). These higher energy photons provide greater dose depth. Also, the high energy electrons may be used directly in some cases.

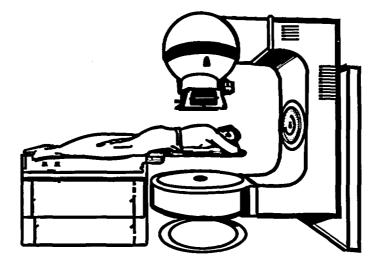


Figure 34. Cobalt-60 Teletherapy Unit

2002 INFORMATION DIGEST

Commercial Product Irradiators

The Illustration below shows a typical large commercial gamma irradiator which may be used for sterilization of medical supplies and equipment, disinfestation of food products, insect eradication through sterile male release program, chemical and polymer synthesis and modifications or extension of shelf-life of poultry and perishable products. In this type of irradiator, when in use, the Cobalt-60 sealed source is raised out of the pool water and exposed to the product within a radiation volume that is maintained inaccessible during use by an entry control system.

<image><image><image><image><image><image><image><image><image><image><image>

Figure 35. Commercial Gamma Irradiator

Uranium Milling

A uranium mill is a chemical plant designed to extract uranium from mined ore. The mined ore is brought to the milling facility via truck where the ore is crushed and leached. In most cases, sulfuric acid is used as the leaching agent, but alkaline leaching can also be used. The leaching agent not only extracts uranium from the ore, but also several other constituents like molybdenum, vanadium, selenium, iron, lead, and arsenic. The product produced from the mill is referred to as "yellow cake" (U³O⁸), because of its yellowish color.

As defined in the NRC regulations of 10 CFR Part 40, uranium milling is any activity that results in the production of byproduct material as defined in this part. Part 40 defines byproduct material the same as Section 11e.(2) of the Atomic Energy Act, "...the tailings or wastes produced by the extraction or concentration of uranium or thorium from any ore processed primarily for its source material content", but adds "...including discrete surface wastes resulting from uranium solution extraction processes."

Uranium is extracted from ore at uranium mills and at in-situ leach facilities (the NRClicensed heap leach and ion-exchange facilities no longer operate). In both processes, an extraction process concentrates the uranium into "yellow cake" and the process waste is byproduct material. The yellow cake is sent to a conversion facility for processing in the next step in the manufacture of nuclear fuel. The uranium milling and disposal of byproduct material by NRC licensees is regulated under 10 CFR Part 40, Appendix A.

Conventional mills crush the pieces of ore and extract 90 to 95 percent of the uranium from the ore. Mills are typically located in areas of low population density, and they process ores from mines within about 50 kilometers (30 miles) of the mill. Most mills in the United States are in decommissioning, three are in standby mode, and one is in operation.

In situ leach (ISL) facilities are another means of extracting uranium from underground. ISLs recover uranium from low grade ores that may not be economically recoverable by other methods. In this process, a leaching agent such as oxygen with sodium carbonate is injected through wells into the ore body to dissolve the uranium. The leach solution is pumped from the formation, and ion exchange is used to separate the uranium from the solution. About 12 such ISL facilities exist in the United States. Of these, 6 are licensed by the NRC, and the rest are licensed by Texas, an Agreement State.

2002 INFORMATION DIGEST

75°

Table 14. Locations of Uranium Milling Facilities

The following uranium milling facilities are licensed by the NRC.

Licensee	Site Name/Location		
In Situ Leach Facilities			
Cogema Mining, Inc.	Irigaray/ChR, Wyoming		
Power Resources, Inc.	Highlands, Wyoming		
Crow Butte Resources, Inc.	Crow Butte, Nebraska		
Rio Algom Mining Corp.	Smith Ranch, Wyoming		
Hydro Resources, Inc.	Crown Point, New Mexico		
Power Resources, Inc.	Ruth and North Butte, Wyoming		
Conventional Uranium Milling Facilities			
International Uranium Corp.	White Mesa, Utah		
Umetco Minerals Corp.	Gas Hills, Wyoming		
Western Nuclear Inc.	Split Rock, Wyoming		
Tennessee Valley Authority*	Edgemont, South Dakota		
Pathfinder Mines Corp.	Lucky Mc, Wyoming		
American Nuclear Corp.	ANC, Wyoming		
Pathfinder Mines Corp.	Shirley Basin, Wyoming		
Petrotomics Co.	Shirley Basin, Wyoming		
Rio Algom Mining Corp.	Lisbon, Utah		
Exxon Mobil Corp.	Highlands, Wyoming		
Bear Creek Uranium Co.	Bear Creek, Wyoming		
Kennecott Uranium Corp.	Sweetwater, Wyoming		
Plateau Resources Ltd.	Shootaring, Utah		
Homestake Mining Co.	Homestake, New Mexico		
Kennecott Energy Co.	L-Bar, New Mexico		
Quivira Mining Co.	Quivira, New Mexico		
UNC Mining & Milling	Churchrock, New Mexico		
Atlantic Richfield Co.*	Bluewater, New Mexico		
Part 40 Byproduct Material Disposal Site			
Envirocare of Utah Inc.	Envirocare, Utah		
lon-Exchange Facility			
U.S. Energy Corp.	Green MtIX, Wyoming		
	. , 5		

*Specific licenses terminated; disposal area under general license to the U.S. Department of Energy for long-term care.

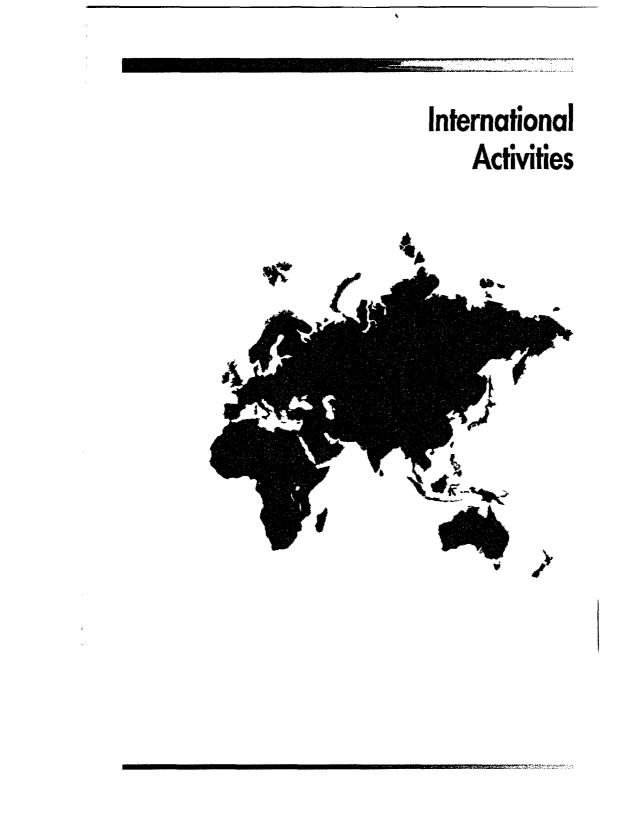
NUCLEAR REGULATORY COMMISSION

NUCLEAR MATERIALS SAFETY

Source: U.S. Nuclear Regulatory Commission.

2002 INFORMATION DIGEST

ł


;

77

ROMENTALISA (NA CATALAN

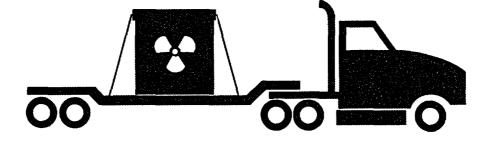
NUCLEAR REGULATORY COMMISSION

International Activities

The NRC participates in a wide range of mutually beneficial programs to exchange information with counterparts in the international community, and to enhance the safety and security of peaceful nuclear activities worldwide. This low cost, high impact program provides health and safety information and assistance to other countries, or joint cooperative activities, to develop and improve regulatory organizations and overall nuclear safety. These activities include:

- Assisting in United States government international policy and priority formulation by developing legal instruments in the nuclear field to address vital issues such as nuclear non-proliferation, safety, safeguards, radiation protection, spent fuel and waste management, nuclear safety research, and liability.
- Contributing to the implementation of national nuclear policy by supporting presidential summits and the International Nuclear Regulators Association.
- Licensing imports and exports of nuclear facilities, major components, material, and related commodities.
- Ensuring prompt notification of safety problems that warrant action or investigation.
- Providing for bilateral information exchange and cooperation on nuclear safety, physical security, safeguards, waste management, and radiological protection with the regulatory authorities of : Argentina, Armenia, Belgium, Brazil, Canada, China, Czech Republic, Egypt, Finland, France, Germany, Greece,

Hungary, Indonesia, Israel, Italy, Japan, Kazakhstan, Lithuania, Mexico, Netherlands, Peru, Philippines, Republic of Korea (South Korea), Romania, Russia, Slovak Republic, Slovenia, South Africa, Spain, Sweden, Switzerland, Taiwan, Ukraine, and the United Kingdom.


- Assisting Russia, Ukraine, Armenia, Kazakhstan, and certain Central and Eastern European countries (Bulgaria, Lithuania) that use Soviet-designed reactors to improve nuclear safety regulation. These assistance efforts are carried out primarily through training, workshops, and peer review of regulatory documents, working group meetings, and technical information and specialist exchanges.
- Participating in the programs of the International Atomic Energy Agency (IAEA), and the Organization for Economic Cooperation and Development's Nuclear Energy Agency concerned with safety research and regulatory matters, radiation protection, risk assessment, waste management, transportation, safeguards, physical protection, standards, training, and technical assistance.
- Implementing IAEA safeguards at NRClicensed nuclear facilities in the U.S. and helping strengthen and maintain IAEA effectiveness worldwide.
- Sharing technical information, funding, technical support, and results of specific joint research projects and programs.

NUCLEAR REGULATORY COMMISSION

あかみ かだいかん せん だいかいだい ひっぴん

Martin Carlos and States and State

U.S. Low-Level Radioactive Waste Disposal

Commercial low-level waste disposal facilities must be licensed by either NRC or Agreement States in accordance with health and safety requirements. The facilities are to be designed, constructed, and operated to meet safety standards. The operator of the facility must also extensively characterize the site on which the facility is located and analyze how the facility will perform for thousands of years into the future. NRC's requirements place restrictions on the types of waste that can be disposed of. Current low-level waste disposal uses shallow land disposal sites with or without concrete vaults.

The NRC has developed a classification system for low-level waste based on its potential hazards and has specified disposal and waste form requirements for each of the three general classes of waste — A, B, and C. Class A waste contains lower concentrations of radioactive material than Class C waste. Class A waste accounts for approximately 90% of the total volume of low-level waste. Determination of the classification of waste, however, is a complex process. For more information, see 10 CFR Part 61.

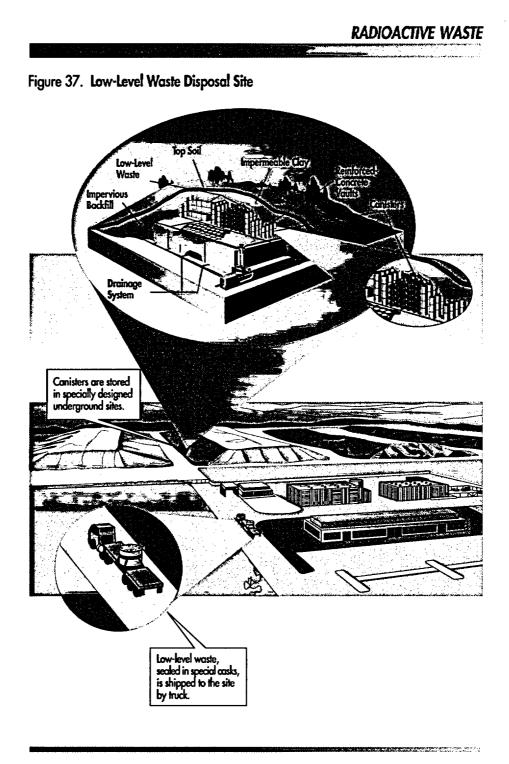
The volume and radioactivity of waste vary from year to year based on the types and quantities of waste shipped each year. Waste volumes currently are several 100,000 cubic feet from facilities operating in reactor decommissioning. Clean up of contaminated sites accounts for several million cubic feet each year of low level radioactive waste

The Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985 authorized the following:

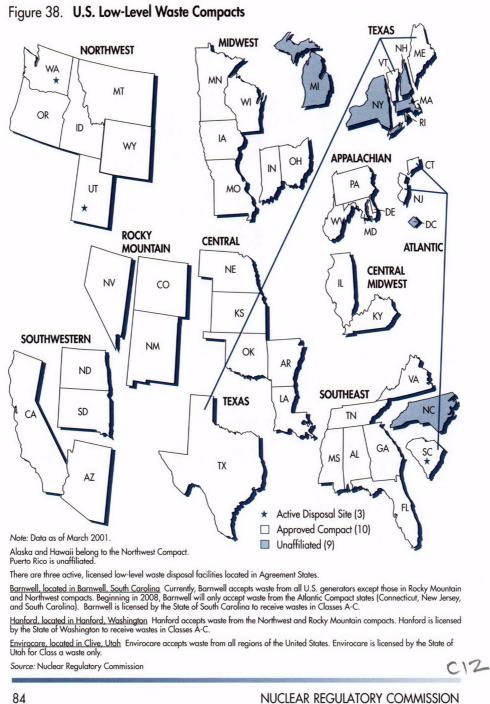
- Formation of ten regional compacts
- Exclusion of waste generated outside a compact

Active, Licensed Disposal Facilities

- Barnwell, South Carolina (access authorized for all low-level waste generators until 2008. Access limited to Atlantic compact after 2008)
- Hanford, Washington (restricted access to only the Northwest and Rocky Mountain compacts)
- Clive, Utah (restricted to only contain Class A waste)


Other Disposal Facilities

Closed Sites


- Beatty, Nevada—closed 1993
- Sheffield, Illinois—closed 1978
- Maxey Flats, Kentucky—closed 1977
- West Valley, New York—closed 1975

NUCLEAR REGULATORY COMMISSION

2002 INFORMATION DIGEST

NUCLEAR REGULATORY COMMISSION

U.S. High-Level Radioactive Waste Disposal

The Yucca Mountain Disposal Plan

The Nuclear Waste Policy Act (NWPA) of 1982 and the Nuclear Waste Policy Amendments Act of 1987 specify a detailed approach for the disposal of high-level radioactive waste with the Department of Energy (DOE) having operational responsibility and the NRC having regulatory responsibility for the transportation, storage, and geologic disposal of the waste.

- The disposal of high-level radioactive waste requires a determination of acceptable health and environmental impacts over thousands of years.
- Current plans call for the ultimate disposal of the waste in solid form in a licensed, deep, geologic structure.
- The Amendments Act redirected DOE to investigate only one potential high-level waste repository at Yucca Mountain, Nevada. DOE released it's Viability Assessment in December 1998, and concluded that Yucca Mountain remains a promising site for a geological repository and that work should proceed to support a decision in 2001 on whether to recommend the site to the President for development as a repository. (See Figure 39 for a conceptual design of the Yucca Mountain disposal plan.)
- NRC issued its draft Yucca Mountain Review Plan for public comment in March 2002.
- Within 60 days of the Presidential recommendation to Congress, the NWPA permits the State of Nevada to submit to Congress a "...notice of disapproval."

The State formally issued a "...Notice of Disapproval of the Yucca Mountain Project" to Congress on April 9, 2002.

 Upon receipt of the "Notice of Disapproaval from the State, the NWPA prescribes that the Congress has 90 days (of continuous session) to pass a resolution either supporting or not supporting the recommendation that DOE develop a license application for the Yucca Mountain site.

Spent Fuel Storage

In 1997, approximately 36,600 metric tons of spent nuclear fuel was stored at commercial nuclear power reactors. By the year 2005, this amount is expected to increase to 52,000 metric tons:

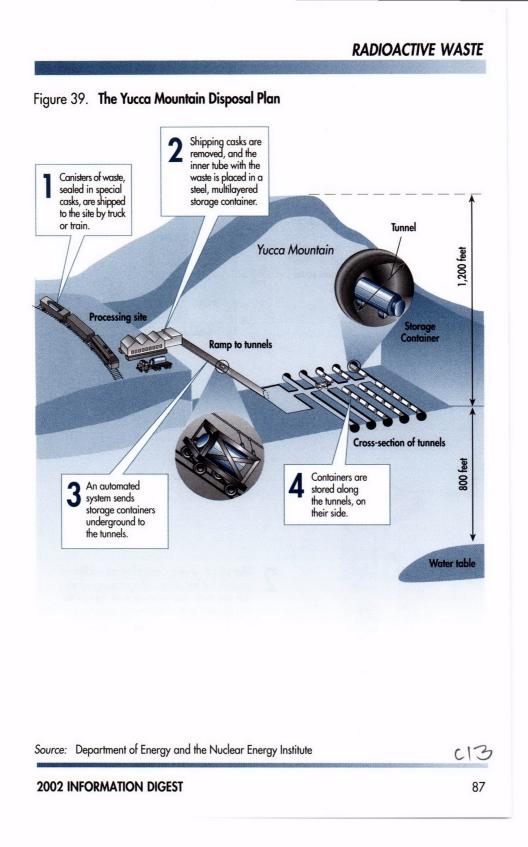
- All of the operating nuclear power reactors are storing used fuel under NRC license in spent fuel pools (SFPs) (see Figure 40).
- Most U.S. nuclear power plants were not originally designed to have a storage capacity for all the spent fuel produced by their reactors. Utilities originally planned for spent fuel to remain in the SFP for a few years after discharge and then to be sent to a reprocessing facility. However, the U.S. Government declared a moratorium on reprocessing in 1977. Although the ban was later lifted, reprocessing was eliminated as a feasible option. Consequently, utilities expanded the storage capacity of their SFPs by using highdensity storage racks. This has been only a short-term solution and many utilities (Continued)

2002 INFORMATION DIGEST

85

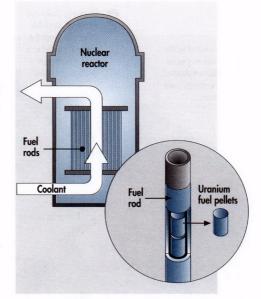
sender nichtes

U.S. High-Level Radioactive Waste Disposal (Continued)


have reached, or will soon reach, their SFP storage capacity. (See Figure 41)

- In 1990, the NRC amended its regulations to authorize licensees to store spent fuel at reactor sites in dry storage systems approved by the NRC. Thirteen dry storage designs have received certificates of compliance as a result of this rule change (see Appendix H).
- Currently, there are 20 operating independent spent fuel storage installation

sites (ISFSIs) in the U.S. (See Figure 42).


