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Stochastic Failure Model

for the Davis-Besse RPV Head

P. T. Williams and B. R. Bass
Oak Ridge National Laboratory

P. 0. Box 2009
Oak Ridge, TN, 37831-8056

Abstract

The development of a stochastic model is described in this report in which the uncertainty associated with
predictions of burst pressure for circular diaphragms using computational or analytical methods is
estimated. It is postulated that the trends seen in predicting the burst pressure with nine experimental disk-
burst tests (using materials, geometries, and pressure loadings relevant to the Davis-Besse analysis) will
be representative of the computational predictions of the burst pressure in the Davis-Besse wastage area
problem. Given a computational prediction of burst pressure for a specific configuration of the wastage
area, the scaled model will provide an estimate of the cumulative probability that the true burst pressure
will be less than any given service pressure.

The stochastic model was developed from the following technical bases:

(1) experimental data obtained during disk-burst tests with loadings, geometries, and materials
relevant to the Davis-Besse pressure loading, wastage-area footprint, and cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests,

(3) nonlinear, finite-strain, elastic-plasticflnite-element analyses performed for the current study,
and

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading,
applied to the disk-burst tests.

The final Weibull stochastic model has the scaled form of

'(P,,p xO.308 
Pr(RP.P(In)•P)=Fw(PIPrn,)=lCPi (j P 00 ],(P> xO.825)

0 ,(P Px0.825)

A normal distribution is also available for nonzero failure-probability estimates at pressures below the
location parameter in the Weibull distribution. Given a computationally predicted burst pressure, Pp, the
model gives an estimate of the cumulative probability, Fw, that the true (but unknown) burst pressure

< P. where P is the service pressure under consideration. As an example application, estimates
are provided for a bounding calculation of the "as-found" Davis-Besse wastage area.
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1. Introduction

1.1. Objective

This report presents a stochastic model of failure for the stainless steel cladding in the wastage area of the

Davis-Besse Nuclear Power Station reactor pressure vessel (RPV) head. For a given internal pressure, the

statistical model provides an estimate of the cumulative probability that the exposed cladding will have

failed at a lower pressure. The failure mode addressed by this model is incipient tensile plastic instability

(i.e., plastic collapse) of the cladding.

1.2. Background

The following was taken from ref. [1].

On February 16, 2002, the Davis-Besse facility began a refueling outage that included
inspection of the vessel head penetration (VHP) nozzles, which focused on the inspection of
control rod drive mechanism (CRDM) nozzles, in accordance with the licensee's
commitments to NRC Bulletin 2001-01, "Circumferential Cracking of Reactor Pressure
Vessel Head Penetration Nozzles," which was issued on August 3, 2001. These inspections
identified axial indications in three CRDM nozzles, which had resulted in pressure boundary
leakage. Specifically, these indications were identified in CRDM nozzles 1, 2, and 3, which
are located near the center of the RPV head. ... Upon completing the boric acid removal on
March 7, 2002, the licensee conducted a visual examination of the area, which identified a
large cavity in the RPV head on the downhill side of CRDM nozzle 3. Followup
characterization by the ultrasonic testing indicated wastage of the low alloy steel RPV head
material adjacent to the nozzle. The wastage area was found to extend approximately 5 inches
downhill on the RPV head from the penetration for CRDM nozzle 3, with a width of
approximately 4 to 5 inches at its widest part.

See Fig. 1. for a photograph of the Davis-Besse RPV, a schematic of a typical nuclear power reactor, and

a sketch and photographs of the wastage area.

1.3. Scope

In support of the investigation by the United States Nuclear Regulatory Commission's (NRC) Office of

Nuclear Regulatory Research, the Heavy-Section Steel Technology Program at Oak Ridge National

Laboratory has developed a statistical model of a specific failure mode for the exposed stainless steel

cladding in the cavity of the Davis-Besse RPV head. Section 2 reviews the technical bases employed in

the development of the model; Section 3 presents the details of the stochastic model; Section 4

demonstrates an application of the model to the results of a bounding calculation for the "as found"

condition of the wastage area; and Section 5 provides a summary and conclusions.

5



DRAFT NOT FOR ATTRIBUTION 7/15/2002

Davis Besse Reactor Vessel Head Degradation Head Cutaway View

The above tiwgerm s Uew Dao Odis Bas matof vemef head dugadsion behwseun razzle #3
aid nozzle W i. Ts skesdi was prvdd I Ul NRC by Itt Licanres.

Fig. 1. (a) Davis-Besse Nuclear Power Station RPV and (b) sketch of RPV head degradation.
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Typical Pressurized Water Reactor

Con to d
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Fig. I (continued) (c) schematic of a typical nuclear power reactor showing the relationship of the
CRDM nozzles to the RPV head.
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l

Fig. 1. (continued) (d) photographs.of the wastage area with Nozzle 3 removed.
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2. Technical Bases

The technical bases employed in the construction of the stochastic model are:

(I) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings,

geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area footprint, and

cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests also

reported in [2] (GAPL-3 discrete-element code[3]),

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study

(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading, due to

Hill 5] (as cited in [6]), applied to the disk-burst tests.

2.1. Experimental - Disk-Burst Tests

In the early 1970s, constrained disk-burst tests were carried out under the sponsorship of the ASME

PVRC Subcommittee on Effective Utilization of Yield Strength [7]. This test program employed a range of

materials and specimen geometries that were relevant to components in a nuclear power plant steam

supply system'. The geometries of the three test specimens analyzed in 2] are shown in Fig. 2, the test

matrix is shown in Table 1, and the properties of the three materials are presented in Table 2. The nine

disk-burst tests produced three center failures and six edge failures over a range of burst pressures from

3.75 to 15 ksi as shown in Table 1.

Table 1. Test Matrix for Disk-burst Tests [21

E eX E- ag * r iu .

