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ABSTRACT

Federal regulations governing the disposal of high-level

radioactive waste in deep, geologic repositories require an assessment

of performance over thousands of'years. Because of the long regulatory

period involved and the complex nature of the events and processes of

interest, prediction of the performance of the disposal system will

inevitably include uncertainties. These uncertainties come from a

variety of sources, some are quantifiable and others are not. This paper

discusses these uncertainties and outlines approaches for their

treatment. Recommendations for. the potential resolution of current

limitations in the treatment of uncertainties in performance assessment

are made. Some general issues,, as well as a suggested approach for
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incorporating expert judgment into quantitative performance assessment

analysis, are also discussed.

INTRODUCTION

The U. S. Nuclear Regulatory Commission (NRC) has sponsored

programs at Sandia National Laboratories, Albuquerque (SNLA)

to develop performance assessment methodologies for geologic high-level

radioactive waste (HLW) repositories (Cranwell et al., 1982a; Bonano et

al., 1987a). Approaches have been recommended and, in many cases,

incorporated into the methodologies to treat and/or reduce as much as

possible the effect of uncertainties associated with the prediction of

repository performance. The purpose of this paper is to summarize the

findings of investigations regarding sources and treatment of

uncertainties in HLW disposal conducted in the aforementioned programs.

Therefore, some discussions presented here have been excerpted from

earlier works performed at SNLA. The authors do not intend for this

paper to be considered a literature review in uncertainty analysis.

Federal regulations governing the disposal of HLW geologic

repositories require an assessment of their performance over thousands

of years (NRC, 1983; EPA, 1985). Because of the long regulatory period

and the nature of the events and processes of interest, uncertainties

are inevitably introduced in performance assessment analysis. These

uncertainties arise from several sources, the most important ones being:

(1) uncertainty in the future states of the disposal system over the

temporal scales set forth in regulations, (2) uncertainty in the models
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used to simulate these future states, and (3) uncertainty in the data

and parameters required to exercise these models. Modelling uncertainty

includes uncertainty in the formulation of a conceptual model for a

given state of conditions, uncertainty in the mathematical description

of a given conceptual model, and uncertainty in the implementation of a

mathematical model in a computer code..

The effect of uncertainties propagates through the overall

performance assessment analysis as shown in fig. 1. Uncertainty is

initially introduced when the future states of the disposal system are

hypothesized. Available system data used to determine these states are

used to formulate a conceptual model. These data may not be sufficient

and additional information may be required to develop the conceptual

model. Next, a mathematical model of the conceptual model is developed.

This mathematical model is solved in a computer code. Uncertainty is

introduced at this level because of uncertainty in the theoretical

description of the processes being modelled, coding errors, and errors

in numerical, algorithms used in the computer code, to name a few.

Verification and benchmarking exercises may be used to build confidence

in the mathematical model(s) and associated computer code(s). System

data are typically used to produce a calibrated numerical representation

of the conceptual model. When data, exist,. and if time permits,

validation exercises may be conducted to provide further confidence in

the ability of the model(s) to adequately describe the disposal system

and associated processes. Finally, sensitivity and uncertainty analyses

are performed to identify and quantify the contribution-of parameter and

data uncertainty to the uncertainty in the estimate of the performance
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measure. Sensitivity analyses are particularly useful in identifying

those parameters and processes that contribute most to uncertainty in

the performance measure, and consequently, in directing future research

and data collection needs.

SOURCES OF UNCERTAINTY IN

SYSTEM PERFORMANCE ASSESSMENT

This section summarizes the major sources of uncertainty and their

causes. Approaches currently used to treat and/or reduce uncertainty are

discussed in a later section.

Uncertainty in Future States of the Disposal System

To perform an analysis of a HLW repository, it is necessary to

determine the various states that the disposal system may experience

over the time periods of interest. "Scenario" development is aimed at

addressing this issue. As used here, a scenario is a sequence of events

and processes, either natural or human induced, that could result in the

release of radionuclides from the underground facility, their migration

through the geosphere and the biosphere, and their eventual exposure to

humans. Sources of uncertainty in scenario development include (a)

uncertainty associated with the "completeness' of scenarios, (b)

uncertainty associated with the probability of occurrence of a scenario,

and (c) uncertainty associated with the estimation of the consequences

of scenarios. The latter results in uncertainty in the conceptual model

for a scenario, uncertainty in the mathematical models representing
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relevant phenomena and associated computer codes, and uncertainty in the

data and parameters required by the models and codes.

The completeness' problem in the scenario selection process refers

to the uncertainty that all possible scenarios have been considered.

Proof of completeness is not possible in the sense that unequivocally

all possible scenarios -have -been considered. The-only avenue is-to

develop logical procedures for- scenario selection and screening and

submit these procedures to the scrutiny of the technical community

(Cranwell and Helton, 1980, 1981). Amethodology for the selection and

screening of scenarios is discussed-briefly later in this paper.:,

The nature of the scenarios that must be hypothesized is such that

the task of assigning probabilities in quite difficult. Uncertainties

associated with probabilities can be grouped into either numerical or

relative depending on theA- approach used to derive the probabilities.

When sufficient data are available to calculate the probabilities,-the

uncertainty can be numerical whereas those probabilities estimated based

on expert judgement can have relative uncertainties..

