rltl

-~ nuin OlEVe Long’s computer dated 07/18/02 08:46am named * ORNL 7-15-02

probabilistic.pdf”

DRAFT

Contract Program or
Project Title:

Subject of this Document:

Type of Document:

Authors:

Date of Document:

Responsible NRC Individual
and NRC Office or Division

PR RErL
1retiag

NG LR

sa i o oo wos de'etad

H u( hwfn!q'wq

NOT FOR ATTRIBUTION 7/15/2002

ORNL/NRC/LTR-

Heavy-Section Steel Technology (HSST) Program
Engineering Technology Division

Stochastic Failure Model for the Davis-Besse RPV Head

Letter Reporf

P. T. Williams
B.R. Bass

July 2002

M. T. Kirk
Division of Engineering Technology
Office of Nuclear Regulatory Research

Prepared for the
U. S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001
Under Interagency Agreement DOE 1886-N011-9B
NRC JCN NoY6533

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-8056
managed and operated by

UT-Battelle, LLC for the -
U. S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-000R22725

R nj"‘ FrEshom
(Y

A i Avli [
ng EU 00/




DRAFT NOT FOR ATTRIBUTION 7/15/2002 -

ORNL/NRC/LTR-

Stochastic Failure Model
for the Davis-Besse RPV Head

P. T. Williams
B.R. Bass

Ozk Ridge National Laboratory
Oak Ridge, Tennessee

Manuscript Completed — July 2002
Date Published —-

Prepared for the
U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Under Interagency Agreement DOE 1886-N011-9B

- NRC JCN No. Y6533

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-8063
‘managed and operated by
UT-Battelle, LLC for the
U. S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-000R22725



.

DRAFT NOT FOR ATTRIBUTION

CAUTION

This document has not been given final patent
clearance and is for internal use only. If this
document is to be given public release, it must be
cleared through the site Technical Information
Office, which will see that the proper patent and
technical information reviews are completed in
accordance with the policies of Oak Ridge
National Laboratory and UT-Battelle, LLC.

This report was prepared as an account of work sponsored by an

N agency of the United States government. Neither the United States
govemment nor eny agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not Infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States

| government or any agency thereof.

7/15/2002



-}

DRAFT NOT FOR ATTRIBUTION 7/15/2002

Stochastic Failﬁre Model
for the Davis-Besse RPV Head

P. T. Williams and B. R. Bass
Oak Ridge National Laboratory
P. O. Box 2009
Oak Ridge, TN, 37831-8056

Abstract

The development of a stochastic model is described in this report in which the uncertainty associated with
predictions of burst pressure for circular diaphragms-using computational or analytical methods is
estimated. It is postulated that the trends seen in predicting the burst pressure with nine experimental disk-
burst tests (using materials, geometries, and pressure loadings relevant to the Davis-Besse analysis) will
be representative of the computational predictions of the burst pressure in the Davis-Besse wastage area
problem. Given a computational prediction of burst pressure for a specific configuration of the wastage
area, the scaled model will provide an estimate of the cumulative probability that the true burst pressure
will be less than any given service pressure.

The stochastic model was developed from the following technical bases:
(1) experimental data obtained during disk-burst tests with loadings, geometries, and materials
relevant to the Davis-Besse pressure loading, wastage-area footprint, and cladding,
(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests,

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study,
and L

(4) atheoretical criterion for plastic instability in a circular diaphragm under pressure loading,
applied to the disk-burst tests.

The final Weibull stochastic model has the scaled form of

2302
P-P, x0.825
l-exp| -| ————~ (P> P,,x0.825
Pr(Popipe) S P) = Fy (P Py} = °XP[( P, %0.308 ) }( 2 X0.825)

0 (P < P,,x0.825)

A normal distribution is also available for nonzero failure-probability estimates at pressures below the
location parameter in the Weibull distribution. Given a computationally predicted burst pressure, Pgp, the
model gives an estimate of the cumulative probability, Fy, that the true (but unknown) burst pressure
Feprwey S P, where P is the service pressure under consideration. As an example application, estimates
are provided for a bounding calculation of the “as-found” Davis-Besse wastage area.
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1. Introduction

1.1. Objective

This report presents a stochastic model of failure for the stainless steel cladding in the wastage area of the
Davis-Besse Nuclear Power Station reactor pressure vessel (RPV) head. For a given internal pressure, the
statistical model pfovides an estimate of the cumulative probability that the exposed cladding will have
failed at a lower pressufe.— The failure mode addressed by this model is incipient tensile plastic instability
(i-e., plastic collapse) of the cladding.

1.2. Background

The following was taken from ref. [1].

On February 16, 2002, the Davis-Besse facility began a refueling outage that included
inspection of the vessel head penetration (VHP) nozzles, which focused on the inspection of
control rod drive mechanism (CRDM) nozzles, in accordance with the licensee’s
commitments to NRC Bulletin 2001-01, *“Circumferential Cracking of Reactor Pressure
Vessel Head Penetration Nozzles,” which was issued on August 3, 2001. These inspections
identified axial indications in three CRDM nozzles, which had resulted in pressure boundary
leakage. Specifically, these indications were identified in CRDM nozzles 1, 2, and 3, which
are located near the center of the RPV head. ... Upon completing the boric acid removal on
March 7, 2002, the licensee conducted a visual examination of the area, which identified a
large cavity in the RPV head on the downhill side of CRDM nozzle 3. Followup
characterization by the ultrasonic testing indicated wastage of the low alloy steel RPV head
material adjacent to the nozzle. The wastage area was found to extend approximately 5 inches
downhill on the RPV head from the penetration for CRDM nozzle 3, with a width of
approximately 4 to 5 inches at its widest part.

See Fig. 1. for a photograph of the Davis-Besse RPV, a schematic of a typical nuclear power reactor, and
a sketch and photographs of the wastage area. '

1.3. Scope

In support of the investigation by the United States Nuclear Regulatory Commission’s (NRC) Office of
Nuclear Regulatory Research, the Heavy-Section Steel Technology Program at Oak Ridge National
Laboratory has developed a statistical model of a specific failure mode for the exposed stainless steel
cladding in the cavity of the Davis-Besse RPV head. Section 2 reviews the technical bases employed in
the development of the model; Section 3 presents the details :of the stochastic model; Section 4
demonstrates an application of the model to the results of a bounding calculation for the “as found”

condition of the wastage area; and Section 5 provides a summary and conclusions.
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Tha sbove figure shows the Davis Busse reacior vessel head degradation behvesn nazzie #3
and nozzie #11. This sketch was pravided lo the NRC by the Licensee.