I SS 304 A 0.375 0.250 2.625 15 Edge
2 B 0.125 0.125 2.875 6.8 Center
3 C 0.37S 0.125 2.625 7.7 Center
4 A533B A 0.375 0.250 2.625 11 Edge
5 B 0.125 0.125 2.875 5.3 Edge
6 C 0.375 0.125 2.625 6.7 Center
7 ABS-C A 0.375 0.250 2.625 9.8 Edge
8 B 0.125 0.125 2.875 3.75 Edge
9 C 0.375 0.125 2.625 4.94 Edge

' The three materials are representative of reactor core support structures and piping, the reactor pressure vessel, and
plant component support structures [2].

9
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Table 2. Property Data for Materials In Disk-burst Tests 121

SS304 34 84 0.54 34.07 129.36 0.432 162.41 0.27
A-533B 74 96 0.17 74.15 112.32 0.157 139.41 0.12
ABS-C 39 64 0.31 39.08 83.84 0.270 105.20 0.17

*The power-law parameters in Table 2 were fitted for the current study where o = KE" and , E are the
effective true stress and effective total true strain, respectively.

Geometry A

0.0~~~~~~~~~

10.0

Geometry B

of th thre spcmes

.~~~~ . _iI

Fig. 2. Geometr Coso h he ikbrtsecmn sdi aldmnin r
inces) Imgeo thergtSeRooois-edrd iw f'-ymtysldmdl

Fi.2 emti ecitosof the three ds-us specimensue n1](lldmnin r
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2.2. Computational - Axisymmetric Discrete-Element and Finite-Element Models

The results of a computational study were presented in [2] in which the nine tests were simulated using

the GAPL-3 computer code [3]. GAPL-3 applied the discrete-element method using a two-layered system

of elements: one layer for the strain-displacement field and a second layer for the stress field to perform

an elasto-plastic large-deformation analysis of stresses, strains, loads, and displacements of thin plates or

axisymmetric shells with pressure loading. At each incremental load step, the code iterated to resolve both

geometric and material nonlinearities, thus establishing a condition of static equilibrium. The GAPL-3

code did not account for the reduction in thickness of the diaphragm with increasing load, and, therefore,

was unable to demonstrate the "tailing up" of the experimental center-deflection histories. As discussed in

[2], the thin-shell approximation of the GAPL-3 code is not strictly valid in the fillet region. The GAPL-3

model did include a plastic-hinge type of strain redistribution, but the strain concentration effect due to

the fillet radius was not accounted for, since the predicted strain distribution in the cross-section of the

fillet was linear by assumption. These approximations in the analysis were driven by the limitations of the

computer resources available at the time of the study in 1972.

The current study reanalyzed all nine disk-burst tests using the ABAQUS [4] finite-element code. With

current computing power, many of the simplifying assumptions required in 1972 could be removed to

provide a more detailed analysis. The fundamental assumptions made in the current study are:

(1) the material is assumed to be homogenous and isotropic before and throughout plastic defor-
mation;

(2) the material is assumed to be free of pre-existing defects;

(3) the volume of the material undergoing plastic deformation is assumed to be constant (i.e., incom-
pressible with a Poisson's ratio of 0.5);

(4) the hydrostatic component of the stress tensor has no effect on yielding; and

(5) the plastic deformation follows incremental J flow theory (Mises yield criterion) with its
associated flow rule (Levy-Mises) and isotropic strain hardening.

The finite-element meshes shown in Fig. 3 were developed using 8-node quadratic, axisymmetric, solid

elements with reduced integration (ABAQUS element type CAX8R). The material property data given in

Table 2 were used to fit power-law constitutive models for the plastic region of the three materials (see

Fig. 4). The analyses applied a nonlinear finite-strain procedure with an incrementally increasing pressure

load applied from zero up to the load at which numerical instabilities caused ABAQUS to abort the

execution.

11
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Fig. 3. Axisymmetric finite-element meshes used In the analyses of disk-burst tests reported In [21.
Quadratic 8-node axisymmetric (CAX8R) elements with reduced Integration were used In a
nonlinear finite-strain elastic-plastic analysis of the three disk-burst geometries with three
materials.

140

.3
ic
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to
E.

0 0.1 0.2 03

True Strain -)
0.4 0.5

06J1112D02.Ki ptw

Fig. 4. True stress vs true strain curves of the three materials used In the disk-burst tests compared
to SS308 at 600 F. These three test material curves were developed using a power-law
strain-hardening model fitted to yield and ultimate strength/strain data for each material
given In 21. (See Table 2).
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2.3. Theory - Hill's Plastic Instability Theory

A plastic instability theory due to Hill [5] for a pressurized circular diaphragm constrained at the edges is

presented in [6]. Figure 5 shows the geometry of the diaphragm, both undeformed and deformed, along

with the nomenclature used in the development of the theory.

The geometry of deformation is assumed to be a spherical dome or bulge of radius, R. The undeformed

ring element defined by its position, width, and thickness, (,, , ), respectively, is assumed to deform

to an axisymmetric shell element with surface length, 8L, deformed thickness, h, radial position, r, and

angle q) . The nonuniform thickness of the dome reaches its minimum at the pole with polar height H. For

a spherical coordinate system with its origin at the center of the dome, the principal strains for the thin-

shell (i.e., the strains are assumed constant through the thickness) element are

ee=In( r ); en = In ) m= In ( h ) (1)

A geometric relationship exists between the radius and chord of a circle such that

H + a2

2H (2)

where a is the effective radius of the undeformed diaphragm. Using Eqs. (1) - (2) and the geometry shown

in Fig. 5, ref. [6] derives the following relations for the meridional, e , and hoop, e9 , strains at any point

on the spherical bulge

e((z H,a)= e(zjH,a)= n[+ (z )](3)

where the geometric parameter z is shown in Fig. 5. Applying the constant volume assumption, i.e.,

+ + Et = 0, produces the following equation for the radial ("thickness") strain

e,(z Ha) = -2-#(zj |Ha) =In[I+(zH Ia2)J4

13
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I

to - a

Fig. 5. Spherical geometry of deformation assumed In Hill's 151 plastic Instability theory.
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The effective strain then becomes

E(E~sEO'Eh)-4(E-# - ) + (e - ekl +* ) 2= -E^ (z ,a) = 2 nl+ 2 (5)