Modelling--Uncertainty

As was mentioned earlier, modelling uncertainty includes

uncertainty in the formulation of a conceptual model of a disposal

system for a given scenario, uncertainty in the mathematical model used

to represent the conceptual model, and uncertainty in the implementation
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of the mathematical model in a computer code. Each of these sources of

modelling uncertainty is discussed below.

Conceptual Model Uncertainty

Given a scenario, the state of the disposal system must be

hypothesized. This constitutes the formulation of a conceptual model

that describes the physical and/or chemical processes taking place, the

variables that relate to these processes including boundary conditions,

and the spatial and temporal scales of the assumed processes.

Uncertainty is introduced in performance assessment calculations when

assumptions are made regarding the behavior of the system. Questions

such as whether the system is at steady state, or whether it is a porous

medium or a fractured medium arise during the formulation of a

conceptual model. Frequently, preconceived notions about the behavior of

the system resulting from past experiences with apparently similar

systems can lead to serious errors in the conceptual model. This has

been particularly true when models for saturated porous media have been

extended with only few modifications to saturated fractured media and

unsaturated fractured media. These extensions have been based on the

assumption that the latter two media behave as a continuum much in the

same manner as the former. If this assumption is invalid, performance

assessment analyses using extended models in saturated fractured or

unsaturated fractured media may not be realistic.

The development of a conceptual model implies simplifying the real

system so that it can be represented with a tractable mathematical model
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that, in turn, can be solved using-available analytical or numerical

techniques. In addition, typically the "real" system is poorly described

making the development of a conceptual model a formidable task. Both of

these factors contribute to the uncertainty in the development of a

conceptual model. When more; than one conceptual model seems to be

consistent with available observations, techniques must be developed to

reconcile the results of these multiple models. Then, the issue becomes

the assignment of probabilities to each of the possible conceptual

models.

Mathematical Model Uncertainty

Once a conceptual model has been formulated, a mathematical

representation of the models describing the relevant processes is

required in order to predict-the performance of the disposal system.

Mathematical- models are required in many areas such as waste/host rock

interactions, ground-water flow and radionuclide transport, surface

transport and human uptake, and dosimetry and health effects (Cranwell

and Helton, 1980, 1981).

Uncertainty in mathematical models will arise because of the lack

of knowledge regarding the important processes and associated couplings,

a limited capability-to mathematically represent the processes and their

couplings, insufficient data to describe the processes acting on the

system and the system itself, and the extrapolation of the models to

temporal and spatial scales beyond those-for which they are tested.
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The lack of understanding of processes is a fundamental issue that

needs to be addressed because it may lead to the development of

incorrect models. For example, the assumption that dispersion of a

contaminant can be described using a Fickian model has come under severe

criticism. Another example of a modeling approach that has been the

subject of controversy is the assumption of linear equilibrium to

describe radionuclide retardation. Thus, studies aimed at improving the

understanding of fundamental processes are required to reduce

uncertainties introduced by the theoretical models.

Computer Code Uncertainty

Sources of uncertainty associated with computer codes include

coding errors, computational limitations, and user error. Computational

errors can be caused by truncation errors due to finite word lengths.

Other potential sources of computational errors are the use of imported

numerical algorithms with data beyond the required range for a

particular algorithm, and user error. The computer codes typically used

in performance assessment are particularly susceptible to the latter

because of the complexity required to model the relevant processes in

HLW disposal.

Parameter and Data Uncertainty

After appropriate mathematical models have been developed and

computer codes have been assembled to implement the solution of these

models, the modeler is faced with the problem of obtaining suitable
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values for the parameters in the models. The uncertainty associated with

the values of parameters comes from several sources including (1)

measurement error, (2) paucity of data, (3) misinterpretation of data,

(4) spatial variation of parameters, and (5) assumptions regarding the

behavior of the system. Furthermore, quantifying these uncertainties in

order to quantify the uncertainty in the predictions of the models can

be difficult.

Several possible sources of measurement error exist. First, the

measuring technique may be either incorrect or misapplied. For example,

laboratory tests to determine distribution coefficients describing

radionuclide/rock interactions might be conceptually incorrect or not

applicable under the conditions of interest. Another example is the use

of a two-well test to measure hydraulic parameters for rectilinear flow.

The two-well test is a potential-type flow experiment in polar

coordinates whereas the model for -which the measured parameter is

intended is not. The implied assumption in this type of experiment is

that the medium is isotropic (i.e., a conceptual model has been assumed

a priori).- The use of accelerated experiments to measure one or more

parameters associated with a given phenomenon without proper treatment

of other phenomena -that may be taking-place simultaneously is another

example in which the investigator-has assumed beforehand the behavior of

the system. In this case, the implied assumption is that the time scales

of other phenomena are not important. For small temporal- and spatial-

scale experiments to be meaningful they must be dynamically similar to

the real system. Finally, measurement errors may have a statistical

source. For example, many estimators used for the autocovariance and
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cross-covariance of spatially variable parameters may be statistically

biased.

Parameter and data uncertainty is also introduced because of the

spatial variation of the data. Measurements of data often exhibit

significant scatter across a site due to the spatial variability of rock

properties such as hydraulic conductivity and thickness of geologic

units. These properties typically vary in space even if they are

measured without error. Uncertainty is introduced by replacing variable

parameters with lumped parameters or by representing a random variation

with a deterministic but distributed parameter.

