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ABSTRACT

This letter report describes existing verification and

validation tests for the Sandia Waste-Isolation Flow and

Transport Model for Fractured Media (SWIFT II, Release 4.84).

The adequacy and completeness of previous existing tests are

discussed and recommendations are made for areas requiring

additional development.

In general it was found that many aspects of the SWIFT II

code have been adequately verified. These aspects include both

local and global equations, pressure, mass transport and heat

transport solutions, various boundary conditions, aquifer

influence functions and some submodels. Aspects that have not

been tested include local and global brine equations, parts of

the repository submodel and the wellbore submodel. Recommen-

dations are made for testing the local and global brine

equations and parts of the repository submodel. The wellbore

submodel is too complicated to verify against an analytical

solution.

A review of several problems comparing SWIFT II results

against field data reveals that the comparisons are parameter

fitting problems. The SWIFT II runs were made to find

parameters that make the SWIFT II results fit field data. This

process does not test the validity of the models implemented in

SWIFT II. Because of the complexity of SWIFT II. it is

recommended that the SWIFT II code not be used to validate its

physically based models where simpler codes or analytical

solutions can be used for that purpose. Models unique to SWIFT

II, such as transport by convection in the porous matrix of a

dual porosity media, are the only physically based models that

should be validated with the SWIFT II computer code.
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1. INTRODUCTION

The SWIFT II code has been developed as part of the basalt

methodology development performed by Sandia National Laboratories

for the Nuclear Regulatory Commission (NRC). The code has

descended from the code, SWIFT. SWIFT II differs from its

predecessor by the inclusion of several new features not found

in SWIFT. These new features include the ability to simulate

confined aquifer with dual porosity systems, an aquifer with

conductive confining layers, and an aquifer with a free water

surface. The first two features constitute SWIFT II's ability

to handle fractured media. The fractured media capability is

implemented into the flow, brine, heat and radionuclide

transport equations. SWIFT II is documented in Reeves et al.

(1986a, 1986b) and illustrative problems are provided in Reeves

et al. (1986c).

As part of the quality assurance performed on any computer

code developed by SNL for the NRC's High-Level Waste Management

Program, a code must be verified (Wilkinson and Runkle, 1986).

Verification is a process which demonstrates that the software

correctly performs its stated capabilities (Wilkinson and

Runkle). Verification is usually performed by comparing the

results of the numerical code being verified with an analytical

solution. This process assures that the numerical code

correctly solves the equations representing the physical

processes implemented in it. This process does not assure that

the equations in the code represent the true physics of any

phenomena.

The process of testing whether the equations, or submodels.

implemented in a code represent the real world is called

validation. Notice that while verification tests whether the

governing equations are being solved correctly, validation

-1-
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tests whether the equations represent the physics of the

situation. Although useful in determining whether or not a

computer code is adequate for modeling physical phenomena,

validation is not required according to the existing NRC

software QA guidelines (Wilkinson and Runkle. 1986).

The purpose of this report is to determine whether the

computer code, SWIFT II, has been adequately verified and the

models implemented in it validated. There is not a wealth of

published information regarding problems solved by the SWIFT II

computer code. A computer literature search of the NTIS,

Georef, El Engineering Meetings, and the DOE Energy databases

provided no sources. The only published report containing

potential verification and validation problems for SWIFT II is

Reeves et al. (1986c). Geotrans, Inc. provided SWIFT II data

input and output files for all the problems in Ward et al.

(1984a). These are useful verification and validation

exercises for SWIFT II. The Ward et al. report originally

dealt with the SWIFT computer code but the problems have been

rerun with the SWIFT II computer code. There is probably no

doubt the SWIFT II computer code has been used to solve other

problems, but these have not been published yet.

Although the Ward et al. (1984a) report intended to present

verification problems for the SWIFT computer program, it did

not intend to validate the models in the program because of

difficulty in defining and performing validation work. As a

result, Ward et al. present several calibration problems for

SWIFT. Calibration (which Ward et al. define as the weak form

of validation) is a process in which the model parameters are

adjusted to fit experimental laboratory or field data. Similar

comments apply to the self-teaching problems provided in Reeves

et al. (1986c). The problems shown in Chapter 3 of this report

present some of the difficulties in trying to call a comparison

of field data and computer results a true validation exercise.
-2-
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This report contains several chapters. Chapter 1 provides

an introduction to the verification and validation effort

expended on the SWIFT II computer code. Chapter 2 reviews

several verification problems solved by the SWIFT II computer

code. The problems cover flow, mass transport, and heat

transport in systems utilizing both the single porosity and

double porosity equations in SWIFT II. Chapter 3 provides a

review of what might be considered validation problems.

However, this chapter shows that the reviewed problems

constitute calibration rather than validation exercises.

Chapter 4 provides a summary of the reviewed problems and

recommendations for additional problems to complete the

verification and validation effort for SWIFT 11. References

are provided in Chapter S.

-3-
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2. EXISTING VERIFICATION TESTS

2.1 VERIFICATION OF FLOW

2.1.1 Fully Penetrating Well with Constant Discharge

In this problem SWIFT II simulates the well-known Theis

(1935) equation. The problem is described in Ross et al.

(1982). A well, pumping at a constant rate, fully penetrates

an infinitely large isotropic, homogeneous, horizontal aquifer

of constant thickness. Both radial and Cartesian coordinates

are used to simulate the problem. The problem is designed to

test several capabilities of the SWIFT II code including the

ability to simulate pressure solutions, a rate controlled well,

aquifer influence functions, radial and Cartesian coordinates,

and SI and English engineering units.

Details of the simulation including the gridding system

and the hydrologic parameters are presented in Ward et al.

(1984a). The flow system is based on a well, pumped at a rate

of 3.0 x 10 3 m3/s. in an infinitely large, homogeneous,

isotropic aquifer. The hydrologic properties include a

transmissivity of 10 3 I2Is and a storage coefficient of

10 For the radial coordinate system, the center of the

first grid block is located at 0.4755 m from the center of the

well. The centers of the remaining forty-nine grid blocks are
A A A

located such that ri+,/ri is approximately 1.21 where ri

is the distance from the center of the well to the center of

the ith grid block. The distance to the outer boundary is

6096 m and the well radius is 0.1143 m. For the Cartesian

grid, a 1 m by 1 m grid block represented the well. Subsequent

grid block widths along both the x and y axes were 1.5 m, 2.5

m, 3.5 m, 5.0 m, and 8.0 m. After 8.0 m, grid block widths

were double the preceding values until a maximum grid block

width of 4096 m was reached. This resulted in a 15 x 15 grid,

which was used to model only one quadrant of the x-y plane. At

-4-



the outer boundary of both the radial and Cartesian grids, a

Carter-Tracy boundary condition was applied.

Ward et al. (1984a) describe the results of the simulations

with respect to both time and space. The results in time of

the simulation for radial and Cartesian coordinates are

presented in Figure 2-1. Simulations with both the radial and

Cartesian grids compare very well with the analytical

solution. The radial grid produces a more accurate comparison

with the analytical solution because the grid system is much

finer for the radial grid than for the Cartesian grid. Perhaps

if the Cartesian grid were not coarser than the radial grid the

results would have been more comparable.

The results with respect to space are presented in Figure

2-2 for both radial and Cartesian coordinate systems. As in

the time solution (Figure 2-1), the SWIFT II solution compares

favorably with the analytical solution. Again, the radial

coordinate solution compares more favorably than the Cartesian

coordinate solution.

Figure 2-2 shows the relationship between the grid spacing

of the two coordinate systems. Approximately three or four

radial grid blocks exist for each Cartesian grid block. This

accounts for the better comparison of the radial solution with

the analytical solution than with the Cartesian solution.

2.1.2 Fully Penetrating Well with Constant Drawdown

In this problem SWIFT 11 is used to simulate the Jacob and

Lohman (1952) solution to a well with a constant drawdown. The

problem is briefly described in Ward et al. (1984a). In this

problem a well fully penetrates an infinitely large

homogeneous, isotropic aquifer. The drawdown in the well is

held constant, which allows the flow rate in the well to vary

continuously with time. This problem tests several capabilities
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of the SWIFT II code including pressure solutions, constant-

pressure well aquifer-influence functions, radial coordinate

systems, well index, and SI and English engineering units.

Details of the grid system and hydrologic parameters are

the same as for the fully penetrating well with constant

discharge problem presented in Section 2.1 (Ward et al.,

1984a). However, instead of specifying a flow rate at the

well, a constant drawdown of 3.999 m is used. This condition

allows the flow rate in the well to vary with time. The

boundary condition specified at the outer boundary is a

Carter-Tracy boundary condition. In addition, the well index

is set up such that the permeability of the well skin is equal

to the permeability of the aquifer.

Results of the simulation are presented in Ward et al.

(1984a) and are reproduced in Figures 2-3 and 2-4. Figure 2-3

compares the well flow rates generated by the analytical

solution and the SWIFT 11 solution. The SWIFT II solution

compares very well with the analytical solution. Figure 2-4

presents a comparison of drawdowns at 100 m from the center of

the well. Again, there is a very good comparison between SWIFT

II and the analytical solutions.

2.1.3 Fully Penetrating Well in a Horizontal Anisotropic

Aquifer

In this problem, the SWIFT II code is used to simulate the

Papadopulos (1965) solution to a pumping well in an anisotropic

aquifer. The problem is described in Ross et al. (1982) as a

fully penetrating well pumping at a constant rate from an

infinitely large, homogeneous, anistropic aquifer. The effect

of anisotropy accounts for the only difference between the

Papadopulos solution and the Theis (1935) solution. The

problem is designed to test several aspects of the SWIFT II

-8-
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code including pressure solutions. anisotropic permeability

tensor, rate-controlled well condition, two-dimensional

Cartesian geometry, SI and English engineering units.

Details of the grid and hydrologic parameters for this

problem are presented in Ward at al. (1984a). Only one

quadrant of the x-y plane needs to be modeled for this problem

because of symmetry. The problem is gridded using a Cartesian

geometry. Because the anisotropy of the porous media, this

problem cannot be solved in radial coordinates. In addition

the elliptical nature of the cone of depression caused by the

anisotropy, requires the system length to be longer in the

direction of the larger directional transmissivity, the

x-direction in this case than in the direction of the smaller

transmissivity. In the x-direction, the first five grid block

widths as measured from the pumping well are 1 m, 1.5 m, 2.5 m,

3.5 m, 5.0 m, and 8.0 m. Subsequent, grid block widths are

twice the width of the preceding grid block width. The maximum

grid block width is 32786 m, which forms a total system length

in the x-direction of 65541.5 m. In the y-direction, the grid

block widths are the same as in the x-direction, except that

the maximum grid block width is 4096 m for a total system

length in the y-direction of 8197.5 m. Thus, an 18 x 15 grid

is used to model the system.

