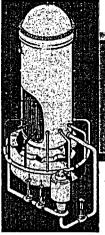


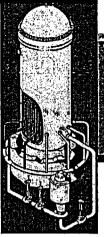
INPO Materials Group


Steve Johnson August 21, 2003

Meeting Purpose

Exchange information with NRC about materials-related programs

 Answer questions on INPO materials activities


INPO Materials Group

- New group formed July 2002
- Align with industry materials management improvement initiative
 - Implement a boric acid leakage and corrosion management review visit program (now expanded to primary systems integrity)
- A key INPO initiative for 2003 and 2004

Focus Areas

Materials Review Visit Programs

- Steam Generator Program '95
- BWR Vessel and Internals Program '01
- PWR Primary Systems Integrity '03
- Future material review programs

Review Visit Methodology

- Separate from INPO evaluation process
- Use best industry experts
- Focused, detailed review
- Review visit guidelines
- Standard of excellence for safety and reliability issues – not minimum compliance

Review Visit Purpose

Big Picture

 Ensure stations have material programs in place and being used to promote safe and reliable operation

 Ensure consistent interpretation and application of industry guidelines

Review Wisit Pumpose

But also,

- Identify outliers
- Make industry guidelines a living program identify and promote changes to industry guidelines
- Resolve technical disagreements
- Promote best practices available
- Share results widely

What does INPO add?

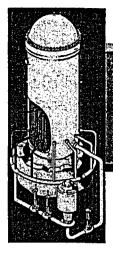
- Team leaders are experienced evaluators
- Formal, structured, proven evaluative process
- Senior management attention
- Continuous follow-up on important issues (boric acid programs being looked at on every INPO evaluation)

Depth of Review

On-site review includes:

- > NDE review (eddy current, videotapes, UT scans)
- > Interviews (technician level to site management)
- > Walkdowns and observations
- > Documentation (process and results)

Review Wisit Results


Strengths and recommendations for improvement are discussed with site management

- Results are reviewed by INPO management and provided in a report to the site vice president
- Issues impacting safety and reliability require a written utility response and followup during next INPO evaluation

Pirogram Scope

- Visit every station
- Targeted second round of visits
- Add to existing programs or implement new review programs based on industry needs and operating experience
- What additional material areas are of most concern to the NRC?

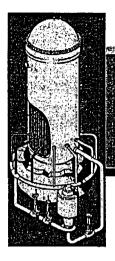
Program Trends

- Most steam generator programs mature BWR vessel and internals programs – good foundation of industry guidelines
- PWR primary system integrity most programs in a state of change

Industry Materials Initiative

Roles and responsibilities of INPO as defined in NEI 03-08:

- > On-site evaluation of industry guidelines
- > Analysis of operating experience for emerging material issues
- > Communicate identified trends or emerging issues to industry
- > Participating at all levels of industry materials management initiative


INPO Materials Group

Questions/comments?

r.

.

14

INPO-NRC Materials Meeting

INPO Steam Generator Review Visits

Jeff Ewin August 21, 2003

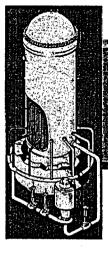
15

INPO Siteann Gemeiratoir Review Visits

- Began mid-1995 at industry request
- Review visit guidance written with industry input
- NEI 97-06 and EPRI guidelines used as technical basis

INPO Steam Generator Review Visits

- 63 domestic visits
- 3 international visits
 - All PWRs have had at least one visit
 - 18 PWRs have had second visit


Teann Composition

- **INPO Team Lead**
- **Chemistry Evaluator**
- Steam generator program manager or engineer
- Eddy-current Level III/QDA

Review Visit Scope and Structure

- Program management, self-assessment, and corrective actions
 - Degradation assessments and inspection plans for tubing and secondary-side structures
- Integrity assessments condition monitoring and operational assessments
- Response to inspection results repairs or alternate repair criteria

Review Visit Scope and Structure

- NDE analyst and technique qualification NDE data acquisition, analysis, management Operations and chemistry procedures and practices for primary-to-secondary leakage monitoring and response
- Primary and secondary chemistry control

Typical Strengths

- Management support of program
- Knowledge and experience of personnel
- Participation in industry groups
- Long-term strategies for steam generator health
- Robust program procedures
- Improved quality of degradation, condition monitoring and operational assessments

Typical Recommendations

- Implementation of industry guideline requirements
- Deviation justifications and level of approval
- Inspection scope (critical areas/buffer zones)

- Primary-to-secondary leak monitoring and response
- Evaluation and response to industry operating experience
- Accuracy of program procedures and documents

INPO Steann Gemerator Review Visits

Questions/comments?

