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Stochastic Failure Model
for the DaVis-Be_sse RPV Head

P. T. Williams and B. R. Bass
Oak Ridge National Laboratory
P. O. Box 2009
Oak Ridge, TN, 37831-8056

Abstract

The development of several stochastic models is described in this report in which the uncertainties
associated with predictions of burst pressure for circular diaphragms using computational or analytical
methods are estimated. It is postulated that the trends seen in predicting the burst pressure with nine
experimental disk-burst tests (using materials, geometries, and pressure badings relevant to the Davis-
Besse analysis) will be representative of the computational predictions of the burst pressure in the Davis-
Besse ‘wastage area problem. Given a computational prediction of burst pressure for a specific
configuration of the wastage area, the scaled stochastic models provide an estimate of the cumulative
probability that the true burst pressure will be less than any given service pressure.

The stochastic models were developed from the following technical bases: -

(1) experimental data obtained during disk-burst tests with loadings, geometries, and materials
relevant to the Davis-Besse pressure loading, wastage-area footprint, and cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests,

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study,
and

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading,
applied to the disk-burst tests.

Among the twenty-seven continuous distributions investigated, six passed all of the heuristic and
Goodness of Fit tests applied in the analysis. The six distributions, ranked in relative order, are: (1) Log-
Laplace, (2) Beta, (3) Gamma, (4) Normal, (5) Random Walk, and (6) Inverse Gaussian (Wald).

As an example application, estimates are provided for a bounding calculation of the “as-found” Davis-
Besse wastage area. The bounding calculation predicted a burst pressure of 6.65 ksi which has a
cumulative probability of failure of 0.158 using the Log-Laplace model. The Log-Laplace model also
estimates a cumulative probability of failure of 4.14x1077 at the operating pressure of 2.165 ksi and
2.15%10°® at the set-point pressure of 2.5 ksi. Using all six distributions, the average probability of
failure is 6.91x107° at 2.165 ksi, 3.60x107 at 2.5 ksi, and 0.2155 at 6.65 ksi.
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1. Introduction

1.1. Objective

This report presents stochastic models of failure for the stainless steel cladding in the wastage area of the
Davis-Besse Nuclear Power Station reactor pressure vessel (RPV) head. For a given internal pressure, the
statistical models provide estimates of the cumulative probability (probability of nonexceedance) that the
exposed cladding will have failed at a lower pressure. The failure mode addressed by this model is
incipient tensile plastic instability (i.e., plastic collapse) of the cladding.

1.2. Background

The following was taken from ref. [1].

On February 16, 2002, the Davis-Besse facility began a refueling outage that included
inspection of the vessel head penetration (VHP) nozzles, which focused on the inspection of
control rod drive mechanism (CRDM) nozzles, in accordance with the licensee’s
commitments to NRC Bulletin 2001-01, “Circumferential Cracking of Reactor Pressure
Vessel Head Penetration Nozzles,” which was issued on August 3, 2001. These inspections
identified axial indications in three CRDM nozzles, which had resulted in pressure boundary
leakage. Specifically, these indications were identified in CRDM nozzles 1, 2, and 3, which
are located near the center of the RPV head. ... Upon completing the boric acid removal on
March 7, 2002, the licensee conducted a visual examination of the area, which identified a
large cavity in the RPV head on the downhill side of CRDM nozzle 3. Followup
characterization by the ultrasonic testing indicated wastage of the low alloy steel RPV head
material adjacent to the nozzle. The wastage area was found to extend approximately 5 inches
downhill on the RPV head from the penetration for CRDM nozzle 3, with a width of
approximately 4 to 5 inches at its widest part.

See Fig. 1. for a photograph of the Davis-Besse RPV, a schematic of a typical nuclear power reactor, and
a sketch and photographs of the wastage area.

1.3. Scope

In support of the investigation by the United States Nuclear Regulatory Commission’s (NRC) Office of
Nuclear Regulatory Research, the Heavy-Section Steel Technology Program at Oak Ridge National
Laboratory has developed statistical models for a specific failure mode for the exposed stainless steel
cladding in the cavity of the Davis-Besse RPV head. Section 2 reviews the technical bases employed in
the development of the models; Section3 presents the details of the stdchastic models; Section 4
demonstrates an application of the top-ranked Log-Laplace model to the results of a bounding calculation
for the “as found” condition of the wastage area; and Section 5 provides a summary and conclusions.
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Fig. 1. (a) Davis-Besse Nuclear Power Station RPV and (b) sketch of RPV head degradation.
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Fig. 1 (continued) (c) schematic of a typical nuclear power reactor showing the relationship of the
CRDM nozzles to the RPV head.



L4l

DRAFT

NOT FOR ATTRIBUTION

Fig. 1. (continued) (d) photographs of‘the wastage area with Nozzle 3 removed.
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2. Technical Bases

The technical bases employed in the construction of the stochastic models are:

(1) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings,
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area footprint, and

cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests also
reported in [2] (GAPL-3 discrete-element code(3]),

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study
(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading, due to
Hill [5] (as cited in [6]), applied to the disk-burst tests.

2.1. Experimental — Disk-Burst Tests

In the early 1970s, constrained disk-burst tests were carried out under the sponsorship of the PVRC
Subcommittee on Effective Utilization of Yield Strength [7). This test program employed a range of
materials and specimen geometries that were relevant to components in a nuclear power plant steam
supply system'. The geometries of the three test specimens analyzed in {2] are shown in Fig. 2, the test
matrix is shown in Table 1, and the properties of the three materials are presented in Table 2. The nine
disk-burst tests produced three center failures and six edge failures-over a range of burst pressures from
3.75 to 15 ksi as shown in Table 1. | |

Table 1. Test Matrix for Disk-burst Tests [2]

1 $S 304 A 0.375 0.250 2.625 15 Edge
2 B 0.125 0.125 2.875 6.8 Center
3 C 0.375 0.125 2.625 7.7 Center
4 AS533B A 0.375 .0.250 2.625 -1 Edge
] B 0.125 0.125 2.878 5.3 "~ Edge
6 C - 0.378 0.125 2.628 6.7 Center
7 ABS-C A 0375 |  0.250 - 2.625 9.8 Edge
8 B 0.125 0.125 2.875 3.75 Edge
9 C 0.375 0.125 2.625 -4.94 Edge

! The three materials are representative of reactor core sitpport structures and piping, the reactor pressure vessel, and
plant component support structures [2]. o
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SS304 34 84 0.54 34.07 129.36 0.432 16241 027
A-533B 74 96 0.17 74.15 112.32 0.157 13941 0.12
ABS-C 39 64 0.31 35.08 83.84 0.270 10520 0.17

*The power-law parameters in Table 2 were fitted for the current study where o=Ke" and 0, £ are the
effective true stress and effective total true strain, respectively.