The majority, if not all, of the parameters required in performance

assessment models cannot be measured directly. Rather, their values are

inferred indirectly from excitation-response data using a particular

governing equation. The underlying assumption made is that the

assumptions implied by the use of a given equation are valid for the

system being characterized. In reality, the investigator is deciding 

priori the behavior of the system (another example of implicitly

selecting the conceptual model prior to the test). This uncertainty can

be attributed to the use of existing mathematical equations for given

processes and mechanisms beyond their range of validity. As mentioned

above the initial source of this uncertainty is really the conceptual

model.



TREATMENT OF UNCERTAINTIES

In this section we discuss approaches available for the treatment

and/or reduction of uncertainties in each of the areas identified above.

We also suggest possible resolutions of limitations in these approaches,

and in the case where procedures do not exist, present ideas about how

the problem can be addressed.

Scenario Uncertainty

The treatment -of uncertainty in the selection and screening of

scenarios can be-best addressed with a technically sound methodology for

scenario selection and screening such as the one described in Cranwell

et al. (1982b). The steps involved are (1) initial identification of a

comprehensive set of events and-processes believed to be important in

performance assessment;- (2) classification of-the events and processes

into categories based on the origin.and physical characteristics of

these- phenomena as well as the effect on the disposal system; (3)

initial screening of events- and processes using well-established

criteria such as physical reasonableness, probability of occurrence,

consequence, and regulations; (4) combining events and processes to form

scenarios; and (5) screening of the-scenarios to arrive at a final set

for performance assessment.

The- contribution, of scenario uncertainty to the total uncertainty

in model predictions -cannot be expressed quantitatively. At most, one
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can simply assert that, based on the current state-of-the-art, the suite

of scenarios considered is judged to be acceptably complete and

decisions based on overall assessment are adequately justified. There is

no known procedure for quantifying the effect that failure to identify a

scenario will have on the prediction of a performance measure. In

principle, the effect of neglecting a scenario in terms of its low

probability can be studied using a trial-and-error procedure. That is,

repeating the analysis with the neglected scenario included. However,

the fact that a scenario has been neglected because of its low

probability may be related to the fact that the detailed modelling of

the relevant physical processes is itself uncertain (e.g., glaciation

mechanisms and the related physical processes are not well understood),

and so the value of such a trial-and-error procedure may be

questionable.

The scenario selection and screening methodology described in

Cranwell et al., (1982b) has been used to formulate scenarios affecting

the performance of a HLW repository in bedded salt (Cranwell et al.,

1982a), basalt (Hunter, 1983), and tuff (Guzowski, 1987) formations.

More uses of this methodology by the international community should be

encouraged in order for it to gain acceptability.

A crucial aspect of this methodology, as well as new methodologies

that may become available in the future, is the considerable reliance on

expert judgment. Expert judgment is necessitated because of the nature

of the problem at hand. All six steps in the methodology described by

Cranwell et al. (1982b) require to some degree the use of expert
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opinion. This is particularly true in the assignment of probability of

occurrence to each scenario. Procedures must be developed to incorporate

and synthesize expert opinion and associated uncertainties into the

methodology.

When sufficient site-specific data exist and the system is

sufficiently understood to support the assignment of probabilities, the

uncertainty associated with these can be quantified. Techniques for

quantitatively estimating the probability of occurrence of scenarios

generally fall in one of three categories:

* Axiomatic - the event or process is represented by a

probability model; avaliable data are used as input to the

model; probabilities are assessed based on the ouput of the

model.

* Frequentist - data on the event or process are examined for

frequency patterns; probabilities are assessed based on the

frequency of the data; experiments may be used to-obtain the-

data.

* Modelling - conceptual and mathematical models are developed,

repeated simulations of the mathematical model are performed;

probabilities are assessed based on the outcome of the

simulations.
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If on the other hand, data are sparce to nonexistent; probabilities are

assessed subjectively based on expert judgment. The task then becomes

the combination of the numerical uncertainty obtained from data and the

"relative" uncertainty obtained from the expert(s). Hunter and Mann

(1987) have conducted a literature review that investigated the

procedures used in the past for assigning probabilities and the

associated uncertainties for geologic events. This study involved the

use of a multidisciplinary group of experts. Future activities in the

development of techniques for assigning probabilities should be a

follow-up of this study.

The combined objective/subjective approach for assigning

probabilities should be implemented in conjunction with existing

analytical tools in order to concentrate the efforts on those scenarios

that are most critical in the estimation of performance measures. For

example, the impact of the probability of scenarios on the imprecision

of the estimate of a given performance criterion can be investigated

with Monte Carlo simulations using ranges and distributions of

probabilities. This study could indicate the most important scenarios in

terms of demonstrating compliance with the regulations. This is an

example of the use of analytical tools to screen out unimportant issues

in order to reduce the uncertainty introduced by the use of experts.

Modelling Uncertainty

Conceptual Model Uncertainty
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The conceptual model for a given scenario sets the framework for

the use of models, computer codes, and parameters in performance

assessment analyses. The uncertainty issues that must be dealt with in

terms of the conceptual model relate to assuring that all available

information about the site and the scenario is used. This information

includes hydrologic, geologic, geochemical, and geophysical data.

Typically, these data are massive and, as a result, information that

does not seem to fit an overall picture suggested by the majority of the

data, or by some preconcieved notion, is neglected. Inclusion of

previously neglected information may lead to a different conceptual

model, or perhaps, to multiple models.

