
FirstEnergy Davis-Besse Nuclear Power Station

IMC 0350 Meeting

Davis-Besse Nuclear Power Station

September 10, 2003

Desired Outcomes

- •Demonstrate that Davis-Besse is preparing for restart
 - -Plant systems are being inspected and tested
 - -Technical issues are coming to closure
 - -Ongoing assessments of our people, plant and processes will ensure nuclear safety and event free operation

Lew Myers Chief Operating Officer - FENOC

Davis-Besse Nuclear Power Station

September 10, 2003

Meeting Agenda

•Plant Response to Loss of Transmission Grid.....Lew Myers •Plant Status......Mark Bezilla •Closure of Technical Issues......Jim Powers •Operational Readiness Assessment Plan......Rick Dame •Quality Assurance Oversight.....Steve Loehlein •Actions to Anchor Long-Term Improvement.....Lew Myers

Lew Myers Chief Operating Officer - FENOC

Davis-Besse Nuclear Power Station

September 10, 2003

Plant Response to Loss of Transmission Grid

Lew Myers Chief Operating Officer - FENOC

Davis-Besse Nuclear Power Station

September 10, 2003

FirstEnergy

Plant Response to Loss of Transmission Grid

•Event

-On 8/14/03, a power outage impacted electrical grid system

- -Offsite power lost shortly after 4 p.m.
- -Declared an Unusual Event at 4:21 p.m.
 - -Loss of Offsite Power
 - -NRC notified
- -Plant work activities stopped and Emergency Plan initiated
- -Technical Support Center manned
- -Both Emergency Diesel Generators started to provide site electricity -Operated EDG #2 for Safety-Related equipment
 - -EDG #1 and Station Blackout Diesel was on standby
- –Perry was operating at 100% power and tripped off line
- -Beaver Valley was operating at 100% power, reduced power for a short time and later resumed full power

Plant Response to Loss of Transmission Grid

•End of Event

- -On 8/15/2003, re-established grid stability and switched non-vital plant functions back to offsite power
- -Exited from the Unusual Event

Observations

- -Focus was plant safety
- -Employees responded well to the event
- -Demonstrated equipment capability

6

Davis-Besse Nuclear Power Station

Mark Bezilla Vice President/Plant Manager

Davis-Besse Nuclear Power Station

September 10, 2003

Desired Outcome

•Demonstrate that Davis-Besse's preparation for the Normal Operating Pressure (NOP) Test is thorough, well-planned, and comprehensive

Davis-Besse Nuclear Power Station

September 10, 2003

FirstEnergy Nuclear Operating Company

•Today's Plant Status

September 10, 2003

Davis-Besse Nuclear Power Station

Management preparation and focus during NOP Test
-Nuclear Safety
-People
-Plant
-Processes

Mode 4 Readiness Review Meeting

Davis-Besse Nuclear Power Station

September 10, 2003

Control Room

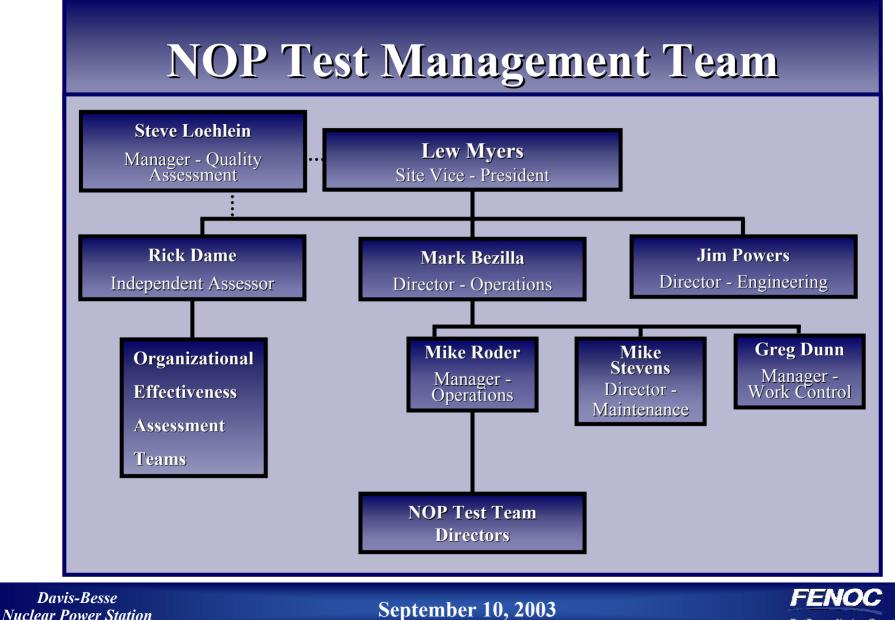
•Expectations of site employees during NOP Test