Geometry A

0.375R
/- 250 -

S IXIST S TAT ST T LN

10.0

/ 125 4

Geometry B
/—«0.125R

Geometry C

Fig. 2. Geometric descriptions of the three disk-burst specimens used in [1] (all dimensions are
inches). Images on the right are Photoworks®-rendered views of Y2-symmetry solid models
of the three specimens.

10
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2.2. Computational — Axisymmetric Discrete-Element and Finite-Element Models

The results of a computational study were presented in [2] in which the nine tests were simulated using
the GAPL-3 computer code [3]. GAPL-3 applied the discretg-élement method ﬁsing a two-layered system
of elements: one layer for the su'ain-displaéement field and a second layer for the stress field to perform
an elasto-plastic large-deformation analysis of stressés, strains, loads, and displécements of thin plates or
axisymmetric shells with pressure loading. At each incremental load step, the code iterated to resolve both
geometric and material nonlinearities, thus establishing a condition of static equilibrium. The GAPL-3
code did not account for the reduction in thickness of the diaphragm with inéreasing load, and, therefore,
was uhable to demonstrate the “tailing up” of the experimental center-deflection histories. As discussed in
[2], the thin-shell approximation of the GAPL-3 code is not strictly valid in the fillet region. The GAPL-3
model did include a plastic-hinge type of strain redistribution, but the strain concentration effect due to
the fillet radius was not accounted for, since the predicted strain distribution in the cross-section of the
fillet was linear by assumption. These approximations in the analysis were driven by the limitations of the
computer resources available at the time of the stﬁdy in 1972.

The current study reanalyzed all nine disk-burst tests using the VABAQUS [4] finite-element code. With
current computing power, many of the simplifying assumptions required in 1972 could be removed to
provide a more detailed analysis. The fundamental assumptions made in the current study are:

(1) the material is assumed to be homogenous end isotropic before and throughout plastic defor-
mation; ,
(2) the material is assumed to be free of pre-existing defects;

(3) the volume of the material undergomg plastic deformation is assumed to be constant (i.c., incom-
pressible with a Poisson’s ratio of 0.5);

(4) the hydrostatic component of the stress tensor has no eﬁ'ect on yielding; and

(5) the piastic deformation follows incremental J; flow theory (Mises yield criterion) with its
associated flow rule (Levy-Mises) and isotropic strain hardening.

The finite-element meshes shown in Fig. 3 were developed using 8-node quadratic, axisymmetric, solid
elements with reduced integration (ABAQUS element type CAX8R). The material property data given in
Table 2 were used to fit power-law constitutive models for the plasﬁc region of the three materials (see
Fig. 4). The analyses applied a nonlinear finite-strain procedure with an incrementally increasing pressure
load applied from zero up to the load at which numerical instabilities caused ABAQUS to abort the
execution.

1



DRAFT NOT FOR ATTRIBUTION 08/14/02
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Fig. 3. Axisymmetric finite-element meshes used in the analyses of disk-burst tests reported in [2].
Quadratic 8-node axisymmetric (CAX8R) elements with reduced integration were used in &
nonlinear finite-strain elastic-plastic analysis of the three disk-burst geometries with three

materials. :
140 —— A B
[ : o ]
120 | - .~7 83304
s A333B PPl .
)' L /" 1
o= 10()_ - R /" d
£ F g
g LS // PPN
g 80[:1' . - 4
a
:
= 60p \"\\ ABS-C
"™~ 8308 at600 F
40 -
20 -7.-i.--114k‘~| ;A.l“....
0 0.1 02 0.3 04 0.5
" True Strain {2 06/11/2002.K1 piw

Fig. 4. True stress vs true strain curves of the three materials used in the disk-burst tests compared
to §S308 at 600 °F. These three test material eurves were developed using a2 power-law
strain-hardening model fitted to yield and ultimate strength/strain data for each material
given in [2]. (See Table 2).

12
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2.3. Theory - Hill’s Plastic Instability Theory

A plastic instability theory due to Hill [5] for a pressurized circular diaphragm constrained at the edges is
presented in [6]. Figure 5 shows the geometry of the diaphragm, both undeformed and deformed, along
with the nomenclature used in the development of the theory.

The geometry of deformation is assumed to be a spherical dome or bulge of radius, R. The undeformed
ring element (defined by its position, width, and thickness, (#,07,k,), respectively) is assumed to
deform to an axisymmetric shell element with surface length, 6L , deformed thickness, %, radial position,
r, and angle ¢ . The nonuniform thickness of the dome reaches its minimum at the pole with polar height
H. For a spherical coordinate system with its origin at the center of the dome, the principal strains for the
thin-shell (i.e., the strains are assumed constant through the thickness) element are

ol () ool

A geometric relationship exists between the radius and chord of a circle such that

_Hl+a’
2H

R

@

where a is the effective radius of the undeformed diaphragm. Using Egs. (1) - (2) and the geometry shown
in Fig. 5, ref. [6] derives the following relations for the meridional, &,, and hoop, &,, strains at any point
on the spherical bulge

¢ H
£,z H,a)=£,(z|H,a)=ln[l+(%—)] 3)

where the geometric parameter z is shown in Fig. 5. Applying the constant volume assumption, i.e.,
£, +£, +&, =0, produces the following equation for the radial (“thickness”) strain

2
1
= = —— 4
§,(z|H,a) 28,(2[{1,0) m{l-&-(zH/az)] 4)

13
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H

cndmmmanan -----L-------- crcconmoas

h,

Fig. 5. Sphericdl geometry of deformation assumed in Hill’s [5] plastic instability theory.

