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PREFACE

This report was prepared for the U.S. Nuclear Regulatory Commis-
sion under Task Order No. 005, Task 2, Contract No. NRC-02-85-002.
This report, and three companion reports, provide the documenta-
tion and verification testing of the FLAC code for application to
thermomechanical analysis for studies related to high-level nu-
clear waste isolation in geologic media. The accompanying reports
are:

(1) "Code Verification of FLAC for Thermomechanical An-
alysis," Itasca Consulting Group, Inc., prepared
for U.S. Nuclear Regulatory Commission Contract No.
NRC-02-85-002, 1987;

(2) "Implicit Thermal Logic in FLAC," Itasca Consulting
Group, Inc., prepared for U.S. Nuclear Regulatory
Commission, Contract No. NRC-02-85-002, March 1988;
and

(3) FLAC: Fast Lagrangian Analysis of Continua (Ver-
sion 2.0) User Manual, Itasca Consulting Group,
Inc., 1987

This work originally was assigned to support reviews related to
the Salt Repository Program. Due to policy changes in the nu-
clear waste isolation program, the emphasis of this work has
shifted to a more generic, pro-active study for review purposes.
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THERMAL-MECHANICAL BENCHMARK TESTING OF FLAC

1.0 INTRODUCTION

FLAC (Itasca, 1987) is a computer code used for modeling thermal,
mechanical and thermomechanical behavior of two-dimensional con-
tinua. The code is being used to provide independent calcula-
tions in support of the NRC reviews of DOE designs for high-level
nuclear waste geologic repositories.

This report presents the results of a benchmark test study per-
formed with FLAC. A benchmark test is a comparative analysis of
a specific problem using several codes which are based on differ-
ent numerical algorithms but which contain the same constitutive
behavior. The approach is identified as a viable method to indi-
cate the accuracy of the algorithms used to represent mathemati-
cally the specific material behavior. This approach is necessary
for codes containing non-linear material models because closed-
form, classical solutions incorporating non-linear behavior are
normally not available for comparison to the numerical solution.

The exercise described as the "Second WIPP Benchmark Problem"
(Morgan et al., 1981) was used to benchmark FLAC. This problem is
identified as the most thorough benchmark exercise to date for
thermomechanical codes performing analyses related to nuclear
waste isolation studies (Hart et al., 1987). This exercise was
performed specifically for the WIPP Salt Testing Program and em-
phasized the verification of codes containing a salt creep consti-
tutive model. However, the exercise also covered other material
behaviors not specific to salt, such as the behavior of interbed-
ded materials, slip along discontinuities, and temperature-depen-
dent conductivity. Thus, the WIPP exercise provides a means to
verify the accuracy of several thermal-mechanical features in
FLAC.

The primary material behavior model studied in the benchmark ex-
ercise was the WIPP Baseline Creep Law. This law has frequently
been used to model nuclear waste isolation in salt and has been
implemented in FLAC [Itasca, 1987, Supplement No. 2]. The law is
a non-linear, empirical relation that cannot be verified in a
code by comparison to closed-form solutions.

Interface, or slideline, logic was also verified in this exer-
cise. Interface logic in FLAC models the presence of discontin-
uous features such as clay seams, joints, or bedding planes.
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Additionally, the FLAC representation of the behavior of inter-
bedded materials was evaluated by prescribing different material
behaviors for different regions in the test model.

The behavior of temperature-dependent thermal conductivity can be
simulated in FLAC by defining conductivity as a non-linear func-
tion of the following form:

k(T) = ko + k T 1 + k2 T 2 (1)

where T is the temperature in Kelvin, and k, k k2, n and n2
are fitting parameters. This algorithm in the code was verified
in this test.

2.0 THE BENCHMARK EXERCISE

Morgan et al. (1981) describe a benchmarking exercise in which
nine (9) codes were used to model two different problems involv-
ing hypothetical drifts for nuclear waste isolation. The nine
codes (ANSALT, DAPROK, JAC, REM, SANCHO, SPECTROM, STEALTH, and
two different version of MARC) did not produce identical results,
but showed the differences that can arise between codes even when
all input parameters and model dimensions are identical.