-Nuclear Safety

-Preparation

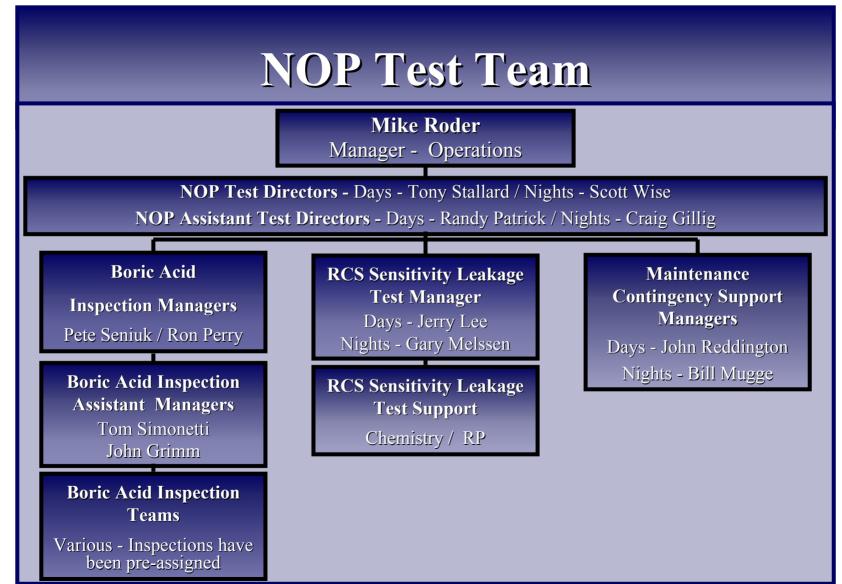
-Communication

-Accountability



11

Davis-Besse Nuclear Power Station


September 10, 2003

FirstEnergy Nuclear Operating Company

Davis-Besse Nuclear Power Station

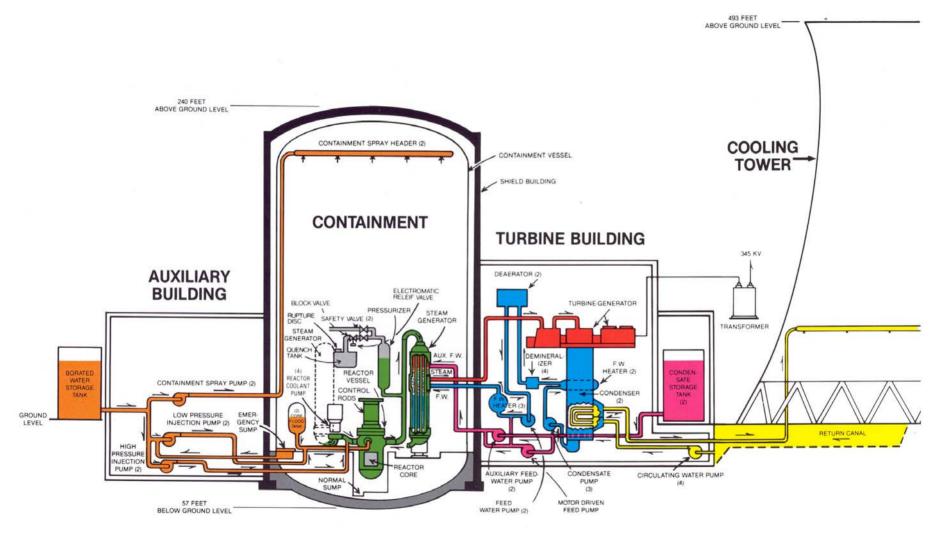
September 10, 2003

13

FirstEnergy Nuclear Operating Company

- •Normal Operating Pressure Test
 - –Heat Reactor Coolant System to ~ 532° using Reactor Coolant Pump
 - –Pressurize Reactor Coolant System to ~ 2155 pounds per square inch
 - -Conduct initial walkdown
 - Perform > 1,000 visual inspections of Reactor Coolant
 - System and components
 - -Conduct 2nd walkdown
 - Repeat same inspections
 - -Perform post-maintenance and modification testing
 - -Perform organizational effectiveness exercises

- •Normal Operating Pressure Test being performed to demonstrate confidence in plant systems and equipment
 - -Safety Equipment
 - -Tested Safety Features Actuation System, Reactor Protection System, and Steam and Feedwater Line Rupture Control System
 - -Primary Systems
 - -Numerous inspections (Reactor Coolant System (RCS), Make
 - Up & Purification, and Pressurizer)
 - -Validate RCS Integrated Leakage Program and RCS
 - Sensitivity Leakage Test (FLÜS Monitoring System)
 - -Secondary Systems
 - –Numerous inspections (Feed Water, Condensate, Circulating Water, Main Steam)



•Primary System Inspections include

- -Reactor Vessel flange
- -Reactor Head Control Rod Drive Mechanism (CRDM) nozzle penetrations and flanges
- -Reactor Vessel Incore Monitoring Instrumentation Nozzles
- -Steam Generator and Pressurizer manways and hand-holes
- -Reactor Coolant Pump covers and seal area
- -Pressurizer Heaters, Pressurizer Safety and Relief Valves
- -Body to bonnets on RCS Valves and packing glands
- -Bolted connections and flanges

17

Davis-Besse Nuclear Power Station

September 10, 2003

FirstEnergy Nuclear Operating Company

FENOC

Plant Status Accomplishments

- •Replaced Reactor Pressure Vessel Head
