Use of MNSA-2 as a Contingency Repair for BMI Nozzles

Westinghouse Electric Company

September 9, 2003

Meeting Agenda

- Purpose of Meeting
- MNSA Overview & Mock-up Demonstration
- Experience
- MNSA-2 Design
- Qualification of MNSA-2 Assembly and the RPV lower head
- Preliminary Risk Analysis
- Relief Request Overview
- Wrap-up

Purpose

- Several plants are considering the use of MNSA-2 as a contingency for RPV bottom mounted nozzle (IMI/BMI) repairs
- Provide summary information relating to the technical suitability and adequacy of this repair for application to BMI nozzles
- Receive Staff feedback concerning use of MNSA on BMI nozzles

MNSA OVERVIEW

- The MNSA (Mechanical Nozzle Seal Assembly) is a mechanical device that provides both sealing and structural support for nozzle connections.
- MNSA has been accepted and installed on nozzles in the CE fleet (Hot Legs, Pressurizers and Steam Generators)
 - Previous nozzle sizes bound that of BMI's
- Design and qualification test reports were submitted to the NRC in support of MNSA installation

MNSA OVERVIEW

- There are two types of MNSAs
 - MNSA-1 seals on the outside of the pressure boundary
 - MNSA-2 seals on the flat surface at the bottom of the counterbore
- MNSA is an alternative to weld repair for leaks in J-groove welded Alloy 600 instrument nozzles.
- MNSA-2 will be employed in the BMI application

MNSA OVERVIEW

- MNSA has been designed and qualified as a permanent repair for an ASME Section III, Class1 pressure boundary for the life of the plant.
- MNSA is a repair which can be visually inspected from the vessel O.D.
 - Vessel wastage U.T. inspections can be made with MNSA in place
 - MNSA will not interfere with future volumetric NDE of the BMI nozzles
- NRC has accepted MNSA repairs for at least 2 fuel cycles

Technical Considerations for Utilization of the MNSA Contingency

• MNSA Strengths :

- No breach of the pressure boundary required for installation
- Lower Radiological Dose for installation
- Does not require cutting, disposal and replacement of incore instrumentation
- Design accommodates wastage inspection from reactor vessel outside surface
- Visual examination of the leak off tube can be performed at subsequent outages to confirm primary seal integrity
- Not a new method successfully used in primary system pressure boundary applications (ASME III Class 1)
- The anti-ejection feature provides a second barrier to nozzle ejection and the potential for a LOCA

MNSA-2 Mock-up Demonstration

MNSA Experience Summary

INSTALLED MNSAS				
Plant Name	# installed	Location	When installed	When removed
Maine Yankee	1	Pzr RTD nozzle	1995	Plant shut down
SONGS 2	2	Lower Pzr Hd	Feb-98	Still on
SONGS 2	2	Hot Leg RTD	Feb-98	Jan-99
SONGS 2	2	Stm Gen PDT	Feb-98	Still on
SONGS 3	1	Side Pzr RTD	Mar-98	Still on
SONGS 3	2	Lower Pzr Hd	Mar-98	Still on
Calvert Cliffs 1	1	Side Pzr RTD	Mar-00	Still on
Calvert Cliffs 1	2	Lower Pzr Hd	Mar-00	Still on
Calvert Cliffs 1	4	Upper Pzr Head	Mar-00	Still on
Calvert Cliffs 2	1	Side Pzr RTD	Mar-01	Still on
Calvert Cliffs 2	2	Lower Pzr Hd	Mar-01	Still on
Palo Verde 3	1	Hot Leg RTD	Oct-01	Apr-03
Palo Verde 3	2	Pzr Htr Slv	Apr-03	Still on
Millstone 2	2	Pzr Htr Slv	Feb-02	Still on
ANO2 (MŃSA2)	6	Pzr Htr Slv	Mar-02	Still on
Fort Calhoun	1	Upper Pzr Head	Oct-00	Feb-03
Waterford 3	3	Hot Leg Inst Noz	Mar-99	Oct-00