The issue that needs to be addressed then becomes whether all this

information can be discerned in a logical manner. One possible approach

is to use an expert system that asks a series of logical questions. Some

of the logical questions are:

* Do the data suggest a steady-state model?

* Do the data suggest a porous media model?

* Do the hydrologic, geologic, geochemical, and geophysical data all

suggest the same type of model?

* If one conceptual model is not consistent with all the available

data, how many different conceptual models are possible?
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An expert system possibly can discern all this information and produce

one or more conceptual models and the corresponding limitations of each

model. If more than one conceptual model is possible, the expert system

could attempt to assign a relative probability to each model based on

the fraction of data supporting the model. This approach is a new idea

and no indication is available as to whether or not it will succeed in

handling uncertainty in conceptual models. However, it seems to be worth

exploring. The suggested approach could be similar to that used in the

medical sciences to diagnose a patient's illness. A battery of tests are

typically performed on the patient to provide specific pieces of

information, which when combined with the symptoms the patient exhibits

point out a specific medical condition. The expert system is used to

discern and evaluate all the information in a systematic and logical

manner. In HLW disposal the "illness" is the conceptual model, the

"symptoms" are the response of the geologic setting to specifically

designed tests, and the "conditions" are steady-state, transient,

fractured media, etc..

Mathematical Model Uncertainty

In order to predict the performance of a nuclear waste disposal

facility, relevant processes and events must be described with one or

more mathematical equations. Site-specific values for the required

parameters are supplied, the equations are solved in a computer code,

and estimates of the independent variable(s) are generated. The

uncertainty in the mathematical description of a real system can only be

addressed through model validation activities. "Validation" refers to
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the process of obtaining assurance that a model, as contained in a

computer code, is an accurate representation of the processes or system

for which it is intended. Ideally, validation consists of a comparison

between model predictions and observations of the real system.

Unfortunately, the temporal and spatial scales required by the

regulations precludes the 'monitoring' of the real system so that

validation in the true sense can not be-achieved. This is precisely the

reason why one must rely on predictive mathematical models'to show and

assess compliance with regulatory criteria.

Given these constraints, some assurance must still be provided that

the models used in performance assessment analyses and the assumptions

associated with the development of'such models are valid to the extent

possible. Accepting that "full' validation can never be-achieved, a

synthesis of laboratory observations, controlled field studies, natural

analogs, and expert judgment can be used to ascertain the validity of

the models in terms of proper coupling of simultaneous processes, large

temporal and spatial scales, and complexity of the system.

Laboratory experiments when carefully designed'and conducted can be

useful in model validation. The most crucial condition that must be met

by laboratory experiments is dynamic similarity with the real system as

was discussed earlier. That is, the values of the dimensionless groups

that govern the real system must be retained in the'laboratory'setup.

This is particularly important when simultaneous time-dependent

processes take place. Accelerating one of the processes while ignoring

the time scale of others may lead to biased and, therefore, erroneous
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results. Laboratory experiments should not be expected to emulate the

real system in its entirety. Rather, they should be designed to study

isolated couplings between important phenomena identified with

sensitivity analyses.

The use of natural analogs in model validation activities is

important to test the ability of the models to extrapolate in time and

space. The time scales associated with natural analogs may not be

necessarily of the same order as the time scale of waste disposal

processes. However, this should not deter the use of natural analogs as

they probably may be the only large scale test for certain transport

models. The main drawback of using natural analogs may be establishing

the initial conditions of the systems. Natural analogs may also play an

important role in testing the couplings of simultaneous processes in the

models. For example, geothermal reservoirs can be used to test the

coupling between ground-water flow and heat transport models.

Controlled field experiments could be useful particularly with

respect to the development of ground-water flow models. They could also

be used to calibrate and validate this type of model. Care must be

exercised in the calibration/validation activities because at least two

independent sets of data are required; one for calibration and one or

more for validation. The experimentalist must be extremely careful in

obtaining assurance that the data sets are indeed independent.

Close interaction between modelers and experimentalists is an

important element in the development and validation of sound
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mathematical models. Modelers need to be informed of the meaning of

measured, values of parameters to be used in their models and the

dependency of these-values on-the experiments. For example, laboratory-

measured. dispersivities can be several orders of-magnitude smaller than

field-measured values because the measurement of dispersivity is scale-

dependent (Neuman et al., 1987). The models must be governed by

parameters that can be directly, measured in experiments. If some

manipulation of experimental data is required to obtain values for the

model parameters,- uncertainty is- introduced in the exercise and thus

defeats the purpose of model validation as a mechanism for reducing

uncertainty., Interactions between modelers and experimentalists should

be structured in such a -fashion that the validation exercise is not

biased. Every effort should be made to-avoid asituation in which the

modelling approach dictates to a large extent the manner in which the

experiment is conducted. -

Computer Code Uncertainty

Uncertainties are-introduced into model predictions by the approach

used to solve the equations contained in the mathematical models. Errors

exist in the approach to discretize differential equations,-evaluation

of integrals, truncation of infinite series, etc. In general,

uncertainties due to computational errors are considered to be minimal

compared to uncertainty from other sources in performance assessment.

This is the case because of all -potential sources of uncertainty

computational errors can be minimized through code verification

exercises. "Verification" is the process of obtaining assurance that a
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computer code correctly implements the solution of a given mathematical

model. Code verification is performed by direct comparison of results

from a code with the predictions of other codes for the same problem

(benchmarking), or with existing analytical solutions for problems that

test salient numerical features of the code.

