See Pockot3 for encl.

OAK RIDGE NATIONAL LABORATORY

•

OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, WM DOCKET CONTROL CENTER POST OFFICE BOX X OAK RIDGE, TENNESSEE 37831

August 23, 1984

*84 AUG 27 A11:36

WM Record File B-D282	WM Project <u>10, 11, 16</u> Docket No
DRNL	PDR LPDR B, N, S
Distribution:	
(Return to WM, 623-SS)	23

Dr. D. J. Brooks Geotechnical Branch Office of Nuclear Materials Safety and Safeguards U.S. Nuclear Regulatory Commission 623-SS Washington, D.C. 20555

Dear Dave:

Enclosed is a copy of Gary Jacobs trip report to ONWI on August 22, 1984, MR-3.4, along with copies of the vu-graphs presented.

Sincerely,

isar

Susan K. Whatley, Manager Engineering Analysis and Planning Chemical Technology Division

SKW:kk

Enclosures

cc: G. K. Jacobs SKW-File

8408310265 8408	23
PDR WMRES EXIOR	NL
8-0287	PDR

14/5

See folder for 1tr. to D J. Brooks Firth. S. K. Whatzey 8-23-84 MR-3.4 8/23/1984

TRIP REPORT

AUTHOR:	Gary K. Jacobs
LOCATION:	Battelle Project Management Division, Columbus, OH
DATE:	August 22, 1984
PURPOSE:	Attend Geochemistry Program Overview for ONWI
PROJECT TITLE:	Technical Assistance in Geochemistry
PROJECT MANAGER:	Susan K. Whatley
ACTIVITY NUMBER:	ORNL #41 37 54 92 4 (189 # BO287) NRC #50 19 03 01
PARTICIPANTS:	List was not available at time of departure.
AGENDA:	See attachment l

MEETING OBJECTIVE:

The objective of the meeting was to have ONWI present an overview of their geochemistry program to the NRC. The meeting was not intended to provide indepth information or to discuss regulatory issues or concerns of the NRC in any detail, rather the information was to include what type of data is being collected and a few examples of the data. In this way the NRC would get a feeling for the emphasis ONWI is placing on geochemistry. Future meetings will probably focus on specific issues, sites, and data in more detail.

OBSERVATIONS AND COMMENTS:

The presentations by the staff of ONWI provided excellent summaries of the current status of geochemistry in the ONWI program. Copies of the vugraphs presented are included as Attachment 2. Major areas which were covered included: (1) Site Characterization, (2) Waste Package Interactions, and (3) Performance Assessment. Because detailed discussions of the material presented were not encouraged, little insight could be gained in any of the areas discussed. However, a few general observations follow.

(1) ONWI is not placing any emphasis on radionuclide retardation in the far field because of the nature of salt deposits (i.e., the hydrologic conditions at the sites tend to isolate the repository horizons from the likely flow paths in the far field). However, ONWI is characterizing the geochemistry of these far field flow paths in great detail.

(2) ONWI is placing much emphasis on the geochemical conditions in the near field as they may affect the performance of the waste package. Although much work has been done on brine migration in the past, ONWI is continuing to address this mechanism in order to reduce the uncertainty in estimates of water accumulation around waste packages (most of this work is going on in the rock mechanics section of ONWI, although the nature and amount of inclusions in the salt is obviously a part of the geologic characterization effort).

(3) In general, ONWI is still in the early stages of data collection and has not made firm plans to address all the issues as yet. However, ONWI appears to be cognizant of the uncertainties involved and will probably begin to address more details of data collection in the future. It would probably be beneficial to the NRC and ONWI to have detailed discussions concerning plans for data collection and performance assessment early in this period of planning. GEOCHEMISTRY OVERVIEW

- Salt Repository Project -August 22, 1984

Conference Room "C"