The maximum radial strain, therefore, occurs at the pole of the spherical bulge. Applying the thin-walled

assumption (which is not made in the computational finite-element model) for an axisymmetric shell

element, the equilibrium relation between the meridional, o, and hoop, a., membrane stresses and the

internal pressure, pi, loading is

a7o Afp (6)

For a spherical dome, , =R =R, and a state of equibiaxial stress is assumed to prevail near the pole of

the dome with the principal stresses being

a pR; (7)

and the effective stress , U V(o;r, )' + (a - ,) + (a, - a, 2his

a = a; = a= pjR (8)
2h

To establish an instability criterion, a surface can be constructed in pressure, effective stress, and

deformation/strain space by expressing Eq. (8) as a total differential of the form

Rp, = 2haP
Rdp + pdR = 2hd6 + 2Fdh (9)

dp= d& + dh dR

p, f h R

An unstable condition exists at a point of maximum pressure on the surface where dp, = 0. The condition

is unstable because any perturbation from this position always involves a reduction in load (pressure),

even in a rising stress field. The instability criterion for a deformed bulge of radius R is, therefore,

established by the following relation between stress and the deformed geometry for any point on the dome

15
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da dR dh

R h

or in terms of effective strain

(10)

(1 1)d =1 dR
d -R dE

If the instability condition is attained, it will first occur at the point of maximum effective strain at the top

of the dome (at z = H) such that Eq. (11) can be stated as

a d 2 4 ) 2
(12)

Applying a power-law constitutive form to relate effective stress to effective strain in the plastic region,

CY=KE', 9(13)

the effective strain at instability is, after a great deal of algebraic manipulation,

F =(2n+1)
1wit e

where n is the power-law exponent in the constitutive equation, Eq. (13).

(14)
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For a given material and diaphragm geometry ( n, a, ho), the pressure at the instability condition (i.e., the
burst pressure) can be determined by the following procedure:

* Calculate the effective critical strain.

a Calculate the corresponding effective critical stress.

* Calculate the critical thickness.

e,>, = (2n+1)
11

ha,, hr ep 

* Calculate the polar height at the critical condition.

* Calculate the corresponding bulge curvature radius.

* Finally, calculate the predicted burst pressure.

H.*=a FxP.. -

H+2

RD = H,' +a

2H,,*fri

bunt = .,&,
r al R.,

An alternative instability criterion was developed by Chakrabarty[8] which was based on a Tresca yield
surface. The critical effective strain was found to be

E.* 2(2 - n)(I + 2n)
11-4n (5(15)

17
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3. Stochastic Model Development

3.1. Computational and Theoretical Model Results

Computational results using the GAPL-3 code were presented in [2]. Converged solutions were obtained

for eight of the nine tests. Comparison of experimental and computational centerline deflections showed

good agreement for the eight converged cases. In the nonconverged case (ABS-C, geometry C), some

difficulty was reported in getting convergence at high pressures. In all cases the experimental data showed

a "tailing up" as the pressure approached burst pressure, which the computational model was unable to

capture. In general, the prediction of the burst pressure for the eight converged cases showed good

agreement with the experimentally-determined burst pressures. Defining a as the ratio of the

experimental burst pressure to the computationally-predicted burst pressure, the mean for a was 1.19

with a standard error for the mean of ±0.0484 and a standard deviation for the sample of 0.137.

The finite-element models using ABAQUS were able to obtain burst pressures for all nine tests, where the

predicted burst pressure is defined as the pressure at which a breakdown occurs in the numerical

procedure, causing the run to abort. For a nonlinear, finite-strain, static load step, ABAQUS uses

automatic sizing of the load increment to maintain numerical stability. The number of iterations needed to

find a converged solution for a load increment varies depending on the degree of nonlinearity in the

system. If the solution has not converged within 16 iterations or if the solution appears to diverge,

ABAQUS abandons the increment and starts again with the increment size set to 25% of its previous

value. An attempt is then made at finding a converged solution with this smaller load increment. If the

increment still fails to converge, ABAQUS reduces the increment size again. ABAQUS allows a

maximum of five cutbacks in an increment before aborting the analysis. Therefore, ABAQUS will

attempt a total of 96 iterations with six increments sizes before abandoning the solution. The initial load

size for the failing increment was typically already very small due to difficulties in convergence with the

previous and final successfully-converged load increment.

Equivalent plastic strain contours are shown in Fig. 4 for the geometry A (ABS-C carbon steel) specimen

(Test No. 7) at the point of numerical instability. The experimental burst pressure for this specimen was

9.8 ksi, and numerical instability of the solution occurred at approximately 9.05 ksi, for an a = 1.083.

Highly localized plastic straining can be observed near the fillet, thus predicting an edge failure for this

specimen which did in fact fail at its edge.

18
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(a)

Ref. P. C. Riccardella, 'Elasto-Plastic Analysis of Constrained Disk Burst Tests,'
ASME Paper No. 72-PVP-12, ASME Pressure Vessels and Piping Conference, New
Orleans, LA, September 17-21,1972.
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(b)

Fig. 4. Equivalent plastic strain contours for the Geometry A (ABS-C carbon steel) specimen at the
point of numerical Instability. Highly localized plastic straining provides a precondition for
plastic collapse at the edge of the specimen. (ABAQUS analysis results)
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Figure 5 compares the predicted centerline deflection load histories with the experimentally-observed

deflections at failure (estimated from Figs. 3 and 4 in (2]). The "tailing up" of the experimental deflection

curves near the point of failure is predicted by the model, indicating that the computational simulations

are capturing the final localized "necking" of the diaphragm. For the nine ABAQUS predictions, the

mean for a was 1.055 with a standard error for the mean of ±O.0331 and a standard deviation for the

sample of 0.0993.

The results of applying Hill's failure criterion are presented in Table 3. The mean for a was 1.058 with a

standard error for the mean of ±0.0374 and a standard deviation for the sample of 0.1123.

Table 3. Application of Hill's Instability Theory to Nine Disk-burst Tests

Test K Ci h~~~~ E~,.1, H., R.,, a,, h C,jg P brst P bs(e) a
(lit) IY ~ W a(in.) (in.) (ksi) (in.) (ksi) (kbsi).

