
i' -ie Torn Steve Long's computer dated 08/16/02 12:01pm named
.s r ORNL Failure Criterion_08_14_02.pdf

DRAFT NOT FOR ATTRIBUTION 8/14/2002

ORNL/NRC/LTR-

Contract Program or
Project Title:

Subject of this Document:

Type of Document:

Authors:

Heavy-Section Steel Technology (HSST) Program

Stochastic Failure Model for the Davis-Besse RPV Head

Letter Report

P. T. Williams
B. R. Bass

Date of Document:

Responsible NRC Individual
and NRC Office or Division

August 2002

M. T. Kirk
Division of Engineering Technology
Office of Nuclear Regulatory Research

Prepared for the
U. S. Nuclear Regulatory Commission

Washington, D.C. 20555-0001
Under Interagency Agreement DOE 1886-N653-3Y

NRC JCN No. Y6533

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-8056

managed and operated by
UT-Battelle, LLC for the

U. S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-00OR22725

Is ~ ~ ~ I

A~ct, eA~e;mPio---------
FOIA-

I II/



DRAFT NOT FOR ATTRIBUTION 08/14/02

ORNLINRCILTR-

Stochastic Failure Model

for the Davis-Besse RPV Head

P. T. Williams
B. R. Bass

Oak Ridge National Laboratory
Oak Ridge, Tennessee

Manuscript Completed - August 2002
Date Published -

Prepared for the
U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research

Under Interagency Agreement DOE 1886-N653-3Y

NRC JCN No. Y6533

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-8063

managed and operated by
UT-Battelle, LLC for the

U. S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-000R22725

2



DRAFT NOT FOR ATTRIBUON 08/14/02

CAUTION

This document has not been given final patent
clearance and Is for Internal use only. If this
document Is to be given public release, It must be
cleared through the site Technical Information
Office, which will see that the proper patent and
technical information reviews are completed In
accordance with the policies of Oak Ridge
National Laboratory and UT-Battelle, LLC.

This report was prepared as an account of work sponsored by an
agency of the United States government Neither the United States
government nor any agency thereof, nor any of their employees,
makes any warranty, express or Implied, or assumes any legal
liabflity or responsibility for the accuracy, completeness, or
usefulness of any Information, apparatus, product, or process
disclosed, or represents that Its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or Imply Its endorsement,
recommendation, or favoring by the United States government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
government or any agency thereof.

3



DRAFT NOT FOR ATTRIBUTION 08114/02

Stochastic Failure Model
for the Davis-Besse RPV Head

P. T. Williams and B. R. Bass
Oak Ridge National Laboratory

P. 0. Box 2009
Oak Ridge, TN, 37831-8056

Abstract

The development of several stochastic models is described in this report in which the uncertainties
associated with predictions of burst pressure for circular diaphragms using computational or analytical
methods are estimated. It is postulated that the trends seen in predicting the burst pressure with nine
experimental disk-burst tests (using materials, geometries, and pressure badings relevant to the Davis-
Besse analysis) will be representative of the computational predictions of the burst pressure in the Davis-
Besse wastage area problem. Given a computational prediction of burst pressure for a specific
configuration of the wastage area, the scaled stochastic models provide an estimate of the cumulative
probability that the true burst pressure will be less than any given service pressure.

The stochastic models were developed from the following technical bases:

(1) experimental data obtained during disk-burst tests with loadings, geometries, and materials
relevant to the Davis-Besse pressure loading, wastage-area footprint, and cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests,

(3) nonlinear, finite-strain, elastic-plasticflnite-element analyses performed for the current study,
and

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading,
applied to the disk-burst tests.

Among the twenty-seven continuous distributions investigated, six passed all of the heuristic and
Goodness of Fit tests applied in the analysis. The six distributions, ranked in relative order, are: (1) Log-
Laplace, (2) Beta, (3) Gamma, (4) Normal, (5) Random Walk, and (6) Inverse Gaussian (Wald).

As an example application, estimates are provided for a bounding calculation of the "as-found" Davis-
Besse wastage area. The bounding calculation predicted a burst pressure of 6.65 ksi which has a
cumulative probability of failure of 0.158 using the Log-Laplace model. The Log-Laplace model also
estimates a cumulative probability of failure of 4.14x1 0-7 at the operating pressure of 2.165 ksi and
2.15x10 4 at the set-point pressure of 2.5 ksi. Using all six distributions, the average probability of
failure is 6.91x10-" at 2.165 ksi, 3.60x10-7 at 2.5 ksi, and 0.2155 at 6.65 ksi.
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1. Introduction

1.1. Objective

This report presents stochastic models of failure for the stainless steel cladding in the wastage area of the

Davis-Besse Nuclear Power Station reactor pressure vessel (RPV) head. For a given internal pressure, the

statistical models provide estimates of the cumulative probability (probability of nonexceedance) that the

exposed cladding will have failed at a lower pressure. The failure mode addressed by this model is

incipient tensile plastic instability (i.e., plastic collapse) of the cladding.

1.2. Background

The following was taken from ref. [1].

On February 16, 2002, the Davis-Besse facility began a refueling outage that included
inspection of the vessel head penetration (VHP) nozzles, which focused on the inspection of
control rod drive mechanism (CRDM) nozzles, in accordance with the licensee's
commitments to NRC Bulletin 2001-01, "Circumferential Cracking of Reactor Pressure
Vessel Head Penetration Nozzles," which was issued on August 3, 2001. These inspections
identified axial indications in three CRDM nozzles, which had resulted in pressure boundary
leakage. Specifically, these indications were identified in CRDM nozzles 1, 2, and 3, which
are located near the center of the RPV head. ... Upon completing the boric acid removal on
March 7, 2002, the licensee conducted a visual examination of the area, which identified a
large cavity in the RPV head on the downhill side of CRDM nozzle 3. Followup
characterization by the ultrasonic testing indicated wastage of the low alloy steel RPV head
material adjacent to the nozzle. The wastage area was found to extend approximately 5 inches
downhill on the RPV head from the penetration for CRDM nozzle 3, with a width of
approximately 4 to 5 inches at its widest part.