The outer boundary condition is set to a zero flux

condition because it is assumed that the cone of depression

would not reach out to the boundary. The x-direction

transmissivity is 10 3 m2/s, the y-direction transmissivity

is 104 m 2/s, and the storage coefficient is 10 3. The

pumping rate is 3 x 10-3 m3/.

Details of the modeling results for this problem are

presented in Ward et al. (1984a) and are presented in Figures

2-5 and 2-6. Figure 2-5 presents drawdown with respect to time

at points along both the x and y axes 100 m from the pumping

-11-
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well. The SWIFT II code results seem to overpredict the

results of the analytical solution by approximately three to

four percent of the drawdown at any given time. However, the

SWIFT II results seem to follow the same drawdown shape as that

produced from the analytical solution. Results of drawdown

along the x- and y- axes for various points and a time of 100

days are presented on Figure 2-6. The results on Figure 2-6

are similar to those found on Figure 2-5, namely that the SWIFT

II results overpredict the analytical solution results by three

to four percent and generally follow the same drawdown pattern

as produced by the analytical solution.

The deviation of the SWIFT II solution from the analytical

solution is cause for some minor concern. The use of smaller

grid block widths in the SWIFT II modeling would probably

produce a better comparison between the SWIFT II results and

the analytical solution.

2.1.4 Fully Penetrating Well in a Leaky Aquifer, Small

Values of Time

In this problem. SWIFT II is used io simulate the early

time pumping response of a leaky aquifer (Hantush 1960). Ross

et al. (1982) describe the problem. The modeled system

consists of a highly permeable aquifer which is overlain by a

low permeability fully saturated aquitard. Another highly

permeable aquifer which is kept at a constant head overlies the

aquitard. Radial flow in the aquifer and vertical flow in the

aquitard are the primary assumptions made for this problem.

When the lower aquifer is pumped, the resulting head drop

coupled with the constant head in the upper aquifer forces

water from the aquitard into the lower aquifer. Thus, the

resulting head drop in the lower aquifer is not as great as if

the aquitard had not been present. This problem is designed to

test several aspects of the SWIFT II code including the

pressure solution, the coupling of vertical flow in an aquitard

-14-
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with horizontal flow in an aquifer, a rate-controlled well

solution, the aquifer-influence functions, radial geometry, and

SI and English engineering units.

Ward et al. (1984a) present the details of the modeling

effort for this problem. The axisymmetric grid system consists

of two layers of 50 grid blocks each. The lower layer of grid

blocks, 3.048 m high, represents the aquifer and the upper

layer. 0.3 m high, represents the aquitard. In the radial

direction, the distance to the center of the first grid block

is 0.2957 m from the center of the well. Distances to the

center of subsequent grid blocks are approximately 1.22 times

the distance to the center of the preceding grid block. The

distance to the outer boundary is 6096 m. The well radius is

0.1143 m. A Carter-Tracy boundary condition is applied at the

outer boundary of the radial grid. The way in which the grid

is set up implies a zero flux boundary condition at the bottom

of the aquifer and the top of the aquitard. The upper aquifer

is not modeled in this problem. Hence, results from modeling

this problem are only valid for small times. The following

hydrologic parameters were used to model the problem:

Aquifer storage coefficient 10-4
Aquifer transmissivity 10-3 m2/s
Aquitard specific storage 3 x 10-3/m
Aquitard hydraulic conductivity 3 x 10-10 m/s
Aquitard thickness 0.3 m
Pumping rate 0.014 m3/s

This problem for both short and long times and different

hydrologic parameters has been run using the dual porosity

capability of SWIFT II and is presented in Section 2.1.5.

Results of the modeling effort are described in Ward et

al. (1984a) and presented on Figures 2-7 and 2-8. Figure 2-7

presents drawdown with respect to time at 20 m from the pumping

well. The SWIFT II solution tracks the analytical solution for

the first six minutes and then begins to overpredict the

-15-
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analytical solution. The deviation increases with time. Ward

et al. attribute this increasing deviation to increasing time

step size as time increases. However, it is possible that the

deviation may be due to the zero flux boundary condition at the

top of the aquitard. Because there is only one grid block in

the aquitard, the solution senses the boundary almost

immediately after pumping starts. If several layers of grid

blocks were included in the aquitard. the zero flux boundary

condition would not be sensed as quickly.

Figure 2-8 presents drawdown in the aquifer with respect

to distance at a time of 30 minutes. At distances of less than

two meters, the SWIFT II solution tracks the analytical

solution fairly well. At distances greater than two meters,

the SWIFT II solution begins to deviate from the analytical

solution and the deviation increases with increasing

distances. However, the deviations are fairly small. Possible

reasons for the deviations are mentioned in the preceding

paragraph.

2.1.5 Drawdown in a Fully Penetrating Well in a Leaky

Aquifer

In this problem the SWIFT II code is used to simulate

pumpage of a well in an infinitely large aquifer overlain by a

leaky aquitard (Hantush, 1960). The aquitard is, in turn,

overlain by a constant head source. This problem is similar in

some respects to the leaky aquifer problem described in Section

2.1.4 except that in this problem both long and short term

solutions are required and the hydrologic parameters are

different (Ward et al. 1984b). This problem tests several

aspects of the SWIFT II code including the pressure solution,

radial coordinate system, the Carter-Tracy aquifer influence

functions, well index, local grid blocks external to global

grid blocks and prismatic representations of rock matrix.
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Specifics of the problem are provided in Reeves et al.

(1986c). In the radial direction there are fifty grid blocks.

The distance from the center of the pumping well to the first

grid block is 0.1263842 m. Distances from the well center to

subsequent grid block centers are approximately 1.22 times the

distance to the preceding grid block center. The well radius

is 0.1143 m and the distance from the center of the well to the

outer edge of the modeled system is 2646.7663 m. A pumping

rate of 6.283 m /s is applied to the well and a Carter-Tracy

influence function is applied to the outer boundary.

A local grid, used to simulate vertical flow in the

aquitard, is connected to each of the radial direction grid

blocks. The local grids consist of twenty nodes each. The

distance between the first two nodes of the local grid is 0.5 m

and the distance between subsequent pairs of nodes is

approximately 1.15 times the distance between the preceding

pair. The length of the local grid is 50 m. At the end the

local grid, a constant head boundary condition, representing

the constant head aquifer overlying the aquitard. is applied.

Other hydrologic data necessary for the simulation of the

problem include:

Aquifer hydraulic conductivity 0.005 m/s
Aquifer thickness 10. m
Porosity 0.10203
Water density 1000. kg/m3
Water compressibility 0./Pa
Rock compressibility 5 .xlO 7 /Pa
Aquitard specific storativity .0016/m
Aquitard hydraulic conductivity l.x10-5 m/s
Aquitard thickness 50. i
Aquitard porosity 0.3265

Reeves et al. (1986c) present the results of the simulation

which are depicted graphically on Figure 2-9 for a distance of

117.4 m from the pumping well. For times less than

approximately 300 minutes. the SWIFT II solution slightly
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overpredicts the short time analytical solution. After 300

minutes the SWIFT II solution and the short time solution

coincide. The SWIFT II solution agrees very well with the

analytical solution for large times also. For the entire

period of simulation, there is excellent agreement between the

SWIFT II solution and the analytical solution.

The results of this SWIFT II simulation compare more

favorably with the analytical solution than for the leaky

aquifer simulation presented in Section 2.1.4. Because of the

differences in the hydrologic parameters of the two problems,

it is difficult to determine the reason one simulation produces

better results than the other. One possible reason is the use

of a local grid system with a constant head condition to

represent leakage rather than an additional layer of global

grid blocks with a zero flux condition applied to it.

2.1.6 The Dupuit-Forcheimer Steady-State Problem

In this problem the SWIFT II code is used to simulate the

steady state flow in a homogeneous, isotropic, phreatic aquifer

subject to a uniform recharge rate (Bear, 1972). A rectangular

vertical plane block of soil, representing a phreatic aquifer,

is subject to constant head boundary conditions of different

elevations at each end. The lower boundary of the block is

impermeable while recharge at a rate of 7.505x10 5m/s enters

the aquifer through the top of the block. This problem is

designed to test several aspects of the SWIFT II code including

a steady state solution, a pressure solution, vertical

Cartesian geometry, a water table solution, pressure head

boundary conditions, recharge rates, and SI units.

Reeves et al. (1986c) presented a description of the

modeling of this problem. A vertical two-dimensional grid, 20

m wide and 1 m high, is used in the modeling. In the

horizontal direction there were twenty columns of grid blocks,
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each 1 m long, and in the vertical direction there were twenty

rows of grid blocks, each 0.05 m high. Altogether four hundred

grid blocks were used to model the problem. A boundary

condition was applied to three boundaries of the grid. On the

left and right boundaries, constant head conditions of 0.75 m

and 0.25 m were applied, respectively. A flux of 7.505 x

10 5 m/s was applied into the top boundary to represent

aquifer recharge. No condition was applied to the lower

boundary, which implies a zero flux or impermeable boundary

condition.

The hydraulic conductivity used in the modeling was 0.03

m/s in both the horizontal and vertical directions which

remained constant throughout the modeled region. Since this

was a steady state problem, porosity and storage coefficients

were not required for the simulation.

Results of the simulation are presented in Reeves et al.

(1986c) and reproduced in Figure 2-10. Between the left

boundary and ten meters, the SWIFT II solution and the

analytical solution agree very well. Between ten meters and

the right boundary, the SWIFT II solution overpredicts the

analytical solution very slightly. Overall, the SWIFT II and

analytical solutions agree very well.

On Figure 2-10, the region where the SWIFT II solution

overpredicts the analytical solution is the area where the

aquifer begins to thin drastically due to the water table

decline. As a result, the aquifer transmissivity begins to

decrease as one moves closer to the right boundary, resulting

in steeper vertical and horizontal hydraulic gradients.

Because the SWIFT II solution is a two-dimensional solution as

opposed to the one-dimensional analytical solution, SWIFT II

can simulate these vertical gradients while the analytical

solution cannot. In essence, the analytical solution of the

Dupuit-Forcheimer problem is an approximation to the way the
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problem is formulated with the SWIFT II code. Therefore, the

SWIFT II solution may be more accurate than the analytical

solution for this problem.