24

INPO-NRC Materials Meeting

INPO BWRVIP Review Visits

David Berko August 21, 2003

25

INPO BWRVIP Review Visits

- Began July 2001 at industry request Modeled after steam generator review program
- **BWRVIP** guidelines provide technical basis
- 18 of 23 sites visited to date
- Complete all U.S. plants by 2003

Teann Connipositiion

- INPO Team Lead
 - **Chemistry Evaluator**
- Level III NDE (Visual and UT)
- 1-2 Program Owners
- EPRI team member

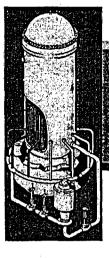
Review Visit Scope and Structure

- Weld-by-weld review all 12 BWRVIP components 2-3 components per day
- For dual-unit sites, focus on unit with upcoming outage, but review aspects of alternate unit as well
- Two sets of eyes on major components
- Look beyond BWRVIP components (steam dryer, head bolts, dry-tubes, foreign material)

Review Visit Scope and Structure

- Peers selection based on station history
- **Review visit information sources:**
 - > Vendor inspection reports (baseline and re-exams)
 - > Program guidelines
 - > Nondestructive evaluation data (UT, visual)
 - > Chemistry trends and parameters
 - > Operating parameters (jet pumps, etc.)
 - > Interviews

Typical Strengths

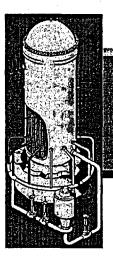

- Proactive towards understanding material condition of vessel internals
 - > UT applications, aggressive scope, inspection coverage
- Plant-specific applications
 - > Fluence profile, analysis, labyrinth seals, NDE remote viewing
- Program Elements
 - > Implementation plan, self-assessment

Typical Recommendations


- Guideline requirements
 - > Management oversite, quality of technical justifications
- Bow-wave effect for inspections

Component-specific vulnerabilities
Shroud, core spray, jet pumps, steam dryer

Typical Recommendations


- Effects of power uprate
- Quality of nondestructive evaluation (visual, UT)
- Mitigation $(+/\Delta)$
 - > Hydrogen availability, aggressive ion intrusion events
- Operational considerations
 - > Jet pump performance monitoring, drywell leakage detection

INPO BWRVIP Review Visits

Questions/comments?

33

INPO-NRC Materials Meeting

INPO Primary System Integrity Review Visits

John Makar, Russ Warren

August 21, 2003

34



- MRP and industry recognized need for independent review
- Decision to begin INPO review visits 2002

Primary Systems Integrity Review

Wisilits

- Several meetings held with industry peers
- > INPO guideline developed with industry input

Modeled after Steam Generator and BWRVIP review visit programs

Primary Systems Integrity Review

Visits

- Industry peers provide technical expertise
- EPRI and WCAP guidelines provide technical basis
- > Review to standards of excellence

- First two pilots completed 2002
- Ten visits complete October 2002 July 2003
- Seven more visits scheduled August -December 2003 - schedule to complete all US plants by end of 2005

Teann Composition

≻ INPO Team Leader

2-3 peers knowledgeable of guidelines, selected based on plant-specific needs

≻ ISI / NDE expertise

Review Visit Scope and Structure

Scope includes:

- Management Oversight and Involvement
- Program Scope
- Implementation
- Interfaces with Other Programs
- Training and Qualification

Review Visit Scope and Structure

- Review all Alloy 600 components
- > Thorough Auxiliary Building walkdown
- Review of containment conditions, potential indications of leakage over several years
- Strong focus on vessel penetrations, condition of upper head and vessel bottom
- Interviews with station personnel (Program Owners, Engineering, Maintenance, Operations, Chemistry, and Health Physics)

Typical Strengths

- Commitment to vessel upper head exams
- Comprehensive Alloy 600 program plans
- Sensitivity to minor leakage
- > Eddy Current Testing techniques

Typical Recommendations

- > Program implementation
- > Vessel lower head exams
- Alloy 600 susceptibility analysis and bare metal examination
- Threshold for reporting leakage

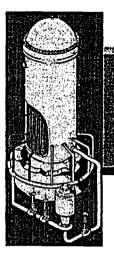
Typical Recommendations

- Carbon steel component replacement
- Shutdown inspections
- Reactor Coolant System leakage indicators

Primary Systems Integrity Review Visits

Questions/comments?

44



INPO-NRC Materials Meeting

International Operating Experience

Francois Chapelier August 21, 2003

45

- January 2003 meeting between INPO, US industry and EDF focused on operating experience feedback and identification of potential industry issues
- Share operating experience
- INPO/EDF have established a framework for future meetings on shared materials issues

Key Material Issues

BMI

- CVCS charging line nozzle
- Boric acid injection nozzle
- Surge line nozzle
- Tee upstream of RHR pump
- Tee connecting feed flow and AFW
- CCW

International Operating Experience

Questions/comments?