See Fig. 1. for a photograph of the Davis-Besse RPV, a schematic of a typical nuclear power reactor, and

a sketch and photographs of the wastage area.

1.3. Scope

In support of the investigation by the United States Nuclear Regulatory Commission's (NRC) Office of

Nuclear Regulatory Research, the Heavy-Section Steel Technology Program at Oak Ridge National

Laboratory has developed statistical models for a specific failure mode for the exposed stainless steel

cladding in the cavity of the Davis-Besse RPV head. Section 2 reviews the technical bases employed in

the development of the models; Section 3 presents the details of the stochastic models; Section 4

demonstrates an application of the top-ranked Log-Laplace model to the results of a bounding calculation

for the "as found" condition of the wastage area; and Section 5 provides a summary and conclusions.
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Davis Besse Reactor Vessel Head Degradallotn Head Cutaway View
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Fig. 1. (a) Davis-Besse Nuclear Power Station RPV and (b) sketch of RPV head degradation.
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Fig. 1 (continued) (c) schematic of a typical nuclear power reactor showing the relationship of the
CRDM nozzles to the RPV head.
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Fig. 1. (continued) (d) photographs of the wastage area with Nozzle 3 removed.
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2. Technical Bases

The technical bases employed in the construction of the stochastic models are:

(1) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings,

geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area footprint, and

cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests also

reported in [2] (GAPL-3 discrete-element code[3]),

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study

(ABAQUS finite-element code[4D of the nine disk-burst test specimens reported in [2], and

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading, due to

Hill [5] (as cited in (6]), applied to the disk-burst tests.

2.1. Experimental - Disk-Burst Tests

In the early 1970s, constrained disk-burst tests were carried out under the sponsorship of the PVRC

Subcommittee on Effective Utilization of Yield Strength [7]. This test program employed a range of

materials and specimen geometries that were relevant to components in a nuclear power plant steam

supply system'. The geometries of the three test specimens analyzed in 12] are shown in Fig. 2, the test

matrix is shown in Table 1, and the properties of the three materials are presented in Table 2. The nine

disk-burst tests produced three center failures and six edge failures over a range of burst pressures from

3.75 to 15 ksi as shown in Table 1.

Table 1. Test Matrix for Disk-burst Tests 121

We . g ffi g ~~~~~~~U~rffffe

1 SS 304 A 0.375 0.250 2.625 Is Edge
2 B 0.125 0.125 2.875 6.8 Center
3 C 0.375 0.125 2.625 7.7 Center
4 A533B A 0.375 0.250 2.625 11 Edge
5 B 0.125 0.125 2.875 5.3 Edge
6 C 0.375 0.125 2.625 6.7 Center
7 ABS-C A 0.375 0.250 2.625 9.8 Edge
I B 0.125 0.125 2.875 3.75 Edge
9 . C 0.375 0.125 2.625 4.94 Edge

The three materials are representative of reactor core support structures and piping, the-reactor pressure vessel, and
plant component support structures [2].
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Table 2. Property Data for Materials In Disk-burst Tests 121

*The power-law parameters in Table 2 were fitted for the current study where a = KE and a, e are the
effective true stress and effective total true strain, respectively.

L__ 6.0io.e

Fig. 2. Geometric descriptions of the three disk-burst specimens used In IIJ (all dimensions are
inches). Images on the right are PhotoworksZ-rendered views of %-symmetry solid models
of the three specimens.
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2.2. Computational - Axisymmetric Discrete-Element and Finite-Element Models

The results of a computational study were presented in [2] in which the nine tests were simulated using

the GAPL-3 computer code [3]. GAPL-3 applied the discrete-element method using a two-layered system

of elements: one layer for the strain-displacement field and a second layer for the stress field to perform

an elasto-plastic large-deformation analysis of stresses, strains, loads, and displacements of thin plates or

axisymmetric shells with pressure loading. At each incremental load step, the code iterated to resolve both

geometric and material nonlinearities, thus establishing a condition of static equilibrium. The GAPL-3

code did not account for the reduction in thickness of the diaphragm with increasing load, and, therefore,

was unable to demonstrate the "tailing up" of the experimental center-deflection histories. As discussed in

[2], the thin-shell approximation of the GAPL-3 code is not strictly valid in the fillet region. The GAPL-3

model did include a plastic-binge type of strain redistribution, but the strain concentration effect due to

the fillet radius was not accounted for, since the predicted strain distribution in the cross-section of the

fillet was linear by assumption. These approximations in the analysis were driven by the limitations of the

computer resources available at the time of the study in 1972.

The current study reanalyzed all nine disk-burst tests using the ABAQUS [4] finite-element code. With

current computing power, many of the simplifying assumptions required in 1972 could be removed to

provide a more detailed analysis. The fundamental assumptions made in the current study are:

(1) the material is assumed to be homogenous and isotropic before and throughout plastic defor-
mation;

(2) the material is assumed to be free of pre-existing defects;

(3) the volume of the material undergoing plastic deformation is assumed to be constant (i.e., incom-
pressible with a Poisson's ratio of 0.5);

(4) the hydrostatic component of the stress tensor has no effect on yielding; and

(5) the plastic deformation follows incremental J2 flow theory (Mises yield criterion) with its
associated flow rule (Levy-Mises) and isotropic strain hardening.

The finite-element meshes shown in Fig. 3 were developed using 8-node quadratic, axisymmetric, solid

elements with reduced integration (ABAQUS element type CAX8R). The material property data given in

Table 2 were used to fit power-law constitutive models for the plastic region of the three materials (see

Fig. 4). The analyses applied a nonlinear finite-strain procedure with an incrementally increasing pressure

load applied from zero up to the load at which numerical instabilities caused ABAQUS to abort the

execution.
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Fig. 3. Axisymmetric finite-element meshes used In the analyses of disk-burst tests reported in 12].
Quadratic 8-node axisymmetric (CAXSR) elements with reduced integration were used In a
nonlinear finite-strain elastic-plastic analysis of the three disk-burst geometries with three
materials.
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Fig. 4. True stress vs true strain curves of the three materials used in the disk-burst tests compared
to SS308 at 600 IF. These three test material curves were developed using a power-law
strain-hardening model fitted to yield and ultimate strength/strain data for each material
given in 121. (See Table 2).
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2.3. Theory - Hill's Plastic Instability Theory

A plastic instability theory due to Hill [5] for a pressurized circular diaphragm constrained at the edges is
presented in [6]. Figure 5 shows the geometry of the diaphragm, both undeformed and deformed, along
with the nomenclature used in the development of the theory.