14



DRAFT NOT FOR ATTRIBUTION 08/14/02

The effective strain then becomes

E(E..sa,e,)e\g We-&) +(,-a) +(6-,) =—£,(z|H,a)=zm[1+(3;?)] )

The maximum radial strain, therefore, occurs at the pole of the spherical bulge. Applying the thin-walled
assumption (which is not made in the computational finite-clement model) for an axisymmetric shell
element, the equilibrium relation between the meridional, o,, and hoop, o,, mémbrane stresses and the
internal pressure, p;, loading is

O, : -
._‘_+g£.=.1’_' (6)

For a spherical dome, R, =R, =R, and a state of equibiaxial stress is assumed to prevail near the pole of
the dome with the principal stresses being

R
0,=0, =%—-; o,=0 )

and the effective stress ,5 = :/]—E\Ka' —0',)2 +(0', -0, )2 +(U, -0, )z , i8

— PR
o=0,= = — 8
$=0e =, ®
To establish an instability criterion, a surface can be constructed in pressure, effective stress, and
deformation/strain space by expressing Eq. (8) as a total differential of the form

Rp,=2h&

Rdp, + p,dR = 2hd& + 25dh ©

An unstable condition exists at a point of maximum pressure on the surface where dp, =0. The condition
is unstable because any perturbation from this position always involves a reduction in load (pressure),
even in a rising stress field. The instability criterion for a deformed bulge of radius R is, therefore,
established by the following relation between stress and the deformed geometry for any point on the dome

15
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DRAFT
dé dR dh
hbelP b e 10
& R h (10)
or in terms of effective strain
ld5_1+l dR B a1

GdE  RdE
If the instability condition is attained, it will first occur at the point of maximum effective strain at the top

of the dome (at z = H) such that Eq. (11) can be stated as

dG =-3-—.1—(_2_)(]+£)
2 A\F 2

dE

(12)

L
4

Applying a power-law constitutive form to relate effective stress to effective strain in the plastic region,
(13)

o=K&" ,

the effective strain at instability is, after a great deal of algebraic manipulation,
(14)

&, =-l‘—41-(2n+ 1)

where n is the power-law exponent in the constitutive equation, Eq. (13).

16



DRAFT NOT FOR ATTRIBUTION 08/14/02

For a given material and diaphragm geometry ( n, a, ho ), the pressure at the instability condition (i.e., the
burst pressure) can be determined by the following procedure:

¢ Calculate the effective critical strain. ' £, = -I%(Zn +1)
¢ Calculate the corresponding effective critical stress. F,,=KE"
¢ Calculate the critical thickness. - , ' h,, =h,exp(~E,,)
¢ Calculate the polar height at the critical condition. o H,=a exp(f-;—"-)—l
. . H +d
e Calculate the corresponding bulge curvature radius. R, = >
- erit
. . ' 2h_,0C...,
e Finally, calculate the predicted burst pressure. - Pyurs = i"—
: it

An alternative instability criterion was developed by Chakrabarty[8] which was based on a Tresca yield
surface. The critical effective strain was found to be

5 o 22-n)X1+2n)

15
i 11-4n ( )

17
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3. Stochastic Model Development

3.1. Computational and Theoretical Model Results

Computational results using the GAPL-3 code were presented in [2]. Converged solutions were obtained
for eight of the nine tests. Comparison of experimental and computational centerline deflections showed
good agreement for the eight converged cases. In the nonconverged case (ABS-C, geometry C), some
difficulty was reported in getting convergence at high pressures. In all cases the experimental data showed
a “tailing up” as the pressure approached burst pressure, which the computational model was unable to
capture. In general, the prediction of the burst pressure for the eight converged cases showed good
agreement with the experimentally-deterinined burst pressures. Defining a as the ratio of the
experimental burst pressure to the computationally-predicted burst pressure, the mean for ¢ was 1.19
with a standard error for the mean of 10.0484 and a standard deviation for the sample of 0.137.

The finite-element models using ABAQUS were able to obtain burst pressures for all nine tests, where the
predicted burst pressure is defined as the pressure at which a breakdown occurs in the numerical
procedure, causing the run to abort. For a nonlinear, finite-strain, static load step, ABAQUS uses
automatic sizing of the load increment to maintain numerical stability. The number of iterations needed to
find a converged solution for a load increment varies depending on the degree of nonlinearity in the
system. If the solution has not converged within 16 iterations or if the solution appears to diverge,
ABAQUS abandons the increment and starts again with the increment size set to 25% of its previous
value. An attempt is then made at finding a converged solution with this smaller load increment. If the
increment still fails to converge, ABAQUS reduces the increment size again. ABAQUS allows a
maximum of five cutbacks in an increment before aborting the analysis. Therefore, ABAQUS will
attempt a total of 96 iterations with six increments sizes before abandoning the solution. The initial load
size for the failing increment was typically already very small due to difficulties in convergence with the

previous and final successfully-converged load increment.

Equivalent plastic strain contours are shown in Fig. 4 for the geometry A (ABS-C carbon steei) specimen
(Test No. 7) at the point of numerical instability. The experimental burst pressure for this specimen was
9.8 ksi, and numerical instability of the solution occurred at approximately 9.05 ksi, for an & =1.083.
Highly localized plastic straining can be observed near the fillet, thus predicting an edge failure for this
specimen which did in fact fail at its edge.

18
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Ref. P. C. Riccardella, “Elasto-Plastic Analysis of Constrained Disk Burst Tests,"
ASME Paper No. 72-PVP-12, ASME Pressure Vessels and Piping Conference, New
Orleans, LA, September 17-21, 1972,

9 Geometry A

; ABSC
Predicted BP = 9.05 ksi
Experimental BP = 9.8 ksi
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Fig. 4. Equivalent plastic strain contours for the Geometry A (ABS-C carbon steel) specimen at the

point of numerical instability. Highly localized plastic straining provides a precondition for
plastic collapse at the edge of the specimen. (ABAQUS analysis results)
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Figure 5 compares the predicted centerline deflection load histories with the experimentally-observed
deflections at failure (estimated from Figs. 3 and 4 in [2]). The “tailing up” of the experimental deflection
curves near the point of failure is predicted by the model, indicating that the computational simulations
are capturing the final localized “necking” of the diaphragm. For the nine ABAQUS predictions, the
mean for & was 1.055 with a standard error for the mean of £0.0331 and a standard deviation for the
saplplc of 0.0993.