- •Improved Containment Emergency Sump
- •Modified High Pressure Injection Pump Recirculation Line
- •Painted the Containment Dome
- •Installed FLÜS Online Leak Monitoring System
- •Replaced Containment Air Coolers
- •Enhanced Decay Heat Valve Enclosure
- •Cleaned Reactor Vessel
- •Confirmed Fuel Integrity
- •Performed Boric Acid Extent of Condition Inspections, Evaluations, and Corrective Actions
- •Cleaned Containment Building

Plant Status Activities Completed

- •August, 2003
 - -Shipped original Reactor Pressure Vessel Head by rail to Envirocare Low-Level Radioactive Waste Facility in Utah for permanent storage

Davis-Besse Nuclear Power Station

September 10, 2003

Plant Status Actions Completed

- •Items completed to date
 - ~ 100 Modifications
 - ~ 7,700 Work Orders
 - ~ 14,600 Condition Report Evaluations
 - ~ 23,800 Corrective Actions
 - ~ 15,000 Surveillance Tests
 - \sim 2,200 Preventive Maintenance Tasks
 - ~ 2,700 Procedure Changes

20

Davis-Besse Nuclear Power Station

September 10, 2003

Plant Status Future Activities

- •Complete 7-Day Normal Operating Pressure Test of Reactor Coolant System
- •Return to Mode 5 and assess results
- •Remove / Modify / Re-install High Pressure Injection Pumps
- •Address people, plant, and process issues identified
- •Transition from Return to Service Plan practices to normal operating practices
- •Request NRC permission to restart plant

Closure of Technical Issues

Jim Powers Director - Engineering

Davis-Besse Nuclear Power Station

September 10, 2003

Desired Outcome

•Demonstrate that technical issues are coming to closure

Davis-Besse Nuclear Power Station

September 10, 2003

FirstEnergy Nuclear Operating Company

Closure of Technical Issues

- •Return to Service Plan reviewed plant systems
 - -Inspections complete
 - -Issues identified and documented
 - -Issues are clearly understood and bounded
- •Three issues remain
 - -High Pressure Injection Pumps
 - -Electrical Distribution System
 - -Containment Air Coolers