The geometry of deformation is assumed to be a spherical dome or bulge of radius, R. The undeformed

ring element (defined by its position, width, and thickness, (rejrok), respectively) is assumed to
deform to an axisymmetric shell element with surface length, AL, deformed thickness, h, radial position,
r, and angle q . The nonuniform thickness of the dome reaches its minimum at the pole with polar height
H. For a spherical coordinate system with its origin at the center of the dome, the principal strains for the
thin-shell (i.e., the strains are assumed constant through the thickness) element are

In I( r- ); E# =In ( n, ); k=I ( ) (l)

A geometric relationship exists between the radius and chord of a circle such that

R =H 2 +a2 (2)
2H

where a is the effective radius of the undeformed diaphragm. Using Eqs. (1) - (2) and the geometry shown
in Fig. 5, ref. [6] derives the following relations for the meridional, e,, and hoop, es, strains at any point
on the spherical bulge

.e,(z I H, a) = *v.(zI H, a) - In [I+( 2 i](3)

where the geometric parameter z is shown in Fig. 5. Applying the constant volume assumption, i.e.,
Em + e, + Em = 0, produces the following equation for the radial ("thickness') strain

eq. |I H,a) = -2e,(z l H,a) = Inl+(Hla)] (4)

13
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h

Fig. 5. Spherical geometry of deformation assumed in Hill's 151 plastic instability theory.
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The effective strain then becomes

E(Ets~f e) J3 (ev- )' + (l-Ej, )' + (88-Eh ) -(z I H, a) =2 In 1 + (a2 )] (5)

The maximum radial strain, therefore, occurs at the pole of the spherical bulge. Applying the thin-walled

assumption (which is not made in the computational finite-element model) for an axisymmetric shell

element, the equilibrium relation between the meridional, a,, and hoop, ae, membrane stresses and the

internal pressure,pi, loading is

Oo + d =A (6)
R?, R9 h

For a spherical dome, R. = R = R, and a state of equibiaxial stress is assumed to prevail near the pole of

the dome with the principal stresses being

at=e=p2';R (7)pjRo~=; 0. =O0
CO 2h 7

and the effective stress , =Ua(#T) +(, °,) ( a) ,is

= = pJaR= -' (8)

To establish an instability criterion, a surface can be constructed in pressure, effective stress, and

deformation/strain space by expressing Eq. (8) as a total differential of the form

Rp, = 2h0

Rdpi + pdR = 2hdr + 2Udh (9)

dp, dr + dh dR

p, a h R

An unstable condition exists at a point of maximum pressure on the surface where dp, = 0. The condition

is unstable because any perturbation from this position always involves a reduction in load (pressure),

even in a rising stress field. The instability criterion for a deformed bulge of radius R is, therefore,

established by the following relation between stress and the deformed geometry for any point on the dome

15
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d =dR dh
a R h

(10)

or in ternms of effective strain

I ddF=1 IdR
U dF R dF

(11)

If the instability condition is attained, it will first occur at the point of maximum effective strain at the top

of the dome (at z = H) such that Eq. (11) can be stated as

Id7 3 1 (2Vf i)
2f-dE =2-4t-lt+j-) (12)

Applying a power-law constitutive form to relate effective stress to effective strain in the plastic region,

(13)

the effective strain at instability is, after a great deal of algebraic manipulation,

6011 = 4 (2n + 1) (14)

where n is the power-law exponent in the constitutive equation, Eq. (13).

16
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For a given material and diaphragm geometry ( n, a, ho), the pressure at the instability condition (i.e., the

burst pressure) can be determined by the following procedure:

4
* Calculate the effective critical strain. E -(2n + 1)

* Calculate the corresponding effective critical stress. &,,;, =K E'

* Calculate the critical thickness. h,= ho exp(-,,j,)

* Calculate the polar height at the critical condition. Hw = a Sexp(d ) 1

* Calculate the corresponding bulge curvature radius. R,=, H.,, + a'
2H,

* Finally, calculate the predicted burst pressure. -.V=
RH,

An alternative instability criterion was developed by Chakrabarty[8] which was based on a Tresca yield

surface. The critical effective strain was found to be

2(2- n)(l + 2n) (15)
aF. 11-4n 1)

17
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3. Stochastic Model Development

3.1. Computational and Theoretical Model Results

Computational results using the GAPL-3 code were presented in [2]. Converged solutions were obtained

for eight of the nine tests. Comparison of experimental and computational centerline deflections showed

good agreement for the eight converged cases. In the nonconverged case (ABS-C, geometry C), some

difficulty was reported in getting convergence at high pressures. In all cases the experimental data showed

a "tailing up" as the pressure approached burst pressure, which the computational model was unable to

capture. In general, the prediction of the burst pressure for the eight converged cases showed good

agreement with the experimentally-determined burst pressures. Defining a as the ratio of the

experimental burst pressure to the computationally-predicted burst pressure, the mean for a was 1.19

with a standard error for the mean of ±0.0484 and a standard deviation for the sample of 0.137.

The finite-element models using ABAQUS were able to obtain burst pressures for all nine tests, where the

predicted burst pressure is defined as the pressure at which a breakdown occurs in the numerical

procedure, causing the run to abort. For a nonlinear, finite-strain, static load step, ABAQUS uses

automatic sizing of the load increment to maintain numerical stability. The number of iterations needed to

find a converged solution for a load increment varies depending on the degree of nonlinearity in the

system. If the solution has not converged within 16 iterations or if the solution appears to diverge,

ABAQUS abandons the increment and starts again with the increment size set to 25% of its previous

value. An attempt is then made at finding a converged solution with this smaller load increment. If the

increment still fails to converge, ABAQUS reduces the increment size again. ABAQUS allows a

maximum of five cutbacks in an increment before aborting the analysis. Therefore, ABAQUS will

attempt a total of 96 iterations with six increments sizes before abandoning the solution. The initial load

size for the failing increment was typically already very small due to difficulties in convergence with the

previous and final successfully-converged load increment.