- 8:30am Introduction
- 8:40am Introductory Comments
- 9:00am Site Characterization
 - Geological and Hydrological Settings: Palo Duro, Paradox, Gulf Coast
 - location and sizes of aquifers
 - water chemistry
 - origin of water chemistry
 - residence time (groundwater age)
 - radionuclide retardation
 - Chemical Composition and Amounts of Brine
 - fluid inclusion brines:
 Palo Duro, Paradox, Gulf Coast
 - brines produced should external ground water intrude the host rock: Palo Duro, Paradox, Gulf Coast
- 10:00am Laboratory Testing of Waste Package Components and Radiation Effects
 - Corrosion Rates of Mild Cast Steel in brines, with and without radiation
 - Effects of Radiolysis on Brines and Salt
 - Radionuclide Release in the Brine -Overpack - Waste Form System

10:30am Performance Assessment

- Waste Package Lifetimes
 - expected conditions
 - brine migration
 - brine chemistry
 - radiolysis
 - breached by groundwater external to the salt
 - brine chemistry
 - radiolysis

- J. Sherwin/SRPO
- R. Johnson/NRC
- N. Hubbard/ONWI

J. Kircher/ONWI

D. Clark/ONWI

5.5 5.5 - (5

11:30am Natural Analogs

- Salton Sea
 - 0k1o
 - Morro to Ferro

11:35am Closing Summary

Major Points:

- Amounts of brine that migrate to waste package are inadequate to breach it;
- Waste package dominates near-field chemistry;
- Brines resulting from breaching are less corrosive than fluid inclusion brines, except perhaps at Paradox;
- No exit from salt under expected conditions;
- Extremely long travel times outside salt, especially at Palo Duro.

12:00 Lunch

.

N. Hubbard/ONWI

N. Hubbard/ONWI

SITE CHARACTERIZATION

GEOCHEMISTRY

OVERVIEW MEETING WITH NUCLEAR REGULATORY COMMISSION

22 AUGUST 1984

PRESENTER: NORMAN HUBBARD

÷

BATTELLE Project Management Divisio

SUMMARY OF GEOCHEMICAL INVESTIGATIONS

GEOHYDROLOGIC SYSTEM

• Hydrochemistry

•• .

- Flow paths
- Residence times (ages)
- .- Interaquifer relationships
- Radionuclide Transport
 - Travel time
 - Retardation
- Baseline for Monitoring
 - Water quality
 - Natural and fallout radionuclides

HOST ROCK (SALT)

- Amount and Chemical Composition of Brine in Salt
 - Fluid inclusions
 - Inter-granular brine
- Source of Brines
 - Chemical data
 - Isotopic data

SHAFT AND SEALS

- Chemical Environment
 - Mineralogy of Rock
 - Chemical composition of water

Table ⁻ 5.	Gas Analyses For Palo Duro Deep Basin Brines.
	Analyses Made By Bendix Field Engineering
	Corporation, Grand Junction, Colorado.
	Concentrations are In Volume Percent Gas At
	STP Per Volume Of Brine.

.

Well/Aquifer	N2 [%]	CH4%	c0 ₂ %
Sawyer/Granite Wash	4.4	3.5	0.68
"Wolfcamp	0.87	0.35	0.21
Mansfield/Wolfcamp	3.82	1.06	0.27
"Wolfcamp	7.59	0.75	0.04
Zeeck/Pennsylvanian Carbonate	0.74	0.34	0.03
"Wolfcamp	2.21	1.35	0.25
J. Friemel/Granite Wash "Granite Wash "Pennsylvanian Carbonate "Wolfcamp	5.44 5.20	1.47 1.37	0.10 0.21

NH:8/22/84

· •

.

٠

.

Saturation with Gypsum (•) and Anhydrite (•)

Log (IAP/Ksp)

FIGURE 9

Well and Aquifer	4 _{He} /40 _{Ar*}
Sawyer Granite Wash	4.8
Sawyer Wolfcamp	11.5
Mansfield Wolfcamp Zone 1	10.8
Mansfield Wolfcamp Zone 2	12.6
Zeeck Pennsylvania Carbonate	45.7
Zeeck Wolfcamp	23.1
J. Friemel Granite Wash Zone 1	8.4
J. Friemel Granite Wash Zone 4	6.6
]. Frieme] Pennsylvania Carbonate	9.0
J. Friemel Wolfcamp	8.9

Table 2. ⁴He/⁴⁰Ar Ratios for Deep Basin Brines, Palo Duro Basin, Texas Panhandle

NH:8/22/84

.