A practical limitation affecting the treatment of uncertainty

associated with computer codes in HLW repository performance

assessment is the use of large and complex computer codes in Monte Carlo

simulations to generate suitable output distributions of the performance

measures. The cost of computer time and the need to use large computer

systems to run these codes may force the analyst to further truncate

parameter sampling schemes. This can result in either reduced confidence

in the results or in the possibility that important combinations of

parameters may be overlooked in the analysis.

Software quality assurance (QA) is another mechanism for reducing

the uncertainty associated with computer codes. Errors in the output

from codes may come from various sources. Some of these are:

* Transcription or coding error (e.g., inserting a "+" sign when

the original equation requires a _").

* Use of wrong data (e.g., using a conductivity value when

transmissivity is required).

* Incorrect transfer of data between sections of the code (e.g.,
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using the stored inverse of a matrix when the matrix itself is

required).

* Use of insufficient precision in-the algorithms.

* Use of models beyond their range of validity.

The magnitude of coding errors from these sources cannot be

estimated either quantitatively or qualitatively. However, the use of

strict software QA procedures can significantly reduce the number and

magnitude of such errors. Examples of QA procedures implemented for

computer software are Lyon (1981) and Wilkinson and Runkle (1986). The

former was developed for the Canadian deep geological disposal analysis

program whereas the latter has-been implemented by SNIA for computer

codes developed for the NRC.

Parameter and Data Uncertainty

Because of the complexity of-the systems that need to be modeled

and the temporal and spatial scales involved, the analyst often is

confronted with the difficulty of deciding the values of parameters

needed for the- analysis." Many -of the-parameters needed in the models

will not'be single-valued. There is likely to be greater uncertainty in

obtaining single values for paramters than in defining-a distribution of

values. Therefore, using single values for parameters in the-analysis is

not acceptable. Several procedures exist for propagating parameter and

data uncertainty to the estimation of performance measures. Some of the
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most commonly used techniques are (1) statistical methods (including

experimental design procedures or Monte Carlo methods), (2) stochastic

models, (3) interpolation techniques such as kriging, and (4)

differential analysis techniques. Each of these is discussed below.

Statistical Methods. Statistical methods may be classified into the

following two categories:

* Experimental Design or Response Surface Methods

* Sampling or Monte Carlo Methods

Experimental design or response surface methods use an experimental

design to select a set of specific values and pairings of the input

variables for making multiple runs of the computer code. The method of

least squares is used with model input and output to estimate the

parameters of a general linear model. The use of response surface

methods for performing sensitivity and uncertainty analyses can be found

in reports such as Iman and Helton (1985). A general and brief

discussion on this method is given below.

The estimated model is known as a fitted response surface, and it

is this surface that is used as a replacement for the computer model.

Thus, all inferences with respect to uncertainty and sensitivity

analyses for the computer model are derived from the fitted one. Two

points are worth noting with respect to the fitted model. First, a

linear model is usually written with an error term added to represent
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stochastic variation. However, the actual models -considered in

performance assessment generally produce deterministic output, and

therefore, differences- between the fitted model and the actual one are

due to lack of fit rather than to stochastic variation. The second point

involves individual input variables used in the fitted model. The actual

fitting of such a model usually involves additional variables derived

from the original variables, such as squares and cross-products as well

as transformations of the original variables. 

Fitting of a response surface usually requires that some

prescription be used to select specific values of the input variables,

and more importantly, to determine the manner in which inputs are paired

in each of the computer runs. Experimental designs are commonly used to

make the determination. The choice of available designs is large.

However, one of the more commonly used designs is based on factorial

designs.

Factorial experimental designs are well developed in the

statistical literature and extensive discussions with respect to them

may be found -in textbooks on-experimental design (e.g., Box et al.,

1978). A factorial design utilizes two or more fixed values (i.e.,

levels) to represent each variable under consideration. Thus, if there

are k input variables and if two levels are-used for each variable, 2

possible combinations of the k variables exist, whereas 3 combinations

are possible with three levels, or in general, nk combinations are

possible with n levels. It is also possible to mix the number of levels
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used with each variable such as six variables at two levels paired with

two variables at three levels and two variables at four levels. One

feature of a factorial design is that all pairwise correlations between

inputs are equal to zero (i.e., the input values are orthogonal to one

another).

Sampling or Monte Carlo methods are based on treating model input

parameters as random variables with assigned probability distributions

and appropriate correlations. Specific values for model input parameters

are selected using available statistical sampling procedures. The

sampling procedure generates a number of input vectors that are

combinations of values for all parameters in the models to be used. The

models are executed for each of the input vectors resulting in multiple

values of the performance measure from which a distribution can be

obtained.

A number of sampling techniques exist for generating samples of

input parameter values: random sampling, factorial stratified sampling,

and Latin hypercube sampling. Several of these methods have been

compared by McKay et al. (1979) and Filshtein et al. (1981).

Stochastic Models. One approach to reduce uncertainty in parameters

is to reduce the number of effective parameters. Incorporation of

spatial correlation information in sampling procedures as discussed

above is an example. This information can also be incorporated directly

into the model by assuming that the random parameters consist of a mean

value and a perturbation about the mean. This modelling approach leads
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to the solution of two stochastic equations: one for the mean behavior

of the dependent variable and another for the variance-about the mean.