2.1.7 The Boussinesq Transient-State Problem

In this problem the SWIFT II code is used to simulate

transient flow in a homogeneous, isotropic phreatic aquifer

(Bear, 1972). The water table in a rectangular, vertical

phreatic aquifer is initially level. At some time the water

level at one boundary is instantly lowered, causing the water

table to decline with respect to time and space. This problem

tests several aspects of the SWIFT II code including a

transient solution, a pressure solution, a water table aquifer,

vertical Cartesian geometry, pressure head boundary conditions,

and SI units.

SWIFT 1I does not simulate the Boussinesq problem, but

rather simulates two-dimensional flow in a plane, vertical

aquifer. The Boussinesq problem is a one-dimensional

horizontal flow approximation to the problem solved by SWIFT

II. By choosing appropriate hydraulic parameters, SWIFT 11 can

be forced to solve the Boussinesq problem.

The modeling of the problem is described in Reeves et al.

(1986c). The grid consists of twenty blocks in both the

horizontal and vertical directions. In the horizontal

direction, the grid blocks are divided from left to right as

follows: five blocks 0.01 m long, five blocks 0.05 m long.

five blocks 0.10 m long, two blocks 0.50 m long, two blocks

1.0 m long, and one block 2.0 m long. The intent of the

horizontal gridding keeps the distance of the right impermeable

boundary far away from the observation points such that the

modeled area is essentially infinitely long. In the vertical

direction, each grid block is 0.05 m high, for a total of

1.00 m.
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The top, right and bottom boundaries are zero flux

boundaries. The left boundary is kept at a constant head equal

to one-half the aquifer thickness. The initial head in the

aquifer is based on a hydrostatic pressure distribution.

The hydraulic parameters include a horizontal hydraulic

conductivity of 0.01 m/s, a vertical hydraulic conductivity of

100.0 m/s and a porosity of 0.50. The vertical hydraulic

conductivity is relatively large compared to the horizontal

conductivity in order to maintain an approximately horizontal

flow in the porous media. This allows the SWIFT II code to

approximate the Boussinesq problem more accurately.

The results of the simulation are presented in Reeves et

al. (1986c) and summarized in Figure 2-11. Results for two

distances, 0.025 m and 0.125 m, with respect to time are

compared in dimensionless form to a solution presented in Bear

(1972). The parameter, ¢ is small for small distances and

large times and large for large distances and small times. The

figure uses small distances, as shown in the legend, and a

range of times for the comparison. For small times the SWIFT

II solution underpredicts the analytical solution, and for

large times, the SWIFT II and analytical solutions compare very

favorably. Reeves et al. attribute the discrepancy at small

times to an initial rapid water table drop for the numerical

solution. This may be caused by vertical gradients that form

in the solution to the two-dimensional vertical plane flow

problem. Except for early times, the comparison between the

SWIFT II solution and the analytical solutions is very good.

The differences at small time may be due to the fact that SWIFT

1I solves a two-dimensional vertical plane flow problem, while

the analytical solution solves a one-dimensional horizontal

flow approximation to the two-dimensional problem.
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2.2 VERIFICATION OF MASS TRANSPORT

2.2.1 One-Dimensional Transport with Chain Decay and

Equal Retardation Parameters

In this problem SWIFT II is used to simulate the

contaminant transport of a three-member radionuclide decay

chain in a porous medium (Coats and Smith, 1964). Convection,

dispersion and retardation are considered in modeling the

one-dimensional problem, which is described in Ward et al.

(1984a). An inventory of a chain of three radionuclides is

released into a porous medium at one end of an infinitely long

grid. As the radionuclides enter the porous media, they are

subject to constant values of convection, dispersion and

adsorption. The following aspects of the SWIFT II code are

tested by this problem: contaminant transport including

convection, dispersion, and retardation, radionuclide decay and

generation of daughter components, waste-leach radionuclide-

source model, Cartesian coordinates, English engineering units.

Ward et al. (1984a) present the modeling details of this

problem. The grid is 254.2 ft long and is broken into three

sections. The first section, whose end is located at the

radionuclide source, consists of twenty 8.2 ft wide grid

blocks. The second section consists of three 5.466667 ft wide

grid blocks and the third of nine 8.2 ft wide blocks. The grid

is designed to minimize numerical overshoot and is long enough

such that the downstream boundary has no influence on the

concentrations.

The flow rate was kept constant by application of constant

pressure conditions at each end of the grid. The hydraulic

gradient coupled with the hydraulic conductivity and porosity

forces the ground-water velocity to remain constant at .656

ft/d.
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The source of radionuclides is contained within a

repository source block located in the first grid block. The

source block contains an initial inventory of a parent

radionuclide, but none of the daughter radionuclides. After

the simulation begins, the concentration of the daughter

radionuclides begins to increase within the repository. The

radionuclides are moved into the system by flow of ground water

through the repository, i.e. a type three boundary condition.

The hydrologic and mass transport properties used in the

modeling are:

Darcy velocity 0.656 ft/d

Porosity 0.1

Dispersivity 8.5 ft

Retardation factor 9352

In addition the following data were known about the

radionuclides:

Radionuclide Half Life Initial Concentration Decay Fraction
(yr)

1 433 1. 0.
2 15 0. 1.
3 6540 0. 1.

The equations were solved using the centered-in-space,

centered-in-time approximations to the governing differential

equation.

Ward et al. (1984a) present the comparison of the SWIFT II

and analytical solutions which are reproduced in Figure 2-12. The

SWIFT II breakthrough curves occur slightly faster in time than

the analytical solution curves. For later times, generally

greater than approximately five hundred years, the comparisons are

excellent. Overall, the SWIFT II and analytical solution

comparisons are very good.
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2.2.2 One-Dimensional Transport with Chain Decay and Unequal

Retardation Parameters

In this problem, the SWIFT 1I code is used to simulate the

convective-dispersive transport of an initial inventory of a

three-member radionuclide decay chain. The main difference

between this problem and the previous one is that, in this

problem, the retardation factor for each radionuclide is

different. This problem corresponds to INTRACOIN problem one

(INTRACOIN, 1984) and is described in INTRACOIN (1984). Ross et

al. (1982), and Ward et al. (1984a).

This problem is similar to the previous one in many

respects. An inventory of three radionuclides is leached into an

infinitely long porous media, which is represented by a

one-dimensional grid. As the radionuclides are transported, they

are subject to convection, dispersion, retardation, and

radioactive decay. However, the hydrologic and transport

parameters are different for this problem than for the previous

one. This problem is designed to test the following aspects of

the SWIFT II code: contaminant transport of species with

different retardation factors, radionuclide decay and generation

of daughter components, waste-leach radionuclide-source model,

Cartesian coordinates, and SI units.

A detailed description of the modeling of this problem is

presented in Ward et al. (1984a). The grid is 800 m long and

consists of 80 grid blocks, each 10 m wide with a cross-sectional
2area of 100 m The downstream boundary is far enough away from

the observation point that it has no effect on the concentration

breakthrough curves. The grid block width and time step size were

chosen to minimize numerical overshoot problems for the centered-

in-time, centered-in-space approximation to the governing

equations.
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The flow rate was kept fixed by application of constant

pressure conditions at each end of the grid. The hydraulic

gradient coupled with the conductivity kept the Darcy velocity

constant at 0.01 m/y.

The source of radionuclides is contained within a repository

block located in the first grid block. The repository block

contains an initial inventory of three radionuclides. As time

progresses, the inventory of radionuclides changes because of

radioactive decay, radioactive production, and leaching. The

radionuclides are moved into the aquifer by flow of ground water

through the repository, ie. a type three boundary condition. A

zero mass flux boundary condition is imposed at the downstream

boundary.

Four cases involving two decay chains and two sets of

retardation factors were run for this problem. The radionuclide

data is summarized below for the first radionuclide chain:

Radionuclide Inventory
(kg)

Half Life
(yrs)

Retardation
(Run 1)

Retardation
(Run 2)

2 3 4 Uj

226Ra

1. 58X10-1
4. 9xl0-4
4.OX1O-6

2. 44SX105
7. 700X104
1. 600X103

3 .X102

2. X1b4
1. X104

6 .X101
5 .X102

2 .X10 1

The data for the second radionuclide chain is:

Radionuclide Inventory
(kg)

Half Life
(yrs)

Retardation
(Run 1)

Retardation
(Run 2)

2 37Np2 33U

4.0xl0-3

1. 4X100
4. 1XI0-4

S.SxJ03
2. 14XI06

1. S92X105

S.xb03

7. xxbo2

3. x102

6.X101
2. X102

6 .X101

Other hydrologic data needed to solve the problem are:

Leach time
Darcy velocity
Porosity
Dispersivity
Observation distance

1.x105 yr
l.x10-2 m/yr
1.x10-2
5.x101 m
5.x0 2 m
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Ward et al. (1984a) describe the modeling results, which are

presented on Figures 2-13 and through 2-16. In all cases, for

all radionuclides, the SWIFT II results compare favorably with

the analytical solution. On Figure 2-15, 245Cm does not show

because it has decayed away and its concentrations are

negligible.

2.2.3 Transport of a Decaying Radionuclide in a Fractured

Porous Medium (prismatic representation of matrix)

In this problem SWIFT II is used to estimate the concen-

tration of a decaying radionuclide in a fracture connected to a

porous medium (Tang et al., 1981). The problem is described in

Reeves et al. (1986c). A radionuclide is convected at a

constant velocity and dispersed along a single, infinitely long

fracture. The radionuclide also diffuses from the fracture

into an infinitely large porous medium. The concentration of

the radionuclides is kept constant at the inlet to the fracture.

The problem tests the following aspects of the SWIFT II code:

contaminant transport in global coordinates, contaminant

transport in local coordinates, radionuclide decay, Cartesian

coordinates, and SI units. 3

Reeves et al. (1986c) provide a description of the

modeling of this problem. Twenty one global grid blocks are

used to model the problem. Global grid block lengths are

variable, ranging from a minimum of 0.0005 m for the two grid

blocks near the radionuclide source to a maximum of 1.024 a for

nine grid blocks at the grid location opposite the radionuclide

source. Grid blocks between the minimum and maximum grid block

lengths are expanded such that a grid block length is twice the

size of the one preceding it. The overall length of the grid

is 10.24 m, which is long enough such that the boundary

condition at the end of grid opposite the radionuclide source

does not impact the concentrations. The global grid blocks are

1.0 m wide and 2.4 m high. Attached to each global grid block
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is a local grid consisting of prismatic blocks internal to the

global blocks. Each local grid is 1.2 m long and contains 12

nodes, of which the distance between the first pair of nodes is

0.01 m. Subsequent node-to-node distances for the local grid

are generated automatically by SWIFT II.

A steady-state flow rate is maintained by injection of

1.157xlO11 m3/s water at the radionuclide source end of

the grid and extraction of an equal amount of water at the

other end of the grid. This maintains the flow velocity of

water of 0.01 m/d within the fracture. The concentration of

the radionuclide at the source is maintained at 1.0. A zero

concentration flux is applied at the opposite end of the grid.