MNSA-1 Design

- Grafoil seats against nozzle
 OD and vessel OD
- 4 bolts load compression ring
- Belleville Washers
- Tie Rods prevent ejection if loss of weld

MNSA-2 BMI Design

BNFL

Slide 11

Similarities Between MNSA-1 and MNSA-2

- 4 bolt pattern
- Grafoil primary seal
- Same materials
- Same bolt torque values or less
- Seal seats on OD of nozzle
- Qualified to ASME NB 3200
- Prototype tested

MNSA-2 Design Features

- Standardized design
- No system breach required
- Seal packing gland type, live loading
- Seal is NOT dependent on existing surface condition
- Compression load normal to seal
- Secondary seals provide leakoff control (visual ;confirmation of primary seal integrity)
- Anti-ejection feature
- Existing J weld not required for structural integrity

MNSA-2 Primary and Secondary Seal Design

- Primary Seals Prevents Reactor Coolant (RC) Leakage
- The secondary seal diverts Reactor Coolant away from vessel and prevents any damage to base material in the unlikely event of a primary seal leak

Installation Process to Ensure Proper Alignment

- Tapped holes for tie rods are drilled with a precision jig that is clamped to the nozzle. Jig has drill bushings that align drill parallel to nozzle axis.
- If holes were drilled skewed to nozzle, the MNSA could not be assembled.
- Tie rods are tensioned evenly using crisscross pattern.
- Tie rods are tightened to a specified torque value using calibrated torque wrench.

Installation Process to Ensure Proper Alignment (cont.)

- Bottom of counterbore is machined perpendicular to nozzle axis. Grafoil seal provides some compliance.
- Compression collar is relieved on inner surface to provide clearance.
- If counterbore is machined eccentric to nozzle, clamp cannot be assembled.
- Hence, no side load is imparted to BMI nozzle.

00000A.4

Qualification of the MNSA-2 Assembly and the RPV Lower Head

Qualification Status

- MNSA-2 was previously qualified for use on the pressurizer lower head to repair heater sleeve leaks
- Qualification is being extended to apply to the RPVLH BMI locations
 - Generic evaluations currently being completed to support a relief request submittal at the end of September
 - » Stress analysis
 - » Tooling Demonstration
 - » Installation procedures
 - » NDE methods
 - Plant specific documentation to be completed when a specific leak is identified

Qualification Criteria

- Analysis as an ASME Code Section III Class 1 Pressure Boundary Component (RPVLH and MNSA) in accordance with the RV Design Specification
 - Primary Stresses (Local & General)
 - Primary + Secondary Stresses
 - Fatigue Usage
- Functional Tests to confirm sealing effectiveness
 - Leakage Tests

BNFL

- » Pressure, Seismic, Thermal Cycling
- Bellville Washer Compression Test
- Corrosion Evaluation of RPVLH BMI nozzle bore

Flaw Evaluation of remaining leakage crack in J-weld

Loading Conditions

- Loads covering all design transients are evaluated prior to and after an assumed nozzle ejection (Levels A, B, C and D)
 - Installation preload
 - Internal pressure
 - Steady-state and transient thermal conditions
 - Seismic Loads
 - Design Mechanical Loads
 - Impact load on the anti-ejection device

Locations Evaluated

- RPVLH Evaluation
 - -Typical innermost and outermost locations are analyzed
 - »Intermediate locations are bounded
 - Counterbore
 - -Tapped attachment holes

All Portions of the MNSA-2 are Evaluated

- Per the ASME Code including:
 - Threaded rods to vessel shell
 - Tie rods for preventing nozzle ejection
 - Compression collar
 - Flanges and impact plate
 - Belleville washers, flat washers and nuts

•

Analysis Methodologies

- 3-D Finite Element Analysis (ANSYS)
 - -Temperatures and Stresses
- Handbooks and classical methods
 - -Stress concentration factors and fatigue strength reduction factors

Typical model for evaluation of PM, PL and P + Q stresses

Typical FEA model for Steady State and Transient Thermal Analyses of Lower Head (Pressurizer) and MNSA-2 Temperatures