:

.

Table 4.	.e 4.
----------	-------

	Noble Gas Compos	sition and Ages o	of Wolfc	amp Brine	2	
Hydrologic Test Well (Formation)	⁴ He $x 10^{-5} \text{ cm}^3 \text{STP}$ $\text{cm}^3 \text{ fluid}$	$\frac{40 \text{Ar}}{\times 10^{-5} \text{ cm STP}}$ cm fluid	40Ar Ar	T _{He} MYBP	T _{AR} Mybp	
Sawyer #1 Zone 5 (Wolfcamp)	224	19.4	433	100	162	
Zeeck #1 Zone 3 (Wolfcamp)	295	16.0	518	132	133	

In Table 1 noble gas abundances are in units of 10 cm STP/cm of fluid and calculated ages are in millions of years before present (MYBP). For these calculations the following values were used in age equations: $U_r = 3$ ppm, $Th_r = 3$ ppm, $K_r = 0.6\%$ p = 0.05, p = 2.5 gm/cm and $f_i = 1$. See text and references for sources of data used in the calculations. For the fluid phase the abundances of U, Th and K are negligible relative to the rock.

• * .

Figure 17. This figure shows the expected content and Mg concentration of fluid inclusions in the Lower San Andres salt beds in depositional cycle 4. The fields of possible and expected values are derived from a sample model of sea water evaporation discussed in the text.

٠

Table 6. Chemical Compositions of Fluid Inclusion Brines in Palo Duro Halite (Mg/L)

	10(1)	1R(1)	2(2)	
Ca ⁺⁺			12,630	15,600
Mg ⁺⁺	50,000	50,500	18,810	25,000
Na ⁺	49,000	55,200	78,840	49,000
к+	15,690	15,800	5,030	15,690
S0₄ ⁼	61,450	76,200	470	·200
C1 ⁻	191,000	187,900	200,900	191,000

Fig. 18. Weight percent plot of ten analyses for Ca, Mg and K in 4 large ($\geq 10^{-4}$ g) primary fluid inclusions in recrystallized bedded salt from Palo Duro basin, Texas (encircled dots), four from pairs of adjacent inclusions in two other similar samples (dots A and B; C and D), and two adjacent inclusions in a similar sample from Lyons, Kansas (circles). The encircled dots represent analyses of 2 or 3 duplicate samples, in each case extracted from the same inclusion. A series of 15 analyses of smaller inclusions (<10⁻⁴g) showed a wider scatter.

				(0)		WIPP Bri	ne (3)	
	Flu [:] Inclu #1A	id(1) Jsions #1B	Fluid(2) Inclusions #2	(3) Dissolution Brine- PNL	Recommended Fluid Inclusion Brine(4)	Brine A	Fluid In (preli	clusions ninary)
Ca++ Mg++ Na++ K+ SO4= C1-	50,000 49,000 15,690 61,450 191,000	50,500 55,200 15,800 76,200 187,900	12,630 18,810 78,840 5,030 470 200,900	1,560 134 123,460 39 3,197 191,380	1,336 50,000 25,290 15,690 3,200 200,000	600 35,000 42,000 30,000 3,500 190,000	210 23,000 63,000 8,700 13,200 160,000	150 40,000 32,000 6,800 13,200 160,000

TABLE 1. Palo Duro Brine Compositions Compared with WIPP Brine Compositions (mg/L)

BATTELLE Project Management Division

	<u>-</u>		· ·	(2)	Decommonded	<u></u>	WIPP Brine
	Flu: Inclu #1A	id(1) usions #1B	Fluid(2) Inclusions #2	(S) Dissolution Brine- PNL	Fluid Inclusion Brine(4)	Dessication Brine (5) (MgCl ₂ Brine)	Brine B Dissolution
 Ca++			12.630	1,560	1.336		900
Mg++	50,000	50,500	18,810	134	50,000	138,720	10
Na++	49,000	55,200	78,840	123,460	25,290		115,000
K+	15,690	15,800	5,030	. 39	15,690		15
SO4=	61,450	76,200	470	3,197	3,200		3,500
C1-	191,000	187,900	200,900	191,380	200,000	406,260	175,000