Fig. 1. (a) Davis-Besse Nuclear Power Station RPV and (b) sketch of RPV head degradation.
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Fig. 1 (continued) (c) schematic of a typical nuclear power reactor showing the relationship of the
CRDM nozzles to the RPV head.
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Fig. 1. (continued) (d) photographs of the wastage area with Nozzle 3 removed.

7/15/2002



DRAFT . NOT FOR ATTRIEUTION 7/15/2002

2. Technical Bases

The technical bases employed in the construction of the stochastic model are:

(1) experimental data obtained during disk-burst tests reported by Riccardella[2] with loadings,
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area footprint, and
cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests also
reported in [2] (GAPL-3 discrete-element code[3]),

(3) nonlinear, finite-strain, elastic-plastic ﬁnite-element analyses performed for the current study
(ABAQUIS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and

(4) a theoretical criterion for plastic instability in a circular diaphragth under pressure loading, due to
Hill [5] (as cited in [6]), applied to the disk-burst tests.

2.1. Experimental — Disk-Burst Tests

In the early 1970s, constrained disk-burst tests were carried out under the sponsorship of the ASME
PVRC Subcommittee on Effective Utilization of Yield Strength [7). This test program employed a range of
materials and specimen geometries that were relevant to components in a nuclear power plant steam
supply system'. The geometries of the three test 'spccitnens analyzed in [2] are shown in Fig. 2, the test
matrix is shown in Table 1, and the properties of the three materials are presented in Table 2. The nine
disk-burst tests produced three center failures and six edge failures over a range of burst pressures from
3.75 to 15 ksi as shown in Table 1.

Table 1. Test Matrix for Disk-burst Tests [2]

1 SS 304 A 0.375 0.250 2.625 15 Edge
2 B 0.125 | 0.125 2875 6.8 Center
3 : C 0.375 0.125 2.625 7.7 Center
4 AS533B A 0.375 0.250 2.625 11 Edge
5 B 0.125 0.125 2.875 53 Edge
6 C 0.375 -0.125 2.625 6.7 Center
7 ABS-C A 0.375 . 0.250 2625 9.8 Edge
8 B 0.125 0.125 2.875 3.75 Edge
9 C 0.375 0.125 2.625 4.94 Edge

! The three materials are representative of reactor core support structures and piping, the reactor pressure vessel, and
plant component support structures [2).
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SS304 34 84 0.54 129.36 0.432 16241 0.27
A-533B 74 96 017 74.15 112.32 0.157 13941 0.12
ABS-C 39 64 0.31 39.08 83.84- 0.270 105.20 0.17

*The power-law parameters in Table 2 were fitted for the current study where o=K¢ and 0, £ are the
effective true stress and effective total true strain, respectively.

Geometry A
0.375R B
18
Geometry B
0.125R
425 ~
1":0 '
Geometry C
0.375R
428
8.0
10.0

Fig. 2. Geometric descriptions of the three disk-burst specimens used in [1] (all dimensions are
inches). Images on the right are Photoworks®-rendered views of ¥:-symmetry solid models

of the three specimens.

10
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2.2. Computational — Axisymmetric Discrete-Element and Finite-Element Models

The results of a computational study were presented in [2] in which the nine tests were simulated using
the GAPL-3 computer code [3]. GAPL-3 applied the discrete-element method using a two-layered system
of elements: one layer for the strain-displacement field and & second layer for the stress field to perform
an elasto-plastic large-deformation analysis of stresses, strains, loads, and displacements of thin plates or
axisyxmnetrié shells with pressure loading. At each incremental load step, the code iterated to resolve both
geometric and material nonlinearities, thus establishing a condition of static equilibrium. The GAPL-3
code did not account for the reduction in thickness of the diaphragm with increasing load, and, therefore,
was unable to demonstrate the “tailing up” of the experimental center-deflection histories. As discussed in
{2], the thin-shell approximation of the GAPL-3 code is not strictly valid in the fillet region. The GAPL-3
model did include a plastic-hinge type of strain redistﬁbution, but the strain concentration effect due to
the fillet radius was not accounted for, since the predicted strain distribution in the cross-section of the
fillet was linear by assumption. These approximations in the analysis were driven by the limitations of the
computer resources available at the time of the study in 1972.

The current study reanalyzed all nine disk-burst tests using the ABAQUS [4] finite-clement code. With
current computing power, many of the simplifying assumptions required in 1972 could be removed to
provide a more detailed analysis. The fundamental essumptions made in the current study are:

(1) the material is assumed to be homogenous and isotropic before and throughout plastic defor-
mation; ’

(2) the material is assumed to be free of pre-existing defects;

(3) the volume of the material undergoing plastic deformation is assumed to be constant (i.e., incom-
pressible with a Poisson’s ratio of 0.5);

(4) the hydrostatic component of the stress tensor has no effect on yielding; and

(5) the plastic deformation follows incremental J; flow theory (Mises yield criterion) with its
associated flow rule (Levy-Mises) and isotropic strain hardening.

The finite-element meshes shown in Fig. 3 were developed using 8-node quadratic, axisymmetric, solid
elements with reduced integration (ABAQUS element type CAX8R). The material property data given in
Table 2 were used to fit power-law constitutive models for the plastic region of the three materials (see
Fig. 4). The analyses applied a nonlinear finite-strain procedure with an incrementally increasing pressure
load applied from zero up to the load at which numerical instabilities caused ABAQUS to abort the

execution.

11
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Fig. 3. Axisymmetric finite-element meshes used in the analyses of disk-burst tests reported in [2].
Quadratic 8-node axisymmetric (CAX8R) elements with reduced Integration were used in a
nonlinear finite-strain elastic-plastic analysis of the three disk-burst geometries with three

materials.
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Fig. 4. True stress vs true strain curves of the three materials used in the disk-burst tests compared
to SS308 at 600 °F. These three test material curves were developed using a power-law
strain-hardening model fitted to yield and ultimate strength/strain data for each material

given in [2]. (See Table 2).
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2.3. Theory - Hill’s Plastic Instability Theory

A plastic instability theory due to Hill [5] for a pressurized circular diaphragm constréined at the edges is
presented in [6]. Figure 5 shows the geometry of the diaphragm, both undeformed and deformed, along

with the nomenclature used in the development of the theory.