- Refer to NUREG-1571, "Information Handbook on Independent Spent Fuel Storage Installations" (December 1996), for a general overview.
- Refer to Appendix I for a list of NRC Dry Spent Fuel Storage Licensees.
- The NRC is responsible for approving transportable dry storage systems, also called dual purpose casks (see Figure 43).

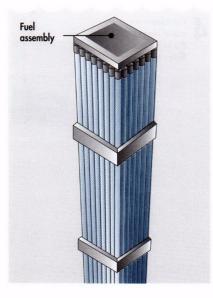
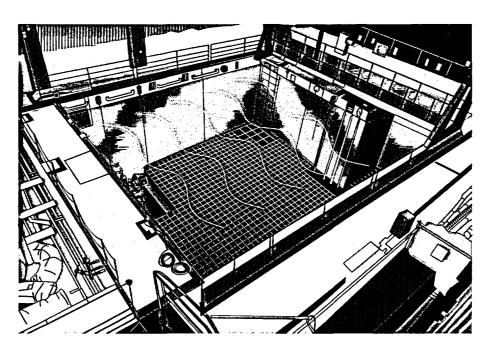

NUCLEAR REGULATORY COMMISSION

Figure 40. Spent Fuel Generation and Storage After Use

Nuclear reactors are powered by enriched uranium-235 fuel. Fission generates heat, which produces steam that turns turbines to produce electricity. A reactor rated at several hundred megawatts may contain 100 or more tons of fuel in the form of bullet-sized pellets loaded into long rods.

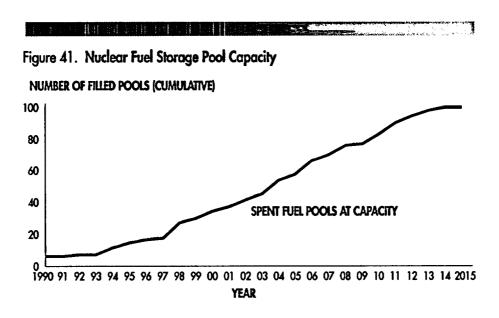


After about six years, spent fuel assemblies typically 14 feet long and containing nearly 200 fuel rods—are removed from the reactor and allowed to cool in storage pools for a few years. At this point, the 900-pound assemblies contain only about one-fifth the original amount of U-235.

2

C14

NUCLEAR REGULATORY COMMISSION


RADIOACTIVE WASTE

Commercial light-water nuclear reactors store spent fuel outside the primary containment in a steel-lined, seismically designed concrete pool. The spent fuel is cooled while in the spent fuel storage pool by water that is force-circulated using electrically powered pumps. Makeup water to the pool is provided by other pumps that can be powered from an onsite emergency diesel generator. Support features, such as water and radiation level detectors, are also provided. Spent fuel is stored in the spent fuel storage pool until it can be transferred on site to a dry cask storage location (see Figure 43) or transported off site to a high-level radioactive waste disposal site.

Source: Department of Energy and the Nuclear Energy Institute

2002 INFORMATION DIGEST

3

Note: All operating nuclear power reactors are storing used fuel under NRC license in spent fuel pools. Some operating nuclear reactors are using dry cask storage. Information is based on loss of full-core reserve in the spent fuel pools.

Source: Energy Resources International and DOE/RW-0431 - Revision 1

NUCLEAR REGULATORY COMMISSION

McGuire

Davis-Besse

OREGON

A Trojan

OHIO

🛦 North Anna

WISCONSIN

Point Beach

Figure 42. Licensed/Operating Independent Spent Fuel Storage Installations

Source: Nuclear Regulatory Commission

▲ DOE: TMI-2 Fuel Debris

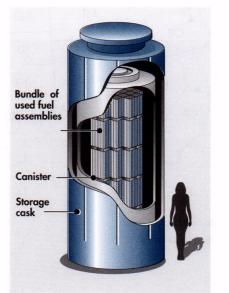
Hatch

IDAHO

ILLINOIS

Data as of February 2002

GE Morris Dresden


2002 INFORMATION DIGEST

7.2020 91

Figure 43. Dry Storage of Spent Fuel

At some nuclear reactors across the country, spent fuel is kept on site, above ground, in systems basically similar to the ones shown here.

Once the spent fuel has cooled, it is loaded into special canisters which are designed to hold Pressurized-Water Reactor and Boiling-Water Reactor assemblies. Water and air are removed. The canister is filled with inert gas, welded shut, and rigorously tested for leaks. It may then be placed in a "cask" for storage or transportation.

2 The canisters can also be stored in aboveground concrete bunkers, each of which is about the size of a one-car garage. Eventually they may be transported elsewhere for storage.

CIS

92

NUCLEAR REGULATORY COMMISSION

U.S. Nuclear Materials Transportation and Safeguards

The NRC reviews and licenses the design of containers used to transport radioactive materials; conducts transport-related safety inspections; performs quality assurance inspections of designers, fabricators, and suppliers of approved transportation containers; and carries out safeguards inspections of nuclear materials licensees.

Under a memorandum of understanding, the NRC requires licensed materials to be shipped in accordance with the hazardous materials transportation safety regulations of the Department of Transportation.

Both the NRC and the Department of Energy continue joint operation of a national database and information support system to track movement of domestic and foreign nuclear materials under safeguards control.

Principal Licensing and Inspection Activities

 NRC examines transport-related safety during approximately 1,000 safety inspections of fuel, reactor, and materials licensees annually.

- NRC reviews, evaluates, and certifies approximately 100 new, renewal, or amended container-design applications for the transport of nuclear materials annually.
- NRC reviews and evaluates approximately 100 license applications for the export of nuclear materials from the United States annually.
- NRC conducts comprehensive physical protection and materials control and accounting license reviews and conducts inspections at the major fuel fabrication facilities annually.
- NRC inspects about 20 dry storage and transport package licensees annually.

2002 INFORMATION DIGEST

Decommissioning

Decommissioning is the safe removal of a facility from service and reduction of residual radioactivity to a level that permits release of the property and termination of the license (see Glossary).

Nuclear Power Reactors:

In July 1996, the NRC issued a revised rule for power reactor decommissioning. The rule is intended to clarify the applicability of certain regulations to permanently shutdown nuclear power reactors and to provide for public participation in the decommissioning process. In 1997, the NRC issued rules for site release criteria. The rules provided for unrestricted and, under certain conditions, restricted release of a site.

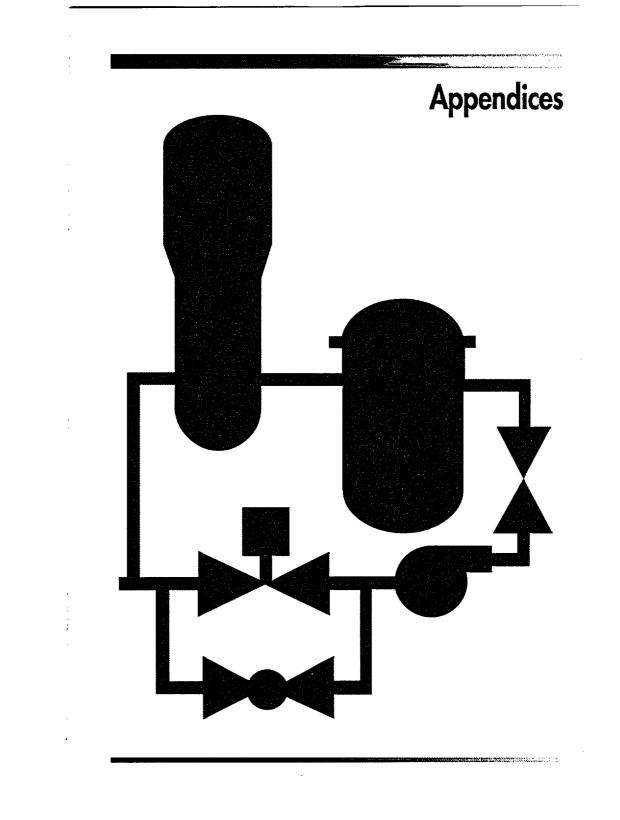
Other Sites and Facilities:

Over the last 40 years, operations at licensed nuclear facilities have caused radiological contamination at a number of sites. This contamination must be reduced or stabilized in a timely and efficient manner to ensure protection of the public and the environment before the sites can be released and the license terminated. The NRC's Site Decommissioning Management Plan (SDMP) lists 22 sites and 5 complex decommissioning sites that require special attention to resolve issues, and to prompt timely decommissioning at these sites (see Table 15). The list is updated periodically and is available on the NRC web site. The staff has completed a rebaselining of the sites listed in the SDMP. The purpose of the rebaselining effort was to establish milestones and schedules for completing decommissioning and license termination at the site.

and considered and the

Table 15.	. Site Decommissioning Management Plan and Other Complex Sites List
-----------	---

Company	Location
SDMP Sites	
AAR Manufacturing, Inc. (Brooks & Perkins)	Livonia, MI
Army, Department of, Jefferson Proving Ground	Jefferson, IN
Babcock & Wilcox	Parks Township, PA
Babcock & Wilcox SLDA	Vandergrift, PA
Cabot Corporation	Reading, PA
Dow Chemical Company	Bay City and Midland, M
Fansteel, Inc.	Muskogee, OK
Hartley and Hartley (Kawkawlin) Landfill	Bay County, MI
Heritage Minerals	Lakehurst, NJ
Kaiser Aluminum	Tulsa, OK
Kerr-McGee	Cimarron, OK
Kerr-McGee	Cushing, OK
Michigan Department of Natural Resources (MDNR)	Pine County, MN
Molycorp, Inc.	Washington, PA
Molycorp, Inc.	York, PA
Permagrain Products	Media, PA
Safety Light Corporation	Bloomsburg, PA
Sequoyah Fuels Corporation	Gore, OK
Shieldalloy Metallurgical Corporation	Newfield, NJ
Watertown GSA	Watertown, MA
Westinghouse Electric Corporation	Waltz Mill, PA
Whittaker Corporation	Greenville, PA
Complex Decommissioning Sites	
KVWPCA	Vandergrift, PA
UCAR (Union Carbide)	Lawrenceberg, TN
Mallinkrodt	St. Louis, MO
Combustion Engineering/Westinghouse	Windsor, CT
Combustion Engineering/Westinghouse	Festus, MO


2002 INFORMATION DIGEST

•

95

and the second second

96

NUCLEAR REGULATORY COMMISSION

Abbreviations Used In Appendices

ABB-CE	Asea Brown Boveri-Combustion	FLUR	Fluor Pioneer
	Engineering	G&H	Gibbs & Hill
ACE	ACEOWEN, Ateliers de Constructions	GCR	Gas-Cooled Reactor
	Electriques de Charleroi S.A. (ACEC)	GE	General Electric
	and Cocerill Ougree-Providence	GHDR	Gibbs & Hill & Durham & Richardson
	(COP); with Westinghouse (Belgium)	GIL	Gilbert Associates
ACLF	ACECO/Creusot-loire/Framatome/	GPC	Georgia Power Company
	Westinghouse-Europe	HIT	Hitachi
AE	Architect-Engineer	HTG	High-Temperature Gas-Cooled
AEC	Atomic Energy Commission	HWR	Pressurized Heavy-Water Reactor
AECL	Atomic Energy of Canada, Ltd.	IES	Iowa Electric
AEE	Alomenergoexport	JONES	J. A. Jones
AEP	American Electric Power	KAIS	Kaiser Engineers
AGN	Aerojet-General Nucleonics	KWU	Kraftwerk Union, Siemens AG
ASEA	Asea Brown Boveri-Asea Atom	LIC. TYPE:	License Type
B&R	Burns & Roe	œ	Construction Permit
B&W	Babcock & Wilcox	Õl-FP	Operating License-Full Power
BALD	Baldwin Associates	OL-IP	Operating License-Low Power
BECH	Bechtel	MAE	Ministry of Atomic Energy, Russian
BRRT	Brown & Root		Federation
BWR	Boiling-Water Reactor	MDC	Maximum Dependable
COMB	Combustion Engineering		Capacity - Net
COMM. OP.	Date of Commercial Operation	MHI	Mitsubishi Heavy Industries, Ltd.
CON TYPE	Containment Type	MWe	Megawatts Electrical
DRYAMB	Dry, Ambient Pressure	MWt	Megawatts Thermal
DRYSUB	Dry, Subatmospheric	NIAG	Niagara Mohawk Power
HIG	High-Temperature Gas-Cooled	1	Corporation
ICECND	Wet, ice Condenser	NPF	Nuclear Power Facility
LMFB	Liquid Metal Fast Breeder	NSP	Northern States Power Company
MARK 1	Wet, Mark I	NSSS	Nuclear Steam System Supplier &
MARK 2	Wet, Mark II	14000	Design Type
MARK 3	Wet, Mark II	1	GE Type 1
OCM	Organic Cooled & Moderated		GE Type 2
PTHW	Pressure Tube, Heavy Water	2 3	GE Type 3
SCF	Sodium Cooled, Fast	4	GE Type 4
SCGM	Socium Cooled, Graphite Moderated	5	GE Type 5
CP	Construction Permit	6	GE Type 6
CP ISSUED	Date of Construction Permit Issuance	2LP	Westinghouse Two-Loop
CPPR	Construction Permit Power Reactor	3LP	Westinghouse Three-Loop
CWE	Commonwealth Edison Company	4LP	Westinghouse Four-Loop
ă	Critical Assembly	ĈĔ	Combustion Engineering
DANI	Daniel International	CE80	CE Standard Design
DBDB	Duke & Bechtel	LLP LLP	B&W Lowered Loop
DER	Design Electric Rating	RLP	B&W Raised Loop
DOE		a	Operating Licence
DPR	Department of Energy Demonstration Power Reactor	OL ISSUED	Operating License Date of Latest Full Power
DUKE			
EBSO	Duke Power Company Ebasco	PECO	Operating License Philadelphia Energy Company
EXP. DATE	Expiration Date of Operating License	PG&E	Philadelphia Energy Company Pacific Gas & Electric Company
FENOC	FirstEnormy Nuclear One-reference	PHWR	Pressurized Heavy-Water-
FRAM	FirstEnergy Nuclear Operating Co. Framatome	TITTK	Moderated Reactor
I IVENNI	T UTUTUTE		

L & Long

2002 INFORMATION DIGEST

99

PSE	Pioneer Services & Engineering	STP	South Texas Project
PTHW	Pressure Tube Heavy Water	TXU	Texas Utilities
PUBS	Public Service Electric & Gas	TNPG	The Nuclear Power Group
	Company	TOSH	Toshiba
PWR	Pressurized-Water Reactor	TR	Test Reactor
2	Research	TVA	Tennessee Valley Authority
CGM	Sodium Cooled Graphite Moderated	UE&C	United Engineers & Constructors
&L	Sargent & Lundy	utr	Universal Training Reactor
88W	Stone & Webster	VT	Vermont
BEC	Southern Services & Bechtel	WDCO	Westinghouse Development
SI	Southern Services Incorporated		Corporation
	•	WEST	Westinghouse Electric