Initially, there is no concentration of radionuclides in either

the fracture or porous matrix.

The simulation is based on the following hydrologic and

contaminant transport data:

Fracture width l.x10-4 m
Matrix porosity 0.01
Matrix tortuosity 0.1
Fracture dispersivity 0.5 m
Molecular diffusion in water 1.6xlO-9 m2/s
Radionuclide half-life 12.35 yr
Matrix retardation 1.0
Fracture velocity 0.01 m/d
Fracture porosity 1.0

Reeves et al. (1986c) present the comparison of the SWIFT

II results with the analytical solution. Figures 2-17 and 2-18

graphically depict the comparisons. Figure 2-17 presents the

comparison of the SWIFT II and analytical solutions for points

along the fracture at times of 100, 1000, and 10,000 days. For

a time of 100 days, there is very good agreement between the

solutions for distances less than approximately 0.S m. At

distances greater than approximately 0.7 m, the SWIFT II

solution predicts slightly higher concentrations than the

analytical solution. For times of 1000 and 10,000 days. the
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SWIFT II and analytical solutions compare extremely well for

the length of each curve. Overall, there is excellent

agreement between the SWIFT II and analytical solutions for

radionuclide concentrations within the fracture.

Figure 2-18 presents a comparison of the SWIFT II and

analytical solutions for radionuclides within the porous matrix

at a distance of 1.5 a down the fracture and a time of 10,000

days. The SWIFT II solution slightly overpredicts the concen-

trations from the analytical solution for distances from the

fracture of less than 0.6 m. At a distance of approximately

0.82 m into the porous matrix , the SWIFT II and analytical

solutions agree. The trend of the SWIFT II solution appears to

follow that of the analytical solution. The agreement between

the SWIFT II and analytical solutions within the porous matrix

is good.

2.2.4 Transport of a Decaying Radionuclide in a Fractured

Porous Medium (spherical representation of matrix)

In this problem the SWIFT II code is used to simulate the

transport of a radionuclide in a fractured porous medium. The

problem is described in Reeves et al. (1986c). A radionuclide

is injected into a fractured, porous medium that is initially

free of the radionuclide. The radionuclide is transported by

dispersion and convection in the fractures and by diffusion in

the porous matrix. The porous matrix is represented by

spheres. This problem is designed to test the following

aspects of the SWIFT II code: steady-state pressure solution,

transient radionuclide solution. radionuclide transport by

convection and dispersion, retardation, diffusion in a porous

matrix, spherical representation of the porous matrix, and SI

units.
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A description of the modeling setup is presented in Reeves

et al. (1986c). The grid consists of 21 grid blocks. The

first grid block is large and is used as a well-mixed reservoir

to provide a source of radionuclides to the subsequent grid

blocks. The next twenty grid blocks are each 1.0 m deep, 2.4 m

high, and of variable lengths. The lengths of these twenty

grid blocks are: 5.0 x 10 m, 1.0 x 10 3 m, 2.0x 10x 3

m. 4.0 x 10-3 M, 8.0 x 10-3 M, 1.6 x 10-2 m, 3.2 x 10-2

m, 6.4 x 10 m2a,0.126 m, 0.256 m, 0.512 m, and nine blocks at

1.024 m. Local grid blocks used to represent the porous matrix

are attached to all the global grid blocks except the first

one, which represents the large well-mixed reservoir. The

local grids are placed internally to the global grid blocks.

The block sizes are generated automatically by the SWIFT 11

code, starting with grid block size of 0.01 m and continuing

until all 12 grid blocks total 1.2 m in length, the sphere

radius.

A steady-state flow is maintained in the system by placing

a well at each end of the grid. The well at the radionuclide

source end of the grid is used to inject 1.157 x 1011 M3 /s

of water into the system, while the same amount of water is

withdrawn from the well at the other end of the grid. This

flow rate, coupled with the 2.4 m height of the grid block and

a fracture porosity of 4.167 x 10 5, produces a ground-water

velocity of 0.01 m/d in the fracture.

Initially, there is no radionuclide in any grid block

except the first one, the well mixed reservoir. This first

grid block essentially acts as a constant-source boundary

condition. As the radionuclide within it decays and leaves,

the radionuclide is replaced so that the concentration of the

reservoir always remains constant at 1.000. A zero flux

boundary condition is applied at the other end of the system.
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Other hydraulic and transport parameters include a

retardation of one in both the fracture and the matrix, a

fracture porosity of 4.167 x 10-5 a matrix porosity of 0.01,

a fracture dispersivity of 0.50, and a matrix diffusivity (i.e.

molecular diffusion times matrix porosity times matrix

tortuosity) of 5.787 x 10 mas. Molecular diffusion within

the fracture, and convection and dispersion within the porous

matrix are neglected.

The results of this simulation are presented in Reeves et

al. (1986c) and are shown in Figures 2-19 and 2-20. Figure

2-19 presents a comparison of transport in the fracture between

the SWIFT II results and both the numerical simulation from the

PTRANS code and the analytical solution of Rasmuson (1984).

Overall, the SWIFT II solution agrees with both the FTRANS code

and analytical solutions very well. The SWIFT II code seems to

track the analytical solution better than the FTRANS code for

distances greater than approximately 1.0 meter and a time of

441 days. Both numerical codes compare very well with the

analytical solution for later times, with the SWIFT II code

providing a slightly better comparison.

Figure 2-20 presents a comparison of transport in the

matrix at one meter into the fracture between the SWIFT II and

the FTRANS codes. The SWIFT II solution overpredicts the

FTRANS solution at a time of 441 days. The largest difference

occurs at the fracture-matrix interface and the difference

decreases with distance into the matrix. Because the SWIFT II

solution overpredicts the FTRANS solution at one meter into the

fracture, it should be expected that the SWIFT II solution

overpredicts the PTRANS solution in the matrix at one meter

into the fracture also. At one meter into the fracture, the

comparison between the SWIFT II solution and the analytical

solution is very good and it should be expected that the SWIFT

II solution would agree with the analytical solution for the
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porous matrix. For the larger times, the SWIFT II solution

agrees very well with the analytical solution for small

distances. At larger distances the SWIFT II solution slightly

overpredicts the FTRANS solution.

Overall, the SWIFT II agrees very well with the analytical

solution. However, the SWIFT II solution shows some small

discrepancies when it is compared with the FTRANS solution.

Because this is a verification exercise, more weight should be

given to the excellent SWIFT II comparison with the analytical

solution.

2.3 VERIFICATION OF HEAT TRANSPORT

2.3.1 One-Dimensional Convective-Dispersive Heat Transport

For this problem, the SWIFT II code is used to model a

one-dimensional, convective-dispersive heat transport equation

(Coats and Smith, 1964). Ward et al. (1984a) briefly describe

the problem. In this problem a hot liquid is injected into an

infinitely long, one-dimensional, homogeneous, confined

aquifer. There is no heat loss through the aquifer confining

layers and buoyancy of water is neglected. The problem is

designed to test the following aspects of the SWIFT II code:

thermal convection, thermal dispersion, thermal conduction,

thermal retardation, aquifer influence functions, heat

injection by wells, and SI and English engineering units.

Two types of boundary conditions are modeled at the point

of injection (Ward et al., 1984a). The first condition, a type

one or Dirichlet condition, assumes that the water temperature

at the point of injection is kept at a constant value, i.e.

T(x=O.t) - TI, where T is temperature, TI is the temperature

at the boundary, x is distance, and t is time. The second

boundary condition, known as a type three boundary condition,
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is based on conservation of energy principles. It states that

heat injected at the boundary enters the aquifer due to

convection and dispersion. Mathematically, this is written as

VT =VT - D 92Z , where V is ground-water velocity and D is

a combination of fluid dispersion and fluid/rock conduction.

Ward et al. (1984a) provide details of the modeling of

this problem. To model the semi-infinite system, a 609.6 E

length of aquifer was used. The aquifer was long enough so

that the boundary condition opposite the injection boundary

would not affect the results. The one-dimensional grid

consisted of 20 grid blocks, each with a width of 30.48 m and a

height of 0.3048 m, which is the aquifer thickness. The grid

and time steps were chosen so that numerical overshoot was

minimized. Both centered-in-space and centered-in-time

differencing were used.

Two problems were run. one with the type one boundary

condition at each end of the grid and the other with the type

three condition at each end of the grid. The type three

boundary condition at the injection end of the grid is handled

as a well injecting a hot liquid, while at the other end, a

well withdraws the aquifer fluid. The hydrologic and thermal

properties are:

Thermal conductivity of the medium 2.16 W/(m-C)
Heat capacity of the rock 2.01 x 106 J/(m 3 -°C)
Porosity 0.1
Density of rock 1602 kg/m3
Dispersivity 14.4 m
Darcy velocity 3.53 x 10-7 m/s
Specific heat of fluid 4185 J/(kg°C
Density of fluid 1000 kgml3

Initial temperature 37.78 DC
injection temperature 93.33 DC

Results of the modeling are presented in Ward et al.

(1984a) and on Figure 2-21. The figure presents results for

both boundary condition types. The results are plotted as
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dimensionless temperature, (T - T0)/(TI - T0). versus

distance. For both types of boundary conditions, the SWIFT II

results compare very well with the analytical solution. There

does not appear to be either any numerical dispersion or

overshoot. This reflects the proper grid block and time sizes

when performing the numerical calculations.

2.3.2 Linear Heat Transport During Injection

In this problem SWIFT 11 is used to model the injection of

cold water into a hot water aquifer (Avodonin, 1964). The

problem is described in Ross et al. (1982). A one-dimensional.

infinitely long, homogeneous, aquifer containing hot water is

injected at one end with cold water. Heat transport within the

aquifer occurs by thermal convection and thermal conduction.

Buoyancy of the fluid is neglected. Heat is allowed to escape

from the aquifer to the over/underburden confining the

aquifer. In the over/underburden, heat transport occurs by

thermal conduction in the vertical direction only. This

problem is designed to test the following capabilities of the

SWIFT II code: thermal convection, thermal conduction, thermal

retardation, thermal conduction in confining layers, heat loss

to confining layers, and SI and English engineering units.

Ward et al. (1984a) present details of the modeling of

this problem. The grid was designed to minimize numerical

overshoot. Time steps were calculated internally by SWIFT II

to minimize numerical overshoot. Centered-in-space and

centered-in-time schemes were adopted for solving the

equations. The grid consisted of 250 grid blocks, each 0.2 m

wide, 1 m thick and 100 m high, the height of the aquifer. The

overburden and underburden each consisted of 7 grid blocks

which were capable of heat conduction only. Grid spacing for

the over/underburden blocks were 0.25 m, 0.50 m, 0.75 m, 1.0 m.