The geometry of deformation is assumed to be a spherical dome or bulge of radius, R. The undeformed
ring element defined by its position, width, and thickness, (r,,d7r;,h,), respectively, is assumed to deform
to an axisymmetric shell element with surface length;f oL, deformed thickness, A, radial position, », and
angle ¢ . The nonuniform thickness of the dome reaches its minimum at the pole with polar height H. For
a spherical coordinate system with its origin at the center of the dome, the principal strains for the thin-
shell (i.e., the strains are assumed constant through the thickness) element are

2} e ol OL). o o B
e,—ln('b), e,-ln(aro], e,,-ln(ho] (1)

A geometric relationship exists between the radius and chord of a circle such that

_Hi+a’
2H

R

@

where a is the effective radius of the undeformed diaphragm. Using Egs. (1) - (2) and the geometry shown
in Fig. 5, ref. [6] derives the following relations for the meridional, &,, and hoop, &,, strains at any point
on the spherical bulge

e,(zlH,a)ze,(le,a)=h1[l+(z—alzi]] 3

where the geometric parameter z is shown in Fig. 5. Applying the constant volume assumption, i.e.,
£,+&,+¢, =0, produces the following equation for the radial (“thickness”) strain

' ' _ 1
€, (z l Hsa) = _2£¢ (2 l H’ a) " ln[l-‘i'--(-.ZH- ",'az ):l, | (4)

13
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Fig. 5. Spherical geometry of deformation assumed in Hill’s [5] plastic instability theory.

14



DRAFT NOT FOR ATTRIBUTION 7/15/2002

The effective strain then becomes

E(g’,gs,gh)g\g:\ﬂg‘_ea)l.p(e,-gh)zq-(e,—eh)’ =-—£,,(2[H,a)=2lg[l+(%¥)] (5)

The maximum radial strain, therefore, occurs at the pole of the spherical bulge. Applying the thin-walled
assumption (which is not made in the computational finite-element model) for an axisymmetric shell
element, the equilibrium relation between the meridional, &,, and hoop, &, , membrane stresses and the
internal pressure, p;, loading is

J, Oy _ P
PR Y 4 6
R , ©)

For a spherical dome, R, =R, =R, and a state of cqﬁibiaxial stress is assumed to prevail near the pole of
the dome with the principal stresses being

0,=0,=5—; 6,=0 )

To establish an instability criterion, a surface can be constructed in pressure, effective stress, and
deformation/strain space by expressing Eq. (8) as a total differential of the form

Rp,= 2hG ,
" Rdp, + p,dR =2hd& +25dh )

LD . i —— v m—

pp G h R

An unstable condition exists at a point of maximum pressure on the surface where dp, =0. The condition
is unstable because any perturbation from this position always involves a reduction in load (pressure),
even in a rising stress field. The instability criterion for a deformed bulge of radius R is, therefore,
established by the following relation between stress and the deformed geometry for any point on the dome

15
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4G _dR _dh | (10)
6 R &
or in terms of effective strain
1d6 , 1dR
=14 : 11
o dc RdE an

If the instability condition is attained, it will first occur at the point of maximum effective strain at the top

of the dome (at z= H) such that Eq. (11) can be stated as
.}:1’2:3_1[.3_)(1 f.) (12)
GdE 2 4\F, 2

(13)

the effective strain at instability is, after a great deal of algebraic manipulation,
(14)

g, =-l4—l(2n+l)

where n is the power-law exponent in the constitutive equation, Eq. (13).

16
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For a given material and diaphragm geometry ( n, a, ho), the pressure at the instability condition (i.e., the
burst pressure) can be determined by the following procedure:

¢ Calculate the effective critical strain. ., =%(2n +1)
¢ Calculate the corresponding effective critical stress. 0,.,=K&"
¢ Calculate the critical thickness. 7 h,, =hexp(~E,,)
e Calculate the polar height at the critical condition. H,, =a, }exp(%"—"—) -1
. ' o H:, +d*
¢ Calculate the corresponding bulge curvature radius. R, =—%—u
' 2H_,
. . ' 2h,,G..,
¢ Finally, calculate the predicted burst pressure. - P = R
orit

An alternative instability criterion was developed by Chakrabarty[8] which was based on a Tresca yield
surface. The critical effective strain was found to be

s _202-n)+2n)

15
- 11-4n (13)

17
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3. Stochastic Model Development

3.1. Computational and Theoretical Model Results

Computational results using the GAPL-3 code were presented in [2]. Converged solutions were obtained
for eight of the nine tests. Comparison of experimental and computational centerline deflections showed
good agreement for the eight converged cases. In the nonconverged case (ABS-C, geometry C), some
difficulty was reported in getting convergencé at high pressures. In all cases the experimental data showed
a “tailing up” as the pressure approached burst pressure, which the computational model was unable to
capture. In general, the prediction of the burst pressure for the eight converged cases showed good
agreement with the experimentally-determined burst pressures. Defining & as the ratio of the
experimental burst pressure to the computationally-predicted burst pressure, the mean for @ was 1.19
with a standard error for the mean of $0.0484 and a standard deviation for the sample of 0.137.

“The finite-element models using ABAQUS were able to obtain burst pressures for all nine tests, where the
predicted burst pressure is defined as the pressure at which a breakdown occurs in the numerical
procedure, causing the run to abort. For a nonlinear, flnite;strain, static load step, ABAQUS uses
automatic sizing of the load increment to maintain numerical stability. The number of iterations needed to
find a converged solution for a load increment varies depending on the degree of nonlinearity in the
system. If the solution has not converged within 16 iterations or if the solution appears to diverge,
ABAQUS abandons the increment and starts again with the increment size set to 25% of its previous
value. An attempt is then made at finding 2 converged solution with this smaller load increment. If the
increment still fails to converge, ABAQUS reduces the increment size again. ABAQUS allows a
maximum of five cutbacks in an increment before aborting the analysis. Therefore, ABAQUS will
attempt a total of 96 iterations with six increments sizes before abandoning the solution. The initial load
size for the failing increment was typically already very small due to difficulties in convergence with the
previous and final successfully-converged load increment.

Equivalent plastic strain contours are shown in Fig. 4 for the geometry A (ABS-C carbon steel) specimen
(Test No. 7) at the point of numerical instability. The experimental burst pressure for this specimen was
9.8 ksi, and numerical instability of the solution occurred at approximately 9.05 ksi, for an ax=1.083.
Highly localized plastic straining can be observed near the fillet, thus predicting an edge failure for this
specimen which did in fact fail at its edge. -

18
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Fig. 4. Equivalent plastic strain contours for the Geometry A (ABS-C carbon steel) specimen at the

point of numerical instability. Highly localized plastic straining provides a precondition for
plastic collapse at the edge of the specimen. (ABAQUS analysis results)
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Figure S compares the predicted centerline deflection load histories with the experimentally-observed
deflections at failure (estimated from Figs. 3 and 4 in {2]). The “tailing up” of the experimental deflection
curves near the point of failure is predicted by the model, indicating that the computational simulations
are capturing the final localized “necldng”, of the diaphragm. For the nine ABAQUS predictions, the
mean for @ was 1.055 with a standard error for the mean of +0.0331 and a standard deviation for the
sample of 0.0993.

The results of applying Hill’s failure criterion are presented in Table 3, The mean for @ was 1.058 with a
standard error for the mean of +0.0374 and a standard deviation for the sample of 0.1123.