TABLE 1. Palo Duro Brine Compositions Compared with WIPP Brine Compositions (mg/L)

AMOUNTS OF BRINE IN HOST SALT (VOL%)

Palo Duro/Lower San Andres fluid inclusions 0.8: range 0.1 - 1.5 clay-rich salt <u>1.0</u>: 3.0 vol. % clay Total 1.8 Paradox/Salt #6

"carnallite-market" zone 📈 5.0

Lower $\sim 1/3$ of bed < 0.5

• Gulf Coast Salt Domes

3

< 0.15: <0.05 perhaps more accurate value

• Used in P. A. calc.

Palo Duro and Paradox 5.0

- Gulf Coast Salt Domes 0.5
- See E.A. Data Sheets for References

ONWI Battetle

Figure 46.-- Total bound water in the "carnallite marker" of Salt 6 of the Paradox Member, GD-1 core hole. Includes water of crystallization from carnallite (KCl·MgCl₂·6H₂O) and kieserite (MgSO₄·H₂O).

•

DISCUSSION TOPICS FOR SRPO SALT GEOCHEMISTRY MEETING AUGUST 22, 1984

- 1. CORROSION OF LOW-CARBON STEEL
- 2. RADIOLYSIS EFFECTS IN SALT AND BRINES
- 3. WASTE PACKAGE LEACHING TESTS

DON CLARK ENGINEERING DEVELOPMENT SECTION

DEC: 08/22/84

.

SCHEMATIC DRAWING OF GENERIC WASTE PACKAGES EMPLACED IN BOREHOLE IN A SALT REPOSITORY MK 7/25/84 Rev. 1

Well/Aquifer	⁴ He Conc. <u>CC Gas at STP</u> X 10 ⁻¹ CC Brine
Sawyer/Granite Wash	178
"Wolfcamp	228
Mansfield/Wolfcamp, lower zone	359
"Wolfcamp, upper zone	543
Zeeck/Pennsylvanian Carbonate	243
"Wolfcamp	360
J. Friemel/Granite Wash , lower zone	514
" Granite Wash , upper zone	589
" Pennsylvanian Carbonate	422

0#1.00 \$

Table 3. Concentrations of ⁴He In Palo Duro Deep Basin Brines

NH:8/22/84

i

PALO DURO DEEP BASIN BRINES Saturation with Celestite (●), Barite (■), and RaSO₄(▲) Satd. -Undersatd.-5 Sawyer #1 (4) Granite Wash Ionic Strength (molal) Mansfield #1 (2) Wolfcamp Mansfield #1 (1) Wolfcamp Zeeck #1 (3) Wolfcamp 4 3 ▲ Sawyer #1 (1) Wolfcamp -2 0 -6 -4 Log (IAP/Ksp) FIGURE 10

Carnallite

KMgCl₃ · 6H₂O_(s) + NaCl sat. brine → KCl_(s) + MgCl₂/NaCl Sylvite Mg enriched brine

Can produce nearly pure MgCl₂ brine

IMPACT OF RADIATION ON THE PERFORMANCE

OF WASTE PACKAGE MATERIALS

- SALT IRRADIATION EFFECTS (PRODUCTION OF COLLOIDAL, SODIUM, CHLORINE GAS)
- BRINE RADIOLYSIS EFFECTS
- BRINE MIGRATION
- RADIATION-ASSISTED CORROSION
- OTHER EFFECTS (CURRENTLY UNKNOWN)

DEC: 7/17/84

Gamma Irradiation Facility (Cobalt-60) used for Waste Form, Corrosion, Slow Strain Rate, Solution and Salt Irradiation Studies