The first problem represented an isothermal drift; the second was
heated. The two drift configurations are shown in Figs. 1 and 2.
The figures also show the various materials modeled, the dimen-
sions of the drifts, and the location of the slidelines.*

In the second (heated) problem, the heat source was taken as a
long source beneath the floor. Its output was

s(t) = 169.5 exp(-t/1.365e9) W/m (2)

where t is time in seconds. Radiation was modeled indirectly, as
a high-conductivity material in the drift.

*For the FLAC simulation, the boundary conditions were changed
slightly: the "fixed line" boundary shown in the upper right-
hand corner of the models in Figs. 1 and 2 was changed to a
slideline, and the lower pressure boundary was replaced by a
fixed y-displacement boundary.
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The material properties for the various layers are summarized in
Tables 1 and 2.

Table 1

MECHANICAL PROPERTIES FOR THE SECOND BENCHMARK PROBLEM

(Repository Level, Nominal 655m)

[Morgan et al., 1981]

Creep Constants

Elastic Constants D n Q

Material u E (Pa) (Pa-4 .9es-1 ) (kcal/mole)

halite

argillace-
ous salt

10% A-P,
90% H

anhydrite

polyhalite

0.25

0.25

2.48E+10

2. 48E+10

0.25 2.65E+10

5.79E-36

1.74E-35

5.21E-36

0 .0

0.0

4.9

4.9

4.9

12.0

12.0

12.0

0.33

0.33

7.24E+10

7 .24E+10

clay seam friction slip line: Pstatic = dynamic = 00
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Table 2

THERMAL PROPERTIES FOR THE SECOND BENCHMARK PROBLEM

[Morgan et al., 1981]

Coefficient of Thermal Con-
Specific Linear Thermal ductivity *

Density (p) Heat (Ca) Expansion (a) Parameters
Material Mg/m3 J/(kgK) K-1 Xo y

W/(m-K)

halite 2.167 860.0 45.OE-6 5.0 1.14

argillace- 2.167 860.0 40.OE-6 4.0 1.14
ous salt

10% A-P, 2.167 860.0 42.7E-6 5.0 1.14
90% H

anhydrite 2.167 860.0 20.OE-6 4.5 1.14

polyhalite 2.167 860.0 24.OE-6 2.0 1.00

"Equivalent 1 1000.0 ------- 50.0 0.0
Thermal
Material"

* k = XO(300/6) , where is temperature in Kelvin

According to Morgan et al. (1981, p. 20), the "conductivity k was

originally . . . incorrectly prescribed as k = X (0/300)l 
0

All participants in Benchmark II were instructed to use the in-
correct expression because most of the calculations were near
completion when the error was discovered . . . . The Benchmark
II comparisons were not affected by this error, because all par-
ticipants used the same expression. However, if the properties
in this table are used for calculations other than the Benchmark
II calculations, the correct conductivity expression should be
used." For comparison purposes, the incorrect expression was
used in the FLAC simulations.



-7-

The creep law used is described below in terms of the total
strain rate:

v . + v0 .C
iij - kk ij + E Gij +ij (3)

EE

where aij = derivative with time of stress i,j ,

bij = Kronecker's delta,

v. = Poisson's ratio,

E = Young's modulus, and

. c
Cij = creep strain rate,

where ij = (1.5)1/2 £j
(a' at )1/2
mn mn

where e = D on exp(-Q/RO),

' = deviatoric stress i,j ,

ii

D,Q,n = creep model parameters,

R = universal gas constant, and

0 = temperature (in K).
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3.0 FLAC RESULTS

The results from FLAC were compared to the results reported by
Morgan et al. (1981) for the two benchmark problems. Additional-
ly, certain key features of the problems were varied to evaluate
their effect on the results.

3.1 Isothermal Problem

Figures 3 to 11 show the results from FLAC, compared to the other
codes. All the results agree extremely well. The closure his-
tories in Figs. 3 and 4 show FLAC almost exactly centered between
the results for the most closely clustered codes. The stress
profiles in Figs. 5, 6 and 7 also show FLAC agreeing well with
the other codes. In addition, the results from FLAC seem to vary
more smoothly than some of the others, which is probably more
realistic. The relative slip profiles shown in Figs. 8 to 11 are
also in good agreement. In these figures, FLAC does not show the
average behavior of the other codes, but this is not indicative
of any error or problem. No one set of results should be consid-
ered as the "correct" solution. Only if the results vary dis-
tinctly from the average behavior should the assumptions of the
code be checked.