NRC DOCUMENTS

RECENT STEAM GENERATOR ISSUES

NRC/INPO Meeting

August 21, 2003

Louise Lund

U.S. Nuclear Regulatory Commission

(301) 415-3248

SG PERFORMANCE

- Forced Outages
 - Wolf Creek no leakage primary side loose part
 - Byron 2 75 to 80 gpd leak secondary side loose part
 - Comanche Peak 1 50 gpd leak SCC in U-bend
- Most forced outages in a single year since 1994
- Performance criteria not met
 - Comanche Peak 1 Structural / Accident Leakage
 - Oconee 2 Structural
- Meeting performance criteria is another measure of plant performance

COMANCHE PEAK 1

- Axial ODSCC at dinged location in U-bend
- Accident and structural performance criteria not met
- Issues:
 - Overly restrictive phase angle response reporting criteria
 - Presence of artifact signals (dents , dings, probe wobble, etc.)
 - Automated data screening threshold criteria
 - Detecting long freespan indications
 - Use of "Judas" tube

OCONEE 2

- Flaw coincident with 2 volt dent (industry calibration) and a manufacturing burnish mark which caused the tube to not meet structural performance criteria
- Dent and MBM in close proximity are precursor and masking combination that affects flaw detectability
- Observations

--Inspect dents and MBMs with qualified techniques

--Certain artifact types, or combinations thereof, may pose significant challenge for detection of flaws

OTHER SG ISSUES

- Diablo Canyon degradation in unexpected location/unexpected high voltage indications
- Seabrook first domestic incident of cracking in thermally treated Alloy 600 tubing
- Beaver Valley 2 implementation of GL 95-05
- Tubesheet Inspections inspections to evaluate circumferential cracking in lower tubesheet regions

DIABLO CANYON 2

- Secondary side pressure test performed based on operational leakage
- Circumferential cracks (ID initiated) in U-bend Rows 1 through 10
 - Met performance criteria
 - Cracking may not progress sequentially row by row
 - Experience should be factored into degradation assessments

DIABLO CANYON 2 (cont'd)

- Axial ODSCC at tube supports (GL 95-05)
- Large voltage indication 19.5 volt increase in one cycle
- NDE indicated flaw nearly through-wall during previous inspection
- Review rotating probe profiles for indications less than repair limits
- Unexpected number of large voltage indications
- Voltage dependent growth rate methodology should result in conservative estimates of voltage growth

SEABROOK

- First domestic incident of confirmed ODSCC at tube support plate elevations in 15 Alloy 600 thermally treated tubes
- Cracking unexpected based on tube material, plant age, and operating conditions at plant (e.g., temperature)
- Observations:
 - Manufacturing/fabrication anomalies can lead to unanticipated degradation mechanisms
 - Abnormal trends in eddy current data may indicate potential problem
 - ISI programs intended to manage known degradation as well as promptly detect unanticipated degradation

BEAVER VALLEY 2

- Spring 2003 outage licensee may not be following Generic Letter 95-05 (voltage based repair limit) guidance concerning large mix residuals
- Technical Issue: Mix residuals can mask indications and may affect the bobbin voltage response of the indications
- Observations/Issues
 - Critical evaluation of inspection results is important
 - Is criteria for identifying large mix residuals supported by inspection results (i.e., finding >1.0 volt flaws near lower range of screening criteria may question adequacy of screening criteria)
 - Are large mix residuals consistently called from outage-to-outage?

TUBESHEET INSPECTIONS

- Draft generic letter issued for public comment
- Staff position and expectations discussed
- Questions developed based on review of licensee's technical basis (ADAMS Accession Numbers: ML031270287, ML030350719, and ML022980486)
- Licensee submittals should address these issues

RECENT NRC GENERIC COMMUNICATIONS ON SG OPERATING EXPERIENCE

- Information Notice (IN) 2002-02 Experience with Plugged Steam Generator (SG) Tubes
- IN 2002-21 Cracking Affecting Thermally Treated Alloy 600 Steam Generator Tubes
- IN 2003-05 Failure to Detect Freespan Cracks in SG Tubes -Comanche Peak 1
- Draft GL, Requirements for Steam Generator Tube Inspections May 14th Federal Register, Pages 25909-25912 (ML031270171)
- SECY-03-0080, SG Tube Integrity (SGTI) Plans for Revising the Associated Regulatory Framework
- NUREG-1771, U.S. Operating Experience with Thermally Treated Alloy 600 SG Tubes
- Plan to issue an IN on Diablo Canyon 2