Irradiation-Corrosion of Ferrous Materials in Permian Basin Brine No. 2 at 1x10⁵ rad/hr and a Maximum Temperature of 150°C

•

Irradiation-Corrosion of Ferrous Materials in Permian Basin Brine No. 2 at 2x10³ rad/hr and a Maximum Temperature of 150°C

WASTE PACKAGE TESTING PROGRAM

STUDIES OF NEAR-FIELD ENVIRONENT - INTENDED TO PROVIDE DEFINITION OF THE ENVIRONMENTAL CONDITIONS TO WHICH WASTE PACKAGES WILL BE EXPOSED FOLLOWING EMPLACEMENT:

- (A) SALT RADIOLYSIS EFFECTS
- 1
- (B) BRINE RADIOLYSIS
- (C) COMPOSITIONAL AND OTHER CHANGES IN HOST ROCK AND BRINES

7/17/84

Gamma Radiolysis Gas Pressure Generation From Various Salt Solutions as a Function of Dose

CALCULATED HYDROGEN PRESSURE GENERATED BY GAMMA OR ALPHA RADIOLYSIS OF NaC1 BRINE

REACTION SCHEME FOR IRRADIATED SALT

$$Na^{+}Cl^{-} \xrightarrow{H\nu} Na^{\circ} + Cl^{\circ}$$
(0)

$$Na^{\circ} + H_{2}O \xrightarrow{} 1/2 H_{2} + Na^{+} + OH^{-}$$
(1)

$$Cl^{\circ} + 1/2 H_{2}O \xrightarrow{} 1/2 Cl^{-} + 1/2 H^{+} + 1/2 HOCl$$
(2)

HOCI
$$\longrightarrow$$
 H⁺ + OCI⁻ (K=3x10⁻⁸) (3)

$$3 \text{ OCI} \xrightarrow{k_1} 2 \text{ CI} + \text{CIO}_3^- (\text{K}=10^{27})$$
 (4)

k₁(25°C) SLOW

k₁(75°C) MODERATE

$$4 \text{ CIO}_{3}^{-} \xrightarrow{k_{1}'} \text{ CI}^{-} + 3 \text{ CIO}_{4}^{-} (\text{K}=10^{29})$$

$$k_{1}'(100^{\circ}\text{C}) \text{ VERY SLOW}$$
(5)

Solution pH vs Dose

WASTE PACKAGE LEACHING TESTS

- ALPHA RADIOLYSIS RESULTS IN VERY OXIDIZING BRINE SOLUTIONS AND IN ENHANCED SOLUBILITIES OF MOST ACTINIDES
- THE PRESENCE OF IRON IN BRINES CAN RESULT IN REDUCING CONDITIONS THAT LOWER ACTINIDE SOLUBILITY
- SOLUTION EFFECTS (E.G., SOLUBILITIES) ARE CONTROLLING WITH RESPECT TO RADIONUCLIDE RELEASES FROM THE WASTE PACKAGE

COMPARISON OF URANIUM RELEASED IN SYSTEMS INCORPORATING SPENT FUEL AT 25 °C IN BRINE

Boron Release From 76-68 Glass vs. SA/V* Time in Permian Basin brine No. 1 at a Temperature of 70°C, With and Without Iron

WASTE PACKAGE TESTING

FOR PURPOSES OF QUALIFYING THE WASTE PACKAGE AND PREDICTING LONG-TERM PERFORMANCE, IT IS REQUIRED THAT WASTE PACKAGE TESTING BE DONE UNDER REPOSITORY-RELEVANT CONDITIONS. THUS, IT IS VITALLY IMPORTANT TO OBTAIN A PRECISE DEFINITION OF THE NEAR-FIELD ENVIRONMENT AND GEOCHEMICAL CONDITIONS TO WHICH EMPLACED WASTE PACKAGES WILL BE EXPOSED.