For example, if the slidelines and the thin anhydrite interbeds
are ignored in the FLAC analysis, the results are on the lower
extreme of those reported in the benchmark study (see Figs. 3 and
4). Also, the stress profile in this instance does not exhibit
the sharp spike seen from the other models (Fig. 5).

However, if only the clay seams are modeled (i.e., slidelines are
used but the anhydrite interbeds are ignored), the comparison of
results worsens. In this case, the vertical room closure, for
example, is approximately three times greater than the maximum
values shown in Fig. 3. The poor agreement is attributed to the
omission of the thin, stiff anhydrite layers, especially the
layer immediately beneath the floor.

These simulations indicate both the importance of modeling inho-
mogeneous behavior correctly in the numerical analysis and, also,
the apparent significance of inhomogeneities on rock mass behav-
ior.
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3.2 Heated Room

The comparison of FLAC results for the heated room problem to the
other benchmark codes is presented in Figs. 12 through 19. The
results compare well until approximately three years of heating,
at which time the temperatures drop significantly compared to the
other codes (see Fig. 12). This anomalous behavior is attributed
to the simulation of radiation in the model. The high thermal
diffusivity of the "equivalent material" (see Table 2) used to
model radiation causes FLAC, which is based on an explicit time
integration solution procedure, to use extremely small timesteps.
This produces truncation errors in the calculation of temperature
changes at late times, when temperature changes are small.

The vertical closure predicted by FAC (Fig. 13) agrees well with
the other codes until approximately the time the temperatures
start deteriorating. The incorrect temperatures cause incorrect
creep rates and thermal expansion effects which are believed to
affect these results. The horizontal displacement (Fig. 14) does
not exhibit these problems and agrees well with the other codes.
However, the extremely close agreement of all the codes suggests
that this displacement is not sensitive to the algorithm or tem-
peratures anyway. The relative slip profiles on the interfaces
(Figs. 15 to 17) agree extremely well after one year, and are
slightly lower after two years. The stress profiles in Figs. 18
and 19 agree well with the other codes.

An implicit thermal solution algorithm was added to FLAC to im-
prove the late-time temperature calculations (Mack, 1988). The
implicit formulation does not have the problem with truncation
errors that the explicit formulation has and is better suited for
taking large timesteps at late-time, when temperature changes are
small. The improvement of the results with implicit thermal
logic is indicated in the plots (Figs. 12 and 13).

The heated room analysis with FLAC was also performed for the
case of constant thermal conductivity rather than the tempera-
ture-dependent relation given in Table 2. This simulation pro-
duced temperatures 10% greater than the values plotted in Fig.
12.
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4.0 DISCUSSION AND CONCLUSIONS

The results of this benchmark study indicate that FLAC compares
well with other codes for performing thermal-mechanical analysis
in nuclear waste isolation studies. The isothermal analysis
showed good agreement for the FLAC model incorporating the WIPP
creep model, interface logic, and interbedded materials.

In the thermomechanical simulation, FLAC showed good agreement to
other codes for early time heating where temperature changes were
great. However, at late-time heating, a discrepancy in results
was observed. This was traced to the large difference between
the thermal diffusivity of the "equivalent material" used to
model the room radiation and that of the other materials in this
model. This effect is analogous to the difficulties sometimes
observed in mechanical modeling of materials with large stiffness
differences. The incorporation of an implicit thermal solution
scheme in FLAC was found to resolve this problem.

This study exhibits an important benefit of benchmarking. While
the thermal part of FLAC has been verified against analytical so-
lutions (Mack, 1987), inaccuracy arose in the application of the
code to a realistic problem. Although a solution to the accuracy
problem has been found, it is only through benchmarking against
other codes that the problem was detected. It also appears (Fig.
12) that other well-established codes had deficiencies which were
detected in the original study.
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