1 162.41 0.27 2.625 0.250 0.561 1.493 3.054 138.84 0.1427 12.98 15 1.156
2 162.41 0.27 2.875 0.125 0.561 1.635 3,345 138.84 0.0714 5.92 6.8 1.148
3 162.41 0.27 2.625 0.125 0.561 1.493 3.054 138.84 0.0714 6.49 7.7 1.187
4 139.41 0.12 2.625 0.250 0.449 1.316 3.276 126.96 0.1596 12.37 11 0.889
5 139.41 0.12 2.875 0.125 0.449 1.441 3.588 126.96 0.0798 5.65 5.3 0.938
6 139.41 0.12 2.625 0.125 0.449 1.316 3.276 126.96 0.0798 6.19 6.7 1.083
7 105.20 0.17 2.625 0.250 0.490 1.383 3.183 92.95 0.1532 8.95 9.8 1.095
8 105.20 0.17 2.875 0.125 0.490 1.514 3.486 92.95 0.0766 4.08 3.75 0.918
9 105.20 0.17 2.625 0.125 0.490 1.383 3.183 92.95 0.0766 4.47 4.94 1.104

A summary of all 26 burst pressure predictions is given in Table 4. Combining the 26 cases into a single

sample gives a mean for a of 1.098 with a standard error for the mean of ±0.0251 and a standard

deviation for the sample of 0.1281. Even though Hill's theory is applicable only for center failures, the

good agreement between the experiments (including those that failed at the edges) suggests that, for the

edge-failure cases, the specimens were also close to a condition of plastic collapse at the center when they

failed first at the edge.
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Fig. 5. Comparison of experimental centerline vertical deflections at failure to ABAQUS FEM
vertical deflection histories at the center of the Geometry A and B specimens for (a) SS 304,
(b) A533-B, and () ABS-C materials, and
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Fig. 5. (continued) (d) ABAQUS FEM vertical deflection histories at the center of Geometry C, all
three materials compared to specimen failure.
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Table 4. Comparison of Experimental Burst Pressures to Three Predictions

I SS 304 A 15 Edge 12.3 Edge 1.22 12.98 Center 1.16 13.29 Edge 1.13
2 B 6.8 Center 4.8 Edge 1.42 5.92 Center 1.15 6.22 Edge 1.09
3 C 7.7 Center 7.4 Center 1.04 6.49 Ceater 1.19 6.59 Center 1.17
4 A533B A II Edge 9.8 Edge 1.12 12.37 Center 0.89 12.26 Edge 0.90

5 B 5.3 Edge 4.2 Edge 1.26 5.65 Center 0.94 5.24 Edge 1.01

6 C 6.7 Center 6.8 Center 0.99 6.19 Center 1.08 6.03 Edge 1.11

7 ABS-C A 9.8 Edge 8 Edge 1.23 8.95 Center 1.10 9.05 Edge 1.08

8 B 3.75 Edge 3 Edge 1.25 4.08 Center 0.92 4.19 Edge 0.89

9 C 4.94 Edge 4.47 Center 1.10 4.46 Edge/Center 1.11
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3.2. Development of Stochastic Model of Failure

The development of a stochastic model is described in this section in which the uncertainty associated

with predictions of burst pressure for circular diaphragms using computational or analytical methods is

estimated. It is postulated that the trends observed in estimating the burst pressure with the nine disk-burst

tests in [2] will be representative of the predictive accuracy of computational estimates of the burst

pressure in the Davis-Besse wastage-area problem. Given a prediction of burst pressure for a specific

configuration of the wastage area, the scaled stochastic model will provide an estimate of the cumulative

probability that the true burst pressure will be less than a given service pressure. This postulated linkage

of the test specimens to the Davis-Besse problem is obviously an approximation, since the wastage area

footprints are not identical to the circular diaphragms used in the tests. The appropriateness of this linkage

is in part, therefore, dependent on the ability of the finite-element models to capture, as accurately as is

feasible and based on the best current knowledge, the actual geometry of the wastage area footprint.

Table 5 summarizes some descriptive statistics for the ratio of experimental burst pressure to predicted

burst pressure, a, for the three predictive methods discussed in the previous section. Also shown in the

table are the results of combining the three samples into one larger sample of 26 data points. Using the

point estimating procedures described in the Appendix, a three-parameter Weibull distribution was fitted

to the finite-element model predictions. The results of that fit are shown in Table 6 with a comparison to a

normal distribution fit. The Kolomogorov-Smirnoff (K-S) one-sample goodness of fit statistics indicate

that both models would be accepted under the null hypothesis that the sample was randomly drawn from

the candidate continuous distribution. The normal distribution gives a higher K-S p-value for this sample.

A continuous three-parameter Weibull distribution has the following probability density (PDF) and

cumulative distribution finctions (CDF)

fw( I a,b,c)( ) exp - )] (a>a, (b,cO) 16)

b~~~~ ( b 
* L i ~~~~~~~~~~~~~~~(16)

PrX a=waabc= =-x (- (a >a, (b, c) >0)
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Table 5. Descriptive Statistics for the Ratio of Experimental Burst Pressure
to Predicted Burst Pressures

r1zr1-,Y--11VTt-,f---5rnn=M" i 7 W � Fr,

tesOriptiuve taisticSt RlVOcWMCrdllat1Y7;)kJ1s Ticor ABAQUS CombicciN
Sample Size
Mean
Standard Error
Median
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Confidence Level(95.0%)

8
1.1902
0.0484
1.2223
0.1368
0.0187
-0.0506
0.0007
0.4314
0.9853
1.4167
0.1144

9
1.0576
0.0374
1.0953
0.1123
0.0126
-1.4799
-0.5892
0.2979
0.8889
1.1868
0.0863

9
1.0549
0.0331
1.0939
0.0993
0.0099
-0.4349
-0.9683
0.2739
0.8943
1.1682
0.0764

26
1.0975
0.0251
1.1057
0.1281
0.0164
0.2593
0.1714
0.5277
0.8889
1.4167
0.0517

Table 6. Weibull Model Parameters and Median Rank Order Statistics for ABAQUS Predictions