2.0 m. 4.0 m, and 10.0 m. The temperature was set to 1600C at

the injection end of the grid. A type three boundary condition
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at a temperature of 1700C was applied at the other end of the

grid. The initial temperature was 1700C. A steady state flow

with a volumetric flow rate of .010681 m 3/S was set up prior

to injection of the cold fluid. The following hydrologic and

thermal properties were used in the modeling:

Injection rate 10 kg/s
Injection temperature 160 'C
Initial temperature 170 OC
Thermal conductivity over/underburden 20 W/(m-OC)
Specific heat, over/underburden 1000 J/(kg-0C)
Density, over/underburden 2500 kg/mi3
Thermal conductivity, aquifer 20 W/(m-OC)
Specific heat, aquifer 1000 J/(k?-.C)
Density, aquifer 2500 kg/m
Specific heat, water 4185 J/(kg-°C)
Density, water 919 kg/m3
Aquifer thickness 100 m
Aquifer porosity 0.2

Ward et al. (1984a) present results of the modeling of this

problem. A plot of temperature versus time for a distance of

37.5 m downstream from the injection point is presented on

Figure 2-22. Between one day and two and one-half days. the

SWIFT II results are slightly higher than the analytical

solution results. After approximately three and one-quarter

days, the SWIFT II solution appears to oscillate slightly. At

other times the SWIFT II results seem to compare very favorably

with the analytical solution results. Overall, the SWIFT II

and analytical solutions agree very well.

A plot of temperature versus distance for a time of

130,000 seconds after the onset of injection is presented on

Figure 2-23. Between the injection point, and sixteen meters

downstream from the injection point, the SWIFT II results track

the analytical solution results extremely well. At distances

greater than sixteen meters downstream, the SWIFT II results

seem to overpredict the analytical results very slightly.

Overall, though, the SWIFT II results compare very favorably

with the analytical solution results.

-49-



I -

0

I

I'

w
D4

f04

0 0.5 | 1.S 2 2.5
rnmi-. (tin~y)

4

F1iure 2-22 Temperature as a Function of Time at a FIled Distance for a
Linear Aquifer System. Iward et at., 1984a1



I I

to ~~~~~~~~~~~~LEGEI41
B=SWIF'T. Linear

-=Analytical Solution

--- No Ims to equltards

i-A

MOM. a ~~~~Tine =I.1EF5 Seconds

.3 ID 15I r 20 25 a040
1)1 VS'A N C E (im'Uel0

rigurs 2-23 Teniiprature as a Fimet ion of Dietmiice at a Pixed Tim~e for a
Linear Aquifer Systewm. Iward et. at., 19RAaJ



2.3.3 Radial Heat Transport During Injection

For this problem SWIFT II is used to model injection of

cold water into a hot radial aquifer (Avodonin, 1964). The

problem is described in Rose et al. (1982) and, except for this

problem being formulated in radial coordinates, is the same as

the previous heat transport problem. This problem tests the

use of radial coordinate systems in the SWIFT 11 code, in

addition to the aspects listed in the heat transfer problem

described in the previous section.

Ward et al. (1984a) present the details of the modeling of

this problem. The radial grid consisted of 30 grid blocks.

The distance from the center of the injection well to the

center of the first grid block was 0.7655922 m. Distances from

the center of the injection well to the center of subsequent

grid blocks were approximately 1.28 times the distance to the

center of the previous grid block. The radial grid spacing was

chosen from a trial and error procedure. The radius of the

well was 0.090223 m and the distance to the outer boundary was

1000 m. The grid in the over/underburden consisted of seven

grid blocks each and was used for heat conduction only. The

gridding was 0.5 m, 2 a, 8 m, 32 m, 120 m, 480 m, and 1000 m.

These one-dimensional grids were attached to each grid block of

the radial grid. A backward-in-time, centered-in-space

differencing was chosen to discretize the equations. A

type-three boundary condition was applied at the well by

injection of cold water. The steady-state flow was maintained

by placing an extraction well at the outer boundary and making

its pumping rate equal to the injection rate. Hydrologic and

thermal properties of the aquifer are the same as for the

linear heat transport during injection problem.

Ward et al. (1984a) present comparisons of the SWIFT II

modeling results with the analytical solution. The comparisons
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are reproduced in Figures 2-24 and 2-25. On both figures the

SWIFT II results accurately reproduce the analytical solution.

2.3.4 Radial Heat Transport with Loss to Confining Beds

In this problem, the SWIFT II code is used to model the

injection of cold water into an infinitely large, hot water

aquifer (Avodonin. 1964). The cold water is pumped into the

cylindrical aquifer through an infinitesimally small well.

This problem is the same as described in Section 2.3.3.

However, it is modeled somewhat differently here to take

advantage of the local grid capability of SWIFT II. This

problem tests the following capabilities of the SWIFT II code:

thermal convection, thermal conduction, and thermal retardation

in both local and global coordinate systems, SI units, and

radial coordinate systems.

The modeling of the radial heat injection problem is

described in detail in Reeves et al. (1986c) and is similar to

the modeling described in Section 2.3.3 in many respects. The

radial grid is the same for both problems. However, the

modeling of this problem requires the use of local grid blocks

rather than over/underburden grid blocks to transport the

cooler temperature away from the aquifer. The local grid

consists of thirty sets of fifteen local grid nodes, one set

for each grid block of the radial grid. The length of each set

of local grids is 300 m, with the distance between this first

two nodes in each set being 10 m. Distances between subsequent

pairs of nodes are determined by multiplying the distance of

the preceding pair of nodes by approximately 1.11.

The boundary conditions necessary to maintain the flow

rate are handled differently in this problem, too. In the

problem described in Section 2.3.3. the flow rate is maintained
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by application of an injection rate at the well and a pumping

rate at the exterior boundary. However, in this problem a

constant pressure is applied at.the exterior boundaries instead

of a pumping rate to maintain the same flow as in Section

2.3.3. The hydrologic and thermal properties of the aquifer

and aquitard are the same for both heat injection problems

except for rock heat capacity. For this simulation rock heat

capacity is 2.07875xlO6J/m3-_C, while for the other it is

2.5xK6J/M3 -C.

Reeves et al. (1986c) compares the SWIFT II solution with

the analytical solution, which is presented on Figure 2-26, for

a distance of 37.5 m from the injection well. For both early

and late times, the SWIFT II and analytical solutions compare

extremely well. Between three and fifteen years, the SWIFT II

solution predicts slightly higher temperatures than the

analytical solution. Overall, the SWIFT II and analytical

solutions agree very well.

Because of the difference in the heat capacity for this

simulation and the one presented in Section 2.3.3, the

temperature profiles with respect to distance between the two

are slightly different. At points near the injection well and

the exterior boundary, temperatures are almost equal. At

interior grid points, the SWIFT II solution presented here

predicts a maximum temperature difference of 0.2 OC higher than

the SWIFT II solution presented in Section 2.3.3. This

indicates that as much as a twenty percent difference in heat

capacities has only small impacts on the temperature profile.
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3. EXISTING VALIDATION TESTS

3.1 VALIDATION OF FLOW

3.1.1 Analysis of Well Test-Data for a Dolomite Formation

In this test the SWIFT II code was used to compare a

numerical solution with field data from a slug test performed

at the WIPP site in New Mexico. The modeling and comparison

are described in Reeves et al. (1986c). The conceptual model

of the flow system treats the aquifer as a porous matrix with a

zone of stress relief fractures around the wellbore. This

problem tests the following aspects of the SWIFT II code: a

pressure solution, a local grid, a pressure controlled well.

radial coordinates, and English engineering units.

A description of the problem and its simulation are

provided in Reeves et al. (1986c). The results of the

simulation are compared with slug test data from a well in New

Mexico. In the conceptual model of the flow system, the

aquifer is initially assumed level, horizontal and infinitely

large. The aquifer is assumed to be homogeneous, isotropic and

porous with no fractures except for a small fractured region

around the wellbore. In the fractured region around the

wellbore, about a radius of one foot, the aquifer is assumed to

consist of a porous matrix with stress relief fractures. A

fully penetrating well at the center of the aquifer is injected

with a slug of water, which is allowed to flow into the

aquifer. Both pressure changes and flow rates are measured in

the well as a result of water flowing from the well into the

aquifer.

A cylindrical grid consisting of 50 grid blocks was used

to model the system. The first grid block had a radius of one

foot and the distance from the middle of the well to the outer



radius of the modeled area was 2000 m. Grid block widths were

expanded in a geometric fashion. The wellbore had a radius of

0.276 feet.

A one-dimensional local grid block was attached to the

first global grid block to simulate the fracture zone around

the wellbore. No other global grid block had a local grid

block attached to it.

The aquifer was initially static. A time-dependent

pressure was applied at the well. The pressure started at 200

psi at the start of the simulation and declined to 158 psi at

the end of the simulation, three days later. A Carter-Tracy

boundary condition was applied to the external boundary of the

grid. This condition provides for a flux of water into the

modeled region to help simulate an infinitely large aquifer.

Hydraulic parameters were assigned as follows:

Aquifer thickness 25.0 ft

Primary porosity rock 2.0 x 10 4 ft/day

hydraulic conductivity

Primary porosity rock 3.03xlO I/ft

specific storage

Secondary porosity rock 200.0 ft/day

hydraulic conductivity

Secondary porosity rock 1.66xlO 6/ft

specific storage

The primary porosity hydraulic parameters were taken from

Pahwa and Baxley (1980) and the secondary (fracture) hydraulic

parameters were estimated from calibration of the model.



The results of the model runs are presented and discussed

in Reeves et al. (1986c). Figure 3-1 presents a comparison of

measured wellbore flow rate and calculated flow rate. Except

at a few times, the agreement between the measured and

calculated flow rates are very good. The biggest difference

occurs at the end of the simulation, where the measured flow

rate appears to drop dramatically compared to the calculated

flow rate. Other points where there is disagreement between

measured and calculated flow rates are probably attributable to

measurement error or noise.

This problem does not appear to be a good validation

problem for two reasons. First, this problem has been solved

using a different conceptual model (Finley and Reeves, 1982).

In the Finley and Reeves model, the conceptual model consisted

of a system of fractures within a porous matrix over the entire

simulated domain. The fact that we have two conceptual models

indicates that the flow system cannot be adequately described

for a validation problem. As a result, we end up with a system

that can have many parameters to be estimated. Given enough

parameters, just about anything can be modeled.