Equivalent plastic strain contours are shown in Fig. 4 for the geometry A (ABS-C carbon steel) specimen

(Test No. 7) at the point of numerical instability. The experimental burst pressure for this specimen was

9.8 ksi, and numerical instability of the solution occurred at approximately 9.05 ksi, for an a- = 1.083.

Highly localized plastic straining can be observed near the fillet, thus predicting an edge failure for this

specimen which did in fact fail at its edge.
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Orleans, LA, September 17-21,1972.

PEEQ S X ^& Geometry A

l s'5vf~g l s g , l| LPredicted BP = 9.051

[t11t~~~~~~AAR, Exeimna BP 9.4 1|

Il' m I |s cnli

V C 1A: MASC Oda MAQIf St Otd d 6.2- 4 ~us

L i~f ta WW

I nawanoM 42: Slo tm 0.9032

1 rud Va: U -s DlrfI0a Sce* fact ar: . 1 *00

ks!
.8 ks!

Fig. 4. Equivalent plastic strain contours for the Geometry A (ABS-C carbon steel) specimen at the
point of numerical Instability. Highly localized plastic straining provides a precondition for
plastic collapse at the edge of the specimen. (ABAQUS analysis results)
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Figure 5 compares the predicted centerline deflection load histories with the experimentally-observed

deflections at failure (estimated from Figs. 3 and 4 in [2D. The "tailing up" of the experimental deflection

curves near the point of failure is predicted by the model, indicating that the computational simulations

are capturing the final localized "necking" of the diaphragm. For the nine ABAQUS predictions, the

mean for a was 1.055 with a standard error for the mean of ±0.0331 and a standard deviation for the

sample of 0.0993.

The results of applying Hill's failure criterion are presented in Table 3. The mean for a was 1.058 with a

standard error for the mean of ±0.0374 and a standard deviation for the sample of 0.1123. The

calculations were repeated using the theoretical critical strain of Chakrabarty and Alexander [8], Eq. (I5),

with the resulting burst pressures being essentially identical to those given in Table 3.

Table 3. Application of Hill's Instability Theory to Nine Disk-burst Tests

pi est He,,, R q, c,,, h j, P&,,, P bumt&V) a
(ksi) (iii.}~- i(Ifl~) (in.) (in.) (ksi) (in.) (ksi) (ksi)

1 162.41 0.27 2.625 0.250 0.561 1.493 3.054 138.84 0.1427 12.98 15 1.156
2 162.41 0.27 2.875 0.125 0.561 1.635 3.345 138.84 0.0714 5.92 6.8 1.148
3 162.41 0.27 2.625 0.125 0.561 1.493 3.054 138.84 0.0714 6.49 7.7 1.187
4 139.41 0.12 2.625 0.250 0.449 1.316 3.276 126.96 0.1596 12.37 11 0.889
5 139.41 0.12 2.875 0.125 0.449 1.441 3.588 126.96 0.0798 5.65 5.3 0.938
6 139.41 0.12 2.625 0.125 0.449 1.316 3.276 126.96 0.0798 6.19 6.7 1.083
7 105.20 0.17 2.625 0.250 0.490 1.383 3.183 92.95 0.1532 8.95 9.8 1.095
8 105.20 0.17 2.875 0.125 0.490 1.514 3.486 92.95 0.0766 4.08 3.75 0.918
9 105.20 0.17 2.625 0.125 0.490 1.383 3.183 92.95 0.0766 4.47 4.94 1.104

A summary of all 26 burst pressure predictions is given in Table 4. Combining the 26 cases into a single

sample gives a mean for a of 1.098 with a standard error for the mean of ±0.0251 and a standard

deviation for the sample of 0.1281. Even though Hill's theory is applicable only for center failures, the

good agreement between the experiments (including those that failed at the edges) suggests that, for the

edge-failure cases, the specimens were also close to a condition of plastic collapse at the center when they

failed first at the edge.
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Fig. 5. Comparison of experimental centerline vertical deflections at failure to ABAQUS FEM
vertical deflection histories at the center of the Geometry A and B specimens for (a) SS 304,
(b) A533-B, and (c) ABS-C materials, and
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Fig. 5. (continued) (d) ABAQUS FEM vertical deflection histories at the center of Geometry C, all
three materials compared to specimen failure.

22



DRAFT NOT FOR ATTRIBUTION 08/14/2

Table 4. Comparison of Experimental Burst Pressures to Three Predictions
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3.2. Development of Stochastic Model of Failure

The development of several stochastic models is described in this section in which the uncertainties

associated with predictions of burst pressure for circular diaphragms using computational or analytical

methods are estimated. It is postulated that the trends observed in estimating the burst pressure with the

nine disk-burst tests in [2] will be representative of the predictive accuracy of computational estimates of

the burst pressure in the Davis-Besse wastage-area problem. Given a prediction of burst pressure for a

specific configuration of the wastage area, the scaled stochastic models will provide estimates of the

cumulative probability that the true burst pressure will be less than a given service pressure. This

postulated linkage of the test specimens to the Davis-Besse problem is obviously an approximation, since

the wastage area footprints are not identical to the circular diaphragms used in the tests. The

appropriateness of this linkage is in part, therefore, dependent on the ability of the finite-element models

to capture, as accurately as is feasib le and based on the best current knowledge, the actual geometry of the

wastage area footprint.

Table 5 summarizes some descriptive statistics for the ratio of experimental burst pressure to predicted

burst pressure, a, for the three predictive methods discussed in the previous section. Also shown in the

table are the results of combining the three samples into one larger sample of 26 data points. This

combined sample was used to develop the stochastic models with a treated as a random variate.