NUCLEAR REGULATORY COMMISSION

U.S. Commercial Nuclear Power Reactors

÷

Unit Operating Utility Location Docket Number	NRC Region	Con Type NSSS AE Constructor	Licensed MWt	Net MDC	CP Issued OL Issued Comm. Op Exp. Date	License Type & Number	1996-2001 Average Capacity Factors (Percent)
Arkansas Nuclear 1 Entergy Operations, Inc. 6 MI WNW of Russelville, AR 050-00313	N	PWR-DRYAMB B&W LLP BECH BECH	2568	0836	12/06/1968 05/21/1974 12/19/1974 05/20/2034	OL-FP DPR-51	85.6 99.0 82.6 91.7 87.3 93.9
Arkansas Nuclear 2 Entergy Operations, Inc. 6 MI WNW of Russellville, AR 050-00368	N	pwr-dryamb Comb CE BECH BECH	2815	0858	12/06/1972 09/01/1978 03/26/1980 07/17/2018	OL-FP NPF-6	93.7 92.6 86.9 82.8 69.9 105.3
Beaver Valley 1 FirstEnergy Nuclear Operating Company 17 MIW of McCandless, PA 050-00334	1	pwr-drysub West 3lp S&W S&W	2689	0822	06/26/1970 07/02/1976 10/01/1976 01/29/2016	ol-fp Dpr-66	80.0 56.3 33.2 86.1 82.7 83.3
Beaver Valley 2 FirstEnergy Nuclear Operating Compony 17 MIW of McCandless, PA 050-00412	I	PWR-DRYSUB WEST 3LP S&W S&W	2689	0822	05/03/1974 08/14/1987 11/17/1987 05/27/2027	ol-Fp NPF-73	66.2 85.7 16.9 80.1 86.5 98.8
Braidwood 1 Exelon Generating Co., LLC 24 MI SSW of Joilet, IL 050-00456	H	PWR-DRYAMB WEST 4LP S&L CWE	3586	1168	12/31/1975 07/02/1987 07/29/1988 10/17/2026	ol-fp NPF-72	70.5 83.9 78.6 101.0 96.4 93.4
Braidwood 2 Exelon Generating Co., LLC 24 MI SSW of Joilet, IL 050-00457	K1	PWR-DRYAMB WEST 4LP S&L CWE	3586	1122	12/31/1975 05/20/1988 10/17/1988 12/18/2027	ol-fp Npf-77	81.3 85.5 97.4 92.0 98.4 98.2
Browns Ferry 1 Tennessee Valley Authority 10 MI NW of Decatur, AL 050-00259	Π	BWR-MARK1 GE 4 TVA TVA TVA	3293	0	05/10/1967 12/20/1973 08/01/1974 12/20/2013	ol-fp Dpr-33	0.0 0.0 0.0 0.0 0.0
Browns Ferry 2 Tennessee Valley Authority 10 MI NW of Decatur, AL 050-00260	I	BWR-MARKI GE 4 TVA TVA TVA	3458	1118	05/10/1967 08/02/1974 03/01/1975 06/28/2014	ol-fp Dpr-52	86.0 89.7 98.9 89.1 99.1 85.9
							(Continue

3

2002 INFORMATION DIGEST

Unit Operating Utility Location Docket Number	NRC Region	Con Type NSSS AE Constructor	Licensed MWt	Nat MDC	CP Issued OL Issued Comm. Op Exp. Date	License Type & Number	1996-2001 Average Capacity Factors (Percent)
Browns Ferry 3 Tennessee Valley Authority 10 MI NW of Decatur, AL 050-00296	n	BWR-MARK 1 GE 4 TVA TVA	3458	1118	07/31/1968 08/18/1976 03/01/1977 07/02/2016	OL-FP DPR-68	94.1 91.4 80.8 99.4 92.6 100.1
Brunswick 1 Progress Energy 2 MI N of Southport, NC 050-00325	I	BWR-MARK 1 Ge 4 UE&C BRRT	2558	0820	02/07/1970 11/12/1976 03/18/1977 09/08/2016	ol-fp Dpr.71	84.7 102.1 83.6 97.4 93.7 101.7
Brunswick 2 Progress Energy 2 Ml N of Southport, NC 050-00324	1	BWR-MARK 1 GE 4 UE&C BRRT	2558	0811	02/07/1970 12/27/1974 11/03/1975 12/27/2014	ol-fp Dpr-62	78.3 91.7 95.4 85.8 99.0 92.1
Byran 1 Exelon Generation Co., LLC 17 MI SW of Rockford, IL 050-00454	IN	PWR-DRYAMB WEST 4LP S&L CWE	3586	1163	12/31/1975 02/14/1985 09/16/1985 10/31/2024	ol-FP NPF-37	70.6 74.0 77.6 92.0 95.7 102.0
Byron 2 Exelon Generation Co., LLC 17 MI SW of Rockford, IL 050-00455	W	PWR-DRYAMB WEST 4LP S&L CWE	3586	1131	12/31/1975 01/30/1987 08/21/1987 11/06/2026	ol-FP NPF-66	80.6 94.0 85.7 94.8 103.1 99.2
Callaway AmerenUE 10 MI SE of Fulton, MO 050-00483	N	PWR-DRYAMB WEST 4LP BECH DANI	3565	1143	04/16/1976 10/18/1984 12/19/1984 10/18/2024	OL-FP NPF-30	90.0 90.9 84.8 87.2 101.1 85.1
Calvert Cliffs 1 Calvert Cliffs Nuclear Power Plant Inc. 40 MI S of Annapolis, MD 050-00317	I	PWR-DRYAMB COMB CE BECH BECH BECH	2700	0825	07/07/1969 07/31/1974 05/08/1975 07/31/2034 07/31/2034	ol-fp Dpr-53	65.8 97.9 81.9 96.8 89.0 103.2
Colvert Cliffs 2 Colvert Cliffs Nuclear Power Plant Inc. 40 MI S of Annapolis, MD 050-00318	I	PWR-DRYAMB COMB CE BECH BECH	2700	0835	07/07/1969 11/30/1976 04/01/1977 08/13/2036	OL-FP DPR-69	98.2 81.2 97.7 86.6 100.8 84.8

102

Unit Operating Utility Location Docket Number	NRC Region	Con Type NSSS AE Constructor	Licensed MWt	Net MDC	CP issued OL issued Comm. Op Exp. Date	License Type & Number	1996-2001 Average Capacity Factors (Percent)
Catawba 1 Duke Energy Corp. 6 MI NNW of Rock Hill, SC 050-00413	1	PWR-ICEOND WEST 4LP DUKE DUKE	3411	1129	08/07/1975 01/17/1985 06/29/1985 12/06/2024	OL-FP NPF-35	63.6 92.8 88.2 91.7 90.0 100.9
Catawbo 2 Duke Energy Corp. 6 MI NNW of Rock Hill, SC 050-00414	I	PWR-ICEOND WEST 4LP DUKE DUKE	3411	1129	08/07/1975 05/15/1986 08/19/1986 02/24/2026	ol-fp NPF-52	93.1 86.8 85.2 89.5 90.6 86.7
Clinton AmerGen Energy Co. 6 MI E of Clinton, IL 050-00461	•	BWR-MARK 3 GE 6 S&L BALD	2894	0930	02/24/1976 04/17/1987 11/24/1987 09/29/2026	OL-FP NPF-62	65.0 0.0 57.7 84.3 96.7
Columbia Generating Station Energy Northwest 12 MI NW of Richland, WA 050-00397	N	BWR-MARK 2 GE 5 B&R BECH	3486	1107	03/19/1973 04/13/1984 12/13/1984 12/20/2023	OL-FP NPF-21	57.1 63.0 68.1 62.8 88.5 85.1
Comanche Peak 1 TXU Generation Company LP 4 MI N of Glen Rose, TX 050-00445	N	PWR-DRYAMB West 4LP G&H Brrt	3458	11 <i>5</i> 0	12/19/1974 04/17/1990 08/13/1990 02/08/2030	ol-FP NPF-87	76.8 94.1 86.2 85.4 95.2 83.8
Comanche Peak 2 TXU Electric & Gas 4 MI N of Glen Rose, TX 050-00446	N	PWR-DRYAMB WEST 4UP BECH BRRT	3458	1150	12/19/1974 04/06/1993 08/03/1993 02/02/2033	OL-FP NPF-89	73.0 80.0 95.3 86.9 87.8 98.1
Cooper Nebraska Public Power District 23 MI S of Nebraska City, NE 050-00298	N	BWR-MARK 1 GE 4 B&R B&R	2381	0758	06/04/1968 01/18/1974 07/01/1974 01/18/2014	OL-FP DPR-46	94.5 81.5 75.2 97.3 70.6 77.8
Crystal River 3 Progress Energy 7 MI NW of Crystal River, FL 050-00302	11	PWR-DRYAMB B&W LLP Gil JONES	2544	0843	09/25/1968 01/28/1977 03/13/1977 12/03/2016	ol-FP DPR-72	33.6 0.0 88.2 88.9 97.2 89.2 (Continued)

2002 INFORMATION DIGEST

.

Unit Operating Utility Location Docket Number	NRC Region	Con Type NSSS AE Constructor	Licensed MWt	Net MDC	CP issued OL issued Comm. Op Exp. Date	License Type & Number	1996-2001* Average Capacity Factors (Percent)
Davis-Besse FirstEnergy Nuclear Operating Co. 21 MI ESE of Toledo, OH 050-00346	in	PWR-DRYAMB B&W RLP BECH	2772	0873	03/24/1971 04/22/1977 07/31/1978 04/22/2017	OL-FP NPF-3	84.3 93.9 78.1 96.4 87.4 99.5
D.C. Cook 1 Indiana/Michigan Power Co. 11 MIS of Benton Harbor, MI 050-00315	III	PWR-KCECND WEST 4LP AEP AEP	3250	10 20	03/25/1969 10/25/1974 08/28/1975 10/25/2014	Ol-FP DPR-58	95.3 51.9 0.0 1.5 89.0
D.C. Cook 2 Indiana/Michigan Power Co. 11 MI S of Benton Harbor, MI 050-00316	III	pwr-kcecnd West 4LP Aep Aep	3411	1090	03/25/1969 12/23/1977 07/01/1978 12/23/2017	ol-FP DPR-74	86.2 63.3 0.0 51.4 85.8
Diablo Canyon 1 Pacific Gas & Electric Co. 12 MI WSW of San Luis Obispo, CA 050-00275	N	PWR-DRYAMB WEST 4LP PG&E PG&E	3338	1073	04/23/1968 11/02/1984 05/07/1985 09/22/2021	ol-fp Dpr-80	93.2 87.1 98.0 87.5 83.3 99.8
Diablo Canyon 2 Pacific Gas & Electric Co. 12 MI WSW of San Luis Obispo, CA 050-00323	V	pwr-dryamb West 4LP Pg&e Pg&e	3411	1087	12/09/1970 08/26/1985 03/13/1986 04/26/2025	OL-FP DPR-82	83.1 93.3 84.5 88.7 96.2 90.9
Dresden 2 Exelon Generation Co., LLC 9 MI E of Morris, IL 050-00237	11	BWR-MARK 1 GE 3 S&L UE&C	2957	0850	01/10/1966 02/20/1991 06/09/1970 12/22/2009	OL-FP DPR-19	31.4 82.5 79.1 92.1 101.3 89.8
Dresden 3 Exelon Generation Co., LLC 9 MI E of Morris, IL 050-00249	I	BWR-MARK 1 GE 3 S&L UE&C	2527	0773	10/14/1966 01/12/1971 11/16/1971 01/12/2011	OL-FP DPR-25	43.4 59.5 88.2 90.6 93.7 95.5
Duane Arnold Nuclear Management Company 8 MI NW of Cedar Rapids, IA 050-00331	IN ,	BWR-MARK 1 GE 4 BECH BECH	1658	0520	06/22/1970 02/22/1974 02/01/1975 02/21/2014	ol-fp dpr-49	86.2 91.2 82.3 80.1 97.5 77.9

104

Unit Operating Utility Location Docket Number	NRC Region	Con Type NSSS AE Constructor	Licensed MW1	Net MDC	CP issued OL issued Comm. Op Exp. Date	License Type & Number	1996-2001* Average Capacity Factors (Percent)
Edwin I. Hatch 1 Southern Nuclear Operating Co. 11 MIN of Basdey, GA 050-00321	11	BWR-MARK 1 GE 4 BECH GPC	2763	0863	09/30/1969 10/13/1974 12/31/1975 08/06/2034	ol-FP DPR-57	80.7 85.7 96.5 81.1 84.5 99.2
Edwin I, Hatch 2 Southern Nuclear Operating Co. 11 MIN of Baxley, GA 050-00366	I	BWR-MARK 1 GE 4 BECH GPC	2763	0878	12/27/1972 06/13/1978 09/05/1979 06/13/2038	OL-FP NPF-5	98.8 84.2 80.6 94.4 89.5 85.6
Fermi 2 Detroit Edison Co. 25 MI NE of Toledo, OH 050-00341	M	BWR-MARK 1 GE 4 S&L DANI	3430	1129	09/26/1972 07/15/1985 01/23/1988 03/20/2025	OL-FP NPF-43	62.3 63.6 67.8 100.3 86.2 89.8
Fort Calhoun Omoha Public Power District 19 MI N of Omaha, NE 050-00285	N	pwr-dryamb Comb Ce Ghdr Ghdr	1500	0476	06/07/1968 08/09/1973 09/26/1973 08/09/2013	ol-FP DPR-40	74.5 91.2 77.8 85.6 92.8 84.2
Ginna Rochester Gas & Electric Corp. 20 MI NE of Rochester, NY 050-00244	I	pwr-dryamb West 2lp Gil Bech	1520	0480	04/25/1966 09/19/1969 07/01/1970 09/18/2009	OL-FP DPR-18	70.2 92.6 104.1 84.0 90.5 101.9
Grand Guff 1 Entergy Operations, Inc. 25 MI S of Vicksburg, MS 050-00416	N	BWR-MARK 3 GE 6 BECH BECH	3833	1210	09/04/1974 11/01/1984 07/01/1985 11/01/2024	ol-fp NPF-29	89.3 102.9 82.0 79.9 100.6 93.6
H.B. Robinson 2 Progress Energy 26 MI from Florence, SC 050-00261	H	pwr-drya MB West 3lp EBSO EBSO	2300	0683	04/13/1967 09/23/1970 03/07/1971 07/31/2010	ol-FP DPR-23	91.0 103.6 87.9 95.0 104.0 92.2
Hape Creek 1 PSEG Nuclear, LLC 18 MI SE of Wilmington, DE 050-00354	I	BWR-MARK1 GE 4 BECH BECH	3339	1045	11/04/1974 07/25/1986 12/20/1986 04/11/2026	OL-FP NPF-57	74.6 70.9 92.3 85.3 80.3 87.8 (Continued)

;

.

Unit Operating Utility Location Docket Number	NRC Region	Con Type NSSS AE Constructor	Licensed MWt	Net MDC	CP issued OL issued Comm, Op Exp, Date	License Type & Number	1996-2001* Average Capacity Factors [Percent]
Indian Point 2 Entergy Nuclear Operations, Inc 24 MI N of New York City, NY 050-00247		PWR-DRYA MB WEST 4LP UE&C WDCO	3071	0951	10/14/1966 09/28/1973 08/01/1974 09/28/2013	OL-FP DPR-26	94.9 38.4 23.0 88.5 12.1 93.5
Indian Point 3 New York Power Authority 24 MI N of New York City, NY 050-00286	ł	PWR-DRYAMB WEST 4LP UE&C WDCO	3025	0965	08/13/1969 04/05/1976 08/30/1976 12/15/2015	ol-fp Dpr-64	69.3 51.3 89.8 86.0 99.5 93.9
James A. FitzPatrick New York Power Authority 8 MI NE of Oswego, NY 050-00333	I	BWR-MARK 1 GE 4 S&W S&W	2536	0813	05/20/1970 10/17/1974 07/28/1975 10/17/2014	OL-FP DPR-59	78.6 94.7 73.2 93.5 84.4 99.6
Joseph M. Farley 1 Southern Nuclear Operating Co 18 MI SE of Dothan, AL 050-00348		pwr-dryamb West 3lp SSI Dani	2775	0847	08/16/1972 06/25/1977 12/01/1977 06/25/2017	OL-FP NPF-2	100.1 75.2 78.9 97.4 71.5 87.6
Joseph M. Farley 2 Southern Nuclear Operating Co 18 MI SE of Dothan, AL 050-00364	, H	pwr-dryamb West 3lp SSI Bech	2775	0852	08/16/1972 03/31/1981 07/30/1981 03/31/2021	OL-FP NPF-8	79.5 101.1 84.7 71.7 100.0 78.2
Kewaunee Nuclear Management Co. 27 MI E of Green Bay, WI 050-00305	111	pwr-dryamb West 2lp Pse Pse	1650	0498	08/06/1968 12/21/1973 06/16/1974 12/21/2013	ol-FP DPR-43	70.6 52.8 78.4 98.8 82.7 77.3
La Sa lle County 1 Exelon Generation Co., LLC 11 MI SE of Ottawa, IL 050-00373	H	BWR-MARK 2 GE 5 S&L CWE	3489	1111	09/10/1973 04/17/1982 01/01/1984 04/17/2022	OL-FP NPF-11	36.3 0.0 30.8 88.3 99.6 101.2
La Salle County 2 Exelon Generation Co., LLC 11 MI SE of Ottawa, IL 050-00374	M	BWR-MARK 2 GE 5 S&L CWE	3489	1111	09/10/1973 02/16/1983 10/19/1984 12/16/2023	OL-FP NPF-18	62.0 0.0 73.1 92.4 99.5

106

1 1 1	BWR-MARK 2 GE 4 BECH BECH BWR-MARK 2 GE 4 BECH BECH PWR-ICECND WEST 4LP DUKE	3458 3458 3411	1134 1134 1129	06/19/1974 08/08/1985 02/01/1986 10/26/2024 06/19/1974 08/25/1989 01/08/1990 06/22/2029 02/23/1973 07/08/1981 12/01/1981 06/12/2021	OL-FP NPF-39 OL-FP NPF-85 OL-FP NPF-9	84.2 95.3 77.6 98.1 89.5 101.2 91.9 85.0 93.5 85.0 93.5 85.0 99.0 92.3 86.3 70.8 80.9 89.1 103.4
	GE 4 BECH BECH PWR-ICECND WEST 4LP DURE DURE			02/25/1989 01/06/1990 06/22/2029 02/23/1973 07/08/1981 12/01/1981	NPF-85 OL-FP	85.0 93.5 85.0 99.0 92.3 86.3 70.8 80.9 89.1
-	West Alp Duke Duke	3411	1129	07/08/1981 12/01/1981		70.8 80.9 89.1
H						90.1
	pwr-icecnd West 4lp Duke Duke	3411	1129	02/23/1973 05/27/1983 03/01/1984 03/03/2023	ol-fp NPF-17	73.2 67.2 92.1 89.2 87.5 102.5
1	PWR-DRYAMB COMB CE BECH BECH	2700	0871	12/11/1970 09/26/1975 12/26/1975 07/31/2015	Ol-FP DPR-65	13.4 0.0 0.0 57.9 81.7 95.6
I	PWR-DRYSUB WEST 4LP S&W S&W	3411	1137	08/09/1974 01/31/1986 04/23/1986 11/25/2025	OL-FP NPF-49	24.3 0.0 34.0 82.7 99.9 82.1
II	BWR-MARK 1 GE 3 BECH BECH	1775	0615	06/19/1967 01/09/1981 06/30/1971 09/08/2010	ol-FP DPR-22	81.6 76.8 82.4 91.8 83.6 76.5
	1	COMB CE BECH BECH I PWR-DRYSUB WEST 4LP S&W S&W S&W	COWB CE BECH BECH WEST 4LP S&W S&W S&W S&W S&W S&W	I PWR-DRYSUB 3411 1137 WEST 4LP S&W S&W S&W S&W S&W	COMB CE DO OT OP/22/1975 BECH 12/26/1975 12/26/1975 BECH 07/31/2015 I PWR-DRYSUB 3411 1137 06/09/1974 WEST 4UP 01/31/1986 04/23/1986 58.W 04/23/1986 S&W 04/23/1986 58.W 11/25/2025 11/25/2025 III BWR-MARK 1 1775 0615 06/19/1967 GE 3 01/09/1981 06/30/1971 BECH 09/08/2010 09/08/2010	Image: COMB CE D to

2002 INFORMATION DIGEST

.....