Models that fit this general description are commonly known as

"stochastic" models. Stochastic models-have been developed for ground-

water flow that predict hydraulic heads and, consequently, flow

velocities due to the randomness of hydraulic- conductivity or

transmissivity in an aquifer (Bakr et al.; 1978; Gelhar et al., 1979,

Gutjahr et al., 1978, to name a few). Stochastic models for contaminant

transport in a one-dimensional- flow system have also been developed

(Gelhar and Gutjahr, 1982; Gutjahr et al., 1985; Bonano et al., 1987b).

The latter are based on the assumption that a second-order stationary

random -velocity field will lead to a stochastic contaminant

concentration. Two: stochastic models are discussed below: solution of

the ground-water inverse problem using-geostatistics with conditional

simulation, and a one-dimensional stochastic radionuclide transport

model.

The inverse problem in general refers to the estimation of the

parameters in a model given-a known response as a result of a known

excitation. In ground-water-modeling, the inverse problem specifically

refers to the estimation of transmissivity given the hydraulic heads and

boundary conditions (Clifton and Neuman, 1982). The combination of the

inverse problem in hydrology with geostatistics emphasizes the

importance of- the spatial correlation of the parameter field to be

estimated (transmissivity)-and the hydraulic heads. Thus, the effective

number off unknowns is reduced. -The estimation of the transmissivity

field is also conditioned on observations of both transmissivities and
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heads. SNIA is implementing a procedure similar to that of Clifton and

Neuman. The difference between the two approaches arises because the

latter approach does not include co-kriging of the head and

transmissivity fields whereas the former does. The general procedure

used in the SNLA approach is described by Kitanides and Vomvoris (1983),

and Hoeksema and Kitanides (1984, 1985). A model for the statistical

spatial variability of the transmissivity field is proposed. The

differential equation describing ground-water flow is used to relate the

spatial variability of the hydraulic heads and uncertainty in boundary

conditions to that of the transmissivity field. A maximum likelihood

procedure is used to estimate the unknown parameters in the proposed

transmissivity field model conditioned on the observed values of

hydraulic head and transmissivity. The variability of heads and

transmissivity are used in a linear estimator (co-kriging) to obtain the

actual transmissivity field from observations of head and

transmissivity. Co-kriging is also used to estimate the variance of the

transmissivity field. The spatial variability of velocity fields are

related to the variability of head and transmissivity using Darcy's

equation. Conditional simulation is used to generate fields of

transmissivity, heads and velocities that reproduce the measured values

in all realizations. The velocity fields are estimated from the flow

model using the head and transmissivity realizations as input. Using the

simulated velocity fields, multiple flow paths from the repository to

the accessible environment can be generated and used to construct a

cumulative distribution function of ground-water travel time. These flow

paths can also be used for radionuclide transport models in order to
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propagate the uncertainty in ground-water flow parameters to the

prediction of concentrations.

A stochastic one-dimensional contaminant transport model can be

used to transmit the uncertainty in ground-water flow to transport

calculations. This type of model is useful as long as the assumption

that most ground-water flow, and hence radionuclide transport, occurs

along simple one-dimensional paths such as a streamtube (Bonano et al.,

1987b). Models; have- been developed for a single species (Gelhar and

Gutjahr, 1982; Gutjahr et al., 1985) and atwo-member radionuclide chain

(Bonano et al., 1987b). The single-species model is based on the

convective/dispersion equation

- - at+ U au 8Xo 22 + PiC _ at Bx

where

C - C(xt) - concentration at location x and time t,

U - U(x) - ground-water average pore velocity,

a - local dispersivity (constant)

- decay rate constant for the given radionuclide.

In the stochastic framework, the average pore velocity U(x) is assumed

to be a second-order stationary random process in space. That is, not

only is (x) a random process in x, but it has a continuity in x

expressed through its correlation structure or covariance function.

This, in turn, implies that the concentration C(x,t) is also a
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stochastic process. Thus, in the analysis, U(x) and C(x,t) are separated

into a mean value and a zero-mean perturbation; that is,

U(x) - U + U' and C(x,t) - + C'

where 0 - E[U], C - E[C], E[U'] - E[C'] - 0, and E[Y] denotes the

expected value of Y. Using this perturbation approach, governing

equations are derived for the mean concentration C and the variance of

the perturbation C 2 as a function of x and t that can be solved using

conventional mathematical procedures.

Interpolation Techniques. Kriging is a statistical technique that

can be used to estimate a surface from spatially distributed data. It

was named after D. R. Krige, who first applied some of the concepts

underlying this technique to problems of ore content assessment.

However, the general formulation of the theory was provided by Matheron

(1969, 1970), and a number of applications of the technique have been

performed at the Paris School of Mines (Delhomme, 1976; Delfiner, 1976).

As developed by Matheron, the theory of kriging considers the

observation record as coming from the realization of some random

function and seeks to construct linear estimators that have the

properties of unbiasedness and minimum variance. That is, estimators

that will have a satisfactory average behavior when applied to many

realizations of the random function.
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Kriging has several advantages over alternative approaches such as

least squares, polynomial interpolation, and distance weighting of the

data. It restitutes the measured values as estimates at the data points

whereas the least squares method does not because it is meant for

regression rather than interpolation. Kriging will not produce the

contortions that result from attempting to force a polynomial to fit the

data and makes a minimum of assumptions for the structure of the field.