A533B
A533B
ABS-C
SS 304
ABS-C
A533B
SS 304
cQ ClA

A 0.89718
B 1.01186
A 1.08268
B 1.09393
C 1.10722
C 1.11041
A 1.12876
r 1Q)

2 0.181
3 0.287
4 0.394
5 0.500
6 0.606
7 0.713
8 0.819
0 n 04

K-S p-value
li ~ w e~ bWlb Normal

Location 0.848 0.2928 0.4236
Scale 0.232

Shape 2.352
Model Sample

Mean 1.0535 1.0549
Variance 0.0087 0.0099
Std. Dev. 0.0930 0.0993

Median 1.0464 1.0939
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where a is the location parameter, b is the scale parameter, and c is the shape parameter. The inverse

CDF for the Weibull distribution is given by

a=a+b[-ln(I-P)]-; O<P<1 (17)

The normal distribution function has the form

[ i(a _.U)2
f ( I# ua) p 2( )]) (18)

pr(Xs)=FN(apo)=4= J;1exp[ l(x-p'

Combining the three sets into a single sample gives a sample size large enough that additional goodness

offit statistical tests may be carried out. Table 7 shows a ranking of the 26 data points with the median

rank order statistic given by

i-O.3 (19)
n+0.4

Also given in Table 7 are the results of a x2 goodness of fit test comparing the Weibull distribution fitted

for the combined data set with a normal distribution. The Z2 statistics were calculated using 5 intervals

with 2 degrees of freedom. The resulting p-values shown in the table indicate that both distributions

would be accepted by the null hypothesis for the test; however, the Weibull fit has a higher confidence

level of 42.9% compared to 7.6% for the normal distribution.

The combined dataset was also fitted to two-parameter gamma and log-normal distributions with the

results shown in Table 8. Marginal univariate tests using the three empirical distribution function (EDF)

statistics of Anderson-Darling, Cramer-von Mises, and Watson were calculated using the GenStat®

program [9]. For each univariate test, the test statistics are empirical distribution function (EDF) statistics

that compare the empirical distribution function of the sample with the theoretical distributions expected

under the null hypothesis. These tests provide good power against a wide range of alternatives [O, 11].

The parameters for all four distributions were estimated by GenStat® using maximum likelihood

estimators. The univariate test results in Table 8 give the Weibull distribution a significance level of

approximately 10% (confidence level of 90%) with the other three distributions having acceptable but

lower confidence levels; therefore, all four distributions would be accepted by the null hypothesis with the

26



DRAFT NOT FOR ATTRIBUTION 7/15/2002

Weibull distribution indicating a better fit to the data. Figure 6 presents GenStat® probability-probability

(P-P) plots of the four distributions with order statistics given by (-0.5)n. A qualitative comparison

between the plots in Fig. 6 indicates only minor differences between the distributions.

Table 7. Weibull Model Parameters and Median Rank Order Statistics for Combined Predictions

I Hilrs Theory A533B
2 ABAQUS Sohi ABS-C
3 ABAQUS Soln. A533B
4 Hill's Theory . ABS-C
5 Hill's Theory A533B
6 Ricarrdella (1972) A533B
7 ABAQUS Soln. A533B
8 Ricandella (1972) SS 304
9 ABAQUS Solh. ABS-C
10 Hill's Theory A533B
11 ABAQUS Soln. SS 304
12 Hilrs Theory ABS-C
13 Hill's Theory ABS-C
14 ABAQUS Soln. ABS-C
15 ABAQUS Soln, A533B
16 Ricarrdella (1972) A533B
17 ABAQUS Soln. SS 304
18 Hill's Theory SS 304
19 Hilrs Theory SS 304
20 ABAQUS Soln. SS 304
21 Hill's Theory SS 304
22 Ricandella(1972) SS 304
23 Ricarrdella (1972) ABS-C
24 Ricarrdella (1972) ABS-C
25 Ricandella (1972) A533B
26 Ricarrdella (1972) SS 304

A 0.8889
B 0.8943
A 0.8972
B 0.9180
B 0.9382
C 0.9853
B 1.0119
C 1.0405
A 1.0827
C 1.0829
B 1.0939
A 1.0953
C 1.1042
C 1.1072
C 1.1104
A 1.1224
A 1.1288
B 1.1479
A 1.1560
C 1.1682
C 1.1868
A 1.2195
A 1.2250
B 1.2500
B 1.2619
B 1.4167

0.0265
0.0644
0.1023
0.1402
0.1780
0.2159
0.2538
0.2917
0.3295
0.3674
OA053
0.4432
0.4811
0.5189
0.5568
0.5947
0.6326
0.6705
0.7083
0.7462
0.7841
0.8220
0.8598
0.8977
0.9356
0.9735

X = Experimental Burst Pressure/Pedicted Burst Pressure

W Weisiill PaWe iieters". 2 Significance Test
Location 0.825 Distr. X2 p-value DOF

Scale 0.308 Nonnal 5.16240 0.07568 2
Shape 2.301 Welbull 1.69430 0.42864 2

Model Sample
Mean 1.0975 1.0975

Variance 0.0158 0.0164
Std. Dev. 0.1256 0.1281

Median 1.0876 1.1057
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Table 8. Marginal Univariate Tests for Four Distributions for Combined Sample

SuLTh _7 N _ _ _p~Adi~t~ aK?.
Normal mean - 1.098 0.44 0.061 0.061

standard deviation - 0.128
Gamma shape - 75.82 0.501 0.073 0.072

scale - 0.01448
Log-Normal log-mean - 0.0867 0.546 0.082 0.08

log-stdv - 0.1153
location - 0.825

Weibull scale - 0.308 0.652 0.103 0.0997
shape - 2.302

Table 9. Critical Values of Marginal EDF Test Statistics

Anderson-Darling 0.576 0.656 0.787 0.918 1.092
Cramer-von Mises 0.091 0.104 0.126 0.148 0.178

Watson 0.085 0.096 0.116 0.136 0.163

I
z
2
2

I
9

Expected Probability Expected Probability

I
A41
.0

ZI
I
0

75.82 (shape) / 21 / b = 0.308 (scale)
.EAdz b = 0.01448 (scale) e C = 2.302 (shape)

, 0 A 0s 0. 0 0.2 04 0.6 0.8 1

Expected Probabiliy Expected Probability

Fig. 6. GenStat®P P-P plots of four distributions fitted to combined data set.
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For completeness, the continuous two-parameter lognormal distribution is given by

f (a I A., = 7i;=exp [I j, (-r,<a<-o)

_______ _______2] (20)

Pr(X S a) =Fv(a IA(tpo) ex I p[ h(ln(x)I s f (-AI < a <cc)

and the two-parameter gamma distribution is described by

[exp -
fr~~b~P~()a bX~) (-->a>-c, b>0)

1 ~~~~~~~(21)

Pr(X a)=Fr(a b,c)=P |b(b& [ rabr ( b>o)

where b is a scale parameter and c is the shape parameter.