The second weakness of this validation problem is that the

hydraulic parameters for the fracture zone were obtained from a

model calibration procedure. Values of the hydraulic

conductivity and specific storage were chosen from a trial and

error procedure until a good fit with the observed data were

made. As a result, this problem is more a curve-fitting

problem than a validation problem.
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3.1.2 Hydraulic Testing for Thermal-Energy Storage in an

Aquifer

In this problem SWIFT II is used to calibrate and simulate

two aquifer tests. These tests were originally presented in

Parr et al. (1983) and Buscheck et al. (1983). The SWIFT II

modeling was described in Ward et al. (1984a). The purpose of

these tests was to estimate the hydraulic parameters of an

aquifer prior to some thermal energy storage experiments. The

first experiment, known as the anisotropy test, was designed to

determine the ratio of horizontal to vertical hydraulic

conductivity and the storage coefficient of the aquifer. The

second, known as the standard pumping test, was designed to

compare the numerical solution with aquifer test data from a

fully penetrating well. The tests are designed to test the

SWIFT II code in the following ways: the pressure solution,

anisotropic aquifer characteristics, pumping and observation

wells, and English engineering units.

Anisotropy Test

The modeling of the anisotropy test is described in Ward et

al. (1984a). A description of the hydrology and geology of the

test site, and the test operation and analysis are described in

Parr et al. (1983). Another modeling study of the same test is

described in Buscheck et al. (1983). Some of the results from

these two studies were used in the SWIFT II modeling of the

anisotropy test.

Ward et al. (1984a) modeled this problem because of thermal

buoyancy effects. Buoyancy causes water to rise vertically

from the bottom of an aquifer to the top. Because of this

vertical movement of water, it is necessary to know the

vertical hydraulic conductivity and, hence, the anisotropy

ratio of the aquifers. Such numbers are useful when performing

thermal modeling of heat injection experiments.
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The 70-ft thick aquifer consists of three zones. The

bottom zone is 22.0 ft thick and has a horizontal hydraulic

conductivity of 128 ft/day. The middle zone is 16.5 ft thick

and has a horizontal hydraulic conductivity of 322 ft/day. The

top zone is 31.5 ft thick and has a horizontal hydraulic

conductivity of 128 ft/day. The storage coefficient was 6 x

10 and the test well was pumped at 28890 ft 3/day.

The hydraulic conductivities are based on a study by

Buscheck et al. (1983). They performed an analysis of a

thermal injection test and found that a single zone aquifer did

not produce a good comparison between observed and predicted

temperatures. They then performed a parametric study and found

that a three-zone aquifer with the above hydrologic parameters

produced a better fit to measured temperatures than the single

zone aquifer. The transmissivity of the three zone aquifer was

the same as for the single layer aquifer.

Ward et al. (1984a) used a thirteen layer cylindrical grid

to model the aquifer test. The bottom zone of the aquifer

consisted of five grid layers, the middle zone consisted of two

grid layers, and the top zone consisted of six layers. From

top to bottom the thicknesses of the grid layers were 3.0 ft.

three layers at 5.0 ft. 4.0 ft. 8.0 ft. 8.5 ft. 6.5 ft. 7.0 ft.

three layers at 5.0 ft. and 3.0 ft The hydraulic conductivity

of each grid layer was assigned a value representative of the

aquifer zone that the grid layer was located in.

The gridding in the radial direction consisted of

twenty-two grid blocks. The problem assumed an infinitesimally

small well bore. The distance from the center of the well bore

to the center of the first grid block was 0.6 ft. Subsequent

distances between the center of the well bore and the remaining

grid block centers were variable, but the distance between

adjoining grid block centers generally increased with

increasing distance from the well bore. The outer radius of
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the simulated region was 4000 ft from the well bore center.

A constant flux boundary condition, representing a pumping

rate of 28890 ft /day, was applied to the boundary grid block

representing the well bore. A Carter-Tracy boundary was

applied to the outer boundary of the modeled region. The fluid

level in the aquifer was initially assumed static.

The results of the modeling are presented in Ward et al.

(1984a) Because the purpose of this modeling effort was to

estimate the anisotropy ratio and storage coefficient of the

aquifer, several computer runs were made with differing values

of the anisotropy ratio and the storage coefficient. After

several runs. Ward et al. found that a ratio of horizontal

hydraulic conductivity to vertical hydraulic conductivity of

five and a storage coefficient of 6.0 x 10 4 fit the observed

data very well.

A comparison of the computed results with the observed

measurements is presented in Figure 3-2 for three observation

wells. The agreement between the calculated and observed data

is very good for the first 0.035 days (approximately 45

minutes). After that, the calculated and observed data begin

to diverge. This deviation may be caused by impermeable

boundaries or a low transmissivity zone in the aquifer, which

were not accounted for in the modeling.

While the results between computed and observed results are

very good, this modeling effort has several fundamental flaws

as a validation problem. First, the conceptual model is based

on the modeling results of Buscheck et al. (1983). Because the

original conceptual model of Buscheck et al. could not

reproduce the measured results, the conceptual model was

changed to match the measured data. Therefore, the conceptual

model is based on calculations and not on the geology and

hydrology of the system.
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Second, the parameters for the hydraulic conductivity of

the various layers in the new conceptual model were based on a

trial and error procedure (Buscheck et al. 1983). This again,

is a calibration procedure and not a validation exercise.

Third, the modeling effort is a model calibration exercise

rather than a validation exercise. The calculated results are

forced to fit the observed data by varying the anistropy ratio

and the storage coefficient. No calculations were ever

performed to compare future predicted drawdowns with observed

ones.

Standard Pumping Test

In this problem the SWIFT II code is used to make

predictions on an aquifer with several impermeable boundaries.

The modeling effort is described in Ward et al. (1984a). The

hydraulic parameters used in this modeling exercise are based

on the work of Parr et al. (1983), mentioned in the anisotropy

test section. In contrast to results from the Buscheck et al.

(1983) report, Parr et al. treated the aquifer as sharing only

one layer. They estimated an aquifer ttansmissivity of 12160

ft2 /day and a storage coefficient of 6.9 x 104 However,

when Ward et al. modeled this problem they used a storage

coefficient of 6.0 x 104. They also estimated slightly

different location of the nearest impermeable boundary than

estimated by Parr et al.

The modeling of the problem is described in Ward et al.

(1984a). They modeled the system as a strip aquifer. ie, one

with parallel impermeable boundaries. One boundary was placed

599 ft away from the pumping well and parallel to the y-axis

and the other 2594 ft from the pumping well and parallel to the

y-axis. Because this problem is symmetric about the x-axis.

only the plane on the positive side of the x-axis was modeled.
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The grid consisted of highly variable grid block sizes in

the x-direction. Grid block sizes ranged from 2.0 ft at

pumping and observation wells to 174.0 ft and 500.0 ft near the

impermeable boundaries. In the y-direction, grid block sizes

increased as distance from the symmetry boundary increased.

The sizes ranged from 1.0 ft at the symmetry boundary to 19683

ft at the boundary, representing an infinitely large distance

from the symmetry boundary.

Two types of boundary conditions were applied to

boundaries of the modeled region. The line of symmetry and the

boundaries parallel to the y-axis were treated as zero flux

boundaries. As such, boundaries did not require any input data

because the SWIFT 1I code implicitly assumes that all

boundaries are impermeable unless stated otherwise. The

boundary located a very large distance away from the line of

symmetry was treated as a constant head boundary. A static

initial condition was also applied to the system.

The results of the modeling are presented by Ward et al.

(1984a). Figures 3-3 and 3-4 present the results of the

modeling after 1.4 days and 4.0 days, respectively. On both

figures the calculated SWIFT II results diverge from the

observed results after approximately 0.01 days. This

divergence increases with increasing time.

The cause of this divergence could be twofold. First, in

their modeling Ward et al. (1984a) lowered the value of the

storage coefficient to 6.0 x 10 4 from the 6.9 x 10 4 value

calculated by Parr et al. (1983). This would result in an

increased calculated drawdown. Second. the location of the two

impermeable boundaries may be inexact. The location of

impermeable boundaries as calculated from aquifer test data is

dependent on the storage coefficient. If the storage

coefficient is wrong or changed, the calculated distance to the

impermeable boundaries will change also. Further, the data
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from an aquifer test with a single observation well is

insufficient to determine the orientation of the impermeable

boundaries. So. although the aquifer test data may show two

impermeable boundaries, it is impossible to tell if the

boundaries are parallel to or perpendicular to each other.

This problem is not a good validation problem. The SWIFT

II code is calibrated based on a model implemented in both the

SWIFT II code and the Theis (1935) equation, which is used to

analyze the aquifer test data. In essence, the SWIFT II run's

purpose is to reproduce the calibrated aquifer test results.

This may have been a good validation test had Ward et al.

(1984a) made predictions based on the calibrated model and

compared the results to measured data. They made predictions

but did not have any observations to which to compare their

predictions. Therefore, this problem does not provide a

validation test of the models implemented in the SWIFT II code.

3.2 VALIDATION OF MASS TRANSPORT

Contaminant Migration from a Landfill

In this problem, the SWIFT II code is used to simulate the

ground-water transport of chloride ions away from a landfill

site. This contaminant migration problem has been studied by

Cleary (1978), Kimmel and Braids (1975, 1980) and has been

modeled by Gureghian et al. (1981). The SWIFT II modeling of

the problem has been performed by Ward et al. (1984a). This

modeling has been performed in order to determine the rates and

times that chloride had leached (i.e. landfill staging) into a

ground water system in Long Island, New York. This problem is

designed to test the SWIFT II code in the following ways:

contaminant convection and hydrodynamic dispersion, steady-

state velocity, time- and space-dependent contaminent source

terms, and aquifer influence functions.
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A description of the SWIFT II modeling of the landfill

problem is provided by Ward et al. (1984a). In the conceptual

model of this system, a landfill leaches chloride ions into a

ground-water flow system. The location of the chloride source

term, the strength or amount of chloride leaving the landfill

and the time of leaching varies over the thirty year existence

of the landfill. These landfill parameters are determined from

the SWIFT II modeling. The aquifer is assumed to have a

one-dimensional flow field with a constant velocity. The

aquifer is further assumed to have both homogeneous and

isotropic hydraulic parameters. With respect to contaminant

transport, the chloride ion is assumed to be well mixed in the

vertical direction. Therefore, it is only necessary to model

the contaminant transport in a two-dimensional horizontal

plane. The aquifer dispersivity is considered to be

anisotropic.