24

Davis-Besse Nuclear Power Station

Closure of Technical Issues High Pressure Injection Pumps

•Status

- -Qualification testing in progress
- -Debris characterization finalized
- -Pump Guinard hydrostatic bearing design adapted and improved for Davis-Besse High Pressure Injection pumps
- -Hardfaced replacement parts ordered
- -Pump modifications to be made following Normal Operating Pressure Test

Closure of Technical Issues Electrical Distribution System

•Status

Analysis complete
-1st Mode 4/3 modifications complete
-2nd Mode 4/3 modifications identified
-Final resolution to occur prior to restart

26

September 10, 2003

Davis-Besse Nuclear Power Station

Closure of Technical Issues Containment Air Coolers

•Status

- -During loss of offsite power event from electrical grid disturbance on 8/14/03, Containment Air Coolers experienced a water pressure surge
- -Misalignment and expansion of piping bellows assemblies identified
- -Significant Condition Adverse to Quality created
- -Event Investigation Team/Problem-solving and Decisionmaking Process initiated
- -Short-term assessment/actions completed
- -Long-term actions being finalized

Rick Dame Reliability Unit - Supervisor

Davis-Besse Nuclear Power Station

September 10, 2003

FENOC

Desired Outcome

-Demonstrate the readiness of people and processes to safely and reliably operate the plant

29

September 10, 2003

Davis-Besse Nuclear Power Station

- •Methodology
 - Conduct observations and assessments of organizational performance during 7-Day Reactor Coolant System (RCS) Normal Operating Pressure (NOP) Test
 Perform exercises to ensure that standards and processes are appropriate to support safe and
 - reliable plant operation

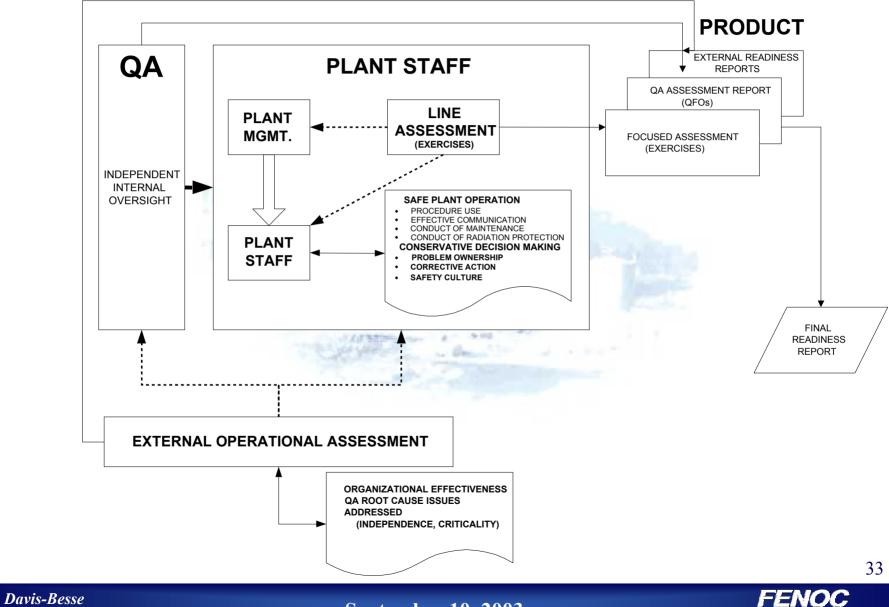
30

Davis-Besse Nuclear Power Station

- •Assessment Criteria
 - -Davis-Besse Operations Section "Conduct for
 - Excellence" Handbook
 - -Davis-Besse "Conduct of Operations" procedure
 - -World Association of Nuclear Operators (WANO) Performance Objectives and Criteria

•WANO Performance Criteria

–Provides a consistent standard of excellence to determine station strengths and weaknesses
–Selected WANO Performance Objectives for this assessment are "Organizational Effectiveness" and "Operations"