GEOCHEMISTRY OVERVIEW PERFORMANCE ASSESSMENT

AUGUST 22, 1984

JFK/8/22/84

and then

BRINE MIGRATION CODES

MIGRAIN - EMPIRICAL

SPECTROM-58 - COMPREHENSIVE, THEORETICAL BASIS

BRINEMIG - EMPIRICAL; RESEMBLES MIGRAIN

VSM: 10/14/83

ł

BRINEMIG

FINITE DIFFERENCE CODE BASED ON RADIAL INCREMENTS AND TIME INCREMENTS.

- USES JENKS EQUATION TO CALCULATE VELOCITIES
- CALCULATES TEMPERATURES FROM TABLES SUPPLIED BY TEMPV5
 - -- USES LARGEST TEMPERATURE GRADIENTS
 - --PERFORMS SEMILOGARITHMIC INTERPOLATIONS
 - --NEGLECTS END EFFECTS.
- ALLOWS USE OF A THRESHOLD GRADIENT

VSM:

4

$$V_{M-1}A_{M-1}C_{N,M}$$

$$V_{M}A_{N}C_{N,M+1}$$

$$M+1$$

$$IN = OUT + ACCUMULATION$$

$$V_{M}A_{M}C_{N,M+1} = V_{M-1}A_{M-1}C_{N,M} + (C_{N+1,M} - C_{N,M}) \frac{\Delta V_{M}}{\Delta T}$$

$$WHERE M = RADIAL INCREMENT NUMBER$$

$$N = TIME INCREMENT NUMBER$$

$$N = TIME INCREMENT NUMBER$$

$$V = VELOCITY$$

$$A = AREA$$

$$C = CONCENTRATION$$

$$\Delta V = VOLUME OF INCREMENT$$

$$\Delta T = TIME INCREMENT$$

VSM: 10/14/83

i

BATTLIFEP

JENKS EQUATION

LOG (V/G) = 0.00656T - 0.6036

τ

where V = velocity of fluid inclusion, cm/yr $G = \text{temperature gradient in salt, }^{O}C/cm$ $T = \text{temperature, }^{O}C$

VSM: 10/14/83

THRESHOLD GRADIENT

- MINIMUM TEMPERATURE GRADIENT WHICH WILL GIVE BRINE MIGRATION.
- ESTIMATED IN LITERATURE TO EQUAL 0.125°C/cm.

SALT BLOCK II

THERMAL GRADIENTS APPLIED TO A SALT CYLINDER

- CYLINDER FROM A SALT BED
 OUTSIDE RADIUS = 0.5 M
 INSIDE RADIUS = 0.05 M
 HEIGHT = 1 M
- VARIABLE HEAT SOURCE INSIDE
- CONSTANT TEMPERATURE CONTROL OUTSIDE

6

VSM: 10/14/83

ASSUMPTIONS

- ALL MIGRATION WAS INTRACRYSTALLINE.
- MOST CONSERVATIVE TEMPERATURE PROFILE
 WAS APPLIED THROUGHOUT,
- END EFFECTS WERE CONSIDERED FOR SALT BLOCK II SIMULATION.
- END EFFECTS WERE NEGLECTED FOR WASTE PACKAGES.
- INITIAL MOISTURE CONTENT WAS 5 VOLUME PERCENT FOR BEDDED SALTS.
- INITIAL MOISTURE CONTENT WAS 0.5 VOLUME PERCENT FOR DOMAL SALT.

vsm:7-9-84

··· · · · ·

INPUT TO BRINEMIG

INITIAL CONCENTRATIONS OF BRINE IN SALT

- BEDDED = 0.05 mL/cm³
 GIESON DOME
 PALO DURO
- Dome = 0.005 mL/cm³
 R1CHTON

EFFECTIVE PACKAGE LENGTH

- $CHLW = 367.9 \ CM$
- SF = 385.0 CM

PACKAGE RADIUS

- CHLW = 44.5 cm
- SF = 41.7581 cm

DISTANCE BETWEEN PACKAGES

- CHLW = 1310 cm
- SF = 1005 cm

<u>onwi</u>

VSM: 10/14/83

x + z

.