Ward et al. (1984a) present a description of the data

input for this modeling effort. A Cartesian grid consisting of

53 grid blocks in the x-direction and 24 grid blocks in the

y-direction are used to model the problem. Gridding in the

x-direction (direction of flow) away from the landfill consists

of thirty 200 ft long grid blocks, twenty 300 ft long grid

blocks, and three 600 ft long grid blocks. Gridding in the

y-direction (perpendicular to the flow) consists of four 300 ft

long grid blocks, eighteen 200 ft long grid blocks, and two 300

ft long grid blocks. Thus, an area of 13,800 ft by 5,400 ft is

modeled.

Two types of boundary conditions were applied to the grid

system to maintain a constant flow velocity in the

x-direction. At the landfill site (x=O) a constant pressure of

11.95 psi was maintained. At the end of the grid down gradient

from the landfill a constant pressure of 0.00 psi was

maintained. This pressure gradient coupled with a hydraulic
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conductivity of 165 ft/day maintained a steady-state

one-dimensional Darcy velocity of 0.33 ft/day in the

x-direction. The boundaries parallel to the x-axis were

treated as impermeable.

Two types of boundary conditions were applied to the grid

system to calculate chloride concentration. The two boundaries

parallel to the x-axis and the boundary down gradient from the

landfill were treated as impermeable. The boundary condition

at the landfill was a time-dependent Dirichlet condition. The

concentrations input into the model were determined from a

trial and error procedure. Basically, a set of concentrations

was input into the model, the model was run simulating a 29

year period from the start of the landfill operation and a

comparison between the calculated and observed chloride

concentrations was made. If the results did not compare

favorably, some of the concentrations were changed and a new

comparison was made. If the results compared, the model was

considered calibrated.

Because this is both a steady-state flow and transient

state contaminant transport simulation,'several hydraulic and

mass transport parameters had to be included in the input

data. As mentioned in a preceding paragraph, a homogeneous.

isotropic hydraulic conductivity of 165 ft/day was used to

solve the flow simulation. A longitudinal and transverse

dispersivity of 100.0 ft and 15.0 ft. respectively, and a

porosity of 0.30 were used for the transport simulation. The

sources for this data are not presented in Ward et al.

(1984a). However, they do state that the dispersivities are

inferred from the output data. This implies that they were

determined from some type of calibration procedure.

Results of the landfill simulation are presented in Ward

et al. (1984a). Figure 3-5 presents a comparison of observed

and calculated chloride concentrations 29 years after the start
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of landfill operation. Considering the rather simplistic

approach taken to simulate the problem (homogeneous aquifer

flow and mass transport parameters, isotropic hydraulic

conductivity, uniform velocity), the results are very good.

The downward curve of the 50 and 100 isopleths and the upward

hump of 150 and 200 isopleths are probably a result of the

staging of the landfill. Staging means that only a small part

of the landfill is in use at any one time and that the part in

use moves with time. The history of the landfill indicates

that usage started at the bottom or just above the y-axis and

moved upward and to the top of the grid and possibly back

down. Thus the downward bend of the 50 and 100 isopleths is

probably a result of the early time operation of the landfill.

The humps in the 150 and 200 isopleths are probably a result of

the intermediate time or very late time operation.

This simulation does not represent a good validation test

problem for the SWIFT II code. The landfill source term and,

probably, the longitudinal and transverse dispersivities were

determined from a trial and error procedure. No future

predictions were made and compared to later measured data.

Therefore, the landfill problem should be considered a

calibration rather than a validation problem.

3.3 VALIDATION OF HEAT TRANSPORT

Thermal Energy Storage in an Aquifer

In this problem, the SWIFT 1I code is used to model an

aquifer thermal energy storage (ATES) experiment performed by

Molz et al. (1983). Some of the data developed for this

experiment has been described in Section 3.1.2 of this report

and in the references quoted there. The SWIFT 11 modeling of
the experiment is described in Ward et al. (19S4a). The

experiment has been modeled previously by Buscheck et al.

(1983). In this experiment, hot water is injected into a cool
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aquifer for approximately one month, stored in the aquifer for

approximately one month, and then pumped out for approximately

one month. The modeling is designed to test aspects of the

SWIFT II code in the following ways: coupled pressure and

temperature solutions, anisotropic aquifer characteristics,

injection and observation wells, aquifer influence functions,

heat lose to aquitards, and SI units.

A description of the flow system and the modeling are

described in Ward et al. (1984a). In this system the aquifer

is assumed to be infinitely large for the temperature

calculations. The aquifer is assumed to consist of three zones

as described in Section 3.1.2 and Buscheck et al. (1983). The

aquifer has aquitards both overlying and underlying the

aquifer. The aquitards are capable of transmitting heat by

conduction and convection, but are fairly resistant to flow.

Lying above the upper aquitard and below the lower aquitard are

an overburden and underburden, respectively. The overburden

and underburden are capable of transmitting heat only.

An axisymetric cylinder grid is used to represent the

modeled portion of the aquifer. The grid consists of 21 grid

blocks in the vertical direction and 19 in the radial

direction. Attached to each grid block in both the upper and

lower layer of grid blocks is a one-dimensional grid

representing the overburden and underburden. Four layers of

grid blocks of heights 7.32 m, 3.65 m, 1.52 m, and 2.06 m

represent the gridding of the lower aquitard. Three grid

blocks, each of height 2.20 m, represent the gridding in the

lower zone of the aquifer. Three grid blocks of height 1.667 m

are used to represent the grid in the aquifer's middle zone.

Six 1.6 m high grid blocks represent the gridding in the

aquifer's upper zone. Finally, five grid block heights of 1.22

m, 1.22 m, 1.68 m, 1.49 m, and 1.52 m represent the gridding in

the upper aquitard. The one dimensional gridding in the
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overburden and underburden is 1.0 m, 2.0 m, 3.0 m, 4.0 m. 6.0

m, 10.0 m, and 20.0 m.

The distance from the center of the injection/pumping well

to the outer boundary is 80 m. The distance from the center of

the well to the center of the first grid block is 0.6 m.

Subsequent distances from the center of the well to the center

of a grid block are estimated by multiplying the distance from

the well center to the preceding grid block center by a factor

of approximately 1.31. This factor varies between 1.22 and

1.41.

The hydraulic and thermal properties of the aquifer and

aquitards are presented in Table 3-1. Included on this table

are references that provide sources for much of the data.

Analysis for determining the aquifer hydraulic parameters as

presented in Section 3.1.2. The hydraulic conductivities of

each of the three zones of the aquifer are presented in Table

3-2. In addition, the overburden and underburden had the

following thermal properties: thermal conductivity of 1.672

w/m-OC and a heat capacity of 1.81 x 10 6J/m -3C.

Several boundary conditions were applied to the system to

help control the water flow and heat transport. Along the

injection well, a boundary condition representing zero flux of

water was applied where the well bore abutted both aquitards.

Along the well bore abutting the aquifer, a flux boundary

condition representing pumping or injecting of water was

applied. The injection and pumpage of water was variable but

injection averaged 9.27 x 10 3 3/s over the 31.7 day

injection period and pumpage averaged 1.14 x 10 2 m/s over

the 25.7 day pumpage period. Impermeable flow boundaries were

specied at the top of the upper aquitard and at the bottom of

the lower aquitard. A Carter-Tracy boundary condition was

applied at the outer edge of the simulated region to represent

an approximately infinitely large aquifer.
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, - Table 3-1 Hydraulic and Heat-Transport Parameters Adopted for

Aquifer Thermal Energy Storage Problem

Parainter Sourc 1 symbol value

Aquifer thickness Part b 21.2 a
Kydraulic conductivity#

aquifer2 Parr X 6.17Jr0'4 aSs
Storativity, aquifer I 6x 10-
Porosity. aquifer SebelL 0.25
Rest capacity,

aquifer ol:t ep 1.81x:O6 J/(m o°C)
Thermal conductivity&

aquifer MlC& 2.29 Wall °C)
Thickness, upper

squitard Forr be 5.6 a
Porosity, aquftard Suscheck 0 0.35
seat capacity.

aquitard suscheck c' 1.61X10 J/(m'-'C)
Thermal conductivity, P

aquitard Hal: V 2.56 VWCm0C)
Sydraulic diffusivity. a6

upper equitard Parr D' 8.22:10 6 s2/
Hydraulic diffuuivity.2

lover squitard Parr V 1.27:10 Ia2I
lock density Suscheck op 2600 kg/s .
Thermal expansion

of vater Clark CT 5.3X10 (C) 1

Injection duration Molt at1 2.74:106 C
Storage duration molt at2 tX7k°6 8
Production duration mole At3 2.20106 a
Initial temperature Parr TO 20C
Aquifer permeability

ratio3 a 1:6

I The references are Parr [19633. Buscheck [19833. Molz (19833 and ClarO
t1966). No reference indicates an assumption by the authors.

2 Composite value of horizontal conductivity. Refer to Table 3-2 for
hydraulic conductivities of individual layers.

3 Composite value. The ratio Is 1:5 for individual layers.
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Table 3-2 Values of Hydraulic Conductivity for the Three-Zone

Aquifer (from Buscheck et al (1983]).

Thickness

(m)

Hydraulic Conductivity

(mI/s)

Upper Layer

Middle Layer

Lower Layer

Composite Value

9.6

5

6.6

21.2

4.5lxlO 4

11. 4xlO 4

4. 5xlO04

6.17x1O-4
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A zero heat flux boundary condition was applied along the

well bore intersecting both aquitards, at the outer edge of the

simulated region, and at the top of the overburden and the

bottom of the underburden. Along the well bore abutting the

aquifer, a type 3 heat boundary condition was applied. The

injection temperature used in the simulation averaged 60.40C.

Initial conditions applied to the system included a static

velocity and a 200C temperature. In addition, water density

and viscosity were temperature dependent, providing a fully

coupled water flow and heat transport problem.

Ward et al. (1984a) present and describe the results of

modeling the problem. Some of the results of the experiment

are shown on Figures 3-6 and 3-7. and results of the modeling

on Figures 3-8 and 3-9.

Figures 3-6 and 3-7 generally show a fingering of the

temperature contours in the middle zone of the aquifer. The

fingering is not too noticeable in the west area of Figure

3-6. Some buoyancy effects are noticeable in the east on

Figure 3-6 and in the north on Figure 3-7 at the end of

injection. At the end of the storage period some thermal

conduction and buoyancy effects are noticeable, as well as the

fingering of the temperature contours. During the storage

period, thermal conduction moves the temperature contours out.

down and up and buoyancy moves them up.