Unit Operating Utility Location Docket Number	NRC Region	Con Type NSSS AE Constructor	Licensed MWt	Net MDC	CP Issued OL Issued Comm. Op Exp. Date	License Type & Number	1996-2001* Average Capacity Factors (Percent)
Nine Mile Point 1 Nine Mile Point Nuclear Station, 6 MI NE of Oswego, NY 050-00220	шс	BWR-MARK 1 GE 2 NIAG S&W	1850	0565	04/12/1965 12/26/1974 12/01/1969 08/22/2009	OL-FP DPR-63	94.2 54.5 87.9 72.0 94.3 88.5
Nine Mile Point 2 Nine Mile Point Nuclear Station, 6 MI NE of Oswego, NY 050-00410	шс	BWR-MARK 2 GE 5 S&W S&W	3467	1142	06/24/1974 07/02/1987 03/11/1988 10/31/2026	OL-FP NPF-69	89.6 91.7 71.4 89.3 81.1 90.3
North Anna 1 Virginia Electric & Power Co. 40 MI NW of Richmond, VA 050-00338	II	pwr-drysub West 3lp S&W S&W	2893	0893	02/19/1971 04/01/1978 06/06/1978 04/01/2018	OL-FP NPF-4	88.5 91.5 90.5 103.8 92.0 87.9
North Anna 2 Virginia Electric & Power Co. 40 MI NW of Richmond, VA 050-00339	X	pwr-Drysub West 3lp S&W S&W	2893	0897	02/19/1971 08/21/1980 12/14/1980 08/21/2020	ol-fp NPF-7	77.7 99.7 89.0 91.4 101.8 74.4
Oconee 1 Duke Energy Corp. 30 MI W of Greenville, SC 050-00269	11	Pwr-Dryamb B&W ILP DBDB DUKE	2568	0846	11/06/1967 02/06/1973 07/15/1973 02/06/2033	OL-FP DPR-38	74.8 43.0 77.1 83.8 84.9 94.0
Oconee 2 Duke Energy Corp. 30 MI W of Greenville, SC 050-00270	N	PWR-DRYAMB 8&W LLP DBD8 DUKE	2568	0846	11/06/1967 10/06/1973 09/09/1974 10/06/2033	ol-Fp Dpr-47	59.4 79.2 72.1 84.4 100.9 90.2
Oconee 3 Duke Energy Corp. 30 MI W of Greenville, SC 050-00287	H	PWR-DRYAMB B&W LLP DBDB DUKE	2568	0846	11/06/1967 07/19/1974 12/16/1974 07/19/2034	ol-fp Dpr-55	73.3 62.7 79.8 99.4 88.5 72.8
Oyster Creek AmerGen Energy Co., LLC 9 MI S of Toms River, NJ 050-00219	I	BWR-MARK 1 GE 2 B&R B&R	1930	0619	12/15/1964 07/02/1991 12/01/1969 04/09/2009	OL-FP DPR-16	79.8 93.6 74.3 99.4 71.9 96.4

108

NUCLEAR REGULATORY COMMISSION

52.00 M

	NRC Region	Con Type NSSS AE Constructor	Licensed	Net MDC	CP issued OL issued Comm. Op Exp. Date	License Type & Number	1996-2001 Average Capacity Factors (Percent)
Palisades Nuclear Management Co. 5 MI S of South Haven, MI 050-00255	WI	PWR-DRYAMB COMB CE BECH BECH	2530	0760	03/14/1967 02/21/1991 12/31/1971 03/24/2011	OL-FP DPR-20	82.9 90.8 80.0 80.2 89.6 36.8
Palo Verde 1 Arizana Nuclear Power Project 36 MI W of Phoenix, AZ 050-00528	N	PWR-DRYAMB COMB CE80 BECH BECH	3800	1243	05/25/1976 06/01/1985 01/28/1986 12/31/2024	OL-FP NPF-41	80.8 98.6 87.4 88.7 100.4 87.8
Palo Verde 2 Arizona Nuclear Power Project 36 MI W of Phoenix, AZ 050-00529	N	PWR-DRYAMB COMB CE80 BECH BECH	3876	1243	05/25/1976 04/24/1986 09/19/1986 12/09/2025	OL-FP NPF-51	86.7 85.6 101.8 90.0 87.2 92.6
Palo Verde 3 Arizona Nuclear Power Project 36 MI W of Phoenix, AZ 050-00530	N	PWR-DRYAMB COMB CE80 BECH BECH	3876	1247	05/25/1976 11/25/1987 01/08/1988 03/25/2027	ol-fp NPF-74	99.9 86.5 87.6 100.3 90.3 83.9
Peach Bottom 2 Exelon Generation Co., LLC 17.9 MI S of Lancaster, PA 050-00277	I	BWR-MARK 1 GE 4 BECH BECH	3458	1093	01/31/1968 10/25/1973 07/05/1974 08/08/2013	ol-FP DPR-44	79.8 100.0 75.9 98.8 88.8 97.9
Peach Bottom 3 Exelon Generation Co., LLC 17.9 MIS of Lancaster, PA 050-00278	I	BWR-MARK 1 GE 4 BECH BECH	3458	1093	01/31/1968 07/02/1974 12/23/1974 07/02/2014	ol-FP DPR-56	98.2 79.0 90.1 89.4 99.5 89.0
Perry 1 FirstEnergy Nuclear Operating Co. 7 MI NE of Painesville, OH 050-00440	m	BWR-MARK 3 GE 6 GIL KAIS	3758	1241	05/03/1977 11/13/1986 11/18/1987 03/18/2026	OL-FP NPF-58	73.1 80.2 96.7 89.8 93.9 71.6
Pilgrim 1 Entergy Nuclear Generation Co. 4 MI SE of Plymouth, MA 050-00293	I	BWR-MARK 1 GE 3 BECH BECH	1998	0665	08/26/1968 09/15/1972 12/01/1972 06/08/2012	ol-FP DPR-35	90.5 73.4 73.4 76.2 93.7 89.9

2002 INFORMATION DIGEST

i

109

and the second second

1

Unit Operating Utility Location Docket Number	NRC Region	Con Type NSSS AE Constructor	Licensed MW1	Net MDC	CP issued OL issued Comm. Op Exp. Date	License Type & Number	1996-2001* Average Capacity Factors (Percent)
Point Beach 1 Nuclear Management Co. 13 MI NNW of Manitowoc, WI 050-00266	IN	PWR-DRYAMB WEST 2LP BECH BECH	1519	0515	07/19/1967 10/05/1970 12/21/1970 10/05/2010	ol-FP DPR-24	97.7 19.4 54.9 78.4 92.3 82.9
Point Beach 2 Nuclear Management Co. 13 MI NHW of Manitowoc, WI 050-00301	W	PWR-DRYAMB WEST 2LP BECH BECH	1519	0507	07/25/1968 03/08/1973 10/01/1972 03/08/2013	ol-FP DPR-27	69.2 19.0 77.5 80.0 78.4 96.8
Prairie Island 1 Nuclear Management Co. 28 MI SE of Minneapolis, MN 050-00282	H	pwr-dryamb West 2Lp Flur NSp	1650	0525	06/25/1968 04/05/1974 12/16/1973 08/09/2013	ol-FP DPR-42	83.0 78.4 89.7 89.0 98.9 79.6
Prairie Island 2 Nuclear Management Co. 28 MI SE of Minneapolis, MN 050-00306	H	pwr-dryamb West 2Lp Flur NSP	1650	0524	06/25/1968 10/29/1974 12/21/1974 10/29/2014	OL-FP DPR-60	99.7 81.2 78.6 100.5 91.1 93.4
Quad Cities 1 Exelon Generation Co., LLC 20 MI NE of Maline, IL 050-00254	H	BWR-MARK 1 GE 3 S&L UE&C	2957	0762	02/15/1967 12/14/1972 02/18/1973 12/14/2012	OL-FP DPR-29	39.7 82.6 42.1 94.1 91.3 99.6
Quad Cities 2 Exelon Generation Co., LLC 20 MI NE of Moline, IL 050-00265	III	BWR-MARK 1 GE 3 S&L UE&C	2957	0762	02/15/1967 12/14/1972 03/10/1973 12/14/2012	ol-FP DPR-30	69.1 39.0 50.6 97.9 92.1 93.1
River Bend 1 Entergy Operations, Inc 24 MI NNW of Boton Rouge, LA 050-00458	V	BWR-MARK 3 GE 6 S&W S&W	3039	0966	03/25/1977 11/20/1985 06/16/1986 08/29/2025	OL-FP NPF-47	83.4 83.2 95.1 69.6 89.4 95.3
Salem 1 PSEG Nuclear, LLC 18 Mi S of Wilmington, DE 050-00272	I	PWR-DRYAMB WEST 4UP PUBS UE&C	3459	1121	09/25/1968 08/13/1976 06/30/1977 08/13/2016	ol-fp Dpr-70	0.0 0.0 63.1 82.7 92.2 80.3

110

1

NRC Region	Con Type NSSS AE Constructor	Licensed MWt	Net MDC	CP issued OL issued Comm. Op Exp. Date	License Type & Number	1996-2001 Average Capacity Factors (Percent)
I	PWR-DRYAMB WEST 4LP PUBS UE&C	3459	1121	09/25/1968 05/20/1981 10/13/1981 04/18/2020	OL-FP DPR-75	0.0 25.5 80.9 82.0 86.3 99.5
N	PWR-DRYAMB COMBCE BECH BECH	3438	1070	10/18/1973 09/07/1982 08/08/1983 02/16/2022	OL-FP NPF-10	91.0 70.5 89.1 87.9 90.7 101.3
N	pwr-dryamb Combce Bech Bech Bech	3438	1080	10/18/1973 09/16/1983 04/01/1984 11/15/2022	ol-fp NPF-15	93.2 72.1 95.8 88.9 101.6 60.0
I	PWR-DRYAMB WEST 4LP UE&C UE&C	3411	1161	07/07/1976 03/15/1990 08/19/1990 10/17/2026	OL-FP NPF-86	96.8 78.3 82.7 85.8 78.1 85.9
N	pwr-keond West 4Lp Tva Tva Tva	3411	1122	05/27/1970 09/17/1980 07/01/1981 09/17/2020	ol-FP DPR-77	94.7 85.1 87.8 101.6 78.3 91.8
I	pwr-iceond West 4LP TVA TVA TVA	3411	1117	05/27/1970 09/15/1981 06/01/1982 09/15/2021	ol-FP DPR-79	78.3 89.2 97.3 91.8 92.3 101.6
l	pwr-dryamb West 3JP EBSO DANI	2775	0860	01/27/1978 01/12/1987 05/02/1987 10/24/2026	OL-FP NPF-63	93.6 78.3 93.4 96.2 91.0 71.3
N	PWR-DRYAMB WEST 4LP BECH EBSO	3800	1250	12/22/1975 03/22/1988 08/25/1988 08/20/2027	OL-FP NPF-76	93.1 90.1 98.4 88.0 78.2 94.4
	Region I IV IV I I I	NRCAERegionConstructorIPWR-DRYAMBWEST 4LPPUBSIVPWR-DRYAMBCOMBCEBECHBECHBECHIPWR-DRYAMBCOMBCEBECHIPWR-DRYAMBVPWR-DRYAMBVPWR-DRYAMBVPWR-DRYAMBVPWR-DRYAMBVPWR-DRYAMBVPWR-DRYAMBVPWR-CECNDVEST 4LPTVAIIPWR-DRYAMBWEST 4LPTVAIIPWR-DRYAMBWEST 4LPTVAIIPWR-DRYAMBWEST 4LPTVAIIPWR-DRYAMBWEST 4LPTVAIIPWR-DRYAMBWEST 4LPTVAIIPWR-DRYAMBWEST 4LPTVAIIPWR-DRYAMBWEST 4LPTVAIIPWR-DRYAMBWEST 4LPBECH	NRCAElicensedRegionConstructorMW1IPWR-DRYAMB3459WEST 4LPPUBSJuleacIVPWR-DRYAMB3438IVPWR-DRYAMB3438IVPWR-DRYAMB3438IVPWR-DRYAMB3438IVPWR-DRYAMB3438IPWR-DRYAMB3438IPWR-DRYAMB3411IPWR-DRYAMB3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411IIPWR-ICEOND3411	NRC AE Licensed Net I PWR-DRYAMB 3459 1121 IV PWR-DRYAMB 3438 1070 IV PWR-DRYAMB 3438 1070 IV PWR-DRYAMB 3438 1070 IV PWR-DRYAMB 3438 1080 IV PWR-DRYAMB 3438 1080 IV PWR-DRYAMB 3411 1161 IV PWR-DRYAMB 3411 1161 IV PWR-DRYAMB 3411 1161 IV PWR-DRYAMB 3411 1161 IV PWR-DRYAMB 3411 1122 IV PWR-DRYAMB 3411 1122 IV PWR-DRYAMB 3411 1122 IV PWR-DRYAMB 3411 1122 II PWR-DRYAMB 2775 0860 III PWR-DRYAMB 2775 0860 WEST JP BEOH 3800 1250	NRC AE Licensed Net OL Issued I PWR-DRYAMB 3459 1121 09/25/1988 I PWR-DRYAMB 3459 1121 09/25/1988 V PURS UE8C 3438 1070 10/18/1973 V PWR-DRYAMB 3438 1070 10/18/1973 NC PWR-DRYAMB 3438 1070 10/18/1973 DECH 3438 1070 10/18/1973 OP/07/1982 BECH 3438 1080 10/18/1973 N PWR-DRYAMB 3438 1080 10/18/1973 OP/07/1982 BECH 3438 1080 10/18/1973 N PWR-DRYAMB 3431 1161 07/07/1976 N PWR-DRYAMB 3411 1161 07/07/1976 N PWR-DRYAMB 3411 1161 07/07/1976 N PWR-DRYAMB 3411 1122 05/27/1970 N PWR-DRYAMB 3411 1122 05/27/	NRC AE gerion NESS ^{5*} Constructor MWN Net MWV OI Issued MWD License Exp. Date Type & Nember I PMR-DRYAMB WEST 4LP UESC 3459 1121 09/25/1968 05/20/1981 OL+P Norther IV PWR-DRYAMB UESC 3438 1070 10/18/1973 09/07/1982 OL+P NFF-10 IV PWR-DRYAMB COMBCE BECH 3438 1070 10/18/1973 02/16/2022 OL-PP NFF-10 IV PWR-DRYAMB BECH 3438 1080 10/18/1973 02/16/2022 OL-PP NFF-10 IV PWR-DRYAMB BECH 3438 1080 10/18/1973 04/01/1984 OL-PP NFF-15 IV PWR-DRYAMB BECH 3411 1161 07/07/1976 03/15/1990 OL-PP NFF-86 II PWR-DRYAMB WEST 4LP TVA 3411 1122 05/27/1970 07/17/1980 OL-PP NFF-86 II PWR-RCECND WEST 4LP TVA 3411 1117 05/27/1970 07/17/1980 OL-PP NFF-63 II PWR-DRYAMB WEST 3LP ESCO DANI 2775 0860 01/27/1978 01/12/1987 OL-PP NFF-63 IV PWR-DRYAMB WEST 4LP TVA 3800

.