•••

ميجر بالفاسون

vsm:7-9-84

CONCLUSIONS

- ONLY A SMALL FRACTION OF THE AFFECTED MOISTURE LEAVES THE SALT.
- THE THRESHOLD GRADIENT HAS A SIGNIFICANT EFFECT ON THE RESULTS FOR SPENT FUEL.
- RICHTON DOME SHOWS THE SMALLEST BRINE ACCUMULATION.
- MORE WORK MUST BE DONE TO ESTABLISH CONSERVATISM.

VSM: 10/14/83

F

Deaf Smith County SFPWR Package. Comparison of Solubility and Maximum Brine Volume Limited Release at a Failed Waste Package Boundary with EPA Discharge Limits to the Accessible Environment

The volume of brine is 0.41 m^3 made available by brine thermal migration with a threshold thermal gradient.

Element	Solubility (a) grams/m ³	Package Inventory,(b) grams	Dissolved in Brine, grams	Nuclide	EPA Limit,(c) Curies per 1000 MTIHM	Ratio of Radioactivity(b) in Brine to EPA Limit	Total Volume of Saturated Brine to Reach EPA Limit, m ³		
Carbon	400.	831.	164.	C-14	200	1.2	0.35		
Selenium	0.001	279.	4.1E-4	Se-79	500	0.12E-5	3.4E+5		
Strontium	0.8	1,750.	0.33	Sr-90	80	0.11	3.9		
Technetium	0.001	3,813.	4.1E-4	Tc-99	10,000	0.14E-6	2.9E+6		
Tin	0.0001	6,752.	4.1E-5	Sn-126	80	0.58E-7	7.0E+6		
Iodine	600,000.	1,157.	1,157.	I -1 29	500	0.063	Not saturated		
Cesium	600,000.	7,077.	7,077.	Cs-135	2,000	0.17	Not saturated		
				Cs-137	500	159. (meets 1	imit by decay		
						at 520 years)	at 520 years)		
Radium	0.00042	0.67	1.7E-4	Ra-226	3	0.19E-4	2.1E+4		
Thorium	0.001	50.	4.1E-4	Th-230	10	0.34E-5	1.2E+5		
Uranium	0.001	4,800,000.	4.1E-4	U-234	10	0.16E-7	2.5E+7		
Neptunium	0.001	8,245.	4.1E-4	Np-237	20	0.15E-5	2 . 7E+5		
Plutonium	0.001	38,394.	4.1E-4	Pu-238	400	0.57E-5	7.2E+4		
				Pu-239	100	0.33E-4	1.2E+4		
				Pu-240	100	0.55E-4	7.5E+3		
				Pu-241	500	0.41E-7	1.0E+7		
				Pu-242	100	0.18E-06	2.3E+6		
Americium	0.0001	4,304.	4.1E-5	Am-241	10	0.26E-2	1.6E+2		
				Am-243	4	0.38E-4	1.1E+4		
Curium	0.001	4.4	4.1E-4	Cm-244	10	0.13E-3	3.3E+3		

(a) Various other solubility data exist, some with higher and some with lower values for various nuclides. These other data may be no more or no less applicable for this preliminary analyses.

(b) Maximum value during the period 300 years to 10,000 years.

(c) U.S. EPA, 1982, p. 58206.

Deaf Smith County SFPWR Package. Comparison of Package Release Rates to Saturate Incoming Brine at 300 Years at the Waste Package Boundary with NRC Engineered System Release Rate Limits in 10 CFR 60

The final gross volume of incoming brine will be 0.75 m³, made available by brine migration without a threshold thermal gradient.

The gross brine inflow rate is $4.2E-4 m^3$ per year at 300 years after burial.