The results of applying Hill’s failure criterion are presented in Table 3. The mean for & was 1.058 with a
standard error for the mean of +0.0374 and a standard deviation for the sample of 0.1123. The
calculations were repeated using the theoretical critical strain of Chakrabarty and Alexander (8], Eq (15),
with the resulting burst pressures being essentially identical to those given in Table 3.

Table 3. Application of Hill’s Instability Theory to Nine Disk-burst Tests

IRATLE

v in g Kt sl e

Eit Hon Roiw O hon  Pwmt Powsteay @
1 (in) (in) (ksi) (in) (ksi) (ksi)

0.561 1.493 3.054 138.84 0.1427 12.98 15 1.156
162.41 0.27 2.875 0.125} 0.561 1.635 3.345 138.84 0.0714 592 6.8 1.148
162.41 0.27 2.625 0.125] 0.561 1.493 3.054 138.84 0.0714 6.49 1.7 1.187
139.41 0.12 2.625 0.250} 0.449 1316 3.276 126.96 0.1596 12.37 11 0.889 -
139.41 0.12 2.875 0.125] 0.449 1441 3.588 126.96 0.0798 5.65 53 0.938
139.41 0.12 2.625 0.125] 0449 1316 3.276 126.96 0.0798 6.19 . 6.7 1.083
105.20 0.17 2.625 0.250{ 0.490 1383 3.183 9295 0.1532 895 9.8 1.095
105.20 0.17 2.875 0.125] 0490 1514 3.486 9295 0.0766 4.08 375 0918
105.20 0.17 2.625 0.125} 0.490 1.383 3.183 9295 0.0766 4.47 494 1.104

O 00O\ =

A summary of all 26 burst pressure predictions is given in Table 4. Combining the 26 cases into a single
sample gives a mean for & of 1.098 with a standard error for the mean of +0.0251 and a standard
deviation for the sample of 0.1281. Even though Hill’s theory is applicable only for center failures, the
good agreement between the experiments (including those that failed at the edges) suggests that, for the
edge-failure cases, the specimens were also close to a condition of plastic collapse at the center when they
failed first at the edge. '

20
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Fig. 5. Comparison of experimental centerline vertical deflections at failure to ABAQUS FEM
vertical deflection histories at the center of the Geometry A and B specimens for (a) SS 304,
(b) A533-B, and (c} ABS-C materials, and
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Fig. 5. (continued) (d) ABAQUS FEM vertical deflection histories at the center of Geometry C, all
three materials compared to specimen failure.

22



DRAFT NOT FOR ATTRIBUTION 08/14/02

Table 4, Comparison of Experimental Burst Pressures to Three Predictions

1 |ss3) A 15 Edge 123 Edge 12 1298 Center 1.16 1329 Edge 1.13
2 B 6.8 Center 43 Edge 142 592 Center 115 622 Edge 1.09
3 c 7.7 Center 74 Center 1.04 649 Center L19 6.59 Center 117
4 |ASBB| A 1 Edge 93 Edge 112 1237 Center 0.89 12.26 Edge 0.90
5 B 53 Edge 42 ' Edge 126 5.65 Center = 094 | 524 Edge 1.01
6 o 6.1 Center 68 Center 099 619 Center 1.08 6.03 Edee 11
7 |ABSC| A 9.8 Edge 8 Edge 123 895 Ceater Lo | 905 “Edge 1.08
8 B 375 Edge 3 Edge 125 408 Center -~ 0.92 419 Bige  0.89
9 c

4.94 Edge 4.47 Center 1.10 446 Edge/Center L1
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3.2. Development of Stochastic Model of Falure

The development of several stochastic models is described in this section in which the uncertainties
associated with predictions of burst pressure for circular diaphragms using computational or analytical
methods are estimated. It is postulated that the trends observed in estimating the burst pressure with the
nine disk-burst tests in {2] will be representative of the predictive accuracy of computational estimates of
the burst pressure in the Davis-Besse wastage-area problem. Given a prediction of burst pressure for a
specific configuration of the wastage area, the scaled stochastic models will provide estimates of the
cumulative probability that the true burst pressure will be less than a given service pressure. This
postulated linkage of the test specimens to the Davis-Besse problem is obviously an approximation, since
the wastage area footprints are not identical to the circular diaphragms used in the tests. The
appropriateness of this linkage is in part, therefore, dependent on the ability of the finite-element models
to capture, as accurately as is feasible and based on the best current knowledge, the actual geometry of the

wastage area footprint.

Table 5 summarizes some descriptive statistics for the ratio of experimental burst pressure to predicted
burst pressure, &, for the three predictive methbds discussed in the previous section. Also shown in the
table are the results of combining the three samples into one larger sample of 26 data points. This
combined sample was used to develop the stochastic models with @ treated as & random variate.
Combining the three sets into a single sample produced a sample size large enough to make a thorough
statistical analysis of a range of continuous distributions feasible. Also given in Table 6 is a ranking of the
26 data points where the median rank order staﬁsﬁc is

© " n+04

(16)

The Expert Fif® [9] computer program was used to develop several stochastic models of the sample data
presented in Table 6. Using a combination of heuristic criteria and Goodness of Fit statistics, twenty six
continuous distributions were tested with the results shown in ranked order in Table 7. The point-
estimation procedures noted in Table 7 include Maximum Likelihood (ML), Method of Moments (MM),
and Quantile Estimates. Table 8 compares three Goodness of Fit statistics (Anderson-Darling, x*, and
Kolmogorov-Smirnoff (K-S)) for the top six distributions. None of these distributions were rejected by the
Goodness of Fit tests, and all received an absolute rating of Good by the Expert Fif® computer program.
The remaining nineteen distributions investigated were either rejected by one or more of the Goodness of
Fit tests at some significance level and/or received a less than Good heuristic rating by the Expert Fif®
software. Figure 6 shows a density/histogram overplot of the six continuous distributions.
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Table 5. Descriptive Statistics for the Ratio of Experimental Burst Pressure
~ to Predicted Burst Pressures o
|Déschiptive Statistes: 1. | Riccardela, AQ! bl
Sample Size 8 9 9 26
Mean 1.1902 1.0576 1.0549 1.0975
Standard Error 0.0484 0.0374 0.0331 0.0251
Median 1.2223 1.0953 1.0939 1.1057
Standard Deviation 0.1368 0.1123 0.0993 0.1281
Sample Variance 0.0187 0.0126 0.0099 0.0164
Kurtosis -0.0506 -1.4799 -0.4349 0.2593
Skewness 0.0007 -0.5892 -0.9683 0.1714
Range 0.4314 0.2979 0.2739 0.5277
Minimum 0.9853 0.8889 0.8943 0.8889
Maximum 14167 1.1868 1.1682 1.4167
Confidence Level(95.0%) 0.1144 0.0863 0.0764 0.0517