Analysis Results ASME III Code

- Pressurizer Lower Head and MNSA-2 components meet all ASME Code Criteria for the pressurizer application
- Preliminary Pressure load case results for the RPVLH are consistent with the pressurizer results

Preliminary Analysis Results for RV Lower Head

- Pressure Load Case
 - General Primary Membrane Stress
 - » Allowable is $S_m = 26.7$ ksi (SA 533 Gr. B @ 550°F)
 - » Pm = PR/2T + P/2 = ~22 ksi (Hand calculation based on NB-3324.2)
 - » FEA $P_m = \sim 21$ ksi w/o MNSA
 - » FEA $P_m = \sim 21$ ksi w/MNSA
 - Local Primary Membrane Stress
 - » Allowable is $1.5S_m = 40.05$ ksi
 - » FEA P_1 = ~ 24 ksi w/o MNSA
 - » FEA $P_1 = \sim 27$ ksi w/MNSA

00000A.

Preliminary Results for RPV Lower Head

Qualification Testing

- Functional testing previously completed for the pressurizer application
- These tests are applicable to the BMI application, because
 - The Pressurizer heater sleeves envelope the BMI nozzle sizes
 - Hillside effects are more severe in the pressurizer
 - Temperatures are higher in the pressurizer
 - Thermal transient rates are more severe in the pressurizer

00000A.2

Qualification Testing (cont.)

- Leak testing
 - Hydrostatic Test
 - » Test in accordance with ASME Code demonstrates zero leakage
 - Thermal Cycle Test
 - » 3 Heat-up/Cool-down Cycles demonstrates zero leakage
 - Seismic Load Test
 - » Demonstrates zero leakage
 - » Establishes rigidity
- Axial Compression Test on Belleville Washer Packs
 - Determines stiffness values for FEA model

00000A.3

Seismic Qualification Setup

- MNSA-2 is "Rigid"
- Frequency is > 50 Hz
- Sine sweep testing performed pressurized to 3000 psi

Corrosion Evaluation of Nozzle Bore

- Primary coolant will leak through cracks and fill annulus between nozzle and vessel
 - -Unclad low alloy steel exposed to primary coolant
 - -Some general corrosion of the steel will occur during operation, outages, startups
 - -Calculate an overall corrosion rate
 - -Estimate total corrosion (increase in hole diameter) to end-of-life
 - -Calculate maximum increase in hole diameter before Code rules exceeded
 - –Compare total lifetime corrosion with the maximum increase in hole size to demonstrate acceptability to EOL

Flaw Evaluation

- Flaw evaluation performed in accordance with ASME Code Section XI
- Free field stresses in RPVLH determined with 3-D FEA model –Maximum combined pressure + thermal stress
- Assumed flaw
 - -Through cladding, butter and Jweld
- Stress intensity factors determined using Raju-Newman correlations

Preliminary Risk Analysis

Preliminary Risk Analysis Results

- A risk model was prepared in terms of an event tree which is quantified for a spectrum of cases to simulate the uncertainty in the j-weld flaw probabilities.
- All reasonably realistic cases meet the risk acceptance criteria of CDF < 1.0E-06/year comfortably, for one or more MNSAs installed for both Westinghouse and B&W designed plants.

Westinghouse

00000A.13

Preliminary Risk Analysis Results

- For Westinghouse designed plants, the best estimate case, results in a CDF of 1.56E-10/year. The upper bound estimate results in a CDF of 1.56E-09/year.
- For B&W designed plants, the calculated CDF values are 2.14E-10/year (best estimate), and 2.14E-09/year (upper bound).
- With these small values of CDF, the LERF criteria are also met.
- The risk of vessel failure due to MNSA installation is essentially unchanged.