Figure 7 compares the probability density functions of the four models to the histogram for the combined
data set, and Figs. 8 and 9 show the probability density and cumulative distribution functions for the
Weibull and normal models fitted to the n = 9 sample of FEM predictions. The corresponding PDF and
CDF plots for the Weibull and normal models fitted to the combined sample of n = 26 are given in
Figs. 10 and 11. From these results, it was decided to concentrate on the Weibull and normal
distributions. These two distributions will produce bounding estimates on the conditional probability of
failure for low pressures relative to the predicted burst pressure with the Weibull distribution being
recognized as giving the better fit to the data.
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Fig. 7. Histogram of combined data set compared to probability densities of four fitted
distributions.
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4
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0
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C

0
CZ

-

CL

3

2

f . .God 1

0.6 0.8 1 1.2 1.4
Exp. Burst PressurelPredicted Burst Pressure, 07i1:02,ga p1W

Fig. 8. Probability densities for two continuous statistical distributions fitted to the sample of 9
data points for a - experimental burst pressureAFEM predicted burst pressure.

0.8 1 1.2 1.4
Exp. Burst Pressure/Predlcted Burst Pressure, O7W0102.K2 t

Fig. 9. Weibull statistical failure model (n = 9) compared to a normal cumulative distribution
function, median rank order statistic, and the 90% confidence Interval on the order
statistic. ABAQUS FEM solutions were used to develop the models. N.B.: The order
statistics and their 90% confidence intervals are shown here for comparative purposes only
and were not used In the point-estimate procedures for the parameters of either the Weibull
or normal distributions.
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:P 2.5 x / e; \ mean = 1.09tCn Agemedian= 1.088

o2-
Welbull Distribution
Location 0.825

80 -Scale =0.308
1.5 Shape 2.302

IL~~~~~~~~~~~~~~~~~I

0.5

e.g e ... *.e . ...,n, , , _. , , , . a, .
.6 0.8 1 1.2 1.4

Exp. Burst PressurelPredicted Burst Pressure, ax 07103/02.K1 plt

Fig. 10. Probability densities for two continuous statistical distributions fitted to the combined
sample of 26 data points for a - experimental burst pressure / predicted burst pressure.

1 , I , , , , , 

* Weibull Distribution - * ,
0.8 Location =0.825 /

. Scale =0.308
U. Shape 2.302 * .
o - . /

Normal Distribution , Iy 
Mean = 1.0975

IL 0.4 Std Dev =0.1281 J 

E 0.2 95/ . p t

n +0.4

O f . l ;.* I l I 

0.6 0.8 1 1.2 1.4
Exp. Burst PressurelPredicted Burst Pressure, a 07tf3/02.K2 ptw

Fig. 11.WeibuU statistical failure model (n - 26) compared to a normal cumulative distribution
function, median rank order statistic, and the 90% confidence Interval on the order
statistic. Models developed with combined sample. N.B.: The order statistics and their 90%
confidence Intervals are shown here for comparative purposes only and were not used in the
point-estimate procedures for the parameters of either the Welbull or Normal distributions.
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The recommended Weibull stochastic model of failure has the following form

2.302(a-0.825)lD2 [ (a-0.825 1
fw, (a) = 0.308 ~.0.308 ) XL~ 0.308 (ja > 0.825)

0 ,(a 5 0.825)
(22)

a xp _(a-~~~~~0.825 .~.O 

a [ I ~le [ r .2)3l](a > 825)Pr(Xf-a)= jfw()d~c={ 0x[(J 308 .8

0 ,(a5 0.825)

where a is the ratio of the true (but unknown) burst pressure to the calculated burst pressure. If nonzero

estimates are required for values of a <0.825, then the following normal distribution may be used

f =~~ 1 -(a-1.0975 <af(a)= I. expF (_-952 a
0.1281'2x P-2 0.1281 ]

(23)

Pr(X 5 a) = I Lexp 1(S-1.0975)\ d{, ( < a <
0.1281 2 l, 2 0.1281 

These models may also be considered as statistical estimates of the expected predictive accuracy of

computational methods applied to burst pressure calculations for constrained diaphragms.
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4. Application of Stochastic Model to Bounding Calculation

A bounding calculation was carried out for the "as-found" condition of the wastage area in the

Davis-Besse head. The finite-element model used in the analysis is shown in Fig. 12. An adjusted stress-

strain curve (see Fig. 13) was constructed to lower-bound the available data for the cladding material. The

geometry of the wastage area footprint was taken from Fig. 13 in the Root Cause Analysis Report [12]. As

an estimate of the uncertainty in the current wastage area measurements, the footprint was extended by

approximately 0.25 inches (see Table 10 and Fig. 14 for a geometric description of the adjusted footprint).

A uniform cladding thickness of 0.24 inches (the minimum cladding thickness value shown in Fig. 14 of

ref. [12]) was assumed in the model. The finite-element model was then loaded with increasing pressure
until the point of numerical instability at an internal pressure of 6.65 ksi (see Fig. 15).