RECENT STEAM GENERATOR ISSUES

NRC/INPO Meeting

August 21, 2003

Louise Lund

U.S. Nuclear Regulatory Commission

(301) 415-3248

SG PERFORMANCE

- Forced Outages
 - Wolf Creek no leakage primary side loose part
 - Byron 2 75 to 80 gpd leak secondary side loose part
 - Comanche Peak 1 50 gpd leak SCC in U-bend
- Most forced outages in a single year since 1994
- Performance criteria not met
 - Comanche Peak 1 Structural / Accident Leakage
 - Oconee 2 Structural
- Meeting performance criteria is another measure of plant performance

COMANCHE PEAK 1

- Axial ODSCC at dinged location in U-bend
- Accident and structural performance criteria not met
- Issues:
 - Overly restrictive phase angle response reporting criteria
 - Presence of artifact signals (dents , dings, probe wobble, etc.)
 - Automated data screening threshold criteria
 - Detecting long freespan indications
 - Use of "Judas" tube

OCONEE 2

- Flaw coincident with 2 volt dent (industry calibration) and a manufacturing burnish mark which caused the tube to not meet structural performance criteria
- Dent and MBM in close proximity are precursor and masking combination that affects flaw detectability
- Observations

--Inspect dents and MBMs with qualified techniques

--Certain artifact types, or combinations thereof, may pose significant challenge for detection of flaws

OTHER SG ISSUES

- Diablo Canyon degradation in unexpected location/unexpected high voltage indications
- Seabrook first domestic incident of cracking in thermally treated Alloy 600 tubing
- Beaver Valley 2 implementation of GL 95-05
- Tubesheet Inspections inspections to evaluate circumferential cracking in lower tubesheet regions

DIABLO CANYON 2

- Secondary side pressure test performed based on operational leakage
- Circumferential cracks (ID initiated) in U-bend Rows 1 through 10
 - Met performance criteria
 - Cracking may not progress sequentially row by row
 - Experience should be factored into degradation assessments

DIABLO CANYON 2 (cont'd)

- Axial ODSCC at tube supports (GL 95-05)
- Large voltage indication 19.5 volt increase in one cycle
- NDE indicated flaw nearly through-wall during previous inspection
- Review rotating probe profiles for indications less than repair limits
- Unexpected number of large voltage indications
- Voltage dependent growth rate methodology should result in conservative estimates of voltage growth

7

SEABROOK

- First domestic incident of confirmed ODSCC at tube support plate elevations in 15 Alloy 600 thermally treated tubes
- Cracking unexpected based on tube material, plant age, and operating conditions at plant (e.g., temperature)
- Observations:
 - Manufacturing/fabrication anomalies can lead to unanticipated degradation mechanisms
 - Abnormal trends in eddy current data may indicate potential problem
 - ISI programs intended to manage known degradation as well as promptly detect unanticipated degradation

BEAVER VALLEY 2

- Spring 2003 outage licensee may not be following Generic Letter 95-05 (voltage based repair limit) guidance concerning large mix residuals
- Technical Issue: Mix residuals can mask indications and may affect the bobbin voltage response of the indications
- Observations/Issues

- Critical evaluation of inspection results is important
 - Is criteria for identifying large mix residuals supported by inspection results (i.e., finding >1.0 volt flaws near lower range of screening criteria may question adequacy of screening criteria)
 - Are large mix residuals consistently called from outage-to-outage?

TUBESHEET INSPECTIONS

- Draft generic letter issued for public comment
- Staff position and expectations discussed
- Questions developed based on review of licensee's technical basis (ADAMS Accession Numbers: ML031270287, ML030350719, and ML022980486)
- Licensee submittals should address these issues

10

RECENT NRC GENERIC COMMUNICATIONS ON SG OPERATING EXPERIENCE

- Information Notice (IN) 2002-02 Experience with Plugged Steam Generator (SG) Tubes
- IN 2002-21 Cracking Affecting Thermally Treated Alloy 600 Steam Generator Tubes
- IN 2003-05 Failure to Detect Freespan Cracks in SG Tubes -Comanche Peak 1
- Draft GL, Requirements for Steam Generator Tube Inspections May 14th Federal Register, Pages 25909-25912 (ML031270171)
- SECY-03-0080, SG Tube Integrity (SGTI) Plans for Revising the Associated Regulatory Framework
- NUREG-1771, U.S. Operating Experience with Thermally Treated Alloy 600 SG Tubes
- Plan to issue an IN on Diablo Canyon 2