Finally. kriging also provides an assessment of the accuracy of the

estimates.

The problem to be solved using the kriging technique is typically

the following: Given the values Z(2i), i- 1,2,...,n, of a surface Z(2)

in the- plane -at the data points~i, estimate the value ofZ(Z , say

Z (y0 of the surface at the point ar. The kriging estimate of Z at o

is a linear combination of the surrounding data points in the

neighborhood of :

'~~~ ~ - 'Z(o V\ ~i

-NO .i -:

The weights X are calculated such that Z (go) is an unbiased estimate

of Z(y), and the variance

- -- - E[Z () Z(Xo)]2-

is0iniiz 0

is minimized. -- -
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The capabilities of these techniques has led some users to believe

that they are to be used primarily when data are scarce; this is not

true. As with any interpolating technique, estimates obtained with

kriging (and co-kriging) are more accurate as the number of available

observations increases. Since kriging is based on geostatistics, it

could be useful in directing future site characterization activities.

Specifically, it can be used to optimize the location of future

observations so that these will contribute most towards reducing

uncertainty. Kim (1985) discusses the application of this concept at a

candidate unsaturated HLW disposal site.

Differential Analysis Techniques. With this approach, a first-order

Taylor series expansion for the actual model about a vector of base-case

values is used to approximate the model (Iman and Helton, 1985). The

Taylor series approximation is the starting point for uncertainty and

sensitivity analyses based on differentiation. The first step in such an

analysis is generation of the partial derivatives required in the

series. If the function is relatively simple, these derivatives may be

generated analytically or by simple differencing schemes. However, the

function may be too complex to permit such simple approaches and more

involved approaches tailored to the particular model under consideration

must be used.

Once the desired partial derivatives have been obtained, they can

be used in the Taylor series. For uncertainty analysis, the Taylor

series approximation can be used in conjunction with Monte Carlo

simulations to estimate distribution functions. Further, this
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approximation can be used to obtain expected-value and variance

estimates. For sensitivity analysis, the coefficients in a Taylor series

can be normalized. The values of these normalized coefficients can be

used to develop rankings of variable importance.

Differential techniques have- been widely used in uncertainty and

sensitivity analyses and several introductory treatments.are available

(Tomovic, 1963; Tomovic and Vukobratovic, 1972; Frank, 1978). Examples

of the use of differential analysis techniques include Morisawa and

Inoue (1974).

From the discussion above it is clear that techniques for treating

parameter and data uncertainty exist. Each technique has its advantages

and disadvantages, and no technique is generally considered superior to

any other. Rather the adequacy of a given technique is usually

determined by the particular application and circumstances under which

the technique is used.

The treatment -of parameter and data uncertainty requires some

information about the values of the parameters themselves. This

information is typically.-in the -form of probability distribution

functions (pdf's), correlations, and ranges of values. Ideally, this

information would be inferred from site-specific data.-However, under

the -best circumstances, such data tend to be scarce. Thus, the need

exists to develop procedures for examining data generated from site

characterization .activities to optimize their use in treating parameter

and data uncertainty.



32

Expert opinion is likely to play a major role in this aspect. Due

to the paucity of data, many pdf's, ranges, and correlations between

parameters are unlikely to be obtained directly from site-specific data.

Yet, sensitivity analyses may indicate that some of this information has

a significant impact on the estimate of a given performance criterion.

This information must then be obtained from expert opinion. An example

is the correlation between porosity and hydraulic conductivity. While

this correlation may be quite difficult to measure in geologic media, it

is probably counterintuitive to rule it out. If this correlation is

neglected in sampling schemes, it may result in combinations of values

of conductivity and porosity that are not physically possible.

SENSITIVITY ANALYSIS

One approach for reducing uncertainty in model parameters is the

use of sensitivity analysis. Sensitivity analysis generally refers to

the means of quantitatively estimating the amount of variation in the

output of a model due to a given variation in model parameters. In other

words, it is a means of identifying important parameters. Hence

sensitivity analyses indirectly also identify important phenomena and

scenarios that these parameters characterize.

Sensitivity analyses can be used to direct future research efforts

towards the most profitable areas needed in the prediction of

performance measures. The results of such research activities can be

used to refine models and/or define more realistic ranges of parameter
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measures.

For computer codes that do not implement a stochastic model of the

system, two major approaches exist-for performing sensitivity analyses.

The first involves the use of statistical sampling of input parameter

values commonly followed by regression:, analysis -to identify key

parameters (Iman et al., 1978). Statistical methods such as this

typically fit a polynomial to -describe the relationship between input

and output parameters. The second approach, sometimes referred to as the

differential or deterministic- approach, uses the actual model of the

system to define sensitivity coefficients (partial derivatives of output

with respect to each input variable) that indicate the relative

importance of input parameters on the determination of the output. The

sensitivity coefficients are estimated using either a direct method or

the adjoint method (Harper, 1983; Cacuci, 1986).-Differential analysis

is generally more difficult to implement than statistical methods in

that it requires knowledge -of- the actual mathematical relationship

between the output and nput--variables, whereas statistical-methods do

Snot. The primary advantage of the differential anlysis method-is that it

supplies information on the importance of all parameters of interest

with one run of the computer code. This can result in savings in

computer costs as compared to statistical-methods for which multiple

runs are required. One promising approach that implements the

differential analysis method- in sensitivity studies with large models

and computer codes such as those used in HLW performance assessment is

the Gradient-Enhancement Software System- (RESS) (Pin et al., 1986).
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This procedure is contained in a FORTRAN compiler and uses computer

calculus to add the capability of determining the partial derivatives

(sensitivity coefficients) as part of the output of the computer code.