For the predicted burst pressure of 6.65 ksi, the normal and Weibull statistical failure models can be

scaled to provided estimates of cumulative probability of failure as a function of internal service pressure

for the specific condition of the wastage area simulated by the finite-element analysis. Examples of the

scaled Weibull model are shown in Figs. 16 and 17 for normalized internal pressure and direct internal

pressure, respectively. The scaled Weibull model has the form

(PIP)= 2 (302 P230 ) exp -( B-P3 ) P(P>Ppx0 825)
PP xO.308 P,. xO.308 B P, xO.308 P

\2P302 (24)
Pr :5 P I P,) I P 825 ,(P > Prnp x0. 825)

,p x 0.308

0 ,(P P, xO.825)

where Pap is the predicted burst pressure (either normalized by the operating pressure or in dimensional

form), and PPB(Q,.e) is the unknown true burst pressure. The scaled normal distribution is

A (PI PP) = I ex ( Pp X 12975 )2]P,p XO.I2872 13 2 1? x 0. 281

(25)

Pr(PP(.) PIP=P)= 12 exp P XO Jd
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Table 10. Wastage-Area-Footprint Geometry Data

g>E ark a, s a>S^>Ai4',t4-iEfl¶iflU* $1,nWtp,' ,,.sa Mo~n~IiI1M

As-Found Footprint 35.36 30.36 16.4122 4.1194 98.89 99.33 -117.16 75.26 197.41 <0.9004,-0A35> c0A351,0.9004>

Adjusted Footprint 025 in. 40.06 31.78 16.4301 4.1255 129.02 11031.31 -141.35 99.00 245.71 <0.3943, 4.4476> <0.4476,0.3943>

for Bounding Calculation

Footprint centroid is In global coordinates.
Global coordinate system ha its z-axis aligned with the vertical centerline of the vessel.
The x-y plane of the global coordinate system is a horizontal plane
with the x-axis along the line between the centerlines of Nozzles 3 and 1.

"As Found" Footprint
Area = 35.36 In'

Perimeter 30.36 In.
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Table 10 (continued) Details of Wastage Area Footprint Before Adjustment for Bounding
Calculation (Figure taken from Fig. 13 ref. 1121)

* 117IAwi oh tc1 IIrno Lewis iii C'y.I 

. X f itch..Sw1 4-i

1,r itizdI I. t Pt'~n J I 

. I . _ ., 

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

-0.639 -1.895 24
-0.334 -2.280 25
0.000 -2.235 26
0.500 -2.492 27
1.000 -2.522 28
1.500 -2.482 29
2.000 -2.581 30
2.500 -2.730 31
3.000 -2.769 32
3.500 -2.759 33
4.000 -2.789 34
4.500 -2.819 35
5.000 -2.819 36
5.500 -2.759 37
6.000 -2.700 38
6.500 -2.621 39
7.000 -2.512 40
7.500 -2.364 41
8.000 -2.216 42
8.500 -2.087 43
9.000 -1.712
9.135 -1.000
9.000 -0.555
8.500 0.137

8.000 0.334
7.500 0.483
7.000 0.582
6.500 0.829
6.000 1.046
5.500 1.303
5.000 1.778
4.500 2.460
4.000 3.023
3.500 3.300
3.000 3.221
2.500 3.250
2.000 3.300
1.500 3.349
1.000 3.240
0.500 3.122
0.000 3.000
-0.210 2.578
-0.364 2.000
-0.242 1.985

Origin of local coordinate system located at centerline of Nozzle 3. (inches)
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(a)

Submodel of Wastage Area

Nozzles 3, 11,
15, and 16

Cladding 
SS30B Weld

(0.297 In. thick) Base Material
with Wastage Area

(b) v

Fig. 12. Finite-element global and submodels of the Davis-Besse bead and wastage area. The
displacements at the vertical side boundaries of the submodel are driven by the global
model. Both models are exposed to the same Internal pressure loading.
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Fig 12 (continued) (c) geometry of RPV head and closure flange used In global model,
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Fig 12 (continued) (d) relative location of submodel within full RPV head,
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Fig 12 (continued) (e) geometry of submodel relative to Nozzles 3, 11, 15, and 16.
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. . . . t , . I . I 1. I , i I -, -, i

80 t Framatome 1 14.992 £,¢ _.

t C unt -MW
_ , -. ~ lt = 69.65 ksi

,.V 60 , c4,, = 61.64 ksi

A W fS s j Adjusted SS38Curve
______________________ for Bounding Calculation

gU 40 t For both SS308 curves 0 = 94.3 59 £,0194l
25 tZ CT.0B¢Z r ... I = 30.96 ksl
I-kr uniform elongation - 11.15% SS 308

- _ SS 308 ladiusted
-* - A8W-101

M ~-AW-102
20 At 600 F -,- A8W-103

; =s 25,5;71 ksi -- A8W-104
v = 0295 -. - A8W-105

A8W-106
A8W d at 5 F

0 0.05 0.1 0.15 0.2

True Strain (-) 06/1012002.K1 ptw

Fig. 13. Adjusted SS308 stress vs. strain curve used In the bounding-case calculations compared to
curves from a range of A8W heats. Strain hardening In the adjusted curve was reduced to
lower-bound all of the data. The offset yield strength and strain at ultimate strength were
retained from the unadjusted SS308 curve received from Framatome.
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Fig. 14. Geometry of adjusted wastage area footprint. Lower figure is a Photoworks®D-rendered

image of the submodel with the adjusted "as-found" footprint.
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Fig. 15. Effective plastic-strain histories at two high-strain locations in the wastage area: (a) near
the center and (b) near Nozzle 3.
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Fig. 16. Application of the failure statistical criterion produces a cumulative probability of failure
(based on a Welbull distribution) curve for the Bounding Case condition. Cumulative
probability of failure as a function of normalized Internal pressure.
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Fig. 17. Application of the failure statistical criterion produces a cumulative probability of failure
(based on a Welbull distribution) curve for the Bounding Case condition. Cumulative
probability of failure as a function of Internal pressure.
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As discussed above, the bounding calculation predicted a burst pressure of 6.65 ksi which has a

cumulative probability of failure of 0.244. For pressures below 5.486 ksi (at the position of the location

parameter), the Weibull model predicts a zero probability of failure. The model based on a normal

distribution estimates a cumulative probability of failure of 8.43xlO-10 at the operating pressure of

2.165 ksi and 8.89 x109 at 2.5 ksi. See Table 11 for additional estimates.