32

Davis-Besse Nuclear Power Station

INTEGRATED ASSESSMENT DURING

NOP TESTING

Nuclear Power Station

September 10, 2003

FirstEnergy Nuclear Operating Company

- •Data Gathering Opportunities
 - -Operational evolutions associated with the 7-Day RCS NOP Test
 - -Organizational response to actual emergent issues
 - -Organizational response to emergent issue exercises

34

Davis-Besse Nuclear Power Station

- •"Emergent Issue" Exercises
- •Exercises will be designed to have minimal impact on Control Room crews
- •Examples of exercises:
 - -Operability Determination
 - -Priority 200 Work Order
 - -Procedure change
 - -Immediate Investigation
 - -Off-hour equipment challenge

Davis-Besse Nuclear Power Station

September 10, 2003

- •7-Day NOP Test Assessment Documentation
 - -Internal Assessment Team FENOC Focused Self-
 - Assessment Report
 - -External Assessment Team External Readiness Reports
 - -Quality Assurance (QA) Assessment Team QA Assessment Report
- •Results will be included in the final Integrated
 - Restart Report

Quality Assurance Oversight

Steve Loehlein Manager – Nuclear Quality Assessment

Davis-Besse Nuclear Power Station

September 10, 2003

Corrective Action Program

- •Corrective Action Review
 - -5402 completed corrective actions were reviewed
 - -4980 (92%) acceptable
 - -422 (8%) inconclusive/unacceptable
 - -221 answered as of 9/7/03
 - -185 documentation errors/inadequacies (84% of the 221)
 - -36 missed items or procedure errors (16% of the 221)
 - -Status
 - -Continuing resolution indicates that relatively few issues were missed, and these are of low significance

Corrective Action Program

- •Focus for Improvements
 - -Implement effective trending
 - -Increase management involvement in improving program implementation
 - -Increase management involvement in Management Review Board
 - -Increase management involvement in ensuring issues are appropriately evaluated

Oversight Activities for Mode 4

- •Assessment of Restart Activities
 - -Ongoing oversight of qualification testing at testing laboratory
 - -Some of the Focus areas
 - -Operations Leadership
 - -Safety Culture
 - -Configuration Control
 - -Procedure Compliance
 - -Test Control

40

Davis-Besse Nuclear Power Station

September 10, 2003

Oversight Activities for Mode 4

- •Assessment during NOP Testing Activities
 - -Control Room Command and Control
 - -Component/System Testing Activities
 - -RCS walkdown teams
 - -Organizational Response to Emergent Issues
 - Identification and prioritization of issues
 - Quality of problem resolutions

41

Davis-Besse Nuclear Power Station

Lew Myers Chief Operating Officer - FENOC

Davis-Besse Nuclear Power Station

September 10, 2003

FENOC

- •New officers and management
 - -At corporate level
 - -At plant level
 - -New corporate-level departments for fleet-wide improvements
- •Improvements in plant systems to add margin
- •New vision, strategic objectives, and metrics
 - -Safe Plant Operation
 - -Improved Outage Performance
 - -Excellent Material Condition
 - -Fleet Efficiency and Effectiveness

43

FirstEnergy Nuclear Operating Company

- Improvements for Personnel Performance
 - -Training on lessons learned
 - -New training for managers and supervisors on nuclear safety focus and professionalism
 - -Department level expectations
 - -Improvements in communications and teamwork
 - -Alignment of management and personnel
 - -Improvements in personnel evaluations and development
 - -Leadership development
 - -Operations Leadership

•Improvements in Programs

- -Program reviews and benchmarking
- -Corrective Action Program
- -Employee Concerns Program
- -Operating Experience Program
- -Radiation Protection Program
- -Boric Acid Corrosion Control and Lead Detection Programs
- -Operability Determinations
- -Problem Solving and Decision-Making

45

Davis-Besse Nuclear Power Station

- •Improvements in Monitoring and Oversight
 - -Management Observations
 - -New performance indicators
 - -New Safety Culture Assessments
 - -New Engineering Assessment Board and improved Corrective Action Review Board
 - -Augmented independence and capability of Quality Assurance
 - -Improvements in Company Nuclear Review Board and Board oversight

Closing Comments

Lew Myers Chief Operating Officer - FENOC

Davis-Besse Nuclear Power Station

September 10, 2003

FENOC