ELICITATION AND USE OF EXPERT OPINION

Expert opinion will likely play an important role in the treatment

of uncertainties associated with the performance assessment of HLW

repositories. It is customary to think of using expert opinion to treat

unquantifiable uncertainties. However, expert opinion will also be

important in treating quantifiable uncertainties as well; for example,

the assignment of scenario probabilities, and ranges and distribution of

parameters.

The type of issues to be addressed by experts will vary dependent

on the type of uncertainty in question. For example, the issues

associated with parameter and data uncertainty are different from those

associated with uncertainty in the conceptual model. Consequently, the

approach to elicit and use expert opinion is likely to be unique in each

case. However, there are general guidelines for the elicitation and use

of expert opinion regardless of the particular situation being

addressed. Some of these guidelines are presented below following the

review by Mosleh et al. (1987).

Expert opinion can be formulated using a single expert or multiple

experts. In both cases, techniques must be developed for improving the

estimates provided by the experts. These estimates are biased by
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systematic overestimation- or underestimation,- -and- overconfidence.

Techniques are available for dealing with-these biases that could be

adopted in HLW performance assessment. One approach is to screen issues

prior to presenting them to the expert(s). That is, limit the number of

issues that the expert(s) are to addressed by preliminary elimination of

those issues that are not important.': For example, in parameter and data

uncertainty, sensitivity analyses could identify those parameters and

possible correlations that significantly impact the estimate of a

performance measure. By screening -out unimportant parameters and

scenarios, the expert(s) can concentrate on a smaller number of issues

and reduce the 'possibility that- their judgment may be affected by

unimportant ones. Another approach is to decompose the problem into

subproblems that are easier to formulate than the complete and, likely,

more complex problem. The expert(s) can-be asked to address issues in

each part of the problem and the analyst then-synthesizes their results.

Finally, experts should be encouraged to find evidence that may

contradict their views in order to reduce overconfidence.

An important factor in the elicitation and use of expert opinion is

whether a single expert or multiple experts need to be used, If a single

expert is to be used, then the analyst must carefully select the expert

as he will not be contradicted in rendering judgment. If multiple

experts are-used, techniques must be implemented-for the aggregation of

their opinions. These techniques are classified into two areas:

mathematical methods and behavioral methods- for reaching-consensus.

Mathematical methods are generally preferred but there are situations in

which behavioral methods can yield acceptable results.
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When using multiple experts several decisions must be made. The

analyst must decide whether the group needs to be a multidisciplinary

one. This is likely to be the case in HLW performance assessment. In the

case of a multidisciplinary group of experts, Mosleh et al. (1987)

suggest using multiple groups. Structured interaction within the members

of a given group but not among groups is recommended.

Uncertainty analysis in the performance assessment of HLW

repositories is a prime candidate for the systematic use of expert

opinion. The approach suggested here for the incorporation of expert

opinion into the treatment of uncertainty in the performance assessment

of HLW repositories is the following:

1. Identification of areas in which expert opinion is needed or

recommended in uncertainty analysis.

2. Identification and screening of important issues to be

considered by the expert(s) in each of these areas.

3. Compilation of available techniques for the elicitation and use

of expert opinion that are appropriate for identified issues.

4. Classification of the issues according to acceptable elicitation

techniques that are recommended for each category (e.g., single

expert vs. multiple experts).

5. Identification of areas for which decomposition is likely



-4d* ( s v 37

-- to be more useful than direct assessment of the complete

problem.

6. Elicitation and use of expert opinion to address the issues

identified above.

CONCLUSIONS

Uncertainties are introduced at every step in the performance

assessment of a HLW repository mined in deep geologic formations. The

sources of- these uncertainties and approaches currently available for

their treatment have been discussed. The concept of propagating these

uncertainties to the estimation of performance measures required by

existing regulations has been presented (see fig.-l). The impact of

these uncertainties on the estimate of performance measures can be

quantified in certain cases and not in others. For those uncertainties

for which the present state of the art allows quantification (namely,

parameter and data uncertainty), a variety of suitable methods is

available. However, the implementation of these methods rely on adequate

characterization and understanding of the disposal system (e.g., more

data for determining probability distributions, correlations, etc.).

Currently, the most pressing need is to develop formal and logical

approaches for treating uncertainties that can not be quantified with

the present state of the art. A good example of such an approach is the

scenario selection and screening methodology described by Cranwell et

al. (1982b). Similar methodologies must be developed for conceptual

models and model validation. Expert judgment is going to play an
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important role in uncertainty analysis as applied to the geologic

disposal of HLW. Procedures must be developed for incorporating expert

opinion into the analysis, and for the reconciliation of potentially

conflicting views. Finally, sensitivity analysis is an important aspect

of uncertainty analysis because it identifies the most important factors

(processes, parameters, scenarios, etc.) affecting the uncertainty in

the estimate of performance measures.
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FIGURE CAPTION

Figure 1. Propagation of Uncertainty in Performance Analysis of Geologic

High-Level Radioactive Waste Repositories.
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