• • • •

Unit Operating Utility Location Docket Number	NRC Region	Con Type NSSS AE Constructor	Licensed MWt	Net MDC	CP Issued OL Issued Comm. Op Exp. Date	License Type & Number	1996-2001* Average Capacity Factors (Percent)
South Texas Project 2 STP Nuclear Operating Co. 12 MI SSW of Bay Gity, TX 050-00499	N	PWR-DRYAMB WEST 4UP BECH EBSO	3800	1250	12/22/1975 03/28/1989 06/19/1989 12/15/2028	OL-FP NPF-80	95.2 91.0 90.1 89.4 96.1 87.1
St. Lucie 1 Florida Power & Light Co. 12 MI SE of Ft. Pierce, FL 050-00335	N	pwr-dryamb Combce EBSO EBSO	2700	0839	07/01/1970 03/01/1976 12/21/1976 03/01/2016	ol-Fp Dpr-67	70.9 77.8 94.9 88.9 102.0 91.3
St. Lucie 2 Florida Power & Light Co. 12 MI SE of Ft. Pierce, FL 050-00389	H	PWR-DRYAMB Comb CE EBSO EBSO	2700	0839	05/02/1977 06/10/1983 08/08/1983 04/06/2023	OL-FP NPF-16	94.8 88.4 90.8 98.1 92.3 91.3
Summer South Carolina Electric & Gas Co. 26 MI NW of Columbia, SC 050-00395	8	pwr-dryamb West 3lp Gil Dani	2900	0952	03/21/1973 11/12/1982 01/01/1984 08/06/2022	ol-FP NPF-12	88.0 87.5 101.8 88.2 74.9 79.9
Suny 1 Virginia Electric & Power Co. 17 MINW of Newport News, VA 050-00280	Π	PWR-DRYSUB WEST 3LP S&W S&W	2546	0801	06/25/1968 05/25/1972 12/22/1972 05/25/2012	ol-Fp Dpr-32	101.4 80.4 78.4 104.4 93.1 83.7
Sunny 2 Virginia Electric & Power Co. 17 MI NW of Newport News, VA 050-00281	B	PWR-DRYSUB WEST 3LP S&W S&W	2546	0801	06/25/1968 01/29/1973 05/01/1973 01/29/2013	ol-FP DPR-37	86.4 91.9 100.0 83.7 92.9 94.1
Susquehanna 1 PPL Susquehanna, LLC 7 MI NE of Berwick, PA 050-00387	I	BWR-MARK 2 GE 4 BECH BECH	3489	1104	11/02/1973 11/12/1982 06/08/1983 07/17/2022	OL-FP NPF-14	81.0 95.2 68.9 92.3 85.4 98.6
Susquehanna 2 PPL Susquehanna, LLC 7 MINE of Berwick, PA 050-00388	I	BWR-MARK 2 GE 4 BECH BECH	3489	1108	11/02/1973 06/27/1984 02/12/1985 03/23/2024	OL-FP NPF-22	95.0 80.6 94.7 81.3 97.3 86.3

112

Unit Operating Utility Location Docket Number	NRC Region	Con Type NSSS AE Constructor	Licensed MWt	Net MDC	CP Issued OL Issued Comm. Op Exp. Date	License Type & Number	1996-2001 Average Capacity Factors (Percent)
Three Mile Island 1 AmerGen Energy Co. 10 MI SE of Harrisburg, PA 050-00289	ł	PWR-DRYAMB B&W LLP Gil UE&C	2568	0786	05/18/1968 04/19/1974 09/02/1974 04/19/2014	ol-FP DPR-50	102.8 86.0 97.7 77.4 103.5 78.7
Turkey Point 3 Florido Power & Light Co. 25 MI S of Miami, FL 050-00250	H	pwr-dryamb West 3lp Bech Bech	2300	0693	04/27/1967 07/19/1972 12/14/1972 07/19/2012	ol-FP DPR-31	97.6 86.5 89.1 100.7 93.4 91.0
Turkey Point 4 Florida Power & Light Co. 25 MI S of Miami, FL 050-00251	I	pwr-dryamb West 3lp Bech Bech	2300	0693	04/27/1967 04/10/1973 09/07/1973 04/10/2013	ol-fp DPR-41	87.7 89.7 101.8 94.5 91.9 100.6
Vermont Yankee VT Yankee Nudear Power Corp. 5 MI S of Battleboro, VT 050-00271	I	BWR-MARK 1 GE 4 EBSO EBSO	1593	0506	12/11/1967 02/28/1973 11/30/1972 03/21/2012	ol-FP DPR-28	84.8 95.5 71.9 90.9 101.5 93.4
Vogtle 1 Southern Nuclear Operating Co. 26 MI SE of Augusta, GA 050-00424	I	pwr-dryamb West 4LP SBEC GPC	3565	1149	06/28/1974 03/16/1987 06/01/1987 01/16/2027	ol-fp NPF-68	79.8 81.2 99.6 93.5 91.2 100.9
Vogile 2 Southern Nuclear Operating Co. 26 MI SE of Augusta, GA 050-00425	I	PWR-DRYAMB WEST 4LP SBEC GPC	3565	1162	06/28/1974 03/31/1989 05/20/1989 02/09/2029	OLFP NPF-81	88.5 101.3 80.2 87.0 102.4 94.0
Waterford 3 Entergy Operations, Inc. 20 MI W of New Orleans, LA 050-00382	V	PWR-DRYAMB Comb Ce EBSO EBSO	3390	1075	11/14/1974 03/16/1985 09/24/1985 12/18/2024	OL-FP NPF-38	94.5 71.4 89.3 79.0 89.8 101.3
Watts Bar 1 Tennessee Valley Authority 10 MIS of Spring City, TN 050-00390	•	pwr-icecnd West 4up Tva Tva	3411	1118	01/23/1973 02/07/1996 05/27/1996 11/09/2035	OL NPF-90	89.1 77.7 94.7 84.4 92.4 97.7
							(Continued

in another

i.e.

2002 INFORMATION DIGEST

· · · · ·

生用 刷 一 门 用 和 图

11:11

1996-2001* Unit Operating Utility Location Docket Number CP Issued OL Issued Comm. Op Exp. Date Con Type NSSS Average Capacity Factors License NRC AE Net MDC Type & Number licensed MW Constructor Region Percent 80.2 82.7 101.5 89.3 88.3 101.0 Wolf Creek 1 Wolf Creek Nuclear Operating Corp. 3.5 MI NE of Burlington, KS 050-00482 PWR-DRYAMB WEST 4LP BECH DANI 05/31/1977 06/04/1985 09/03/1985 03/11/2025 N 3565 1170 OL-FP NPF-42

3

*Note: Average capacity factors are listed in year order starting with 1995. Source: Nuclear Regulatory Commission and licensee data as compiled by the Nuclear Regulatory Commission.

NUCLEAR REGULATORY COMMISSION

Appendix B

U.S. Commercial Nuclear Power Reactors Formerly Licensed To Operate (Permanently Shut Down)

.

Unit Location	Reactor Type MWt	OL Issued Shut Down	Decommissioning Alternative Selected Current Status
Big Rock Point	BWR	05/01/1964	DECON
Charleviox, MI	240	08/29/1997	DECON
Bonus *	BWR	04/02/1964	ENTOMB
Punta Higuera, PR	50	06/01/1968	ENTOMB
CVTR **	ртнw	11/27/1962	SAFSTOR
Parr, SC	65	01/01/1967	SAFSTOR
Dresden 1	BWR	09/28/1959	SAFSTOR
Morris, IL	700	10/31/1978	SAFSTOR
Elk River *	BWR	11/06/1962	DECON
Elk River, MN	58	02/01/1968	DECON Completed
Fermi 1	SCF	05/10/1963	SAFSTOR
Newport, Ml	200	09/22/1972	SAFSTOR
Fort St. Vrain	HTG	12/21/1973	DECON
Platteville, CO	842	08/18/1989	DECON Completed
GE VBWR	BWR	08/31/1957	SAFSTOR
Pleasanton, CA	50	12/09/1963	SAFSTOR
Haddam Neck	PWR	12/27/1974	DECON
Meriden, CT	1825	12/05/1996	DECON
Hallam *	SCGM	01/02/1962	ENTOMB
Hallam, NE	256	09/01/1964	ENTOMB
Humboldt Bay 3	BWR	08/28/1962	SAFSTOR
Eureka, CA	200	07/02/1976	SAFSTOR
Indian Point 1	PWR	03/26/1962	SAFSTOR
Buchanan, NY	615	10/31/1974	SAFSTOR
La Crosse	BWR	07/03/1967	SAFSTOR
Genoa, WI	165	04/30/1987	SAFSTOR
Maine Yankee	PWR	06/29/1973	DECON
Wiscasset, ME	2700	12/06/1996	DECON
Millstone 1	BWR	10/31/1986	SAFSTOR
Waterford, CT	2011	07/21/1998	SAFSTOR
Pathlinder Sioux Falls, SD	BWR 190	03/12/1964 09/16/1967	SAFSTOR DECON Completed (Continued)

2002 INFORMATION DIGEST

			Contractor and the second state of the second
Unit Location	Reactor Type MWI	OL Issued Shut Down	Decommissioning Alternative Selected Current Status
Peach Bottom 1	НТ G	01/24/1966	SAFSTOR
Peach Bottom, PA	115	10/31/1974	SAFSTOR
Piqua *	OCM	08/23/1962	ENTOMB
Piqua, OH	46	01/01/1966	ENTOMB
Rancho Seco	PWR	08/16/1974	DECON
Herald, CA	2772	06/07/1989	DECON in progress
San Onofre 1	PWR	03/27/1967	DECON
San Clemente, CA	1347	11/30/1992	DECON in progress
Saxton	PWR	11/15/1961	DECON
Saxton, PA	23.5	05/01/1972	DECON in progress
Shippingport *	PWR	N/A	DECON
Shippingport, PA	236	1982	DECON Completed
Shoreham	BWR	04/21/1989	DECON
Wading River, NY	2436	06/28/1989	DECON Completed
Three Mile Island 2	PWR	02/08/1978	(1)
Londonderry Township, PA	2770	03/28/1979	
Trojan	PWR	11/21/1975	DECON
Rainier, OR	3411	11/09/1992	DECON in progress
Yankee-Rowe	PWR	12/24/1963	DECON
Franklin County, MA	0600	10/01/1991	DECON in progress
Zion 1	PWR	10/19/1973	SAFSTOR
Zion, IL	3250	02/21/1997	SAFSTOR
Zion 2	PWR	11/1 4/1973	SAFSTOR
Zion, IL	3250	09/19/1996	SAFSTOR

Appendix B. U.S. Commercial Nuclear Power Reactors Formerly Licensed to Operate (Continued)

* AEC/DOE owned; not regulated by NRC.

** Holds byproduct license from State of South Carolina.

Notes: See Glossary for definitions of decommissioning alternatives.

(1) Three Mile Island 2 has been placed in a post-defueling monitored storage mode until Unit 1 permanently ceases operation, at which time both units are planned to be decommissioned.

Source: DOE Integrated Data Base for 1990; U.S. Spent Fuel and Radioactive Waste, Inventories, Projections, and Characteristics (DOE/RW-0006, Rev. 6), and Nuclear Regulatory Commission

NUCLEAR REGULATORY COMMISSION

Appendix C

ł

Canceled U.S. Commercial Nuclear Power Reactors

Unit Utility	Con Type MWe per Unit	<u>Canceled</u> Date <u>Status</u>
Allens Creek 1	BWR	1982
Houston Lighting & Power Company	1150	Under CP Review
Allens Creek 2	BWR	1976
Houston Lighting & Power Company	1150	Under CP Review
Atlantic 1 & 2	PWR	1978
Public Service Electric & Gas Company	1150	Under CP Review
Bailly	8WR	1981
Northern Indiana Public Service Company	645	With CP
Barton 1 & 2	BWR	1977
Alabama Power & Light	1159	Under CP Review
Barton 3 & 4	BWR	1975
Alabama Power & Light	1159	Under CP Review
Bellefonte 1 & 2	PWR	(1)
Tennessee Valley Authority	1235	With CP
Black Fox 1 & 2	BWR	1982
Public Service Company of Oklahoma	1150	Under CP Review
Blue Hills 1 & 2	PWR	1978
Gulf States Utilities Company	918	Under CP Review
Callaway 2	PWR	1981
Union Electric Company	1150	With CP
Cherokee 1	PWR	1983
Duke Power Company	1280	With CP
Cherokee 2 & 3	PWR	1982
Duke Power Company	1280	With CP
Clinch River	LMFB	1983
Project Management Corp.; DOE; TVA	350	Under CP Review
Clinton 2	BWR	1983
Illinois Power Company	933	With CP
Davis-Besse 2 & 3	PWR	1981
Toledo Edison Company	906	Under CP Review
Douglas Point 1 & 2	BWR	1977
Potomac Electric Power Company	1146	Under CP Review
Erie 1 & 2	PWR	1980
Ohio Edison Company	1260	Under CP Review

2002 INFORMATION DIGEST

117

.

Unit Utility	Con Type MWe per Unit	<u>Canceled</u> Date Status			
Forked River 1	PWR	1980			
Jersey Central Power & Light Company	1070	With CP			
Fort Calhoun 2	PWR	1977			
Omaha Public Power District	1136	Under CP Review			
Fulton 1 & 2	HTG	1975			
Philadelphia Electric Company	1160	Under CP Review			
Grand Gulf 2	BWR	1990			
Entergy Operations, Incorporated	1250	With CP			
Greene County	PWR	1980			
Power Authority of the State of NY	1191	Under CP Review			
Greenwood 2 & 3	PWR	1980			
Detroit Edison Company	1200	Under CP Review			
Hartsville A1 & A2	BWR	1984			
Tennessee Valley Authority	1233	With CP			
Hartsville B1 & B2	BWR	1982			
Tennessee Valley Authority	1233	With CP			
Haven 1	PWR	1980			
Wisconsin Electric Power Company	900	Under CP Review			
Haven 2 (formerly Koshkonong 2) Wisconsin Electric Power Company	PWR 900	1978 Under CP Review			
Hope Creek 2	BWR	1981			
Public Service Electric & Gas Company	1067	With CP			
Jamesport 1 & 2	PWR	1980			
Long Island Lighting Company	1150	With CP			
Marble Hill 1 & 2	PWR	1985			
Public Service of Indiana	1130	With CP			
Midland 1	PWR	1986			
Consumers Power Company	492	With CP			
Midland 2	PWR	1986			
Consumers Power Company	818	With CP			
Montague 1 & 2	BWR	1980			
Northeast Nuclear Energy Company	1150	Under CP Review			
New England 1 & 2	PWR	1979			
New England Power Company	1194	Under CP Review			

NUCLEAR REGULATORY COMMISSION

Unit Utility	Con Type MWe per Unit	<u>Canceled</u> Date Status
New Haven 1 & 2	PWR	1980
New York State Electric & Gas Corporation	1250	Under CP Review
North Anna 3	PWR	1982
Virginia Electric & Power Company	907	With CP
North Anna 4	PWR	1980
Virginia Electric & Power Company	907	With CP
North Coast 1	PWR	1978
Puerto Rico Water Resources Authority	583	Under CP Review
Palo Verde 4 & 5	PWR	1979
Arizona Public Service Company	1270	Under CP Review
Pebble Springs 1 & 2	PWR	1982
Portland General Electric Company	1260	Under CP Review
Perkins 1, 2, & 3	PWR	1982
Duke Power Company	1280	Under CP Review
Perry 2	BWR	1994
Cleveland Electric Illuminating Co.	1205	Under CP Review
Phipps Bend 1 & 2	BWR	1982
Tennessee Valley Authority	1220	With CP
Pilgrim 2	PWR	1981
Boston Edison Company	1180	Under CP Review
Pilgrim 3	PWR	1974
Boston Edison Company	1180	Under CP Review
Quanicassee 1 & 2	PWR	1974
Consumers Power Company	1150	Under CP Review
River Bend 2	BWR	1984
Gulf States Utilities Company	934	With CP
Seabrook 2	PWR	1988
Public Service Co. of New Hampshire	1198	With CP
Shearon Harris 2	PWR	1983
Carolina Power & Light Company	900	With CP
Shearon Harris 3 & 4	PWR	1981
Carolina Power & Light Company	900	With CP
Skagit/Hanford 1 & 2	PWR	1983
Puget Sound Power & Light Company	1277	Under CP Review

2002 INFORMATION DIGEST

Unit Unitay	Con Type MWe per Unit	<u>Canceled</u> Date Status	
Sterling	PWR	1980	
Rochester Gas & Electric Corporation	1150	With CP	
Summit 1 & 2	HTG	1975	
Delmarva Power & Light Company	1200	Under CP Review	
Sundesert 1 & 2	PWR	1978	
San Diego Gas & Electric Company	974	Under CP Review	
Surry 3 & 4	PWR	1977	
Virginia Electric & Power Company	882	With CP	
Fyrone }	PWR	1981	
Northern States Power Company	1150	Under CP Review	
Fyrone 2	PWR	1974	
Northern States Power Company	1150	With CP	
Vogtle 3 & 4	PWR	1974	
Georgia Power Company	1113	With CP	
Washington Nuclear 1	PWR	1995	
Energy Northwest	1266	With CP	
Washington Nuclear 3	PWR	1995	
Energy Northwest	1242	With CP	
Washington Nuclear 4	PWR	1982	
Energy Northwest	1218	With CP	
Mashington Nuclear 5	PWR	1982	
Energy Northwest	1242	With CP	
Vatts Bar 2	PWR	(1)	
Tennessee Valley Authority	1165	With CP	
fellow Creek 1 & 2	BWR	1984	
Fennessee Valley Authority	1285	With CP	
Zimmer 1	BWR	1984	
Cincinnati Gas & Electric Company	810	With CP	

Note: Cancellation is defined as public announcement of cancellation or written notification to NRC. Only docketed applications are indicated.