Table 6. Combined Sample Used in Development of Stochastic Model

A533B

1 Hill's Theory A 0.8889
2 ABAQUS Soln. ABS-C B 0.8943 0.0644
3 ABAQUS Soln. AS533B A 0.8972 0.1023
4 Hill's Theory ABS-C B 0.9180 0.1402
5 Hill's Theory A533B B 0.9382 0.1780
6 Ricarrdella (1972) ~ AS33B - C 0.9853 0.2159
7 ABAQUS Soln. AS33B B 1.0119 0.2538
8 Ricarrdella (1972)  SS304 C 1.0405 0.2917
9 ABAQUS Soln. ABS-C A 1.0827 0.3295
10 Hill's Theory A533B C 1.0829 03674
11 ABAQUS Soln. SS304 B 1.0939 0.4053
12 Hill's Theory ABS-C A 1.0953 0.4432
13 Hill's Theory ABS-C C 1.1042 04811
14 ABAQUS Soln. ABS-C C 1.1072 0.5189
15 ABAQUS Soln. A533B C L1104 0.5568
16 Ricarrdella (1972) AS533B A 11224 0.5947
17 ABAQUS Soin. SS 304 A 1.1288 0.6326
18 Hill's Theory SS 304 B 1.1479 0.6705
19 Hill's Theory S$S304 A 1.1560 0.7083
20 ABAQUS Soln. SS304 C 1.1682 0.7462
21 Hill's Theory Ss 304 C 1.1868 0.7841
22 Ricarrdella (1972)  SS304 A 1.2195 0.8220
23 Ricarrdella (1972) ABS-C A 1.2250 0.8598
24 Ricarrdella (1972)  ABS-C B 1.2500 0.8977
25 Ricarrdella (1972)  A533B B 1.2619 0.9356
26 Ricarrdella (1972)  SS 304 B 1.4167 0.9735

00265

‘a= Experimental Burst Pressure/Predicted Burst Pressure
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- Table 7. Continuous Distributions Investigated Ranked by Goodness of Fit

NOT FOR ATTRIBUTION

1- Log—Laplace

2 -Beta

3 - Gamma

4 - Log-Logistic

5 - Normal

6 - Weibull

7 - Lognormal

'8 - Random Walk

9 - Inverse Gaussian

10 - Pearson Type V

11 - Inverted Weibull

12 - Weibull(E)

13 - Rayleigh(E)

14 - Erlang(E)

15 - Gamma(E)

16 - Exponential(E)

17 - Pearson Type VI(E)

Locatlon

Scale
Shape
Lower endpoint
Upper endpoint
Shape #1
Shape #2
Location
Scale
Shape
Location
Scale
Shape
Mean
Standard Dev.
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Location
Scale
Shape #1

26

0 A
Default

ML estimate
ML estimate
MOM estimate
MOM estimate
MOM estimate
MOM estimate
Default

ML estimate
ML estimate
Default

- ML estimate

ML estimate
ML estimate
ML estimate
Default

ML estimate
ML estimate
Default

ML estimate

. ML estimate

Default

ML estimate

ML estimate
Default

ML estimate
ML estimate
Default

ML estimate
ML estimate
Default

- ML estimate

ML estimate
Quantile estimate
ML estimate

ML estimate
Quantile estimate
ML estimate

" Quantile estimate

ML estimate

ML estimate
Quantile estimate
ML estimate

ML estimate

ML estimate

ML estimate
Quantile estimate
Default

ML estimate

1.1057
11.45441
0.61449

- 1.78866

7.95564
11.38552
0
0.01444
76.01293
0
1.09586
15.21867
1.09747
0.12811
0
1.15383
9.03948
0
0.08641
0.11516
0
0.92335
69.18788
0
1.09747
82.23451
0
81.42582
75.1846
0
1.02827
8.88835
0.88884
0.21562
1.15868
0.88884
0.24352
0.88884
0.20862
1
0.88884
0.21819
0.95616
0.8889
0.20857
0.88884
1
1.00117
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18 - Lognormal(E)
19 - Random Walk(E)

20 - Pareto(E)
21 - Chi-Square
22-Wald

23 - Rayleigh
24 - Exponential
25- Wald(E)

26 - Inverse Gaussian(E)

Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Shape

Location

d.f.
Location
Shape
Location
Scale
Location
Scale
Location
Shape
Location
Scale
Shape

NOT FOR ATTRIBUTION

27

L estimate
Quantile estimate .
ML estimate -
ML estimate
Quantile estimate
ML estimate

ML estimate

ML estimate

ML estimate
Quantile estimate

- ML estimate

Default
ML estimate
Default
ML estimate
Default
ML estimate

~ Quantile estimate

ML estimate
Quantile estimate
ML estimate
ML estimate

e

ik

08/14/02

5.43892
0.88884
-2.17414
1.86865
0.88884
699.32509
4.82644
0.8889
4.8976
0.88884
0.72313
0
48.03951
0
1.10463
0
1.09747
0.88884
1.43E-03
8.89E-04
0.20862
1.44E-03
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af “Modek:. ‘Relative Score~ iR -2 Statistic :