Table 3. Application of Hill’s Instability Theory to Nine Disk-burst Tests

€ Hon Rou  Oou how P burst P bursifesp) o
e (i) 2B (in) (in.) (ksi) . - (@n.)  (ksi) (ksi). .

62.41 027 2.625 0.250] 0.561 1.493 3.054 138.84 0.1427 1298 15 1.156
162.41 0.27 2.875 0.125f 0.561 1.635 3.345 138.84 0.0714 5.92 6.8 1.148
162.41 027 2.625 0.125] 0.561 1.493 3,054 138.84 0.0714 6.49 1.7 1.187
139.41 0.12 2.625 0.250| 0.449 1316 3.276 126.96 0.1596 12.37 11 0.889
2.875 0.125) 0.449 .1.44]1 3.588 126.96 0.0798 5.65 53 0.938
139.41 0.12 2.625 0.125] 0.449 1316 3.276 12696 0.0798 6.19 6.7 1.083
105.20 0.17 2.625 0.250) 0.490 1.383 3.183 92.95 0.1532 895 9.8 1.095
105.20 0.17 2.875 0.125] 0.490 1.514 3486 92.95 0.0766 4.08 3.7 0.918
105.20 0.17 2.625 0.125}) 0.490 1.383 3.183 92.95 0.0766 4.47 494 1.104

NNV AWN
—
W
=]
F-N
—
(=]
f—
N

A summary of all 26 burst pressure predictions is given in Table 4. Combining the 26 cases into a single
sample gives a mean for @ of 1.098 with a standard error for the mean of +0.0251 and a standard
deviation for the sample of 0.1281. Even though Hill’s theory is applicable only for center failures, the
good agreement between the experiments (including those that failed at the edges) suggests that, for the
edge-failure cases, the specimens were also close to a condition of plastic collapse at the center when they
failed first at the edge. 7

20
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Fig. 5. Comparison of experimental centerline vertical defiections at failure to ABAQUS FEM
vertical deflection histories at the center of the Geometry A and B specimens for (a) SS 304,
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Fig. 5. (continucd) (d) ABAQUS FEM vertical deflection histories at the center of Geometry C, all

three materials compared to specimen failure.
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Table 4. Comparison of Experimental Burst Pressures to Three Predictions

1,

i

1 A . X
2 B 68 - Center 48 Edge 142 $.92 Center 115 6.22 Edge 1.09
3 C 1.1 Center 7.4 Center 1.04 6.49 Center 1.19 6.59 Center 117
4 [A3B| A 1 Edge 9.8 Edge .12 1237 Center 0.89 12.26 Edge 0.90
5 B 53 Edge 42 Edse 126 5.65 Center 094 5.24 Edge 101
6 c 6.7 Center 6.8 Center 099 6.19 Center 1,08 6.0 Edge L1
7 | ABSC| A 9.8 Edge ) Edge 123 895 Center 1.10 9.05 Edge 1.08
3 B 3.75 Edge 3. Edge 125 4.08 Center 092 419 Edge 0.89
9 C 494 Edge 447 Center 110 446 Edge/Center LU
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3.2. Development of Stochastic Model of Failure

The development of a stochastic model is described in this section in which the uncertainty associated
with predictions of burst pressure for circular diaphragms using computational or analytical methods is
estimated. It is postulated that the trends observed in estimating the burst pressure with the nine disk-burst
tests in [2] will be representative of the predictive accuracy of computational estimates of the burst
pressure in the Davis-Besse wastage-area problem. Given a prediction of burst pressure for a specific
configuration of the wastage area, the scaled stochastic model will provide an estimate of the cumulative
probability that the true burst pressure will be less than a given service pressure. This postulated linkage
of the test specimens to the Davis-Besse problem is obviously an approximation, since the wastage area
footprints are not identical to the circular diaphragms used in the tests. The appropriateness of this linkage
is in part, therefore, dependent on the ability of the finite-element models to capture, as accurately as is
feasible and based on the best current knowledge, the actual geometry of the wastage area footprint.

Table 5 summarizes some descriptive statistics for the ratio of experimental burst pressure to predicted
burst pressure, @, for the three predictive methods discussed in the previous section. Also shown in the
table are the results of combining the three samples into one larger sample of 26 data points. Using the
point estimating procedures described in the Appendix, a thiee-parameter Weibull distribution was fitted
to the finite-element model predictions. The results of that fit are shown in Table 6 with a comparison to a
normal distribution fit. The Kolomogorov-Smirnaff (K-S)'one-sample goodness of fit statistics indicate
that both models would be accepted under the null hypothesis that the sample was randomly drawn from

the candidate continuous distribution. The normal distribution gives a higher K-S p-value for this sample.

A continuous three-parameter Weibull distribution has the following probability density (PDF) and
cumulative distribution functions (CDF)

-1 ¢ '
f,,,(ala,b,d:%(a;a) exp[-(a;a) ] (@>a, (b,c)>0)

(16)
Pr(XSa)=F,,,(a|a,b,c)=P=l-exp[—(9%g-) ], (e>a, (b,c)>0)
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Table 5. Descriptive Statistics for the Ratio of Experimental Burst Pressure
. to Predicted Burst Pressures

[Destriptive Statistics™:

ombined.

Sample Size
Mean
Standard Error
Median
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum

" Confidence Level(95.0%)

1.1902
0.0484
1.2223
0.1368
0.0187
-0.0506
0.0007
0.4314
0.9853
1.4167
0.1144

8

26

1.0975
0.0251
1.1057
0.1281
0.0164
0.2593
0.1714
0.5277
0.8889
1.4167
0.0517

Table 6. Weibull Model Parameters and Median Rnxik Order Statistics for ABAQUS Predictions

0.074

ABS-C B 0.89427 1
A533B A 0.89718 2 0.181
AS33B B 1.01186 ‘3 0.287
ABS-C A 1.08268 - 4 0.394
SS304 B 1.09393 5 0.500
ABS-C C 1.10722 6 0.606
A533B C 1.11041 7 0.713
SS 304 A 1.12876 8 0.819
SS 304 C 1.16822 9 0.926
K-S p-value

W eibull Parateters -/ & Welbull_ Normal
Location 0.848 0.2928 0.4236
Scale 0.232
Shape 2.352
Model Sample
Mean 1.0535 1.0549
Variance 0.0087 0.0099
Std. Dev. 0.0930 0.0993
Median 1.0464 1.0939
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where a is the location parameter, b is the scale parameter, and c is the shape parameter. The inverse
CDF for the Weibull distribution is given by

1
a=a+b[-In(1-P)]s; 0<P<1 17)
The normal distribution function has the form

Helpo)= ;_vlz—;exp[--]i-(a—;‘l-l-) j', {—co < < o)

(18)
a 2
PH(X < @)=F,(a| 4,0)=®= jﬁ;;exp[-‘ ("“‘) ]dx, (0 < @ < o0)

2\ o

Combining the three sets into a single sample gives a sample size large enough that additional goodness
of fit statistical tests may be carried out. Table 7 shows a ranking of the 26 data points with the median
rank order statistic given by

i-0.3

'P(" = n+04

(19)

Also given in Table 7 are the results of a »* goodness of fit test comparing the Weibull distribution fitted
for the combined data set with a normal distribution. The }* statistics were calculated using 5 intervals
with 2 degrees of freedom. The resulting p-values shown in the table indicate that both distributions
would be accepted by the null hypothesis for the test; however, the Weibull fit has a higher confidence
level of 42.9% compared to 7.6% for the normal distribution.