(1) Bellefonte 1 and 2 and Watts Bar 2 have not been formally cancelled; however TVA has stopped construction and is presently evaluating options (e.g. cancellation or conversion).

Source: DOE/ELA Commercial Nuclear Power 1991 (DOE/ELA-0438 (91)), Appendix E (page 105) and Nuclear Regulatory Commission

NUCLEAR REGULATORY COMMISSION

Appendix D

U.S. Commercial Nuclear Power Reactors by Licensee

Utility	Unit	
Ameren UE	Callaway	
AmerGen Energy Company	Clinton	
AmerGen Energy Company	Oyster Creek	
AmerGen Energy Company	Three Mile Island 1	
Arizona Public Service Company	Palo Verde 1, 2, & 3	
Calvert Cliffs Nuclear Power Plant	Calvert Cliffs 1 & 2	
Detroit Edison Company	Fermi 2	
Dominion Nuclear Connecticut, Inc.	Millstone 2, & 3	
Duke Energy Corporation, LLC	Catawba 1 & 2	
Duke Energy Corporation, LLC	McGuire 1 & 2	
Duke Energy Corporation, LLC	Oconee 1, 2, & 3	
Energy Northwest	Columbia	
Entergy Nuclear Generation Company	Pilgrim 1	
Entergy Nuclear Generation Company	Arkansas Nuclear 1 & 2	
Entergy Nuclear Generation Company	Grand Gulf 1	
Entergy Nuclear Generation Company	River Bend 1	
Entergy Nuclear Generation Company	Waterford 3	
Entergy Nuclear Operations, Inc.	Indian Point 2	
Exelon Generation Co., LLC	Braidwood 1 & 2	
Exelon Generation Co., LLC	Byron 1 & 2	
Exelon Generation Co., LLC	Dresden 2 & 3	
Exelon Generation Co., LLC	La Salle County 1 & 2	
Exelon Generation Co., LLC	Limerick 1 & 2	
Exelon Generation Co., LLC	Peach Bottom 2 & 3	
Exelon Generation Co., LLC	Quad Cities 1 & 2	
FirstEnergy Nuclear Operating Company	Beaver Valley 1 & 2	
FirstEnergy Nuclear Operating Company	Davis-Besse	
FirstEnergy Nuclear Operating Company	Perry 1	
Florida Power & Light Company	St. Lucie 1 & 2	
Florida Power & Light Company	Turkey Point 3 & 4	
Indiana/Michigan Power Company	D. C. Cook 1 & 2	
Nebraska Public Power District	Cooper	
Nine Mile Point Nuclear Station, LLC	Nine Mile Point 1 & 2	
North Atlantic Energy Service Corporation	Seabrook 1	
Nuclear Management Company	Duane Arnold	
Nuclear Management Company	Kewaunee	
Nuclear Management Company	Monticello (Cor	ntinued)

2002 INFORMATION DIGEST

Appendix D. U.S. Commercial Nuclear Power Reactors by Licensee (Continued)

Utility	Unit			
Nuclear Management Co.	Palisades .			
Nuclear Management Company	Point Beach 1 & 2			
Nuclear Management Company	Prairie Island 1 & 2			
New York Power Authority	Indian Point 3			
New York Power Authority	James A. FitzPatrick			
Omaha Public Power District	Fort Calhoun			
Pacific Gas & Electric Company	Diablo Canyon 1 & 2			
PPL Susquehanna, LLC	Susquehanna 1 & 2			
Progress Energy	Brunswick 1 & 2			
Progress Energy	Crystal River 3			
Progress Energy	H. B. Robinson 2			
Progress Energy	Shearon Harris 1			
PSEG Nuclear, LLC	Hope Creek 1			
PSEG Nuclear, LLC	Salem 1 & 2			
Rochester Gas & Electric Corporation	Ginna			
South Carolina Electric & Gas Company	Summer			
Southern California Edison Company	San Onofre 2 & 3			
Southern Nuclear Operating Company	Joseph M. Farley 1 & 2			
Southern Nuclear Operating Company	Edwin I. Hatch 1& 2			
Southern Nuclear Operating Company	Vogtle 1 & 2			
STP Nuclear Operating Company	South Texas Project 1 & 2			
Tennessee Valley Authority	Browns Ferry 1, 2, & 3			
Tennessee Valley Authority	Sequoyah 1 & 2			
Tennessee Valley Authority	Watts Bar 1			
TXU Generation Company, LP	Comanche Peak 1 & 2			
VT Yankee Nuclear Power Corporation	Vermont Yankee			
Virginia Electric & Power Company	North Anna 1 & 2			
Virginia Electric & Power Company	Surry 1 & 2			
Wolf Creek Nuclear Operating Corporation	Wolf Creek 1			

Source: Nuclear Regulatory Commission

NUCLEAR REGULATORY COMMISSION

Appendix E

U.S. Nuclear Research and Test Reactors Regulated by NRC

-

Licensee Location	Reactor Type	OL Issued Docket Number	License Number R-98	
Aerotest San Ramon, CA	TRIGA (Indus)	07/02/1965 50-228		
Armed Forces Radiobiology Research Institute Bethesda, MD	triga	06/26/1962 50-170	R-84	
Cornell University Ithaca, NY	TRIGA Mark II 01/11/1962	01/11/1962 50-157	R-80	
Dow Chemical Company Midland, MI	TRIGA	07/03/1967 50-264	R-108	
General Electric Company Sunol, CA	Nuclear Test	10/31/1957 50-73	R-33	
Idaho State University Pocatello, ID	AGN-201 #103	10/11/1967 50-284	R-110	
Kansas State University Manhattan, KS	TRIGA	10/16/1962 <i>5</i> 0-188	R-88	
Massachusetts Institute of Technology Cambridge, MA	HWR Reflected	06/09/1958 50-20	R-37	
University of California/Davis Sacramento, CA	TRIGA	08/13/1998 50-607	R-130	
National Institute of Standards & Technology Gaithersburg, MD	Nuclear Test	05/21/1970 50-184	TR-5	
North Carolina State University Raleigh, NC	Pulstar	08/25/1972 50-297	R-120	
Ohio State University Columbus, OH	Pool	02/24/1961 50-150	R-75	
Oregon State University Corvallis, OR	TRIGA Mark II	03/07/1967 50-243	R-106	
Pennsylvania State University University Park, PA	TRIGA	07/08/1955 50-5	R-2	
			(Continu	

2002 INFORMATION DIGEST

•

Licensee Location	Reactor Type	OL Issued Docket Number	License Number		
Purdue University West Lafayette, IN	Lockheed	08/16/1962 50-182	R-87		
Reed College Portland, OR	TRIGA Mark I	07/02/1968 50-288	R-112		
Rensselaer Polytechnic Institute Tray, NY	Critical Assembly	07/03/1964 50-225	CX-22		
Rhode Island Atomic Energy Commission Narragansett, RI	GE Pool	07/23/1964 50-193	R-95		
Texas A&M University College Station, TX	AGN-201M #106	08/26/1957 50-59	R-23		
Texas A&M University College Station, TX	TRIGA	12/07/1961 50-128	R-83		
U.S. Geological Survey Denver, CO	TRIGA Mark I	02/24/1969 50-274	R-113		
University of Arizona Tucson, AZ	TRIGA Mark I	12/05/1958 50-113	R-52		
University of California/ Irvine Irvine, CA	TRIGA Mark I	11/24/1969 50-326	R-116		
Iniversity of Florida Gainesville, FL	Argonaut	05/21/1959 50-83	R-56		
University of Massachusetts/Lowell Lowell, MA	GE Pool	12/24/1974 50-223	R-125		
Jniversity of Maryland College Park, MD	TRIGA	10/14/1960 50-166	R-70		
Iniversity of Michigan Ann Arbor, Mi	Pool	09/13/1957 50-2	R-28		
University of Missouri/Rolla Rolla, MO	Pool	11/21/1961 50-123	R-79		
University of Missouri/Columbia Columbia, MO	Tank	10/11/1966 50-186	R-103		

Appendix E. U.S. Nuclear Research and Test Reactors Regulated by NRC (Continued)

NUCLEAR REGULATORY COMMISSION

ene destinovente dare dare

icensee		OL Issued	License
ocation	Reactor Type	Docket Number	Number
University of New Mexico Albuquerque, NM	AGN-201M#112	09/17/1966 50-252	R-102
University of Texas Austin, TX	TRIGA Mark II	01/17/1992 50-602	R-129
University of Utah Salt Lake City, UT	TRIGA Mark I	09/30/1975 50-407	R-126
University of Wisconsin Madison, WI	TRIGA	11/23/1960 50-156	R-74
Veterans Administration Omaha, NE	TRIGA	06/26/1959 50-131	R-57
Washington State University Pullman, WA	TRIGA	03/06/1961 50-27	R-76
Worcester Polytechnic Institute Worcester, MA	GE	12/16/1959 50-134	R-61

Source: Nuclear Regulatory Commission

2002 INFORMATION DIGEST

.

.

125

and a state of the state of th

Appendix F

Research and Test Reactors Under Decommissioning

Licensee Location	Reactor Type OL Issued Power Level (kW)	License Number Docket Number	License Type Shutdown	Decommissioning Alternative Current Status
CBS Corporation Waltz, Mill	Tank 6/19/59 20,000	TR-2 50-22	DA 3/25/63	SAFSTOR SAFSTOR
General Atomics San Diego, CA	TRIGA Mark F 7/01/60 1,500	R-67 50-163	DA 9/7/94	DECON DECON
General Atomics San Diego, CA	TRIGA Mark I 5/03/58 250	R-38 50-89	DA 12/17/96	DECON DECON
Georgia Institute of Technology Atlanta, Georgia	Tank 12/29/64	R-97 50-160	DA 7/1/97	DECON DECON
lowa State University Ames, IA	Argonaut 10/16/62	R-59 50-116	DA 5/15/98	DECON DECON
Manhattan College Riverdale, NY	ZPR 3/24/64 0.0001	R-94 50-199	DA 12/96	SAFSTOR SAFSTOR
University of Illinois Urbana, II.	TRIGA 7/22/69 1,500	R-111 50-151	DA 4/12/99	DECON DECON
University of Washington Seattle, Washington	Argonaut 3/31/61 100	R-73 50-139	DO 6/30/88	DECON DECON
University of Virginia Charlottesville, VA	Pool 9/24/74	R-123 <i>5</i> 0-396	DA 1/88	DECON DECON
University of Virginia Charlottesville, VA	Pool 6/24/60 2,000	R-66 50-62	DA 6/30/98	DECON DECON
National Aeronautics and Space Administration Sandusky, OH	Test 5/2/62 60,000	tr-3 50-30	DA 7/7/73	DECON DECON
National Aeronautics and Space Administration Sandusky, OH	Mockup 6/14/61 100	R-93 50-185	DA 7/7/73	DECON DECON
Cornell University Ithaca, NY	Tank (ZPR) 12/11/62 0.1	R-89 50-97	POL 2/12/97	(1)

NUCLEAR REGULATORY COMMISSION

n Anne an an 1877.

Licensee Location	Reactor Type OL issued Power Level (kW)	License Number Docket Number	License Type Shutdown	Decommissioning Alternative Current Status	
General Electric Company Sunol, CA	GETR (Tank) 1/7/59 50,000	TR-1 50-70	POL 6/26/85	(1)	
General Electric Company Sunol, CA	EVESR 11/12/63 17,000	DR-10 50-183	POL 2/1/67	(1)	
State University of New York Buffalo, NY	Pulstar 3/24/61 2,000	R-77 50-57	POL 7/23/96	(1)	

Note: Decommissioning Order (DO) or Amendment (DA) or with Possession Only Amendment (POL) (no authority to operate the reactor)

(1) Decommissioning alterative and status is not relevant to facility with a POL and not under a DO or DA. Source: Nuclear Regulatory Commission

2002 INFORMATION DIGEST

ł

127

INGRADURATION (AMADESTRA).

and a second state of the second

Appendix G

NRC Performance Indicators: Annual Industry Averages, Fiscal Years 1989–2001

Indicator	1989	1990	1991	199	2	1993	1994
Automatic Scrams	1.88	1.61	1.57	7 1.5	1	1.18	1.05
Safety System Actuations	1.38	0.99	1.00	5 0.8	1	0.81	0.62
Significant Events	0.90	0.45	0.40) 0.2	5	0.26	0.21
Safety System Failures	3.53	3.58	3.4	4 3.7	8	3.09	2.32
Forced Outage Rate	10.13	7.60	7.90) 8.8	9	7.7 9	9.40
Equipment Forced Outage Rate	0.45	0.38	0.36	5 0.3	5	0.24	0.26
Collective Radiation Exposure	374.00	320.00	286.00) 277.0	0 2	44.00	215.00
Indicator	1995	1996	1997	1998	1999	2000	2001
Automatic Scrams	1.04	0.80	0.54	0.48	0.64	0.52	0.57
Safety System Actuations	0.46	0.39	0.35	0.31	0.29	0.29	0.19
Significant Events	0.17	0.08	0.10	0.04	0.03	0.02	0.03
Safety System Failures	2.03	2.89	2.71	2.76	1.68	1.37	0.83
Forced Outage Rate	6.76	7.54	10.21	10.73	5.20	4.24	3.00
Equipment Forced Outage Rate	0.23	0.24	0.24	0.18	0.16	0.13	0.12

Source: Licensee data as compiled by the Nuclear Regulatory Commission

NUCLEAR REGULATORY COMMISSION

and a

and an effort of

Appendix H

Dry Spent Fuel Storage Designs: NRC Approved for General Use

Vendor	Storage Design Model	Certificate of Compliance Issue Date
General Nuclear Systems, Incorporated	CASTOR V/21	08/17/1990
NAC International, Inc.	NAC S/T	08/17/1990
NAC International, Inc.	NAC-C28 S/T	08/17/1990
Transnuclear, Inc.	TN-24	11/04/1993
Sierra Nuclear Corporation	VSC-24	05/03/1993
Transnuclear West, Inc.	NUHOMS-24P	01/18/1995
Holtec International	HI-STAR 100	10/04/1999
Holtec International	HI-STORM 100	05/31/2000
Transnuclear, Inc.	TN-32	04/19/2000
NAC International, Inc.	NAC-MPC	04/10/2000
NAC International, Inc.	NAC-UMS	11/20/2000
Transnuclear, Inc.	TN-68	05/30/2000
BNFL Fuel Solutions	Fuel Solutions	02/15/2001

Note: PWR - Pressurized-Water Reactor; BWR - Boiling-Water Reactor Source: Nuclear Regulatory Commission (10 CFR 72.214)

2002 INFORMATION DIGEST

1

Appendix I

Dry Spent Fuel Storage Licensees

Reactor Name Utility	Date Issued	Vendor	Storage Model
Surry 1, 2 Virginia Electric & Power Company	07/02/1986	Generals Nuclear Systems, Incorporated	CASTOR V/21 TN-32 NAC-128 CASTOR X/33 MC-10
H. B. Robinson 2 Carolina Power & Light Company	08/13/1986	Transnuclear West, Incorporated	NUHOMS-7P
Oconee 1, 2, 3 Duke Energy Company	01/29/1990	Transnuclear West, Incorporated	NUHOMS-24P
Fort St. Vrain* Department of Energy	11/04/1991	FW Energy Applications, Incorporated	Modular Vault Dry Store
Calvert Cliffs 1 , 2 Calvert Cliffs Nuclear Power Plant	11/25/1992	Transnuclear West, Incorporated	NUHOMS-24P
Palisades Consumers Energy Company	Under General License 05/11/93	BNFL Fuel Solutions	VSC-24
Prairie Island 1, 2 Nuclear Management Company, LLC	10/19/1993	Transnuclear West, Incorporated	TN-40
Point Beach 1, 2 Nuclear Management Company, LIC	Under General License 05/26/96	BNFL Fuel Solutions	VSC-24
Davis-Besse First Energy Nuclear Operating Company	Under General License 01/01/96	Transnuclear West, Incorporated	NUHOMS-24P
Arkansas Nuclear 1, 2 Entergy Operations, Inc	Under General License 12/17/96	BNFL Fuel Solutions	VSC-24
North Anna Virginia Electric & Power Company	06/30/1998	Transnuclear West, Incorporated	TN-32
Trojan Portland General Electric Corp	03/31/1999	BNFL Fuel Solutions	TranStor
Department of Energy; [MI-2 Fuel Debris	03/19/1999	Transnuclear West, Incorporated	Modified NUHOMS
Susquehana Pennsylvania Power & Light	Under General License 10/18/99	Transnuclear West, Incorporated	NUHOMS-52B

NUCLEAR REGULATORY COMMISSION

and the second second

Reactor Name Utility	Date Issued	Vendor	Storage Model
Peach Bottom 2, 3 Exelon Generating Company	Under General License 06/12/2000	Transnuclear Incorporated	TN-68
Hatch 1, 2 Southern Nuclear Operating Company	Under General License 07/06/2000	Holtec International Company	HI-STAR 100 HI-STORM 100
Dresden 1, 2, 3 Exelon Generating Company	Under General License 07/10/2000	Holtec International Company	HI-STAR 100 HI-STORM 100
Rancho Seco Sacramento Municipal Utility District	06/30/2000	Transnuclear West, Incorporated	Modified NUHOMS-24 P
McGuire Duke Power	Under General License 02/01/2001	Transnuclear Incorporated	TN-32

.