Risk Analysis Results

- A risk model was prepared in terms of an event tree which is quantified for a spectrum of cases to simulate the uncertainty in the j-weld flaw probabilities.
- All reasonably realistic cases meet the risk acceptance criteria of CDF < 1.0E-06/year comfortably, for one or more MNSAs installed for both Westinghouse and B&W designed plants

00000A.4

Risk Analysis Results

- For Westinghouse designed plants, the best estimate case, results in a CDF of 1.56E-10/year. The upper bound estimate results in a CDF of 1.56E-09/year.
- For B&W designed plants, the calculated CDF values are 2.14E-10/year (best estimate), and 2.14E-09/year (upper bound).
- With these small values of CDF, the LERF criteria are also met
- The risk of vessel failure due to MNSA installation is essentially unchanged

00000A

MNSA-2 Relief Request Overview

1...

- This section discusses the Relief Request for the MNSA-2.
- In the event of a leaking BMI, it is recognized that additional information will be required for return to power such as:
 - NDE results of all penetrations
 - Root Cause analysis
 - Failure Modes & Effects Analysis
 - Future plans for inspection & monitoring

00000A.11

- •System
 - Reactor Coolant System (RCS)
- •Components
 - Will identify specific nozzle locations
- •ASME Code Applicability
 - -Will identify year/addenda for each site
 - -Section XI applicability
 - -Section III applicability

Westinghouse (Westinghouse

- Code Requirements
 - Rules for replacing ASME Sect. III Class 1 welded nozzle integrity with mechanical clamps are not clearly defined in ASME Section III
 - Code interpretation allows mechanical connections if designed to ASME Section III
- MNSA-2 a proposed alternative to welded connection
- Basis for Relief
 - Cite regulatory provisions for relief [10 CFR 50.55(a)(3)(i)]
 - The MNSA-2 will provide an acceptable level of quality & safety

00000A.6

- Basis for proposed alternative
 - -Current design of nozzle
 - -MNSA-2 Application, Description, & Design
 - -Design
 - -Materials of construction
 - -Structural analysis of MNSA
 - -Structural analysis of vessel with MNSA
 - -Flaw evaluation
 - -Corrosion evaluation
 - -Qualification Testing

- Pre-service Testing & Inspection in accordance with ASME Section XI
 - -VT-1 on bolting in accordance with IWA-4820
 - –Pressure test & VT-2 inspection performed as part of plant restart at normal operating pressure in accordance with IWA-4710(c) & Code Case N-416
- In-service Testing & Inspection in accordance with ASME Section XI
 - VT-2 inspection performed prior to plant start-up following each refueling outage
 - –VT-1 in-service inspection for category B-G-2

Wrap-Up

- This presentation has covered
 - -MNSA-2 design details
 - -Operating experience
 - -Status and discussion of structural analysis being performed
 - -Corroborating test information
 - -Preliminary risk analysis results
 - -Format of relief request
- Are there any other issues associated with the use of MNSA for the BMI application?

Back-Up Slides

MNSA-2 Belleville • Seismic Test MNSA-2 To Inboard/@ ñ Fla Channel The Compression BNFL Westinghouse Slide 44

Compression Collar

 Split Compression Collar

 Weep holes allows fluid to be channeled away from vessel in event of primary seal leakage

Channel Tube

- RC is diverted away from vessel in the event that the primary seal developed a leak
- Provides a visual confirmation of the primary seal integrity

Upper Inboard and Outboard Flange

 Holds compression collar together and loads seal through the collar, threaded rods, and nuts

Inboard Upper Flange

- Inboard flange assembled onto compression collar
- Outboard flange fits

 over the top of inboard
 flange forming a
 continuous solid flange

Back-Up Slides

Compression Collar

 Split Compression Collar

 Weep holes allows fluid to be channeled away from vessel in event of primary seal leakage

Channel Tube

- RC is diverted away from vessel in the event that the primary seal developed a leak
- Provides a visual confirmation of the primary seal integrity

Upper Inboard and Outboard Flange

 Holds compression collar together and loads seal through the collar, threaded rods, and nuts

Inboard Upper Flange

- Inboard flange assembled onto compression collar
- Outboard flange fits

 over the top of inboard
 flange forming a
 continuous solid flange