The combined dataset was also fitted to two-parameter gamma and log-normal distributions with the
results shown in Table 8. Marginal univariate tests uéing the three empirical distribution function (EDF)
statistics of Anderson-Darling, Cramer-von Mises, and Watson were calculated using the GenStat®
program [9]. For each univariate test, the test statistics are empirical distribution function (EDF) statistics
that compare the empirical distribution function of the sample with the theoretical distributions expected
under the null hypothesis. These tests provide good power against a wide range of alternatives [10, 11].
The parameters for all four distributions were estimated by GenStat® using maximum likelihood
estimators. The univariate test results in Table 8 give the Weibull distribution a significance level of
approximately 10% (confidence level of 90%) with the other three distributions having acceptable but

lower confidence levels; therefore, all four distributions would be accepted by the null hypothesis with the
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Weibull distribution indicating a better fit to the data. Figure 6 presents GenStat® probability-probability
(P-P) plots of the four distributions with order statistics given by (-0.5)/n. A qualitative comparison
between the plots in Fig. 6 indicates only minor differences between the distributions.

Table 7. Weibull Model Parameters and Median Rank Order Statistics for Combined Predictions

1 Hills Theory  AS33B A
2 ABAQUSSoln. ABSC B X
3 ABAQUS Soln. AS33B A 0.1023
4 HillsTheory ., ABSC B - 0.1402
5 Hill'sTheory “ AS33B B 0.1780
6 Ricarrdella (1972)  A533B C 0.2159
7 ABAQUS Soln. - AS533B B 0.2538
8 Ricamdella (1972)  SS304 c 0.2917
9 ABAQUS Soln.  ABS-C A 0.3295
10 Hill's Theory AS33B c 0.3674
11 ABAQUS Soln.  SS5304 B 0.4053
12 Hill'sTheory ~ ABS-C A 0.4432
13 Hill's Theory ABS-C C 04811
14 ABAQUS Soln.  ABS-C C 0.5189
15 ABAQUSSoln. AS33B  C 0.5568
16 Ricarrdella (1972)  AS533B A 0.5947
17 ABAQUS Soln.  SS 304 A 0.6326
18 Hill's Theory SS304 = B 0.6705
19 HillsTheory  SS304 A 0.7083
20 ABAQUSSoln. 8§34 C 0.7462
21 Hill's Theory SS304 C 0.7841
2 Ricarrdella (1972) = SS 304 A 0.8220
23 Ricarrdella (1972) = ABS-C A 0.8598
24 Ricarrdella(1972)  ABS-C B 0.8977
25 Ricamdella (1972) AS33B B 0.9356
26 Ricarrdella (1972) _ SS 304 B 0.9735
* @ = Experimental Burst Pressure/Predicted Burst Pressure
R We : : " %2 Significance Test
Location 0.825 Distr,. p-value - DOF
Scale 0.308 Normal | 516240  0.07568 2
Shape 2301 Weibull | 1.69430  0.42864 2
Model Sample
Mean 1.0975 1.0975
Variance 0.0158 00164
Std. Dev. 0.1256 0.1281
Median 1.0876 1.1057 |
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Table 8. Marginal Univariate Tests for Four Distributions for Combined Sample

T PATAMELers s

mean = 1.098 : 0.44 0.061 0.061
standard deviation = 0.128
Gamma shapc = 75.82 - 0.501 0.073 0.072
scale = 0.01448
Log-Normal log-mean = 0.0867 0.546 0.082 - 0.08

log-stdev = 0.1153
location = 0.825

Weibull scale = 0.308 0.652 0.103 0.0997
shape = 2.302

Table 9. Critical Values of Marginal EDF Test Statistics

0%
Anderson-Darhng 0.576 0.656 0.787 0.918 1.092
Cramer-von Mises 0.091 0.104 0.126 0.148 0.178

Watson 0.085 . 0.096 0.116  0.136 0.163
1 =
08 =
g
g 08 =
g 04 -
, 8 a2 Moy = 0.0867
o =0.1153
ok
|4 L] 1 1 L L 1
[+] 0.2 (2] o8 o8 1 ] 02 o4 0s 0B 1
Expected Probability Expected Probability

454 Welbull
£ g

2 o

g 06 = ? 05

g 04 g Mﬁ

5, o @ = 0.825 (location)

k=75.82 (shape) ] b = 0.308 (scale)

b =0.01448 (scale) ¢t = 2.302 (shape)

° T T 1 1 ° T T T =1

o 02 o4 os o ' ] 0z 04 os 08 1
Expected Probability - Expetted Probability

Fig, 6. GenStat® P-P plots of four distributions fitted to combined data set,
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For completeness, the continuous two-parameter lognormal distribution is given by

In(a)~ £
—D0 o
(el py,.0,) = ——7= [ [—-———"‘*qn }} (—o < @< )
(20)
1{ In(x)
Pr(X S 0) = Fu(@| g1 Oig) = @ = I—7= { [ o,m”“") ]dx. (== <@ <)
and the two-parameter gamma distribution is described by
_1faY” ik (-Z) |
f}(a'!b,f-‘)-z(-b-) o | (o> a>e, b>0)
| @1

al e~ exp(—-z)
Pr(X S@)=Fu(a|bc)=P= I};H il |a (00)

where b is a scale parameter and c is the shape parameter.