Combining the three sets into a single sample produced a sample size large enough to make a thorough

statistical analysis of a range of continuous distributions feasible. Also given in Table 6 is a ranking of the

26 data points where the median rank order statistic is

P(1)= i03 (16)
n+0.4

The Expert Fit0 (9] computer program was used to develop several stochastic models of the sample data

presented in Table 6. Using a combination of heuristic criteria and Goodness of Fit statistics, twenty six

continuous distributions were tested with the results shown in ranked order in Table 7. The point-

estimation procedures noted in Table 7 include Maximum Likelihood (ML), Method of Moments (MAO,

and Quantile Estimates. Table 8 compares three Goodness of Fit statistics (Anderson-Darling, X2 , and

Kolmogorov-Smirnoff (K-S)) for the top six distributions. None of these distributions were rejected by the

Goodness of Fit tests, and all received an absolute rating of Good by the Expert Fito computer program.

The remaining nineteen distributions investigated were either rejected by one or more of the Goodness of

Fit tests at some significance level and/or received a less than Good heuristic rating by the Expert Rio

software. Figure 6 shows a density/histogram overplot of the six continuous distributions.
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Table 5. Descriptive Statistics for the Ratio of Experimental Burst Pressure
to Predicted Burst Pressures

Sample Size 8 9 9 26
Mean 1.1902 1.0576 1.0549 1.0975
Standard Error 0.0484 0.0374 0.0331 0.0251
Median 1.2223 1.0953 1.0939 1.1057
Standard Deviation 0.1368 0.1123 0.0993 0.1281
Sample Variance 0.0187 0.0126 0.0099 0.0164
Kurtosis -0.0506 -1.4799 -0.4349 0.2593
Skewness 0.0007 -0.5892 -0.9683 0.1714
Range 0.4314 0.2979 0.2739 0.5277
Minimum 0.9853 0.8889 0.8943 0.8889
Maximum 1A167 1.1868 1.1682 1.4167
Confidence Level(95.0%) 0.1144 0.0863 0.0764 0.0517

Table 6. Combined Sample Used In Development of Stochastic Model

1 Hill's Theory A533B A 0.8889 0.0265
2 ABAQUS SoIIL ABS-C B 0.8943 0.0644
3 ABAQUS Sodn. A533B A 0.8972 0.1023
4 Hill's Theory ABS-C B 0.9180 0.1402
5 Hill's Theory A533B B 0.9382 0.1780
6 Ricarrdelia (1972) A533B C 0.9853 0.2159
7 ABAQUS Soln. A533B B 1.0119 0.2538
8 Ricarrdefla (1972) SS 304 C 1.0405 0.2917
9 ABAQUS Soin. ABS-C A 1.0827 0.3295
10 Hill's Theory A533B C 1.0829 03674
11 ABAQUS Soba SS 304 B 1.0939 0.4053
12 Hill's Theory ABS-C A 1.0953 0.4432
13 Hill's Theory ABS-C C 1.1042 0.4811
14 ABAQUSSoln ABS-C C 1.1072 0.5189
15 ABAQUS Soin A533B C 1.1104 0.5568
16 Ricarrdella (1972) A533B A 1.1224 05947
17 ABAQUS Soln. SS 304 A 1.1288 0.6326
18 Hill's Theory SS 304 B 1.1479 0.6705
19 Hill's Theory SS 304 A 1.1560 0.7083
20 ABAQUS Soln. SS 304 C 1.1682 0.7462
21 Hill's Theory SS 304 C 1.1868 0.7841
22 Ricarrdella (1972) SS 304 A 1.2195 0.8220
23 Ricarrdedla (1972) ABS-C A 1.2250 0.8598
24 Ricarrdella (1972) ABS-C B 1.2500 0.8977
25 Ricarrdella (1972) A533B B 1.2619 0.9356
26 Ricarrdella (1972) SS 304 B 1.4167 0.9735

a = Experimental Burst Pressure/Predicted Burst Pressure
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Table 7. Continuous Distributions Investigated - Ranked by Goodness of Fit

I - Log-Laplace Location Default 0

2 - Beta

3 - Gamma

4 -Log-Logistic

5 - Nomnal

6 - Weibull

7 - Lognormal

8 - Random Walk

9 - Inverse Gaussian

10 - Pearson Type V

11 - Inverted Weibull

12 - Weibull(E)

13 - Rayleigh(E)

14- Erlang(E)

15 - Gamma(E)

16 - Exponential(E)

17 - Pearson Type VI(E)

Scale
Shape
Lower endpoint
Upper endpoint
Shape #1
Shape #2
Location
Scale
Shape
Location
Scale
Shape
Mean
Standard Dev.
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Location
Scale
Shape #1

ML estimate
ML estimate
MOM estimate
MOM estimate
MOM estimate
MOM estimate
Default
ML estimate
ML estimate
Default
ML estimate
ML estimate
ML estimate
ML estimate
Default
ML estimate
ML estimate
Default
ML estimate
ML estimate
Default
ML estimate
ML estimate
Default
ML estimate
ML estimate
Default
ML estimate
ML estimate
Default
ML estimate
ML estimate
Quantile estimate
ML estimate
ML estimate
Quantile estimate
ML estimate
Quantile estimate
ML estimate
ML estimate
Quantile estimate
ML estimate
ML estimate
ML estimate
ML estimate
Quantile estimate
Default
ML estimate

1.1057
11.45441
0.61449
1.78866
7.95564
1138552

0
0.01444
76.01293

0
1.09586
15.21867
1.09747
0.12811

0
1.15383
9.03948

0
0.08641
0.11516

(I
0.92335
69.18788

0
1.09747

82.23451
0

81A2582
75.1846

0
1.02827
8.88835
0.88884
0.21562
1.15868
0.88884
0.24352
0.88884
0.20862

1
0.88884
0.21819
0.95616
0.8889
0.20857
0.88884

l
1.00117
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Shape #2 ML estimate 5.43892
18 - Lognormal(E) Location Quantile estimate 0.88884