1 Log-Laplace 98 Good 0.44952 2.15385 0.59218
2 Beta 93 Good 0.44697 4.92308 0.81037
3 Gamma 89 Good 0.46050 3.53846 0.81894
4 Normal 83 Good 0.39325 1.23077 0.74664
5 Random Walk 75 Good 0.50448 - 3.53846 0.85840
6 Inverse Gaussian 71 Good 0.50514 3.53846 0.85891

Denslity/Histogram Ovemplot

o8

Density/Proportion

ape Ay

Interva! Midpoint
B8 airren atrctesits BI5 pevmensfani B E 1+ Lo tapiare B 3-Gamny
bl W PN 3. inwrse Dasdm 8 1 Newst

Fig. 6. Overplot of probkbllity densities with histogram for fitted stochastic models.
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The six distributions in Table 8 have the fo

Log-Laplace Distribution

NOT FOR ATTRIBUTION 08/14/02

llowing analytical forms:

The Log-Laplace distribution has the highest relative ranking among the twenty-six distributions

investigated. The general three-paramete

r Log-Laplace continuous distribution has the following

probability density function, f;», and cumulative distribution function, Fyp,

c(x—aY"
: -i-b-( b ) fora<x<b ,
Sir(xl @ b,c)= - fora20, (b,c)>0
Llr—a forx2b
26\ b .
. amn
%(f_;_ﬁj fora<x<b
P X S x)=F,p(x|a bc)= . fora =0, (b,c)>0
' l—-l- x-a for x2b
20 b :

where a is the location parameter, b is the scale parameter, and c is the shape parameter.

Beta Distribution

The Beta distribution has the following-probabilit)" density function, f3., and cumulative distribution

function, Fj,,

S (xla’bsal’az)=1

Fp(x|a,b,0,a,) =1

(-G
b-a : b—q fora<x<bd
(b-a)B, ) :

0 . otherwise

(18)

jfs,(ﬁ la,b,oq,0p) df - fora<x<b

where B(o,,00)=

!

shape parameter, and ¢, is the second sha:

0 otherwise

(- w)*"'du, a is the lower endpoint, b is the upper endpoint, ¢, is the first

pe parameter.
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Gamma Distribution
The Gamma distribution has the following probability density function, f5,, and cumulative distribution
function, Fg,,

[ (x;_y)a-d =y
Soa(x]0t,B,7) =1 mcm[‘(—ﬁ—)] forx>y

0 otherwise

(19

[ = o
1‘7'(;‘,(;c|a’p,'y)=1 _,‘:fb‘n(g |‘1:ﬁ,7)d§ forx>y

0 otherwise

where a is the shape parameter, B is the scale parameter, 7 is the location parameter, and

I(x)= Iexp(—u)u""du .
]

Normal Distribution
The Normal distribution has the following probability density function, fy, and cumulative distribution
function, Fy,
LH(x|u,0)= 1 exp -(x-p)z for all real numbers x
YT e 20°

0)
Fy(x|1,0)=0(2) = [ £,(E|ONdE forz=(x-p)/o

where p is the mean (location parameter) and o is the standard deviation (scale parameter).
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Random Walk Distribution
The Random Walk distribution has the following probabxllty density function, fzy, and cumulative
distribution function, Fay

- __q—- 1/2 —a[l-ﬁ(x—'y)]z
S (x]0s B, Y)=J[21r(x—y)] exp{ 2B (x-7) } forx>y

0 otherwise

(21).

1L =l
Q{‘[ﬁ(x-‘}’) l]\/a(x ')’)}
Fur (x| B8,7) =3 exp[zﬁg-}’?{—[ 1 .,.1] /a(x-y)} forx>y

B(x-7)

i 0 otherwise

where « is the shape parameter, B is the scale parameter, ¥ is the location parameter, and @ is defined
in Eq. (20).

Inverse Gaussian (Wald) Distribution
The Inverse Gaussian (also known as the Wald distribution) distribution has the followmg probability
density function, f;g, and cumulative distribution function, Fig

[ 112 2
A —(x-y-B)
Sie(xla, B, 1) =4 [ZE(x—'y)’] exp[ ZB’(x—y) ] forx>y
3 0 otherwise
: (22)
LN o]l {5520 ]
Fo(x|o, B,7)=1 II B x=Y texp B B + X7 orx>y
0 7 otherwise

where ¢ is the shape parameter, § is the scale parameter, 7 is the location parameter, and ® is defined
in Eq. (20). -

Figures 7 and 8 compare the probabilities and the cumulative distribution functions, respectively, of the
top-three ranked models.
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Cumulative Probability of Failure
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Fig. 7. Probability-probability plot comparing top three fitted distributions.
1

i R L R ] “evhammate an

R

i {Log-Laplace ~ }: i~ j
. |Median = 1.1057 ]
: |Mean =1.1142 ]
| Variance = 0.01959f _
:..|Std Dev =0.13998¢ ... ... |
0 L
0.8 1 1.2 1.4 1.6
Experimental BP/Predicted BP, a  08/04/2002.K2 ptw

Fig. 8. Log-Laplace statistical failure model (# = 26) compared to a beta and gamma cumulative
distribution functions.
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As a specific example from the Expert Fif® [9] analysis, the Log-Laplace stochastic model of failure has
the following form

, o Joasin
5.17971 ; 0<<1.1057
1.1057
£,+(@0,1.1057,11.45441) = 11057)
o
5.17971 ; 21,1057
1.1057) *21.105

(23)
a

1.1057

11.45441
) ; 0<ax<1.1057

, I(
Pr(X S0) = F,(e[0,1.1057,11.45441) = 2
1

a —11.45441 -
le—| —— ; a 21.1057
2(1.1057 ) *
where « is the rafio of the true (but unknown) burst pressure to the calculated burst pressure. The .
percentile function is given by ‘ '

1.1os7exp{l’ﬂ’-)-} . P<0.5
>TeXP | 1145241

~-In[2 (1 - P)]

0,,(P10,1.1057,11.4544]) = =
1.1057exp{—
11.45441

for (0<P<1) (24)
};P>0.5 '

The stochastic models in Table 8 can be used to provide statisticai estimates of the expected predictive
accuracy of computational methods applied to burst pressure calculations for service pressures within the
range of the data used to develop the model, i.e., 0.8889 % P, < VSP £1.4167 x Py, , where, SP, is a service
pressure, and Pgp is the predicted burst pressure for the condition under investigation. Extrapolating

significantly beyond the range of the data becomes somewhat problematic due to the small sample size of
twenty-six data points. All six models in Table 8 are plausible candidates to describe the population from
which the sample in Table 6 was drawn, and therrelative ranking of these distributions may be sensitive to

sample size.