*Plant undergoing decommissioning. Transferred to DOE 6/4/99. Source: Nuclear Regulatory Commission

2002 INFORMATION DIGEST

.

•

131

Appendix J

World List of Nuclear Power Reactors

In Operation		Under Constru or Constru	ction, on Order, ction Halted	Te	otal	
-	Number		Number		Number	
Country	of Units	Net MWe	of Units	Net MWe	of Units	Net MWe
Argentina	2	1,018	1	692	3	1,710
Armenia	1	376	0	0	1	376
Belgium	7	5,680	0	0	7	5,680
Brazil	2	1,855	1	1,229	3	3,084
Bulgaria	6	3,538	0	0	6	3,538
Canada	22	15,113	0	0	22	15,113
China	3	2,188	8	6,450	11	8,638
Czech Republic	4	1,648	2	1,962	6	3,610
Finland	4	2,656	0	0	4	2,656
France	59	63,203	0	0	59	63,203
Germany	20	22,594	0	0	20	22,594
Hungary	4	1,755	0	0	4	1,755
India	14	2,548	4	2,772	18	5,320
Iran	0	0	1	950	1	950
Japan	52	43,245	6	5,638	58	48,883
North Korea	0	0	2	2000	2	2000
Lithuania	2	2,370	0	0	2	2,370
Mexico	2	1,364	0	0	2	1,364
Netherlands	1	452	0	0	1	452
Pakistan	2	425	0	0	2	425
Romania	1	655	4	2,480	5	3,135
Russia	27	20,799	4	3,375	31	24,174
Slovakia	6	2,512	2	880	8	3,392
Slovenia	1	656	0	0	1	656
South Africa	2	1,800	0	0	2	1,800
South Korea	16	12,970	4	3,800	20	16,770
Spain	9	7,507	0	0	9	7,507
Sweden	11	9,460	0	0	11	9,460
Switzerland	5	3,200	0	0	5	3,200
Taiwan, China	6	4,884	2	2,600	8	7,484
Ukraine	13	11,195	5	4,750	18	15,945
United Kingdom		12,048	0	0	33	12,048
United States	104	99,075		3,603	107	102,678
Tota	441	358,789	3 49	43181	490	401,970

Note: Operable, under construction or on order (30 MWe and over) or construction halted as of December 31, 2001.

Source: Reprinted with permission from the March 2002 Nuclear News©, 2001 by the American Nuclear Society.

NUCLEAR REGULATORY COMMISSION

Appendix K

Nuclear Power Units by Reactor Type, Worldwide

	2000				
	In Op	peration	1	'otal	
Reactor Type	Number of Units	Net MWe	Number of Units	Net MWe	
Pressurized light-water reactors	259	232,550	289	260,532	
Boiling light-water reactors	92	80,155	98	87,247	
Gas-cooled reactors, all varieties	32	10,860	32	10,860	
Heavy-water reactors, all varieties	43	21,886	52	27,288	
Graphite-moderated light-water reactors	13	12,545	14	13,470	
Liquid metal fast-breeder reactors	2	793	5	2,753	
Total	441	358,789	490	401,970	

Note: Operable, under construction, on order (30 MWe and over) or construction halted as of 12/31/01. Source: Reprinted with permission from the March 2002 Nuclear News©, 2002 by the American Nuclear Society.

2002 INFORMATION DIGEST

133

Matter and the

Appendix L

Top Fifty Reactors by Capacity Factor, Worldwide

- 57

Country	. Unit	Reactor Type	Vendor	2000 Gross Capacity Factor (Percent)	2000 Gross Generation (MWh)
South Korea	Yonggwang-1	₽₩R	West	104.36	8,684,625
South Korea	Yonggwang-3	PWR	KHIC-CE	103.61	9,076,326
U.S.	Limerick-1	BWR	GE	102.73	10,465,900
U.S.	LaSalle-1	B₩R	GE	101.83	10,141,900
U.S.	Byron-1	PWR	West	101.56	10,754,427
U.S.	LaSalle-2	BWR	GE	100.21	9,981,029
U.S.	ANO-1	PWR	CE	100.06	8,265,433
Japan	Tomari-1	PWR	MHI	99.99	5,071,624
Japan	Takahama-4	PWR	MHI	99.99	7,620,352
Japan	Shika-1	B₩R	Hitachi	99.97	4,728,922
Japan	Mihama-3	PWR	MHI	99.97	7,233,419
Japan	Shimane-2	BWR	Hitachi	99.96	7,179,970
U.S.	Comanche Peak-2	PWR	West.	99.92	10,267,629
U.S.	Wolf Creek	PWR	West.	99.87	10,725,923
U.S.	Davis-Besse	PWR	B&W	99.81	8,087,208
Japan	Fukushima II-4	BWR	Hitachi	99.75	9,612,100
U.S.	Catabaw-1	PWR	West.	99.66	10,519,744
Japan	Kashiwazaki-5	B₩R	Hitochi	99.62	9,599,800
U.S.	Vogtle-1	PWR	West.	99.57	10,597,412
U.S.	Ginna	PWR	West.	99.35	4,499,471
U.S.	Sequayah-2	PWR	West.	99.15	10,257,342
Spain	Almaraz-1	PWR	West.	99.13	8,458,356
U.S.	Browns Ferry-3	B₩R	GE	99.08	10,024,510
U.S.	Point Beach-2	PWR	West.	98.88	4,536,930
Spain	Vandellos-2	PWR	West.	98.49	9,375,898
U.S.	Waterford-3	PWR	CE	98.49	9,947,588
Japan	Sendai-1	PWR	MHI	98.32	7,665,229
India	Kakrapar-2	PHWR	NPC	97.80	1,884,729
Finland	Olkiluoto-1	B₩R	Asea	97.57	7,436147
U.S.	Diablo Canyon-1	PWR	West.	97.56	9,948,206
Argenting	Embalse	PHWR	AECL	97.54	5,537,026
U.S.	Beaver Valley-2	PWR	West.	97.20	7,560,998
U.S.	Millstone-2	PWR	CE	96.93	7,548,591
U.S.	Byron-2	PWR	West.	96.91	10,125,024
Switzerland	Beznau-1	PWR	West.	99.78	3,221,601

NUCLEAR REGULATORY COMMISSION

Country	Unit	Reactor Type	Vendor	2000 Gross Capacity Factor (Percent)	2000 Gross Generation (MWh)
U.S.	San Onofre-2	PWR	CE	96.59	9,992,517
U.S.	Braidwood-2	PWR	West.	96.54	9,986,623
U.S.	Hatch-1	BWR	GE	96.31	7,795,439
U.S.	Quad Cities-1	BWR	GE	96.26	7,023,954
Germany	lsar-2	PWR	Siemans	95.93	12,395,641
U.S.	Brunswick-1	BWR	GE	95.65	7,499,065
Spain	Colirentes	BWR	GE	95.60	8,587,451
U.S.	McGuire-2	PWR	West.	95.54	10,252,024
U.S.	Braidwood-1	PWR	West.	95.49	9,922,710
Japan	lkata-1	PWR	MHI	95.20	4,720,312
U.S.	Clinton-1	BWR	GE	95.18	8,212,686
South Korea	Wolsong-2	PHWR	AECL	95.11	5,957,343
South Korea	Kori-4	PWR	West.	95.08	7,912,836
Finland	Olkiluoto-2	BWR	Asea	95.06	7,244,596
U.S.	Watts Bar-1	PWR	West.	95.03	10,072,989

Note: U.S. units believed to belong on this list, but which do not reveal their gross generation, are Constellation's Calvert Cliffs-1, PPL's Susquehanna-1, and PSEG Nuclear's Salem-2. CE, the former Combustion Engineering, and Asea are now part of Westinghouse; Siemens is now part of Framatome. Source: Excerpted from Nucleonics Week©, February 14, 2002 by McGraw Hill, Inc. Reproduced by permission. Further reproduction prohibited.

2002 INFORMATION DIGEST

Appendix M

Top Fifty Reactors by Generation, Worldwide

Country	Unit	Reactor Type	Vendor	2000 Gross Generation (MWh)	2000 Gross Capacity Factor (Percent
Germany	lsar~2	PWR	Siemens	12,395,641	95.93
Germany	Brokdorf	PWR	Siemens	11,790,780	93.47
Germany	Grohnde	PWR	Siemens	11,559,942	93.28
Germany	Emsland	PWR	Siemens	11,525,914	93.98
Germany	Unterweser	PWR	Siemens	11,205,762	90.72
Germany	Neckar-2	PWR	Siemens	11,172,100	93.43
Germany	Grafenrheinfeld	PWR	Siemens	11,154,047	94.67
J.S.	South Texas-1	PWR	West.	10,804,460	93.79
Germany	Gundremmigen-B	B₩R	Siemens	10,784,442	91.60
U.S.	Byron-1	PWR	West.	10,754,427	101.56
U.S.	Wolf Creek	PWR	West.	10,725,923	100.86
U.S.	Palo Verde-2	PWR	CE	10,666,500	93.16
U.S.	Vogtle-1	PWR	West.	10,597,412	99.57
France	Chooz-B2	PWR	Fram.	10,584,663	79.70
U.S.	Catawba-1	PWR	West.	10,519,744	99.66
Brazil	Angra-2	PWR	Siemens	10,498,433	88.77
U.S.	Limerick-1	BWR	GE	10,465,900	102.73
France	Flamanville-1	PWR	Fram.	10,459,003	86.39
kapan	Kashiwazaki-7	BWR	Toshiba	10,421,542	87.73
Germany	Gundremmingen-C	BWR	Siemens	10,319,635	87.65
U.S.	Grand Gulf-1	B₩R	GE	10,318,740	90.19
U.S.	Comanche Peak-2	PWR	West.	10,267,629	99.92
U.S.	Sequoyah-2	PWR	West.	10,257,342	99.15
U.S.	McGuire-2	PWR	West.	10,252,024	95.54
France	Penly-1	PWR	Fram.	10,244,517	84.62
France	Paluel-1	PWR	Fram.	10,227,260	84.48
U.S.	LaSalle-1	BWR	GE	10,141,900	101.83
U.S.	Palo Verde-1	PWR	CE	10,127,800	88.46
U.S.	Byron-2	PWR	West.	10,125,024	96.91
Germany	Biblis A	PWR	Siemens	10,093,284	94.06
U.S.	Watts Bar-1	PWR	West.	10,072,989	95.03
U.S.	Browns Ferry-3	BWR	GE	10,024,510	99.08
U.S.	San Onofre-2	PWR	CE	9,992,517	96.59
U.S.	Braidwood-2	PWR	West.	9,986,623	96.54
U.S.	South Texas-2	PWR	West.	9,984,724	86.68

NUCLEAR REGULATORY COMMISSION

and the second second

XX

-

Country	Unit	Reactor Type	Vendor	2000 Gross Generation (MWh)	2000 Gross Capacity Factor (Percent)
U.S.	LaSalle-2	B₩R	GE	9,981,029	100.21
France	Belleville-1	PWR	Fram.	9,964,898	83.46
France	Chooz-B1	PWR	Fram.	9,949,234	74.92
U.S.	Diablo Canyon-1	PWR	West.	9,948,206	97.56
U.S.	Waterford-3	PWR	Œ	9,947,588	98.49
U.S.	Braidwood-1	PWR	West.	9,922,710	95.49
U.S.	Salem-2	PWR	West.	9,914,170	96.73
U.S.	Vogtle-2	PWR	West.	9,889,009	92.91
France	Nogent-2	PWR	Fram.	9,798,464	82.07
France	Cattenom-1	PWR	Fram.	9,732,180	81.57
U.S.	Palo Verde-3	PWR	Œ	9,726,300	84.95
Britain	Sizewell B-1	PWR	West.	9,703,687	88.62
Japan	Ohi-1	PWR	West,	9,697,230	94.21
France	St.Alban-1	PWR	Fram.	9,691,329	80.11
Japan	Ohi-4	PWR	MHI	9,651,878	93.37
U.S.	Peach Bottom-2	BWR	GE	9,625,900	94.81

Note: A U.S. unit, believed to belong on this list, which does not disclose gross generation is PSEG's Salem-2. Source: Excerpted from Nucleonics Week®, February 14, 2002 by McGraw Hill, Inc. Reproduced by permission. Further reproduction prohibited.

2002 INFORMATION DIGEST

į

137

MERCENCER

Appendix N

Quick Reference Metric Conversion Tables

•	SPA	CE AND TIME	
	From Inch-	To Metric	Multiply
Quantity	Pound Units	Units	by
Length	mi (statute)	km	1.609 347
Ū	vdi	m	*0.914 4
	it (int)	m	*0.304 8
	in	cm	*2.54
Area	mi ²	km ²	2.589 998
	acre	m ²	4 046.873
	у <mark>д²</mark> Н²	m ²	0.836 127 4
		m ²	*0.092 903 04
	in ²	cm ²	*6.451 6
Volume	acre foot	m ³	1 233.489
	хдз Нэ	m ³	0.764 554 9
		m ³	0.028 316 85
	ft ³	L	28.316 85
	gallon	L	3.785 412
	floz	mi.	29.573 53
	in ³	cm ³	16.387 06
Velocity	mi/h	km/h	1.609 347
·	ft/s	m/s	*0.304 8
Acceleration	ft/s ²	m/s ²	*0.304 8
	NUCLEAR REACTION	N and IONIZING RADIATION	١
	From Inch-	To Metric	Multiply
Quantity	Pound Units	Units	by
Activity (of a	curie (Ci)	MBg	*37,000.0
radionuclide)	dpm	Bq (becquerel)	0.016 667
Absorbed	rad	Gy (gray)	*0.01
dose	rad	cGy	•1.0
Dose	rem	Sv (sievert)	*0.01
equivalent	rem	mSv	*10.0
	mrem	mSv	*0.01
	mrem	μSv	*10.0
Exposure (X- and gamma rays)	roentgen (R)	C/kg (coulomb)	0.000 258

*Exact conversion factors

NUCLEAR REGULATORY COMMISSION

CONTRACTION OF THE OWNER

and the second second

-		-
	А.	Г
-	~	4

HEAT				
Quantity	From Inch- Pound Units	To Metric Units	Multiply by	
Thermodynamic temperature	٩F	۰K	*°K = (°F + 459.67)/1.8	
Celsius Iemperature	۴	ç	*°C = (°F-32)/1.8	
Linear expansion coefficient	oF-1	°K ^{−1} or °C ^{−1}	*1.8	
Thermal conductivity	(Btu ● in)/(ft ² ● h ● °F)	W/(m ● ℃)	0.144 227 9	
Coefficient of heat transfer	Btu / ($ft^2 \bullet h \bullet \circ F$)	W/(m² • ℃)	5.678 263	
Heat capacity	Btu/ºF	kJ∕℃	1.899 108	
Specific heat capacity	Btu/(Ib • °F)	kJ/(kg ∙°C)	*4.186 8	
Entropy	Btu/°F	kJ/℃	1.899 108	
Specific entropy	Btu/(lb ● °F)	kJ/(kg ∙°C)	*4.186 8	
Specific internal energy	Btu/lb	kJ/kg	*2.326	
	MECH	NICS		
Quantity	From Inch- Pound Units	To Metric Units	Multiply by	
Mass (weight)	ton (short) Ib (avdp)	t (metric ton) kg	*0.907 184 74 *0.453 592 37	
Moment of mass	lb • ft	kg ● m	0.138 255	
Density	ton (short)/yd ³ lb/ft ³	t/m3 kg/m3	1.186 553 16.018 46	
Concentration (mass)	lb/gal	g/L	119.826 4	
Momentum	lb ● ft/s	kg ∙m/s	0.138 255	
Angular momentum	lb • ft²/s	kg •m²/s	0.042 140 11	
Moment of Inertia	lb ● ft²	kg ∙m²	0.042 140 11	
Force	kip (kilopound) Ibf	kN (kilonewton) N (newton)	4.448 222 4.448 222	

*Exact conversion factors	(Continued)

2002 INFORMATION DIGEST

MECHANICS (Continued)					
Quantity	From Inch-	To Metric	Multiply		
	Pound Units	Units	by		
Moment of Force,	lbf ● ft	N ● m	1.355 818		
torque	lbf ● in	N ● m	0.122 984 8		
Pressure	atm (std)	kPa (kilopascal)	*101.325		
	bar	kPa	*100.0		
	Ibf/in² (formerly psi)	kPa	6.894 757		
	inHg (32°F)	kPa	3.386 38		
	ftH ₂ O (39.2°F)	kPa	2.988 98		
	inH ₂ O (60°F)	kPa	0.248 84		
	mmHg (0°C)	kPa	0.133 322		
Stress	kip/in² (formerty ksi)	MPa	6.894 757		
	lbf/in² (formerty psi)	MPa	0.006 894 757		
	lbf/in² (formerty psi)	kPa	6.894 757		
	lbf/ft²	kPa	0.047 880 26		
Energy, work	kwh cal _{th} Btu ft ● Ibf therm (US)	MJ J (joule) kJ J MJ	*3.6 *4.184 1.055 056 1.355 818 105.480 4		
Power	Btu/s	kW	1.055 056		
	hp (electric)	kW	*0.746		
	Btu/h	W	0.293 071 1		

Appendix N. Quick Reference Metric Conversion Tables (Continued)

To convert from metric units to inch-pound units, divide the metric unit by the conversion factor.