Scale ML estimate -2.17414
Shape ML estimate 1.86865

19 - Random Walk(E) Location Quantile estimate 0.88884
Scale ML estimate 699.32509
Shape ML estimate 4.82644

20 - Pareto(E) Location ML estimate 0.8889
Shape ML estimate 4.8976

21 - Chi-Square Location Quantile estimate 0.88884
d.f. ML estimate 0.72313

22 - Wald Location Default 0
Shape ML estimate 48.03951

23 - Rayleigh Location Default 0
Scale ML estimate 1.10463

24- Exponential Location Default 0
Scale ML estimate 1.09747

25 - Wald(E) Location Quantile estimate 0.88884
Shape ML estimate 1.43E-03

26 - Inverse Gaussian(E) Location Quantile estimate 8.89EM04
Scale ML estimate 0.20862
Shape ML estimate 1.44E-03
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Table 8. Continuous Distributions That Passed All Goodness of Fit Tests

I Log-Laplace 98 Good 0.44952 2.15385 0.59218
2 Beta 93 Good 0.44697 4.92308 0.81037
3 Gamma 89 Good 0.46050 3.53846 0.81894
4 Normal 83 Good 0.39325 1.23077 0.74664
5 Random Walk 75 Good 0.50448 3.53846 0.85840
6 Inverse Gaussian 71 Good 0.50514 3.53846 0.85891

DensItylllistogram Oveiplot
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-

Fig. 6. Overplot of probability densities with histogram for fitted stochastic models.
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The six distributions in Table 8 have the following analytical forms:

Log-Laplace Distribution
The Log-Laplace distribution has the highest relative ranking among the twenty-six distributions

investigated. The general three-parameter Log-Laplace continuous distribution has the following

probability density functionfLp, and cumulative distribution function, FLP,

c (x-a f

fLp(x Ia, b,c) =2b b )
c (x -a
2b( b

for a <x <b

for a a O, (b,c) > O

for x Ž b

(17)

}(x~a} for a<xcb

Pr(X S x) = FLp(xI a, b c)= 1= - 1x-a f

I- I(x- J"for x~:b
fora>O, (b,c)>O

where a is the location parameter, b is the scale parameter, and c is the shape parameter.

Beta Distribution
The Beta distribution has the following probability density function, f8. and cumulative distribution

function, Fe,

{(a)[(x-a)
f.,(xja,b^c,a 2 = (b- a)b -a1 , fora<xcb

|(b- a)B (,a,, 2)

0 otherwise
(18)

z
f fo. (4 I a, bo;, %) d4

F,(xlaba,,a,)=. .

0

for a <x <b

otherwise

where B(a,,a%) = fuU'a (I - u)a'-'du, a is the lower endpoint, b is the upper endpoint, a, is the first

shape parameter, and a2 is the second shape parameter.
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Gamma Distribution
The Gamma distribution has the following probability density function, fte, and cumulative distribution

function, FGe

f00(Xlex,13,)=[ (xr() for X Y

0 otherwise
(19)

F I(xjaPly)=[JfG. ( la4,pr) d4
7

0

for x> y

otherwise

where a is the shape parameter, P is the scale parameter, r is the location parameter, and

R(x) = fexp(-u)u'du.

Normal Distribution
The Normal distribution has the following probability density function, fN, and cumulative distribution

function, FN,

fN (x U CT) expt -(X-)2 for all real numnbersx
N 1 ~~~~~~~~~~~~~~(20)

FN(X IJ1,)= ¢?(Z) = |N({ ,J)d forz=(x-p)/a

where p is the mean (location parameter) and a is the standard deviation (scale parameter).
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Random Walk Distribution

The Random Walk distribution has the following probability density function,fR-, and cumulative

distribution function, FRW

A (laj3y)=(2r~a7 exp| 21 T ]| forx>7

0 otherwise

(21)

(D f7(x- I) - Ia(x y)} -

FRW(XlaaP)= 2a I , 1
expp T -[P(x-Y)+lJfr

0 otherwise

where a is the shape parameter, P3 is the scale parameter, y is the location parameter, and 4) is defined

in Eq. (20).

Inverse Gaussian (Wald) Distribution
The Inverse Gaussian (also known as the Wald distribution) distribution has the following probability

density function,fiG, and cumulative distribution function, FIG

fIG(xja, PY)=I [27r(x-r)y j exp[2p2(X,)] forx> y
0 otherwise

(22)

b(Dx -'y -) 1 T_+exp[2a ]P[-(D Y +1 1 forx >y;;,(x Ia, , ly)P _Y P3 P~-y lxL Y J

0 otherwise

where a is the shape parameter, /3 is the scale parameter, y is the location parameter, and 4) is defined

in Eq. (20).

Figures 7 and 8 compare the probabilities and the cumulative distribution functions, respectively, of the

top-three ranked models.
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Fig. 8. Log-Laplace statistical failure model (n - 26) compared to a beta and gamma cumulative
distribution functions.
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As a specific example from the Expert FRt [9] analysis, the Log-Laplace stochastic model of failure has

the following form

5.1797 1 ( a 1 O<a<1.1057
fp(a 10, 1. 105 7,11.4544 1) = 1.1057j

~~S441 ~~~~(23)

Pr(X • a) = I~ ( 0,1. 1 057,11.4544 1) j2 J1;0<a01.05
2 1 .1057 J a (21.1057

where a is the rafio of the true (but unknown) burst pressure to the calculated burst pressure. The

percentile function is given by

I 1.1057exp Tin-24) l} ;P 50.5

Q~p(P 10, 1. 105 7,11.4544 1) = a fln[2 ( P)] for ( < P <1) (24)
|1.1057exp| P[,,, > ;>.5

The stochastic models in Table 8 can be used to provide statistical estimates of the expected predictive

accuracy of computational methods applied to burst pressure calculations for service pressures within the

range of the data used to develop the model, i.e., 0.8889xP ,p 5 SP 5 1.4167 xPsp, where, SP, is a service

pressure, and Pep is the predicted burst pressure for the condition under investigation. Extrapolating

significantly beyond the range of the data becomes somewhat problematic due to the small sample size of

twenty-six data points. All six models in Table 8 are plausible candidates to describe the population from

which the sample in Table 6 was drawn, and the relative ranking of these distributions may be sensitive to

sample size.