Table 11. Estimated Cumulative Probability of Failures for the Bounding Calculation

2.155 7.84E-10 0
2.165 8.43E-10 0
2.200 1.09E-09 0
2.225 1.30E-09 0
2.250 1.55E-09 0
2.275 1.86E-09 0
2.300 2.22E-09 0
2.325 2.65E-09 0
2.350 3.1SE-09 0
2.375 3.76E-09 0
2.400 4.47E-09 0
2.425 5.32E-09 0
2.450 6.32E-09 0
2.475 7.50E-09 0
2.500 8.89E-09 0
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5. Summary and Conclusions

A stochastic model of the probability of failure associated with a computational prediction of the plastic

collapse of the exposed cladding in the wastage area of the Davis-Besse RPV head has been developed

from the following technical bases:

(5) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings,
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area
footprint, and cladding,

(6) nonlinear, large-deformation, elastic-plastic-discrete-element analyses of the disk-burst tests
also reported in [2] (GAPL-3 discrete-element code[3]),

(7) nonlinear, finite-strain, elastic-plasticfinite-element analyses performed for the current study
(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and

(8) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading,
due to Hill [5] (as cited in [6]), applied to the disk-burst tests.

The final Weibull model has the scaled form of

e _(jP-' xO.825 I >IP .85
Pr(fP(lTh) P)= F(PP) I [ ) P xO.308P x0825) (26)

0 ,(P P xO.825)

Given a computationally predicted burst pressure, Pp, the model gives an estimate of the cumulative

probability that the true but unknown burst pressure P,, ) P. where P is the service pressure under
consideration. A normal distribution is also available for nonzero failure-probability estimates at

pressures below the location parameter in the Weibull distribution.

As an example application, estimates are provided for a bounding calculation of the "as-found" Davis-

Besse wastage area. The bounding calculation predicted a burst pressure of 6.65 ksi which has a

cumulative probability of failure of 0.244. For pressures below 5.486 ksi (at the position of the

location parameter), the Weibull model predicts a zero probability of failure. The model based on

a normal distribution estimates a cumulative probability of failure of 8.43 xl 0-1 at the operating

pressure of 2.165 ksi and 8.89 x109 at 2.5 ksi.
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Appendix A - Statistical Point-Estimation Techniques for Weibull Distributions

The three parameters for the Weibull distributions of a (=experimental burst pressure/predicted

burst pressure) were calculated using a combination of two point-estimation procedures,
Maximum Likelihood and the Method of Moments. The parameters to estimate are the location
parameter, a, of the random variate, the scale parameter, b, of the random variate, and the shape

parameter, c.

Maximum likelihood estimators for the shape parameter c' and the scale parameter b can be

derived from the likelihood function, L, for the Weibull distribution. The Weibull density is given
by

wmala,b,c) = Cyc- exp yc), for
b (A.1)

(y=(a-a)/b,a>a, b,c>O)

and the corresponding likelihood function is the joint density (see Ref.[A1]) (given the location
parameter, a)

L(bclaa)=

jjc aQ)-a|1 E)( -a C- (A.2)

The maximum likelihood (L) estimators for the scale, b', and shape parameters, c', are defined

as the unique values of (b',c') that maximize the joint probability that the N members of the

sample set all come from the same parent population. The AL estimators are, therefore,

calculated by finding the stationary point of Eq. (A.2). Upon taking the logarithm of Eq. A.2),

the derivatives with respect to the individual parameters (b',c') are set to zero. The resulting ML

estimator for the shape parameter, c', is found by solving iteratively for c' in the following

nonlinear equation

N

a(ln(L(c')) f(ap0_a)C ln(a)-a) 1
_______ -a n')-o i X (A.3)

Upon obtaining a solution for c', the Ml estimator for the scale parameter, b', follows directly

from

48



Nibs(l)) = ' (A.4)

For the ML point estimators for (b',c'), the location parameter, a, was assumed given.

The Method of Moments (MM) can now be applied to provide a point estimate for the location

parameter, a . In the Method of Moments, the sample moments are used as estimators for the

population moments. The MM point estimator for the scale parameter, b , is (given the shape

parameter, c),

b = 2 /[F(1 +2/c)-r 2 (l +I/c)] (A.5)

where m2 is the second moment of the sample about the sample mean and r is Euler's gamma

function. The MM estimator for the location parameter, a* , follows from

a =n4-b5 F(l+l~c) (A.6)

where ml is the I" crude moment of the sample (the sample mean) and the sample moments are

defined by
N

ml = aI) 
j~ N

N (Iml ) - (A.7)
in2 =

From Ref. [B.2], a moment estimator for the shape parameter, c, also exists

4.104683-1.148513~f-+ 0.44326(4) 2-0.O53025(0)3 (.8)

+ 1..139547

where is the sample skewness. However, for sample sizes as small as 20, there will be a

high level of uncertainty in the (a*,b',c') estimates derived from c* (Ref. A.2]).
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The three parameters for the Weibull distribution of a were estimated through the following

iterative sequence:

1. For the discrete set (a(E), i = 1, N), calculate the sample moments, (m,m 2 ) from Eqs. (A.7).

2. Select a trial value for the location parameter, a.nal where atial < min(a(;),i = 1,2,...N).

3. Calculate ML estimates for (c', b) from Eqs. (A-3)-(A.4) by letting a = aia,.

4. Calculate MM estimates for (a*,b) from Eqs. (A.5)-(A.6) by letting c = c' as determined
in Step 3.

5. Calculate a relative deviation between the trial a,a1 and the MM estimate of a* from Step 4
by

a = 0tria - a (A.9)
atfial

6. Given tokrance as a pre-selected convergence tolerance, if 8 > etolernce then select a new
trial location parameter, aia,, and repeat Steps 3-6 until convergence, defined as

o6 S Ctolerance -

Upon convergence, there will be two triplets (atr,,ab,c') and (a*,b*, c) where in general

atjdal a* and b' * b although b' was typically close to b in this study. The triplet

(a ,b' c) was taken as the converged estimate for the parameters of the Weibull
distribution for a.
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