Table 9 provides an example of the sensitivity of the fitting process to the sample size for the case of the
“as-found” cavity condition (to be discussed in the next section). Normal distributions were fitted to two
samples from the predictions of the disk-burst tests: (1) the ABAQUS finite-element results (» = 9) and
(2) the combined data set (n = 26). The two stochastic models were then scaled by the failure pressure for
the *“as-found” condition (failure pressure = 6.65 ksi). Extrapolating beyond the range of the data for the
“as-found” case study produces approximately three orders-of-magnitude difference in estimated failure
probability at the operating pressure of 2.165 ksi. This difference in estimated failure probability

decreases as the service pressure increases towards the range of data used to develop the models.
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Table 9. Sensitivity of Cumulative Probability of Failure to Sample Size:
Found” Condition (see Sect. 4)

“A

s-

NOT FOR ATTRIBUTION

yrmal-Dis

tributi

2.165
2.200
2.225
2.250

2275 -

2.300
2325
2.350
2375
2.400
2.425
2.450
2475
2.500

6.65
2.155

0.2902
1.04E-12
1.17E-12
1.53E-13
2.02E-13
2.68E-13
3.53E-13
4.66E-13
6.13E-13

. 8.05E-13

1.06E-12
1.39E-12
1.81E-12
237E-12
3.09E-12
4.03E-12

34

0.2233
7.81E-10

_8.40E-10

1.08E-09
1.30E-09
1.55E-09
1.85E-09
2.21E-09
2.64E-09
3.14E-09
3.75E-09
4.46E-09
5.30E-09
6.30E-09
7.48E-09
8.87E-09
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4. Application of Stochastic Model to Bounding Calculation

A bounding calculation was carried out for the “as-found” condition of the wastage area in the
Davis-Besse head. The finite-element model used in the analysis is shown in Fig. 9. An adjusted stress-
strain curve (see Fig. 10) was constructed to lower-bound the available data for the chdding material. The
geometry of the wastage area footprint was taken from Fig. 13 in the Root Cause Analysis Report [10]. As
an estimate of the uncertainty in the current wastage area measurements, the footprint was extended by
approximately 0.25 inches (see Table 10 and Fig. 11 for a geometric description of the adjusted footprint).
A uniform cladding thickness of 0.24 inches (the minimum cladding thickness value shown in Fig. 14 of
ref. [10]) was assumed in the model. The finite-element model was then loaded with increasing pressure
until the point of numerical instability at an internal pressure of 6.65 ksi (see Fig. 12). In the following, an
example is provided of how the statistical distributions in Table 8 can be scaled and applied to the
analysis of failure of the cladding in the wastage area. |

For the predicted burst pressure of 6.65 ksi, the Log-Laplace statistical failure model as an example can
be scaled to provide estimates of cumulative probability of failure (or probability of nonexceedance) as a
function of internal service pressure for the specific Qohdition of the wastage area simulated by the finite-
element analysis. The scaled Log-Laplace model (see Fig. 13) has the following form

__SP
1.1057 X P,

sP
1.1057 % P,y

10.45441
5.17971( ) ; 0<SP<1.1057x B,
S (SP |7 )= 1245441

5.17971[ ] A ; SP21.1057x P,

(25)

2{1.1057x B,

l SP -31.4544)
1....(._____.) 3 SP21.1057xP,,

1145441 :
l(——'g-&-—) ;0<SP<1.1057xP,,
PH(By ey S SP) = Fip (SP| Pp) =

2| 1.1057x P,

where, SP, is the service pressure under consideration, Pgp is the predicted burst, and Ppan,) is the
unknown true burst pressure. The scaled percentile function is

n(2P)
1.1057x P, —=2_ 1t ;Pg0S5
ul °XP{1 1‘45441}
-n[2(1-P)]

for (0 < P<1)(26)
; P>0.5
11.45441 }

0,,(P0,1.1057 x P,,,11.45441) = SP = :
1.1057xP,Pexp{
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((H
As-Found Footprint 1 35.36] 3036 164122 -0.1194 | 9889 9699.33 -117.16]| 75.26 197.4)
Adjusted Footprint 0.25 in. 40.06] 31.78 164301  -0.1255 | 129.02 11031.81 -141.35]99.00 245.71
for Bounding Calculation

<0.9004,-0.4351> <0.4351, 0.9004¢>

<0.8943,-0.4476> <0.4476, 0.8943>

Footprint centroid is in global coordinates.

Global coordinate system has its z-axis sligned with the vertical centerline of the vessel.
The x-y plane of the global coordinate system is a horizontal plane

with the x-axis along the line between the centerlines of Nozzles 3 and 11,

“Adjusted” Footprint
T o=025in.
Arca = 40.06 in’

Perlmeter = 31.78 in.

Centroid of
Footprint

(16412-0.119) )

| Rl P

/ X, = -r,cos(d,)

“As Found” Footprint y= rsm(d;)

Area = 3536 in’ A 6
Perimeter = 30836 in.
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Table 10 (continued) Details of Wastage Area Footprint Before Adjustment for Bounding
Calculation (Figure taken from Fig. 13 ref. [10])

P Areo of OverGow [Riring Fas of Oyle

Proitead £ ak Ping Aud

weiilo o Nuzde 18

Bomuiwing Portion ] ﬂ.!.&ii.\i&.:.ﬁh%ﬁ

10

-0.639
-0.334
0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000
5.500
6.000
6.500
7.000
7.500
8.000
8.500
9.000
19.135
9.000

8.500 .