Table 9 provides an example of the sensitivity of the fitting process to the sample size for the case of the

"as-found" cavity condition (to be discussed in the next section). Normal distributions were fitted to two

samples from the predictions of the disk-burst tests: (1) the ABAQUS finite-element results (n = 9) and

(2) the combined data set (n = 26). The two stochastic models were then scaled by the failure pressure for

the "as-found" condition (failure pressure = 6.65 ksi). Extrapolating beyond the range of the data for the

"as-found" case study produces approximately three orders-of-magnitude difference in estimated failure

probability at the operating pressure of 2.165 ksi. This difference in estimated failure probability

decreases as the service pressure increases towards the range of data used to develop the models.
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Table 9. Sensitivity of Cumulative Probability of Failure to Sample Size:
'As-Found" Condition (see Sect. 4)

6.65 0.2902 0.2233
2.155 1.04E-12 7.81E-10
2.165 1.17E-12 8.40E-l0
2.200 1.53E-13 1.08E-09
2.225 2.02E-1 3 1.30E-09
2.250 2.68E-13 1.55E-09
2.275 3.53E-13 1.85E-09
2.300 4.66E-13 2.21E-09
2.325 6.13E-13 2.64E-09
2.350 8.05E-13 3.14E-09
2.375 1.06E-12 3.75E-09
2A00 139E-12 4.46E-09
2.425 1.81E-12 5.30E-09
2.450 2.37E-12 6.30E-09
2.475 3.09E-12 7.48E-09
2.500 4.03E-12 8.87E-09
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4. Application of Stochastic Model to Bounding Calculation

A bounding calculation was carried out for the "as-found" condition of the wastage area in the

Davis-Besse head. The finite-element model used in the analysis is shown in Fig. 9. An adjusted stress-

strain curve (see Fig. 10) was constructed to lower-bound the available data for the cladding material. The

geometry of the wastage area footprint was taken from Fig. 13 in the Root Cause Analysis Report [1O]. As

an estimate of the uncertainty in the current wastage area measurements, the footprint was extended by

approximately 0.25 inches (see Table 10 and Fig. 11 for a geometric description of the adjusted footprint).

A uniform cladding thickness of 0.24 inches (the minimum cladding thickness value shown in Fig. 14 of

ref. [10]) was assumed in the model. The finite-element model was then loaded with increasing pressure

until the point of numerical instability at an internal pressure of 6.65 ksi (see Fig. 12). In the following, an

example is provided of how the statistical distributions in Table 8 can be scaled and applied to the

analysis of failure of the cladding in the wastage area.

For the predicted burst pressure of 6.65 ksi, the Log-Laplace statistical failure model as an example can

be scaled to provide estimates of cumulative probability of failure (or probability of nonexceedance) as a

function of internal service pressure for the specific condition of the wastage area simulated by the finite-

element analysis. The scaled Log-Laplace model (see Fig. 13) has the following form

SP 10.4S44I5.17971 I_ _ _ _

5.17971w SP
1. 0 5 7 xP,,)

; O<SP<1.1057xPvp

; SP 21.1057 xP,g

(25)

P r(FP,, pf•)<SP) = F~,,(SP IP

~11A5441
I SP A

2 1.1057xPp

I I SUxP~u J11
SP Ž1.1057 xP,,,

where, SP, is the service pressure under consideration, P5p is the predicted burst, and PPBQt, ) is the

unknown true burst pressure. The scaled percentile function is

1.1057xPpexp ln(2P) 1 ; PS 0.5
111.45441

QL, (P 10J. 1057 x PPl 1.4544 1) = SP = 'pI_1n[2(I-P)]J
1.1057xP ;P>0.5,spem 1 11.45441 f

for (0 < P< 1)(26)
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Table 10. Wastage-Area-Footprint Geometry Data

Footprint centroid Is in global coordinates.
Global coordinate system has its z-axis aligned with the vertical centerline of the vessel.
The x-y plane of the global coordinate system is a horizontal plane
with the xs-axis along the line between the centerlines of Nozzles 3 and I1.

KAdjusted~ Footprint
/ a - 025 I.

Area - 40.06 in"
Perimeter 31.78 In.

"As Found" Footprint /
Area - 35.36 int

Perimeter = 30.36 in.

.r1;P ra ± a
0 =-r, cos(41)
) r, shin(§)
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Table 10 (continued) Details of Wastage Area Footprint Before Adjustment for Bounding
Calculation (Figure taken from Fig. 13 ref. [101)

i_~~ A - h e -- ~-to1-. ~

hirtr.u tit4k Mvf

1t _infli -L. .. .,

0 -0.639 -1.895 24 8.000 0.334
1 -0.334 -2.280 25 7.500 0.483
2 0.000 -2.235 26 7.000 0.582
3 0.500 -2.492 27 6.500 0.829
4 1.000 -2.522 28 6.000 1.046
5 1.500 -2.482 29 5.500 1.303
6 2.000 -2.581 30 5.000 1.778
7 2.500 -2.730 31 4.500 2.460
8 3.000 -2.769 32 4.000 3.023
9 3.500 -2.759 33 3.500 3.300
10 4.000 -2.789 34 3.000 3.221
11 4.500 -2.819 35 2.500 3.250
12 5.000 -2.819 36 2.000 3.300
13 5.500 -2.759 37 1.500 3.349
14 6.000 -2.700 38 1.000 3.240
15 6.500 -2.621 39 0.500 3.122
16 7.000 -2.512 40 0.000 3.000
17 7.500 -2.364 41 -0.210 2.578
18 8.000 -2.216 42 -0.364 2.000
19 8.500 -2.087 43 -0.242 1.985
20 9.000 -1.712
21 9.135 -1.000
22 9.000 -0.555
23 8.500 0.137

Origin of local coordinate system located at centerline of Nozzle 3. (inches)
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(a)