*Exact conversion factors

Note: The information contained in this table is intended to familiarize NRC personnel with commonly used SI units and provide a quick reference to aid in the understanding of documents containing SI units. The conversion factors provided have not been approved as NRC guidelines for development of licensing actions, regulations, or policy.

Source: Federal Standard 376A (May 5, 1983), Preferred Metric Units for General Use by the Federal Government; and International Commission of Radiation Units and Measurements, ICRU Report 33 (1980), Radiation Quantities and Unit

NUCLEAR REGULATORY COMMISSION

COLUMN STATES

90.9629-3-29

Glossary

AGREEMENT STATE: A State that has signed an agreement with the NRC allowing the State to regulate the use of radioactive material within that State.

BOILING-WATER REACTOR (BWR): A nuclear reactor in which water, used as both coolant and moderator, is allowed to boil in the core.

CAPABILITY: The maximum load that a generating station can carry under specified conditions for a given period of time without exceeding approved limits of temperature and stress. Net summer capability is used in the digest. Measured in watts except as noted otherwise.

CAPACITY FACTOR (Gross): The ratio of the gross electricity generated, for the period of time considered, to the energy that could have been generated at continuous full-power operation during the same period.

CAPACITY FACTOR (Net): The ratio of the net electricity generated, for the period of time considered, to the energy that could have been generated at continuous full-power operation during the same period.

CASK: A heavily shielded container used to store and/or ship radioactive materials. Lead and steel are common materials used in the manufacture of casks.

COMPACT: A group of two or more States formed to dispose of low-level radioactive waste on a regional basis. Forty-four States have formed ten compacts.

CONSTRUCTION RECAPTURE: The maximum number of years that could be added to the license expiration date to recover the period from the construction permit to the date when the operating license was granted. A licensee is required to submit an application for such a change.

CONTAMINATION: The deposition of unwanted radioactive material on the surfaces of structures, areas, objects, or personnel.

DECOMMISSION: The process of safely removing a facility from service followed by reducing residual radioactivity to a level that permits the release of the property for unrestricted and, under certain conditions, restricted use.

DECON: A method of decommissioning in which the equipment, structures, and portions of a facility and site containing radioactive contaminants are removed or decontaminated to a level that permits the property to be released for unrestricted use shortly after cessation of operations.

(Continued)

2002 INFORMATION DIGEST

Glossary (Continued)

DECONTAMINATION: The reduction or removal of contaminated radioactive material from a structure, area, object, or person.

ENTOMB: A method of decommissioning in which radioactive contaminants are encased in a structurally long-lived material, such as concrete. The entombment structure is appropriately maintained, and continued surveillance is carried out until the radioactivity decays to a level permitting unrestricted release of the property.

FISCAL YEAR: The 12-month period, from October 1 through September 30, used by the Federal Government in budget formulation and execution. The fiscal year is designated by the calendar year in which it ends.

FUEL CYCLE: The series of steps involved in supplying fuel for nuclear power reactors.

FULL-TIME EQUIVALENT: A measurement equal to one staff person working a full-time work schedule for 1 year.

GENERATION (Gross): The total amount of electric energy produced by a generating station as measured at the generator terminals. Measured in watthours except as noted otherwise.

GENERATION (Net): The gross amount of electric energy produced minus the electric energy consumed at a generating station for station use. Measured in waithours except as noted otherwise.

GIGAWATT: One billion watts.

GIGAWATTHOUR: One billion watthours.

HIGH-LEVEL WASTE: High-level radioactive waste (HLW) means (1) irradiated (spent) reactor fuel; (2) liquid waste resulting from the operation of the first cycle solvent extraction system, and the concentrated wastes from subsequent extraction cycles, in a facility for reprocessing irradiated reactor fuel; and (3) solids into which such liquid wastes have been converted. HLW is primarily in the form of spent fuel discharged from commercial nuclear power reactors. It also includes some reprocessed HLW from defense activities, and a small quantity of reprocessed commercial HLW.

LOW-LEVEL WASTE: Low-level radioactive waste (LLW) is a general term for a wide range of wastes. Industries; hospitals and medical, educational, or research institutions; private or Government laboratories; and nuclear fuel cycle facilities (e.g., nuclear power reactors and fuel fabrication plants) using radioactive materials generate low-level wastes as part of their normal operations. These wastes are generated in many physical and chemical forms and levels of contamination.

NUCLEAR REGULATORY COMMISSION

MAXIMUM DEPENDABLE CAPACITY (Gross): Dependable main-unit gross capacity, winter or summer, whichever is smaller. The dependable capacity varies because the unit efficiency varies during the year because of temperature variations in cooling water. It is the gross electrical output as measured at the output terminals of the turbine generator during the most restrictive seasonal conditions (usually summer). Measured in watts except as noted otherwise.

MAXIMUM DEPENDABLE CAPACITY (Net): Gross maximum dependable capacity minus the normal station service loads. Measured in watts except as noted otherwise.

MEGAWATT (MW): One million watts.

MEGAWATTHOUR (MWh): One million watthours.

METRIC TON: Approximately 2,200 pounds.

NET SUMMER CAPABILITY: The steady hourly output that generating equipment is expected to supply to system load exclusive of auxiliary power, as demonstrated by tests at the time of summer peak demand. Measured in watts except as noted otherwise.

NONPOWER REACTOR: A nuclear reactor used for research, training, and test purposes, and for the production of radioisotopes for medical and industrial uses.

POSSESSION-ONLY LICENSE: A form of license that allows possession but not operation.

PRESSURIZED-WATER REACTOR (PWR): A nuclear reactor in which heat is transferred from the core to a heat exchanger via water kept under high pressure without boiling the water.

PRODUCTION EXPENSE: Production expenses are a component of generation expenses that includes costs associated with operation, maintenance, and fuel.

RADIOACTIVITY: The rate at which radioactive material emits radiation. Measured in units of becquerels or disintegrations per second.

SAFSTOR: A method of decommissioning in which the nuclear facility is placed and maintained in such condition that the nuclear facility can be safely stored and subsequently decontaminated (deferred decontamination) to levels that permit release for unrestricted use.

SPENT NUCLEAR FUEL: Fuel that has been removed from a nuclear reactor because it can no longer sustain power production for economic or other reasons.

(Continued)

2002 INFORMATION DIGEST

Glossary (Continued)

URANIUM FUEL FABRICATION FACILITY: A facility that (1) manufactures reactor fuel containing uranium for any of the following: (i) preparation of fuel materials; (ii) formation of fuel materials into desired shapes; (iii) application of protective cladding; (iv) recovery of scrap material; and (v) storage associated with such operations; or (2) conducts research and development activities.

URANIUM HEXAFLUORIDE PRODUCTION FACILITY: A facility that receives natural uranium in the form of ore concentrate; enriches it, either by gaseous diffusion or gas centrifuge methods; and converts it into uranium hexafluoride (UF_{c}).

VIABILITY ASSESSMENT: A DOE decisionmaking process to judge the prospects for geologic disposal of high-level radioactive wastes at Yucca Mountain based on (1) specific design work on the critical elements of the repository and waste package, (2) a total system performance assessment that will describe the probable behavior of the repository, (3) a plan and cost estimate for the work required to complete a license application, and (4) an estimate of the costs to construct and operate the repository.

WATT: The electrical unit of power. The rate of energy transfer equivalent to 1 ampere flowing under a pressure of 1 volt at unity power factor.

WATTHOUR: An electrical energy unit of measure equal to 1 watt of power supplied to, or taken from, an electrical circuit steadily for 1 hour.

WHEELING SERVICE: The movement of electricity from one system to another over transmission facilities of intervening systems. Wheeling service contracts can be established between two or more systems.

NUCLEAR REGULATORY COMMISSION

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSI	I. REPORT NUMBE		
2-00) SFCM 1102. BIBLIOGRAPHIC DATA SHEET	and Addendum Nu	(Assigned by NRC, Add Vol., Supp., Nev. and Addendum Numbers, II any.)	
(See heredan a file reverse)			
2. TITLE AND SUBTITLE		EG-1350	
	Vol	ume 14	
U. S. Nuclear Regulatory Commission Information Digest	3. DATE REPO	ORT PUBLISHED	
2002 Edition	MONTH	YEAR	
	June	2002	
	4. FIN OR GRANT I	NUMBER	
, AUTHOR(S)	6. TYPE OF REPOR	र†	
Jo Anne Johnson		launn	
	7. PERIOD COVER	-	
	7. PENOD OUVER	CD Incluive Class?	
	2	001	
PERFORMING ORGANIZATION - NAME AND ADDRESS # MRC. provide Division, Office or Region, U.S. Nuclear Regulatory	Commission, and mailing addr	ues: If contractor,	
provide name and mailing address.)	-	-	
Division of Planning, Budget, and Analysis			
Office of the Chief Financial Officer			
U.S. Nuclear Regulatory Commission			
Washington, DC 20555-0001			
B. SPONSORING ORGANIZATION - NAME AND ADDRESS (# NRC; type "Same as above"; # contractor, provide NRC Division, O	Ros or Region, U.S. Nuclear F	Inculatory Commission	
and mailing address.)			
Same as 6, above			
11. ABSTRACT (2007 mode or base) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a complication of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it m generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC	Information on dome 1 NRC - related data egulates. Informatio er reactors is obtained	estic and and is n on ed from	
11. ABSTRACT (200 mode or less) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a complication of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it in generating capacity and average capacity factor for operating U.S. commercial nuclear pow	Information on dome 1 NRC - related data egulates. Informatio er reactors is obtained	estic and and is n on ed from	
11. ABSTRACT (200 mode or 2004) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a complication of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it n generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC	Information on dome 1 NRC - related data egulates. Informatio er reactors is obtained	estic and and is n on ed from	
11. ABSTRACT (200 mode or 2004) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a complication of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it n generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC	Information on dome 1 NRC - related data egulates. Informatio er reactors is obtained	estic and and is n on ed from	
11. ABSTRACT (2007 mode or base) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a complication of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it m generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC	Information on dome 1 NRC - related data egulates. Informatio er reactors is obtained	estic and and is n on ed from	
11. ABSTRACT (2007 mode or base) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a complication of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it m generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC	Information on dome 1 NRC - related data egulates. Informatio er reactors is obtained	estic and and is n on ed from	
11. ABSTRACT (2007 mode or base) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a complication of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it m generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC	Information on dome 1 NRC - related data egulates. Informatio er reactors is obtained	estic and and is n on ed from	
11. ABSTRACT (2007 mode or base) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a complication of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it m generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC	Information on dome 1 NRC - related data egulates. Informatio er reactors is obtained	estic and and is n on ed from	
11. ABSTRACT (2007 mode or base) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a complication of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it m generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC	Information on dome 1 NRC - related data egulates. Informatio er reactors is obtained	estic and and is n on ed from	
11. ABSTRACT (2007 mode or base) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a complication of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it m generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC	Information on dome 1 NRC - related data egulates. Informatio er reactors is obtained	estic and and is n on ed from	
11. ABSTRACT (2000 mode or base) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a complication of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it n generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC	Information on dome 1 NRC - related data egulates. Informatio er reactors is obtained	estic and and is n on ed from	
11. ABSTRACT (2000 mode or base) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a complication of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it n generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC	Information on dome 1 NRC - related data gulates. Informatio er reactors is obtain c for consistency only for consistency only	istic and and is n on ed from y and no	
11. ABSTRACT (200 mork or ass) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a compilation of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it m generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC independent validation and/or verification is performed.	Information on dome 1 NRC - related data gulates. Informatio er reactors is obtain c for consistency only for consistency only	In the second se	
 ABSTRACT (800 mode or less) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a compilation of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it mouter provides a provide an user of the capacity lactor for operating U.S. commercial nuclear power the NRC, as well as from various industry sources. This information is reviewed by the NRC independent validation and/or verification is performed. KEY WORDS/DESCRIPTORS (Lat words or phrases that will assist researchers in locating the report.) 	Information on dome 3 NRC - related data gulates. Informatio er reactors is obtain C for consistency onl 15 AVAIL 13 AVAIL	stic and and is n on ed from y and no wurry statement unlimited	
11. ABSTRACT (800 mork or less) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC). NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a compilation of nuclear- and designed to serve as a quick reference to major facts about the agency and the Industry it meterating U.S. commercial nuclear power the NRC, as well as from various industry sources. This Information is reviewed by the NRC independent validation and/or verification is performed. 12. KEY WORDS/DESCRIPTORS (Ant work or phrase Int will estim reserving its loating the report) Information Digest	Information on dome A INC - related data egulates. Informatio er reactors is obtain i for consistency only 18 AVAU	stic and and is n on d from y and no will y statement unlimited wry cussercation	
 ABSTRACT goo mork or ises) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC iconsed activities, and general world-wide nuclear energy. The digest, published annually, is a compliation of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it in generaling capacity and average capacity factor for operating U.S. commercial nuclear power the NRC, as well as from various industry sources. This information is reviewed by the NRC independent validation and/or verification is performed. KEY WORDS/DESCRIPTORS guit work or phrases that will assist researchers is loosting the report.) Information Digest 	Information on dome 1 NRC - related data gulates. Informatio er reactors is obtain c for consistency only 18. AVAIL 14. BECL (Thin Fig.	stic and and is n on difform y and no with statement unlimited arr cuaserication w	
11. ABSTRACT (800 mork or less) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC). NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a compilation of nuclear- and designed to serve as a quick reference to major facts about the agency and the Industry it meterating U.S. commercial nuclear power the NRC, as well as from various industry sources. This Information is reviewed by the NRC independent validation and/or verification is performed. 12. KEY WORDS/DESCRIPTORS (Ant work or phrase Int will estim reserving its loating the report) Information Digest	Information on dome 1 NRC - related data gulates. Informatio er reactors is obtain) for consistency only 13. AVAIL 14. BECU (The Page	In the second se	
 ABSTRACT (800 mork or less) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a compilation of nuclear- and designed to serve as a quick reference to major facts about the agency and the Industry it m generating Capacity and average capacity lactor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC independent validation and/or verification is performed. 12. KEY WORDS/DESCRIPTORS (An work or phrases that will asket researchers is loating the report) Information Digest 	Information on doms 1 NRC - related data gulates. Informatio er reactors is obtain C for consistency only 18. AVAL 14. BECLE (This Reg (This Reg	In on and is non ed from y and no y and no wurry statement unimited any classified any ourclassified any	
 ABSTRACT (800 mork or less) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a compilation of nuclear- and designed to serve as a quick reference to major facts about the agency and the Industry it m generating Capacity and average capacity lactor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC independent validation and/or verification is performed. 12. KEY WORDS/DESCRIPTORS (An work or phrases that will asket researchers is loating the report) Information Digest 	Information on dome 1 NRC - related data gulates. Informatio er reactors is obtain i for consistency only 18. AVAUL 14. BECU (This Pag (This Pag	stic and and is n on ed from y and no wurstatement unitimed ary cuassified or unclassified	
 ABSTRACT (800 mork or less) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC), NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a compilation of nuclear- and designed to serve as a quick reference to major facts about the agency and the Industry it m generating Capacity and average capacity lactor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC independent validation and/or verification is performed. 12. KEY WORDS/DESCRIPTORS (An work or phrases that will asket researchers is loating the report) Information Digest 	Information on dome 1 NRC - related data gulates. Informatio er reactors is obtain i for consistency only 18. AVAUL 14. BECU (This Pag (This Pag	In on and is non ed from y and no y and no wurry statement unimited any classified any ourclassified any	
Commission (NRC), NRC's regulatory responsibilities, NRC Iconeed activities, and general world-wide nuclear energy. The digest, published annualty, is a compliation of nuclear- and designed to serve as a quick reference to major facts about the agency and the industry it n generating capacity and average capacity factor for operating U.S. commercial nuclear pow the NRC, as well as from various industry sources. This information is reviewed by the NRC independent validation and/or verification is performed.	Information on dome 1 NRC - related data gulates. Informatio er reactors is obtain) for consistency onl 15. NUM 14. BECU (The Rep 15. NUM	HELTY STATEMENT WELTY STATEMENT UNITY	
11. ABSTRACT (800 mork or less) The Nuclear Regulatory Commission Information Digest provides a summary of info mation Commission (NRC). NRC's regulatory responsibilities, NRC licensed activities, and general world-wide nuclear energy. The digest, published annually, is a compilation of nuclear- and designed to serve as a quick reference to major facts about the agency and the Industry it meterating U.S. commercial nuclear power the NRC, as well as from various industry sources. This Information is reviewed by the NRC independent validation and/or verification is performed. 12. KEY WORDS/DESCRIPTORS (Ant work or phrase Int will estim reserving its loating the report) Information Digest	Information on dome 1 NRC - related data gulates. Informatio er reactors is obtain i for consistency only 18. AVAUL 14. BECU (This Pag (This Pag	HELTY STATEMENT UNITY	

2002 INFORMATION DIGEST

NUCLEAR REGULATORY COMMISSION

AND THE STATE OF STATES OF STATES

NRC AS A REGULATORY AGENCY

U.S. AND WORLDWIDE ENERGY

OPERATING NUCLEAR REACTORS

NUCLEAR REGULATORY RESEARCH

NUCLEAR MATERIALS SAFETY

INTERNATIONAL ACTIVITIES

RADIOACTIVE WASTE

APPENDICES