Figure 7 compares the probability density functions of the four models to the histogram for the combined
data set, and Figs. 8 and 9 show the probability density and cumulative distribution functions for the
Weibull and normal models fitted to the n =9 sample of FEM predictions. The corresponding PDF and
CDF plots for the Weibull and normal models fitted to the combined sample of » =26 are given in
Figs. 10 and 11. From these results, it was decided to concentrate on the Weibull and normal
distributions. These two distributions will produce bounding estimates on the conditional probability of
failure for low pressures relative to the predicted burst pressure with the Weibull distribution being
recogmzed as giving the better fit to the data.
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Lognormal PDF
Gamma PDF
Normal PDF
Weibull PDF

3.5

Probability Densi
o

Y
(&)

e g b e s bo s e b s ad v lgs sty

1.1 1.2 1.3 1.4

Experimental BP/Predicted BP, @ 07/07/2002.K1 ptw

Fig. 7. Histogram of combined data set compared to probability densities of four fitted
distributions. )
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T T L] ] ¥ T R I , ~T —— T T R
median=1.046 —| 4
T ]
| Welbull Distribution § | ]
- . Location = 0.848 | Distri -
£ | Scale =0232 oAl Do |
€ 3[ Shape =2.352 Std Dev = 0.0993
8 - "Mean = 1.0535 AW e
: StdDev
L 2} ]
L2 b
e ]
& -t
1 - ]
| ]
0 - * : L
06 0.8 12 14

1

o
(]

e
o

Cumulative Probability of Failure

Exp. Burst Pressu:elPrgdicted Burst Pressure, « G702 plw

Fig. 8. Probability densities for two continuou§ statistical distributions fitted to the sample of 9
data points for @ = experimental burst pressure/FEM predicted burst pressure.

e s S Samm e SR
Weibul Distribution £::
Location=0.848 |-
[ Scale =0.232 ;
~ Shape =2352
Mean =1.0535 §:
SidDev =0.0930 E-

X

[ Normal Distribution
Mean =1.0549 F |
[ StdDev=0.0993 §

o
-

%.

6 08

i A
1. 1.2

e
14

Exp. Burst Pressure/Predicted Burst ?@ssum. O 070116262 ptw

Fig. 9. Weibull statistical failure model (7 = 9) compared to 2 normal cumulative distribution
function, median rank order statistic, and the 90% confidence interval on the order
statistic. ABAQUS FEM solutions were used to develop the models. N.B.: The order
statistics and their 90% confidence intervals are shown here for comparative purposes only
and were not used in the point-estimate procedures for the parameters of either the Weibull
or normal distributions. '
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3.5 N o Al ¥ T L S § Y T
[ Normal Distribution §
3 FMean = 1.0975

[ Std Dev=0.1281 E.

2 25f
;]
@ X
[} A R
a L. .
2 - Welbull Distributio
£ [ Location =0.825
£ " Scale =0308 &
8 15[ shape =2302 ¥
L - .'.""J'.'.‘.‘, <L,.':‘o"'." RE IS0 i 5
[+ 5 L

1 -

N TR S EPUTEN

M BN

05
Y 4 1L ‘i‘f"‘.’“L‘?‘ P ]
%.G 0.8 , 1 1.2 14

Exp. Burst Pressure/Predicted Burst Pressure, o 7,03/02.1 ptw

Fig. 10. Probability densities for two continuous statistical distributions fitted to the combined
sample of 26 data polnts for & = experimental burst pressure / predicted burst pressure.

1 ¥ L] ¥ '{ T L) Ll r '
@ | Welbull Distribution f :
=2 opl |\Location=0825 F B
E | Scale =0308 F: ,° i
- | Shape =2302 F ,
=~ | ST N *
£ o6} .
5 | .
'g L Normal Distribution |- lF 1
o Mean =1.0975 [ A |
o 04 SDev=0.1281 f /o N
2 I i i (bt RSN IR ﬁ
st -
E .
= L. /
g 0.2 © Siatisti
o [ _i-03

: n+0.4
0 1 PO N : 1 L PR E |
0.6 08 1 1.2 14

Exp. Burst Pressure/Predicted Burst Pressure, o 07/03/02.K2 ptw
Fig. 11, Weibull statistical failure model (1 = 26) compared to a normal cumulative distribution
function, median rank order statistic, and the 90% confidence interval on the order
statistic. Models developed with combined sample. N.B.: The order statistics and their 90%
confidence intervals are shown here for comparative purposes only and were not used in the
point-estimate procedures for the parameters of either the Weibull or Normal distributions.
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The recommended Weibull stochastic model of failure has the following form

1302 2302
2.302((1—0.825) exp _(a-o.szs) (> 0.825)
Jo(a)=10308\ 0.308 0.308

0 (2 <0.825)

(22)
a-0825)"
- 1-exp| - ———— J{ax>0.825
Pr(X<a)= If,,,(f)df= p[ ( 0.308 ) ( )
- 0 (2 $0.825)
where a is the ratio of the true (but unknown) burst pressure to the calculated burst pressure. If nonzero
estimates are required for values of a < 0.825, then the following normal distribution may be used

1{a-1.0975V ]
S22 |, (~o<a<oo)

1
Ful@)= 012810 P [‘5 ( 0.1281

23)
1 (;- 1.0975

1 . 2
Pr(X<a)= ex dg, (~ee<x<ee
(¥ sa)= g L P{ 2\ 0.1281 ” 6 ( )

These models may also be considered as statistical estimates of the expected predictive accuracy of
computational methods applied to burst pressure calculations for constrained diaphragms.
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4. Application of Stochastic Model to Boimding Calculation

A bounding calculation was carried out for the *“as-found” condition of the wastage area in the
Davis-Besse head. The finite-element model used in the analysis is shown in Fig. 12. An adjusted stress-
strain curve (see Fig. 13) was constructed to lower-bound the available data for the cladding material. The
geometry of the wastage area footprint was taken from Fig. 13 in the Roof Cause Analysis Report [12]. As
an estimate of the uncertainty in the current wastage area measurements, the footprint was extended by
approximately 0.25 inches (see Table 10 and Fig. 14 for 2 geometric description of the adjusted footprint).
A uniform cladding thickness of 0.24 inches (the minimum cladding thickness value shown in Fig. 14 of
ref. [12]) was assumed in the model. The finite-element model was then loaded with increasing pressure

until the point of numerical instability at an internal pressure of 6.65 ksi (see Fig. 15).