Submodel of Wastage Area

CladdlngN
SS308 Weld

(0.24 In. thick)

15, and 16

(b) v
Fig. 9. Finite-element global and submodels of the Davis-Besse head and wastage area. Thedisplacements at the vertical side boundaries of the submodel are driven by the globalmodel. Both models are exposed to the same internal pressure loading.
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Fig 9. (continued) (c) geometry of RPV head and closure flange used In global model,
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Fig 9. (continued) (d) relative location of submodel within full RPV head,
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I

Fig 9. (continued) (e) geometry of submodel relative to Nozzles 3, 11, 15, and 16.
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SS308 Curve be - n
600 °F\ '

_lt = 69.65 ksi

y 60 <v>=1., = 61.64 ksi

Un z {, * ; t Adjusted SS308 Curve
12 ________________________ for Bounding Calculation

For both SS308 curves | 94.359 S 4
~, 40 cre m

2 Gf,,/ CS 2-)e 30.96 ksi
1- uniform elongation = 11.15% SS 308

SS 308 ladiustec'
-. _e- ABW-101

.-- - ABW-102
20 At600°F - - ABW-103

E =25571Jlsi *-.- A8W-104
v =0Q295 -- *- A8W-105

--- - A8W-1D6
A8W data at550 °F

0 ---- I

0 0.05 0.1 0.15 0.2

True Strain (") 06/10/2002.K1 ptw

Fig. 10. Adjusted SS308 stress vs. strain curve used in the bounding-case calculations compared to
curves from a range of A8W heats. Strain hardening In the adjusted curve was reduced to
lower-bound all of the data. The offset yield strength and strain at ultimate strength were
retained from the unadjusted SS308 curve received from Framatome.
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A*. rad idpor:

.!rug'

Fig. 11. Geometry of adjusted wastage area footprint. Lower figure Is a Photoworks®-rendered
Image of the submodel with the adjusted "as-found" footprint.
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(b) Mu,, pi

Fig. 12. Effective plastic-strain histories at two high-strain locations In the wastage area: (a) near
the center and (b) near Nozzle 3.
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Fig. 13. Application of the failure statistical criterion produces a cumulative probability of failure
(based on a Log-Laplace distribution) curve for the Bounding Case condition. Cumulative
probability of failure as a function of internal pressure.
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As discussed above, the bounding calculation predicted a burst pressure of 6.65 ksi which has a

cumulative probability of failure of 0.158 for the Log-Laplace model. The Log-Laplace stochastic model

also estimates a cumulative probability of failure of 4.14x10-7 at the operating pressure of 2.165 ksi and

2.15xl106 at the set-point pressure of 2.5 ksi. See Table 11 for additional estimates from all six models.

For the six distributions in Tables 8 and 11, the average probability of failure is 6.91x1O-' at 2.165 lsi,

3.60x IO' at 2.5 ksi, and 0.2155 at 6.65 ksi.

Table 11. Estimated Cumulative Probability of Failures for the Bounding Calculation

Log-Laplace Location Default 0 98 4.14E-07 2.15E-06 0.1582
Scale ML estimate 1.1057
Shape ML estimate I11A5441

Beta Lower eandpoint MOM estimate 0.61449 93 0 0 02340
Upperendpoint MOM estimate 1.78866

Shapefl MOM estimate 7.95564
Shave#2 MOM estimate 1138552

Gamma Location Default 0 89 8.17E-19 1.50E-15 02236
Scale ML estimate 0.01444
Shave ML estimate 76.01293

Nonnal Mean ML estimate 1.09747 83.33 8.44E-10 8.90E-09 02234
Standard Dev. ML estimate 0.12811

Random Walk Location Defauft 0 75 0 0 0.2269
Scale ML estimate 0.92335
Shave ML estimate 69.18788

Inverse Gaussian Location Default 0 71 4.01 E-29 1.79E-22 0.2269
Scale ML estimate 1.09747
Shape ML estimate 82.23451

Averaee- 6.91E.08 3.60E107 0.2155
Standard Deviation- 1.69E-07 8.77E.07 0.0283
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5. Summary and Conclusions

Six stochastic models of the probability of failure associated with a computational prediction of the

plastic collapse of the exposed cladding in the wastage area of the Davis-Besse RPV head have been

developed from the following technical bases:

(5). experimental data obtained during dik-burst tests reported by Riccardella [2] with loadings,
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area
footprint, and cladding,

(6) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests
also reported in [2] (GAPL-3 discrete-element code[3]),

(7) nonlinear, finite-strain, elastic-plasticfinite-element analyses performed for the current study
(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and

(8) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading,
due to Hill [5] (as cited in [6]), applied to the disk-burst tests.

Among the twenty-seven continuous distributions investigated, six passed all of the heuristic and

Goodness of Fit tests applied in the analysis. The six distributions ranked in relative order are: (1) Log-

Laplace, (2) Beta, (3) Gamma, (4) Normal, (5) Random Walk, and (6) Inverse Gaussian (Wald). As an

example of how the stochastic models may be applied to the Davis-Besse wastage area problem, the top-

ranked Log-Laplace model has the scaled form of

11.45441

Pr[P,,.( sSP] =F,(SP IPp up (27)

I) (1 5 I ; SP 1.A1057xP4p

Given a computationally predicted burst pressure, PBP, and service pressure, SP, the model gives an

estimate of the cumulative probability of nonexceedance of the true but unknown burst pressure, PBPtr..)

i.e., Pr [PaP>,,) 5SP] .

As an example application, estimates are provided for a bounding calculation of the "as-found" Davis-

Besse wastage area. The bounding calculation predicted a burst pressure of 6.65 ksi which has a

cumulative probability of failure of 0.158 by the Log-Laplace model. The Log-Laplace stochastic model

also estimates a cumulative probability of failure of 4.14x1 0I at the operating pressure of 2.165 ksi and
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2.15 x 106 at the set-point pressure of 2.5 ksi. For all six distributions, the average probability of failure

is 6.91x1 O at 2.165 ksi, 3.60x10-7 at 2.5 ksi, and 0.2155 at 6.65 ksi.
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