Simulated ground-water temperatures are shown in Figure

3-8. At the end of the injection period, the fingering of the

temperature contours in the middle zone of the aquifer is very

evident. At the end of the storage period, thermal buoyancy

effects are very evident, but conduction is not. The buoyancy

effects probably mask the conduction effects. There is. at

least, some qualitative agreement between the observed and

measured temperatures.
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Figure 3-9 compares the simulated temperatures with those

measured 15 m north, east, west and south of the injection

well. In the upper aquifer zone there is fairly good agreement

between the measured and calculated results in the south and

west for the injection and storage periods. For the storage

and production periods, there is good agreement in the north

and south but not in west and east. For the middle zone of the

aquifer there is good agreement in the east for the injection

period but not in the other directions. For the storage and

production periods there is good agreement in the north and

east but not in the south and west. There is poor agreement in

the lower layer of the aquifer for all times. The results on

Figure 3-9 reflect the use of an axisymetric grid in trying to

model a system that is heterogeneous in the radial direction.

Figures 3-10 through 3-12 present comparisons between

observed temperatures in all four directions with calculated

temperatures for the ends of pumping, storage, and production.

respectively. It appears that at most distances the calculated

temperatures represent an average of the temperatures in the

four directions. The agreement between observed and calculated

temperatures appears very good during the storage and

production periods. During these periods, the effects of the

aquifer heterogeneities are not apparent.

Figure 3-13 presents a comparison of the measured and

calculated production temperatures after about day 72. both the

calculated and measured temperature plot as coincident lines on

the figure. Before that time, observed temperatures are

slightly less than calculated ones.

Although there is a reasonably good comparison between

measured and observed temperatures, this experiment does not

provide a good validation test for the models implemented in

the SWIFT II code. First, a comparison between the observed
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temperatures of Figures 3-6 and 3-7 and the calculated

temperatures of Figure 3-8 provide enough discrepancy to wonder

if the aquifer had been adequately characterized or if an

axisymetric geometry is adequate to model the experiment.

Second, the conceptual model and many of the hydraulic and

thermal properties of the system are based on a prior modeling

effort of Buscheck et al. (1983). They obtained a calibrated

conceptual model based on repeated "trial and error" runs.

Therefore, the results presented by Ward et al. (1984a) should

be considered as a calibration rather than a validation.
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4. SUMMARY AND RECOMMENDATIONS

In the previous two chapters. several verification and

validation problems have been reviewed. It was generally found

that many of the flow and transport features of the SWIFT II

computer program have been verified. On the other hand, all

the validation problems are actually calibration problems. For

instance, the SWIFT II computer program was used to find the

hydraulic and transport parameters necessary to match field

results to SWIFT II results.

4.1 VERIFICATION RECOMMENDATIONS

Many capabilities of the SWIFT II code have been tested.

Pressure solutions, mass transport solutions, and heat

transport solutions using both global and local coordinate

systems have been successfully compared to analytical solutions

for both single and double porosity media. Many types of

boundary conditions, aquifer influence functions, and aquifer

submodels have been tested. Of the three new capabilities

included in the SWIFT II computer program, i.e. fractured

porous media, conductive confining beds; and phreatic aquifers,

all have been successfully tested against analytical

solutions. It appears that many features of the SWIFT II

computer program have been successfully verified.

Some capabilities of the SWIFT II computer program have

not been tested, including both the global and local equations

of the brine solution, parts of the repository submodel. and

the well bore submodel. It is recommended that these areas be

tested.

The global equation for the brine equation can be tested

in a straightforward manner that neglects density effects.

Based on this assumption, the global brine equations can be
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solved analytically. SWIFT II has the capability to solve

variable density problems, where the density changes are due to

dissolution of brine. What needs to be specified in the

problem input data is that the fluid density does not change as

the fluid becomes more saturated with brine. This essentially

reduces the brine equation to a convective-diffusive mass

transport equation with both a continuous source term and

radioactive decay and decouples the brine equation from the

flow equation. The problem should specify a zero brine

condition initially and at the x=O boundary, and a constant

velocity field. The grid should be infinitely long and

one-dimensional.

The local brine equation in conjunction with the global

brine equation can be tested in much the same manner as the

global equation. However, the analytical solution still needs

to be solved and is much more complicated than for the global

equation above.

The solubility limits portion of the repository submodel

needs further testing. The solubility limits have been tested

in several mass transport problems (see Sections 2.2.1 and

2.2.2). Unfortunately, the solubility limits are always set

much higher than the maximum concentrations of the solute, so

that the solubility limits are never given a chance to be

tested. It is recommended that the mass transport problem of

Section 2.2.1 be run with solubility set to much less than the

maximum concentration of a solute. This is equivalent to

running a convective-diffusive equation with a constant source

strength boundary condition.

In addition. the heat loading capability of the repository

submodel has not been tested. It is recommended that a

one-dimensional heat transport problem with a constant heat

source boundary condition be set up and run using the heat
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capability of the repository submodel. Possibly the problem

described in Section 2.3.1 could be modified to be used as the

repository submodel.

It is doubtful that the well bore submodel can be

adequately tested. The equations describing the submodel are

nonlinear and an analytical solution cannot be generated for

them. It is recommended at this time to not test the well bore

submodel.

4.2 VALIDATION RECOMMENDATIONS

It has been found in Chapter 3 that all problems run with

the SWIFT II computer program that could be called validation

problems are actually calibration problems or reruns of someone

else's calibrated data set. The source for many of these

problems (Ward et al., 1984b) mentions that the purpose for

these problems is field comparison and calibration and not

validation. The other source (Reeves et al., 1986c) presents

problems for instructional purposes only. These calibration

problems are essentially trial and error procedures to

determine hydraulic, mass transport, and thermal transport

properties for given field experiments. There is no proof that

these parameters are unique or that the physics of the models

are correct. All that is known is that a set of parameters has

been found that causes the numerical models implemented in the

SWIFT II computer code to match the field data.

At this time is is recommended that the SWIFT II computer

program not be used for validation of mathematical models.

First, the SWIFT 11 computer code is a field oriented program

whose purpose is to solve field problems. Therefore, any

mathematical models implemented in it should have been

validated previously.
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Second, the equations implemented in the SWIFT II computer

program may contain several physical models. For instance, the

flow equation has an aquifer compressibifty model, a fluid

compressibility model, a variable viscosity model, and Darcy's

law included in it. As a result, it may be difficult to

validate a model in the flow equation separate from the rest.

It is probably a good idea to validate a physical model

separately from others. However, this may be difficult to do

in all cases.

Third, SWIFT II is a difficult and cumbersome code to use,

even for simple problems. Therefore, its use to model simple

problems should be discouraged.

instead it is recommended that a literature search be made

to determine if the models implemented in the SWIFT II code

have been previously validated. Such a study would include an

effort to evaluate porous and fracture flow and transport

models to determine if they have been validated. Such a study

could easily be extended to models implemented in codes other

than SWIFT II.

instead, it is recommended that the models implemented in

the SWIFT II computer code be validated with simpler analytical

or numerical models, if possible. For instance, the flow

equation could be validated with Theis (1935) equation,

decaying radionuclide mass transport with Coats and Smith

(1964), heat transport with Avdonin (1964) and mass transport

in dual porosity media with Rasmuson (1984). Many other

analytical solutions with different boundary conditions or

assumptions for these transport processes are available in the

literature.

The reason for the above recommendation is that many of

the physically based models in the SWIFT II computer code are

also available in analytical solutions or easier-to-use
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computer codes. The physics being validated is the same

whether it is implemented in analytical or numerical models.

Therefore if the physics is shown to be correct with an

analytical solution, it is not necessary to test it with a

numerical one. Ease of use and simplicity are the main reasons

for this recommendation. Models unique to SWIFT II, such as

transport by convection in the porous matrix of a dual porosity

media are the only models that should be validated with the

SWIFT II computer code.

4.3 PROBLEMS WITH VALIDATION

A few words are in order concerning the difficulty in

validating models. The meaning of model and validation need to

be adequately defined. The Nuclear Regulatory Commission

defines model as "a representation of a process, component, or

system" (Goller, 1985). This obviously can mean either analog

or mathematical models, but only mathematical models are of

consequence here. The ground-water flow equation could

probably be described as a system model. This model is derived

from several other models, which could probably be described as

models of system components. For instance the ground-water

flow equation consists of a mass conservation model, a water

compressibility model, an aquifer compressibility model, and a

flow resistance model (Darcy's law). The problem arises in

determining which model, whether system or component, needs

validation. Certainly, all of them could be validated, but it

may be inadequate to validate the system model only or the

component models only. However, validating the system and

component models or various combinations of component models

may require many comparisons of models with experiments, an

expensive and time consuming operation.

The NRC defines validation as "the process of obtaining
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agreement between the empirical observation of a phenomena or

set of phenomena and the theoretical description (as embodied

in mathematical model, for example) of the same phenomenon or

phenomena" (Goller, 1985). Agreement can be obtained by

calibration, but this does not necessarily imply that the model

physically represents the data. it only implies that the model

can be made to fit the data. An extreme case can be made with

the one-dimensional convective-diffusive equation for

contaminant transport and a similar model for heat transport.

The models are physically different but mathematically

equivalent, and both can be made to fit one-dimensional mass

transport data. Another case may be made with a three

parameter model and two data points. Such a system is

underdetermined and an infinite number of parameter sets can

fit the data. In this case, no set of parameters is unique.

Finally, a very noisey data set can result in several sets of

parameters fitting the data. For this case, no data is unique.

Another potential problem with validation is comparing

model results with existing experimental results. Since the

data exist and are available for comparison, the modeler can

modify space and time steps and parameters so that code results

match experimental results. This is really a form of

calibration instead of validation and indicates that published

experimental data may be inadequate for model validation.

Another problem with model validation is the issue of

either laboratory or field data. Laboratory experiments are

generally well controlled, producing generally smooth results.

On the other hand, field experiments cannot be well controlled

because of soil layering, fractured rock, sand lenses, and

other geologic discontinuities. These factors, in general,

produce noisey results and are sometimes difficult to implement

in a model. As a consequence, a model may not exactly

reproduce the field experiment, and model results may compare

poorly against field results.
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Finally, if the model is validated against laboratory

experiments, the experiments should be dynamically similar to

the field problems the model would be used for. This means

that the laboratory dimensionless parameters, such as Peclet

numbers, should be the same as those for potential field

problems. This insures a consistency between laboratory and

field experiments.

4.4 SUMMARY

Many problems have been reviewed for verification and

validation purposes. It has been found that many capabilities

have been successfully verified. However, a few of the

submodels need further testing. These include the local and

global brine equations, and parts of the repository submodels.

Recommendations for testing these have been provided in Section

4.1.

The problems reviewed for validation purposes have been

found to be inadequate for that purpose. The problems reviewed

are more like "trial and error" calibration procedures rather

than validation problems. It is recommended that the SWIFT II

computer code not be used for validating mathematical or

physical models.
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