For the predicted burst pressure of 6.65 ksi, the normal and Weibull statistical failure models can be
scaled to provided estimates of cumulative probability of failure as a function of internal service pressure
for the specific condition of the wastage area simulated by the finite-element analysis. Examples of the
‘scaled Weibull model are shown in Figs. 16 and 17 for normalized internal pressure and direct internal
pressure, respectively. The scaled Weibull model has the form

1302 2302
S (PIBy)= 2302 _(P=Rpx0B2SYT | (P-Pyx082SY o b sy
P,,x0.308{ P, x0.308 P, x0.308

P=P,, x0.825 24)

2.302
1—-exp| ~ (P> P, x0.825
Pr(Pupiey S P Pop) = cxp[ [ Fpp x0.308 ) :l( i )

0 (P S P,, %0.825)

where Pgp is the predicted burst pressure (either normalized by the operating pressure or in dimensional
form), and Ppg(m. is the unknown true burst pressure. The scaled normal distribution is

A 2

1 1 P— Py, x1.0975

P|P,)= XP| =3\ P w1281
Iu(P15y) P, x0.1281V27 P[ 2( Fr%0.1281 )]

@25

- 2

| r 1( =Py, x1.0975
Pr(Popouey S P Pyp) = — 2\ Poxoazsr ) |
f( BP(true) l ”) PB,,XO.IZSI 27 E-exp[ 2( Pu,xo.1281 J] g
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Table 10. Wastage-Area-Footprint Geometry Data

FobTaterin. [ Elgetvalue Extraciion for Pritelpal Moments 454 Direcsions|
ne] i ¢ tincipal Ditétrion

«gzu P
As-Found Footprint i 3536] 3036 | 164122 01194 {9839 969933 -117.16[7526  197.4) <0.9004, 04351> <0.4351, 0.9004>
Adjusted Footprint 025in. 4006} 31.78 | 164301 -0.1255 | 129.02 11031.81 -141.35|99.00 24571 | <0.8943,-0.4476> <0.4476,0.8943>
for Bounding Calculation .

Footprint centroid is in globa! coordinates.

Global coordinate system has its z-axis aligned with the vertical centerline of the vessel.
The x-y plane of the global coordinate system is a horizontal plane

with the x-axis along the line between the centerlines of Nozzles 3 and 11.

J“Adjusted” Footprint
a=0.25in.
Area=40.06 In’
' . Perimeter = 31.78 in.

Centroid of
Footprint
¥(16.412.-0.119)":

Vo2

/ X[ =, cos(¢i)
“As Found” Footprint

Area =35.36 in* Y;= r;sin($)
Perimeter = 30.36 in.
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Table 10 (continued) Details of Wastage Area Footprint Before Adjustment for Bounding
Calculation (Figure taken from Fig. 13 ref. [12])

Arvas of Overflow Daring Parts of Cysle

r,,{;’ ;7}7.... ‘x e ng;gj;gmjmgg: 1 -Gl \LM
fpatisnnss | AL
NERZR
’ N
' <3 n// 7~
S E o
SRR
D ‘
=4 ~9£2:
e
1y A e 28
T YSK T At z'%ql %
B /2 f TRy
! L 4 [ [ 10
PPoint H L daRE s
0 0639 -1.895 24 8.000 0.334
1 0334 -2.280 25 7.500  0.483
2 0.000 -2.235. 26 7.000 0582
3 0.500 -2.492 27 6.500  0.829
4 1000 -2.522 28 6.000 1,046
5 1500 -2.482 29 5.500 1.303
6 2000 -2581 30 5.000 1.778
7 2500 -2.730 31 4500  2.460
8 3000 -2769 32 4000  3.023
] 3.500 -2.759 33 3.500 3.300
10 4000 -2.789 34 3.000 3221
11 4500 -2.819 35 2500  3.250
12 5000 -2.819 36 2.000  3.300
13 6500 -2.759 37 1500  3.349
14  6.000 -2.700 38 1000  3.240
15 6500 -2.621 39 0.500  3.122
%6  7.000 -2.512 40 0.000  3.000
17 7500 -2.364 41 0210 2578
18  8.000 -2216 = 42 -0.364  2.000
19 8500 -2.087 43 0242  1.985
20 9000 -1.712
21 9.135 -1.000
22 9000 -0.555
23 8500  0.137

Origin of local coordinate system located at centerline of Nozzle 3. (inches)
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16,935 elements
52,887 nodes

Nozzles 3, 11,
15, and 16

$5308 Weld
(0.297 in. thick)

refined cladding

Base Material

with Wastage Area
model to resolve
through-thickness ptw 8/4/72002
strain gradients

() ,
Fig. 12. Finite-element global and submodels of the Davis-Besse head and wastage area, The
displacements at the vertical side boundaries of the submodel are driven by the global
model. Both models are exposed to the same internal pressure loading.
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Global Model of Davis-Besse
RPV Head and Closure Flange
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Fig 12 (continued) (¢) geometfy of RPV head and closure‘ﬂange used in global model,
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Fig 12 (continubed) (d) relative location of submodel within full RPV head,
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80+ Framatome G =1 14.992 goa2es ] -
i §8308 Curve ™ e -7 |
600 °F T aa :
- - ,:*v - « - - . . .
, e X ET S G, = 69.65 ksi
—_— el e ’ )
D i I _ s
x 60 ' P —;‘j Zi | O = 61.64 ksi -
14 % ) B~ ) . :
@ oy \ Adjusted SS308 Curve 1
- LY/ : for Bounding Calculation 0
we.a _ 0.19 l
‘g 401 For both SS308 curves o, =94359€ 7" |
E " O'.Mu-,-.;= 30-96 ks’ .J
g & uniform clongation = 11.15% $6 308
) ' oo §5 308 (adjusted) |
- —o — ABW-101 .
, - —e o~ ABW-102
20} At 600 °F C - ~ ABW-103 ™
s E=25,571 ksi - ~e ~ ABW-104 .
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: =5~ ABW-108
. ASW data at 550 °F )
0_ : I 1 A | S Ky \ 1 L ) O | i ' 1 j 1
0 0.05 0.1 0.15 0.2
True Strain (-) 06/10/2002.K1 ptw

Fig. 13. Adjusted SS308 stress vs. strain curve used in the bounding-case calculations compared to
curves from a range of ASW heats. Strain hardening in the adjusted curve was reduced to
lower-bound all of the data. The offsct yield strength and strain at ultimate strength were
retained from the unadjusted SS308 curve received from Framatome.
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Sorvo-sssna (iyversn Oak Riugs Ntions) Labovarory
Huavy-8 el 7 Progress
UT:Sanelie, LLC
. p.t “:l"‘“ S o Jh\-w r-'
hasihed omt | Y T

Porimcter = 3178 fn.

' Cénroid 6F
# Foosprint

R A

Fig. 14. Geometry of adjusted Wastage area footprint. Lower figure is a Photoworks®-rendered
image of the submodel with the adjusted “as-found” footprint.
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=a= Cantar (Clad/base)

| =#- Cantar {mid clad)}

~—a= Canlor (Inner Burface]
—=~Average Thru Thickness

o018 ciad thicknaas = 0.24 in. fconstant)
boundngcass
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P.Y. Willare Q102002
0.00 4 -
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Prossure fusl)
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bounding casre

oo 1 E1 ) 30 ’ %] $0 (1] 10

(b) Pressure (bal)

Fig. 15. Effective plastic-strain histories at two high-strain locations in the wastage area: (a) near
the center and (b) near Nozzle 3.
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As discussed above, the bounding calculation predicted a burst pressure of 6.65ksi which has a
cumulative probability of failure of 0.244. For pressures below 5.486 ksi (at the position of the location
parameter), the Weibull model predicts a zero probability of failure. The model based on a normal
distribution estimates a cumulative probability of failure of 8.43x107" at the operating pressure of
2.165 ksi and 8.89x107° at 2.5 ksi. See Table 11 foxf additional estimates.