Element	Solubility (a) grams/m ³	300 yr Package Inventory,(b) grams	Quantity Required to Saturate Incoming Brines, grams/yr	Nuclide	Activity From Package to Brine, Curies/yr	Ratio to 1000yr Nuclide Activity/ (1E-5 per yr)	Ratio to 1000yr Total Activity/ (1E-8 per yr)
Carbon	400.	831.	0.17	C-14	0.0012	22.	14.
Selenium	0.001	279.	4.2E-07	Se-79	3.0E-9	1.5E-04	(c)
Strontium	0.8	1.750.	3.4E-04	Sr-90	4.3E-5	330.000.	0.52
Technetium	0.001	3,813.	4.2E-07	Tc-99	7.1E-09	1.1E-5	(c)
Tin	0.0001	6.752.	4.2E-08	Sn-126	2.4E-11	6.3E-7	(c)
Iodine	600.000.	1.157.	250.	I-129	0.034	22.000.	410.
Cesium	600,000.	7.077.	250.	Cs-135	0.060	3,600.	710.
				Cs-137	14.	3.8E+10	170.000.
Radium	0.00042	1.1E-03	1.8E-7	Ra-226	1.7E-07	1.1	0.0021
Thorium	0.001	1.2	4.2E-7	Th-230	7.3E-09	0.086	(c)
Uranium	0.001	4.800.000.	4.2E-7	U-234	8.3E-13	8.3E-9	(c)
Neptunium	0.001	4.250.	4.2E-7	Np-237	3.0E-10	6.0E-6	(c)
Plutonium	0.001	38.394.	4.2E-7	Pu-238	1.2E-8	2.4E-4	(c)
				Pu-239	1.7E-08	1.1E-6	(c)
				Pu-240	2.8E-8	1.2E-6	(c)
				Pu-241	1.0E-10	1.6E-5	(c)
				Pu-242	9.3E-11	1.1E-6	(c)
Americium	0.0001	4.304.	4.2E-08	Am-241	1.3E-7	3.0E-6	(c)
				Am-243	7.8E-10	1.0E-6	(č)
Curium	0.001	4.4	4.2E-07	Cm-244	6.4E-09	3.1E+06	7.7E-0

(a) Various other solubility data exist, some with higher and some with lower values for various nuclides. These other data may be no more or no less applicable for this preliminary analyses.

(b) The radium, thorium, and neptunium grow larger with time, so that at 10,000 years these inventories are 6.7E-01, 49.5, and 8,243 grams per package, respectively.
 (c) This value is not computed unless the primary (10⁻⁵) standard is not met indicated by a value greater than

(c) This value is not computed unless the primary (10^{-5}) standard is not met indicated by a value greater than one in the preceding column.

SUMMARY COMMENTS

GEOCHEMISTRY OVERVIEW MEETING WITH NUCLEAR REGULATORY COMMISSION

22 AUGUST 1984

PRESENTER: NORMAN HUBBARD

SATTELLE Project Management Divisi

NH:8/22/84

WASTE PACKAGE DOMINATES NEAR-FIELD CHEMISTRY

- source of heat and radiation
- insufficient brine
 - corrosion rate not important
 - radiolysis not important
- virtually no redox controlling minerals in salt
 - Fe metal and radiolysis are controlling

NH:8/22/84

BRINE AMOUNTS INADEQUATE TO BREACH WASTE PACKAGE

- expected conditions -

- performance assessment calc. assume
 2x to 10x more brine in salt than found
- all brine is reacted
 - no dependence on corrosion rate date
- more than 10cm of Fe overpack mutual remains
- overpack lifetimes always greater than
 1,000 years

NH:8/22/84
NO EXIT FROM SALT

- expected conditions -

- No known natural exits
- Very slow flow/diffussion rates in salt
- impermeable rocks protecting salt

NH:8/22/84

BRINES RESULTING FROM BREACHING REPOSITORY

- unexpected conditions -

- potentially unlimited volume of brine
- NaCl brines, sat. with CaSO₄, at Palo Duro and Gulf, rather than Mg-rich brines
- potentially large volumes of high-Mg brine at Paradox
- corrosion rate and radionuclide solubility data are more crutial

NH:8/22/84

TRAVEL TIMES IN FAR-FIELD AQUIFERS

Site	<u>Outside Host Rock to 10km</u>
Richton	>100,000 years
Palo Duro (Wolfcamp)	>500,000 years
Paradox (interbed below salt 6)	≫1,000,000 years

BATTELLE Project Management Divis

۹,

NH:8/22/84