-1.885
-2.280
~2.235
~2.492
-2.522
-2.482
-2.581
«2.730

-2.769

-2.759
-2.789
-2.8619
-2.819
-2.759
-2.700
-2.621

-2.512

-2.364
-2.216
-2.087
-1.712
-1.000
-0.555
0.137

8.000
7.500
7.000
6.500
6.000
5.500
5.000
4.500
4.000
3.500
3.000
2.500

2,000

1.500
1.000
0.500

- 0.000

-0.210
-0.364
-0.242

0.334
0.483
0.582
0.829
1.046
1.303

- 1.778

2.460
3.023
3.300
3.221
3.250
3.300
3.349
3.240
3.122
3.000
2.578
2.000
1.985

Origin of local coordinate system located at centerline of Nozzke 3. (inches)
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P
T

. 16,835 elements
52,887 nodes

Nozzles 3, 11,

3 _ 15, and 16
Cladding ¥4

$8308 Weld

(0.24 in. thick) ~ Base Material
refined cladding with Wastage Area
model to resolve
through-thickness ptw 8/15/2002
straln gradients

odels of the Davis-Besse head and wastage area. The

de boundaries of the submodel are driven by the global
ed to the same internal pressure loading,

displacements at the vertical si
model. Both models are expos
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& O L-2 - :
A ooaion ) . :
ccoctoo Global Model of Davis-Besse
1‘ 000604090 - RPV Head and Closure Flange
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o0 -1 -3
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Fig 9. (continued) (c) geometry of RPV head and closure flange used in global model,
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Fig 9. (continued) (d) relative location of submodel within full RPV head,
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Fig 9. (continued) (e) geometry of submodel relative to Nozzles 3, 11, 15, and 16.
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Fig. 10. Adjusted SS308 stress vs. strain curve used in the bounding-case calculations compared to
curves from a range of ASW heats. Strain hardening in the adjusted curve was reduced to
lower-bound all of the data. The offset yield strength and strain at ultimate strength were
retained from the unadjusted SS308 curve received from Framatome.
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Fig. 11. Geometry of adjusted wastage area footprint. Lower figure is a Photoworks®-rendered
image of the submodel with the adjusted “as-found” footprint.
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Fig. 12. Effective plastic-strain histories at two high-strain locations in the wastage area: (a) near
the center and (b) near Nozzle 3.
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Fig. 13. Application of the failure statistical criterion produces a cumulative probability of failure
(based on a Log-Laplace distribution) curve for the Bounding Case condition. Cumulative
probability of failure as a function of internal pressure.
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As discussed above, the bounding calculation predicted a burst pressure of 6.65 ksi which has a
cumulative probability of failure of 0.158 for the Log-Laplace model. The Log-Laplace stochastic model
also estimates a cumulative probability of failure of 4.14x1077 at the operating pressure of 2.165 ksi and
2.15x107° at the set-point pressure of 2.5 ksi. See Table 11 for additional estimates from all six models.
For the six distributions in Tables 8 and 11, the average probablhty of failure is 6.91x107® at 2.165 ksi,
3.60x107 at 2.5 ksi, and 0.2155 at 6.65 ksi.

Table 11, Estimated Cumulative Probabllity of Failures for the Boundmg Calculation

Log-Laplace Location Default 0 R - 4 14E-07 2.15E-06 0.1582
Scale ML estimate 1.1057
Shape __ML estimate 11.45441
Beta Lower endpoint  MOM estimate 0.61449 3 0 0 0.2340
Upperendpoint  MOM estimate 1.78866
Shape #1 MOM estimate - 7.95564
Shape #2 MOM estimate 11.38352
Gamma Location Default [ . 39 8.17E-19 1.50E-15 02236
Scale ML estimate - 0.01444
Shape ML estimate 76.01293
Normal : Mean ML estimate .~ 109747 83.33 8.44E-10 B.90E-09 02234
Standard Dev. ML estimate 0.12811
Random Walk Location Default 0 r/ . 0 /] 0.2269
- Scale ML estimate 0.92335 - Co
Shape ML estimate 69.18788
Inverse Gaussian Location Default 0 ’ i 4.01E-29 1.79E-22 0.2269
Scale ML estimate 1.09747 :
Shape ML estimate 82.23451

Average=  6.91E-08 3.60E-07 0.2155
Standard Deviation=  1.69E-07 8.77E-07 0.0283
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5. Summary and Conclusions

Six stochastic models of the probability of failure associated with a computational prediction of the
plastic collapse of the exposed cladding in the wastage area of the Davis-Besse RPV head have been
developed from the following technical bases:

(5). experimental data obtained'during disk-burst tests reported by Riccardella [2] with loadings,
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area
footprint, ax_;d cladding, -

(6) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests
also reported in [2] (GAPL-3 discrete-element code[3]),

(7) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study
(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and

(8) a theoretical criterion for plastic instability r'n a circular diaphragm under pressure loading,
due to Hill [5] (as cited in [6]), applied to the disk-burst tests.

Among the twenty-seven continuous distributions investigated, six passed all of the heuristic and
Goodness of Fit tests applied in the analysis. The six distributions ranked in relative order are: (1) Log-
Laplace, (2) Beta, (3) Gamma, (4) Normal, (5) Random Walk, and (6) Inverse Gaussian (Wald). As an
example of how the stochastic models may be applied to the Davis-Besse wastage area problem, the top-
ranked Log-Laplace model has the scaled form of - '

2| 1.1057% P,

) sp 1145441 :
e —— ; SP21.1057% P,
2| 1.1057x B,

l SP 11.48441
—(—-——-] s 0<SP<1.1057 X Py,

Pr[ Pyppey SSP | = Fp (SP | Ppp) = @n

Given a computationally predicted burst pressure, Pgp, and service pressure, SP, ‘the model gives an

estimate of the cumulative probability of nonexceedance of the true but unknown burst pressure, Fp,...)»
.6, Pr[ Poogre) S SP].

As an example application, estimates are provided for a bounding calculation of the “as-found” Davis-
Besse wastage area. The bounding calculation predicted a burst pressure of 6.65 ksi which has a
cumulative probability of failure of 0.158 by the Log-Laplace model. The Log-Laplace stochastic model

also estimates a cumulative probability of failure of 4.14x107 at the operating pressure of 2.165 ksi and
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2.15x107¢ at the set-point pressure of 2.5ksi. For all six distributions, the average probability of failure
is 6.91x10°® at 2.165 ksi, 3.60x1077 at 2.5ksi, and 0.2155 at 6.65 ksi.
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