Table 11. Estimated CumulativerProbability of Faijlures for the Bounding Calculation
Q‘NWCA d e

a1lyre’
2,155 7.84E-10
2.165 B.43E-10
2200  1.09E-09
2.225 1.30E-09
2,250 1.55E-09
2.275 1.86E-09
2.300 2.22E-09
2.325 2.65E-09
2.350 ‘3.15E-09
2375 - 3.76E-09
2.400 4.47E-09
2.425 5.32E-09
2.450 6.32E-09
2475 - 7.50E-09

2.500 8.89E-09

QOOQOOOOOOOOOOOE
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S. Summary and Conclusions

A stochastic model of the probability of failure associated with a computational prediction of the plastic
collapse of the exposed cladding in the wastage area of the Davis-Besse RPV head has been developed
from the following technical bases: '

(5) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings,
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area
footprint, and cladding, '

(6) nonlinear, large-deformation, elastic-plastic discrete-element aﬁalyse& of the disk-burst tests
also reported in {2] (GAPL-3 discrete-element code[3]),

(7) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study
(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2), and

(8) a theoretical criterion for plastic’instaBility in a circular diaphragm under pressure loading,
due to Hill [S] (as cited in [6]), applied to the disk-_burst tests.

The final Weibull model has the scaled form of

2302
P-P,,x0.825
l-exp|-| —&&—— (P> Pppx0.825
Pr{Papiuey S P) = Fyp (P| Pyp) = p[ ( Fyp %0308 ) :l( 'P )

0 (P< P, x0.825)

(26)

Given a computationally predicted burst pressure, Pgp, the mode! gives an estimate of the cumulative
probability that the true but unknown burst pressure P, .., < P, where P is the service pressure under
consideration. A normal distribution is also available for nonzero failure-probability estimates at

pressures below the location parameter in the Weibull distribution.

As an example application, estimates are provided for a bounding calculation of the “as-found” Davis-
Besse wastage area. The bounding calculation predicted a burst pressure of 6.65 ksi which has a
cumulative probability of failure of 0.244. For pressures below 5.486 ksi (at the position of the
location parameter), the Weibull model predicts a zero probability of failure. The model based on
a normal distribution estimates a cumulative probability of failure of 8.43x10™"" at the operating
pressure of 2.165 ksi and 8.89x10~ at 2.5 ksi.
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Appendix A — Statistical Point-Estimation Techniques for Weibull Distributions

The three parameters for the Weibull distributions of & (=experimental burst pressure/predicted
burst pressure) were calculated using a combination of two point-estimation procedures,
Maximum Likelihood and the Method of Moments. The parameters to estimate are the location
parameter, a, of the random variate, the scale parameter, b, of the random variate, and the shape
parameter, c. '

Maximum likelihood estimators for the shape parameter ¢’ and the scale parameter b’ can be
derived from the likelihood function, L, for the Weibull distribution. The Weibull density is given
by
w(ala,b,c) = -g- y*exp (-— yc), for
(y =(a-d)/b,a> a,b,c>0)

(A1)

and the corresponding likelihood function is the joint density (see Ref.[A1]) (given the location

parameter, @)
L(b,c|a,a)=

N _ c-] 7 PR i
H E a( i) a exp| - CU(,) a (A.Z)
b b b

i=l

The maximum likelihood (ML) estimators for the scale, b’, and shape parameters, ¢’, are defined
as the unique values of (b',c’) that maximize the joint probability that the N members of the
sample set all come from the same parent population. The ML estimators are, therefore,
calculated by finding the stationary point of Eq. 7(A.2). Upon taking the logafithm of Eq. (A.2),
the derivatives with respect to the individual parameters (b’,c") are set to zero. The resulting ML
estimator for the shape parameter, ¢’, is found by sol\}ing iteratively for ¢’ in the following

nonlinear equation

N .

ey 20 bap=a)

a(lngLfc D s LS (- -L =0 (A3)
) Seap-a )

i=1

Upon obtaining a solution for ¢”, the ML estimator for the scale parameter, 4’, follows directly

from
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=yt X =0 (A4)

i=1

For the ML point estimators for (&',¢") , the location parameter, a, was assumed given.

The Method of Moments (MM) can now be applied to provide a point estimate for the location
parameter, a". In the Method of Moments, the sample moments are used as estimators for the
population moments. The MM point estimator for the scale parameter, b , is (given the shape
parameter, c),

b* = Jmy ITA+2/c)-T2(1 +1/0)] | (AS)

where m;, is the second moment of the sample about the sample mean and I' is Euler’s gamma
function. The MM estimator for the location parameter, a , follows from

*

a =m-bTA+1/c) (A6)

where mjis the 1* crude moment of the sample (the sample mean) and the sample moments are
defined by ‘

N

5%
= 3 (A7
(o -mi)”

mZ = Z
i=l N

From Ref. [B.2], a moment estimator for the shape parameter, c s also exists
+ 4104683 -1.148513./hy + 0.44326(,fb; ) - 0.053025(,/8; ) A

JB +1.139547

where \[b_,- is the sample skewness. HoweVer, for sample sizes as small as 20, there will be a

high level of uncertainty in the (a',b‘,c') estimates derived from ¢ (Ref. [A.2]).
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The three parameters for the Weibull distribution of & were estimated through the following

iterative sequence:

1. For the discrete set ((;),i =1, N), calculate the sample moments, (m],my) from Egs. (A.7).

2. Select a trial value for the location parameter, @y, Where @y, <min(ag;,i=1,2,...N).

3. Calculate ML estimates for (c’, b') from Egs. (A.3)-(A 4) by letting a=a,;;; .

4. Calculate MM estimates for (a b ) from Eqs. (A.5)-(A.6) by letting ¢ =¢” as determined
in Step 3.

5. Calculate a relative deviation between the trial @, and the MM estimate of a * from Step 4
by

5= i =a (A9)
Yrial
6. Given £yjepgnce » 85 a pre-selected convergence tolerance, if 6> &4jprance » then select a new
trial location parameter, g, and repeat Steps 3-6 until convergence, defined as
S Egolerance -
Upon convergence there will be two tnplets (a,m,,, ',c") and (a",b ,c") where in general
Qyigt =a and b'#b" although 4" was typically close to b" in this study. The triplet

(a’,b',c) was taken as the converged estimate for the parameters of the Weibull
distribution for a.
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